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ABSTRACT

This paper describes a method of centers based on barrier functions for solving optimal control
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1. Introduction

The difficulty of an optimal control problem is very much a function of the constraints. In the
realm of optimal control problems, optimal control problems with control constraints and inequality
state space constraints rank close to the top in terms of difficulty, or, alternatively, close to the bottom
in terms of tractability. In this paper we make use of ideas contained in recent work on phase I -
phase II methods of centers [Pol.2], methods of centers based on barrier functions [Hua.1, Mif.1], and
barrier function methods for semi-infinite minimax problems [Pol.3] to construct a reasonably
promising optimal control algorithm for solving optimal control problems with both control and ine-
quality state space constraints. An important feature of this algorithm is that it decomposes the origi-
nal problem into an infinite sequence of highly tractable optimal control problems with integral cost
and control constraints only, each of which needs to be solved only approximately.

To help establish the extent to which this paper advances the state of the art, we will now dis-
cuss some of the earlier results in this area. We recall that free time problems can always be tran-
scribed into fixed time problems by means of an augmentation of the dynamics (see [War.1] and
hence we need to discuss fixed time problems only. First (see [Bak.1]), unconstrained optimal con-
trol problems and optimal control problems with inequality end point constraints (both without con-
trol constaints), with smooth dynamics, can be formulated as

. 0
ﬂll(lzf (), (1.1)
and

:xg%{f%u) | f/()<0, j=1,2,..,q}, (1.1b)

respectively, with all the functions f/(-) continuously Frechet differentiable on the prehilbert space
C2 (Lm0, 11, Il'Iz } » where Il denotes the norm in L;°[0, 1]. These problems can be solved by
exact analogs of the Armijo gradient method [Arm.1] (see e.g., [Kle.1]) and of the method of centers
(see [Pir.1]), respectively.

Simple optimal control problems with control constraints only, assume the form
i 20,
:Igrbf ), (1.2a)

where U 4 {ueClu)eU, te[0,1])}, with U is a compact subset of R™, and ) is as
above. For simple sets U, these problems can be solved by analogs of the slow-to-converge Frank-
Wolfe algorithm [Fra.1] and the faster Goldstein-Levitin-Polyak gradient projection method (see
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[Ber.1]), as well as by two algorithms which are optimal control specific: the strong variations algo-
rithm in [mayne&polak], and the relaxed control steepest descent algorithm in {War.1]. The addition
of control constraints to (1.1b) results in a problem of the form

‘?Li%{fo(u)lff(u)so, i=1,2,...9}), (1.2b)

which can be solved by an extension (see [May.2]) of the method of centers [Pir.1). However, the
control constraints result in a considerable increase in difficulty in the search direction finding prob-
lem. The addition of equality constraints to (1.2b) can be handled by means of exact penalty func-
tions (see e.g., [May.4,5].

The most difficult optimal control problems have both control and state space constraints, and

can assume the following abstract form:

min {f°w) | fi@)<0, j =1,2,...,q,‘3%7.(u¢"(u S0, k=1,2,..,r}, 3

where the functions f/(-), and ¢* (- , ) are continuous all continuously differentiable. We recognize
these problems as generalizations of finite dimensional semi-infinite programming problems (see
[Pol.1]). The presence of the control constraints generates a major obstacle because it precludes the
efficient use of minimax theorems in the solution of extremely difficult search direction finding prob-

lems (see [Pol.1] for their use in semi-infinite optimization).

Not counting heuristic algorithms, there appear to be only two algorithms in the literature for
their solution of problems of the form (1.3). They are both extensions of the method in [Pir.1]; the
" one in [War.1] is based on the use of relaxed controls while the one in [May.1] is not. Both of these

algorithms postulate extremely difficult search direction computations.

The algorithm which we will present in this paper is much simpler in structure than either of the
algorithms [War.1] or [May.1]; furthermore, it is easily implemented using existing methods (such as
in [Ber.1, Kle.1]). In Section 2, we will present our algorithm in a simplified (conceptual form). In
Section 3 and 4 we give full details of two altenative versions of our new algorithm and prove their
convergence to feasible stationary points. Computational results are reported in Section 5 and show
that the algorithm performs satisfactorily.



2. A Conceptual Phase I - Phase II Method of Centers

We will consider optimal control problems defined in the prehilbert space
Lan 2 {LZ[0,1], 11, }, consisting of elements in L7 [0, 1], but endowed with the L,[0, 1] scalar
product {-, -}, and corresponding norm I-l,. The problems are normalized, fixed-time problems with

control and state space constraints, of the form

P: min{f%) | fi)<0,j=1,2,..,q,,

k
max SIS0 =1 02 i g ('
IE[O'”‘D (u,t) g2, ue G} (2.1a)
where
GA(uelL,,lut)elU, vee(0,1]}), (2.1b)

with U cR™. The cost function f 0:L,,,'2—>]R and the end-point constraint functions

fl:L,,—>R,j=1,2,..,q,are defined by
OEFIOY (2.2a)
while the state space constraint functions ¢" L 2%X[0,1]>R,k=1,2,..,q,,are defined by
0¥, 1) 8 g (x (1)), (2.2b)
where the functions gf ; g" :IR" = R and x* (") is the solution of the differential equation

x(t)=hx(),u)), te0,1], (2.3a)

x(0) =xg , (2.3b)

where £ : R" X R™ — R™ and x, € R” is given.

We assume that the problem P has a solution. In addition, we will require the following
hypotheses which ensure (see [Bak.1]) that (a) the solutions x exist and are locally Lipschitz con-
tinuously differentiable, (b) the functions f/(-) are locally Lipschitz continuously differentiable, and

(c) the functions ¢/ (- , -) are continuously differentiable, locally Lipschitz in u:
Assumption 2.1.
(1) ThesetU < IR™ is compact and convex.

(ii) The functions g/, g* : R" — R are locally Lipschitz continuously differentiable.



(iii) The function A : R” x R™ — R™ is locally Lipschitz continuously differentiable.

(iv) There is a constant M <o such that |1hA(x ,u)lSM(1+11xl1) for all (x ,u)e X xU,
where X is a sufficiently large, but bounded subset of R". a

For the purpose of convergence analysis, it is useful to introduce the relaxed controls closure of
the setG.

We recall that a Radon probability measure | on the Borel sets of U (in (2.1b)) is a positive
measure such that p(U) = 1. The set of Radon probability measures will be denoted by rpm (U). A
- relaxed control, G, is a measurable function ¢ : [0, 1] = rpm (U). We define relaxed controls clo-
sure of the set G (in (2.1b) by

G4& {c:10,11> rpm(U) | ©is measurable } . (2.4a)

We use the weak " -topology on L'([0,1],C (U))" to topologize G. Consequently, (o; } < G con-
vergesto 6 € G if and only if
1 1
m [ ] (e, u)o;@eXdu)dr = [ [9(t ,u)o(t)du)dt , Vo e LY(0,1],CWU)), (24b)
o

G — oU

where L([0, 1], C (U)) denotes the space of absolutely integrable functions which map the interval
[0, 1] into C (U), the space of real value continuous functions defined on U .

In this topology, G is compact. We recall that there is an injection of the ordinary controls into
the relaxed controls: with each ordinary control, 4 € G, we associate a relaxed control 6 € G such
that (¢ )(S) = 8, (S ) for all measurable sets S < U, where §,(S)=1ifu € S and §,(S) = 0 oth-

erwise.

Relaxed controls give rise to relaxed dynamics:

i) = [h(x(t), u)do(t)u), te[0,1], (2.4b)
U
x0) =x, , (2.4c)

whose solutions we will denote by x°(¢). We extend this notation also to the functions in (2.1), thus
F0) =g/ (x°(1), and §* (o , ) = g*E%(t)).
Our exposition will be simpler if we assume a single form for both the state space and end-point

constraints. This requires that the functions f J(¢) be replaced by functions of the form
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max, ¢ [0,11¢i(u , t) with ¢i(u .t)égj(x“(l)) for all ¢ € [0, 1]. Then, letting ¢ = ¢, +¢,, and
replacing the indices & in (2.2b) by j = ¢ + k, problem (2.1a) becomes:

: 1 0 I f ,t < , '=1,2,..., ’ ’
P: min{f"(u) ,gl[g’fuwu )<0, j q, ueG) (2.52)

or in the even more compact form,
P: min(f%u) | W@)<0,j=1,2,...q, ueG}, (2.5b)
where W/ (u) 8 max, ¢ (o, 1 ¢/ (u , 1).
We can also state the relaxed control verstion of (2.5b):
P: min{f%) | ¥(©)<0,j=1,2,..,9, ceG}. (2.5¢)

Since we have assumed that P has a solution, the minimum value for P and P are the same. However,

it is conceivable that P has solutions which do not have conterparts in G .

Forany u € L. 2, let y(u) 4 max; ¢ V() and let w(u), 2 max (0, w(x)}. The phase I -
phase II methods of centers that we will present in this paper are based on the use of the unifying
function F : L, 5 XL, 2 — IR, defined by

Fulu)= max (FO%) = £ ) =29 )s W () — W), ). (2.6)
The following result is obvious.

Proposition 2.1. (a)Forallu € L., 5, F(u | u) =0. (b) Suppose that # € G is alocal optimizer
for problem (2.5b). Then F(u | £)20 for all u € G near &, ie., # is a local minimizer for the

problem min, ¢ ¢ F(u | &). 0

Phase I - phase II methods of centers are based on the following geometric notion: given a point

u; € G, its successor u; ., is chosen to be a "center" of the set

V)2 (ueG I Fu |l 4)<0) . Q.7

For our methods of centers to work, we must introduce the following, commonly used

! The scale factor 2 in the term 2y(x’), in (2.6) can be replaced by any other scale factor y> 1.



“constraint qualification” type of hypothesis, which is easily interpreted in terms of Proposition 2.1.

Assumption 2.2. For every 6 € G which is not a solution of P, there exists a u € G such that
F(u 10)<0. a

The methods differ by the manner in which they define a "center". The simplest, but not practi-
cal definition of the "center" u;,, is

Uiy = ag}}n F(uluw). (2.8)

The solution of (2.8) for u;,, is hardly easier than solving the original problem (2.5b). Hence we will
now introduce a much more tractable definition of a "center" based on the parametrized barrier func-
tionpy L., 32XLs, 2— R, forthe above sets V (i'), defined by, for a.> 0,

1 g |
Pou 1 4)8 +3 . 2.9)
0

0+ 290 )+ o) - Fow) S0 ety )+ va.n”
Because for a.> 0, p,(u” | &) < e, the parameter o makes it possible to use the point &' for

initializing a descent method in solving min, ¢ v,y Po(s | &').
We begin by establishing that as & — 0, p o(- | #’) becomes a barrier function for the set V ().

Lemma 2.1:  There exists a constant L >0, such that forallu’ € G,u € V(' ), and 0.2 0,

1 1 L2 2

—log| 1
o+ 2y ), + o) - o) LB (o + @' ), — y(u))

Pou 1 W)2 (2.10)
Proof: It follows from our assumptions that there exists a constant, L < o= , such that each D)
is uniformly Lipschitz in ¢ on [0, 1] with the same Lipshitz constant L, for all u € G. Without loss
of generality, we may assume that L 2 y(u’), — y(u), forall u , &’ € G. Now, given ¥’ € G and
ue VW) Letk e q and? € [0, 1] be such that 0*(u ,2)=w(u), andlet t € [0, 1] be arbitrary.
Then we have that

OFu , )2 ¢*(u ,2)-L1t -2 =yu)-L1t-%1. 2.11)
Consequently,
1
1 1
dulu)z + dt
P L T 1) 1 ) vt )



1 ! 1

2 - i+ dt
0+ 29 )+ fOW) = FW) 0 (a+y'), — W)+ L1 =21)

2 ’ l0 ’ 0
o+ 2y ), + 0w ) - fOu)

1 (o +y' ), —yu) + L2 Yo+ yu' ), — yu)+ L(1-1))

+ —log
L (o + Y )y — Wu )Y
1 1 L2 2
2 +—log| 1+ = , (.12)
o+ 29 )+ 7O o) | Lo @), —yw))
where the last line in (2.12) is obtained by minimizing the preceeding line with respect to 7. a

It follows by inspection of (2.10) that when ¥ — «’, with u € V ('), then po(u | ') > =,
i.e., that po(-, u") is indeed a barrier function for V (u’).

Now consider the following conceptual algorithm for solving the problem P (2.5a).
Algorithm 2.1,
Data: uge G and a sequence { 0y } s2gsuchthat oy >0 forallk € Nand o, | 0ask — oo,
Step0: Seti =0andk =0.

Step 1: Compute

Ui € AQw;) 8 gmin po,(u | ). 2.13)

Step2: If F(u;yy | w;) =0, replace k by k + 1 and go to Step 1.
Step 3: Replacei byi +1,k by k + 1, and go to Step 1. a

Note that (2.13) defines ;. as a solution of the simple optimal control problem:

min 1 +3

weG | o +2y), + g% (1) - g%4 (1) ot

1
- dt
o, + ;) — g7 (x* ()

. (214)

Oty +e

where, as before x“(¢) is the solution of (2.4a,b). This problem has only control constraints; its cost



is of the end point - plus - integral form. Barring possible ill-conditioning, such problems are easily
solved by algorithms such as the Goldstein-Levitin-Polyak gradient projection method (see [Ber.1]),
or the algorithm described in [Bak.1].

Theorem 2.1. (i) Suppose that Algorithm 2.1 jams up in the loop beween Step 1 and Step 2 at the

control #;, . Then u;, is a solution of P.

(ii) Suppose that { u; } ;%5 is a sequence of controls constructed by Algorithm 2.1. If this sequence
has an accumulation point # € G, then # is a solution of P.

Proof. (i) For the sake of contradiction, suppose that u;, is not a solution of P. Since the algorithm
is cycling the loop beween Step 1 and Step 2, k — oo, Let &1 4 argmin, ¢ y,) P (4 | ;). Then,
since 0y —0 as k -0 and F(@ | u;) =0 for all k, we conclude that po, (&, | u;) — oo as
k — . But by Assumption 2.2, since u;, is not a solution of P, there exists a 4 e V (u;,) such that
F(@ | u;) <0, which implies that po(# | ;) <. Since p4(# | u;,) is continuous in o, there exists
a ko such that p o, (& | u;) <2po(@ | w;,) for all k 2 ko. But because p o, (£ | u;) — oo, there exists
akysuchthatp, (g | u;)>po (& | u;) forall k 2k, >k, which contradicts the fact that &, is a
minimizer.

ii) Suppose that there exists an infinite subset K € N and a # € G such that the subsequence
{u; }; e x converges to & ; we write this as u; f) @ € G as i — oo, For the sake of contradiction,
suppose that & is not a solution of P.

CaseI: There exists an iy such that y(u;)) <0, so that y(y;,), = 0. Since F (i1 | u;) <0, we have

that

IO 00) - FOu;) <0, (2.152)

Y(u;1) <0 (2.15b)

It now follows by induction that for all i =i,

FOoui) - %) <0, (2.16a)



W) <0. (2.16b)

K
Hence, since the sequence {f%u;)};;, is monotone decreasing, and since fu;) — fO#) as
i — oo, by continuity, it follows that £ %u;) > f%@) asi — o and therefore, since

1
oy, + £ 00) = f i) | (2.172)

Po(Miv | ;) >

and o, — 0 as i — o, we have that
Po(Uiv) | ) > oasi oo, (2.17b)

However, since # is not a solution to P, by Assumption 2.2, there exists a u* € V(%) such that
F(u* | #)<0 and therefore that po(u* | £)<ee. Since, by construction, V(%) < V(y;) for all
i 2ig, it follows that

PoUivt  4))Spow* | ), Viig. (2.18)

K
Furthermore, by continuity of po(u* | u) in (o, u), po, (u* | 4;) > po(u* | &) <o, and hence

there exists an iy 2igpsuch that foralli € K, i 2i,,

Po(Wisy | ;) S2po(u* | &), (2.19)
which is a contradiction of (2.17b).
CaseIl: Suppose that y(i;) >0 forall i € N. Then, since Po (Wi | uj)<eoforalli e N, it fol-
lov;/s from (2.10) that y(u;,;) < W(y;) for all i € IN, and hence, since by continuity, y(x;) f) Y(iZ) as
i — oo, that W(u;) — W(&) as i — . Hence, since by (2.10)

' 1 L2 2
Po(is1 1 4;)> 7-log| 1+ O V-V | (2.20a)
and oy, — 0 as i — oo, we have that
Po (Ui 1 U) > oo, aSi —eo . (2.20b)

However, by Assumption 2.2, since # is not a solution of P, there exists a u* e V() such that

F(u* | #)<0 and hence po(u* | &) <. By continuity of F(u* | -), it now follows that there
exists an i, such that F(u* | u;) <0 forall i € K, i 2i,, and hence we see that u* e V(u;) for all

i € K, i 2i, Hence, again by continuity, there exists an i3 = i, such that

10



PaWist VU)Spo* 1 u)S2po(u* | B)<oo, (2.21)

which contradicts (2.20b). O

Since the set G is not compact, it is entirely possible that a sequence { u; } 25, constructed by
Algorithm 2.1, has no accumulation points in G. In that case, Theorem 2.1 is vacuous. However, the
sequence {u; } ;2o must have accumulation points, in the sense of control measures (i.s.c.m.) in the

compact set G. The following result follows directly from the arguments used to prove Theorem 2.1.

Corollary 2.1.  Suppose that {u; } 29 is a sequence of controls constructed by Algorithm 2.1. If

this sequence has an accumulation point 8 € G, then 8 is a solution of P. a

3. An Implementable Phase I - Phase II Method of Centers

The main objection to Algorithm 2.1 is that the update operation in (2.13) is not implementable.
We will now develop an iﬁplementable algorithm which replaces (2.13) by an approximate stationar-
ity condition and which incorporates a feature which enables us to use the point u; as a starting point
in computing ;. by an algorithm such as Algorithm 5.14 in [Bak.1].

First, referring to [Bak.1] we see that the Frechet differentials (of the functions f °(-), q)" (¢.,t)in
(2.52)) df%u ; ' ~u), do*(u .t ; W —u) exist and can be expressed in terms of scalar products
with  gradients  Vf°w) and  V,¢/(u,r) which are in L., ie.,
af%w ;u —u)= (VfOu), & —u)y and do/(u ¢ ;0 —u)=(V,0/(u ,t),u’ —u),. Neither
our proofs nor our algorithm require formulae for these gradients.

Next we define an optimality function © : G — R for the problem P (2.5a), which is a first order
convex approximation to the function F (&’ | u), by

G(u)éux'neir};max{ Vol —ulZ+ {—2y(u), +df % ; W —u),

¥ ) —yw) + (V0 ), 0 —u),y, 5 e[0,1], j e g}}. (3.1)

At one point in our convergence proof we will need to bring in the relaxed controls topology.
Hence we need the relaxed controls extension of 6(u). For this purpose, it is useful to recall that
alternative formulae for { Vf%u) ,w’ —u),and {V¢/(u ,t),u’ —u ), are given by

11



(VF%u), 0 —u)y= (Vgox (1), &ax™ 1)) , (3.2)

(V& (u 1), 0 —udy= (Vgx (@), 8x“*@t)) , (3.3)

where 8x**(t) is the solution of the first variational equation:

sx'(r)=[ a""‘"g;'““”] Sx(t)+[ a”"‘“gz'““”J W) -u@)], 8x(0)=0. (3.4)

Refering to [Wil.1, Bak.1], given a relaxed control 6 € G, with corresponding solution x°(-) of
(2.4b), and any continuous functions : U — C™[0, 1], we define 8x°~ (¢) to be the solution of

. gy o,
sx(t) = | [ W] ot )(du) &x () + | [ a"("—a(;)'“—)] W ()(£)0(e du) (3.52)
4 U

ox(0)=0. (3.5b)

Next, we say that a search direction function s : U — C™[0, 1] is admissible if for all u(z) e U,
u(@)+s()t)e U for almost all ¢t € [0, 1]. We define S to be the set of all admissible search
direction functions. With these definitions, the relaxed controls extension 6 : G — R, of 0(), is
defined by

8(c)4 min max{ Wlls 12+ {-2y(0), + { Vg°G&°(), 8% (1) ) ,

¥(0.5) - YO+ { V&I &%), 8% @) , ;€ 0,1], je q) } (3.6)

The following result can be found in [Bak.1]:

Theorem 3.1.

(a) The optimality functions 6(-) amd §(~) are well defined and continuous.

) foe G corresponds to the ordinary control 4 € G, then 5(0) = 0(u).

(c) If @ e G is an optimal solution to the problem P, then 8(Z ) = 0.

(d) If8 e G is an optimal solution to the problem P, then 8(3) = 0. |

In our proofs we will find it convenient to use an altemnative formula for 0(x). Let the set of
Radon probability measures on the interval [0, 1] be denoted by 7pm ([0, 1]), let V denote the set of
mesurable functions v : [0, 1] = rpm ([0, 1]), and let

12



WA w=w"w', . . wHeR™ T, wi=1,w20,i=0,1,...q}. (372
Finally, with 7fm ([0, 1]) denoting the space of Radon finite measures, let T be the set of measurable
functions p(:) - [0, 1] = [rm (0, 1D19*! defined by

28 (pe [fm@, I 1 W =wivi, j=0,1,..,q,. weW,veV]). (3.7b)

Then it is obvious that

0(x) 2 min max{ Vol —ulF+( [ [=2y(),+df O ; o' —u)] pOC)dr)
I{EGHES [0'11

3 | W0 -y, W)

j=110,1]

+3 0 V@ oWOE . -1 ) b 310

j=1 [0,1]

We will require the following assumption which is usually required for methods of centers and

feasible directions:
Assumption 3.1.
(@ The G -closure of the set {ueG | yu)<0} isequal to the G -closure of its interior.
(b) Forallu € G such that y(u)>0, 6(u) <0. O

Next, referring to the definition (2.9), we conclude that

M=

V£ ) + } WAACHD dt . (3.89)

Vu (ulu')= P ; :
B o 2y )+ FW) WP 2 Tat v -0, OF

To evaluate V, p (s | &) one does not use the cumbersome formula (3.8a), rather, one uses the

following computationally efficient formula:

T
\ lu’)(t)=[ ohGx (atl)"“(t»] ISOF (3.8b)

where A““(t) is the solution of the adjoint system:

13



T .
i Bhx (1), u(e)) 1 V.late) 359
1)=-= t)- . , te[0,1],
MO [ ox ] M JEI lon+ ('), — g/ (x* )PP €0.1]

1
D=
) [+ 2y’ ), + 80 (1)) - g%x* (12

Ve (1)) . (3.8d)

Algorithm 2.1 now gives rise to the following implementable algorithm:
Algorithm 3.1.
Data: upe G,e>0,and { oy } &2psuchthatoy, >0forallk € Nand o 4 0ask — oo,
Step0: Seti =0andk =0.
Step 1: Use any descent algorithm to generate a u;,; € V (4;) such that

02 min (V,po(ie1 | ;) ,u =t} 2+ %lu —u; 12 2-¢. (3.9)
ueG

Step 2: If F(u;4 | u;) =0, replace k by k+1 and go to Step 1.
Step 3: Replacei byi + 1, k by k+1, and go to Step 1. O
The proof of convergence of Algorithm 3.1 depends on the following two lemmas:
Lemma 3.1.  Suppose that Assumption 2.1 holds, that Y> 0, that &’ € G, and that u € V (’). For
j e q,letT)W) < [0, 1] be defined by
Tiw)= (t€[0,1] | ¢/(u, )2 yu)-v). (3.10a)

Then for each t €T{(u), with¢ € [0, 1] and j € q,

— s——L <1 (3.10b)
W)=, t) W@)-¢/(u,1)) ¥
Proof. Becauset ¢T}(u), ¢/ (u ,t) < y(u)—7. Hence,
V) = 1) > W) - y) + 7> (3.11)
and the desired inequality follows. m

Lemma 3.2. Suppose that Assumption 2.1 holds. Then for all o> 0, there exist a constant 8e>0
suchthat forallu’ € G,forallu € V('),

@+yW)-yu) 3 | .

: dt 23,>0.
jeqo,n @+y) ¢/ u L )2 « (3.12)
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Proof. Since G is bounded, it follows from Assumption 2.1 that there exists a Lipschitz constant,
L <o, such that each ¢j(u , *) is uniformly Lipschitz in ¢ on [0, 1], for all u € G. Without loss of
generality, we may assume that L 2 y(«')—y(u), forall u ,u’ € G. Let j € g be such that T (x)
is nonempty, let z, € TH(u) be givenand let ¢ € [0, 1]. Then we have that,

Y, )2¢ W, )Lt =g, | =yu)-LIit—t,!. (3.13a)
Now suppose that 0<y<L +o. Then {te [0,1]1/ It -1, | SY(L +)} < T{,(u), and hence
m(T{(u )) 2 /(L + o), where m () denotes the Lebesgue measure on IR. Hence we conclude that

5 oY) W) O+ Y') — yu)
jeqoiy (@+y')—¢/ (u ) Tiw) @+ W) —¢ (1))

>_ Y o+ W) — y(u)
L) (oY) - )+

(3.13b)

Setting Y = o+ W(&' ) — (), and & = 1/ 4(L + &), we obtain the desired result. a
Theorem 3.2. (i) Suppose that Algorithm 3.1 jams up in the loop beween Step 1 and Step 2 at the
control ¥;,. Then u;, is a solution of P.

(i) Suppose that {u; } ;2o is a sequence of controls constructed by Algorithm 3.1. If this sequence
has an accumulation point # € G, then y(#) <0 and 6(#) = 0.

Proof. (i) The proof of this part is essentially the same as for (i) of Theorem 2.1 and hence is omit-
ted.

(i) Since u;, is constructed from u; by a descent method, it follows from F (u;,; | ;) <0 that if

y(u;) <0, then y(y;,;) <0 also. Hence our proof breaks down into the examination of two cases.

K
Casel: Supposeu; — 4 € G asi — o and that there exists an i, such that y(x;) <0 for all ; 2iy.

Then, by construction, the sequence { f%u;) ) i=i, is monotone decreasing, and since it is bounded, it
must converge to f (7). The fact that w(@ ) < 0 follows directly from the continuity of y(-).
Now, fori 2ig, j € g andt € [0, 1], let

Loy, + £ %) = £ Ou; )12
(o, — ¢/ (u; , 1))?

pit) A (3.14a)

Finally, let
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1
vidis+ f;l ! pi(t) dt (3.14b)
Jﬂ

It now follows from (3.8) and (3.9) that forall i 2 i,

piEYAY (u; ,t ; u —u;) + Vallu — u; 13

(=

oze'(ui)é min 1
ueG YV

q9
afOu; ;u ~u;)+ Y
j=1

. o, + f %) — £ O
V; '

2—8,'

(3.153)

Since v; 21 for all i 2i, and since f%u;) > f%%) and o, — 0 as i — oo, it follows that
€ — 0 as i — oo, Next, it follows from (3.7c) that for all i i, 8(;) 2 ©/(x;), and hence we find
that forall i 2 i,

1
P Wi 1)t 2+ = 3 [pde 1)t . (3.15b)
{ j=l 0

O Sy =

020()2& W)+ 3
V; j=1

V.0 ¢,

It now follows from (3.14a) and the relation, 0 > - 7 2 -
(ak,-q)l(ui rt)) (_¢I(u‘. rt))

7 and Lemma 3.1

that forany j e g.,and any y> 0,

1 1
1 ¢ ;o 1 ¢ (u; ,t)
02— | p/ i 0)dt = — Ou; 1) - f Ou; -
vy [Pl s e = -fon + £ %) f(u)]({(%_4’,(%0)2 dt
5 ak.,"'fo(ui-l)-fo(ui){ I S _1 dt}
Vi te Tiw) ¥ (i, 1) te Tiwy ¢, t)

oy, +F ;) — O
2_[ x + O f(u)] [Y 1] (.16

Vi ?

Since [0y, + f %(u;_y) — £ %u;)I/v; = 0 as i — e, and since by Theorem 3.1, 6(-) is continuous, it now
follows that 8(7) = 0.
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Case II: We now suppose that W(;)>0 for all i € N. Then we must have that the sequence

{w(x;) } iZp is monotonically decreasing, and hence it must converge to y(% ). In this case, we define

(o, +W(u; ) — W)

0¢r) A
P T 2 + ) — PR .172)
. (o, +W(u; ) — W(i;))
O : , j=1,2,..q.
o) (O, + W) — & (u; , ))? g 1 (3.170)
It now follows from Lemma 3.2 that
P 1
v; 4 §o£ pit)dt 25, >0 , (3.18)

and from (3.9) that

1

028"(;)4 min jp (¢) af %u; ; u —u;) dt + zq; [pde)de u; 2 ; u —u)dt +Yolu —u; 13
j=10

>-g d-¢ Lot +‘V(ui;‘)-w“')] . (3.19)

Clearly, €; — 0 asi — . Next, by the same argument as for in (3.15b), we obtain that

1
o>e(u,)>e“'(u‘)+— j 20000 dt + 3 [ AW @; , £) - wlus_p)] dt
j=10

1 1
z2-e + -1 [~ 2000w dt + )": [o/e)¢ @: . 0) =yl dr . (3.20)
i |0 Jj=10

First, it follows from the same arguments used in part (a) that

1

o 2 [Pl [ )~y ) dr -0, asi e (3.21)

q
)y

Jj=l

[«
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Hence to complete our proof, we only need to show that y(x;) = 0,asi — oo

For the sake of contradiction, suppose that y(&) > 0. We now have two possibilities. The first
is that 2y(u;) + f%u;_1) = £%u;) > 0 as i — oo, which implies that for all sufficiently large i,
£O%u;) 2 £ %u;_;) + W(@), and hence that f°(u;) —> o= as i — oo . Since the set G is bounded, this is

clearly impossible. Hence, we consider the second possibility: there exists an infinite subset X’ € N
and a 8>0, such that 2y(u;) +f%u;_y) —f%u;) 28 for all i € K. In tum, this implies that

1 K K
Jp,-°(t) dt -0 as i = o=. Furthermore, we may assume that u; = 6* € G, i.s.cm., as i = oo .
0

Clearly, we must have G(o*) = Y(#2 ) > 0. In view of the above, (3.20), (3.21), and the continuity of
8(), this implies that 6(c* ) = 0. However, this contradicts Assumption 3.1 and hence our proof is

complete. a

4. A Special Case

It is not at all uncommon for the set U in (2.1b) to have description in terms of convex inequali-

ties, as follows:
U {zeR"15(:)<0,1=1,2,..45}, 4.1)
where the s’ : IR™ — R are all Lipschitz continuously differentiable convex functions.
If,forj =q,+q2+1,...,41+4q,+q3, we define the functions ¢/ : L, ,x [0, 1] - R by
¥, 08 Ty, 4.2)

we find that ¥, is differentiable on L. 2 with
A/, t ;0 —u)= (Vs I 0u@), ' () - u(r)).

Now, let g éq1+q2+q3, then (2.5a) becomes
P: min{f%)| max ¢/(u,r)<0,,=1,2,..,9, uel.,}, (4.3a)
tefo0,1] ! ’

or in the even more compact form (see (2.5b)),
P: min{f%)l Ww)<0,j=1,2,..,9, ueL,,}, (4.3b)

where Y/ (u) & max, ¢ ;o 3 ¢/(u , 7).

For problem P, letting yw(u) =max { (1), j=1,..,q } and w(u), =max {0, y8u) }, we
define the optimality function’ : L., , —» R by
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Ow)8 min (%W -ul |} +max{df u;u —u)~2y,@u),
o

EL-,:
¥, t)-yu),+d, ¢ ,t;u’'-u), tef0,1], je al}. @

which is a first order convex approximation to the unifying function F* (&’ | u), defined by (2.6) with
q and the functions ¢’ (-, -) redefined as above.

We begin by establishing a relationship between the functions 6(-) and 6’(:).

Theorem 4.1:  Suppose that
o R
UB(z2eU Isi(z)<0,j=1,2,..,q3), (4.5)

o o
where U denotes the interior of U, and that U is not empty. Then, for any u € G, 0(u) = 0 if and
only if ’(u) = 0.
Proof: ==> Suppose that 8() = 0 but 6’(7) < 0. Since 6’(%) <0, there exists a ¥ L 2 such
that F' (& | 2) <0. If w(@), = 0, then because of F* (¥ | ) < 0, we have that
£o@ - £o@) - 29@), = @) - @) <0, (4.62)

@, )-y@),=¢/@,t)<0,Vte[0,1], for j=1,..,9,+4, (4.6b)

Y@, t)-y@),=¢/,t)<0,vre[0,1], forj =qr+qat1, .., q1+qy+qs (4.60)

By (4.6c), u € G. It now follows from (4.6a) and (4.6b) that 8(#) <0, which contradicts our
hypothesis.

Next, we need to prove that y(#), = 0. Suppose that (%), > 0. Since # € G, ¢/(& ,1)<0
forall j =Q;8 (g +g,+1,... +g1+q2+q3} and for all ¢t € [0, 1]. Hence y(#), >0 implies
that there exist jo€ Q22 {1,..,¢,+q;)} and fo [0, 1] such that y(#) = ¢/(Z , tg) > 0. How-
ever, in this case Assumption 3.1 ensures that 8(ii) <0 which is a contradiction and, therefore,

v(#), =0.

<= Suppose that (%) = 0. For the sake of contradiction, suppose that 6(Z) <0. Let E(u | #) be
defined by
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Eu | £) =%l - 882 +max ( 2y@), +df°@ ;u -12),

Y@, )-y@)+d,¢ @ t;u-8),1e(0,1],j=1,..,q,+q,)472)
Since 8(#Z ) < 0, there exists a # € G such that,
6(@) = mink(u | &) =& | 8)4-28<0. (4.7b)
Foroae (0,1),let uaé f +oi —12). Thenuye G forall o.e (0, 1) because the set G is convex.
Since —2y(#), <0 and ¢/ (4 , t) — y(# ), < O for all j, we have that forall e (0, 1),
Eu 1 B)<Euy | B)S-208<0. 4.7¢c)
Let ¥ be any control such that ¥ (¢) € Z’ for all ¢ € [0, 1]. Then, by (4.5), there exist 5,- such that

m[%an’i(“-")“si<° for all jeQ; Let o2 (1-002+0@+PGi —i))=
te )

uqg+aP@ —u) where Be (0, 1). Obviously, u’'¢,g€ G. By the continuity of &(- | &), for any
ae (0, 1), there exist a B, € (0, 1) such that

0(2) SEW o, p | B)S—05<0, VO<PS P, 4.7d)

Since the functions ¢/ (- , ¢) are convex for all Jj€Qzand forall t € [0, 1], we conclude that for all
Je Qs forallt e [0,1],forallace (0,1),and forallfe (0, 1),

YW, )SA-0)W @ ,t)+od) @ +B —i0),1)
SA-o)/ (@ ,0)+a{(A-P/ @@, ) +B @ ,2)))

<—afd; <0. (4.82)

The last inequality is valid because ¢/(& ,1)<0, ¢/(i ,¢)<0, and ¢/ (i ,1)<-3; <0. Also,
because all the gradients V, ¢/ (- , t) are Lipschitz continuous,

YU p =@, )+ (VY@ ,0), 0o pE)-0())

1 . ,
+£ ((quy(ﬁ +s(u’a,5—ﬁ),t)—Vu4)-’(ﬁ rt))ru,cl.,ﬁ_ﬁ \Idy



2Y@ O+ (VY@ ), 0y p)-0())

—L;0%2 (Na(t) - & ()P + P2 (£) - w()12) (4.8b)

where L; 4 max, ¢ (o, 1) L;(¢) and L;(¢) is a Lipschitz constant of qu)f (-, t). Combining (4.8a) with
(4.8b), we can conclude that there exist o, fpe (0, 1) such that for all 0<a <y, for all
O0<P<Ppandforals e [0, 1],

Vo' o p(t) = B@OP+¢/ @ , 1)+ (V@ ) .0 o p(t) -8 () } S—0B§;2<0, V j € Q;. (4.80)
Since (4.7d) and (4.8¢) imply that, given 0 < 0. < 0, forall 0 < B <min { B, By } »
() smax (-8, —ofd; /2, j € Q3) <O. (4.8d)

we obtain a contradiction of our hypothesis, and hence our proof is complete. O

Clearly, Algorithm 3.1 is applicable to P’ and it may be initialized with a control which is not in
G. However, we must ammend Assumption 3.1, as follows. Since relaxed controls must be associ-
ated with bounded controls, we introduce an arbitrarily large compact set U* < R*, and we define
G* by (2.1b) with U replaced by U*. We noted the corresponding set of relaxed controls by G*.

Assumption 4.1.

(@) The G*-closure of the set {ueG* | yu)<0} isequal to the G* -closure of its interior.

(b) Forallu € G* such that yw(u)>0,0’()<0. a
At this point, the following result should be obvious:

Theorem 4.2. (i) Suppose that Algorithm 3.1 is applied to problem P’, and jams up in the loop

beween Step 1 and Step 2 at the control u;. Then u;, is a local solution of P’ and hence also of P.

(ii) Suppose that .{ u; } i2o is a sequence of controls constructed by Algorithm 3.1 in solving P’ If

this sequence has an accumulation point & € L ,, then W@)<O0 (so that # € G) and

o'@)=0@)=0. O
There is considerable programming convenience in using the formulation P’ over P when possi-

ble. Our computational results, in the next section, show that the use of the formulation P’ does not

result in any penalty in terms of ’computing times.
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5. Numerical Results

We will now present two examples which illustrate the performance of Algorithm 3.1. In our
experiments, the computations in Step 1 of Algorithm 3.1 were carried out using Algorithm A in
[Pol.3], which is of the Gauss-Newton type. All the computations were performed in double preci-
sion on a Sun 3/140 Workstation with a floating point accelerator. The sequence {0 } 52y was
defined by o,y = oy/1.1, with o = 0.005. Our experiments suggest that larger values of oy result in

an increase in the number of iterations needed to solve a problem.

Example §.1:  Our first problem is a minimum time brachistochrone problem with a state variable
inequality constraint, described in [Bry.1]. We treat this problem in fixed-time scaled form, where
the scale variable T corresponds to the actual final time.

. 3 2 j .

P. yénllflz{T I ,3}%’,‘,]"”(7")50' j=1,2,vte[0,1]}. (5.1a)
where

o'y, t) =y(t)—x(t)tanb—h , (5.1b)

0%y, 1) = Yl () =12 -, (5.10)
where horizontal distance, x, vertical distance, y, are defined by

x(t) =T V2gy(t) cosy(z), (5.2a)

y(&) =T V2gy(¢) simy(z) , (5.2b)

where g is the acceleration due to gravity, and v is the path angle to the horizontal, 8 and 4 are con-
stants, and § is a small tolerance by which we are willing to relax the requirement x (1) = /.

Since the system equations (5.2a) and (5.2b) cannot be integrated explicitely, one must use a
numerical integration scheme, which discretizes the time interval [0, 1]. The discretization may be
either fixed, or variable. We used 40 uniformly spaced points in conjunction with the Runge-Kutta
second order method ([Ral.1]). The gradients used were those corresponding the discretized dynam-
ics imposed by the integration scheme. The results that we obtained converge to the expected results,
obtained analytically in [Bry.1, pp120]. We stopped our computations when the constraints were

satisfied and the difference in the cost value between successive iterations was less than 1x1075.

We used two sets of initial conditions: (a) (x(0),y(0),T) = (0.0,0.3,2.0), 6 = 0.2, h = 0.6,
=40, £=0.0005 and (b) (x(0),y(0),T)=(0.0,10,20), 6=02, £ =20, ! =10.0 and
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€ = 0.0005.

Figure 1a presents a plot of the values f%u;) versus iteration number i. Figures 1b and 1c
show state space trajectories and inputs at various iterations, respectively, obtained using the first set
of initial conditions. The minimum time is determined to be 0.99971 after 12 iterations. The results
of the computations using the second set of initial conditions are shown in Figures 2a, 2b, and 2c.

The final minimum time, 1.63998 seconds, is obtained after 10 iterations.

Example 5.2: Our second problem is a fixed-time minimum final error problem with a state vari-

able inequality constraint and bounds on the control:

P: mircl;{%lx(l)lz | x3(¢)-1<0, ve e [0,1]), (5.32)

where the state is determined by the scaled differential equation

.1
o= [40] =1 [83] w07 [2) v

with  T>0 the actual final time. The input u() is scalar valued and
ueGA {ueLla ! ul.<10). We used the initial state are given by x(0) = (3.0, 0.1). We
set/ =0.15and T =20. With 5 (") defined by s (¢t) = u(t)?*- 1.0, the problem P (5.3a) becomes

P: ulg{l}.z{%k(l)lz | ‘gx[%:fuw(u ,1)S0, j=1,2}, (5.4a)
where

o' , 1) =x¥t)-1, (5.4b)

Oxu ,t) =s(1). (5.4¢)

We applied Algorithm 3.1 to both problems P and P’.

Figures 3a, 3b, and 3c present plots of the cost f %(u;) versus iteration number i, as well as
corresponding state space trajectories and inputs at various iterations using the formulation (2.1a).
Similar results using the formulation (4.3b) are shown in Figures 4a, 4b, and 4c. As we can see, the
results obtained are almost same.

It is clear from our experimental results that Algorithm 3.1 is quite effective in solving optimal
control problems with continuum state and control constraints. Also, we can see that when we have a

special description on the set of controls, we can take advantage of it without any penalty.



6. Conclusion

We have presented two versions of a phase I - phase II method of centers type algorithm for the

solution of optimal control problems with control and state space constraints. The computational

advantages of these algorithms derive from the fact that we used barrier functions for defining an

approximate center to be computed at each iteration. Although, at first glance, the algorithms appear

to have potential for failure due to illconditioning, preliminary computational results show that this is

not so, and in fact, that the algorithms are highly effective. This observation agrees with the numeri-

cal results reported in [Pol.3] for a related algorithm which solves semi-infinite minimax problems.
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Figure 2c. Controls at various iterationsfor Example 5.1(b).
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Figure 3b. State space trajectories for Example 5.2 using penalized control.
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