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A METHOD OF CENTERS BASED ON BARRIER FUNCTIONS FOR SOLV

ING OPTIMAL CONTROL PROBLEMS WITH CONTINUUM STATE AND

CONTROL CONSTRAINTS*

ABSTRACT

by

E. Polak*, T. H. Yang and D. Q. Mayne**

This paper describes a method of centers based on barrier functions for solving optimal control

problems with continuum inequality constraints on the state and control The method decomposes

the original problem into a sequence of easily solved optimal control problems with control con

straints only. The method requires only approximate solutionof these problems.
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1. Introduction

The difficulty of an optimal control problem is very much a function of the constraints. In the

realm of optimal control problems, optimal control problems with control constraints and inequality

state space constraints rank closeto the top in terms of difficulty, or,alternatively, close to the bottom

in terms of tractability. In this paper we make use of ideas contained in recent work on phase I -

phase n methods of centers [Pol.2], methods of centers based on barrier functions [Hua.l, Mif.l], and

barrier function methods for semi-infinite minimax problems [Pol.3] to construct a reasonably

promising optimal control algorithm for solving optimal control problems with both control and ine

quality state space constraints. Animportant feature of this algorithm is that it decomposes the origi

nal problem into an infinite sequence of highly tractable optimal control problems with integral cost

and control constraints only,each ofwhich needs to be solved only approximately.

To help establish the extent to which this paper advances the state of the art, we will now dis

cuss some of the earlier results in this area. We recall that free time problems can always be tran

scribed into fixed time problems by means of an augmentation of the dynamics (see [War.l] and

hence weneed to discuss fixed time problems only. First (see [Bak.l]), unconstrained optimal con

trol problems and optimal control problems with inequality end point constraints (both without con

trol constaints), with smooth dynamics, can be formulated as

min/V), nn
ueC K*-*-)

and

min{/°(«)l/>(w)<0, j =l,2,...,q) , (1 lb)

respectively, with all the functions /'(•) continuously Frechet differentiable on the prehilbert space

C= {L£ [0 f1], M2}, where ll2 denotes the norm inL^ [0,1]. These problems can be solved by

exact analogs of the Armijo gradient method [Arm.l] (see e.g., [Kle.l]) and of the methodof centers

(see [Pir.l]), respectively.

Simpleoptimal control problems withcontrol constraints only, assume the form

^hf°iuh d.2a)

where U^ {ueCI u(f)e U, t e [0,1]}, with U is acompact subset ofRm, and/°() is as
above. For simple sets U, these problems can be solved by analogs of the slow-to-converge Frank-

Wolfe algorithm [Fra.l] and the faster Goldstein-Levitin-Polyak gradient projection method (see



[Ber.l]), as well asby two algorithms which are optimal control specific: the strong variations algo

rithm in [mayne&polak], and the relaxedcontrol steepestdescent algorithm in [War.l]. The addition

of control constraints to (1.1b) results in a problemof the form

min {/V) IfJM <0, ; =1,2 ,... ,q } , (1 2b)

which can be solved by an extension (see [May.2]) of the method of centers [Pir.l]. However, the

control constraints result in a considerable increase in difficulty in the search direction finding prob

lem. The addition of equality constraints to (1.2b) can be handled by means of exact penalty func

tions (see e.g., [May.4,5].

The most difficult optimal control problems have both control and state space constraints, and

can assume the following abstract form:

min [f°(u)\fj(u)<0t j =1,2,...,<?, max $k(u ,t)<0, k =1,2,... ,r } , n 3)
«€ U /e [0.1] \l'J'

where the functions /y (•), and $*(•, •) are continuous all continuously differentiable. We recognize
these problems as generalizations of finite dimensional semi-infinite programming problems (see

[Pol.1]). The presence of the control constraints generates a major obstacle because it precludes the

efficient useof minimax theorems in the solution of extremely difficult search direction finding prob

lems (see [Pol.l] for their use in semi-infinite optimization).

Not counting heuristic algorithms, there appear to be only two algorithms in the literature for

their solution of problems of the form (1.3). They are both extensions of the method in [Pir.l]; the

one in [War.l] is based on the use of relaxed controls while the one in [May.l] is not. Both of these

algorithms postulate extremely difficult search directioncomputations.

The algorithm which we will present in this paper is much simpler in structure than eitherof the

algorithms [War.l] or [May.l]; furthermore, it is easilyimplemented using existing methods (such as

in [Ber.l, Kle.l]). In Section 2, we will present our algorithm in a simplified (conceptual form). In

Section 3 and4 we give full details of two alternative versions of our new algorithm and provetheir

convergence to feasible stationary points. Computational results are reported in Section 5 and show

that the algorithm performs satisfactorily.



2. A Conceptual Phase I - Phase II Method of Centers

We will consider optimal control problems defined in the prehilbert space

Loo ,2= {L£[0, 1] ,M2), consisting of elements inL£[0, 1], butendowed with the L2[0 , 1] scalar

product {•, •} 2and corresponding norm M2. The problems are normalized, fixed-time problems with

control and state space constraints, of the form

P: min{/°(w) \fj(u)<0, j = 1, 2 ,... ,qx ,

max §k{u ,t)<0, k = 1,2 ,... ,q2, ueG), n \*\
re 10,1] V-M)

where

Gk [u g Looj2 Iu(f)e U, \Jt g [0, 1]} , (2.1b)

with Ua]Rm. The cost function /°:L0O 2->R and the end-point constraint functions

fj :LM 2-> R, y = 1 ,2,...,^arc defined by

Z^)*^^^)); (2.2a)

while the state space constraint functions <J)* : LM12 x [0 , 1] -^ R, &= 1,2 ,... , q2, are defined by

♦*C»»OA^*c»*W)( (2.2b)

where the functions gJ , gk :JRn -> R and *"(•) is the solution ofthe differential equation

x(t) = h(x(t),u(t)), r g [0,1], (2.3a)

*(0) = *0, (2.3b)

where h : Rn x Rm -» Rm and x0 g R" is given.

We assume that the problem P has a solution. In addition, we will require the following

hypotheses which ensure (see [Bak.l]) that (a) the solutions x® exist and are locally Lipschitz con

tinuously differentiable, (b) the functions /yQ are locally Lipschitz continuously differentiable, and

(c) the functions &(• , •) are continuously differentiable, locally Lipschitz in u:

Assumption 2.1.

(i) The set U cRmis compact and convex.

(ii) The functions gJ' , gk : R" -> JR are locally Lipschitz continuously differentiable.



(iii) The function /j:RnxRm-> Rm is locally Lipschitzcontinuously differentiable.

(iv) There is a constant M <«> such that I \h(x ,u)\ZM(1 + 11*11) for all (x ,u)eXxU,

where X is a sufficiently large, but bounded subset of R". •

For the purpose of convergence analysis, it is useful to introduce the relaxed controls closure of

the set G.

We recall that a Radon probability measure \i on the Borel sets of U (in (2.1b)) is a positive

measure such that \l(U) = 1. The set of Radon probability measures will be denoted by rpm(U). A

relaxed control, o, is a measurable function a: [0,1] -» rpm(U). We define relaxed controls clo

sure of the set G (in (2.1b) by

G^ {o :[0,1] -» rpm (U) Io is measurable}. (2.4a)

We use the weak* -topology on Ll([0,l],C ({/))* to topologize G. Consequently, {a,} c G con
verges to a g G if and only if

i l

lim IJW,u)Ci(t)(du)dt =J f<K' ,u)o(t)(du)dt , V$e L\[0,1],C(U)), (2.4b)

where Ll([0,1],C(U)) denotes the space ofabsolutely integrable functions which map the interval
[0,1] into C (U), the space of real value continuous functions defined on U.

In this topology, G is compact. We recall that there is an injection of theordinary controls into

the relaxed controls: with each ordinary control, u e G, we associate a relaxed control oe G such

that a(r)(5)= 5„(0(5) for all measurable sets S ci/, where 5M(5) = 1if u e 5 and 8„(5) =0 oth

erwise.

Relaxed controls give rise to relaxed dynamics:

x(t) =jh(x(t), u)do(t)(u), te [0,1], (2 4b)

x(0) = x0, (2.4c)

whose solutions we will denote byx°(t). We extend this notation also to the functions in (2.1), thus

fj(o) =gj(xa(l))t and ?(o, f) =g*0c°(O).

Our exposition will be simpler if we assume asingle form for boththe state space and end-point

constraints. This requires that the functions /•'(•) be replaced by functions of the form



max/eio.n^C" .0 with <^* (a ,t)£gj(xu(l)) for all re [0,1]. Then, letting q =qi+q2, and
replacing the indices k in (2.2b) by j = q {+ k, problem (2.1a) becomes:

P: mm{f\u)\ tmax^V(u ,t)<0, j =1,2 </, ueG}, (2.5a)

or in the even more compact form,

P: min{/0(u) IV(w)^0,y=l,2 q.ueG), (2.5b)

whereyi(u) £max, e[0tl] &(u ,t).

We can also state the relaxed control verstion of (2.5b):

P. mm{f°(a)\:^(c)<0, j =l,2,...,q , ceG). (2.5c)

Since we have assumed that P has a solution, the minimum value forP andP are the same. However,

it is conceivable that P has solutionswhich do not have conterparts in G.

For any u e Loo,2. let y(u) £max; eqy*(u) and let y(u)+^ max {0 ,\|/(m) }. The phase I -
phase II methods of centers that we will present in this paper are based on the use of the unifying

function F :L^12 x L^ 12 -» R, defined by1

F(u I«0 =max{/°(w)-/V)-2\(/(u/)+,V(M)-\|/(M/)+}. (2.6)

The following result is obvious.

Proposition 2.1. (a) For all u e Loo, 2» F(u I u) =0. (b) Suppose that &e G is alocal optimizer

for problem (2.5b). Then F(u I m)£0 for all u e G near £, i.e., u is a local minimizer for the

problem min„ e G F(u I £). •

Phase I - phase n methods of centers are based onthe following geometric notion: given apoint

m, e G, its successor ui+i is chosen to be a "center" of the set

V(Ui)£ {kgG \F{u U)<S0) . (2.7)

For our methods of centers to work, we must introduce the following, commonly used

1The scale factor 2 in the term 2y(u')+ in (2.6) can be replaced byany other scale factory >1.



"constraint qualification" type of hypothesis, which is easily interpreted in terms of Proposition 2.1.

Assumption 22. For every ce G which is not a solution of P, there exists a u g G such that

F(u I o)<0. •

Themethods differby themanner in which they define a "center". The simplest, butnot practi

cal definition of the "center" mi+i is

ui+l =argmuiF{u I ut). (2.8)

The solution of (2.8) for ui+l is hardlyeasier than solving the original problem (2.5b). Hence we will

nowintroduce a much more tractable definition of a "center" basedon the parametrized barrierfunc

tionp a: Loo, 2x Loo, 2 -> R. for the above sets V(u'), defined by, for a > 0,

Po(" '"')° a+2voa+/V)-/0(«) +,?, Ja+V(u')t-^(« ,t) *• (Z9)
Because for a> 0, pa(u' I j/ ) < °°. the parameter a makes it possible to use the point u* for

initializing a descent method insolving min„ e V(fi^ pa(u I u').

Webeginbyestablishing thatas a -> 0,p a(- I u') becomes a barrier function for the set V(u').

Lemma 2.1: Thereexists a constant L > 0, suchthat for all u' e G, u e V(i/ ), and a > 0,

12

Pa(U I l/)> - - + —log
a+2^')++/V)-/°(u) ^ g

1+ Ll2
(a + v(M')+-¥(«))

(2.10)

Proof: It follows from ourassumptions that there exists a constant, L <°°, such that each ty(u , •)

is uniformlyLipschitz in t on [0,1] with the same Lipshitz constantL, for all u e G. Without loss

of generality, we may assume thatL £ \|/(u')+- \|/(k), for all u , u' e G. Now, given u' e G and

u e V(jO, Let * e £ and? e [0,1] be such that <J>*(m ,?) =v(k), and let r e [0,1] be arbitrary.
Then we have that

0*0* ,0* <J>*(k,?)-LU-?I =\j/(m)-LU-?I . (2.11)

Consequently,

PoKm I"')£ X—n „—+f -—r dt
a +2xj/(«')++/V)-/V) 6 (a+ yOO+-<!>*(" ,r))



1 \ 1 dt
a+2V(M')++/V)-/°(") o(a+¥(w')+-^)+Llr-?l)

1

a + 2V(M')++/V)-/V)

+ -log
«x+y(u')+-V(u) + tiXa + y(u')+-y(u) + L(l-1))

(a + v(a')+-y(M))2

+-J- log
a+2\K*0++/V)-/V) L

1 +
L/2

(a + y(K')+-\|^0)

where the last line in (2.12) is obtainedby minimizing the proceeding line with respectto?

(2.12)

•

It follows by inspection of (2.10) that when u ->u', with u g V(k'), then p0(u l«')-»oo,

i.e., that p 0(-, u') is indeed a barrier function for V(uf).

Now consider the following conceptual algorithm for solvingthe problem P (2.5a).

Algorithm 2.1.

Data: u0 e G and a sequence {a* }£o such that o* >0 for all k e N and ak 4 0 as k -»°°.

Step 0: Set i = 0 and k = 0.

Step 1: Compute

ki+1 e A(ui) £± argmin p^(w I u()
U € V(«<)

Step 2: If F(Mi+1 I k,-) = 0, replace k by ifc +1 andgo to Step 1.

Step 3: Replace i by i +1, k by fc + 1, and go to Step 1.

Note that (2.13) defines ui+l as a solution of the simple optimal control problem:

min i
HE G

1

aki+2yV(ui)+ + g0(xUi(\))-g°(xu(il)) 7~6 a*,+vOO+-*;(*M(0)

where, as before Jtu(r) is the solution of (2.4a,b). This problem has only controlconstraints; its cost

♦ii 1
dt

(2.13)

(2.14)



is of the end point - plus - integral form. Barring possible ill-conditioning, such problems are easily

solved by algorithms such as the Goldstein-Levitin-Polyak gradient projection method (see [Ber.l]),

or the algorithm described in [Bak.l].

Theorem 2.1. (i) Suppose that Algorithm 2.1 jams up in the loop beween Step 1 and Step 2 at the

control uio. Then uio is a solution of P.

(ii) Suppose that {uf }£o is a sequence of controls constructed by Algorithm 2.1. If this sequence

has an accumulation point & e G, then u is a solution of P.

Proof, (i) For the sake of contradiction, suppose that uio is not a solution of P. Since the algorithm

is cycling the loop beween Step 1and Step 2, k -» ~. Let uk£ argmin„ evoo/>«»(" IuQ. Then,

since o* -> 0 as k ->«» and F(Qk I «l0) =0 for all k, we conclude that p^{uk I k1o)-»<*> as

k -» oo. But by Assumption 2.2, since uio is not a solution of P, there exists awe V(uQ such that

F(Q I mIo)<0, which implies that pQ((i I «l0)<°°. Since pa(u I «l0) iscontinuous ina, there exists

ak0 such that p^u IUiJ£2p0(fi I Kl0)forall k >kQ. But because p^^^ I m/o) -> «*>, there exists

a*! such that/?^(m * I uiJ>pak(fi I ul0) for all * £*j >*0, which contradicts the fact that uk is a

minimizer.

ii) Suppose that there exists an infinite subset AT c M and a u e G such that the subsequence
K

{"/ }ieK converges to 6; we write this as ut -» u e G as / -><». For the sake of contradiction,

suppose that u is not a solution of P.

Case I: There exists an i0such that y(Kl0) <0, so that \|/(m1o)+ =0. Since F(uif&l I «<0) <0, we have

that

/°(",>i)-/Vto)<0, (2.15a)

¥(",>i)<0. (2.15b)

It now follows by induction that for all j > i0,

/V/+i)-/°(K/)<0, (2.16a)



y(Ui)<0. (2-16l>)

K

Hence, since the sequence {/ 0O}f=j0 is monotone decreasing, and since / (m,)->/°(m) as

i: -> oo, by continuity, it follows that/Vi) -»/0(m ) as i -> <*> and therefore, since

P<,(«i+li«i)>aii+/0(Mi1)_/0(Ui+i). (Z17a)
and afc —» 0 as i -»», we have that

Pajfii+i I m) -»~ as i! -> oo . (2.17b)

However, since £ is not a solution to P, by Assumption 2.2, there exists a«* e V(u) such that

F(k* I u)<0 and therefore that p0("* ' £)<°°. Since, by construction, V{u) c V(w4) for all

i > i0t it follows that

PaM+i I ",)£Pa>* I "i)» V/i £/0. (2.18)

Furthermore, by continuity of pa(u* I u) in (a,w), p^w* I u{)-*pQ(ji* I £)<<*>, and hence

thereexists an *j > /0 such that for all / e K, i £ / lt

P*(k«+i lM/)^2po(«* l£), (2.19)

which is a contradiction of (2.17b).

Case II: Suppose that yO*,) >0 for all / € K. Then, sincep0[fc(ul+1 I u,)<~ for all i g IN, it fol-
K

lows from (2.10) that y(wi+i) <yO*,) for all i g IN, and hence, since by continuity, ^(m,) -» \j/(k ) as

i -> oo, that yiMi) -»y(£) as i -» °°. Hence, since by (2.10)

L/2PaSui+i •"«)>-£-!<>g 1 +
(a*i+V(",)+-¥("«+i))

and oc^. -» 0 as i -> <», we have that

PaSUi+i I m,)-^oo, as/ ->oo . (2.20b)

However, by Assumption 2.2, since u is not a solution of P, there exists a u* g V(w) such that

F(m* I m)<0 and hence p0("* I w)<°°. By continuity of F(u* I •), it now follows that there

exists an i2 such that F(u* I ut) < 0 for all / e K% i > i2, and hence we see that u* g V(k,) for all

i g K, i > 12- Hence, again by continuity, thereexists an /3>12 such that

10
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(2.20a)



PaSuM ! «*)*/>*("* I Ui)Z2po(u* I £)<~, (2.21)

which contradicts (2.20b). D

Since the set G is not compact, it is entirely possible thata sequence {ut } Zo, constructed by

Algorithm 2.1, has no accumulation points in G. In that case,Theorem 2.1 is vacuous. However, the

sequence { k, } -^ must have accumulation points, in the sense of control measures (i.s.cm.) in the

compact set G. The following result follows directly from the arguments usedto prove Theorem 2.1.

Corollary 2.1. Suppose that {wt }Zq is a sequence of controls constructed by Algorithm 2.1. If

this sequence has an accumulation point d e G, then d is a solution of P. •

3. An Implementable Phase I - Phase II Method of Centers

The main objection to Algorithm 2.1 is that the update operation in (2.13) is notimplementable.

We willnow develop animplementable algorithm which replaces (2.13) by anapproximate stationar-

ity condition and which incorporates a feature which enables us to use the point u,- as a starting point

in computing ui+l by an algorithm such as Algorithm 5.14 in [Bak.l].

First, referring to [Bak.l] wesee that the Frechet differentials (ofthe functions/°(), $*(•, r),in

(2.5a)) df°(u ;u' - m), d$k(u ,t; u' -u) exist and can be expressed in terms of scalar products
with gradients V/V) and Vuty(u ,t) which are in LWi2, i.e.,
df\u ;u' -w) = (V/V),"' -kv,2, and dtf(u ,t ;u' -u)= {Vutf(u ,t) ,u' -u)2. Neither
our proofs nor our algorithm require formulae for these gradients.

Next we define anoptimality function 8 : G -» R forthe problem P (2.5a), which is a first order

convex approximation to the function F (u' \ u), by

6(«)£ min maxj W -kI22+ {-2y(u)+ +af°(u ;u' -u),

♦'(ii ,tj)-y(u)++(VuV(u ,tj),u' -u)2f tje [0,1], jeq) I. (3.1)

At one point in our convergence proof we will need to bring in the relaxed controls topology.

Hence we need the relaxed controls extension of 0(n). For this purpose, it is useful to recall that

alternative formulae for {V/°(«),"' - u)2and {V^(u , t), u' - u )2are given by

11



<V/0(«),H'-!I>2= (V^V(1)),&C^-M>(1)) ,

{W(u,o,u'-u)2= (VgVcohov^a)},

where ox",u(t) is the solutionof the first variational equation:

(3.2)

(3.3)

&(0 =
dh(xu(t),u(t))

dx
&c(r) + dh (xu(Q, u(t))

du
[it(f)-uOy\, 8jc(0) = 0. (3.4)

Refering to [Wil.l, Bak.l], given a relaxed control oe G, with corresponding solution **(•) of

(2.4b), and any continuous function s : U -> Cm [0,1], we define 5x<v(r) to be the solutionof

&(0 =J
u

8x(0) = 0.

9/1(^(0,11)
dx

o(t)(du)&x(t) +\
u

dh(xa(t),u)
du w(iiXOo(fX<k).(3.5a)

(3.5b)

Next, we say that a search direction function s : U -» Cm[0,1] is admissible if for all u(t) g £/,

M(r) + ,s(iiXr) e t/ for almost all f e [0,1]. We define S to be the set of all admissible search

direction functions. With these definitions, the relaxed controls extension 9 :G ->IR, of 9(), is

defined by

9(g) £min max JVftbl£+ {-2y(o)++{VfV(l)).fiE°*(l) ),
s e S

tfdo, tj)- V(a)++ {V<?ty)), S^ty)) , tj g [0,1], j g (? } (3.6)

The following result can be found in [Bak.l]:

Theorem 3.1.

(a) The optimality functions 9() amd 9() are well defined and continuous.

(b) If a g G corresponds to the ordinary control u e G, then 0(a) = 9(a).

(c) If u g G is an optimal solution to the problemP, then 9(£) = 0.

(d) If d e G is anoptimal solution to the problem P, then9(d) = 0. •

In our proofs we will find it convenient to use an alternative formula for 9(w). Let the set of

Radon probability measures on the interval [0,1] be denoted by rpm ([0,1]), let V denote the set of

mesurable functions v : [0,1] -> rpm([0,1]), and let

12



W± {w =(w° V,...,w*)e Rw+1 I2A0wi! =1, w'">0,i =0,1,...,? }. (3.7a)

Finally, with rfin([0,1]) denoting the space of Radon finite measures, let Z be the set of measurable

functions u,Q : [0,1] -• [rfm ([0,1])]*+1 defined by

Z^ (M-e [rfm([0,l])]q+l I \ij =w'V , y =0,1 </, we W, ve V}. (3.7b)

Then it is obvious that

9(k)£ min maxJ V*Iu'-kI22 +{ J [-2\j<ii)++tf/0(ii ;u' -«)] u°(r)(<fr)
^CNS[ [0,i]

+E J [^(«.0-V(")+]^(0(^)
y=i [0. l]

+Z < J VM^(iifOM.y(0(A)fil'-M )2)
y=i [o,u

'• (3.7c)

We will require the following assumption which is usually required for methods of centers and

feasible directions:

Assumption 3.1.

(a) The G -closureof the set {u e G I y(u) £ 0} is equal to the G-closure of its interior.

(b) For all u e G such that \|f(n) > 0, 9(u) <0. •

Next, referring to the definition (2.9), we conclude that

VuPa{u lu') = V/°0O •ii v„V(u,o
[a+2\1/(K/)++/V)-/V)f ,f10 [a +vOO^^O* ,r)] df . (3.8a)

To evaluateVu/?a(K I u') one does not use the cumbersome formula (3.8a), rather, one uses the

following computationally efficient formula:

1 T

A/U(r), (3.8b)V„pa(" I "')(') =

where Xuu(t) is the solution of the adjoint system:

dh(xu(t),u(t))
du

13



1 T

M0 = -
dh(xu(t),u(t))

dx
uo-i,

Vxgj(xu(0)
~i [a.+W)+-8J(xu(0)Y

, t e [0,1], (3-8c>

UD =
[a+2y(M')+ +gW (1)) - g°(xu (l))]2

.O/.uV^u(x"(l))

Algorithm 2.1 now gives rise to the following implementable algorithm:

Algorithm 3.1.

Data: u0€E G,e>0,and {a* }k=0 such that ak >0 for all k € N and ak i 0 as k

Step 0: Set i = 0 and k = 0.

Step 1: Use anydescent algorithm to generate a ul+1 € V(m,- ) suchthat

0£ min {Vttp^(Ml+1 I M|) ,M - ki+1 >2+V*Ik -ul+1l2£-e.
u e G

(3.8d)

(3.9)

Step 2: If F(wl+1 I k,) =0, replace Jfc by £+1 and goto Step 1.

Step 3: Replace i by i +1, k by Jfc+1, and go to Step 1. •

The proofof convergence of Algorithm 3.1 depends on the following two lemmas:

Lemma 3.1. Suppose that Assumption 2.1 holds, that y> 0, that u' e G, and that u e V(u'). For

j e £, letr((iO c [0,1] bedefined by

7^00= {* e [0,1] l^(u,r)^v(u)-Y}. (3.10a)

Then for each t £T{(m), with t e [0,1] and ; e q,

ii
(Wy+-V<a.t)) (W) -V(u,0) y (3.10b)

Proof. Because f £r{(n). (j/(ii , r) <y(u)-y. Hence,

yOO-^O* ,0>vOO-vOO+Y>y , (3.11)

and the desired inequality follows. n

Lemma 3.2. Suppose that Assumption 2.1 holds. Then for all a >0, there exist a constant 8a >0

such that for all u' e G, for all u e V(u'),

(a+yOO-yOO) S J 1

jeq[o,i] (a+yOO-^O* ,0)
df £8a>0 (3.12)

14



Proof. Since G is bounded, it follows from Assumption 2.1 that there exists a Lipschitz constant,

L < oo, such that each tf(u , •) is uniformly Lipschitz in t on [0 ,1], for all u e G. Without loss of

generality, we may assume that L >y(u') - \j/(u), for allu , u' e G. Letj e q be such that T^ (u)

is nonempty, let tu e Th (u) be given and let re [0,1]. Then we have that,

V(u ,t)>V(u ,tu)-L\t-tu\ =\|/(u)-LU-rJ . (3.13a)

Now suppose that 0<y£L +a. Then {re [0,1]/ \t -tu I £y/(L +a)} c TJy(u), and hence

m(TJy(u)) >y/(L + a), where m(•) denotes the Lebesgue measure on1R. Hence we conclude that

y f a+\|/0O-vQO J(^ f a+V(lQ-\l/(lO J;
ye*[o.n (ct+yOO-^O* .O)2 t(m (OL+y(u')-V(u , r))2

> Y a +yOQ-yOO
" (L +a) (a +yOO-yOO +Y)2 ' (3'13b)

Setting Y=a + \j/(i/)-\|f(n), and 8 = 1/4(L + a), we obtain the desired result •

Theorem 3.2. (i) Suppose that Algorithm 3.1 jams upin the loop beween Step 1 and Step 2 at the

controluio. Then uio is a solutionof P.

(ii) Suppose that {iif} £o is a sequence of controls constructed by Algorithm 3.1. If this sequence

has an accumulation point Q e G, then y(u) < 0 and 9(£) = 0.

Proof, (i) The proof of this part is essentiallythe same as for (i) ofTheorem 2.1 and hence is omit

ted.

(ii) Since w1+1 is constructed from it; by a descent method, it follows from F(uM I u{) < 0 that if

V("i) ^ 0, then \|/(Uj+i) < 0 also. Hence our proof breaks down into the examination of two cases.

K

Case I: Suppose ii; ->&e G as i -» «»and that there exists an i0 such that \|/(m,) ^ 0 for all i >i0.

Then, by construction, the sequence {/°(w,)} £,0 is monotone decreasing, and since it is bounded, it

must converge to/ (ft). The fact that y(u) <0 follows directly from the continuity of\j/().

Now, for j > io, y e q and r e [0,1], let

,. a[cv^(«m)-/°(«,)]2
p'(r) = ; IT, ^2 • 0.14a)(a^-ViUi ,r))2

Finally, let

15



y»l 0

(3.14b)

It now follows from (3.8) and (3.9) that for all i £ i0,

02 &(«,-) A min —
«6GVj

df°(Ui ;u- m) +£ Jp{(t)dV(Ui ,r ;u - w.) +ttllii - ii;l22
y=10

^ a [Ofc+/0(«i-i)-/0(«i)]5
(3.15a)

Since v, £ 1 for all i >i0 and since /fy,)-»/°(u) and cc^ -»0 as i -><*>, it follows that

e(- -> 0 as i ->oo. Next, it follows from (3.7c) that for all i >i0, e(ii,-) £ ©/(mi), and hence we find

that for all i > i0,

0£ 90O >©'(ii,) +-J- f Jp/(W(u,., r)dr >-e4- +—£ Jp/(r)V(M|-, t)dt. (3.15b)
V«" y=10 vi y=10

It now follows from (3.14a) and the relation, 0> -H- —2 ."' ' nf and Lemma 3.1
(c^-*/(«, ,r))2 Wtuitt)f

that for any j e ^, and any y> 0,

l

V; * v,-
02 i Jp,W («,- ,r)A =J-[<^ +/Vi)-/V,)] J/ ^V°^ A

v* ~ v' o (ofc-fGi,- ,r))2'i o

^t/Vi)-/^) [ f •i dr+ J 1
dr

•0/,. \ i r *»

>- (3.16)

Since [o^ +/°(wl_i) -/°(««)]/v,- -40 as i -* oo, and since byTheorem 3.1,9()iscontinuous, itnow

follows that 9(£) = 0.
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Case II: We now suppose that ^(u,) >0 for all i e N. Then we must have that the sequence

(V("i) 1M)ismonotonically decreasing, and hence it mustconverge to vj(u). Inthis case, wedefine

(a*+vKKt-i)-¥(",))
pfc)^

0/„ \\2 '(a* +2y(KJ_1) +/u(mi_1) -/u(Mj-)>

y A (afc+V(«i-i)-V(U.-))
(c^+vd^-D-^Ui.OJ2

It now follows from Lemma 3.2 that

v1^Zjp/(O^^8afc>0 ,
y=0 0

and from (3.9) that

, y = 1,2 ,..., q .

(3.17a)

(3.17b)

(3.18)

O>0,,(Ml)^min —
u e G Vi

\p?(t)af\ui ;u -Ui)dt +2 ]p/(t)dV(uitt ;u-Ui)dt +lAlu -iijf
0 ;=l 0

a [a* +V(M«-i)-V("«)]

Clearly, e,- -> 0 as / -» oo. Next, by the sameargument as forin (3.15b), we obtainthat

0>90O>e"0O+-±-< J- 2p|P(r)y(ii|._1) dt+ £ Jp/(f)&(m, r) -yOi^)] A
0 y=l 0

v,

1 1
-_ej'+^ri J-2p,p(0¥(«,-i)^+ z/p/(0[^(«,-.o-v(«««-i)]*

7=10

First, it follows from the samearguments used in part (a) that

77- £ jP/(0 W^ ,r) - ip(iiM)] dt -> 0, as 1
v« y'=10

17
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Henceto complete our proof,we only need to show that\j/(m,) -» 0, as i -» oo.

For the sake of contradiction, suppose that y(u) > 0. We now have two possibilities. The first

is that 2v|^m,)+/Vi-i)--/Vi)->0 as / -»«>, which implies that for all sufficiently large i,

f°(Ui) >/°(k«_i) +¥(£)» and hence that/V,) -* °° as i! -> oo. Since the set G is bounded, this is

clearly impossible. Hence, we consider the second possibility: there exists an infinite subset fC c N"

and a 8>0, such that 2\^ui)+f\ui^)-f\ui)>h for all i e K'. In turn, this implies that

f o K r -Jp, (r) dt -> 0 as i -» oo. Furthermore, we may assume that m, -» o* e G, i.s.cm., as i -»oo.
o

Clearly, we musthave y(a*) = y(£) >0. In view of the above, (3.20), (3.21), and the continuity of

8(-), this implies that 8(o*)=0. However, this contradicts Assumption 3.1 and hence our proof is

complete. •

4. A Special Case

It is not atall uncommon for the setU in (2.1b) to have description in terms of convex inequali

ties, as follows:

^(zeRffl \sl(z)<0, / =1,2,...?3} , (4.1)

where the sl :Rm -»IR are all Lipschitz continuously differentiable convex functions.

If,fory =<7i+<?2+ 1,... ,<7i +<?2 +<?3» we define the functions^ :LM|2x[0,1] ->IRby

V(«,O^^M)), (4.2)

we find that V(-,r) is differentiable on L^j, with

duV(u ,r ;u'-u)= {VsJ-*rqXu(!))tiS(t)-u(f)).

Now, let q =* q t + q2 + q3t then (2.5a) becomes

F. minC/^l^mw ♦'(ii.O^O. y=1.2f...^f weL^}, (4<3a)

or in the even more compact form (see (2.5b)),

F. min{/°(ii) Iy'(u)<0, y =1,2,...,?, ueL„i2) , (4.3b)

where y (w) =max, € [o, i] V (" .O-

For problem F, letting \|f(u) =max {^(m) , j = 1,..., q } and \|/(k)+ =max {0, \j/8k)}, we

define the optimality function 8': L„ 2 -» R by
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e'OO^ min {^li/-Mll| +max{4r(u ;u' -u)-2xjAu) ,
*t € L.,2

^(a ,r)-yOO++ <*„<!>'(a ,r ;u'-u), t e [0,1], j e ? } } (4.4)

which is a first order convex approximation to the unifying function F* (u' \ u), defined by (2.6) with

q and the functions &(-, ) redefined as above.

We begin by establishinga relationship between the functions 8(0 and 8'().

Theorem 4.1: Suppose that

U& [zeU l^(z)<0,y =1,2 q3] , (4.5)

O o

where U denotes the interior of U, and that U is not empty. Then, for any u e G, 8(m ) = 0 if and

onlyif8,(ii) = 0.

Proof: => Suppose that 6(/2) =0 but 8'(tf)<0. Since 8'(«) <0, there exists a u e L*, 2such

thatF'tiT I £)<0. If \|/(w)+ = 0, thenbecause ofF'iu I u )< 0, we havethat

/°(«) -/°(" )- 2y(«)+ =/°(«) -/°(£) <0, (4.6a)

V(u ,t)-y(fi)+ =V(u ,t)<0, Vre [0,1], for; =l,...,q1 +q2, (4.6b)

^(w ,r)-\|/(i?)+ =V(ii ,r)<0, Vre [0,1], for; =<3r1+?2+1,... ,<7l+?2+?3. (4.6c)

By (4.6c), u e G. It now follows from (4.6a) and (4.6b) that 8(£)<0, which contradicts our

hypothesis.

Next, we need to prove that \|/(£)+ =0. Suppose that \|/(m )+ >0. Since u e G, ty(u , t) <0

for ally =Q3=* Wi +<72 +l»-><7i +<72 +<73} and for all r e [0,1]. Hence \|/(£)+>0 implies

that there exist y0e Q1>2^ {1 ,...,ql +q2) andr0e [0,1] such that \|/(£) =tf\u ,t^>0. How

ever, in this case Assumption 3.1 ensures that 8(u)<0 which is a contradiction and, therefore,

V(£)+ = 0.

<^ Suppose that 8'(w ) =0. For the sake of contradiction, suppose that 8(m ) <0. Let £(k I u) be

defined by
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5(u I &) = lMu-Ql2+max[-2y(u)++df0((i ;u-u),

V(ii ,t)-ym++duV$ ,t;u-u), re [0,1], ; =l,...,?1+?2K4.7a)

Since 8(£) < 0, there exists a u e G such that,

8(£) = min|(M Iu) = Z>(u Im)A-25<0. (47b)

Forae (0 , l),letMa^M +a(ti-£). Thenuae G forallae (0,1) because the set G is convex.

Since -2\|/(£)+<0 and #(& ft)-y(u)+<0 for ally, we have that forallae (0,1),

%{u I £)<5(Ka I M)^-2aS<0. (4.7c)

o _

Let ii be any control such that u(r) e U for all r e [0,1]. Then, by (4.5), there exist 8y such that

max ty(u ,r) =-8,<0 for all y e Q3. Let u'aip = (1 - a)u +a(u + p(ii - u)) =

wa +ap(ii -u) where pe (0,1). Obviously, u'a#pe G. By the continuity of £(• I m), for any

a e (0,1), there exist a pa e (0,1) such that

8(M)<5(K'a,p I i?)£-aS<0, v/0<p<pa. (4.7d)

Since the functions ty(-, r) areconvex for all j e Q3 and for all r e [0,1], we concludethat for all

ye Q3,forallr e [0,1], forallae (0,1), and for all p e (0,1),

♦V«fp.O^(1 -<*W(u ,r) +aV(K +p(« -u),r)

£(1 -aWO? , r)+a {(1 -p)^*, r)+p^(ii , r))}

^-ap8y<0. (4.8a)

The last inequality is valid because V(u ,r)£0, ^(ju ,r)£0, and ^(ii ,r)<-8; <0. Also,
because all the gradients V,,^-, r) are Lipschitz continuous,

V(u'ati,t) =Vtf ,t)+{VuVtf ,0,u'aifi(t)-u(t))
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*V(& ,t)+{VuV(fi ,t),u'att(0-Q(t))

-Lya2/2(lii(r)-ii(r)l2+p2lii(r)-u(r)l2), (4.8b)

where Lj =* max, € [o, i] f/(*) and Ly(r) is aLipschitz constant of VutyQ , r). Combining (4.8a) with

(4.8b), we can conclude that there exist Og, p0 e (0,1) such that for all 0 <a <Oq, for all

0<p£po,andforallr e [0,1],

lMu\tfi)-u(t)\2 +y(u ,O+W(0 ,r),ii'a>p(r)-ii(r)) <;-ap8,/2<0, vy e Q3. (4.8c)

Since (4.7d) and (4.8c) imply that, given0 <a <> Oq, for all 0 < p <min { pa, p0},

8'(k)<max {-a8, -ap8y12, j e Q3} <0. (4.8d)

we obtain a contradiction of ourhypothesis, and henceourproofis complete. •

Clearly, Algorithm 3.1 is applicable to P* and it may be initializedwith acontrol which is not in

G. However, we must ammend Assumption 3.1, as follows. Since relaxed controls must be associ

ated with bounded controls, we introduce an arbitrarily large compact set U* c Rn, and we define

G* by (2. lb) withU replaced by U*. We noted the corresponding setof relaxed controls by G*.

Assumption 4.1.

(a) The G*-closure of the set {u e G* I y(u) £ 0} is equal to the G*-closure of its interior.

(b) For all u e G* such that y(u) >0,8'(w) < 0. •

At this point, the following result should be obvious:

Theorem 42. (i) Suppose that Algorithm 3.1 is applied to problem F, and jams up in the loop

beween Step 1and Step 2 at the control uio. Then uio is alocal solution of P7 and hence also of P.

(ii) Suppose that {ut} £o is a sequence of controls constructed by Algorithm 3.1 in solving P/. If

this sequence has an accumulation point &e L„t2t then \{/(w)<0 (so that u e G) and

8'(£) = 8(i?) = 0. a

There is considerable programming convenience in using the formulation F over P whenpossi

ble. Our computational results, in the next section, show that the use of the formulation V does not

result in any penalty in terms of computing times.
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5. Numerical Results

We will now present two examples which illustrate the performance of Algorithm 3.1. In our

experiments, the computations in Step 1 of Algorithm 3.1 were carried out using Algorithm A in

[Pol.3], which is of the Gauss-Newton type. All the computations were performed in double preci

sion on a Sun 3/140 Workstation with a floating point accelerator. The sequence {a* }k=0 was

defined by a*^ = a*/l.l, with Oq =0.005. Our experiments suggest that larger values of Oq result in

an increase in the numberof iterations neededto solve a problem.

Example 5.1: Our first problem is a minimum time brachistochrone problem with a state variable

inequality constraint, described in [Bry.l], We treat this problem in fixed-time scaled form, where

the scale variable T corresponds to the actual final time.

where

min [T2 I max ^(y,r)<0, j =1,2 , Vr e [0,1]}
yeL.,2 /e[0,l] (5.1a)

4>\y,t)=y(t)-x(t)imQ-h , (5.1b)

<|>2(Y,r) =^(x(l)-/)2-$, (5.ic)

wherehorizontal distance, x, vertical distance, y, are defined by

x(t) = T V2gy(r) costfr), (5.2a)

y(r) =T V2gy(r) sintfr), (5.2b)

where g is the acceleration due to gravity, and y is the path angle to the horizontal, 8 and h are con

stants, and ^ is asmall tolerance by which weare willing to relax the requirement x(1) = /.

Since the system equations (5.2a) and (5.2b) cannot be integrated explicitely, one must use a

numerical integration scheme, which discretizes the time interval [0,1]. The discretization may be

either fixed, or variable. We used 40 uniformly spaced points in conjunction with the Runge-Kutta

second order method ([Ral.l]). The gradients usedwere those corresponding the discretized dynam

ics imposed by the integration scheme. The results that we obtained converge to the expected results,

obtained analytically in [Bry.l, ppl20]. We stopped our computations when the constraints were

satisfied and the difference in the cost value between successive iterations was less than lxlO"5.

We used two sets of initial conditions: (a) (*(0) ,y(0), T) = (0.0,0.3,2.0), 8 = 0.2, h = 0.6,

/=4.0, ^ = 0.0005 and (b) (x(0) ,y(0) ,T) = (0.0,1.0,2.0), 8 =0.2, A =2.0, / = 10.0 and
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£ = 0.0005.

Figure la presents a plot of the values /°(H|) versus iteration number i. Figures lb and lc

show state space trajectories and inputs at various iterations, respectively, obtained using the first set

of initial conditions. The minimum time is determined to be 0.99971 after 12 iterations. The results

of the computations using the second set of initial conditions are shown in Figures 2a, 2b, and 2c.

The final minimum time, 1.63998 seconds, is obtained after 10 iterations.

Example 5.2: Our second problem is a fixed-time minimum final error problem with a state vari

able inequality constraint and bounds on the control:

P: min {l*lx(l)l2 Ix\t) - / £0, Vr e [0,1]} , (5 3a)

where the state is determined by the scaled differential equation

*(0 =
x\t)
x\t) =7[oo] *<0 +r[?] «(0. (5.3b)

with T > 0 the actual final time. The input u(•) is scalar valued and

u e G =" {u e L„ >2 I lul,, £ 1.0}. We used the initial state are givenby *(0) = (-3.0 ,0.1)T. We

set/ =0.15andT=20. With s() defined bys (r )=u(r)2- 1.0, the problem P(5.3a) becomes

P': min {Vilx(l)l2l max */(ii ,r)£0, j =1,2} , r54ax
u e L.,2 t e [0,1] \J.**aj

where

$\u ,t)=x\t)-l , (5.4b)

<t>2(" ,r) =5(r). (5.4C)

We applied Algorithm 3.1 to both problems P and P7.

Figures 3a, 3b, and 3c present plots of the cost f\ut) versus iteration number i, as well as

corresponding state space trajectories and inputs at various iterations using the formulation (2.1a).

Similar results using the formulation (4.3b) are shownin Figures 4a, 4b, and 4c. As we can see, the

results obtained are almost same.

It is clear from ourexperimental results that Algorithm 3.1 is quite effective in solving optimal

control problems with continuum state and control constraints. Also, we can see that when we have a

special description on the set of controls, we cantakeadvantage of it without any penalty.
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6. Conclusion

We have presented two versions of a phase I - phase II method of centers type algorithm for the

solution of optimal control problems with control and state space constraints. The computational

advantages of these algorithms derive from the fact that we used barrier functions for defining an

approximate center to becomputed ateach iteration. Although, at first glance, thealgorithms appear

to have potential for failure due to illconditioning, preliminary computational results showthatthis is

not so, and in fact, that the algorithms are highlyeffective. This observation agrees with the numeri

cal results reported in [Pol.3] for arelated algorithm which solves semi-infinite minimax problems.
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Figure lb. State space trajectories for Example 5.1(a).
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