
 

 

 

 

 

 

 

 

 

Copyright © 1990, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



MULTIPLE-OUTPUT SHARED TRANSISTOR

LOGIC (MOSTL) FAMILY SYNTHESIZED

USING BINARY DECISION DIAGRAM

by

Takayasu Sakurai, Bill Lin, and A. Richard Newton

Memorandum No. UCB/ERL M90/21

16 March 1990



MULTIPLE-OUTPUT SHARED TRANSISTOR

LOGIC (MOSTL) FAMILY SYNTHESIZED

USING BINARY DECISION DIAGRAM

by

Takayasu Sakurai, Bill Lin, and A. Richard Newton

Memorandum No. UCB/ERL M90/21

16 March 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



MULTIPLE-OUTPUT SHARED TRANSISTOR

LOGIC (MOSTL) FAMILY SYNTHESIZED

USING BINARY DECISION DIAGRAM

by

Takayasu Sakurai, Bill Lin, and A. Richard Newton

Memorandum No. UCB/ERL M90/21

16 March 1990

ELECTRONICS RESEARCH LABORATORY

Collegeof Engineering
University of California, Berkeley

94720



Multiple-Output Shared Transistor Logic (MOSTL)
Family Synthesized Using Binary Decision Diagram

Takayasu Sakurai*, Bill Lin and A. Richard Newton

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA94720, U.S.A.

*) On leave from Semiconductor Device Engineering Lab.,

Toshiba Corporation, Kawasaki, 210, Japan

Abstract

A new type of logic family, Multiple-Output Shared Transistor Logic (MOSTL) family, is
defined and a synthesis method for generating MOSTL is described. The MOSTLimplements a

logic function not by combining logic gates such as NAND's and OR's, but by combining
transistors directly as switches. Since theMOSTL hasmore freedom in realizing a logic function, it
offers a smaller and faster circuit than thestandard cell based approach. More concretely speaking,
in the MOSTL, transistors are shared among several logic functions and thus the number of

MOSFETs are reduced and thisin turnmay reduce delay time. It is best suited for the Sea-Of-Gates
designs and a full manual design wheredesigners are permitted to builda circuitat a transistor level.

A synthesis method presented isbased onBinary Decision Diagram (BDD) and usually gives a
good solution. The method is demonstrated to generate a sneak-path free circuit and in this sense
never fails toproduce a solution, which isanimportant feature when applied to real designs.

A MOSTL together with the synthesis method will provide a systematic way to generate a
'clever' circuit, which could only have been built by theingenuity of experienced circuit designers
otherwise.



T.Sakurai, B.Lin &A.HNewton Multiple-Output Shared Transistor Logic (MOSTL).,

1. Introduction

Transistor level logic network synthesis has been attracting attentions for a long time[l-5,14-

16] since the early and important workof Shannon[10,11]. Horn et al. [14, 16] in the middle of

50's proposed a symbolic matrix technique to tackle the problem and it is useful in the analysis of a

logic switching network but as for the synthesis it was based on the intuition and gave a limited

success.

There are two major advantages in using the transistor-level synthesis. One is the use of 'pass

variables' or 'pass transistors', a good example of which is a steering logic family introduced in

[17]. The other is a sharing of transistors among different switching paths. The formeradvantage is

pursued by recent researches [5,15] and a big advance has been observed in this area but the latter

advantage is not studied well. Wu et al. [3, 4] investigated the sharing problem and a limited

success has been reported if the problem is confined to a single-contact, single-output network

where one variable can drive only one control gate of a transistor and the number of outputs is one.

Even for the general single-output case, the synthesis method is still based on intuition.

In this report, one practically important logic family, namely Multiple-Output Shared

Transistor Logic (MOSTL) family, is defined and a systematic way of synthesizing it is described.

The MOSTL is a single-stage logic gate and more general than the single-output logic gate. It utilizes

both of the pass variables and the transistor sharing and includes usual CMOS complex gates, a

steering logic and a barrel shifter.



T.Sakurai, RLin & AUNewton Multiple-Output Shared Transistor Logic (MOSTL)...

A synthesis method presented is based on Binary Decision Diagram (BDD)[6,7] and usually

gives agood solution. The method is demonstrated to generate a sneak-path free circuit and in this

sense never fails to produce a solution, which isan important feature when applied toreal designs.

In Section 2, MOSTL is defined and examples are given. A synthesis method based on BDD

is described in Section 3, followed by a sneak-path free nature of the the generated circuits is

discussed in Section 4. Section 5 and 6 are dedicated for discussions and possible area of future

works and conclusions, respectively. In Appendix, a sample program is shown for the BDD-based

minimizer.

2. Multiple-Output Sharing Transistor Logic (MOSTL)

The schematic diagram ofthe MOSTL is shown in Fig.l and an example isgiven in Fig.2. In

Fig.l, the NMOS and PMOS blocks include a transistor circuit where any number of output

terminals are connected toa power line or topass variable inputs according tothe control variables.

From the left side of the boxes, control variables are input and from the bottom or the top of the

boxes, pass variables are incurred. The NMOS/PMOS block can include non-serial-parallel

structure and non-planar structure. Three variations are shown in the figure but several other

configurationsarealso possible.

The salient feature of MOSTL is the exclusion of mixing PMOS's and NMOS's inone circuit

block and that the only one power source attached to the NMOS logic part is VSS and the only

power line connected to the PMOS logic is VDD. By limiting the structure like this, itispossible to

eliminate amulti-stage nature and Vra problems from the synthesis. V^ , threshold voltage of



T.Sakurai, B.Lin & A R.Newton Multiple-Output SharedTransistor Logic (MOSTL)..

MOSFET, hinders the output to swing full VDD-VSS range and this degrades circuit margins ifit is

not treated properly. The multi-stage nature makes the problem intractable. The MOSTL includes

most ofthe practical logic circuits such as CMOS complex gates, abarrel shifter, and asteering logic

family.

O O ©

In 5=

Load

r——n out
in*

PMOS
Logic

NMOS
Logic

Pass Variable

y y y

Out

Infc
PMOS

• Logic

*

ln£
NMOS

• Logic

rxr
Pass Variable

a) Load +NMOS b) CMOS + C) CMOS +
control variables control variables +

pass variables

Fig.1 Schematic diagram of MOSTL

Out

The example in Fig.2 is for a parity generator circuit for three input. The functional

descriptions are:

/ = abc' + ab'c + a'bc + aW

f = abc + ab'c' + a'bc' + a'b'c.



T.Sakurai, RLin & A.R.Newton Multiple-Output Shared TransistorLogic (MOSTL)...

In this expression, prime (*) denotes an inverted input. This type of logic function is difficult to

minimizeby a standard cell approach. Direct implementation of the logic function by a parallel-serial

CMOS transistor network needs 48 transistors, while the MOSTL needs 20 or 16 transistors

depending on the use of pass variables. If the number of inputsis increased, the advantage becomes

more eminent.

Load

a) Load + NMOS b) CMOS + c) CMOS +
control variables control variables +

pass variables

Fig.2 An example of MOSTL (a parity generator circuit)

3. Synthesis of the MOSTL Using Binary Decision Diagram (BDD)

Inthis section, a synthesis method is described. The synthesis begins by building a BDD. To

build the BDD, there are several methods. One method [6] is: first generate logic binary trees for



T.Sakurai, RLin &A.RNewton Multiple-Output Shared Transistor Logic (MOSTL)...

separate logic functions as shown in Fig.3 and then merge these trees by merging common subtrees

from the bottom. In Fig.3, the left-most © in the left tree means that the function goes to '0' when

c=l and goes to T when c=0. Consequently, the subgraph which is rooted at the © and the

subgraph which is rooted at the second left © in themiddle tree is considered to be the same. So the

pointer to the second left © can be switched to the left-most © in the left tree. Applying this

procedure iteratively, the reduced BDD of the right graph can beobtained. Thedetailed description

of the procedureis found in [6].

The BDD has an important feature that if the input ordering is given, thereduce BDD is unique

so that it can be used as a standard form of logic function. The number of edges included in the

BDD depends on the ordering and the optimum ordering is difficult to find without an exhaustive

search. However, for less than 5-6 inputs, the exhaustive search is possible and sincethe MOSTL

is a single-stagegate, the number of input is small.

Once the BDDis constructed, it is easyto interpret the graph asa transistor circuit The edges

directed to the terminal [T] basically correspond PMOS block MOSFETs and the edges directed to

the terminal joj correspond to NMOS block MOSFETs. When constructing aPMOS block, a=l(0)

edge should be converted to a PMOSFET whose gate is controlled by a' (a). For a NMOS block,

a=l(0) edge shouldbe converted to a NMOSFET whose gateis controlledby a (a*). A literal whose

two children are \T\ and \0\ may be replaced by apass variable input

Furtherreduction in the number of transistors is possible when checks are made for all edges

if the edgescan omitted or shorted. The exampleof this further reduction is explainednext using a

more complicated example.



T.Sakurai, RLin & A.R.Newton Multiple-Output Shared Transistor Logic (MOSTL)...

r

0 0

Fig.3 Binary Decision Diagram (BDD) for a parity generator

Figure 4 and TABLE I show aKarnaugh map and atruth table of the more complicated

example, respectively. There are three output terminals and the functional description is:

fl = AB'C + A'ZT + A'B'C

f2 = AB'D' + A'B

f3 = AC + A'BC + AB'CD*.

— B

123 23

12 12 3 3

1 123 13

1 23

Fig.4 Karnaugh mapof 'relay3' example



T.Sakurai, RLin & A.RNewton Multiple-Output Shared Transistor Logic (MOSTL)..

TABLE I Truth table of 'relay3' example

A B c D n n /3
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 0 1 1 0 0 0
0 1 0 0 1 1 1
0 1 0 1 0 1 1
0 1 1 0 1 1 0
0 1 1 1 1 1 0

0 0 0 0 0 0
0 0 1 0 1 1

0 1 0 1 0 1
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 0 0 0
1 1 0 0 0 1

1 1 1 0 0 1

After constructing a BDD, the NMOS and PMOS blocks are extracted separately. Then each

edge in the graph is tested if it can be omitted or shorted. If it can be omitted or shorted, the

transistor can be eliminated. In this example of 'relay3'[l] in Fig.5, five edges are shortable. The

shorting process may createa sneak-path (see the next section), so that a careful validity checking of

the shorting shouldbe done. One way of doing this is through a simulation, which is adoptedin the

program listed in Appendix.

For this example, the number of transistors needed is 27 as shown in Fig.5, but a parallel-

serial implementationof the logic leadsto 42 transistors.



T.Sakurai, RLin & A.RNewton Multiple-Output Shared Transistor Logic (MOSTL)...

Shorted path

B ^

PMOS Logic NMOS Logic

Fig.5 Synthesized MOSTL for 'relay3' example

4. Edge-Merging and Sneak-Path

In the synthesis of MOSTL or more general transistor switching network, a sneak-path is a

difficult problem. An example of the sneak-path is shown in Fig.6. Suppose two functions / =a

and g =a +b are to be realized. First, the edge controlled by a is connected to / and the edge

controlled by b is connected to g realizing that / =aand g =b. Then to make g be a +b, vertices i

and j can be connected. Then gbecomes correct but / becomes incorrect because there exists apath

from [j] to / through b. This is asneak-path. Usually sneak-paths are not obvious and acritical

checking should be employedto reveal the sneak-paths.



T.Sakurai, RLin & ARNewton Multiple-Output Shared Transistor Logic (MOSTL)..

The essence of the sneak-path is the existence ofcontradiction on the assignment oflogic

values on one vertex. In the example, when a=0 and b= 1, g expects vertex j to be 1while /

expects vertex j to be 0, which is a contradiction.

/ = a g = a + b

itittimmmitiimi

1

Fig.6 Sneak-Path

A very powerful transformation in constructing MOSTL is 'edge-merging' as shown in Fig.7.

The essence of the edge-merging is to merge two edges with one nodecommon controlled by the

samevariable into one edge. Otherthanthe BDDbased method described above, this edge-merging

seems promising. The drawbackof the edge-merging, however, is the creation of sneak-path.

Edge Merging

Fig.7 Edge-Merging technique.

10



T.Sakurai, RLin & ARNewton Multiple-Output Shared Transistor Logic (MOSTL)...

It canbe demonstrated that the BDD based method generates a network which does not contain

sneak-paths. First, separate logic binary trees do not have sneak-paths because only one path is

activated at a time which connectsan output to the power source. The reduceoperation in the BDD

reduction scheme does not createany sneak-paths. This latterpartis explained in more detail. The

reduceoperation includes only two kinds of procedures as shown in Fig.8.

One procedure is anelimination procedure andthe otheris a subgraph sharing procedure. The

elimination procedure does not introduce a sneak-path because the only thing this procedure doesis

to assign one physical vertex instead of two logically shorted vertices. If there exists a sneak-path

afterthe procedure, it must be existed before the procedure.

The subgraph sharing procedure does not introduce any sneak-paths either becausewhenever

vertex j expects 0(1) on vertex n, i also expects 0(1) on the vertex n. So there is no contradiction

and thus no sneak-paths.

Fig.8 Two basic procedures to reduce BDD. The sneak-path free nature is

demonstrated by using this figure.

11



T.Sakurai, RLin &AKNewton Multiple-Output Shared Transistor Logic (MOSTL)..

5. Discussions and Future Work

The synthesis method presented here based on aBDD usually gives agood-quality solution to

aMOSTL generation problem as in the example ofrelay3 circuit Sometimes it gives the optimum

transistor network as in the example of parity generator circuits. However, the method does not

always guarantee the optimality so that sometimes the method generates abad circuit. In this sense,

some procedure is preferable to be taken to improve thegenerated transistor network. Simulated

Diffusion or Simulated Annealing can be achoice.

Other than the synthesis method itself, aresearch as aVLSI synthesis system is of interest.

The total system may look like Fig.9. We can make use of a standard logic minimizer[8,9] and the

several outputs of logic functions generated bythe logic minimizer which share common inputs are

bundled together and input toaMOSTL synthesizer. The transistor sharing and the pass variables

are treated properly in the MOSTL synthesizer.

The partitioner inFig.9 and MOSTL generator should beworking cooperatively or iteratively

so as to optimize the area and speed. A research should also to be carried in this area. That is,

multi-stage MOSTL optimization is the important next step. As ismentioned in previous section, the

inclusion of don't care condition isanother area to look into, although simple inclusion iseasy.

12



T.Sakurai, RLin & ARNewton Multiple-Output Shared Transistor Logic (MOSTL)..

r Behavioral Synthesis

I
Logic Description

I
Standard Logic Optimizer (ex. MISII)

i
Partitioner to Multiple-Output Function

Modules

I
MOSTL Generator

I
Mapping to SOG / Module Generator

I
Chip

Fig.9 MOSTL generator incorporated in a design system

6. Conclusions

A new family of logic circuit is introduced and a synthesis method is presented based on a

BDD. Although this method does notguarantee to givetheoptimum circuit and some extensions are

desirable, itusually gives agood solution. The method isdemonstrated to generate asneak-path free

circuit and in this sense never fails to produce asolution, which is an important feature when applied

to real designs.

A MOSTL together with the synthesis method will provide a systematic way to generate a

'clever' circuit, which could only have been built bythe ingenuity of experienced circuit designers

otherwise. Sea-Of-Gates and a fully manual design can bebenefitted by the proposed method.

13



T.Sakurai, RLin &ARNewton Multiple-Output Shared Transistor Logic (MOSTL)..

Acknowledgments

The encouragement of Prof. B.Brayton, Prof. A.Sangiovanni-Vincentelli, Y.Unno,

Y.Takeishi, H.Yamada and T.Iizuka throughout the course of this work is appreciated. This work

wassupported by a grant from Toshiba Corporation.

14



T.Sakurai, RLin & ARNewton Multiple-Output Shared Transistor Logic (MOSTL)...

References

[11 HJ.Beuscher, AJI.Budlong, M.B.Haverty, Electronic Switching Theory and Circuits, Section

10, Van Norstrand Reinhold Berkeshire, England.

[2] N.Deo, Graph Theory with Applications to Engineering andComputer Science, Prentice Hall.

[3] M-Y.Wu, I.N.Hajj, "Switching Network Logic Approach to Sequential MOS Circuit Design,"

IEEE Trans, on CAD, CAD-8, No.7, pp.782-794, Jul.1989.

[4] M-Y.Wu, W.Shu, S-P.Chan, "A Unified Theory for MOS Circuit Design - Switching Network

Logic," Int. J. Electronics, Vol.58, No.l, pp.1-33, 1985.

[5] C.Pedron,A.Stauffer, "Analysis and Synthesis of Combinational PassTransistor Circuits,"

IEEE Trans, on CAD, CAD-7, No.7, pp.775-785, Jul.1988.

[6] R.E.Bryant, "Graph-BasedAlgorithms for Boolean Function Manipulation," IEEE Trans, on

Computers, C-35, No.8, pp.677-691, Aug.1986.

[7] S.B.Akers, "Binary Decision Diagrams," IEEE Trans, on Computers, C-27, No.6, pp.509-516,

Jun.1978.

[8] RRudell, A.L.Sangiovanni-Vincentelli, "ESPRESSO-MV: Algorithm for Multiple Valued

Boolean Minimization," CICC85, May 1985.

[9] R.Brayton et al, "Multiple-level Logic Optimization System," ICCAD'86, pp.356-359,

Nov. 1986.

15



T.Sakurai, RLin & ARNewton Multiple-Output Shared Transistor Logic (MOSTL)..

[10] CEShannon, "A Symbolic Analysisof RelayandSwitching Circuits," AIEE Transactions,

vol.57, pp.713-723, 1938.

[11] CEShannon, "The Synthesis of Two-Terminal Switching Circuits," Bell System Tech. J.,

28, pp.59-98, 1949.

[12] EJ.McCluskey, "Minimization of Boolean Functions," Bell System Tech. J., pp.1417-1445,

Nov.1956.

[13] E.J.McCluskey, "Detection of Group Invariance orTotal Symmetry of a Boolean Function,"

Bell System Tech. J., pp.1445-1453, Nov.1956.

[14] F.E.Horn, L.R.Schissler, "Boolean Matrices andthe Design of Combinational Relay

Switching Circuits," Bell System Tech. J., pp.177-202, Jan. 1955.

[15] D.Radhakrishnan, S.R.Whitaker, G.K.Maki, "Formal Design Procedures for Pass Transistor

Switching Circuits," IEEE J. Solid-State Circ, SC-20, No.2, Apr.1985.

[16] D.Lewin, Design of Logic Systems, Section 5, Van Norstrand Reinhold, Berkeshire, England,

1985.

[17] CMead, L.Conway, Introduction to VLSI Systems, Addison-Wesley, Massachusetts, 1980.

16



T.Sakurai, RLin & ARNewton Multiple-Output Shared Transistor Logic (MOSTL)..

Appendix A Program Listing

Program source codes are shown in the following pages. The programs are written in

QuickBasic Ver.1.0 for Macintosh SE/30. The following is anexample of the input to the program.

Input example of BDD synthesizing program

Two numbers in the first line are number of input and output.
The following lines include function description.
Actually they are the output bit pattern of the function corresponding the input

0,0,0,0
0,0,0,1

0,0,1,0

0,0,1,1

4,3

1,0,0
0,0,0

1,0,0

0,0,0

1,1,1

0,1,1
1,1,0

1,1,0

0,0,0

0,1,1

1,0,1

1,1,1
0,0,0

0,0,0

0,0,1

0,0,1

17



Program for Generating Optimized Transistor Networks Using BDD

OPTION BASE 0
DEFINT a-w

E = 10000: nteaf = 1: nfunc = 1: nXD = 1: nV= 1
DIM SHARED bitm(nteaf.nrunc). obilm(nteaf.nfunc)
DIM SHARED XD2YD(nXD). VPat(nV). permV(nV). minPermV(nV)
DIM SHARED XL(nXD). XH(nXD). YL(nXD). YH(nXD). YV(nXD)
DIM SHARED pobitm(nleaf. rtfunc). V2XD1(nV). V2XDn(nV). V2YDl(nV).
V2YDn(nV)
DIM SHARED nYFan(nXD), YFan(nXD. INT(nXD / 2)),YFanV(nXD.
INT(nXD/ 2)). viaited(nXD)
DIMSHARED queue(500)
DIM SHARED YHbuf(nXD). YLbuf(nXD). YVbuf(nXD)
'— V: input variable L: low H: high
'— Pat: Pattern

'— X: originaldata
'— Y : reduced data

Windower
'•— initialize window 1 —

WINDOW2."Graphics Window". (200.20)-(480, 300).1
WINDOW I.Text Window". (0.20)-(200, 300).1
TEXTSIZE8
TEXTFONT 3

OPEN Iscmr FOR OUTPUT AS #1

'— menu-—

MENU 1.0.1 ."File"
MENU 2.0.1 ."Edit"
MENU 3.0.1."BDD"
MENU 4,0.1."Params"

MENU 1.1.1."Load"
MENU 1.2.1 ."Show Loaded Data"
MENU 1.3.1."Output Select"
MENU 1.4.0."Print"
MENU 1.5.0."-"
MENU 1.6.1."QuiT:cmdkey 1.6."Q"

MENU 2.1.0."Copy":cmdkey 2.1."C"

MENU 3.1.1."Create & Reduce"
MENU 3.2.1."Exhaustive Search"
MENU 3.3.1."Minimize"
MENU 3.4.1."Show BDD"

MENU 4.1.0."Params Set"

ON MENU GOSUB Menucheck: MENU ON
Idle:

GOTO Idle

Menucheck:

menunumber = MENU(O)
menuitem = MENU(1)
MENU
ON menunumber GOSUB Filer. CttpBoarder. Bdder. Setter

RETURN

FBer:

ON menuitem GOSUB Loader, Shower. Outer, Quitter. Quiter .Quitter
RETURN

Quitter

CLOSE
SetCreate TxM.our, "MSWD"
WINDOW CLOSE 1

WINDOW CLOSE 2
END

ClqsBoarder
ON menuitem GOSUB CtipCopier

RETURN

Bdder:

showFlag=111
ON menuitem GOSUB BDDCreateReducer, BDDExhaustK/er,

BDDMinimizer. BDDShower
RETURN

Setter

ON menuitem GOSUB Quitter
RETURN

IS

ClipCopier:
OPEN "CUP:PICTURE" FOR OUTPUT AS *3
PRINT#3, images
CLOSE #3

RETURN

Eraser:
WINDOW2

WINDOW 1

CLS

RETURN

Loader:

'— load data —

Wie$ = FILES$(1.-rEXr)
ff= (infleS = -) THEN RETURN
OPEN trfleS FOR INPUT AS #2
'— input f of input &# of output —
INPUT #2, nV. nfunc
nteaf = 2*nV

ERASE bitm. oMm
DIM SHARED fcitm<nleaf,nV). obitm(nleaf. nfunc)
'— input output bit pattern —
FOR ileaf=1 TO nteaf

LINE INPUT #2. Miles
FOR tfunc = 1 TO nfunc

obitm(leaf, ifunc)=VAL(MIDS(inline$. 2*((func-1)+1,1))
NEXT

NEXT

'— initiate bitm —
FOR ibaf = 1 TO nteaf

remainder sitesi* 1

FORW = nVTOlSTEP-1
thebit = remainder MOD 2
btm(ibaf.i\/)°thiBbl
remainder = (remainder • thtsbl) / 2

NEXT

NEXT

CLOSE #2
RETURN

Shower

'— show loaded data —

WINDOW 1

PRINT #1. "nVar=";nV. "hfunc=":nfunc
FOR iteaf = 1 TO nteaf

FORW=lTOnV

PRINT#1. bitm(ieaf. W)f ":
NEXT

PR!NT#1." ";
FOR tfunc = 1 TO nfunc

PRINT #1. oblmGteaf. fane);"";
NEXT
PRINT #1."

NEXT

RETURN

Outer
'— output device select —
WINDOW 1

PRINT "Output to 9creen(0)"
INPUT"ornew ftte(1) or append to the ftte(2)": outdev
CLOSE #1

outfiteSs'Ud.our
SELECT CASE outdev
CASEO

OPEN "scm:" FOR OUTPUT AS #1
CASE1

'outfieS = FILESS(0)
'IF(outfiteS=-) THEN RETURN
OPEN outfiteS FOR OUTPUT AS #1

CASE 2

'outfiteS = FILES$(1 .TEXT)
•IF(outfiteS=-) THEN RETURN
OPEN outfieS FOR APPEND AS #1
PRINT #1.-: PRINT #1.-

CASEELSE
OPEN Iscrre" FOR OUTPUT AS #1

END SELECT
RETURN

BDDInitiaJizer



Program for Generating Optimized Transistor Networks Using BDD

'— Inliatee BDD —

nXD = (2AnV-1)*nfunc + 1
'— define arrarys —
ERASE XD2YD. VPat. permV. minPermV. XL XH. YL. YH. YV
ERASE pobitm. V2XD1. V2XDn. V2YD1. V2YDn
ERASE nYFan. YFan. YFanV, vtetted
ERASE YHbuf. YLbuf. YVbuf
DIM SHARED XD2YD(nXD). VPat(nV). permV(nV). mtnPermV(nV)
DIM SHAREDXL(nXD). XH(nXD). YL(nXD). YH(nXD). YV(nXD)
DIM SHAREDpoblm(nteaf.nfunc).V2XD1(nV). V2XDn(nV).

V2YDl(nV+1). V2YDn(nV+1)
DM SHAREDnYFan(nXD). YFan(nXD. INT(nXD / 2)). YFanV(nXD,

INT(nXD/ 2)). visited(nXD)
DM SHAREDYHbuf(nXD). YLbuf(nXD). YVbuf(nXD)
XL(0) =0: XH(0)=0: XL(1) = 1:XH(1) =1
'— initialization of V2XD1. V2XDn. I. h —
V2XD1(1)=2: V2XDn(1) = 2 A(nV-1)" nfunc + 1
FORiV=2TOnV

V2XDl(rV) =V2XDn(fV-1) + 1
V2XDn(iV) =V2XD10V) -1 +2 A(nV - iV)" nfunc
XL(V2XDl(iV)) a V2XDl(i\M)
XH(V2XD1(W))=V2XD1(W-1) + 1

NEXT

RETURN

BDDCreateReducer
'— BDDcreate and reduce according to the input perm —
GOSUB BDDtnitiaizer

WINDOW 1

PRINT "Enter permutation pattern"
PRINT There should be";nVf numbers separated by blank."
LINE INPUT tnlneS
FORiV = lTOnV

permV(iV) = VAL(MIDS(inineS. 2*(iV-1)+1.1))
'PRINT "permV(":W:")=*;permV(rV)

NEXT

GOSUB BDDTreeCreator

GOSUB BDDReducer

GOSUB BDDChecker
GOSUB BDDMinimizer

GOSUB BDDCoster

RETURN

BDDExhaustfver

GOSUB BDDInitiaizer
'— permutation matrix initialize —
FORrV=lTOnV

permV(iV) = iV
NEXT
endPeimRag = 0
startPermFlag = 1
'— permutaion toop —
minBDDtotaiCost = E

WHILE (endPermFlag = 0)
GOSUB GeneratePemi

GOSUB BDDTreeCreator

GOSUB BDDReducer

•GOSUB BDDChecker

GOSUB BDDCoster

IF (totarCost < minBDDtotaiCost) THEN
minBDDtotaiCost = totalCost

FORfV=lTOnV

n*PermV(iV) = permV(iV)
NEXT

ENDF

WEND
'— re-generate minimum BDD —
FORfV=1TOnrV

permV(iV)= mmPermVOV)
NEXT

GOSUB BDDTreeCreator
GOSUB BDDReducer

GOSUB BDDChecker

GOSUB BDDCoster

RETURN

BDDTreeCreator

'— scramble function data according to permutation —
FOR iteaf = 1 TO nteaf

FORrV=1TOnV

VPat(iV) = bim(tteaf. permV(rV))
NEXT

target = 1

/<?

FORW = lTOnV

target=target+VPat(iV) • 2 A(nV - iV)
NEXT

FOR lfunc = 1 TO nfunc
pobitm(target. June) =obitmfdeaf. ifunc)

NEXT

NEXT
'— create BDD leaf —
FOR leaf = 1 TO nteaf STEP 2

FOR ifunc = 1 TO nfunc
iXD=(func-1) * (nteaf/2)+ (itesM)/2 +2
XL(iXD) = pobitmCiteaf. func)
XHfiXD)= pobitm(iteaf+1. func)

NEXT

NEXT
'—MrjafizeXL&XH —

FORW=2TOnV
FOR iXDa V2XD1(rV)+1 TO V2XDn(iV)

XL(iXD)= XL(D0>1)+ 2
XH(iXD)= XL(iXD)+1

NEXT

NEXT

FORiYD = 0TOnXD
XD2YD(]YD)= iYD
YLOYD) =E:YH(iYD)= E

NEXT
YL(0)=0:YH(0)=0:YL(1) = 1:YH(1) =1

RETURN

BDDReducer:

V2YD1(1) = 2: V2YDn(1) = 2: speciaFVertex= 0
FORW = 1TOnV

FOR iXD=V2XD1(W)TO V2XDn{iV)
'— I high child = tow child, eliminate the vertex —
IF<XD2YD(XL(iXD)) = XD2YD(XH(iXD))) THEN

XD2YD(!XD) =XD2YD(XL(D(D))
F(TV=nV)THEN

YL(V2YDn(iV)) = XD2YD(XLflXD))
YH(V2YDn(iV)) = XD2YD(XH(iXD))
YV(V2YDnfW)) = iV
•XD2YD(iXD) = iYD
V2YDn(iV)=V2YDnfJV)+1
specialVertex = speciaA/ertex +1

END IF

ELSE

iYD=V2YD1(rV)
BDDReduceLoop:

*— check for the same subtree which already exists —
IF(XD2YD(XL(JXD)) =YL(fYD)) AND(XD2YD(XH(iXD)) =YHflYD))

THEN
XD2YD(iXD)=iYD
GOTO BreakBDDReduceLoop

ELSE

F (iYD >=V2YDn(W)) THEN
YL(V2YDn(iV))= XD2YD(XL(iXD))
YH(V2YDn(iV)) =XD2YD(XH(iXD))
YVrV2YDn(iV)) = rV
XD2YD(iXD)= rYD
V2YDn(iV)=V2YDnflV)+1
GOTO BreakBDDReduceLoop

ENDF

ENDF

IYD=rYD+1

GOTO BDDReduceLoop
BreakBDDReduceLoop:

ENDF

NEXT

'— set fret and last iYD for the next level —
V2YD1(W+1) =V2YDn(iV)
V2YDn((V+1) =V2YDn(iV)

NEXT

nYD =V2YDn(nV)-1
RETURN

BDDCoster:

•— cost calculation and output —
zeroedge = 0: oneedge = 0
FORYD=2TOnYD

F YLfYD)=0 OR YH(YD)=0 THEN zeroedge =zeroedge + 1
IFYL(YD) = 1 OR YHTYD) = 1 THEN oneedge =oneedge +1

NEXT

noost = 2 * (nYD • 1 • specialVertex) • oneedge



Program for Generating Optimized Transistor Networks Using BDD

pcost =2 " (nYD -1 - spetiaJVertex) • zeroedge
totaJCost= ncost + pcost
PRINT#1."petm=":
FORiV = 1TOnV

PRINT #1.permV(iV):
NEXT

PRINT #1."
PRINT#1. USING"nMOS=### pMOS=### T=##r; ncost. pcost.

totalCost

RETURN

BDDChecker:

'— checking the validly —
FOR ifunc = 1 TO nfunc

'— scan every output function —
FOR leaf =1 TO nteaf

iYD=nYD-(nfunc-ifunc)
'— scan every leaves —
FORiV=1TOnV

•VPat(W) = bftmflteaf. perrnVfjV))
VPat(V) = ixtrn(iteaf.iV)
F (YV(iYD)= nV - iV+1) THEN

F(VPat(iV) =0)THEN
iYD=YL(iYD)

ELSE
iYD=YH(iYD)

ENDF

ENDF

NEXT

F (iYD <>poMmfieaf. ifunc)) THEN
'— check failed —

PRINT #1. "Check fated at ifunc. leaf", ifunc. iteaf. iYD. pobftmflkwf.
ifunc). obclmftteaf. ifunc)

PRINT #1. "rto on perm=";
FORW=lTOnV

PRINT #1.permV(rV);
NEXT

PRINT #1."
PRINT #1, Info on VPat=":
FORW = 1TOnV

PRINT #1.VPat(iV);
NEXT
PRINT #1.-

ENDF

NEXT

NEXT
RETURN

GeneratePerm:

'— generate permutation one by one in lexicographic order —
F (startPermFlag = 1) THEN

startPermFlag = 0
RETURN

ENDF

'— find the largest i so that p(i) < pfl+1) —
i=nV-1

WHILE (permV(i) > permV(r+1))
i=i-1

Ffl=0)THEN
endPermFlag = 1
GOTO PermLoopEnd

ENDF
WEND
'— find the smallest pj so that i < jand pi < pj —
pi= permV(i)
pj=nV+1
FORfn = H-lTOnV

F (pi < permVflin))AND (permVfjn) < pj)THEN

pj= permV(jh)
ENDF

NEXT

'—-swappfl)<p(j) —
SWAP permV(i). permV(j)
•— reverse the order following pj —
Jtemp=nV
iSwapEnd = INT((nV - fl+1)+ 2) / 2)
FOR iV = H-1 TO H-iSwapEnd

SWAP permV(iV). permV(iemp)
itemp=iemp-1

NEXT

PermLoopEnd:
RETURN

20

BDDShower

sfl = INT(showFlag /100): showFlag =showFlag -100 * sf1
sf2 = INT(showFlag /10): showFtag =showFlag -10* sf2
sf3 = INT (showFlag M)
F (sfl = 1) THEN

'— BDD info dteplay —
•prftt#1. "# input= '&/,"* outputs "infunc
PRINT #1."pBrm=";
FORW = 1TOnV

PRNT#1.permV(iV):
NEXT

PRINT #1."
PRINT #1.USWG"nMOS=### pMOS=### T=###"; ncost. pcost.

totalCost

PRINT #1, CHR$(13)+"oneFlag=";oneFlag
FOR iYD=0 TO nYD

PRINT #1. USING 1D=## L=##### H=##### V=##"; iYD.YL(iYD).
YH(iYD).YV(iYD)

BDDShowerLoop:
F (MOUSE(O) <>0) GOTO BDDShowerLoop

NEXT
ENDF

'—- display minimized switching network —
F(sf2=1)THEN

oneFlag = 0: GOSUB MatShower
ENDF

F(sf3=1)THEN
oneFlag =• 1:GOSUB MatShower

ENDF

RETURN

MatShower

PRINT #1. CHR$(13)+"oneFIag=":oneFlag
FOR iYD=0 TO nYD

PRINT#1. USING"ID=## L=##### H=##### V=#r:iYD.Y01L(oneRag.
iYD). Y01H(oneFlag. iYD). Y01V(oneFlag. IYD)

MatShowerLoop:
F (MOUSE(O) o 0) GOTO MatShowerLoop

NEXT
RETURN

BDDMinimizer
short = 1000: termOpen = 2000
— consider one tree and zero tree separately -—

FOR oneFlag =0 TO 1
FOR iYD=0TO nYD

'—store YH.YL.YV into buffer —
YHbuffjYD) =YH(fYD):YLbuf(iYD)=YL(fYD):YVbuf(iYD)=YV(iYD)
'— open special edges —
F (oneFlag=0) THEN

IF (YH(IYD) = 1)THEN YH(iYD)=termOpen
IF(YL(iYD)= 1) THEN YL(iYD) a termOpen

ELSE
F (YH(iYD)=0) THEN YHflYD) =termOpen
IF(YL(fYD) a 0) THEN YL(iYD) = termOpen

ENDF

NEXT

'— making shorts —
FOR iYD=2 TO nYD

*— for tow edge—-
oldY=YL(IYD)
'—- skip terminal open edge —-
IF(okfY <>termOpen) THEN

YL(iYD) =YL(iYD) +short
GOSUB ShortOpenOK
F (retSOOK =0) THEN YL(iYD)« oWY

ENDF

*—for Ngh edge —
okJY=YH(IYD)
'— skip terminalopen edge —
IF(okJY<>termOpen) THEN

YHflYD) =YH(iYD)+ short
GOSUB ShortOpenOK
F (retSOOK=0) THEN YHflYD) =okfY

ENDF
NEXT

'-— making opens —
FOR IYD = 2 TO nYD

'—for tow edge —
oHY =YLflYD)
'— skip terminal open edge —
IF(oldY <>termOpen) THEN



Program for Generating Optimized Transistor Networks Using BDD

YL(fYD)= fYD
GOSUB ShortOpenOK
— tf not operable, resume the edge —

F (retSOOK =0) THEN YLflYD) =okfY
ENDF

— for high edge —
okfY =YHflYD)
'— skip terminal open edge —
IF(okfY <>termOpen) THEN

YHflYD) = iYD
GOSUB ShortOpenOK
'— if not openabie. resume the edge —
F (retSOOK = 0) THEN YHflYD) = okfY

ENDF

NEXT

'— store separate BDD —
FOR iYD = 0 TO nYD

Y01H(oneFbg. iYD)=YH(iYD)
Y01 UoneFlag. iYD) =YL(iYD)
Y01V(oneFlag. IYD)= YV(iYD)
'—restore YH.YLYV —
YHflYD) = YHbuf(iYD):YL(iYD) = YLbuf(iYD):YV(iYD) = YVbufflYD)

NEXT

NEXT

RETURN

MakeFanMatrix:

— YFan example —
v (stored in nYFan)

— 0(YD): 3(#offans) 4 15 3(fans) —
-1(YD): 2 (# of fans) 4 7 (fans) —
~ 2(YD): 1(#offans) 6 (fans)-—
— YFanV example —

'—0(YD): 2-10
•The YFanVs equals to 0 is shorted path —
The YFanVs < 0 is tow child path —

*— infttaize nYFan —
showFlag = 100:GOSUB BDDShower
FOR iYD = 0 TO nYD

nYFanflYD) = 0
NEXT

FOR iYD=0 TO nYD

FORiHL=0TOl
•— for high and low edge —
F flHL =0) THEN fYD=YL(iYD) ELSE jYD=YHflYD)
•— skip open path —
IF(jYD<> iYD)AND(jYD<> termOpen)THEN

'— add lowor highchid to YFan —
PRINT #1. "nYFan. iYD. jYD. iHL chW':nYFanflYD):iYD:jYD:iHL
nYFanflYD) = nYFanflYD) + 1
YFan(iYD. nYFanflYD)) = jYD
F flHL = 1)THEN YFanVflYD. nYFanflYD))=YV(iYD) ELSE

YFanV(iYD. nYFanflYD)) = -YV(iYD)
— consider short path —

FflYD< short)THEN
PRINT #1. "nYFan. fYD. jYD. iHL r»n-8":nYFan(iYD);iYD;jYD;iHL

nYFanflYD)=nYFanfjYD) ♦ 1
YFanflYD. nYFanflYD))= iYD
F (iHL = 1)THEN YFanVflYD,nYFanrjYD))»YV(iYD)ELSE

YFanVfjYD. nYFanflYD)) = -YV(iYD)
ELSE

jYD=jYD-short
PRINT #1. "nYFan. iYD. jYD. iHL.short";nYFan(fYD):iYD:jYD;iHL

nYFanflYD)» nYFanflYD) +1
YFanflYD. nYFanflYD)) = iYD
YFanVflYD. nYFanflYD)) =0

ENDF

ENDF

NEXT

NEXT
GOSUB FanShower

RETURN

FanShower

'— show fanout matrtc —
FOR fYD=0 TO nYD

PRINT #1, "YFan (YFanV):";
FOR jYD»1 TO nYFanflYD)

PRINT #1. USING "## (##) NYFanflYD, jYD);YFanVflYD.jYD);
NEXT

PRINT #1."
NEXT

RETURN

ShortOpenOK:
'— check the vaBdrtyof shorts and opens —
'— initialize fanout matnx and visited array —
rotSOOK=1

GOSUB MakeFanMatrix

FOR iYD = 0 TO nYD
viB»ed(iYD)=0

NEXT

'— scan every leaves —
FOR iteaf = 1 TO nteaf

'— start from root —

IF(oneFlag=0) THEN iYD» 0 ELSE iYD= 1
nq=0:iq =0
queueflq) = kYD
shortDetected = 0
'—- initialize value matnx & VPat —

FOR iYD = 2 TO nYD

varYDflYD) = E
NEXT

FORIValTOnV

VPatflV) = bim(iteaf.iV)
NEXT

SOOKLoop:
'— take one from the queue i possbte. otherwise break —
IF flq > nq) THEN GOTO BraakSOOKLoop
kYD =queueflq)

iq=iq + 1
'—see if the node is visited —

F (visled(kYD) = 1) THEN GOTO SOOKLoop
viBied(kYD) = 1
'— load fanouts in the queue which is connected to this node —
FOR JYD = 1 TO nYFan(kYD)

'— if shorted or conducted, add to the queue —
rV=YFanV(kYD.jYD)
F ((TV <0) AND (VPat(ABSflV)) =0)) OR ((TV >0) AND

(VPat(ABS(rV)) -1)) THEN conducted = 1 ELSE conducted = 0
F 0V=0) OR (conducted = 1)THEN
nq=nq+1
queue(nq) =YFanV(kYD. jYD)

ENDF

NEXT

BreakSOOKLoop:
'— by now, visited nodes are connected to source —
'— creek Vall one(zero) output are visited from source 1(0)
'— and all zero(one) output are not visited from source 0(1)
FOR ifunc «1 TO nfunc

iYDs nYD - (nfunc - iunc)
shortFbg=0
openFiag = 0
F (vrsited(iYD) = 1) AND (oneFlag o poblmflieaf. func)) THEN

shortFlag = 1
F (visited(iYD)= 0) AND (oneFlag = pobimflteaf. ifunc))THEN

openFlag = 1
'— report short or open —
F (shortFlag = 1) OR (openFlag = 1) THEN
retSOOK=0

'—check faied—

F (shortFlag= 1)THEN
PRINT #1. "Short at func. leaf; ifunc. leaf

ENDF
IF(openFlag = 1) THEN

PRINT #1. "Open at func. iteaf";func: leaf
ENDF

PRINT #1, -pobftm, obim="; pobitm(ieaf. ifunc);obtmflteaf, func)
PRINT #1, "Wo on perm=";
FORW = lTOnV

PRINT #1, psimVflV);
NEXT

PRINT #1,"
PRINT #1. "Wo on VPat= ";
FORW = lTOnV

PRINT #1.VPatflV):
NEXT

PRINT #1.-
ENDF

NEXT

NEXT
RETURN

Zl


	Copyright notice1990
	ERL-90-21

