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ABSTRACT

In this paper we present the first example of the intermittency
phenomenon observed from the canonical realization of the Chua's cir

cuit family. The intermittency has been confirmed both by experiments
on the laboratory circuit, and by computer simulation of the circuit

model. Also an analysis of the geometrical structure of the vector field
is presented and the mechanism of the intermittency is identified.
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1. Introduction

Over the past decade, piecewise-linear circuits have emerged as a simple yet
powerful experimental and analytical tool in studying bifurcation and chaos in non
linear dynamics. Among the many piecewise-linear circuits that have been studied,
there is one particularly important group whose state equations are linearly conjugate
to members of the Chua's circuit family [1], that has been investigated in depth. Each
member of this family consists of linear resistors, 3 linear dynamic elements (capaci
tors and/or inductors), and anonlinear resistor characterized by a 3-segment symmetric
piecewise-linear v-i characteristics. Double scroll, torus and other interesting attractors
and dynamic phenomena have been observed from different members of this fam-
ily[2][3][4][5][6][7].

There are three well-known routes to chaos. The double scroll attractor is a typi
cal example of a pitchfork bifurcation from a periodic orbit to chaos via a period-
doubling route. The second (Ruelle-Takens-Newhouse) route, which leads to chaos via
three successive stages of Hopf bifurcations, has also been observed[4]. The third
route to chaos is Manneville-Pomeau intermittency route. The key feature of this route
is as follows. For a certain range of a parameter the dynamic system has a periodic
orbit As the parameter is tuned beyond a critical value, some irregular short bursts
appear among the long regular phases. As the value of the parameter changes further,
the bursts appear more frequently and the average time between two consecutive bursts
shortens. Eventually the system moves into achaotic regime. The phenomenon associ
ated with this route is a saddle-node bifurcation, which is different qualitatively from
those in the other two routes. In this paper we will report the first example of inter
mittency recently observed from a canonical circuit realization of the Chua's circuit
family[8].

In Section 2 we present the results from experimental observations of this inter
mittency phenomenon in our laboratory circuit In Section 3 we present the results
from computer simulation of the circuit model. Finally in Section 4 we present an
analysis of the geometrical structure of the associated vector field and identify the
mechanism which give rise to intermittency in this system.

2. Experimental observation

The six-element circuit shown in Fig. 1(a) is acanonical realization of the Chua's
circuit family. Fig.l(b) shows the v-i characteristic of the piecewise-linear resistor RN
in Fig. 1(a). This circuit is called a canonical realization because it can produce all
vector fields which could be produced by the entire Chua's circuit family and it



contains the minimum number of elements needed for such a purpose.

The parameters of the elements used in this paper are:

Ci =y, G=-0.5, Ga=-0.1, Gb =7, L =1, tf =0.2 (1)

C2 is an adjustable parameter. Its value varies approximately between 0.3 to 1.5.

Figure 2 shows the laboratory realization of the circuit in Fig.l. In order to nor
malize the physical values of the circuit elements to areasonable range, we adopt the
following normalization scale:

v0 = IV, i0 =lmA, C0 = 100*F, L0 = 100m//, R0 = UfcQ (2)

The left part of Fig.2 is arealization of the negative admittance G =- 1/2. The right
part of the figure is arealization of the piecewise-linear resistor RN. The op-amp cir
cuit is used to realize the negative slope of RN, i.e. Ga =- 0.1. Two diodes with
series resistors realize the positive slope Gb =7. The ± 15v voltages connected to
diodes ensure that the break points occur at V! =±1. The remaining elements in Fig.2
are obtained by multiplying the (dimensionless) element value in Fig. 1(a) by the
corresponding normalization constant in (2).

Figure 3 shows a series of Lissajou's figures obtained from the circuit. When we
start from C2 =40/iF, the V!-v2 Lissajou's figure is asymmetric limit cycle(Fig.3(a)).
As C2 increases and reaches acritical value, this symmetric limit cycle splits into two
asymmetric limit cycles, which are symmetric to each other. Fig.3(b) shows one of
them. As C2 increases further, intermittency eventually occurs. In Fig.3(c) we can see
a bright area of dense trajectories whose boundary resembles the limit cycle in
Fig.3(b), along with some sparse trajectory loci connected to this bright strip. The
brightness of the "strip" indicates that the trajectory spent much more time in this area
than in the other.

We have also photographed the time waveforms. The periodic waveform shown
in Figure 4(a) corresponds to the limit cycle in Fig.3(b). Figure 4(b) shows apart of
the waveform associated with the trajectory in Fig.3(c). It consists of a long regular
phase and followed by a short burst. This is the typical feature of intermittency. As
C2 increases further, the regular phases get shorter and the bursts appear more fre
quently, as indicated by Fig.4(c). Finally the waveform looks completely chaotic, as
shown in Fig.4(d). The corresponding chaotic Lissajou's figure is shown in Fig.3(d).
Between Fig.3(c) and Fig.3(d), we can also observe some periodic windows. If C2 is
increased beyond the range which gives rise the chaotic attractor in Fig.3(d), half of



the attractor suddenly disappears as shown in Fig.3(e). As C2 increases further, this
chaotic attractor will gradually shrink and eventually become a periodic limit cycle.
Fig.3(f) shows a period-4 limit cycle. Immediately after that we will get a period-2
limit cycle, as shown in Fig.3(g). As C2 increases further, this limit cycle shrinks gra
dually and eventually becomes elliptical orbit, as shown in Fig.3(h), whose waveform
is a nearly sinusoidal oscillation. At last, if C2 is large enough, this sinusoidal oscilla
tion will shrink to an equilibrium point

Figure 5gives the complete bifurcation scenario for different values of C2. There
are three major bifurcations, each of a different character. As C2 increases (from the
left) and reaches the first critical value Cfl, a pitchfork bifurcation occurs which splits
the symmetric limit cycle into two asymmetric limit cycles. As C2 increases further
and reaches the next critical value Cbt a saddle-node bifurcation takes place. The
asymmetric limit cycle loses its stability, as manifested by the appearance of some
irregular short bursts. On the other hand, if we start with a large enough value for C2
and decrease its value, we would encounter yet another critical value Cc, where a
Hopf bifurcation at the equilibrium point will give rise to a nearly sinusoidal oscilla
tion. As C2 decreases further, we encounter a series of pitchfork bifurcations (period-
doubling route) which eventually lead to chaos. Thus, starting from Cb or Cc, the
system can enter the chaotic regime via different routes. In addition, in the chaotic
region we have also observed some periodic windows. However, since the main topic
of this paper is intermittency, we will focus our attention on the bifurcation
phenomenon around Cb.

3. Computer simulation

The state equations of the circuit in Fig.1(a) are given by

dv2 1
IT =C7( " GV2 +**> (3)

dh -1
-r = -r(vi + v2 + /?/3)
dt L

where

/(v) =G> +-i(Ga -G*)(|v +l| - |v -1|) (4)



is the v-i characteristic of the nonlinear resistor shown in Fig. 1(b).

Before we undertake a detailed analysis of Eq.(3), which comes from the ideal
circuit in Fig. 1(a), let us first verify that the experimental results measured from the
laboratory circuit in Fig.2 can be reproduced by the dynamical equation (3), via com
puter simulation. Using the software INSITE[9][10], we plotted some trajectories for
Eq.(3) using the parameters listed in Eq.(l). Figures 6(a)-(h) are the counterparts of
those in Figs.3(a)-(h). Observe that each pair of these pictures are qualitatively the
same. Moreover, the corresponding values of C2 differ only slightly, due to the toler
ance of the circuit elements in the laboratory realization.

Also we have investigated the following numerical aspects of this circuit: charac
teristic multipliers, average length of the regular phases, amplitude plot and Lyapunov
exponents. Results from all these aspects confirm the existence of intermittency.

3.1. Characteristic multipliers

For C2<Cb> the circuit exhibits periodic solutions as shown in Figs.6(a)-(b).
Let us consider the Poincare map of the orbit Pick an arbitrary plane (e.g. i3 =0).
For a periodic orbit the fixed point of the Poincare map is stable and the 2 eigenvalues
of the corresponding Poincare map are located inside the unit-circle. The eigenvalues
are also called characteristic multipliers, or Floquet multipliers.

For C2> Cb, the intermittency starts and the periodic limit cycle is no longer
stable. This implies that at least one of the characteristic multipliers must cross the
unit circle when C2 reaches Cb. Using the numerical algorithm described below, we
calculated the characteristic multipliers near Cb. Our algorithm proceeds as follows:
First, use the Newton-Raphson algorithm to find aperiodic trajectory. If the algorithm
converges, there is a periodic orbit Then, construct two orthogonal vectors,
A : (vlt v2) =(1, 0) and 1? :(yl9 v2) =(0, 1). Using the variational equation of the
original nonlinear system, we calculate the maps of the vectors X and if. Suppose
their maps are Xx =(alf a2) and Jtx =(jbl9 b2\ then the characteristic multipliers mx
and m2 are found by calculating the two roots of the following quadratic equation:

m2 - (ax +b2)m +(axb2 - a2bx) =0 (5)

For the range of C2 used in our numerical algorithm, multipliers are found to be
real numbers inside the unit circle, and only the one tending towards 1is graphed in
Fig.7. Observe that when C2 approaches the value Cb, somewhere between 0.558 and
0.559, this characteristic multipliers approaches +1.



Hence, among the three types of intermittent phenomena, (depending on where an
eigenvalue crosses the unit circle[ll]), our numerical results show that the
phenomenon we observed is a type-1 intermittency.

3.2. Average length

For C2>Cb, Fig.3(c) and Fig.6(c) show that the trajectories spent a long time
oscillating in the regular phases. In this regime, the trajectories are nearly periodic.
The shape of the Lissajou's figure during each "period" is very similar to the limit
cycle in Fig.3(b) and Fig.6(b). However, they are not really periodic. Instead, each
consecutive "period" is seen to shift by a very small amount Moreover, when the
total displacement has accumulated to a certain threshold value, a sudden burst is seen
to take place. Immediately after the burst, the trajectory appears to be chaotic until it
is reinjected into the regular phase, sooner or later. The time between two bursts is
not fixed and seems random. We can estimate only its average value. For different
values ofC2 , we have estimated the average length ofthe regular phases between 100
bursts. This length is estimated by counting the number of "periods" between every
two consecutive bursts and the results are shown in Fig.8. It is known that the scaling
law for a type-1 intermittency is given by[ll]:

l~{C2-CbTm

Observe that the empirical curve in Fig.8 is quite close to this law.

3.3. Amplitude plot

Recall that the trajectory in the regular phases looks "periodic" but with each
period changing slightly. For simplicity let us refer to the maximum value of the Vl
coordinate in each "period" as the "amplitude". Considering two consecutive ampli
tudes as a one-dimensional map (i. e. taking the new amplitude as a function of the
last amplitude), we can draw the associated amplitude plot, or the Lorenz plot. Figure
9 shows this plot, where we have also plotted the unit-slope diagonal line for com
parison purposes. Since the 1-dimensional map is very close to this diagonal line, they
are almost indistinguishable in some areas. Observe that the 1-d map is always
located beneath the diagonal, and is unstable (slopol) near the origin. There is avery
narrow gap between the amplitude plot and the diagonal. This narrow gap forces the
trajectory to oscillate a long time before it diverges towards the origin. As the ampli
tude decreases towards 1, the gap becomes wider. This means that the amplitude will
change drastically once it enters this area. Then the trajectory looks chaotic and
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traverses wildly. Sooner or later, however, it will reinject into the narrow gap and the
same phenomenon will repeat itself. However, since the reinjection process is "ran
dom" and since there is no fixed entry point for the reinjection, the "length" of the
regular phases appears somewhat "random". This means that for a given set ofparam
eters, the long-term waveform is never repeated, while the short-term waveforms could
vary wildly. Some regular phases are shorter, while others are longer. Also, short-
term waveforms sampled from circuits with different parameters could look alike.
However, for different values of parameters, even though the similar short-term
waveforms could appear, the probabilities of their appearance are different.

3.4. Lyapunov exponents

We have also calculated the Lyapunov exponents for various values ofC2 around
Cb. Our algorithm for calculating Lyapunov exponents is based on its definition and
the Gram-Schmidt orthonormalization technique[10]. However, one point should be
mentioned: Since the average length of the regular phases can be extremely long at
values of C2 just beyond Cb, in order to estimate the Lyapunov exponents accurately,
we must calculate them over long lapses of time. Otherwise, the intermittency regime
cannot be distinguished from the periodic regime and the numerical results would be
misleading. Figure 10 shows the first and second Lyapunov exponents we have
estimated. For C2<Cb, the first Lyapunov exponent Xx is almost zero, as it should be
since the trajectory is periodic. The second Lyapunov exponent 7^ is negative and
increases towards zero. This coincides with the increase of characteristic multiplier mx
towards +1. It is known that ^ and m, for a r-periodic trajectory must follow the
relationship[10]:

X-2 =ylnm1 (6)

In Fig.10 we have also plotted (denoted by small squares) the values of ^ as calcu
lated from Eq.(6) using the data for mx in Fig.7. The results are quite close, which
also justifies our algorithm.

4. Analysis

In this Section we will present an analysis of the geometrical structure of the vec
tor field defined by Eq.(3) and identify the mechanism ofintermittency in our circuit.

For simplicity let us denote ( vlf v2, z3 ) by x =(x, v, z ). The R3 space of
(xtyyz ) is divided by two boundary planes Ux:x = 1 and U_x: x =-1. The
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subspace between Ux and U_x is denoted by D0 and the subspaces above Ux and
below £/_! are denoted by D+x and D_x, respectively. The vector field in the R3
space is continuous, symmetric with respect to the origin, and piecewise-linear. The
origin is obviously an equilibrium point. The subspaces D±x may or may not have
equilibrium points, depending on whether the inequality

(G + Gfl(l + GR)) (G + Gb(l + GR) < 0 (7)

is satisfied or not[8]. For the parameter values given in Eq.(l), Eq.(7) is satisfied.
Therefore D+x and D_x have equilibrium points P+ and P~, respectively. From
Eq.(3), the coordinates ofP± : (+xp, ±yp, ±zp) is given by:

\Gb-GaM +GR) ~(Gb-Ga) -G(Gb-Ga)
(xp>yP,Zp) = Gb+G(l+RGb) ' Gb+G(l+RGb)' Gb+G(l+RGb) (8)

Since the dynamic behavior of any member of the Chua's circuit family is deter
mined completely by the 6 eigenvalues[3], let us consider the eigenvalues of our cir
cuit. In the £>0 region the state equation (3) becomes linear:

dvx ~Ga
0

1

dt C\ Ci
dv2

0
-G 1

dt C2 C2 1 2

di$ - 1 - 1 -R /3

dt L L L

= Mf

vi

v2

*3

where M0 is aconstant matrix. The characteristic equation of Mq is:

\sl -M0| =s3 + s
Cx C2 L

+ s
GGa | GaR q^ _
CXC2 LCX LC2 + LCX +LC

G +Ga+ GGaR
+ —— = 0

LCXC2

(9)

1 1

(10)

Substituting all parameter values into Eq.(10) and solving the cubic equation, we
obtain three eigenvalues in D0. The three eigenvalues in D±x can be obtained the
same way with Ga replaced by Gb. For the parameters given in Eq.(l) and
C2 =0.56, the eigenvalues in D0 and D±x consist of a real and a pair of complex-
conjugate values; namely:



Yo=0.686417,c0±jco0=0.153220±;2.14037

yx=-20.8554,cx±ja>x=0.274096±j1.18942(11)

TheeigenspacecorrespondingtoarealeigenvalueisalineandwillbedenotedbyEr.
Theeigenspacecorrespondingtoapairofcomplex-conjugateeigenvaluesisaplane
spannedbytherealandimaginarypartsofthecomplex-conjugateeigenvectorsand
willbedenotedbyEc.Aftersomealgebraicmanipulations,weobtaintheequations
oftheeigenspacesinthefollowingexplicitforms:

£r(0):
C2y0+GCxy0+Ga(Cxy0+GaXC2y0+G)

Ec(0):Cxx-C<
c2

x+xP_y+yP__^_
C2Y1+GCxyx+Ga(Cxyx+Ga)(C2yx+G)

*+zP

y+
G_
C2

E'iP*):

£'(/>*):co?+(at+^-f(x+xP)-C2«?+(O!+S-)1 c2

(z+zP)=0

(y+yp)

G___£b_
c2cx

z=0

(12)

Figure11showsthegeometricstructureoftheeigenspacescorrespondingtothe
eigenvaluescalculatedinEq.(ll).Inthefigurewehavealsoplottedthelines
LQ,Lx>L2andthefundamentalpointsAtB,C,D,Edefinedasfollows[3]:

L0=Ec(0)nUx,Lx=Ec(P+)nUx,L2={xeUx:x=0}

A=L0nL1,B=LxnL2,C=Er(0)nUx,D=Er(P+)nUlyE=LooL2(13)

TheequationofthelineL2issimplyx=1andz=Ga.Thepositionsoftheother
linesandthefundamentalpointscanalsobedeterminedfromEqs.(8),(12)and(13).

Letusanalyzeatypicaltrajectoryinthissystem.ThevectorfieldontheUx
planeisdividedbythelineL2asfollows.ThevectorfieldofeverypointontheUx
planebutabovethelineL2isdirectedupwardswhilethevectorfieldofeverypoint
ontheUxplanebutbelowthelineL2isdirecteddownwards.Becauseyx<0,any
trajectorywhichpenetratesUxfrombelowwillbesuckedtowardstheEC(P+)plane.
However,sinceEC(P+)isaneigenspace,thetrajectorywillneedaninfiniteamountof
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time to reach it and therefore never actually does. At the same time, since ax >0.
the trajectory will rotate outwards around the axis of Er(P+). Due to the combination
of these two motions, the trajectory will eventually intersect the Ux plane in the wedge
area subtended by LABE. After the trajectory penetrates the Ux plane from above and
reenters the D0 region, it will be subject to two new motions due to y0 >0 and a0 >0:
diversing from the Ec(0) plane and rotating outwards around the axis of Er(0). For
simplicity, let us denote the area LABE \ MBE by AABE and denote the area of
LA~B~E~ \ &A~B~E~ by AA~B~E~. Any trajectory starting from a point x e AABE
will move downwards until it hits the U_x plane, while any trajectory starting from a
point x e AABE will either hit the U_x plane, or come back to hit the Ux plane. As
for the trajectories starting from xgAE, they will move downwards but constrained all
the time on the Ec(0) plane before hitting the line A~E~ at some finite time.

Compared to the double scroll dynamics, we observe the following significant
differences:

1. In the double scroll dynamics, we have yQ >0 and a0 <0. But in our present
intermittency dynamics, we have y0 >0 and a0 >0.

2. In the double scroll dynamics, the trajectory starting from any point xeAE needs
an infinite time to return to either Ux or U_x plane. But in our present intermit
tency dynamics, it always hits the U_x plane in some finite time.

3 In the double scroll dynamics, two trajectories starting from points immediately
- adjacent to the right and left side of the line AE will hit two different planes Ux

and U_x. But in our present intermittency dynamics, they will both hit the U_x
plane.

Therefore we can expect the dynamic behavior of our present system to be quite
different from that of the double scroll system. When we start our computer simula
tion from a small value of C2, the trajectory is a symmetric limit cycle(see Fig.6(a)).
In this situation the trajectory enters the DQ region through AABE and AA~5"£- as
depicted in Fig. 11. In Fig. 11 we denote the 4 intersecting points of the limit cycle
with the planes Ux and U_x by a, b, c and d. The trajectory enters the D0 region via
points b and d and leaves the D0 region via points a and c. The positions of the
points a and c are symmetrical. So are the points b and d. As the value of C2
increases, the limit cycle deforms continuously but is still symmetric. At some critical
value C2 = Cai symmetry is broken and the limit cycle becomes asymmetric from then
on. For the parameter values given in Eq.(l), the value of Ca is somewhere between
0.554 and 0.555. It follows from the symmetry ofEq.(3) that when a limit cycle T is
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asymmetric, there must exist another limit cycle which is the odd-symmetric image of
r. Starting from initial conditions odd-symmetric to the current ones, we can always
find it

For C2 >Cfl, the positions of points a and c (also, b and d) are no longer sym
metric. As C2 increases, all of them will move towards the right in Fig. 11. This
situation persists until some value of C2 when point d moves exactly on the line
A~E~. Since the Ec(0) plane is an eigenspace, the trajectory will remain on it when
traveling in the D0 region. Therefore the point a is also on the line AE. However,
there is no bifurcation at this value of C2. If we increase C2 further, all 4 points of
a, by c and d will move to the right of the Ec(0) plane and the limit cycle will also
stay all the time to the right of the Ec(0) plane.

When C2 increases further, at certain value of Cb, the limit cycle becomes
unstable and intermittency takes place. By computer simulation, we can only find an
approximate value for Cd, which is close to an exact value between 0.558 and 0.559.

In Fig. 12(a) we show the Poincare intersection at x = 1 (i.e. the Ux plane) for
C2 =0.56, chosen just a little larger than Cb. ( The corresponding trajectory is shown
in Fig.6(c).) In this figure we have also plotted the lines L0, Lh L2 and the points A,
B, E. At all points above the line L2 the trajectory penetrates the Ux plane from
underneath. After it penetrates the Ux plane, the trajectory will be sucked towards the
EC(P+) plane very quickly because \yx\ ^cx. On returning to the Ux plane the tra
jectory almost touches the EC(P+) plane and thus always penetrates the Ux plane
downward at points in the wedge area LABE and very close to the line Lx. The Poin
care intersection in Fig. 12(a) verifies this. Observe that all downward intersecting
points (i.e. points below L2 ) are located almost on the line Lx.

Observe next a trajectory starting from point a in Fig. 12(b). It will travel in the
D+x region while being attracted towards the EC(P+) plane. When it returns to the Ux
plane its intersecting point is b. After leaving />, it will hit the U_x plane at a point
symmetric to point c in Fig.l2(b). Then the trajectory enters the D_x region. When it
comes back to the U_x plane it will hit a point symmetric to point d in Fig. 12(b).
Afterwards the trajectory will travel in the D0 region and hit back the Ux plane.
However, in an intermittency situation, the trajectory does not hit the Ux plane at the
same point (point a) this time. Instead, it will hit a point a' which is very close to
point a, as depicted in Fig.l2(b). Also, when the trajectory hits back the Ux plane
from above, the intersecting point will be b\ which is very close to point b. The next
two intersecting points on the U_x plane will be symmetric to points c' and dt', which
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are very close to points c and d. Thus, the trajectory is nearly periodic. Each round
it deviates only alittle from the previous round. The map of point a approaches the
line L2 in this manner. i.e. a -» a' -> *** -* a", etc. The time waveform in this
situation looks nearly periodic and therefore corresponds to the regular phase in
Fig.4(b).

However, when the map of point a goes closer to the line L2, the situation will
change. Remember that x =0 for the vector field on the line L2. When the map of
point a is very close to the line L2, after the trajectory penetrates the Ux plane from
below it will come back rapidly to touch the Ux plane from above. During this short
period of time the trajectory has not been compressed close enough to the £C(P+)
plane. In Fig. 12(b) we can see the map of point b gradually diverges from the Lx
line. Also, the maps of points c and d in Fig. 12 are moving towards the left. Since
they are the symmetric images of the intersecting points on the U_x plane, the actual
intersecting points are moving towards the right Finally, they will move to such a
position that the return trajectory from the U.x plane can no longer reach the Ux
plane. In such asituation, the trajectory will turn back to hit the U_x plane. This type
of motion is quite different from the "regular" one and therefore causes a drastic
change of the trajectory motion. In Fig. 12(b) observe that the intersecting points near
a" and b" become more sparse, which means that whenever the trajectory reaches this
part, the displacement of each cycle will become bigger. In the one-dimensional map
we obtained in Fig.9 (i.e. the amplitude plot), this situation corresponds to the case
where the map moves away from the diagonal. Therefore the trajectory no longer
looks regular and the dynamics changes rapidly. The time waveform in this situation
therefore correspond to an irregular burst in Fig.4(b).

After the trajectory enters an irregular motion regime, It goes wild. However,
whenever it penetrates the Ux or U_x plane, it always goes through LABE and
LA-B-E-. Once its penetrating point falls into the area representing regular motions
(e.g. 0.45 <y <0.8 in Fig. 12(b)), everything will repeat again. This is the mechanism
of the intermittency in our system.

When traveling in the area of regular motion, the trajectory looks like aband or a
ribbon. Due to symmetry, there are two symmetric areas of regular motion in the sys
tem. Since the reinjection from "bursts" into "regular motion" is quite "random", the
trajectory could equally well inject into either one of the area of regular motion. The
complete scenario of the trajectory is therefore composed of two solid "bands" and
some sparse "threads" around them. This can also be clearly seen from Fig. 13, the
(x, z) and (y, z) projections of the trajectory, and from Fig. 14, the cross-section of the
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trajectory at the x = 0 plane. We will henceforth refer to this trajectory as a "double
band attractor".

5. Concluding remarks

1. We have presented an example of intermittency in the Chua's circuit family.
This result enriches the dynamics and shows that all three major routes to chaos
can be found in this circuit family.

2. The intermittency phenomenon from the circuit in Fig.1(a) is a co-dimension 1
bifurcation. Hence, if we adjust any other parameter instead of C2, a similar
bifurcation course will take place. For example, if we set R =0 in Eq.(l), the
intermittency will start around C2 = 1.05. In this situation the circuit actually
contains one less parameter than the circuit shown in Fig.1(a). However, in a
physical realization the inductor will always contain some resistance. Therefore
the circuit in Fig. 1(a) is more robust and easier to realize in the laboratory.
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Figure captions

Fig.l (a) The canonical realization of the Chua's circuit family,
(b) The v-i characteristic of the nonlinear resistor GN.

Fig.2 Laboratory realization of the circuit in Fig.la.

Fig.3 Lissajou's figures of (vx(t) , v2(r)) of the circuit in Fig.2. Horizontal scale:
0.5V/div in (a)-(d) and 0.2V/div in (e)-(h); Vertical scale: lV/div in (a)-(d) and
0.5V/div in (e)-(h). Position of the center of the screen: (0,0) in (a)-(d) and (-1,1)
in (e)-(h).

(a) C2 = 40 nF. A symmetric limit cycle.

(b) C2 = 53 nF. An asymmetric limit cycle.

(c) C2 = 53.8 nF. Intermittency starts.

(d) C2 = 70 nF. A chaotic attractor.

(e) C2 = 80 nF. A chaotic attractor, which looks like the upper-left half of the
attractor in (d).

(0 C2 = 102 nF. A period-4 limit cycle.

(g) C2 = 106 nF. A period-2 limit cycle.

(h) C2 = 125 nF. A nearly sinusoidal oscillation.

Fig.4 Waveforms of vx(t) of the circuit in Fig.2. Horizontal scale: 2ms/div; Vertical
scale: 0.5V/div.

(a) C2 = 53 nF. A periodic waveform.

(b) C2 = 53.8 nF. Long regular phase with short burst.

(c) C2 =56 nF. Regular phases get shorter and bursts appear more frequently.
(d) C2 = 70 nF. A completely chaotic waveform.

Fig.5 Bifurcation scenario when C2 in Fig.2 varies.

Fig.6 Trajectories of (ylt vj) of the circuit in Fig.l from computer simulation.
(a) C2 = 0.40. A symmetric limit cycle.

(b) C2 = 0.558. An asymmetric limit cycle.

(c) C2 = 0.56. Intermittency starts.
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(d) C2 = 0.72. A chaotic attractor.

(e) C2 =0.80. A chaotic attractor, which looks like the upper-left half of the
attractor in (d).

(f) C2 = 1.325. A period-4 limit cycle.

(g) G2 = 1.36. A period-2 limit cycle.

(h) C2 = 1.449. A nearly sinusoidal oscillation.

Fig.7 The plot of the characteristic multiplier mxvs. the parameter C2.
Fig.8 The plot of the average length vs. the parameter C2.

Fig.9 The amplitude plot. C2= 0.56.

Fig. 10 The Lyapunov exponents vs. C2 plot. The solid curve is the first Lyapunov
exponent Xx. The upper curve (denoted by small triangles) below the axis is the
second Lyapunov exponent X^ obtained from direct calculations, while the lower
curve (denoted by small squares) is ^ calculated from Eq.(6).

Fig. 11 The geometric structure of the intermittency system.

Fig. 12 (a) The Poincare intersection at the x =1plane for C2 =0.56.
(b) Magnification of Fig. 12(a).

Fig. 13 Trajectories from computer simulation. C2 =0.56.
(a) x - z projection.

— (b) y - z projection.

Fig. 14 Cross-section ofatrajectory at the x =0 plane. C2 =0.56.
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