Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ROBOTIC CONTROL AND NONHOLONOMIC
MOTION PLANNING

by

Richard M. Murray

Memorandum No. UCB/ERL M90/117

20 December 1990

ROBOTIC CONTROL AND NONHOLONOMIC
MOTION PLANNING

by

Richard M. Murray

Memorandum No. UCB/ERL M90/117

20 December 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

ROBOTIC CONTROL AND NONHOLONOMIC
MOTION PLANNING

by
Richard M. Murray

Memorandum No. UCB/ERL M90/117

20 December 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract

This dissertation addresses the problem of control and kinematic planning for
constrained robot systems. An example of a system of this type is a multi-
fingered robot hand grasping an object. The individual fingers act as robot
manipulators and are constrained by their contact with the object. If the con-
tacts allow rolling between the object and the fingertips, it is possible for the
constraints to be nonholonomic. That is, the constraints may not restrict the
reachable configurations of the system, but rather, constrain only the allowable
velocities of the system.

Using the multifingered hand as a motivating example, this dissertation
presents a detailed analysis of the kinematics, dynamics, and control of robot
systems with contact constraints. In particular, it presents a unified derivation
of the dynamics of robot manipulators with Pfaffian velocity constraints, includ-
ing the nonholonomic case. This derivation allows control laws to be specified
which are provably stable for an entire class of systems, including unconstrained
robots, robot hands, and other systems of multiple robots performing a coordi-
nated task. A method for building complex controllers which respects this class
of constraints is also developed using a set of simple primitives which allow
hierarchical control structures to be created in an organized fashion.

Finally, the nonholonomic motion planning problem is introduced and dis-
cussed in detail. Using tools from differential geometric control theory, it is
possible to classify and analyze systems with nonholonomic constraints. A brief
review of the necessary tools along with a review of the current literature is pre-
sented. A practical method for steering nonholonomic systems using sinusoids
is derived and applied to several kinematic systems with contact constraints.

Acknowledgements

First, I would like to thank my advisor, Shankar Sastry, for all of his support and
encouragement over the past 5 years. Shankar’s enthusiasm for all the things
we have worked on has been an inspiration to me and I hope that I can follow
his example as I continue my research. His attention to detail and demand for
rigor have taught me the importance and joy of doing things right.

Several other professors have also enriched my education here at Berkeley. I
would like to thank the members of my qualifying committee, Professors Desoer,
Sastry, Canny, and Weinstein, for their time and effort. In addition to serving as
my qualifying committee chair, Professor Desoer has also been a source of advice
and inspiration during my entire graduate career. I would also like to thank
the members of my thesis committee, Professors Sastry, Canny, and Marsden,
for many useful comments which improved the quality of this dissertation. In
addition, I had the pleasure of working with John Canny, Ron Fearing, and
Richard Montgomery on a variety of projects related to my research.

Many members of the robotics lab have contributed to my studies at Berkeley
and made the PhD process a very pleasant one. I would particularly like to thank
Kris Pister for putting up with me for four and a half years and for sharing in at
least as many interesting discussions as we did pots of coffee. I am also indebted
to Curt Deno for his insights and for stimulating my interest in biological motor
control and non-invasive surgical procedures. I would also like to thank John
Hauser, Ping Hsu, Zexiang Li, Greg Heinzinger, Paul Jacobs, Raja Kadayala,
Andrew Teel, Matt Berkemeier, Ed Nicolson, Greg Walsh, Karin Hollerbach,
and the other members of the U.C. Berkeley robotics and control groups for
the endless stream of conversations, questions, answers, encouragement, and
amusement which are at the heart of any graduate student’s life.

I would also like to acknowledge the financial support that I have received
during my stay here. My research has been funded in part by the National
Science Foundation, under grants DMC-84-51129, ECS-87-19298, and IRI-90-
14490, NASA, under grant NAG-2-243, the Semiconductor Research Corpora-
tion, an Earl C. Anthony Scholarship, and an IBM Manufacturing fellowship.

I have also benefited from many people who are outside of the academic
environment. My parents have provided emotional, intellectual, and monetary
support on countless occasions. I would like to thank my brother, Tom, and

David Hull for sending me e-mail and giving me something to talk about besides
my research. And I would like to especially thank Mr. Henderson, my high
school math teacher, for introducing me to the joy of mathematics and laying
the foundation for my later studies.

Finally, I would like to thank my wife, RuthAnne. She has watched me go
through more joy and suffering than any other person; her love and support
have enabled me both to complete my PhD and to remain sane at the same
time.

Contents

1 Introduction

2 Contact Kinematics and Statics

2.1 Rigid body kinematics 0.,
2.2 Fixed contact kinematies.
2.3 Rolling contact kinematies
24 FingerKinematics
2.5 Grasp stability and manipulability
2.6 Summary e e e e e e e e e e
Appendix I - Contact kinematics derivation

3 Dynamics and Control of Constrained Manipulator Systems

3.1 Imtroduction.
3.2 Simplerobotdynamics
3.3 Robot handdynamics
34 Control e e
3.5 Redundant manipulators.
3.6 Hybrid stiffness controller
37 Summary e e
Appendix I - parameterization of internal motions
Appendix II - calculations for hybrid stiffness proofs

Primitives for robot control

4.1 Imtroduction. e
4.2 Primitivedefinitions,
43 Example e
4.4 Extensions to the basic primitives.
45 Discussion e e

Nonholonomic motion planning
5.1 Introduction and motivation.
5.2 Nonlinear control theory

iv

CONTENTS

5.3 Classification
5.4 Methods in nonholonomic path planning

7 Conclusion

Steering nonholonomic systems using sinusoids
6.1 First degree systems
6.2 Second degree systems
6.3 Higher order canonical systems
6.4 Dynamic finger repositioning, revisited
6.5 Discussion
Appendix I - PhilipHall.m

Chapter 1

Introduction

This dissertation addresses the problem of closed loop control and kinematic
planning for constrained robot systems. Although the main emphasis is on
constrained systems, most of the techniques can also be applied to unconstrained
systems. In the unconstrained case, they reduce to methods which are common
in robotics. Thus we are interested in studying controllers for a large class of
robotic systems which includes single, multiple, constrained and unconstrained
manipulators performing a coordinated task.

A single unconstrained robot is an actuated mechanical system which is
controlled in some way to perform a useful task. One of the first problems in
using a robot to perform a task is free space motion. That is, we would like to
command the actuators to move the robot from one position to another, without
worry about obstacles (initially). More generally, we may be given a trajectory
which the robot should follow.

How we command the actuators to follow a given trajectory depends on the
type of actuators used. If a robot has a stepper motor at each joint, we need
only command the stepper motors to be at the desired position at the desired
time. Assuming the trajectory is sufficiently slow and smooth, this is easily
done. In effect, the control problem is solved by using the controllers inherent
in a stepper motor. Much greater freedom is possible if the actuators can apply
arbitrary torques at each joint. In this case, we are free to choose the torques
based on our own measurements of the state of the system.

Once the control problem for robotic manipulators has been solved, the
trajectory planning phase begins. We now try to construct a trajectory which
accomplishes the desired task. This trajectory is passed to the robot controller
for execution. Path planning typically is concerned with methods for avoiding
obstacles in the workspace of the robot.

An unconstrained mechanical system is limited to performing simple pick
and place tasks. The manipulator moves to a location, picks up an object,
transports that object and deposits it. While there are many tasks which require

Introduction

no more sophistication than this, other tasks do not fit this paradigm. One such
class of operations is those for which a robot manipulator must satisfy kinematic
constraints.

Kinematic constraints for manipulators have many sources. Perhaps the
most fundamental is a robot sliding or rolling along a surface. In this case,
the robot is free to move tangential to the surface, but not perpendicular to
it. Actually, the constraint is unidirectional, since we can move away from a
surface but not into it. More complicated kinematic constraints can be found
when a system of robots is performing a coordinated task, such as three robots
lifting a single object, or a set of fingers grasping an object.

The introduction of constraints introduces several complications. The ma-
nipulators are no longer free to move in any direction. Controllers should be
aware of this restriction if a task is to be performed correctly. In the grasping
example, a controller must maintain its grip on an object without applying ex-
cessive force. This is difficult to achieve with simple position controllers which
attempt to hold the individual fingers in a fixed location. Small errors in sensing
or modeling cause the object to be dropped.

To control such systems we must first model them. For simple contacts
(such as a robot gripper rigidly grabbing an object) the kinematic constraint
is modeled as an algebraic function relating the position of the object to the
configuration of the manipulator. More complicated constraints, such as one
object rolling against another, as in a finger rolling against an object, require
more complicated models. These constraints cannot always be represented as
algebraic constraints between configuration variables.

Once a representation for the constraints have been selected, a dynamic
model which observes the constraints must be constructed. Using this dynamic
model, a new controller can be generated. Part of the contribution of this disser-
tation is to provide a technique for constructing the dynamics of a constrained
system in such a way that it resembles the dynamics of an unconstrained ma-
nipulator. For some types of constraints, this method is equivalent to choosing
a different set of generalized coordinates for the system. In more complicated,
and realistic, examples, the technique is considerably more general than this.

Finally, we must reconsider the motion planning problem. In the case that
the constraint is holonomic, motion of the system is restricted to a manifold
in the configuration space. Abstractly, we can reduce the planning problem to
planning in local coordinates on this manifold, and hence it is equivalent to the
usual path planning problem in R®. If the constraints are not holonomic, or we
cannot explicitly characterize the submanifold, the planning problem becomes
much more difficult. We must plan motion which both avoid obstacles and
satisfy the constraints. This type of planning, called nonholonomic motion
planning, has only recently been studied.

Introduction

Overview of the dissertation

This dissertation contains a systematic description and analysis of control and
planning for constrained robot systems. We use as our primary example a mul-
tifingered robot hand grasping and manipulating an object. This example con-
tains all of the elements in which we are interested—nonholonomic constraints,
multiple robots performing a coordinated task, and kinematic and actuator re-
dundancy.

The first task is to study the form of the kinematic constraints which might
be present in a robotic system. These constraints arise from contact between
two objects. We review the formulation of the kinematics of contact using a
notation suited for our application. These equations of contact are equivalent
to other derivations available in the literature.

Using the form of the constraints, we proceed to derive the equations of
motion for the system. The primary contribution of the derivation is to show
that the equations of motion for a large class of robot systems can be written in a
consistent form with consistent properties. The consequence of this derivation
is that we can easily extend controllers for simple robots into controllers for
robot systems performing a coordinated task.

Having derived the dynamics for constrained systems, we proceed to review
some standard controllers applied in the general context. The shortcomings
of these controllers suggest the formulation of a new robot control law which
allows position and stiffness to be controlled in complementary directions. Ex-
perimental results of this control law are presented to verify its correctness in
application.

The structure of the dynamics is sufficiently straightforward that it admits
an automated formulation. We exploit this by defining a set of control primitives
which can be used to construct complicated controllers for robot systems. The
control structures generated by these primitives are motivated by biological
control structures.

Finally, we study the planning problem for constrained systems. Since this
problem has only recently received attention in the robotics and control litera-
ture, we begin with a review of the mathematical tools necessary to study such
systems. We also review several techniques that have been applied by various
researchers.

A new approach to controlling nonholonomic systems is presented in Chapter
6. Using sinusoids at integrally related frequencies, we show how to generate
motion for systems with nonholonomic constraints. These methods are first
applied to a set of canonical systems and then extended for use in non-canonical
systems.

The primary contributions of this dissertation are in the areas of robotic con-
trol and nonholonomic motion planning. First we present a unified formulation
of the dynamics and control for robot manipulators. This formulation allows
us to construct control laws which can be applied to a large class of systems.

Introduction

This unified approach also provides a basis for the definition of a concise set of
primitives for constructing complex robot controllers for complex systems. Sec-
ondly, a method is provided for generating feasible trajectories for nonholonomic
systems. This method brings out the structure present in many nonholonomic
systems in a very interesting manner. The study of nonholonomic motion plan-
ning is in its infancy; the research presented here provides first steps toward a
better understanding of this problem and computational approaches toward its
solution.

Chapter 2

Contact Kinematics and
Statics

This chapter is an introduction to the kinematics and statics of contact. The
material is presented from the perspective of grasping, although the formulation
can be applied to other contact situations. We derive the basic velocity and force
transformations for both fixed and rolling contacts. Using these relationships,
we derive the general form of the constraints which are present in a contact
environment. The results in this chapter are summarized on page 23.

The material in this chapter is largely based on the works of several authors.
Early work in formulating the grasping problem can be found in Salisbury [83].
More appropriate to the presentation given here is the thesis of Kerr [47], the
work of Li and Sastry [63], and several papers based on these works [48, 21,
60]. An earlier, alternate derivation of the equations of rolling has been given
by Montana [68]. Other specific references are contained in the appropriate
locations below.

2.1 Rigid body kinematics

A rigid motion of an object is a motion which preserves distance and orien-
tation. Every such rigid motion can be represented by a rotation followed by
a translation. Letting SO(3) represent the group of all proper 3 x 3 rotation
matrices and R denote the real numbers, we can represent a rigid motion by
the pair (R, p) € SO(3) x R3. We define SE(3) = SO(3) x R® to be the set of
all rigid motions and note that SE(3) is a manifold of dimension 6 as well as a
group. It may be verified that SE(3) is a Lie group.

The configuration of a rigid body with respect to some reference configura-
tion is described by an element g € SE(3). g acting on a point attached to the
body defines the new location of the point relative to its reference configuration.

Contact Kinematics and Statics

Figure 2.1: Rigid motion

If ¢ € R3 is a point on the body relative to some base (world) reference frame,
then the location of ¢ with respect to that basis after the body undergoes a rigid
motion g is

9(g) =Rg+p

where R and p are represented in the same basis as g. This action is shown
pictorially in Figure 2.1. We refer to the absolute coordinates as the world or
base coordinates and the coordinates of a point on the object relative to the
reference configuration as the body coordinates.

An object trajectory is described by a time parameterized curve, g(t) €
SE(3). The velocity of an object is a tangent vector at g, so § € T,SE(3). ¢
also acts on points in R3, giving a velocity vector g(g) € R3. Since SE(3) is
a Lie group, we can associate each element of T,SE(3) with the Lie algebra
se(3) ~ T.SE(3) where e is the identity element. An element £ € se(3) can
be represented as a skew symmetric matrix, S € so(3) and a vector v € R3.
Furthermore, any skew symmetric matrix has the form:

0 -—w: wy
S - Wy 0 _w:
-wy ‘Uz 0

and hence we will often write S(w) € s0(3) to be the skew symmetric matrix
associated with w € R3. Note that S(w)g =w x g.

There are two ways to map Ty SE(3) to T.SE(3) — left and right translation.
The usual method is to use left translation, Ly-1, where Lyh = go h. The
tangent map of Ly-: maps Ty SE(3) to T.SE(3) and when applied to g, the
resulting map, Ty-1(L,-1)g, takes a point in body coordinates to the velocity in
body coordinates. For our purposes it is more natural to use the velocity of the
point in world coordinates. This can be accomplished by using right translation
and the resulting map takes a point in world coordinates to a velocity in world

2.2 Fixed contact kinematics

coordinates. Formally, we define the generalized velocity, £ € T,SE(3), in terms
of g € Ty,SE(3) as
§=gg~! 2.1)

The generalized velocity £ is also called a twist.
Elements of SE(3) can be represented as 4 x 4 matrices, referred to as
homogeneous coordinates. If g € SE(3) we write

_|R P
o= 1]
A point ¢ € R® can be represented as a vector in R* by defining § = (¢,1) €
R3 x R. Using this representation, g(g) becomes matrix multiplication

[11(0)-(")

To simplify notation we shall usually refer to § simply as q.
The generalized velocity of a motion, in world coordinates, is

.-1[RRT p-RRTp
§=49 —[0 0

which can be rewritten as

[3]

where w € R3, v € R® and S(w) is the skew symmetric matrix generated by w.

The vector
E=(")-
T\ w

is referred to as the twist coordinaies of £ and represents the rotational and
linear velocity of an object as viewed in world coordinates. We will omit the
hat when the usage is clear from context.

2.2 Fixed contact kinematics

Traditionally, a fized contact between a finger and an object is described as a
mapping between forces exerted by the finger at the point of contact and the
resultant forces at some reference pomt on the object (e.g., the center of mass).
We represent the force exerted at the i** contact as F., = (f;;, %,) € R® where
f:; is the force exerted by contact and ., is the moment. The relationship
between contact force and object force has the form

(5= Caonr)= 81

Contact Kinematics and Statics

finger object surface soft finger

- o<y o<

\\

contact normal friction contact torque
point force cone region (about normal)
a. Point Contact b. Point Contact c. Soft Finger
with Friction Contact

Figure 2.2: Contact types (from [70])

where r.; € R3 is the vector between the object reference point and the contact.

Typically, a finger will not be able to exert forces in every direction; several
simple contact models are used to classify common contact configurations. A
point contact is obtained when there is no friction between the fingertip and the
object. In this case, forces can only be applied in the direction normal to the
surface of the object and hence we can represent the applied force as

R] (22)

where n.; is the unit vector normal to the object and f.; € R is the amount of
force applied by the finger in that direction.

2.2 Fixed contact kinematics

A point coniact with friction model is used when friction exists between the
fingertip and the object, in which case forces can be exerted in any direction that
is within a cone of forces about the direction of the surface normal. This cone,
called the friction cone, is determined by the coefficient of friction. Figure 2.2b
shows a point contact with friction and the resultant friction cone. This model
assumes that moments cannot be applied (i.e., there is no torsional friction
about the surface normal). As before, we represent the force felt by the object
with respect to a basis of directions which are consistent with the friction model:

Rz] (23)

with f., € R3.

A more realistic contact model is the soft finger contact. Here we allow not
only forces to be applied in a cone about the surface normal but also torques
about that normal (see Figure 2.2c). These torques are limited by the tor-
sional friction coefficient. Inside the relevant friction cones, this contact can be

described as I o P
_— ”
P = [;. (T) 2.4)

where f., € R% and 7, €R.

Matrices mapping finger forces to contact force as in equations (2.2), (2.3)
and (2.4) are referred to as selection matrices and we denote them by B;(z,) €
R6*mi where m; is the dimension of the range of forces and moments that
can be applied for a given contact type. Note their dependence on the (fixed)
contact point and the orientation of the object. Each of the contact types thus
can be represented as a linear map G;(r.;, z,): Fe; € R™ — F,

Gi(rei, 20) = [Sea) 1]Bs(xo)

Since r,, is a function of the object orientation, we shall usually write G;(r.,, z,)
as G.-(z.,).

If we have several fingers contacting an object then the net force on the object
is the sum of the forces due to each finger. The map between finger forces and
the total object force is called the grasp map, G:R™ — RE. Since each contact
mabp is linear and forces can be superposed, we can add the individual contact
maps to form G:

F01
Fq=[Gl Gk] =GF,,
F.,

F, eRS
F.eR™ xR™2 x ... x R™*

(2.5)
The null space of the grasp map corresponds to finger forces which cause no net
force to be exerted on the object. We call the force on the object resulting from

10

Contact Kinematics and Statics

Figure 2.3: Planar two ﬁngéred grasp

finger forces which lie in the null space of G, denoted N(G), internal or null
forces. It is in part these internal forces which allow us to grip or squeeze an
object.

Dual to the representation of contacts as applied force and torque, one may
also represent a contact as a constraint between the relative velocity of the object
and the finger. Letting v., and w,, represent the linear and angular velocity of
the contact point and v, and w, represent the object velocity,

(2)-[¢ ")(2)

As before, the contact type determines which velocities are actually constrained;
unconstrained directions can experience sliding or rolling. If we define v, to be
the velocities conjugate to F, the forces exerted by the fingers, it follows that

(%)=(2)

This relationship between object velocity and finger velocities can also be de-
rived in a more general setting using the principle of virtual work.

Example

Consider a simple two-fingered planar hand as shown in Figure 2.3. Since we
are in the plane, the grasp matrix maps finger forces into = and y forces, and a
torque perpendicular to the zy plane. If we assume that the contacts are point

2.3 R.olling contact kinematics

11

contacts with friction,

I 0
Gi(z,v,4) = [s(ED) 1]

COOCO O
OO0 O O

and the planar map for Figure 2.3, restricted to the plane, is

1 0 1 0
G(z,y,0) = [0 1 0 1] (2.6)
rsin(¢) —rcos(¢) - sin(¢) rcos(¢)

61 G:

~ 7

where all forces are measured with respect to the zy coordinates shown in the
figure.

Equation (2.6) shows that z and y forces from the fingers cause the same z
and y forces to be exerted on the object as well as a torque that is dependent
on the orientation of the object. The null space of this map is spanned by the

vector
cos ¢

sin ¢
—cos ¢
—sin¢
which corresponds to forces applied along the line connecting the two fingertips.
Finger forces applied along this line will cause no net force on the object.

2.3 Rolling contact kinematics

Most real world grasping situations involve moving rather than fixed contacts.
Human fingers and many robotic fingers are actually surfaces and manipulation
of an object by a set of fingers involves rolling of the fingers along the object
surface. In this section we derive the kinematic equations for one object rolling
against another.

Consider two objects, S, and Sy in R® which are touching at a point. We will
restrict ourselves to the case where motion is contained in a single coordinate
chart for each object. Let (¢co, U,) and (¢cy, Uy) be charts for the two surfaces and
@0 = (o, v) € U, and ay = (uy, vy) € Uy be local coordinates. We will assume
that ¢, and ¢; are orthogonal representations of the surface.! Furthermore, we
let 3 represent the relative orientation of the tangent planes at the point of
contact (see Figure 2.4). We call = (a,, oy, %) the contact coordinates.

1A surface representation c: (u,v) — R? is orthogonal if gﬁ and -g-v"‘ are orthogonal. Such
a representation can always be constructed for a regular surface in a given coordinate chart.

12

Contact Kinematics and Statics

Yo
Qo
So —
Co

..
.
ot
ot
i
.
.
.
-t
ot

Figure 2.4: Parameterization of rolling contacts

Let ¢ € SE(3) describe the relative position and orientation of S; with
respect to S,. We wish to study the relationship between g and the local contact
coordinates. To do so we assume that g € W C SE(3) where W is the set of all
relative positions for which the two objects remain in contact.

We begin by writing the algebraic equations that n must satisfy. At any
point of contact the location of the contact in space must agree for both objects

gocy(ay) = co(ao) 2.7

Furthermore, the tangent planes must coincide and hence the outward surface
normals n,:S, — S C R® and ny: Sy — S? C R® must also agree. Letting
R € SO(3) be the rotational component of g

Rny(ay) = —no(ao) (2.8)

Finally, we define the angle between the tangent planes as the unique angle
¥ € [0,27) such that

a""’ M“ (2.9)

It pp1
aa; Mf Ry =

||.0_c;

8u.
.0_=.
80. "

insures that the columns of g?g- are unit length and

where

—siny —cosy

R'J'=[cosyp —siny

2.3 Rolling contact kinematics

13

converts a, coordinates to the equivalent ay coordinates at the point of con-
tact. Since the normals are in opposite directions, Ry acts by negating the y
coordinate and rotating by an angle . Note that Ry = R£ = R;'.

Theorem 2.1 There is a smooth local bijection between n and g C W if and

only if
on,

da,

ony

M7+ Raa,

-l
M;
is full rank

Proof. Functionally, equations (2.7) through (2.9) are of the form Ah(g,n) = 0.
It is therefore sufficient (and necessary) to show that %% spans the allowable
velocity space, TW. Since 9 can be defined directly, we omit the ¥ coordinate
and consider the dependence on a = (a,, ay),

hoa) = | (@) —9ele) (2.10)
no(a) + Rng(ay)
oh ac;«:: _Rg‘%—gﬂ!)
—az(g' a) (bnazgag)_ Ranad;” (2°11)
o ay

First we show that the span of the rows of gﬂ- does not contain either (n,,0) or
(0, n,), corresponding to translation and rotation about n,. (0,n,) is spanned
directly by dy and (n,,0) should not belong to the row span of % because
motion in the n, direction is not contained in TW. Since the range of g—:-
and %’{; define the tangent plane and the n;’s have unit magnitude and using
equation (2.8), we find

T
n 6h]
(%)% - [g =0
T
0\ ok 9n, T pT Rony
(n,) 5o = |3 oTRTREL | =0

Next we examine the conditions under which -3—2 loses rank. Plugging equa-

: : : ah 8¢y __ pr-1 P}
tion (2.9) into equation (2.11), §2 can only lose rank when Ef,‘ = M; R‘;.M,;‘%i-,

S0 -g—z is full rank if and only if

9o o1 O 4
3. M5 +Raa!M, Ry (2.12)

is full rank. O

14

Contact Kinematics and Statics

Proceeding along the lines of the proof given above, the differential relation-
ship between 7 and g can be derived (see appendix at end of this chapter). It is
convenient to make use of the normalized Gauss frame defined on each surface

[z w 2.]—[M n.']
If we do not allow the fingers to slide on the object (soft finger contacts) then

the motion of the contacts, 7, as a function of the relative motion, (w,v), is
given by

d = M;YK,+ Ks) twe
&y = M;'Ry(Ko+ Ky)~twy (2.13)
Y = ToModg-{-TJM!é!
where
.zT.
wy = ° No X W
| %
K = | % g’“M-l
L% |
. =7 | on
K = Rlp I f -lR‘b
4 y;' Ba, !
_ 0zo , .1
TO - yfaaoMﬂ
oz
= 9 a1
Tt = ¥ 5e,M;

(Ko + Kj) is called the relative curvature [68]. From equatlons (2 9) and (2.12)
we see that the relative curvature is invertible precisely when & 3— isonto TW. We
shall assume that all manipulation occurs in an open set on which the relative
curvature is invertible.

We can now describe the kinematics for rolling contact—the relationship
between the object velocities and a set of finger velocities. This situation is
identical to that given for fixed contacts except that the vector r; between the
object reference frame and the i** contact point is now a function of n as well
as the object orientation. But 7 is a continuous function of g = z;1z;, so we
have

F, = G(z,,z;)F.

where z; = (z4,,---,%y,) is the position and orientation of the fingers and
F. € R™ x ... x R™* is the force exerted by the fingers at the contact point.

2.3 Rolling contact kinematics

15

As before, G is composed of matrices of the form

Gi(zo,2y) = [S(i.-) (}]Bi(zmzf)

The velocity relationship can again be derived from the principle of virtual work
or algebraically to determine

(:‘:) = GT(a:o,z,)(::) (2.14)

Examples

To illustrate the form of the contact equations, we consider two examples—
a sphere rolling on a plane and a sphere rolling on another sphere [59]. The
local coordinates of the plane are chosen to be ¢,(u,v) = (u,v,0). The sphere
requires multiple coordinate charts to describe the entire surface, so we shall
restrict ourselves to the chart

¢y (u,v) = (pcosucosv, —pcos usinv, psin u)

where p is the radius of the sphere and —7/2 < u < 7/2, =7 < v < 7. The
curvature, torsion and metric tensors are easily calculated to be

w=los] = [T
M, = [(1) (1)] M; = [6 pcgsu]
T, = [0 0] Ty = [0 -1/p tanu]

Consider first a spherical finger of radius p rolling on a plane. The equations
governing the evolution of the contact point are

. uf = w
Uy = secuyws
i, = pcosywy —psiny we (2.15)
U, = —psinypw; —pcosy ws :
zﬁ = —tanuyw;

where wy = (w1,w2). If our object is a sphere of unit radius instead of a plane,
the contact equations become

1

‘d! = T W

v = T4p SeC Uy w2

U, = T#cos:/;wl —- 15 siny wy (2.16)
Vo = —T_%psind)secu, wy - r_‘:_—pcomﬁsecuo w2

Y = T_%sim[;tanu,, wl-l-r‘{;(cosrbta.nuo—l/p tan uy) wa

16

Contact Kinematics and Statics

Figure 2.5: Spherical finger rolling on a plane and on another sphere. The finger
is only allowed to roll on the object and not slip or twist.

2.4 Finger Kinematics

Up to this point we have assumed that the fingers which contact our object
are rigid bodies which can move freely in space. We are more interested in
the case when the fingers are kinematic mechanisms. We model each finger
as an open kinematic chain with n; degrees of freedom. Using the product of
exponentials formulation of the fingers kinematics, we can then describe the
constraints between the object velocity and the joint velocities of the fingers.

The product of exponentials formula was introduced by Brockett [12] as an
elegant means of describing the kinematics of open kinematic chains with a single
degree of freedom at each joint. Using this formulation allows us to derive the
kinematic equations which relate the position of the rigid bodies which compose
the robot to the configuration variables which specify the positions of the joints.
We briefly review the formalism here; a more complete treatment can be found
in Paden’s thesis [76].

Consider the motion of a point p which is rotated about a fixed axis in space,
as shown in Figure 2.6a. Let w € R® be the direction of the axis and ¢ € R3 be
any point on the axis. If the link connecting the particle to the axis has unit
rotational velocity, then the velocity of the particle is given by

=ux@-0= " (7)= @

where £ € se(3) is a twist which represents the axis of rotation. Equation (2.17)
is a differential equation which represents the motion of a particle p which is
attached to the link.

Suppose now that we wish to determine where the point p moves if we rotate
the link about the axis £ by an angle 8. One way to accomplish this motion is
to move at unit speed and integrate equation (2.17) for time 6. Since (2.17) is

2.4 Fig_gcer Kinematics

17

Figure 2.6: Revolute and prismatic joints

a linear equation, the result is

2(6) = p(0)

This formula is the basis for the product of exponentials formula. It gives the
location of a point attached to the link after the link has been rotated by 8. A
joint which causes a link to rotate about a fixed axis is called a revolute joint.

Next we consider a joint which moves a link along an axis, called a prismatic
joint (see Figure 2.6b). This motion can also be modeled as a twist:

=65 4](%)

and again p(8) = efp(0), where 8 represents the amount of translation in some
convenient set of units. The motion is much simpler in this case, consisting of
rectilinear motion in the direction of the axis.

A large number of robot manipulators can be modeled as series chains of
revolute and prismatic joints. Such a robot consists of a set of rigid links which
are connected to each other by revolute and prismatic joints. Joints may be
placed at the same location in space to model a joint with more than one degree
of freedom. An example of such a mechanism is a spherical wrist, which can
rotate in any direction and is modeled by three revolute joints with mutually
perpendicular axes intersecting at a single point.

We are now in a position to calculate the location of a point attached to a
robot as the joints move through specified angles. For concreteness, consider a
point attached to the end of an n link robot, as shown in Figure 2.7. We begin
by choosing a zero configuration for the robot and writing down the constant

Contact Kinematics and Statics

L &
&2 & &s

// // (p &6
@4

Figure 2.7: Elbow manipulator

screws, §;, corresponding to each joint. Let & € R™ be the final joint angles of
the robot. If we move any single joint of the robot, the particle moves to a new
location e?¢ip. By moving the links starting from the end of the manipulator
and moving towards the base, we can compose the rigid motions and obtain the
final location of the particle:

p(o) = ealfl . .ean—lfﬂ-l eanfnp

This formula for p(6) is called the product of exponentials formula.

More generally, we have defined a map K(6) : SE(3) — SE(3) which de-
scribes the kinematics of the mechanism:

K(0) = %161 .. Fnén

This map tells us how points (or a frame) attached to the end effector of a
robot varies with the joint angles, 6. It is clear from its definition that K(6) is
a smooth function of 6.

The Jacobian of the forward kinematic map relates joint velocities to the
end effector velocities,

feR”

(S(o“” "):xox-*:DK(e)éoK" (v,) € R

0

We can make this formula more explicit using the product of exponentials no-

2.4 Finger Kinematics

tation:
n
K= Eg‘ (eezfn .. ,eei-xéi-n) & (ea.'fi .. ,eania)
i=1

KK-! = ig‘ (eanfx e eoi-lei-l) & (e—ei-xfi-n .. _8-9151)

i=1

This map is linear in 4. If we replace the conjugated &’s by £ and use twist
coordinates (suppressing the hat), we have

vy, - U :
(w?) = [&S & - &]9!-' =: J1:(04,)0;,
J;:(05;) € R®*™ is the finger Jacobian for the i*® finger.

Combining this with the velocity transformation between the finger location
and the contact location (a function of z;1z;) we write the contact Jacobian as

Jei(20,0y,) = ((’; S(;“))J,,. Je; 2 g v (:Z) (2.18)

As with the fixed contacts, fingers are only allowed to exert forces in certain
directions depending on the contact type. This is equivalent to saying that
finger motions are only constrained in certain directions; these directions are
given by the column span of Bf (z,,8y,):R™ — R® (where B; is the selection
matrix defined in section 2.2). Combining this with the grasp map for the i**
finger, we obtain the velocity constraint due to the i*® contact,

G (e081) (20) = BF 001t 01)i

We now stack these matrices and write the grasp constraint for the hand as

GY BT J., 0
H (Yo) = ‘. 0
. wo .
GT 0 BTJ.,
GT(x.,,o)(:) = J(z,,0)0 (2.19)

Equations (2.19) describes the constraints between the object and finger ve-
locities. Roughly speaking, it equates the contact velocities of the fingers and
the object. As in previous cases, this velocity constraint induces a relation-
ship between joint forces and object forces. A diagram which summarizes the
transformations between frames is shown in Figure 2.8.

20

Contact Kinematics and Statics

robot contact object
/7\

velocity] —J . (ve,we) ‘-i— (vo,wo)
: |
position f --=--=-=---- LS >z,
t |
force T - JT F, ¢ F,

Figure 2.8: Diagram relating different robot coordinate frames. In this figure, ¢
represents the configuration of the robot, z, the configuration of the object. The
velocity constraints imposed by the grasp are specified in contact coordinates.
The dashed line connecting # and z, represents the fact that z, is determined
by @ only if the contact constraint is holonomic.

2.5 Grasp stability and manipulability

In the preceding analysis, we have modeled a contact constraint as a bidirectional
constraint. Using such a constraint, a finger can both push and pull on an
object. In reality, a finger is only allowed to apply unidirectional forces. A
further complication is sliding—if the ratio of the tangent forces to the normal
force is too great, a finger may slide along an object, violating the constraint.
By choosing a grasp carefully, we can often circumvent these restrictions.

For contact models involving friction, we must insure that all contact forces
lie within the friction cone determined by the coefficient of friction. The set of
all forces lying in or on the friction cone is

FC={feeR NIl S psllfall, i=1,k, G=1m} (220)

where f,. is the tangent component of the j** element of f.;, f2 is the normal

force for the i** contact, and u;; is the coefficient of friction corresponding to
fei;- For soft finger contacts, the torques exerted by the fingers also satisfy
equation (2. 20) with f¢,. replaced by the torque (i.e., we do not want to apply a
torque which is greater "than the torsional friction coeﬂicxent multiplied by the
magnitude of the normal force).

2.5 Grasp stability and manipulability

21

stable stable stable
not prehensile not manipulable prehensile
manipulable

Figure 2.9: Examples of stable, prehensile, and manipulable grasps

We say a grasp on an object is stable if we can resist, through a set of
contacts, arbitrary forces and torques on the object. This requires that the
image of the grasp map over the set of forces in the friction cone span the space
of forces and torques on the object, that is G, s(FC) = RS for all z,8. Note that
this is a condition only on the contact kinematics and not the finger kinematics.
A stable grasp is also called a force closure grasp [73].

A grasp is prehensile [21] if there exists a force contained in the null space of
the grasp map which also lies in the interior of the friction cone. More formally,

N(G)N F?C;E {} where FC is the set of forces lying completely within the
friction cone (i.e., ||fZ,.| < pij||f2]]). We shall require this property in order to
insure that our controflers can maintain a grip on an object while manipulating
it. A prehensile grasp guarantees that we can exert any force on the object
while remaining inside the friction cone.

If a grasp contains no frictionless contacts and G is full rank, then stable
and prehensile grasps are equivalent. A proof of this fact can be found in the
thesis of Cole [20] using the mathematical formulation of Mishra, Schwartz,

[J
and Sharir [67). If a grasp contains frictionless contacts then FC is necessarily
empty since the condition ||, || < 0 can never be satisfied. A example of a
grasp which is stable but not prehensile is shown in Figure 2.9.

A grasp is said to be manipulable if arbitrary motions of the object can be
accommodated by the fingers. Unlike stability, manipulability is a property
of both the contact and finger kinematics. Since the range of motion of the
contacts is given locally by the range of the hand Jacobian, the condition can
be written as R(GT) C R(J), for all z,8. It is clearly necessary that a grasp be
manipulable if we are interested in unconstrained object motion. An example
of a point at which a grasp loses manipulability is shown in Figure 2.9. Motion

22

Contact Kinematics and Statics

which results in the right-hand contact moving in the singular direction of the
right finger is not possible, hence we loose manipulability at that point. Unlike
the previous properties, manipulability does not depend on the friction cone.

We shall generally assume that a grasp has been chosen which is stable,
manipulable and prehensile in some operating region. Methods for find such
grasps have been explored by Nguyen [74], Li and Sastry [64], and Mishra,
Schwartz, and Sharir [67] and the references therein.

2.6 Summary

23

2.6 Summary

In this chapter we have derived the kinematic equations for fixed and rolling
contacts. The fundamental kinematic relationships are the grasp kinematics

G (z0,0)2, = J(z,,0)0 (2.21)
and, for rolling contacts, the contact kinematics

Ry(Ko + Kp) 'wy (2.22)
b = T, +Tydy

dy

The rolling kinematics are useful because it is easier to calculate G and J using

7 = (ao, ay,) rather than 6 and z, alone.
A grasp is said to be stable when finger forces lying in the friction cone span
the space of object forces

RS = G(FC) (2.23)
manipulable when arbitrary motions can be generated by the fingers
R(GT) C R(J) (2.24)
and prehensile when ,
N(G)N FC# {} (2.25)

In the case that G is full rank and FC # {} (i.e., no frictionless contacts),
stability and prehensility are equivalent.

24

Contact Kinematics and Statics

Appendix I — Contact kinematics derivation

In this appendix we derive the kinematics of contact for two objects touching
each other at a point. The notation is described more fully in Section 2.3. An

alternate derivation can be found in a recent paper by Montana [68].

To derive the kinematics, we begin with constraint equations given by equat-
ing the points of contact, normals of contact and tangent planes at the contact

points:
Rep(ag)+p = colao)
Rng(ay) = —no(ao)
dcy .1 _ Bcopp
Raa g Mf Ry = da, M;
Differentiate (2.26) and (2.27)
- dcy . . de, .
RCJ'I'RaaIaf'I”P aaoao
. Bn; . - 6"0 .
Rn; + R%GI = -Bao a,

Multiply (2.29) by 25" and substitute &, into (2.30)

° __nl. ___3730 _2ac°T . 92!_. .)
Rny+ R a;a"— oM, e Rc;+Raafa;+p

Using (2.28) in the last term of (2.31) and rearranging

anl ano _2 8C¢, 860 _1
(Raaf+6a ° (80: Oa, 3a, Mo RuMy &

on,
fa,

8c,,

= —Rn! - M-z (RCJ +p)

Simplify the first term and multiply by M;Tg%:- on the left

dc, T on on
=T Y% ' o -1
M b, (Raa, B, Mo R‘”Mf)
BT Ony . _ on,
MoTaT (Ra—an, 'Ry +3

e ;1) Ry

Tac, Ony r0c,Ton, _

(2.26)
(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

— -1 - 1
= (R‘” I Ba; Ba,Mr Ret M50 Ba,Me)R“M’

~ /
\p— e

f(! K°

2.6 Summary

25

Multiply both sides of (2.32) by M;T gT‘;:-T and use the previous calculation

-1

& = MRy (R +K.)

fa, ba da,
= M;'Ry (R + Ko)_

Let w; stand for the Rn; term and v, represent the Rc; + p term:

o -1
Gy =M Ry (Ry +Ko) (wn = Kove) (2.33)

Now w; and v; can now be calculated in terms of the relative velocity given by
(S(w),v) = gg—'. We use the fact that S(w)a =w xaandw xa = —a x w to
obtain

dc, T
ba,

w = —M-T aco (w x (Rng)) = -M;T
ac,,

(no x w)

v = M‘T (wx (Reg)+wxp+v)

= M'Tg:: (wx(co=p)+wxp+v)

= M‘Tg: (=¢co X w + 1)

We see that w; is the relative rotational velocity projected onto the tangent
plane at the contact. It includes only terms due to rolling since rotation normal
to the surface is annihilated by taking the cross product with n,. Likewise, v,
is the relative linear velocity between the contacts, projected onto the tangent
plane, i.e., the sliding velocity.

A similar calculation yields

o -1 ~
do= M (R +Ko) ™ (wi - By (2.34)
which gives the kinematics for the object contact point in local coordinates.

Next we solve for 9, the angle between the tangent planes of the finger and
object. Combining (2.27) and (2.28) we can write

Wl g][%)= g]

26

Contact Kinematics and Statics

and using the normalized Gaussian coordinates this can be rewritten

Rlzy ys 7] Ry = [0 yo 2] (2.35)
Take the derivative of (2.35)
: 5 . . 1B [(Ry 0] _¢. . .
Rlzsys 2] Ry + Rles 9y 27) Ry + Rlzpyp 21] | °F) | = [%0 80 20]

Premultiply by y7 RT

yf RTR(zs yy 2] Ry + u] [&1 9y 7] Ry + (010) %“8] = yj BT [0 g0 0]

Postmultiply by Ry (%)) and note RyRy =1
yj RT Rz +yTz;+(010)[Ru Ry g]() y; RT [zoono]Rw()
FR Ry + ey + 00|) Y | () = 7 &7 (oo 2124 %)

. . - /1
yf RT Rz + yf &1 — v = y] R [#0 96 20] Ry (g)

T
From (2.35) we see that y}'RT=(010)R¢|: :?] =(01)R¢[;7‘7’:] and so
zf °

¥ = RTRz;+yf—a;—(01)R¢[3 : :;:"]R'p((l)) (2.36)

Using the following identities
Tu=0 = &fyu=-clp=9&
Tei=1 = 7z;=0
(2.36) can be written as
1,5 = RTsz + yT »
= wn + ToMoao, + TyMyiy (2.37)
where

wp = y}"RTRz; = (Ry;)wa(R:c,)
= (Rzy)Tw = 2Tw

2.6 Summary

27

and the last equality follows from the vector formulaa-bx c = b-¢ x a. This last
equation shows that wy, is just the relative rotational velocity projected onto the

surface normal.
Collecting equations (2.33), (2.34) and (2.37) we have

@, = M;I(Ko-i-k!)_l (wg—f?fvg)
&y = M7 Ry(Ko+Ky)™* (wi— Kowr)
¢ = Wn +T0Mado +T!M!d!

The matrix K, + K| is called the relative curvature by Montana [68].

28

Contact Kinematics and Statics

- Chapter 3

Dynamics and Control of
Constrained Manipulator
Systems

In this chapter we review the formulation of robot dynamics and extend those
results to include robot systems with contact constraints. The primary result
is that even for relatively complicated robot systems, the equations of motion
can be written in standard form. This point of view has been used by Khatib
in his operational space formulation [49]; recent extensions [50] can be used to
cover special, but important, cases of the results presented here.

3.1 Introduction

There are several methods for generating the dynamic equations of an open
kinematic chain. All of these methods generate the same set of equations, but
the form of the equations may be better suited for computation or analysis
depending on the formulation. We will rely on Lagrangian analysis for our
derivation.

Lagrange’s equations work well for for constrained systems since they make
explicit use of allowable displacements, usually called virtual displacements. De-

fine the Lagrangian as
L(‘I: d) = T(Qi Q) - V(q)

where ¢ is a set of coordinates for the mechanism, T is the kinetic energy, and
V the potential energy. Let g represent the infinitesimal displacements which
satisfy the constraints on the system. Then the motion of the system satisfies

(d@L oL

30

Dynamics and Control of Constrained Manipulator Systems

where L is the Lagrangian and Q is a vector of external forces conjugate to
g. If ¢ is a set of generalized coordinates (i.e., all configurations of the system
are parameterized by ¢ and ¢ is unconstrained) then &q is free and Lagrange’s
equations become

doL OdL
#d5 5

This is the usual form of Lagrange’s equations when applied to robots and ¢ = 0.
We derive a more explicit formulation using this method in later sections.

History of robot control

A control law for a robot manipulator is a rule which assigns joint torques
at a given time such that a given task is accomplished. The most common
control task is trajectory tracking—given a desired joint trajectory 84(-), design
a control law such that the actual robot position tracks the desired position,
lime_.o 64(t) — 6(t) = 0. Such a task is an integral part of any higher level robot
task such as assembly, painting, or welding. The task itself is usually described
in terms of a desired trajectory of the end-effector rather than the joint angles
of the robot.

One of the simplest approaches to controlling the end-effector location is
using joint interpolation. By using the inverse kinematics of the manipulator,
an end-effector trajectory can be converted to a joint trajectory. Due to the
computational complexity of inverse kinematics algorithms, this calculation is
typically performed at a only a few points. The commanded trajectory con-
sists of straight line motions (in joint space) between interpolation points. The
resulting end-effector motion consists of curvilinear segments which match the
desired end-effector trajectory at the interpolation points. The main feature of
controllers using this approach is that the control law calculation occurs in the
joint space of the manipulator. Examples of joint space controllers can be found
in standard texts on robot control {29, 89).

The next generation of controllers improved performance by measuring er-
rors in end-effector coordinates rather than joint coordinates. There are several
advantages to such an approach. The inverse kinematics no longer have to be
calculated since the control algorithm instead uses the computationally simpler
forward kinematics to map the current position into end-effector coordinates.
Furthermore, motion between points consists of straight line segments in end-
effector space (with properly defined controllers). For many tasks this is highly
desirable. Controllers which were originally proposed in joint space were ex-
tended to operate in end-effector coordinates [66].

In the late 1980’s, researchers began experimenting with coordinated robot
systems, such as a multi-fingered hand. These systems presented new challenges
since the motion of individual robots was constrained. This led to yet another
round of control laws, many bearing strong resemblances to joint and end-
effector based control laws. A variety of techniques were developed, including

3.1 Introduction

31

master/slave algorithms [91, 95], Cartesian (object) space algorithms [21, 60]
and many others (see for example [37, 71]).

Overview of results

The goal of this chapter is to develop a systematic method for writing control
laws for systems of robots. To accomplish this, we begin with a systematic
development of the dynamics of such systems. In particular, we are interested
in writing the dynamic equations of a set of robot manipulators interacting
with each other via a set of contact constraints. This class of systems includes
classical robot manipulators which are not in contact with anything, robots
which have limited degrees of freedom due to contact constraints with a fixed
environment, and robots interacting with each other through a grasped object,
such as the case with multi-fingered robot hands.

By writing the equations of motion in a consistent form, we are able to derive
control laws which work for the entire class of robot systems. This allows us to
simultaneously prove convergence properties for control laws which operate in
Jjoint, end-effector (Cartesian), or object coordinates. In proving stability, we
use both the form and structure of the dynamic equations.

On the surface, the results presented seem to be straightforward consequence
of Lagrangian nature of robot dynamics. The different spaces in which the
control law calculation is carried out naively correspond to different choices of
generalized coordinates for the configuration space of the manipulator. However,
in may important situations, the coordinates in which the control law operates
is not a valid set of generalized coordinates. In particular, for the case of rolling
contact between a finger and an object, it is possible that there are no minimal
set of generalized coordinates for the system (due to the nonholonomic nature
of the system).

The first half of this chapter presents a complete derivation of the dynamics
of an open chain robot manipulator. We then extend that derivation to cover
more general robot systems with contact constraints such as the rolling contact
constraints derived in the previous chapter. Although the notation will reflect
our prejudice towards control of multifingered hands, the results are more gen-
eral, holding for any robot system with constraints which can be written in a
certain way. In particular, we show how these constraints can be used to model
changes of coordinates and contact with the environment.

The second half of the chapter uses the dynamics formulation to derive
some common control laws for robot manipulators. In particular, we derive
and analyze a control law which generalizes some of the more commonly used
control laws. As previously noted, the control law can be applied to a wide
variety of robot systems using the same proof of stability. Experimental results
are presented to show the performance of the control law in a contact situation.

32

Dynamics and Control of Constrained Manipulator Systems

3.2 Simple robot dynamics

The Lagrangian for an open chain robot

To apply Lagrange’s equations, we must calculate the kinetic and potential
energy of the robot links as a function of the joint angles and velocities. This in
turn requires that we have a model for the mass distribution of the links. Since
each link is a rigid body, its kinetic and potential energy can be be defined in
terms of its total mass and its inertia about the center of mass.

Let V C R3 be the volume occupied by a rigid body and p(r), r = (z,y,2) €
R3, be the mass distribution of the body. If the object is made from a homoge-
neous material then p(r) = p, a constant. The mass of the body is the volume
integral of the mass density:

m= /‘: p(r)dv

The center of mass is the weighted average of the density

/ p(ryraV
F=—
m

By choosing coordinates r' = r — ¥ we can place the center of mass at the origin
of the new coordinate system. This coordinate system is referred to as center
of mass coordinates.

The inertia of a rigid body is more complicated. It models the kinetic energy
due to rotation and is represented by a matrix Z € R3%*3, The kinetic energy for
a body rotating about its center of mass with body angular velocity wj is w? Zws.
The components of Z in center of mass coordinates (denoted r = (2, z2, z3) for
simplicity) are given by

T

/ p(r)(r? -z)dV i=1,2,3
v

T; = /p(r)zgz,-dV idj
v

7 is symmetric and positive definite.

We now wish to write the total kinetic energy of a moving rigid body. Let
9 = (R,p) € SE(3) be the configuration of the center of mass of the body and
A = (v,w) its velocity in world coordinates. The kinetic energy is the sum of
the translational and rotational components

K(g,)) = -;-anv + %wTRTIRw

3.2 Simple robot dynamics

33

We will write

ko= prmon=3(2V [V e)()

The matrix M(g) is the inertia matriz for a rigid body. M(g) is symmetric and
positive definite for all ¢ € SE(3).

To calculate the kinetic energy of the entire robot manipulator, we sum
the kinetic energy of each link. Using the forward kinematics, we can write
an expression for K;, the kinetic energy of the i*? link, in terms of the robot
configuration and joint velocities. Let g;() be the configuration of the i*h link
and X(0,0) = (v,w;) = J;(0)0 be the corresponding velocity. If #; is the
location of the center of mass of the i** link relative to the origin of that link,
then the velocity of the center of mass is given by

x;=(”"+:§><"‘*)=;(j{)

Since v; and w; are linear in @, X; is also linear in § and hence we can write the
kinetic energy as

Ki(9,0) = 35T MO = 567 TT (O)M:(0) T (0)0
where X; =: J;(9)d. Now the total kinetic energy can be written as
- 1
. o v Lap .
K(0,0) = ; Ki(8,6) =: 567 M(6)0 (3.1)

To complete our derivation of the Lagrangian, we must calculate the poten-
tial energy of the manipulator. Let h;(8) be the height of the center of mass of
the i link (height is the component of the position of the center of mass in the
direction of gravity). The potential energy for the i*® link is

Vi(8) = migh(6)

where m; is the mass of the i** link and g is the gravitational constant. Com-
bining this with the kinetic energy, we have

n

1e.6) = Y (ki0.0)-vi(o))
= M@ -v)

34

Dynamics and Control of Constrained Manipulator Systems

Equations of motion for an open chain manipulator

Let € R® be the joint angles for the manipulator and 7 € R" be the corre-
sponding joint torques. The Lagrangian is of the form

L(6,6) = %o'TM(a)o' — V()
where M (f) is the inertia matrix for the manipulator and V/(f) is the potential
energy due to gravity. Substituting into Lagrange’s equations
ddL 0L

dtag 80

and letting T represent the actuator torques (and other non-conservative forces),
we obtain

T=0

. OMiy(6): ; 10Mu(8); ; OV
. A R ALY I : Nttt LA SN — () =7

where summation over repeated indices is assumed. To put this in a more
conventional form we define the matrix C(8,6) as

s 10M;(0); 10Mu(6), 10M;(9),
Ci;(6,0) = 5'_3 801()0k + Ea—;j()ok - 5_;3;.()01: (3.2)
and write . . .
M(6)6+C(6,0)0 + N(6,0)=7 (3.3)

where N(8,6) includes gravity terms and other forces (such as friction) which
act at the joints. This equation has several structural properties:

Theorem 3.1 Eguation (3.3) has the following properties
1. M(0) is symmetric and positive definite
2. M = 2C € R**" is a skew symmetric matriz.

Proof. (1) From equation (3.1) and the definition of Kj,

n
M(9) = Z JEM;(8)J;
i=1
where M;(6) is the inertia matrix of the i** link and is therefore positive definite.
Expanding the kinetic energy

n
TM@) = > 6TITMJié

i=1

]
M=
VammnS
E=
SN’
~

S
N
E &
N’

3.3 Robot hand dynamics

35

Each term in the summation is > 0 and hence M(#) > 0. Equality is only
achieved when (v;,w;) = 0 for all i and this is possible only if 8 = 0. Thus
M) > 0.

For (2) we calculate the matrix M — 2C:

01-20)5 = 4y -26,00
a,-0 %0 OM L6y + aM .0’-‘

iy~ S,
Switching i and j shows (M — 2C)T = —(M - 2C). O

3.3 Robot hand dynamics

We now examine the dynamics of a set of fingers actuated at each joint connected
through a set of contacts to a rigid body. The finger dynamics can be written
as

M;(8)8 +C;(8,6)0 + Ny (8,0) =7 - JTf. (3.4)

where § € R™* x - -. x R™* is now the set of joint angles for all of the robots and
7 is the corresponding set of torques. f. is the vector of contact forces. The
object dynamics are given by the Newton-Euler equations

oI 0 'o 0 DVO]
" zo](s,)+(w,xz,w,)+(0(”))=ch

where Z, = RIRT is the object inertia in world coordinates and V, is the
potential energy. In local coordinates this has the same basic form as the robot
dynamics, lacking only the actuator torques:

M,(z)z + C,(z,2)E + No(z,2) = Gf. (3.5)

where z is a local parameterization of z, € SE(3). To find the dynamics we can
solve for f. in equation (3.4) (assuming we stay away from finger singularities)
and substitute the resulting expression into (3.5). f. represents the forces which
maintain the grasping constraint.

A slightly more elegant analysis can be obtained using the Lagrangian ap-
proach directly. The advantage of using this method is that it holds for arbitrary
mechanical systems with equality constraints which are linear in the velocities.
Consider two mechanical systems with decoupled dynamics of the form

M;(8)8 + C;(8,0)0 + Ny (8,6) = =
My(z)z + Co(z,2)z + No(z,2) =0

We attach these two systems with a set of constraints

GT(z,0)t = J(z,6)8 (3.6)

36

Dynamics and Control of Constrained Manipulator Systems

which represents the grasp. We will assume that the grasp is both stable and
manipulable. For the moment we will also require J to be injective.

This velocity constraint generates a constraint on the virtual displacements
50 and 6z, namely 60 = J-(q)G7 (¢)éz with ¢ = (z,8). Using this relationship,
we can write Lagrange’s equations as

(g;gé_g.g._f)au(ﬁ%g L)z = 0
GIT (4% - % —r)oz+ (4% ~%)6z = 0
and since éz is arbitrary
doL 8L r(ddL 8L\ _ . _p
@0z oz T (dtao'-ae)—a'] T (3.7)

This equation together with the velocity constraint given in equation (3.6) de-
scribes the system completely. Note that equation (3.7) is a vector differential
equation with n — m rows and equation (3.6) is a vector equation with m rows.

It is tempting to derive equation (3.7) by using the velocity constraint di-
rectly in the kinetic energy equation (which is a function of # and %) and then
substituting this into Lagrange’s equations. As noted in Rosenberg [81], section
14.2, this can only be done if the constraint is holonomic, i.e., # can be written
as a function of z.

Next we separate the kinetic energy into an object portion and a robot
portion

T = 07" My(0)0 + 547 Mo(2)é
Using equation (3.7) we find
M(9)i+C(q,9)t = GJTr=F (3.8)

where

M, + GJ-TM;J-'GT

Co+GJ-T (CJ-1GT + My 4 (J-1GT))

and Cy and C, are obtained from equation (3.2) by replacing M with M; and

M, respectively. F is the applied force represented in the object’s frame of
reference.

R
nnu

Theorem 3.2 Equation (3.8) has the following properties

1. Mis symmetric and positive definite for all q.

3.3 Robot hand dynamics

37

2. M - 2C is skew-symmetric.

Proof. Since the grasp is assumed to be stable and manipulable and J is assumed
injective, (1) follows from its definition. To show (2),

M=2C = (M,-2C,)+GJ-T(M, -2C;)J-1GT
‘ +4% (GI-T) MyJ-'GT - GI-TM; 4 (J-1G7)

The first line is the sum of skew-symmetric pieces. Taking transposes and using
symmetry of M, inverts the sign of the last line and hence it too is skew-
symmetric. O

Thus we have an equation with form and structure similar to the open chain
robot. In the object frame of reference, M is the effective mass of the object,
and C is the effective Coriolis and centrifugal matrix. These matrices include
the dynamics of the fingers, which are being used to actually control the motion
of the object. However the details of the finger kinematics and dynamics are
effectively hidden in the definition of M and C.

This simple result has important consequences in control. Typically robot
controllers are designed by placing a feedback loop around the joint positions
(and velocities) of the robot. The controller generates torques which attempt to
make the robot follow a prescribed joint trajectory. This can lead to difficulty
in grasping situations since the joint level controllers are often not aware of
the constraints and therefore may violate them. However, since the grasping
dynamics are of the same form as the dynamics of a single manipulator, we can
just as easily write the control algorithm in object coordinates. An additional
advantage of this approach is that controller objectives are often specified in
terms of the object motion and hence it is easier to perform the controller
design and analysis in that space.

Internal forces

Even though we will write our controllers in terms of F, it is actually the joint
torques which we are able to specify. Given the desired force in constrained
coordinates, we can apply that force using an actuator force of JTG+ F, where
G* is a pseudo-inverse for G. In general G is not square and by examining the
right side of the equations of motion (3.8) we note that if J-7r € N(G) then
the net force in the object frame of reference is zero and hence forces of this form
cause no net motion on the object. These forces are in fact the forces which
act against the constraint and are generally termed internal or constraint forces.
We can use these internal forces to satisfy other conditions, such as keeping the
contact forces inside the friction cone (to avoid slipping) or varying the load
distribution of a set of manipulators rigidly grasping an object.

To describe the internal forces more explicitly, we can extend the grasp map
by defining an orthonormal matrix H(#) whose rows form a basis for the null
space of G(0). As before we assume that G(6) has constant rank and we break

38

Dynamics and Control of Constrained Manipulator Systems

all forces up into an external and an internal piece, F, and F;. Given these
desired forces, the torques that should be applied by the actuators is

T=JT(}GI)‘1<F:)=JT(G+ HT)(II';:) (3.9)

Other robot systems

Although we have derived the dynamics in the context of grasping, the same
derivation holds for a number of other interesting robot systems. If we let
F:R™ — R"™ represent the forward kinematics of a manipulator (in local coor-
dinates), then differentiating z = F () gives

DF(8)6 = &

This has the same form as our basic constraint with G = I. Defining M, = 0
gives the proper dynamic equations for a robot in Cartesian coordinates:

M(q)3 +C(q,4)e = F (3.10)

This formulation holds only away from singularities of the matrix DF(6) since
the effective inertia matrix, M, is unbounded when D¥ is singular. This reflects
the physical condition that if there is a kinematic singularity then the effective
inertia in the direction of the singularity appears to be infinite (since we cannot
move in that direction).

From an analytical framework, we can simplify (3.10) further. Since (3.10)
only holds away from singularities of F, we can assume that F is a diffeo-
morphism and write z = F-1(8). This allows us to write M(q) as M(z) and
hence (3.10) becomes a function only of z. This corresponds exactly to choos-
ing z as a generalized set of coordinates for the system. Computationally, it is
much more desirable to leave (3.10) in the given form. Since we typically mea-
sure the joint angles and use them to determine z, a great computation savings
is achieved by evaluating M(6) rather than M(z) = M(F~1(F(9))).

Another system which can be modeled using this framework is a robot follow-
ing a surface. If we let a denote the local coordinates of a point on the surface,
then our constraint is F(#) = G(a), where G(a) is the world coordinates of the
point a. Differentiating this system gives the desired velocity constraint. As in
the previous example, setting M, = 0 gives the equations of motion in terms
of the surface position a. In the case of a rolling contact between the robot
and the surface, it may be necessary to use the more general tools developed in
Chapter 2.

3.4 Control

For a constrained robotic system, we can break the control problem into two
parts: tracking the desired trajectory and maintaining a desired internal force.

3.4 Control

39

In the context of grasping, this is a restatement of our desire to both maneuver
the grasped object and maintain the finger forces inside of their respective fric-
tion cones. This latter goal is particularly important in the context of grasping
since we assumed in our derivation of the grasp dynamics that contact was not
broken.

If a grasp is prehensile it can be shown that given an arbitrary set of finger
forces, F., we can find an internal force, Fy € N(G), such that the combined
force F. + Fy is inside the friction cone. Thus, given a force generated to solve
the tracking problem, we can always add a force to this such that the applied
forces lie within the friction cones of the fingers. Since internal forces cause
no net motion of the hand or object, this additional force does not affect the
net force exerted by the fingers on the object. We shall assume in the sequel
that such an internal force is available at all times. The choice of this force is
discussed in more detail below.

To illustrate the control of robot systems, we look at two controllers which
have appeared in the robotics literature and apply them to robotic grasping.
We consider only grasps which are stable, manipulable and prehensile. We start
by considering systems of the form

M(g)é+C(q,9)¢+ N(g,9)=F (3.11)

where M(gq) € R"*" is a positive definite inertia matrix and C(g, §)& is the
Coriolis and centrifugal force vector. The vector N(g,4) € R™ contains all
friction and gravity terms and the vector F € R™ represents generalized forces
in the object coordinate frame. Given a desired object force F', we apply that
force by commanding a set of joint torques

r=JTG*F+JTFy (3.12)

where J and G define the grasping constraint and Fy € NV(G).

As before, we note that although our analysis is being done in the context
of grasping, the control laws derived here can be applied to a number of robotic
systems. The proofs of stability rely only on the positive definiteness of M(q)
and the property that M — 2C is skew-symmetric. In particular, we can apply
these control laws to robots using joint coordinates or end-effector coordinates
(away from kinematic singularities). As we shall see in a subsequent section, the
controllers can also be extended to robot systems with kinematic redundancies.

Computed torque

Computed torque is an exactly linearizing control law (i.e., the dynamics are
rendered linear by state feedback) that has been used extensively in robotics
research. It has been used for joint level control (5], Cartesian control [66], and
most recently, control of multi-fingered hands [60, 21, 69).

40

Dynamics and Control of Constrained Manipulator Systems

Given a desired trajectory 4 we use the control
F = M(q) (4 + Kvé + Kpe) + C(g,4) + N(q, 9) (3.13)

where e = z4 -z and K, and K|, are constant gain matrices. When substituted
into equation (3.11), this gives the resulting error equation

M(q)(é+ Kvé+ Kpe) =0 (3.14)
and since M(q) is always positive definite we have
E+ Kye+ Kpe=0 (3.15)

This differential equation is linear and thus it is easy to choose K, and
K, so that the overall system is stable and e — 0 exponentially as ¢ — oo.
Moreover, since equation (3.15) is linear we can choose K, and Kp such that we

" get independent exponentially stable systems (by choosing K, and K, diagonal).

The disadvantage of this control law is that it is not easy to specify the
interaction with the environment. From the form of the error equation we
might think that we could use K, to model the stiffness of the system and exert
forces by commanding trajectories which result in fixed errors. Unfortunately
this does not work as can be seen by examining the force due to a quasi-static
displacement Agq

AF = M(q)KpAq (3.16)

Since K, must be constant, the resultant stiffness will vary with configuration.
Additionally, given a desired stiffness matrix it may not be possible to find a
positive definite K, that achieves that stiffness (the product of two symmetric
positive definite matrices is not necessarily positive definite nor symmetric).

PD controllers

A much simpler control law can be achieved by using linear feedback to attempt
trajectory tracking. A control law of the form

is called a PD controller since it contains proportional plus derivative feedback
of the error. The convergence properties of this control law are weak: the most
that has been shown is stabilization to a stationary point. In many settings,
we can achieve trajectory tracking if the rate of convergence of the controller is
sufficiently fast relative to the rate of change of the trajectory.

There have been many control laws which extend the basic PD control law
to give provably asymptotic trajectory tracking for arbitrary trajectories. One
of the earliest (and most elegant) examples of one of these control methods is
the natural control law proposed by Koditschek [52):

F = M(9)3a+C(g,d)24 + N(g,d) + Koé + Kpe (3.17)

3.4 Control

41

The first three terms in the control law provide a feedforward-like torque to move
the manipulator along the desired trajectory.! The feedback terms, K,é + Kpe,
are used to move the manipulator back onto the desired trajectory in the case
of initial condition or sensing errors.

The proof of stability for the natural control law relies on the skew-symmetry
of M—2C. This is the reason that the Coriolis matrix is multiplied by 4 instead
of &, as in the computed torque control law. We omit the proof of stability for
this control law since it is substantially similar to the proof of a slightly more
general case.

Consider the control law

F = M(q) (%4 + ré) +C(q,4) (24 + Xe) + N(q,4) + Kpe + Kyé (3.18)

where A > 0 and K, K, are symmetric positive definite. This control law is
very similar to controllers which have appeared in the literature for joint-based
control of robots [86, 82]. The additional damping term, not present in the
natural control law, allows us to prove ezponential trajectory tracking.

Theorem 3.3 The control law (3.18) applied to the system (9.11) results in
ezponential trajectory tracking if A, K, K, > 0.

Proof. We use a Lyapunov-based argument. The closed loop dynamics are
M(q)(é+ Xé) + C(q,4)(é + Ne) + Koé + Kpe =0
Choose the Lyapunov candidate
V= %(e’ +2e)T M(g)(é + Ae) + % TKye + %;\eTK.,e
Since M(q) > 0, it follows that V is quadratic in e and é:
a1ll(e, &)lI* < [IV(e,)l < azll(e, I
Differentiating V' along trajectories of the system yields
Vo= (é+2e)TM(q)(E +)é)
+1(é + xe)T M(g)(é + Ae) + éT Kpe + AeT K, é
= (6+2)7(=C(,0)(é + he) — Kué — Kpe)
+3(é + Ae)T M(q)(é + Ne) + éT Kpe + AeT K¢
Using the fact that the matrix M — 2C is skew-symmetric and canceling terms
V=-TK,é - MeTKye

Since V is quadratic in e and é, e — 0 exponentially ast — 00. 0O

1strictly speaking a feedfoward torque would only depend on the desired input

42

Dynamics and Control of Constrained Manipulator Systems

This PD-like control law has the advantage that for a change in position Ag
the resulting force is

AF = K,Aq (3.19)

and thus we can achieve an arbitrary symmetric stiffness. This is convenient for
tasks in which we wish to specify how the robot interacts with the environment.
Unfortunately, experimental results indicate that the trajectory tracking perfor-
mance of this control law does not compare favorably with the computed torque
control law [69]. Additionally there is no simple design criteria for choosing A, K,
and K, to achieve good tracking performance. While the stability results give
necessary conditions for stability they do not provide a method for choosing the
gains.

Internal forces

For constrained manipulator systems satisfying J 6 = GT #, applied forces which
lie in the null space of G generate no net motion of the object. In a real control
application, we choose internal force to insure that all contact forces remain
strictly inside the relevant friction cones. Using the notation of Section 2.5,

[
if the condition N(G)N FC# {} is satisfied then we can apply an arbitrary
external force (in the range of G) and still remain inside the friction cone by
applying sufficient internal forces.

It is not clear how such an internal force should be chosen. In practice, it is
often easiest to use a single constant internal force which is chosen based on the
task to be performed [69). Since there are no dynamics associated with applying
a force, no control law is needed (in principle) to stabilize the applied internal
force. To overcome measurement noise and modeling errors, some researchers
use integral feedback to adjust the internal force [60].

3.5 Redundant manipulators

In order to perform a given task, a robot must have enough degrees of freedom
to accomplish that task. In the analysis presented so far, we have assumed that
our robots had exactly the number of degrees of freedom required to complete
the task. This assumption manifested itself in our requirement that J be a
square matrix in the dynamics derivation. We now relax that requirement and
discuss its consequences.

Unlike conventional robot manipulators, constrained robot manipulators do
not need to have more than 6 degrees of freedom in order to be redundant. The
constraints themselves can introduce kinematic redundancy into a system. For
example, if we attach a 6 degree of freedom finger to an object using a rolling
contact, we have introduced two redundant degrees of freedom: the finger is free
to roll in either of two directions without affecting the position of the object.

3.5 Redundant manipulators

43

Thus it is absolutely essential that we include redundant mechanisms in our
formulation.

It is interesting to note that there are two sources of redundancy introduced
by our constraints: kinematic redundancy and actuator redundancy. Kinematic
redundancy refers to motions of the fingers which do not affect the position of
the object. Actuator redundancy refers to forces applied by the fingers which do
not affect the object location, i.e., internal forces. The grasping constraint

J(9)f = G7(g)é

contains all of the information necessary to determine these redundancies. Namely,

the null space of J is the set of internal motions which do not affect the location
of the object and the null space of G is precisely the space of internal forces.
Since we have already discussed internal forces, we restrict our discussion to
kinematic redundancy.

Dynamics of redundant systems

Consider first the kinematics of a single redundant manipulator, with no con-
straints. If we are willing to control the manipulator in joint space, the dynamics
and control formulation presented above holds without modification. Suppose
instead that we wish to write our controllers in end-effector coordinates. Math-
ematically, we represent the kinematics as a function F : R™ — R", where
m > n. In this case J := % is not square and hence J-! is not well defined so
our derivation of equation (3.8) does not hold.

It is still possible to write the dynamics of redundant manipulators in a
form consistent with equation (3.8). To do so, we define a matrix K7 (8) whose
columns span the null space of J(8). As before, we assume that J(8) is full row
rank and hence K(0) has constant rank m — n. The rows of KT (§) are basis
elements for the space of velocities which cause no motion of the end-effector;
we can thus define an internal motion, y € R™=", using the equation

(1)-[o=

By definition J is invertible and it follows from our previous derivation that
@ 3)+eaa() +Aa=7Tr

where M and C are obtained as in the nonredundant case but replacing J with
J and G with I. If we choose K such that its rows are orthonormal, then
J=! = (J* KT) where J* = JT(JJT)~! is the least-squares right (pseudo)
inverse of J. This approach is related to the eztended Jacobian technique for
resolving kinematic redundancy [2].

44

Dynamics and Control of Constrained Manipulator Systems

It would appear from the notation we have chosen that we have parameter-
ized the internal motion of the system by a variable y. This is not necessarily
the case. Since we chose K only to span the null space of J, there may not
exist a function g such that y = g(f) and Dg = K. A necessary and sufficient
condition for such a g to exist is that each row of K satisfy %{g—";i = %’-g-;&. This is
merely the statement that mixed partials of ¢ must commute. A more thorough
treatment is given in Appendix I, at the end of the chapter.

It may not always be easy to choose K(8) such that it is the differential of
some function. For this reason, we shall not generally assume that an explicitly
coordinatization of the internal motion manifold is available.

Example

Consider a three link planar manipulator with unit length links. If we let (z,y)
be the location of the end-effector then

z = cost + cosfs + cosfs
y = sinb; +sinfs +sinb;

where the link angles are all with respect to a fixed (inertial) axis. The Jacobian
is

_ | —sinf; —sinf; —sinds
J(6) = [cosfy cosds cosf3]

There are many choices of K(8) to complete J(6). If we choose
K@=[0 0 1] = 9(8) =63

this corresponds to choosing the angle of the end effector to parametrize internal
motions. This choice of K(f) is valid as long as 8, # 82 (i.e., when the first two
links are not aligned).

If on the other hand we allow Mathematica to solve for K(6), we are led to

K(8) = [sin(f2 — 63) —sin(6; —03) sin(d; —62)]
However
9K, (6) 0K (8)
a9, 90,

Hence there is no g such that Dg = K and the “variable” y has no physical
meaning.

= 003(92 - 93) # —COS(ol - 08) =

Control of redundant manipulators

Since the dynamics for a redundant manipulator have the same form as our
canonical robot system, it is easy to extend the previous control laws to handle
this case. If a coordinatization of the internal motion manifold is available,

3.6 Hybrid stiffness controller

45

the control laws are identical with the addition of the redundant states. If we
do not have a set of coordinates for the internal motion, but rather, only the
velocities, then we must be slightly more careful. For example, the computed
torque control law becomes

Eq+ Kyéz + K N Z .
r=u@(#HEE S) o])+ N

Motion specification for such a control law would be in terms of a position
trajectory z4(-) and a velocity trajectory ya(-).

This control law will guarantee tracking of the given velocity. One method of
calculating this velocity is to attempt to use the redundant degrees of freedom
to minimize a cost function. Given the gradient of the cost function, we can
project this vector (in joint space) onto the range of K(6) which spans the
internal motion directions. This determines g4, which can be passed to the
controller. This type of cost criterion has been used with a computed torque-
like controller by Hsu, et al. [44].

3.6 Hybrid stiffness controller

We now present a controller which partially generalizes the computed torque and
PD-like controllers of Section 3.4. The motivation in analyzing this controller
is twofold. First, it allows us to use the form and structure of the equations of
motion and show how they are required in analyzing a robot control algorithm.
Furthermore, the control includes as special cases the computed torque and PD
controllers and hence we can prove stability for a class of controllers in one
stroke.

While the analysis so far has only considered position control of manipula-
tors, it is clear that we would like to allow for the possibility of contact with
the environment. Such contact is crucial in many operations such as small parts
assembly. The PD controller is useful for such situations since we can directly
specify the quasi-static impedance of the manipulator. Unfortunately, the tra-
jectory tracking capabilities of this controller are not ideal. To overcome this
difficulty, we combine the computed torque and PD control laws. The intuition
is that we can separate the controller and the task into two sets of directions—
position directions and force directions. In the position directions we use a
control law similar to computed torque, on the basis that we know how to select
computed torque gains since the error equation is linear. In the force directions
we use a PD controller with the same basic form as equation (3.18).

This type of hybrid approach has a rich history in the robotics literature.
One of the first such hybrid controllers was proposed by Raibert and Craig [79).
They decomposed the task as above and applied closed loop position control
in one set of directions and closed loop force control in a complementary set
of directions. The disadvantage of their approach is that the system does not

46

Dynamics and Control of Constrained Manipulator Systems

behave well when contact is lost. Indeed, if the robot loses contact with the
environment, the force controlled variables undergo constant acceleration. By
using stiffness control rather than force control in constrained directions, we
seek to avoid this problem.

Combining a variant of computed torque control law and the natural control
law we propose the position feedback law

F = M(q) (24 + (A1 + A2)é + M Aze) + N(q, §) +C(g,4) (2a + Mre) + Kué + Kpe
with A1, A2 € R and K, Kp € R**". This gives the error equation
M(q) (€4 (M + A2)é+ Mdze) + C(q,9) (é + Mie) + Koé + Kpe =0 (3.20)

Before separating the space into position and force directions we examine the
stability of the general equation. Notice that with A3 = K, = 0 this control law
is the same as the modified natural control law in equation (3.18). If K, = K, =
0 then the control law is similar to computed torque. The primary difference is
that the control gains have a special form and consequently we can only place
the poles of the linearized system at real values in the complex plane. Also,
for simplicity, we have taken \;, A2 to be scalars, implying that the position
directions have diagonal gain matrices.

Theorem 3.4 There ezists A,y and K,, Kp such that the control law (3.6)
asymptotically tracks any z4(-).

Proof. To prove stability we use the Lyapunov candidate

Vo= e+ Me)TM(g)(é+ Me) + JeTKpe + 3eT A1 Kye

- () [] (2)

which can be bounded above and below by positive scalar multiples of the
magnitude of (e €). The derivative of V along a trajectory of (3.20) is

V = —(e+Ae)TAM(q)(é+ Me) — éTKyé —eM Kpe

() [] (2)

The calculation is similar to that given in the proof of Theorem 3.3 and re-
quires that M — 2C is skew-symmetric. A more explicit calculation is given in
Appendix II, at the end of this chapter.

A sufficient set of conditions for an exponentially stable error system is

M(q) >0
A>0 K, >0
A220 K, 20

3.6 Hybrid stiffness controller

47

Controller A A2 K, K, Comments

Computed torque >0 >0 =0 =0 -exponential trajectory tracking
PD =0 =0 >0 >0 asymptotic setpoint control
Natural >0 =0 =0 >0 asymptotic trajectory tracking

Modified natural >0 =0 >0 >0 exponential trajectory tracking

Table 3.1: Control laws which are special cases of the hybrid stiffness control
law

and we see that the stability of the modified natural control law (3.18) can be
derived from this by setting A2 = 0. Also, the simpler PD control law

F = Kpe + Koé + N(g,9)

can be shown stable when A\; = A3 = 0 and z4 is a constant (£4,%4 = 0). A
table of control laws which can derived from this one is given in Table 3.1. O

Next we would like to analyze the stability of the control law when we
only allow Az to be nonzero in position directions and Kp, K, to be nonzero in
force directions. Intuitively this would give us a computed torque like scheme
in position directions and a stiffness controller in the force directions. If we
break z into z; (position) and z; (force) directions and apply the above noted
restrictions the control law becomes:

¥ A é wf Zid+ M€ MiiXz(é1 + A1) .
F= 314:*-11) (14.11)(1142)N,
M@ 4504 Yaca Bephh o Mgt Jre)
3.21)

Note that we have redefined K, and K, in this equation to act only in the z,
direction. That is, K, K, € R"2*"2 where n, is the number of force directions.
As before we choose A, A2 as scalars for notational simplicity.

Theorem 3.5 The closed loop system obtained using the control law (3.21) is
asymptotically stable to zero if Ay, A3 > 0 and K,, Kp > 0.

Proof. The error dynamics become

é + /\1é1 . é1 + A1eq Mn/\z(él + Alel) _
M@ (SN) ot (BN)+ (Ml - 0 |
3.22

We can analyze the stability of the system with a similar Lyapunov function,
_lféa+Xhe T é1+ Aey 1 7
V= 2 (¢ M(q) é + 32 Kpes

which gives (using the calculation in the appendix)

V = —(é1 + Mer)T XMy (61 + Mier) — €5 Kyéz (3.23)

48

Dynamics and Control of Constrained Manipulator Systems

We see that V is only positive semidefinite and thus we cannot show exponential
stability. We can however show asymptotic stability using Matrosov’s theorem
as presented by Paden and Panja [77].2 In order to use the version of Matrosov’s
theorem presented there we must verify that V3 is negative definite when re-
stricted to the set of states V = 0 (i.e. é1+A1e; = 0 and é2 = 0). Differentiating
equation (3.23) twice and using the system dynamics in equation (3.22) we find

T
3) - 0 -t A2My; 0 -1 (]
ve= (erz) M (0o k,)M @ Kpes

which is negative definite as a function of e;. Thus (é; + Aje,ez,é2) — 0. It
can be shown that e; and ¢é; also approach zero (consider the linear system
€ = —)e + u; if u is zero then the state must converge to zero). O

The end result is that we get asymptotic stability in the case where no
external forces are applied (i.e. we are not actually touching the environment).
As a consequence, if we have a task in which we need to apply forces to an
object and we lose contact completely we converge to the center of stiffness
and the desired trajectory. Furthermore, if our task is such that motion in
force directions is not allowed (i.e. pressing against a rigid surface) then we
have exponential stability in the position directions since we can eliminate the
force directions from the dynamics and the resulting stiffness control law is
exponentially stable.

Experimental results

The hybrid stiffness control law presented in equation (3.21) has been imple-
mented on a GE-A4 robot at U.C. Berkeley. The robot was commanded to
apply a constant force along a surface aligned with the y axis while controlling
the position along the x axis. To demonstrate the stability of the control law
in both free and constrained environments, the surface was misaligned so that
contact would be broken (see Figure 3.1). To apply a force normal to the surface
the robot was commanded to move along a trajectory a fixed distance past the
expected surface and K, was chosen to achieve the desired force. A sinusoidally
varying position was commanded in the x direction.

The results of the experiment are shown in Figure (3.2). Note that when
contact is broken the end-effector converges to the commanded path. When
contact is regained the force applied to the surface increases as the distance to
the commanded path increases. The forces applied in the y direction do not
affect the positioning along the x axis. Due to the gear backlash and coulomb
friction on the GE arm the performance when the manipulator joints change
direction is degraded (this occurs at y = +15cm).

2LaSalle’s invariance principle cannot be used in this context since (3.22) is a nonau-
tonomous system which respect to e.

3.6 Hybrid stiffness controller

49

contact
made/broken

Figure 3.1: Simple grinding task with misaligned surface

There are several important points to make about the control law presented
here. Unlike the computed torque control law, the closed loop dynamics of the
system using a hybrid stiffness controller are not decoupled in the position and
forces directions. This is evident from the form of equation (3.22) (M is not
diagonal). This is the price that must be paid for being able to specify the
quasi-static stiffness. If the position error is small then the position terms will
not cause large forces in the stiffness directions so in practice this coupling is
often negligible.

Furthermore, the hybrid stiffness control law should not be considered to
be a replacement for the more conventional hybrid force/position control law
presented by Raibert and Craig (79]). If the task is such that a desired force
is required, then the hybrid force formulation can often provide better perfor-
mance since the force is controlled directly. For some problems, like peg-in-hole
insertion, the system must be controlled in such a way that a desired stiffness
is achieved in a certain set of directions. It is this class of problems for which
the hybrid control algorithm is applicable. The hybrid force control algorithm
can be derived using the formulation presented here but it cannot be shown to
be stable when the force directions are not constrained (the manipulator accel-
erates at a constant rate). For this reason there may be force tasks for which
the hybrid stiffness/position algorithm has a better overall performance than
the hybrid force/position formulation.

50 Dynamics and Control of Constrained Manipulator Systems

x position (cm)
2

51 1 N ;] L N N L |
y strain (volts)
10
2r | 1 1 : : | 1 X L 1 |
0 10 20
contact broken contact made time (sec)

Figure 3.2: Response of hybrid stiffness controller pushing against surface that
is misaligned

3.7 Summary

51

3.7 Summary

Given a set of robots with joint configuration 6 and an object with configuration
z, it is possible to derive the dynamics of the constrained system. We consider
constraints of the form .

J(8,z)0 = GT(9,z)z (3.24)

This constraint includes grasping contacts (fixed or rolling), changes of coor-
dinates, and contact with the environment. The resulting dynamics can be
written as

M(q)z +C(a,§)¢ + N(¢q,§)=F=GJTr (3.25)

where ¢ = (4, z). The following properties are satisfied for this system: M(g) >
0 for all ¢ and M — 2C is skew symmetric for all g.

The constraints (3.24) contain the information on the structure of the re-
dundancies of the system:

N(J) ~— internal motions
N(G) «— internal forces

In the case of internal motions, it is possible to extend the derivation of the
dynamics by extending the Jacobian. The form of the equations of motion are
preserved by this extension.

Using the form and structure of the robot dynamics, several control laws can
be shown to track arbitrary trajectories with ezponential rate of convergence:

Computed torque: F = M(q)(Z4+ Kué+ Kpe) + C(q,4)z + N(q,q)
Modified natural: F = M(q)(Z4+ Aé)+ C(q,4)(2a+ Ae) + N(q,4) + Koé + Kpe

It is possible to combine these control laws by identifying position and force
control directions and applying the computed torque and natural controllers in
respective directions. Experimental results indicate that this is can be an effec-
tive approach for systems requiring simultaneous position and stiffness control.

52

Dynamics and Control of Constrained Manipulator Systems

Appendix I — parameterization of internal mo-
tions

In this appendix we discuss the parameterization of the internal motion of a re-
dundant manipulator. This presentation requires the use of exterior differential
forms on R". The necessary details can be found in Spivak [88] or another book
on differential geometry. In particular, we rely on the fact that on R” all closed
one forms are exact. That is, given a one form w on R", if the exterior derivative
dw is identically zero then w is exact; there exists a real-valued function ¢ on
R” such that w = dé.

Let F : R™ — R" be a function representing the kinematics of a redundant
manipulator (m > n). Define J(8) := 45(8) € R™*" and let K(§) € R(m-n)xm
be a matrix such that the columns of KT span the null space of J(f). We
consider only those 8 for which J is full row rank.

Proposition 3.6 For all 8 for which J(8) is full row rank, the mairiz

= J(6
0= i

is invertible.

Proof. For any matrix 4 € R™*"? R® = R(AT)®N(A). Letting A = J, R(AT)
is precisely the row span of J and the null space of A is spanned by the rows of
K. Hence the rows of J and K are linearly independent. 0O

Proposition 3.7 There ezists g : R™ — R®~™ such that K = %g if and only if

a_I{_‘_—éi{ik. t=1...m
a0, 90; -

Proof. Let w = K;, the i*® row of K. w is a one-form on R®

w=) adb;

Since all closed one forms on R™ are exact, a necessary and sufficient condition
for K; to be exact is that it be closed

]

O=dw= 2 20

doJ‘ A db;

Equating terms and using skew-symmetry of the wedge product yields -g—‘;’j‘ - %—:f
which is equivalent to the stated condition. O

3.7 Summary

53

Appendix II — calculations for hybrid stiffness
proofs

This appendix provides detailed calculations for the proofs of stability (tracking)
for the hybrid control laws presented in Section 3.6. The notation used here is
described in more detail in that section.

Calculations for Theorem 3.4

We use the Lyapunov candidate

V= %(é + Me)T M(é+ Age) + %eTK,e + %)quK,,e

The error equation for the system, obtained by substituting the control law (3.6)
into the equations of motion, is

M(E + A1€) = —M(A2é + A2A1e) — C(é+ Mie) — Kyé — Kpe
Taking the derivative of V' and evaluating along trajectories of the error system:
14 (6 + X1e)T M(E+ A1é) + L(é + Me)T M(é + Me) + T Kpe + M eT K e
(e+ A1e)T[—M(Azé +A2A1e) — C(é + Are) — Kyé — Kpel+
3(e+ Me)TM(é + Me) + éT Kpe + M1 6T Kye
—(é + Ale)TMz\g(é + Ale) +7%(e + /\1€)T[M - 2C'](e + Ale)
—(é+ Me)T Ky é — (¢ + Me)T Kpe + éT Kpe + T Ky Aqe
—(€+ Xe)TMAz(é + M) — eTK,é ~ ed Kpe

_ (e [MaM+nK, MM e
= é MM MM+ K, |\ é

This proof can be extended to the case where A; and)\, are matrices if A; and
K, commute. Also M A, becomes ,\5’ M A;/ 2 for A2 € R™*" symmetric.

Calculations for Theorem 3.5

‘The control law is

- Z1a+Méy Zid+ Méy My12z2(é3 + Aey)
F‘M(Frg)*C(i2q)*(Koo+ Kpez)TN
(3.26)

This gives closed loop dynamics

&1+ Mé é1+ ey My Az(ér + A1) \ _
(B8) o (A m)y (Mg 1) Lo oo

54

Dynamics and Control of Constrained Manipulator Systems

Use the Lyapunov candidate

. T .
é1 + ey é1+ ey
V = -%- (ég) M(éq -+ %e%’K,e;
This is basically the restriction of the previous Lyapunov function to the respec-
tive force and position coordinates (i.e., A’s acting in position directions and K’s
acting in force directions). The derivative of V evaluated along the trajectory
is calculated as in the previous case, leaving:

T

2] Agz\zMu 0)uz\zMu 0 e1
v=_| @ 0 0 0 0 e2
é AdaMyy 0 A2My; 0 é1
és 0 0 0 K, éa

This matrix is clearly singular, so we calculate the derivatives in order to apply
Matrosov’s theorem. Define S := é; + A1ey

Vo= —SThaMuS+é&Keéz
V@ = 25T M8 — STAaMnS - 260K.é2
V® = 28T My,S - 25T A M1 S - 25T s M1 S

28T AaM11S — ST AaM11 S — 265K, 62 — 263K, e5)
Restricting V) to the surface V=0 (S =0, é2 = 0)

Ve ~25T A2 M11 S — 262K &2
—2((":1 + /\1é1)T1\2M11(é'1 + /\181) - 2é':2rKué'2

9 &+ Mhé Tl aaMy 0 é 4+ AM1éy
éz 0 Ku 32

On the manifold V = 0 the closed loop dynamics become

é1+Mé1 \ _ a1 O
(€) =M (Kpez)
and hence

T
3 = _ 0 -7 A2My; 0 -1 0
v - 2(erz) M (0 K‘, M erz

which is negative definite as a function of e2. Thus the conditions for Matrosov’s
theorem are satisfied and (S, e2,é2) — 0.

To show that e;, é; — 0, we use a simple linear systems argument. Consider
the linear system

éi+Mei=u => é=-Me+u

This is a stable linear system (A\; > 0) and hence u — 0 implies ¢; — 0 as
t — co. Therefore S — 0 implies that e; (and hence é;) converge to zero.

Chapter 4

Primitives for robot control

This chapter presents a constructive method for describing hierarchical control
systems for robots with contact constraints. Our goal is to define a set of
language primitives which can be used as building blocks to construct complex
controllers for complex systems. The actions of the individual primitives are
derived from the mathematical structure of the equations of motion derived in
the previous chapter.

4.1 Introduction

Motivation

A multi-fingered robot hand can be modeled as a set of robots which are con-
nected to an object by a set of constraints. The analysis presented in Chapter 3
allows us to model this interconnection and create a new dynamic system which
encodes the constraints. In fact, this procedure is sufficiently straightforward
that it may be automated: by specifying the contact constraint between the
robots and the object, the new equations of motion for the composite robot
can be derived using a symbolic manipulation program. Computer programs
have been used to automatically generate robot equations of motion for some
time (see (18] and the references therein). Part of the goal of this chapter is
to describe the manner in which this can be done for robots obeying contact
constraints.

More importantly, in the context of robotics we are interested in construct-
ing controllers for robot systems. Section 3.4 showed control laws which could
be applied to a very general class of robots. In an actual robot control sys-
tem, it may not be desirable to perform the feedback compensation only to
the composite robot. The computations that must be carried out at this level
are complex and may take too much time to compute for a satisfactory control

56

Primitives for robot control

implementation [69, 70]. To avoid these difficulties, we would like the ability to
distribute our control at different levels and among different processing units.

Controlling systems with many degrees of freedom performing a coordinated
task is of interest not only to robotics researchers but also to the biomechanics
community. The study of human motor control mechanisms led the Russian
psychologist Bernstein to question how the brain could control a system with so
many different degrees of freedom interacting in a complex fashion [41]. Many
of the properties which make mammalian motor control systems complicated
are also present in robotic systems. By studying some of the control structures
present in biological systems, we can gain insight into the design of robot control
systems.

To some degree of accuracy, a human finger can be modeled as a set of rigid
bodies (bones) which are actuated by muscles. Control of these muscles is dis-
tributed throughout the central nervous system [32]. The first level of motor
control occurs at the spinal cord, which is responsible for reflex responses, such
as the knee jerk in humans. Higher levels of control occur in the brain stem
and motor cortex, with both hierarchical and parallel pathways to the muscle
present. These higher levels of motor control integrate motor commands and
allow more sophisticated processing of stimula to affect muscle behavior. The
difference levels of motor control are characterized by differences in response
times, typically 30-50 msec for the spinal loop and 150-250 msec for higher
level control loops [33). These differences in time scale are also seen in robotic
systems, where fusion of complex sensor information requires increased compu-
tational complexity.

Another important feature of biological systems is redundancy. From the
mechanics point of view, the redundancy has two chief forms.

Kinematic redundancy refers to an excess in the number of degrees of free-
dom present over that needed to perform a generic task. Thus a human arm has
(roughly) seven degrees of freedom even though only six are needed to locally
position the hand in space. These excess degrees of freedom serve many pur-
poses. Since the range of motion of the individual joints is limited, kinematic
redundancy can be used to increase the volume of the reachable configurations.
In a more local context, redundancy can be used to optimized the arm config-
uration based on the task to be performed. Thus we might use different arm
configurations when writing on a chalk board versus lifted a heavy object. The
first task requires dexterity while the second requires strength and stability.
Different arm configurations can be used to maximize these properties [43].

Actuator redundancy is indicated by the presence of internal forces which
cause no net motion on the underlying system. In lifting a box we may use large
or small grasping forces without affecting the location of the box. In biological
systems actuator redundancy is often inherent in the muscle actuation system.
Internal forces in muscles can be used to alter the characteristics of the overall
system [43]. By pretensing muscles in the arm, the impulse response of the arm
is considerably changed.

4.1 Introduction

57

In designing controllers for robot systems, it is useful to consider systems
with some of the same properties as biological robots. In doing so, we gain
an understanding not only of robot control, but also insight into the biological
control process. In particular, we will be interested in allowing specification of
hierarchical control systems for robots with kinematic and actuator redundancy.

Background

The robotics and control literature contains a number of topics which are ap-
plicable to the approach presented here. We limit ourselves to a brief review
of robot programming languages and hierarchical control mechanisms. Other
relevant references will be presented in the body of the chapter.

Robot programming languages

Traditional robot programming languages, such as AML, Robot-BASIC, and
VAL II, are general purpose computer languages with special features added
to allow specification of robot motion [22, 29]. By incorporating the ability
to perform coordinate transformations, communicate with sensing and control
hardware, and alter program flow based on sensor measurements, robot pro-
gramming languages allow complicated tasks to be implemented. The control
algorithms underlying robot programming languages usually employ a two stage
hierarchy. Using kinematics calculations and joint interpolation, a task is con-
verted to a set of joint angle trajectories. These trajectories are passed to a low
level controller which executes them using feedback to insure performance and
accuracy.

A more general description of motion is possible using Brockett’s Motion
Description Language [14, 28]. One of the key ideas is the use of sequences
of triples (u, K, T) which convey trajectory information, feedback control and
termination conditions to a PostScript-like interpreter. The controller construc-
tion described in this chapter was motivated by descriptions of MDL. Qur work
utilizes the explicit form of robot dynamics and contact constraints to describe
the organization and control of complex robots; Brockett’s work is less explicit
but more complete in the description of sequences of motion.

An object oriented approach similar to that presented here has been de-
scribed by Cutkosky, Howe and Witkin [23]. They present a method for de-
scribing the dynamics of a robot hand grasping an object. The advantage of the
method they propose is that it is very general and does not rely on rigid contact
models, allowing compliant fingertips to be considered. Their method is closely
related to graph theoretic methods in mechanics which keep track of general-
ized forces and displacements along branches of a graph representing the system
interconnection. The main emphasis of their approach is on system description
rather than controller design. It is precisely because we are interested in design-
ing controllers that we have initially limited the class of interconnections we are

58

Primitives for robot control

allowed.

Hierarchical control

Time delays inherent in biological motor systems indicate that control is decen-
tralized, occurring at many different levels of the central nervous system. For
the same reasons that biological controllers are decentralized, it is desirable to
construct hierarchical controllers in a computer controlled robot system. Com-
munication and computation delays make nested levels of control and attractive
method for providing high system bandwidth while coordinating many degrees
of freedom. These motivations are not limited to robotics: there is a large
literature concerned with the use of decentralized control for general dynamic
systems.

Centralized control has been defined as a case in which every sensor’s output
influences every actuator [84]. The study of large scale systems led to a number
of results concerning weakly coupled systems and multi-rate controllers. Graph
decomposition techniques permitted the isolation of sets of states, inputs, and
outputs which were weakly coupled. This decomposition simplified stability
analyses and controller design. In multi-processor control systems, decentralized
control is often mandated by restrictions on the communication rates between
processors. Hierarchical controllers limit communication to adjacent levels of
the the hierarchy.

Robotic applications of hierarchical control are exemplified by Clark’s HIC [19],
an operating system intended to manage servo loops found in robot controllers.
Clark emphasises distributed processing and interprocessor communication in
his description of HIC. He also notes that in executing a task it is necessary to
switch between different planning procedures at appropriate points in a task.
Thus, writing may be decomposed into grasping a pencil, transporting it, and
making marks on a sheet of paper. Each of these subtasks requires a differ-
ent controller to properly reflect the constraints on the system. Many of the
same considerations are present in our work. However, the approach here is
considerably more explicit in the areas of controller construction and analysis.

Overview

The fundamental objects in our robot specification environment are objects
called robots. In a graph theoretic formalism they are nodes of a tree structure.
At the lowest level of the tree are leaves which are instantiated by the define
primitive. Robots are dynamical systems which are recursively defined in terms
of the properties of their daughter robot nodes. Inputs to robots consist of
desired positions and conjugate forces. The outputs of a robot consist of actual
positions and forces. Robots also possess attributes such as inertial parameters
and kinematics.

4.1 Introduction

59

There are two other primitives which act on sets of robots to yield new
robots, so that the set of robots is closed under these operations. These prim-
itives (attach and control) may be considered as links between nodes and
result in composite robot objects. Nodes closer to the root may possess fewer
degrees of freedom, indicating a compression of information upon ascending the
tree.

The attach primitive reflects geometrical constraints among variables and
in the process of yielding another robot object, accomplishes coordinate trans-
formations. Attach is also responsible for a bidirectional flow of information:
expanding desired positions and forces to the robots below, and combining ac-
tual position and force information into an appropriate set for the higher level
robot. In this sense the state of the root robot object is recursively defined in
terms of the states of the daughter robots.

The control primitive seeks to direct a robot object to follow a specified
“desired” position/force trajectory according to some control algorithm. The
controller applies its control law (several different means of control are available
such as PD and computed torque) to the desired and actual states to compute
expected states for the daughter robot to follow. In turn, the daughter robot
passes its actual states through the controller to robot objects further up the
tree.

The block diagram portion of Figure 4.1 may be seen to be an example
of a robot system comprised of these primitives. Starting from the bottom:
two fingers are defined; each finger is controlled by muscle tension/stiffness
and spinal reflexes; the fingers are attached to form a composite hand; the
brainstem and cerebellum help control and coordinate motor commands and
sensory information; and finally at the level of the cortex, the fingers are thought
of as a pincer which engages in high level tasks such as picking.

The material in this chapter arose from joint work with Curt Deno, Kris
Pister and Shankar Sastry [26, 24]. A complete description, including an imple-
mentation of the basic primitives using Mathematica is described in a technical
memo [25].

60

Primitives for robot control

Motor Cortex Sensory Cortex
Sensory &
Motor Cortex
Brain
Response time
100-200 ms
Cerebsllum,
Brainstem, &
Thalamus
Pincer Grip
Spinal Cord Composite System
Response time
30ms

Spinal reflexes Spinal reflexes

Forsfinger Thumb
Muscles & Musdes &
Joints Joints

Figure 4.1: Hierarchical control scheme of a human finger [26]. At the high-
est level, the brain is represented as sensory and motor cortex (where sensory
information is perceived and conscious motor commands originate) and brain-
stem and cerebellar structures (where motor commands are coordinated and
sent down the spinal cord). A pair of fingers forms a composite system for
grasping which is shown integrated at the level of the spinal cord. The muscles
and sensory organs of each finger form low level spinal reflex loops. These low
level loops respond more quickly to disturbances than sensory motor pathways
which travel to the brain and back. Brain and spinal feedback controllers are
represented by double lined boxes. (Figure courtesy of D. Curtis Deno)

4.2 Primitive definitions

61

4.2 Primitive definitions

In this section we describe a set of primitives that gives us the mathematical
structure necessary to build a system and control specification for dynamical
robot systems. We do not require any particular programming environment or
language, borrowing instead freely from languages such as C, Lisp and C++.
As much as possible, we have tried to define the primitives so that they can be
implemented in any of these languages.

As our basic data structure, we will assume the existence of an object with
an associated list of attributes. These attributes can be thought of as a list
of name-value pairs which can be assigned and retrieved by name. A typical
attribute which we will use is the inertia of a robot. The existence of such an
attribute implies the existence of a function which is able to evaluate and return
the inertia matrix of a robot given its configuration.

Attributes will be assigned values using the notation attribute := value. Thus
we might define our inertia attribute as

— mﬂ% + mglg mgalila 008(01 - 92)
M(6) = [malyl3 cos(6, - 62) myl3 (41)

In order to evaluate the inertia attribute, we would call M with a vector 8 € R2.
This returns a 2 x 2 matrix as defined above. The Coriolis/centrifugal attribute,
C, and friction/gravity /nonlinear attribute, N, are defined similarly.

To encourage intuition, we will first describe the actions of the primitives for
the case of non-redundant robots. Additionally, we ignore the internal forces
that are present in constrained systems. Extensions to these cases are presented
in Section 4.4.

The robot object

The fundamental object used by all primitives is a robot. Associated with a
robot are a set of attributes which are used to define its behavior:

M inertia of the robot

C Coriolis/centrifugal vector

N friction and gravity vector

rd return position and force information about the robot
wr send position and information to the robot

The rd function returns the current position, velocity, and acceleration of
the robot, and the forces measured by the robot. Each of these will be a vector
quantity of dimension equal to the number of degrees of freedom of the robot.
Typically a robot may only have access to its joint positions and velocities, in
which case Z and F will be nil.

The wr function is used to specify an expected position and force trajectory
that the robot is to follow. In the simplest case, a robot would ignore everything

Primitives for robot control

0
—_ Actuators Robot Sensors |0
wr Dynamical rd
-1 r System ‘ y
pre—
M,C,N

Figure 4.2: Example of the define primitive. The robot shown here corresponds
to a robot with torque driven motors and only position and velocity sensing.

but F and try to apply this force/torque at its actuators. As we shall see later,
other robots may use this information in a more intelligent fashion. We will
often refer to the arguments passed to write by using the subscript e. Thus z.
is the expected or desired position passed to the wr function.

The task of describing a primitive is essentially the same as describing how it
generates the attributes of the new robot. The following sections describe how
each of the primitives generates these attributes. The new attributes created
by a primitive are distinguished by a tilde over the name of the attribute.

DEFINE primitive

Synopsis:
DEFINE(M, C, N, rd, wr)

The define primitive is used to create a simple robot object. It defines the
minimal set of attributes necessary for a robot. These attributes are passed
as arguments to the define primitive and a new robot object possessing those
attributes is created:

M@) = M(6)

G,6) = C(,6)

N(9,6) = N(,6)
rd() = rd()

151‘(0,, ée: 53; Tc) = w"'(aes ée; ée, 7'e)

Several different types of robots can be defined using this basic primitive. For
example, a DC motor actuated robot would be implemented with a wr function
which converts the desired torque to a motor current and generates this current

4.2 Primitive definitions

63

by communicating with some piece of hardware (such as a D/A converter). This
type of robot system is shown in Figure 4.2. On the other hand, a stepper motor
actuated robot might use a wr function which ignores the torque argument and
uses the position argument to move the actuator. Both robots would use a rd
function which returns the current position, velocity, acceleration and actuator
torque. If any of these pieces of information is missing, it is up to the user to
insure that they are not needed at a higher level. We may also define a payload
as a degenerate robot by setting the wr argument to the nil function. Thus
commanding a motion and/or force on a payload produces no effect.

ATTACH primitive

Synopsis:
ATTACH(J, G, h, payload, robot-list)

The attach primitive is used to describe constrained motion involving a
payload and one or more robots. Attach must create a new robot object from
the attributes of the payload and of the robots being attached to it. The spec-
ification of the new robot requires a velocity relationship between coordinate
systems (J6 = GT z), an invertible kinematic function relating robot positions
to payload position (z = h(f)), a payload object, and a list of robot objects
involved in the contact.

The only difference between the operation of the attach primitive and the
equations derived for constrained motion of a robot manipulator is that we now
have a list of robots each of which is constrained to contact a payload. However,
if we define 8z to be the combined joint angles of the robots in robot-list
and similarly define Mg and Cgr as block diagonal matrices composed of the
individual inertia and Coriolis matrices of the robots, we have a system which
is identical to that presented previously. Namely, we have a “robot” with joint
angles fg and inertia matrix Mg connected to an object by a constraint of the
form i

Jbr=GTz (4.2)

where once again J is a block diagonal matrix composed of the Jacobians of the
individual robots. To simplify notation, we define A := J-!GT so that

fp = Az (4.3)
The attributes of the new robot can thus be defined as:
M = M,+ATMgA (4.4)
C = Cp+ ATCrA+ATMpA (4.5)
N := N,+ATNg (4.6)
rd() = (h(8r), At6r, Atdr+ A*0r, AT7R) (4.7)

Gr(Te, Ee, Be, Fe) = wrr(h™'(z.), Ai., AZ.+ Ai., ATTF.) (4.8)

64

Primitives for robot control

8.)
Oe Ry 0
0.

Te Mlycli Nl
. 0
0. Ry o
6.
Te M3, C3, N,
Payload
Mp, Cp, Np

M,C, N

Figure 4.3: Data flow in a two robot attach. In this example we illustrate the
structure generated by a call to attach with 2 robots and a payload (e.g. a
system like Figure 4.5). The two large interior boxes represent the two robots,
with their input and output functions and their inertia properties. The outer
box (which has the same structure as the inner boxes) represents the new robot
generated by the call to attach. In this example the robots do not have accel-
eration or force sensors, so these outputs are set to nil.

where Mp,Cp, N, are attributes of the payload, Mg and Cr are as described
above, and Np is a stacked vector of friction and gravity forces. This construc-
tion is illustrated in Figure 4.3.

The rd attribute for an attached robot is a function which queries the state
of all the robots in robot-1ist. Thus fg in equation (4.7) is constructed by
calling the individual rd functions for all of the robots in the list. The 8 values
for each of these robots are then concatenated to form 6r and this is passed
to the forward kinematic function. A similar computation occurs for 0g, 0r
and 7r. Together, these four pieces of data form the return value for the rd
attribute.

In a dual manner, the ur attribute is defined as a function which takes
a desired trajectory (position and force), converts it to the proper coordinate
frame and sends each robot the correct portion of the resultant trajectory. A
special case of the attach primitive is its use with a nil payload object and
G = I. In this case, Mp, Cp, and N, are all zero and the equations above
reduce to a simple change of coordinates.

4.2 Primitive definitions

65

buffer control robot
¥r z4, Fyq Te | od 2 £d
M,C,N

M,C N

Figure 4.4: Data flow in a typical controlled robot. Information written to
the robot is stored in an internal buffer where it can be accessed by the con-
troller. The controller uses this information and the current state of the robot
to generate forces which cause it to follow the desired trajectory.

CONTROL primitive

Synopsis:
CONTROL(xrobot, controller)

The control primitive is responsible for assigning a controller to a robot.
It is also responsible for creating a new robot with attributes that properly rep-
resent the controlled robot. The attributes of the created robot are completely
determined by the individual controller. However, the rd and wr attributes
will often be the same for different controllers. Typically the rd attribute for a
controlled robot will be the same as the rd attribute for the underlying robot.
That is, the current state of the controlled robot is equivalent to the current
state of the uncontrolled robot. A common wr attribute for a controlled robot
would be a function which saved the desired position, velocity, acceleration and
force in a local buffer accessible to our controller. This configuration is shown
in Figure 4.4.

The dynamic attributes #, C and N are determined by the controller. At
one extreme, a controller which compensates for the inertia of the robot would
set the dynamic attributes of the controlled robot to zero. This does not imply
that the robot is no longer a dynamic object, but rather that controllers at
higher levels can ignore the dynamic properties of the robot, since they are being
compensated for at a lower level. At the other end of the spectrum, a controller
may make no attempt to compensate for the inertia of a robot, in which case
it should pass the dynamic attributes on to the next higher level. Controllers
which lie in the middle of this range may partially decouple the dynamics of the
manipulator without actually completely compensating for them. To illustrate
these concepts we next consider one possible controller class, computed torque.

66

Primitives for robot control

However, many control laws originally formulated in joint space may also be
employed since the structure of equation (3.8) has been preserved.

Computed torque controller

As we mentioned in Chapter 3.4, the computed torque controller is an exactly
linearizing controller which inverts the nonlinearities of a robot to construct a
linear system. The dynamics of the system are compensated for by the use of
feedforward torques and premultiplication of the feedback terms by the inertia
matrix of the system. As a consequence, the resulting system has no uncompen-
sated dynamics. The proper representation for such a system sets the dynamical
attributes M, €, and N to zero and uses the rd and wr attributes as described
above. We introduce z4 to refer to the buffered desired trajectory.

The control process portion of the controller is responsible for generating in-
put robot forces which cause the robot to follow the desired trajectory (available
in z4). Additionally, the controller must determine the “expected” trajectory
to be sent to lower level robots. For the computed torque controller we use the
resolved acceleration [66] to generate this path. This allows computed torque
controllers running at lower levels to properly compensate for nonlinearities and
results in a linear error response. The methodology is similar to that used in
determining that the dynamic attributes of the output robot should be zero.
The control algorithm is implemented by the following equations:

(z,%,-,) = rd()

2. = fé .
ze = [JoZe
F. = M(q)i.+C(g,4)¢+ N(q,4) + Fa

wr(zes ie; 561 Fe)

where rd and wr are attributes of the robot which is being controlled.

Note the existence of the Fy term in the calculation of F,. This is placed
here to allow higher level controllers to specify not only a trajectory but also a
force term to compensate for higher level payloads. In essence, a robot which is
being controlled in this manner can be viewed as an ideal force generator which
is capable of following an arbitrary path.

The computed torque controller defines two new attributes, K, and K,
which determine the gains (and hence the convergence properties) of the con-
troller. A variation of the computed torque controller is the feedforward con-
troller, which is obtained by setting K, = K, = 0. This controller can be used
to distribute nonlinear calculations in a hierarchical controller, as we shall see
in Section 4.3.

4.3 Example

67

o o3

Qreoo

Figure 4.5: Planar two-fingered hand. Contacts are assumed to be maintained
throughout the motion. For this particular system the box position and orien-
tation, z, form a generalized set of coordinates for the system.

4.3 Example

To make the use of the primitives more concrete we present an example of a
planar hand grasping a box (Figure 4.5) using a complicated control structure.
We shall assume the existence of the following functions

M, box inertia matrix in Cartesian coordinates
M, M, inertia matrix for the left and right fingers
Cy, C1, Cy Coriolis/centrifugal vector for box and fingers
f finger kinematics function, f : (6;,0,) — (z1,2,)
g grasp kinematics function, g : (z;,z,) — 23
J finger Jacobian, J = -%
G grasp map, consistent with ¢

rdleft, rd right read the current joint position and velocity
wrleft, wr_right generate a desired torque on the joints

where 6, 0., z;,z,, and z; are defined as in Figure 4.5.

Consider the control structure illustrated in Figure 4.6. This control struc-
ture is obtained by analogy with biological systems in which controllers run at
several different levels simultaneously. At the lowest level we use simple PD
control laws attached directly to the individual fingers. These PD controllers
mimic the stiffness provided by muscle coactivation in a biological system [42].
Additionally, controllers at this level might be used to represent spinal reflex
actions. At a somewhat higher level, the fingers are attached and considered as

68

Primitives for robot control

a single unit with relatively complicated dynamic attributes and Cartesian con-
figuration. At this point we employ a feedforward controller (computed torque
with no error correction) to simplify these dynamic properties, as viewed by
higher levels of the brain. With respect to these higher levels, the two fingers
appear to be two Cartesian force generators represented as a single composite
robot.

Up to this point, the representation and control strategies do not explicitly
involve the box, a payload object. These force generators are next attached to
the box, yielding a robot with the dynamic properties of the box but capable of
motion due to the actuation in the fingers. Finally, we use a computed torque
controller at the very highest level to allow us to command motions of the box
without worrying about the details of muscle actuation. By this controller we
simulate the actions of the cerebellum and brainstem to coordinate motion and
correct for errors.

In terms of the primitives that we have defined, we build this structure from
the bottom up

left = DEFINE(M;, C;, 0, 0, rd_left, wr_left)
pd_left = CONTROL(left, pd)
right = DEFINE(M,, C,, 0, 0, rd_right, wr_right)
pd_right = CONTROL(right, pd)
fingers = ATTACH(J, I, f, nil, pd_left, pd_right)
ff_fingers = CONTROL(fingers, feed-forward)
box = DEFINE(M,, C,, 0, 0, nil, nil)
hand = ATTACH(I, G, g, box, ff_fingers)
¢t_hand = CONTROL(hand, computed-torque)

It is helpful to illustrate the flow of information to the highest level control
law. In the evaluation of z; and #;, the following sequence occurs through calls
to the rd attribute:

hand: asks for current state, z; and z;
finger: ask for current state, z; and &,
left: read current state, 6; and 6
right: read current state, 6, and b,
finger: z;,&; ~— f(0,0,),J(0h,6,)
hand: z3, 23 — g(2;),G" 2y

When we write a set of hand forces using the wr attribute, it causes a similar
chain of events to occur.

The structure in Figure 4.6 also has interesting properties from a more tra-
ditional control viewpoint. The low level PD controllers can be run at high
servo rates (due to their simplicity) and allow us to tune the response of the
system to reject high frequency disturbances. The Cartesian feedforward con-
troller permits a distribution of the calculation of nonlinear compensation terms

4.4 Extensions to the basic primitives

69

at various levels, lending itself to multiprocessor implementation. Finally, using
a computed torque controller at the highest level gives the flexibility of perform-
ing the controller design in the task space and results in a system with linear
error dynamics.

4.4 Extensions to the basic primitives

Having presented the primitives for non-redundant robot systems in which we
ignore internal forces, we now describe the modifications necessary to include
both internal motion and internal forces in the primitives. As before, these
extensions are based on the dynamic equations given in Chapter 3 and rely on
the fact that the equations of motion of this class of systems can be expressed
in a unified way. Recall that the fundamental constraint used to generate the
equations of motion had the form

J6=GTz (4.9)

Internal motion and force can be thought of as manifestations of redun-
dancies in the manipulator, and both can be used to improve performance. A
common use of redundant motion in robotics is to specify a cost function and
use the redundancy of the manipulator to attempt to minimize this cost func-
tion [65]. If we extend our definition of the wr function so that it takes not
only an “external” trajectory, but also an internal trajectory (which might be
represented as a cost function or directly as a desired velocity in the internal
motion directions) then this internal motion can be propagated down the graph
structure. A similar situation occurs with internal or constraint forces.

The matrices J(g) and G(g) in equation (4.9) embody the fundamental prop-
erties of the constrained system. We begin by assuming that J(¢) and G(q) are
both full row rank. The null space of J(g) corresponds to motions which do not
affect the configuration of the object, i.e., internal motions. Likewise, the null
space of G(gq) describes internal forces—the set of forces which cause no motion
of the object. A complete trajectory for a robot must specify not only external
motion and force for a robot but also the internal motion and force which lie in
these subspaces.

Internal forces

To allow internal forces to be specified and controlled, we must first add them
to the rd and wr attributes. This is done by simply adding an extra value to
the list of values returned by rd and adding an extra argument to wr. Thus the
wr attribute is called as

wr(ze)ée) -;ée’ Fe) -Ft) (4'10)

where F; is the desired internal force.

70

Primitives for robot control

Internal forces are “created” by the attach primitive. The internal force
directions for a constraint are represented by an orthonormal matrix H(#) whose
rows form a basis for the null space of G(8). Since any of the daughter robots
may itself have an internal force component, the internal force vector for a
robot created by attach consists of two pieces: the internal forces created by
this constraint and the combined internal forces for the daughter robots. We
shall refer to these two components as F;; and F; 3, respectively. The force
transformations which describe this relationship are

+ Fe
ne () (FETER) () o

where TR, is the vector of external forces for the daughter robots and 7g; is
the vector of internal forces. This equation is analogous to equation (3.9) in
Section 3.3. Note that Tg,; is identical to F; 2, thus internal force specifications
required by the daughter robots are appended to the internal force specification
required due to the constraint. Expanding equation (4.11) we see the appropri-
ate definition for the new wr attribute generated by attach is

Wr(Ze, &e, Be, Fe, Fi) := wrg(--+, JTGYF, + JTHTF;), Fi 2) (4.12)

The inclusion of internal forces in the rd attribute is similar. The sensed
forces from the robots, g, are simply split into external and internal components
and converted to the appropriate internal and external forces for the new robot.
This is equivalent to inverting equation (4.11): '

F. GJ-T |0 ,
F=| Fi, |=| HI-T |0 (—‘—‘:‘—) (4.13)
Fis 0 |7 TR
It follows that
-~ -T
Fd() = (-, GI-T e, (HI™"7R,e)) (4.14)
TR,

Internal forces are resolved by the control primitive. In principle, a con-
troller can specify any number of the internal forces for a robot. Internal forces
which are not resolved by a controller are left as internal forces for the newly
defined robot. In practice, controllers will often be placed immediately above
the attached robots since internal forces are best interpreted at this level. Un-
like external motions and forces, internal forces are not subject to coordinate
change and so leaving such forces unresolved causes higher level controllers to
use low level coordinates.

4.4 Extensions to the basic primitives

71

Internal motions

Internal motions are also created by the attach primitive, this time due to a
non-square Jacobian matrix. As before, we must add arguments to the rd and
wr attributes of robots to handle the extra information necessary for motion
specification. We only assume that the redundant velocities and accelerations
are defined, so we add only those quantities to rd and wr. Since the notation
becomes quite cumbersome, we won’t actually define the rd and wr primitives,
but just specify the internal and external motion components.

Given a constraint which contains internal motions, the attach primitive
must again properly split the motion among the robots attached to the object.
Define K(8) to be a matrix whose rows span the null space of J(#). Then we
can rewrite our constraint as

(#18) () - (i) ()
Klo 1= 0o 1jo0) (4.15)
0|1 Or.i 0 0|7 i

Defining J and G as the extended Jacobian and grasp matrices,

i=(%) =(% ?) (4.16)

we see that J is full rank and so we can use it to define A = J=!G7 in equations
(4.4-4.8). This then defines the dynamics attributes created by attach. Note
that the dimension of the constrained subspace (where internal forces act) is
unchanged by this extension.

The input and output attributes are described in a manner similar to those
used for internal forces. For wr the external component of the motion is given
by

bne = A(i"f) (4.17)
= J¥GTi. + KT, (4.18)

53,6 is defined similarly. 8 . is only defined if an inverse kinematic function,
h-1, is given. Otherwise that information is not passed to the daughter robots.
As before, if the robots themselves have internal motions then these should be
split off and passed unchanged to the lower level robots.

The rd attribute is defined by projecting robot motions into an object motion
component and an internal motion component. That is

ze = h(fp.) (4.19)
t. = GtJbgp. (4.20)
2 = (1{03,,) (4.21)

Or,i

72

Primitives for robot control

Z. and £; are obtained by differentiating the expression for &. and ;.

Controllers must also be extended to understand redundant motion. This
is fundamentally no different than control of an ordinary manipulator except
that position information is not available in redundant directions. Thus the
computed torque law would become

F=M(qg) (Ze,d;; f.‘;.e;{-:éf{pec) +C(,9) (::) + N(q,49) (4.22)

Motion specification for such a control law would be in terms of a position tra-
jectory z.(-) and a velocity trajectory Z;(-). If a controller actually resolves the
internal motion (by specifying &; 4(-) based on a pseudo inverse calculation for
example), then the internal motion will be masked from higher level controllers;
otherwise it is passed on.

Control laws commonly use the position of the object as part of the feedback
term. This may not always be available for systems with non-integrable con-
straints (such as grasping with rolling contacts). If the object position cannot
be calculated from 6 then we must retrieve it from some other source. One
possibility is to use an external sensor which senses z directly, such as a cam-
era or tactile array. The function to “read the sensor” could be assigned to
the payload rd function and attach could use this information to return the
payload position when queried. Another possible approach is to integrate the
object velocity (which is well defined) to bookkeep the payload position.

Some care must also be taken with the evaluation of dynamic attributes for
robots which do not have well defined inverse kinematic functions. There are
some robot control laws which use feedforward terms that depend on the desired
output trajectory, e.g., M(z4)Z4. The advantage of writing such control laws is
that this expression can be evaluated offline, increasing controller bandwidth.
This calculation only makes sense if the desired configuration, ¢4, can be written
as a function of z4; and more generally if ¢ can be written as a function of z.
One solution to this problem is to only evaluate dynamic attributes of a robot
at the current configuration. Assuming each robot in the system can determine
its own position, these attributes are then well defined. For all the control laws
presented in this paper, M, C and N are always evaluated at ¢, the current
configuration.

4.5 Discussion

Working from a physiological motivation we have developed a set of robot de-
scription and control primitives consistent with Lagrangian dynamics. Starting
from a description of the inertia, sensor, and actuator properties of individual
robots, these primitives allow for the construction of a composite constrained
motion system with control distributed at all levels. Robots, as dynamical

4.5 Discussion

73

systems, are recursively defined in terms of daughter robots. The resulting hi-
erarchical system can be represented as a tree structure in a graph theoretic
formalism, with sensory data fusion occurring as information flows from the
leaves of the tree (individual robots and sensors) toward the root, and data ex-
pansion as relatively simple motion commands at the root of the tree flow down
through contact constraints and kinematics to the individual robot actuators.

One of the major future goals of this research is to implement the primitives
presented here on a real system. This requires that efforts be made toward
implementing primitives in as efficient fashion as possible. The first implemen-
tation choice is deciding when computation should occur. It is possible that the
entire set of primitives could be implemented off-line. In this case, a controller-
generator would read the primitives and construct suitable code to control the
system. A more realistic approach is to split the computation burden more
judiciously between on-line and off-line resources. Symbolically calculating the
attributes of the low level robots and storing these as precompiled functions
might enable a large number of systems to be constructed using a library of
daughter robot systems. Although the expressions employed are continuous
time, in practice digital computers will be relied upon for discrete time imple-
mentations. This raises the issue of whether lower computation rates may be
practical for higher level robots/controllers.

In addition to implementation issues, there are still several theoretical issues
which we hope to address. We would like to have stability proofs for classes
of control hierarchies, e.g. any hierarchy with a computed torque controller
at the highest level and only feedforward controllers below it can be shown
to be exponentially stable. There is also no provision in the primitives for
dynamics which can not be written in the form of equation (3.8). Adaptive
identification and control techniques may be useful in cases where unmodeled
dynamics substantially affect system performance.

74

Primitives for robot control

box trajectory

CONTROL | Computed
Torque

e

ATTACH | Grasping
Constraint

N

CONTROL | Feed~ Box DEFINE
forward

ATTACH

CONTROL | PD PD CONTROL
| |
Left Right
DEFINE Finger| Figger

Figure 4.6: Multi-level computed torque and stiffness (PD). Controllers are used
at each level to provide a distributed control system with biological motivation,
desirable control properties, and computational efficiency.

