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Abstract

Designing an integrated circuit with over one hundred thousand components is a significantly
complicated task; impossible to handle without computing aids. Computer-aided design tools are
used in all aspects of the design: logical design of functional units, physical design of gates and
modules, placement and interconnect routing, logical and timing verification, and management of
design data. Of these, the automatic design of the logic components, referred to as logic synthesis,
was the last to come about; an indication of the inherent difficulty of this task. There was a lack of
sophisticated logic optimization techniques needed to generate high quality results. This prompted
research in this area and as a result there are now several commercially available design aids. Thus
far, logic synthesis has largely concentrated on combinational logic. This is an incomplete view,
since digital circuits are, in general, sequential in nature. This thesis attempts to overcome this
limitation. 1t presents techniques for the optimization of sequential logic circuits. In particular,
it considers extensions of known combinational logic optimization techniques that are applicable
in sequential logic synthesis. The contributions are in two areas. In the first part it is shown
how existing combinational logic optimization techniques can be directly applied in the expanded
context of sequential logic synthesis. The presented approach maximally exploits combinational logic
optimization techniques, i.e. it can potentially detect any logical relationships that exist between
any two gates in the circuit, they need not be part of the same combinational logic block. In
the second part, techniques for the optimization of multi-level circuits with multiple-valued inputs
are presented. Logic optimization techniques used in multi-level circuits have been extended to
handle multiple-valued inputs. In addition to being a significant result in its own right. this has
direct application in the state assignment problem in sequential logic synthesis. In both these areas.

theoretical results are presented and implementation issues and practical experiences discussed.
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Chapter 1

| Introduction

Imperious Prima flashes forth
Her edict “to begin it”:

In gentler tones Secunda hopes
“There will be nonsense in it.”

- Lewis Carroll, “Alice in Wonderland”

This thesis examines the problem of automatically synthesizing digital logic cir-
cuits. In particular, logic circuits with memory elements are considered; i.e. circuits that
exhibit sequential behavior. This introductory chapter is organized as follows. First, the role
of logic synthesis in the design of visi (Very Large Scale Integration) circuits is explained.
Next, the problem domain of sequential logic synthesis is introduced. A classification of
problems in this area is presented and previous work done for these problems is described.
Then the scope of this thesis is defined with respect to these problems. This chapter con-

cludes with the organization of the rest of the thesis.

1.1 VLsi Design and Logic Synthesis

The design of a digital logic system goes through several stages. The typical design

flow is as follows:

Design Specification The desired behavior of the system is specified at some level of
abstraction. The exact level of detail may vary depending on the designers and the

specific system heing designed.
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Design Partition Typically systems being designed are sufficiently complex to merit being

broken up into smaller sub-systems in order to make the design task more tractable.

Logic Design Here the sub-system specifications are given structure. They are converted
tointerconnected logic elements such as gates, logic modules (e.g. adders) and memory
elements. Part of the design specification typically includes some constraints that the
final design must meet, such as chip area and delay through the logic. Since the design
may not be ready for physical layout, the area and delay are approximated at this
level.

Physical Design After the individual components and their interconnections for each in-
tegrated circuit (IC) in the system have been specified, they have to be mapped to
a physical layout that specifies the individual transistors and their interconnection.
In addition, all the IC’s in the system need to be placed and interconnected on a

collection of printed circuit boards.

Several iterations through one or more of these stages may be needed before the design
meets its specification.

While the above design flow has remained largely unchanged, integrated circuits
have seen a rapid increase in complexity over the last two decades. Crossing the 100,000
mark in the number of transistors per IC (or chip) marked the entry into the era of very
large scale integration (vLsI). Since then it has been possible to design and manufacture IC’s
with a few million transistors. The complexity presented in the design of circuits involving
such a large number of components cannot be managed without computing aids of some
sort. As a result a wide variety of Computer Aided Design (CAD) tools have been developed
for helping designers with various aspects of the design. These tools perform two kinds of

tasks:

1. Routine Tasks: Several tasks in the design process are routine (e.g. design rule check-
ing). These can be easily and efficiently automated making the task at hand faster

and less error prone.

8]

. Searching Large Design Spaces: The large number of components result in a combi-
natorial explosion when we consider the possibilities at several stages in the design

process. Physical placement and routing is a classic example of this. Design tools per-
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-form an efficient search of the solution space which would not be possible for human

designers.

In either case, these tools result in vastly reduced design time. This translates into cheaper
design costs as well as faster time to market a product. These advantages have made CAD
tools an integral part of vLsI design. The following areas have been addressed by design

tools. They are stated here in rough chronological order of development.

Verification At several stages during the design, parts of the circuit need to be checked
to assure that they meet the timing and/or logical requirements for the design. Tra-
ditionally, this has been done by simulating the circuit. Logic and timing simulators
have been developed that are capable of handling significantly complex circuits. In
recent years, formal verification techniques are gradually replacing simulation for logic

verification.

Physical Design The circuit designer’s view of the integrated circuit is a geometric view of
overlapping polygons representing transistors and their interconnects. Physical design
tools enable design of gates comprising of several transistors, modules consisting of
several gates, the placement of these modules and gates in a two dimensional plane
and the routing of interconnections between these for each Ic, and placement and

routing of IC’s on printed circuit boards.

Design Management and Tool Integration Efficient management of the large amount
“of data needed to store the different parts of the design in its various stages is a
formidable task. Design management tools handle the large databases needed for this
purpose. These databases also permit various tools working on a design to communi-

cate with each other since all of them now interface with the same database.

Synthesis The logic design phase was the last to see some degree of automation. This is
an indication of its inherent difficulty and complexity.” Currently, this is also the most
time consuming part of the design process. Synthesis efforts can be classified into two

categories based on their starting and ending points.

Behavioral Synthesis A description of the input-output behavior of the system is
converted to structure in the form of interconnected blocks of combinational logic

and memory elements. The blocks of combinational logic may have some known
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functionality, e.g. a 16-bit adder, or may be specified as logic equations. It
has been difficult for design tools to achieve design quality comparable to that
attainable by human designers. As such these design tools are mainly of research
interest and this phase is still dependent on the skill of designers. (In [53] a

review of this subject is presented.)

Logic Synthesis The translation of memory elements and combinational logic blocks
(described as equations) into a set of interconnected primitive elements such as
gates and latches is termed logic synthesis. These primitive elements may be
part of a pre-designed library that is used in conjunction with a particular design
style (such as standard cell, sea of gates etc.). Since logic synthesis tools must
produce results that are comparable with those produced by human designers,
design optimization is a very important part of any tool. The metrics used to
evaluate the result are the size of the resulting circuit (which will impact the
final area), its delay (which determines the throughput or performance) and its

testability. These metrics will be examined in Section 1.2.1.

1.2 Sequential Logic Synthesis

The work presented in this thesis is concerned with design aids for synthesis.
In particular logic synthesis involving memory elements is considered, which is termed
sequential logic synthesis. Figure 1.1 shows a general schematic of a sequential digital logic
circuit. This has two parts; combinational logic and memory elements. The blocks of
combinational logic each compute an arbitrary Boolean logic function. Each block consists
of logic gates, such as AND, OR, NOT, connected to implement this function. Typically the
interconnection of these gates within a combinational logic block is acyclic. The memory
elements are used to store data between successive computations of the logic blocks. Thus
their introduction results in the circuit storing the past history of inputs. As a result they are
thought of as exhibiting sequential behavior, i.e., the circuit operates on input sequences and
produces output sequences. This is in contrast to a combinational logic circuit, which has
no memory and therefore produces a single output for a single input. The memory elements
are referred to as latches since they latch in the data present at their inputs. (A note on the
drawing conventions used in the sequel. Combinational logic is drawn using conventional

gate symbols or shaded ovals. Latches are depicted by rectangles.) This research focuses on
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Memory Element

Combinational Logic

Figure 1.1: General Sequential Circuit

a special class of digital circuits, viz. synchronous digital circuits. These circuits have the
property that all memory elements latch in their data synchronously with respect to a clock
signal that is common to the circuit. A large percentage of all circuits designed fall into
this category. Most existing research efforts in this area may be classified as combinational
logic synthesis since they deal with only the combinational parts of the design. The memory
elements are considered as if sacred antl are not modified after their initial introduction.
This has traditionally been the case because combinational logic optimization has been well-
studied in the past and those results can be exploited here. Very little work that exploits
the ability to modify the memory elements has been done. The techniques proposed in this
thesis go beyond combinational logic optimization inasmuch as they consider altering the

combinational parts as well as the memory elements during design optimization.

1.2.1 Problem Classification

This section examines the various problems that arise in design optimization during

sequential logic synthesis. These may be classified along three orthogonal axes.
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1: Optimization Criterion

Traditionally, the most important optimization criterion during IC design has been
minimizing the size of the resulting circuit. The size is measured in terms of the area
occupied by the layout. The reason for this pre-occupation with minimum area circuits has
been the correlation between the area'and the cost of the final circuit. In I1C manufacture, the
yield (or the percentage of non-faulty components) is an exponentially decreasing function
of the size of the 1c [54]. Thus, larger circuits tend to have smaller yields which results in
higher cost per working component. However, in recent years the increasing maturity in Ic
fabrication has resulted in more stable processes which have increased the size of circuits
capable of being manufactured with acceptable yields. As a result, area optimization has
become less important. However, to say that area optimization is not important any longer
is inaccurate. With increasing silicon real estate being available, the demands for it have
also increased. Designers are putting more and more functionality on a single chip, and
would like to have additional area available for adding resources, such as on-chip memory.

There has been an increasing demand for higher performance from circuits in the
past decade. This arises due to higher computational needs for complex computations as
well as increased volume of information being processed. In the context of synchronous
sequential circuits, the performance of a circuit is measured in terms of the cycle time of
its system clock. This determines the throughput of the circuit. If a synthesis tool does
not address the issue of meeting the performance constraint on a design, then it is counter-
productive to the very use of synthesis. Designers would (and do) spend a significant amount
of time correcting the output of synthesié tools in order to meet the timing constraints.
Currently, for most applications it seems that performance is the paramount optimization
metric.

Once a circuit is manufactured, it needs to be tested to ensure that it has no
manufacturing defects. These tests are input stimuli that distinguish between good and
faulty circuits. Traditionally, testing has been considered to be a post design activity,
i.e. tests are determined only after the circuit design is complete. Recent research has
shown that testability considerations can be included as part of the design process. The
resulting circuits have higher coverage of potential faults as well as shorter test sequences in
comparison with those designed without these considerations. The final design is evaluated

in terms of its testability, which is measured as some function of the fault coverage and
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length of tests. Thus, in addition to area and performance, testability has emerged as an
important optimization criterion.

It should be pointed out that in a typical design scenario the desired metric is
some combination of performance, area and testability. The testability requirements are
specified in terms of the minimum acceptable coverage under some fault model. Typically
the performance constraints come from the system specification and it does not pay to do
any better than what is required. The optimization goal then is to minimize the area,
maximize the testability (providing at least the minimum acceptable coverage) and meet
the specified performance constraint.

A final caveat: The word optimization is used in logic synthesis much in the same
way as it is in the context of optimizing compilers than in the strict mathematical sense,
i.e., the quality of the output is improved with respect to some metric as opposed to finding

some global maximum or minimum.

2: Input Specification

Inputs may be specified in several different ways to a logic synthesis system. The
most common way is to specify a set of Boolean equations that describe the combinational
logic blocks and the memory elements connecting the logic blocks. Equivalently, the com-
binational logic blocks may be specified as an interconnection of logic gates. These two
specifications are considered equivalent since there always exists a trivial mapping that
converts one to the other. This form of the specification is referred to as a Boolean spec-
ification. The specification is said to be mapped if the gates and memory elements in the
speéiﬁcation refer to specific members of some cell library. In general, mapped specifica-
tions are outputs of synthesis systems; however they may also be inputs. An instance of
the mapped specification occurs in technology re-mapping of a design. Here, an already
existing design needs to be re-implemented in a new technology. Logic synthesis may be
used to improve the absolute quality of the previous design or to modify the implementation
to exploit/suit the new technology.

The system being described typically captures some real life situation. In addi-
tional to variables that have binary or Boolean values, the specification may include symbolic

variables that represent the real-life variables. As an example, Figure 1.2 has a description
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of the classic Mead Conway traffic light controller [55] in the BDS language taken from [69] .
The actual syntax and description is not significant here, what should be noted is the use
of non-binary-valued variables. Here the state variable representing the state of the traffic
lights is represented in symbolic form and can take on four possible values. Similarly, the
output variables representing the highway and farm lights can take on three values. Since
the logic is explicitly specified, this description is considered to be at the logic level even
" though it involves symbolic variables. This form of specification is referred to as a symbolic
specification.

Since signals in a digital circuit can have only binary values 2 the symbolic vari-
ables need to be encoded using binary-valued variables. The process of encoding replaces a
symbolic variable with a set of binary-valued variables known as encoding variables. Each
value of the symbolic variable is mapped to some binary pattern of the encoding variables
under the encoding. For example, in the case of the traffic light controller, the four state
values HG, HY, FG, FY may be represented as the bit patterns 00, 01, 10, 11 on two binary-
valued encoding variables. The resulting Boolean logic depends on the choice of encoding.
Thus, the area, performance and testability of the circuit may depend on the choice of
encoding. This gives rise to the encoding problem in logic synthesis wherein an encoding
needs to be determined for a symbolic variable such that the resulting logic is optimal under
some metric. The versions of the problem where the symbolic variables are inputs or out-
puts of the combinational logic are referred to as the input and output encoding problems
respectively. When the symbolic variable is the state of a finite state machine, then this
variable is both an input as well as an output of the finite state machine combinational
logic. The additional constraint on the encoding is that the same encoding be selected both
for the input as well as the output variable. In this case the encoding problem is referred
to as the input-output encoding, or the state assignment problem. This taxonomy was first

introduced in [56].

3: Structure of Target Logic

Combinational logic is implemented as a set of interconnected logic gates. The

depth of the logic circuit is the maximum number of gates along any path from an input

'This description has been slightly modified to highlight the symbolic nature of the variables.
?While circuits using multi-valued logic have been proposed, they have not yet become a practical reality.
Thus, it is fair to say that signals in digital circuits are binary-valued.
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MODEL traffic_light

hl, f1 ! control for highway and farm lights
st<0>, ! to start the interval timer

nextState =

c<0>, ! indicating a car on the farm road

£3<0>, t1<0> ! timeout of short and long interval timers

presentState ;

ROUTINE traffic_light_controller;
nextState = presentState; st = 0;
SELECT presentState FROM

[HG]: BEGIN
hl = GREEN; £1 = RED;
IF c AND t1 THEN BEGIN
nextState = HY; st = 1;
END;
END;
{HY] :BEGIN
hl = YELLOW; . £1 = RED;
IF ts THEN BEGIN
nextState = FG; st = 1;
END;
END;
[FG]: BEGIN
hl = RED; £1 = GREEN;
IF NOT ¢ or tl THEN BEGIN
nextState = FY; st = 1;
END;
END;
(FY] :BEGIN
hl = RED; £1 = YELLOW;
IF ts THEN BEGIN
nextState = HG; st = 1;
END;
END;
ENDSELECT;
ENDROUTINE;
ENDMODEL;

Figure 1.2: Symbolic Specification of Logic: An Example
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to an output of that circuit. Circuits of depth two are treated rather specially. These two-
level circuits can be implemented easily as programmable logic arrays (PLA’s) which have
a very regular and compact layout. This feature made this form of logic a popular choice
in the early days of CAD tools since they could do a reasonably good job of generating the
mask layout automatically. In addition, work had already been done in understanding and
optimizing two-level logic (e.g. [61]).

However, there exist some logic descriptions such as adders and parity trees which
have no compact two-level representation. These must be implemented as circuits of depth
greater than two, referred to as multi-level logic. For most circuits, permitting multiple levels
in the logic results in smaller circuits. In addition, large PLA’s tend to be slow because of
long diffusion lines that need to be discharged 3. Even though multi-level logic typically
has more gates from an input to output than two-level logic, yet it may be faster since it
does not have the problem of long diffusion lines. Finally, it is noted that two-level logic
is always an option even with multi-level logic, since it is just a special case. These factors

result in multi-level logic being preferred to two-level logic.

" The Problem Space

The three issues described above, viz. optimization criterion, input specification
and structure of target logic, form orthogonal axes that help define the space of problems
in sequential logic synthesis. Since each of the three axes permits several possibilities, the
complete problem space is their cartesian product. For example, one point in this space
is the area optimization problem for two-level logic implementation with Boolean input
specification.

In the next section, the previous work done in this general area is described, as
well as how it relates to these problems. This will establish the open problems and provide

the motivation for the work presented in this thesis.

1.2.2 Previous Work

There has been a substantial amount of work in the various problems described in
Section 1.2.1. Rather than describe the previous work separately for each of the individual

problems, the main approaches that have been used are examined, and it is shown how

3This problem is partially solved in pre-charged PLA’s with metal lines; however at the expense of more
complex clocking schemes and/or additional area.
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they apply for the various problems. Where the volume of literature in a particular area is

extensive, only a few representative works have been cited.

Combinational Logic Optimization

Combinational logic optimization is used in sequential logic synthesis as follows.
The combinational logic blocks are first separated from the memory units, optimized indi-
vidually and then reconnected. The largest volume of work done in logic synthesis is in this
area, perhaps because this has the largest impact on the quality of the final results.

The earliest work in combinational logic optimization can be found in the work of
Quine [61] in minimizing the product terms in two-level representations of logic functions.
Two-level logic optimization for minimum area has since then been very well-studied. Both
exact [61, 52, 20, 64] as well as heuristic solutions [9] have been presented. The results
in [63] show that exact solutions can be obtained for significantly large examples by us-
ing practically efficient algorithms. In addition, the heuristic algoritlims produce results
that match or are close to the exact solutions. For all practical purposes this problem is
considered to be solved.

Multi-level combinational logic optimization has also gained significant maturity
in the past decade. The problem here is significantly more complicated than in two-level
logic since the possibilities of restructuring the logic are limitless in comparison. Nonethe-
less, algorithms and programs that handle both area [21, 12, 8, 32, 60, 7] and performance
optimization [77, 73, 57, 6, 21, 32] have been developed. However, unlike two-level mini-
mization, the exact algorithms [62] work only on very small circuits, so it is not known how

close the state of the art is to the global optimum.

Symbolic Minimization and Encoding

The state assignment problem has been well-studied since the 60’s [39. 37, 1).
However, the first attempt to relate the problem with the final logic implementation was
made by DeMicheli et al. [59] in 1984 for two-level logic. Actually, the solution presentéd
there was the input encoding approximation to the state assignment problem. This was then
generalized in [56] to include output constraints for two-level logic. The general paradigm
followed there was to first perform a symbolic minimization of the logic description, and

then use this to generate constraints that the encoding must satisfy. The approach used
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in [79] is similar. Both of these techniques are heuristic in nature. In [30] exact solutions to
this problem have been provided, however these are not practical for any but the smallest
of circuits. -

In the case of multi-level logic the approaches have not been as rigorous as those
for the two-level case. Again this can be attributed to the greater flexibility permitted
by multi-level logic. The approaches to the encoding problems here tend to be predictive
inasmuch as they select an encoding that is likely to result in smaller logic [25, 34, 45].

Symbolic minimization for multi-level logic has not been proposed thus far.

Retiming

Retiming was introduced as a technique to improve the performance of systems
at the micro-architectural level [44, 43]. This approach exploits the ability to change the
positions of latches in the circuit. If we restrict ourselves to edge-triggered latches, then
the cycle time of the system is the longest combinational delay between latches. Thus,
it is possible to minimize the cycle time by finding positions of latches that minimize the
longest combinational path between any two latches. It has been only recently that this
work has been used at the logic level [58]. Retiming does not modify any combinational
logic in the circuit. Thus, with respect to sequential circuit optimization the two techniques
of combinational logic optimization and retiming may be viewed as duals of each other.
Combinational logic optimization considers the latch i)ositions to be fixed and modifies the
combinational logic; retiming considers the combinational logic to be fixed and modifies the

positions of latches.

Using State Transition Behavior

Sequential systems may be described by specifying their transition behavior in the
form of state transition graphs (STG’s) or equivalently as state transition tables. Figure 1.3
shows the state transition table and graph for the traffic light controller described in Fig-
ure 1.2. In the state transition table, each row describes a transition in the uhderlying finite
state machine. The transition is from present state PS under the input vector IN to next
state NS and the output produced is OUT. In the STG. the vertices represent the states. The
arcs represent the transitions. The labels of the form ‘input/output’ on each arc represent

the input vector that causes the transition and the output value produced. This is the
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not{c and 1) / hl = GREEN: f1 = RED; st = 0

ts/hi = RED; fl = YELLOW; St= 1 cand t! 7 him GREEN; fl « RED; Stm 1

not(ts) / hl = RED; fl w YELLOW; sta 0

not(ts) / hl = YELLOW: fl « RED; St= 0

not(c) ort1/ hl = RED; fl « GREEN; stw 1 t3/hle YELLOW: fl « RED; st= 1

not(not(c) ort1) / bl =« RED; fl = GREEN; 5t = 0

State Transitlon Graph: Example

PS IN NS our

HG  (not(candt1) HG  hi=GREEN;fl=RED;st=0
HG candti HY  hl= GREEN; fl= RED;st =1
HY not(ts) HY  hi= YELLOW;fl= RED;st=0
HY ts FG  hl= YELLOW;fl= RED;st=1
FG not({not{c) ort1) FG  hli= RED;{l= GREEN;st=0
FG not(c) or t1 FY  hi=RED;fl = GREEN; st =1
FY not(ts) FY  hicRED;fl= YELLOW;st=0
FY ts HG  hl=RED; = YELLOW;sl = 1

State Transition Table: Example

Figure 1.3: State Transition Tables and Graphs
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same as a symbolic description of the system, since the state is represented symbolically
(unencoded) at this level. It is possible to use information about the transition behavior
to optimize the final circuit implementation. For example, information about equivalent
states may be exploited by modifying a transition to a state s to go to an equivalent state
s' [46] or by merging equivalent states into a single state as is done in state minimization.
Alternatively, the finite state machine (FsM) may be decomposed into a set of interacting
FsM’s. There has been a lot of work done in FSM decomposition [38, 29, 2].

There is potential for exploiting more information at this level than would be
possible at the gate level. For example, information about equivalent states may be very
difficult to extract at the logic level. However, the general problem with this approach is
that it is not possible to accurately predict the impact of modifications made at this level
on the gate-level implementation. Researchers have proposed using different criteria such
as the number of edges [29] or the number of states [22] in the STG as a measure of the
complexity. However, none of these is a consistent reflection of the gate-level complexity.
The technique presented jn [2] is an exception to this. Here a reasonable estimate of the
area and/or delay is included in the decomposition technique. However, this is restricted
to two-level implementations.

It may seem that even if the input specification is in the form of a gate-level netlist,
it may be advantageous to extract its transition behavior and use that in addition to any
other techniques that can be exploited at the gate level. The problem in doing that is the
combinatorial explosion involved in the extraction. Extracting the sTG for any sequential

circuit with more than a few latches and inputs is generally considered infeasible.

Synthesis for Testability

Research in synthesis for testability sté,rted with work that related area optimiza-
tion of combinational circuits with the single-stuck-at fault model in testing [3]. Here it was
shown that a prime and redundant circuit is fully testable under the single-stuck-at fault
model. Later in [36] a synthesis method for fully testable circuits under the multiple-stuck-at
fault model was developed. Synthesis techniques for fully testable sequential circuits have
been presented in [27, 28, 23]. The relationship between circuit performance and testability
was established in [40]. Here it was shown that testability need not be sacrificed for higher

performance. The problem of delay-fault testability was tackled in [24]. Here. synthesis
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techniques for robust-path and ga.te-.dela,y-fa.ult testable circuits were presented.

There are two aspects of improving the testability properties of a circuit. The first
is increasing its testability; this has been described in the previous paragraph. The second
is making it more easily testable. This implies reducing both the computing time it takes

to derive these tests (e.g. [19]) as well as the time it takes to run these tests on the circuit
(e.g. [27D).

1.3 Thesis Overview

Since multi-level logic is the most prevalent target implementation, the work pre-
sented in this thesis will focus on this form of logic implementation. An attempt is made
to build on previous work done in combinational logic synthesis and see the natural exten-
sion of well-understood ideas there in the expanded context of multi-level sequential logic
synthesis. '

The thesis is divided into two parts. In the first part, it is demonstrated how
the dual ideas of retiming and combinational logic optimization can be combined in such
a way as to maximize the use of combinational logic optimization. The results here apply
to both area and performance optimization. While synthesis for testability is not directly
considered, the relationship between the ideas presented here and the testability of the
resulting circuits is examined.

The second part presents techniques for the symbolic minimization of multi-level
circuits with symbolic inputs. Fhis has direct ‘application in the state assignment problem
for multi-level logic.

Chapter 2 describes the theoretical results developed in combining retiming and
combinational logic optimization. The procedure that utilizes both these techniques is called
retiming and resynthesis. Sequential sub-circuits for which all the latches can effectively be
ignored are considered. This enables them to be considered as combinational circuits. For
these circuits all the latches can be migrated to the periphery of the circuit by a procedure
that is an extension of retiming. One of the main results of this chapter are the necessary and
sufficient conditions on sub-circuits for which this is possible. This result enables us to use
combinational logic optimization beyond latch boundaries; in fact it pushes combinational
optimization to its limits in the context of sequential circuits.

In Chapter 3 the implications and applications of these ideas are described. The
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relationship of retiming and resynthesis to logical testing and state assignment is examined.
Then it is shown how these ideas can be applied towards the performance optimization of
sequential circuits. A special class of sequential circuits is considered, viz. pipelined circuits.
Here the equivalence between the. performance optimization problem for pipelined circuits
and that for combinational circuits is established.

Ch@pter 4 discusses the issues involved in the practical implementation of retiming
and resynthesis as part of a sequential logic optimization system, sis [70]. Specific algorithms
are presented as well as the experiences with using these on some real designs.

The second part of the thesis considers the symbolic minimization of multi-level
circuits with multiple-valued inputs. Chapter 5 presents extensions of the various multi-
level optimization techniques used with Boolean circuits to handle multiple-valued inputs.
The main contribution of this chapter is the technique for factorization of logic expressions
with multiple-valued variables. This was the missing link in the multi-level optimization of
circuits with multiple-valued inputs. It is then shown how the results of symbolic minimiza-
tion can be used to tackle the input encoding problem. This can be used to approximate the
state assignment problem; an approximation that is valid when the primary output logic
dominates the next state logic.

The implementation of these issues uncovers some interesting problems. These
practical issues are considered in Chapter 6 along with experimental results for the input
encoding of some real designs.

Finally, Chapter 7 summarizes what has been learned from this work and considers

future directions in*this area.
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Retiming and Resynthesis
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Chapter 2

Basic Ideas

“You can draw water out of a water-well,” said the Hatter; “so I should think
you could draw treacle out of a treacle-well - eh, stupid?”

- Lewis Carroll, “Alice in Wonderland”

Over the last decade combinational logic optimization has attained a significant
level of maturity. (Some of the work done in this area was reviewed in Chapter 1.) The
problems and approaches there are well understood: almost fully in the two-level logic
case, and to a lesser extent in the multi-level logic case. However, in sequential logic
optimization their utility is restricted to individual portions of combinational logic. Logical
relationships are not exploited between gates that are separated by latch boundaries. What
is desirable is the ability to use the ideas in combinational logic optimization beyond latch
boundaries. In this direction we would like to push combinational logic optimization to
its limits, i.e., capture all the logical relationships that exist between gates in a sequential
circuit even though they may not belong to the same block of combinational logic. This
thought direction is a very natural one; it stems from the desire to build on what is already
known and forms the motivation behind the work presented in this part of the thesis. First
the application domain of these ideas is specified as a class of sequential circuits with specific
clocking methodologies. Then the suggested approach is described, which is termed retiming
and resynthesis since it combines retiming with resynthesis of combinational logic. (Most

of the work presented in this chapter was first reported in (49]).

19



20 CHAPTER 2. BASIC IDEAS
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Q
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Figure 2.1: Edge Triggered and Transparent Latches

2.1 Clocking Methodology

As mentioned in Chapter 1, only synchronous sequential circuits are considered,
i.e., all memory elements latch their data synchronously with respect to a clock signal
common to the circuit. Within synchronous circuits there is flexibility as to when the data
is latched with respect to the clock edge. This is illustrated in Figure 2.1. Let D be the
input and @ the output of the latch. In edge-triggered latches the data present at the
clock edge (the rising edge in this case) is latched and available at Q. In transparent or
level-sensitive latches, the latch is transparent during the time the clock is high, i.e. the
data input is available at the output. The data value at the end of the clock high period is
latched.

This work is restricted to an edge-triggered clocking methodology. Thus, the word
“latch” in the following exposition refers to an edge-triggered latch or a flip-flop. It may
seem that this restriction is a fairly strong one given the designers’ wisdom that transparent
latches result in higher performance. This fact is illustrated through examples in [65]. where
it is shown that by appropriately selecting the clocking parameters it may be possible to

clock a synchronous system with transparent latches significantly faster than one with edge-
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triggered ones. While that may sometimes be the case, a large fraction of Asic (Application
Specific Integrated Circuit) designs are done using edge-triggered latches [5]. The principal
reason for this is the ease of analysis of circuits with edge-triggered latches. There are
no complex “time borrowing” scenarios and designers do not have to worry about “short
paths”. Since ASIC’s are the application domain where synthesis is the predominant design
methodology, this does not seem too restrictive.

Retiming algorithms have this restriction ! and since this work uses retiming,
it is inherited. Current developments in exploiting retiming techniques with transparent

latches [71] could enable retiming and resynthesis to be applied to circuits with transparent

latches.

2.2 Overview

Sub-circuits in a sequential circuit are characterized for which the latches can ef-
fectively be ignored and thus the sub-circuit can be considered as a combinational block.
This permits existing combinational logic optimization techniques to be used on it. This
approach is more powerful than combinational logic optimization, since it examines interac-
tions between portions of logic separated by latches. As a result, the optimization process
makes full use of dependencies between gates. Moreover, it is guaranteed that it is com-
plete, i.e., the largest sub-circuit for which this can be done is determined. This ensures that
no optimization that can be obtained by considering interactions between gates is missed.
Converting this sub-circuit to a combinational logic block can be viewed as a retiming pro-
cess in which all the latches are pushed to the periphery of the sub-network. However, this
technique is more powerful than conventional retiming in that it permits negative latches
to be pushed to the periphery. This is equivalent to temporarily “borrowing” latches from
the environment, and is a legitimate operation as long as these latches are “returned” to
the environment at the end of the optimization process. This additional allowance is more
powerful since it permits a larger portion of the logic to be viewed as a single block than is
permitted by conventional latch movements using retiming. Next, this combinational logic
block may be resynthesized according to a specified cost function. This could be minimizing

the area, the delay or meeting a particular area/delay tradeoff. Conditions are specified

'Retiming algorithms need this restriction in order to compute the cycle time of the circuit in polynomial
time.
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for the legal redistribution of latches in this circuit, i.e., conditions under which the latches
borrowed from the environment can be returned. The redistribution can be done while
satisfying constraints such as minimizing the number of latches subject to a specified cycle
time (if these constraints are satisfiable) by using the algorithms described in [43]. Since
the optimization algorithms work directly on the gate-level netlist, they use the gate-level

complexity as their cost function, unlike algorithms that work on state transition graphs.

2.3 Theoretical Formulation

Let us first focus our attention on sequential circuits whose underlying topology
is acyclic. (These are also referred to as feed-forward circuits.) These circuits are modeled
by a directed acyclic graph called a communication graph? where each vertex v represents

either
a) an input/output pin or
b) a combinational logic block.

The input/output pins correspond to the primary inputs and primary outputs of
the circuit. The granularity of the combinational logic block may vary: it may be a single
gate or a larger module such as an adder. The verticesin the graph are connected by directed
edges. A restriction is placed that each input i)in has no incoming edges and exactly one
outgoing edge (a single-output source), and that an output pin has no outgoing edges and
exactly one incoming edge (a single-input sink). If a primary input is used in more than one
place in the circuit then this is captured by introducing a dummy vertex in the graph that
handles the multiple out-edges. (The out-edges are also referred to as fanout.) An internal
edge connects vertex u to vertex v if both u and v represent combinational logic blocks,
and the logic represented by v explicitly depends on the value computed at ©. A peripheral
edge connects either an input pin to the logic block that uses that input or connects a
logic block that computes the value of an output to the corresponding output pin. Each
edge e has a corresponding weight w(e) representing the number of latches between the two
vertices it connects. An example of a sequential circuit and its communication graph is
shown in Figure 2.2. Note that the multiple fanout of primary input «a is handled through

the internal vertex «’ in the graph. For simplicity in the figure. if the edge weight is 0 then

2This is related to the definition of a communication graph presented in [44).
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the edge label is omitted. A sequential circuit is alternatively referred to as a sequential
network. The terms circuit, network, and graph are used interchangeably whenever there
is no ambiguity.

A path between two vertices v; and vp in the graph is a sequence of consecutive
edges from v; to v. The weight of a path is the sum of the weights of all the edges along
the path. In Figure 2.2, the path from input b to output f has weight 0, while the path
from b to e has weight 1.

2.3.1 Retiming: An Overview

The cycle time of a synchronous sequential circuit is determined by the length of
the longest path between any two latches in the circuit. The concept of retiming exploits
the ability to move the latches in the circuit in order to decrease the length of the longest
path in the circuit while preserving its functional behavior. Retiming algorithms were first
probosed by Leiserson et al. [44, 43]. To illustrate this with a small example, consider
Figure 2.3. The circuit on the left is functionally equivalent to the circuit on the right since
delaying the output of gate g by a cycle is equivalent to delaying each of its inputs by a
cycle. The movement of latches during retiming is quantified by an integer L(v) (called the
lag of v) for each vertex v, which represents the number of latches that are to be moved in
the circuit from each out-edge of vertex v to each of its in-edges. Thus, in Figure 2.3 the
circuit on the right is obtained from the circuit on the left by retiming g by +1. Similarly,
in obtaining the circuit on the left from that on the right ¢ has been retimed by —1. For
input and output pins the lag is 0. Consider an edge e(u,v) in the circuit. Let w(e) be the
weight of the edge in the graph before retiming and w,(e) be the weight after retiming. w,

is determined from w and the lags by the following equation:
wr(e) = w(e) + L(v) — L(u)
This is used to prove a simple result that will be used frequently in the sequel.

Lemma 2.3.1 (Leiserson and Saxe) Let p be a path between input i and output j. Let
W (p) be the weight of this path. Let r be a retiming and W,.(p) be the weight of this path
after retiming. Then, W(p) = W.(p).
Proof.

Wi(p) = z w(e)

path i;—oj
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Figure 2.2: Sequential Circuits and Communication Graphs: An Example
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Figure 2.3: Retiming: An Example

w.p)= D wile)= Y (w(e)+L(v)-L(w))

path i;—o; path i;—oj
This sum telescopes:
W(p)= Y., wle)+ Lioj) - L(ii)

path i;—oj
Since L(oj) = L(%;) = 0,
W)= Y. wle)=W(p)

path i;—o;j

The following definition is from [44].

Definition 2.3.1 A legal retiming is the assignment of an integer L(v) to each vertez in

the communication graph such that for each edge e, w.(e) > 0.

For a legal retiming, the edge weights of the retimed graph must be non-negative;
indicating a non-negative number of latches on each edge. Thus, there exists a real physical
circuit corresponding to this graph. This is not possible with negative edge weights in the
retimed circuit since there is no physical circuit component corresponding to a negative
latch. A legal retiming has been shown [44] to generate a circuit that is functionally equiv-
alent to the original circuit. Figure 2.4 shows a legal retiming on the communication graph

of Figure 2.2. Here, the lag of g1 is +1 and the lag for all other vertices is 0.
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Retiming-

——

Figure 2.4: Legal Retiming: An Example

2.3.2 Extensions to Retiming

It is now shown how retiming can be extended by introducing the concept of a
“negative” latch, i.e., an edge weight in the graph that is negative. Negative edge weights are
permitted on peripheral edges only. Allowing a negative edge weight » on a peripheral edge
is equivalent to “borrowing” n latches from the environment. The latches may be “returned”
by a subsequent retiming étep, whereby n latches are forced to each edge with weight
—n. The observation that the peripheral edge weights can temporarily take on negative
values allows retiming operations and subsequent optimizations that would otherwise not
be possible. This is illustrated with the circuit in Figure 2.5(a). Consider the latch on the
connection between g2 and ¢3. In order to move this latch from its present position either
93 is retimed by —1 (for forward motion) or g2 retimed by +1 (backward motion). If ¢3
is retimed by —1, this will result in an edge weight of —1 at input d. If g2 is retimed by
+1 this will result in an edge weight of —1 at output f. Thus, neither of these retimings
is legal. However, if this “illegal” retiming were permitted temporarily, then it is possible
to gain additional advantage over what is permitted by just legal retimings. Figure 2.5(b)

shows the circuit after g3 has been retimed by —1. The edge weight of —1 on input d is
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represented by the latch in dotted lines and with the label —1 on it. At this point, all the
gates in the circuit are part of a single combinational logic block. For this logic block, it
can be shown that the functionality remains unchanged if the connection from a to g1 is
deleted, i.e., this connection is redundant or in testing parlance, untestable for a stuck-at-1
fault in the context of this combinational logic block. Thus, this connection may be deleted
and g1 replaced by a wire. This simplified circuit is shown in Figure 2.5(c). Note that this
connection (from a to g1) is not redundant in the context of the priginal combinational block
(consisting of g1 and ¢2) defined by the original position of latches. Only after we could
view all the gates as part of a single combinational logic block was this redundancy exposed.
Of course, this circuit still is not realizable since there is a negative latch at input d. This
situation can easily be rectified by retiming ¢3 by +1. This annihilates the negative latch
at input d resulting in the circuit in Figure 2.5(d). This example illustrates the advantage
gained by permitting illegal retimings temporarily. Later in this section it is shown why
this is a legitimate operation.

Let us now go back and see what enabled us to eliminate g1 in the previous
example. Once we were able to consider all three.gates in the circuit as part of a larger
combinational block, we could use the combinational 'optim.iza,tion technique of redundancy
removal to detect and delete the redundant connection. This is precisely what we were
looking for, i.e., a way to consider and exploit logical relationships between éates that
extend beyond latch boundaries. Ideally, we would like to push out all the latches in the
circuit to the peripheral edges. This results in no latches on any of the internal edges and
thus all the gates are part of the same combinational logic block. This permits the use
of any combinational logic optimization technique on this larger combinational block. The

notion of a peripheral retiming does precisely this.

Definition 2.3.2 A peripheral retiming is a retiming such that for each internal edge e,
wy(e) = 0.

This is graphically shown in Figure 2.6. After peripheral retiming, there are o; latches at
input pin ¢, 8; latches at output pin j, and no latches on any internal edge.
The circuit in Figure 2.5(b) is a peripheral retiming of the one in Figure 2.5(a).

The same peripheral retiming is shown in terms of the communication graph in Figure 2.7.

The condition that w,(e) is 0 for all internal edges forces all latches to the pe-
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ripheral edges. Note that the definition permits negative weights on the peripheral edges,
which corresponds to the negative latch concept presented earlier. Permitting negative
latches temporarily on peripheral edges is a legitimate operation as shown by the follow-
ing theorem. Functional equivalence here refers to the equivalence of the finite automata

corresponding to the initial and final circuits.

Theorem 2.3.1 A circuit that undergoes a peripheral retiming, combinational optimization

and a subsequent legal retiming is functionally equivalent to the original circuit.

Proof. Let C; be the original circuit and C, be the peripherally-retimed circuit obtained
with retiming 7. Let a; and 3; be the number of latches at the i*# input and j** output pin
in Cy. Let C3 be the circuit obtained after combinational resynthesis, R, on the interior
combinational logic and let C4 be the circuit obtained after a legal retiming / on C3.

Let amin = |min(0,a;)| over all a; and let Bpmin = |min(0,8;)| over all §;. Con-
“-sider the circuit Cs obtained from C; by adding oy, latches at each input pin and Bpin
latches at each output pin. Cs = delay(C1, @min + Bmin), i.e. given an input-output vector
sequence (Z, O) for C;, the input sequence 7 results in the output sequence @ delayed by
Qmin + Bmin cycles in Cs. Let Cg be the circuit obtained by retiming Cs with . This is
a peripheral retiming of Cs with a; = & + amin and B = B; + Bmin- Note that this is a
legal retiming since there are no negative latches, as a} and 3} are non-negative and there
are no other latches in the circuit. Here recourse is taken to the results in [44] that show
functional equivalence with legal retimings to claim that Cg is equivalent to Cs 3. Com-
binational resynthesis, R, of the interior combinational logic of Cg, resulting in the circuit
C7, obviously does not change its functionality since none of the functions of any primary
outputs or latch inputs are changed by this. Now, retiming ! is applied to C; to result in
Cs. Note that since [ was a legal retiming for C3 it must result in at least i, latches at
each input pin and B,,i, latches at each output pin. Also, by transitivity, Cg is equivalent
to Cs. Hence, Cg =delay(C1, @min + Bmin)- Let Co be obtained from Cg by removing anin
latches from each input pin and S,,;, latches from each output pin. Thus, Cy = delay(Cy,
0) i.e. Cy is equivalent to C;. Note that Cy is identical to C4 because the same resynthesis
R and final retiming ! were applied in order to obtain them, ensuring that they have the

same gate and latch netlists. Thus, C,4 is equivalent to C;. ]

3Functional equivalence here is subject to being able to get the two circuits in equivalent states. The
problem of finding ecuivalent states for the original and retimed circuits has been looked at in [76] and is
discussed in Section 2.6.
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Figure 2.8: Circuit with no peripheral retiming : Example 1

2.3.3 Conditions for Peripheral Retiming

Not all circuit topologies permit a peripheral retiming. Two such topologies are
now considered.

Consider the circuit in Figure 2.8 and its corresponding communication graph.
All attempts to move the latch (either backward or forward) to the periphery result in a
negative weight on the edge between i’ and ¢2. In fact, as will be shown later in this section,
this circuit cannot be peripherally retimed. Examining the circuit gives us some insight into
why this is so. The output ¢ depends on the value of input b at two different times. Let us
assume that a peripheral retiming were possible. Then in the peripherally retimed circuit
¢ would depend only on one time value of b since all paths from b to ¢ would have the same
number of latches, viz. ap + J.. This would not capture the correct behavior and is the
reason why no peripheral retiming exists.

Now consider the circuit and communication graph in Figure 2.9. Again, it is not
possible to move the latches to the periphery without introducing a negative weight on the
internal edges (¢’,92) and (b, ¢1). The intuition as to why a peripheral retiming does not
exist here is more complicated than in the previous case. For output ¢, inputs ¢ and b are

delayed by 1 and 0 cycles respectively. For output d, these inputs are delayed by 0 and 1
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Figure 2.9: Circuit with no peripheral retiming : Example 2

cycles respectively. Let us assume a peripheral retiming were possible. Then ¢ would see
a and b delayed by a4 + 8. and ap + (. respectively. Similarly d would see them delayed
by aq + B4 and oy + B4 respectively. The only difference in delays for the inputs that d
sees with respect ¢ is due to the different number of latches on the peripheral edges at ¢
and d, i.e. 84 — B.. Thus, the input delays are the same for all the outputs except for a
constant offset that depends on the oﬁtput and this offset is added to each of the input
delays. Clearly this is not possible for this example 4.

While these two examples give some insight into when a peripheral retiming may
not exist, by themselves they do not provide a characterization of circuits that permit a
peripheral retiming. In order to obtain such a characterization, the path weight matriz of a

network is defined.

Definition 2.3.3 A path weight matrix, W, of a sequential network is an m X n matriz,

where

1) m is the number of inputs
2) n is the number of outputs

3) Wi; = x if no path exists between input i and output j

‘Even though the circuits in Figure 2.8 and Figure 2.9 cannot be peripherally retimed. sub-circuits of
these circuits can. This is demonstrated later in Section 2.5.
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Figure 2.10: Path weight matrix: Example

4) Wij = ~ if two paths between input i and output j have different weights

5) Wi; = Z w(e) if all paths between input i and output j have the same weight.
path i;—o;

Figure 2.10 shows a communcation graph and the corresponding path weight matrix.

In addition, the satisfiability condition on the path weight matrix is defined, which

is directly related to the existence of a peripheral retiming.

Definition 2.3.4 A matric W is satisfiable if
a) Wis # ~, Vi, j
b) 3a;, 38;, 1 < i< m, 1 < j< n, o Bj €1 such that for each Wi # x, Wi; = a; + ;.

These two conditions have been motivated by the two examples considered above.
Cyclic circuits (assuming there is at least one latch on each path containing a cycle) will
have W;; = ~ for each path containing a cycle. Thus, only acyclic communication graphs
can have a satisfiable path weight matrix. Optimization of sequential circuits with a cyclic
structure is described in Section 2.5.

The following two lemmas are used to demonstrate the relationship between a

satisfiable path weight matrix and the existence of a peripheral retiming.
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Lemma 2.3.2 Let W be a satisfiable path weight matriz for a communication graph G.
Let ay,09,...,04,...,0 and B1,B2,...,8;,...,0n be integers that satisfy W. Let v be a
non-1/0 vertez in the communication graph G and let f;(v) = o — X pqun i;—v W(€), where
i; is some ith input pin and there is path from this pin to v. Then, f;(v) is independent of

i.
Proof.
Let ¢; and i; be two inputs each with a path to vertex v. Then:

AW)=ai— Y wle)

path iy —v
@)=a- Y we)
path ia—v
Let v have a path to some output oy (it must have a path to some output pin). The weight

along the path from v to o0, is

> wle)

path v—o;
The path from 7; to o; has weight
Yo owe+ Y we)=ar+p (2.1)
path iy —v x.mth v—o;
The path from i, to o, has weight
Y we+ Y we)=az+fy (2.2)
path io—v path v—o0,

Subtracting Equation 2.1 from Equation 2.2 yields
Z w(e) — Z w(e) = as —
path ia—v path iy —v
Rearranging, we obtain
oy — Z w(e) = ag - Z w(e)
path i, —v path ia—v

Hlv) = falv)
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Lemma 2.3.3 LetW bea satisfiable path weight matriz for a communication graph G. Let
Q1 Q2.0 s Oy ooy Oy and By, B2, ..., 85, .. ., B be integers that satisfy it. The following lag
function, Lp(v), results in a peripheral retiming:

a) Ly(v) = o; — Z w(e) for each internal vertex
path i;—v - .

b) Lp(v) = 0 for each I/O pin

where «; is the a associated with the input i which has a path to vertez v, and Z w(e)
path i;—v
18 the weight of any path from input i to v.

Proof.
A peripheral retiming requires w,(e) to be 0 for each internal edge e. Each edge weight in
the retimed circuit is:

wy(euw) = w(euu) + L(v) — L(u)

where w(e,,) is the weight of the edge from u to v. L(u) can be expressed in terms of any
a; such that there is a path from the #** input to vertex . Any such i suffices because L(u)
is independent of ¢ by Lemma 2.3.2.
L(u)=a; — Z w(e)
path i;—u
If a path exists from input i to vertex u, then there is a path from input ¢ to vertex v, and
L(v) can be expressed in terms of input ¢:
: L(v) = o; — > wle)
path i;—v
Hence,
wr(eys) = wlew) + 0; - Z w(e) — (ai - z w(e)
path i;—v path i;—u

= w(e(w) - 'w(euv) =0

For an input edge, vertex u is an input pin, so L(u) = 0. In addition, each input edge has

the property w(e,,) = Z w(e), yielding
path i;—v

wy(ew) = wlew) +ai— Y. wle)

path i;—v

welew) = ;
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Similarly, for the output edges of the network, v is an output pin, so L(v) = 0. Thus:

wr(euv) = w(euv) + L(v) - L(u)

= w(euu) - (O(, - Z w(e))

path i;—u

For each output edge e between vertex u and I/O pin v,

Z 'w(e) =a;+ ﬂj - w(euv)

path i;—u

so the weight of the edge in the retimed circuit can be expressed as follows:
wr(ew) = wleww) — [ai — (@i + B; — w(ew))]

'wr(euv) = ﬂj

Thus, the specified lag function results in the desired edge weights for the internal
and peripheral edges that are required by the peripheral retiming. =

Theorem 2.3.2 A sequential network has a peripheral retiming if and only if its path weight

matriz 1s satisfiable.

Proof.
If par't: A
Follows directly from Lemma 2.3.3.

Only if part:

It suffices to show that a circuit with a peripheral retiming has a satisfiable path
weight matrix. A circuit with a peripheral retiming has an integral (possibly negative) num-
ber of latches, @;, at the i*® input and an integral (possibly negative) number of latches,
B;, at the jt* output, and no latches on any of the internal edges. Regardless of the path
chosen, the number of latches between the i*# input and the j** output is «; + 3 ; (if a path
exists) in the retimed circuit. By Lemma 2.3.1 this is the (z, j)th entry of the path weight

matrix for the original circuit. Thus the path weight matrix is satisfied by these a's and
B’s. ]
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Note the significance of this result: it gives a complete characterization of the
class of sequential circuits for which all the latches can be pushed to the periphery, i.e., it
specifies the necessary as well as the sufficient conditions on the circuit topology.

A peripheral retiming involves finding a set of a’s and A3’s that satisfy the path
weight matrix. These a’s and ('s specify the peripheral retiming. In the retimed circuit
there are o; latches at the i** input pin and SB; latches at the j** output pin. A matrix
that is satisfiable has no ~ entries, and has at least one set of ¢;’s and B3;’s such that
a; + B = Wi;.

For the communication graph in Figure 2.7, the path weight matrix is as follows:

f e
b 0 1
¢ 0 1
c * 1
d * 0
and can be satisfied by choosing, for example, ap = 0, 0 = 0,a.=0,0q4=-1,8; =0,

Be = 1, resulting in the circuit shown on the right in that figure.
The path weight matrix for the circuit in Figure 2.8, which had no peripheral

retiming, is as follows:

c
a 1
b ~

The ~ in the second row rules out the possibility of a peripheral retiming. For the circuit

in Figure 2.9, the path weight matrix is as follows:

c d
a 1 0
b 0 1

It is easily checked that no «;, 3; exist by applying the conditions necessary to satisfy the
matrix. This yields

o +p=1 (2.3)
ay+0,=0 (2.4)

ar+ B =0 (2.5)
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az+6=1 (2.6)

Subtracting Equation 2.3 from Equation 2.4:

B2—Pr=-1

Subtracting Equation 2.5 from Equation 2.6 yields
Ba—Pr=1

This contradiction implies that the path weight matrix is not satisfiable.

2.3.4 Computing the Path Weight Matrix

It is now shown how the path weight matrix, W, is computed for a given com-
munication graph. Each column of the path weight matrix contains information about the
number of latches between that output (corresponding to that column) and each of the
inputs. Thus, the column is a path weight vector for that output. The notion of a path
weight vector, V, can be extended to any vertex in the communication graph. V captures
information about the number of latches between that vertex and each of the inputs. As

with the outputs,

1. a x entry in the vector indicates that there is no path between the inpﬁt corresponding

to that entry and this vertex.

2. a ~ entry in the vector indicates that there are differing number of latches along

different paths to the input corresponding to that entry.

With this a recursive procedure for computing W is now outlined. W is computed by
computing V for each of the outputs. For a vertex v in the graph, V(v) is computed by
first computing V(u) for each u such that the edge (u,v) exists in the graph and then
composing these as described in Figure 2.11. The recursion stops at the inputs of the '
graph. For input ¢, V has a 0 in the it® position and a * in all the other positions. The
pseudo-code for this algorithm is given in Figure 2.11. Some clarification is needed for
the operators “+” and “&” used in procedure compute_V. “+” is a binary operator whose
first argument is a path weight vector and the second is an integer. The result is a path
weight vector. The effect of “+” is to add on the additional number of latches along that

edge to the previously computed path weight vector for the source vertex of the edge. Each
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/* inputs: communication graph, graph
outputs: path weight matrix, ¥
*/

compute_path_weight_matrix(graph) {
/* compute V for each output and concatenate */
foreach_output (graph) {
compute_V(output);

/* W is just the concatenation of these V’s %/
concatenate(¥, V(output));

}
return W;
}
/* inputs: vertex, v
outputs: path weight vector, V(v)
%/ .

compute_V(v){

/* termination condition */
if(v is input){

/* for ith input vertex return vector with O
at ith position and * at all others */

return input_V(v);

}

/* V initialized to vector with all *’s */
initialize(V(v));

/* recursive computation */
foreach_edge(e(u,v)){

compute_V(u);

V(v) = V(v) & (V(u) + w(e(u,v)));

}

return V(v);

Figure 2.11: Computing the Path Weight Matrix
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Figure 2.12: Operators “+” and “&”

entry of this is computed according to the rules given in Figure 2.12(a). Here k1 and k2 are
integers. k2 is the second argument of the “+” operator. “&” composes the path weight
vectors produced after the “+” operation for all incoming edges. “&” operates on each
individual entry according to the rules specified in Figure 2.12(b). The aim is to obtain
the path weight vector for this vertex from the path weight vector of the source vertices
for each incoming edge. The execution of this algorithm has been shown in Figure 2.13 for
the graph in Figure 2.10. The dotted boxes show the computation needed to determine the
path weight vectors for vertices v; and v,.

The algorithm in Figure 2.11 has complexity O(e- m) where e is the number of
edges in the graph and m is the number of inputs. Each edge in the graph is visited exactly
once and “+” and “&” are applied exactly once for each edge. “+” and “&” have complexity
O(m) since they need to examine each entry of an m-entry vector. Thus compute.V has
complexity O(e - m). Of course, compute_V(v) is executed only once for each vertex and
the result cached for any subsequent calls. The cache retrieval is assumed to be constant
time. This has not been explicitly stated in the algorithm. Note that the algorithm is
symmetric in terms of the inputs and outputs. The algorithm is described in terms of the
path weight vectors for the outputs which captures information about the number of latches

along paths from each of the m inputs. Alternatively, it can be described in terms of the
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path weight vectors for the inputs of the graph (these correspond to the rows of the path
weight matrix). Their computation proceeds recursively forward from the inputs. In this
case the complexity of .the algorithm is O(e - n), where n is the number of outputs. Thus
the algorithm can be modified to select the direction of recursion based on the number of

inputs and outputs resulting in a complexity of O(e - min(m, n)).

2.3.5 Solving the Path Weight Matrix

Once the path weight matrix, W, has been computed it needs to be solved to
find a satisfying assignment of a’s and §’s (or determine that none exists). If W has any
~ entries then it obviously is not satisfiable. For the rest of this section it is assumed
that W has no ~ entries. Note that W is either unsatisfiable or has an infinite number of
solutions. Given a particular solution, another valid solution can be obtained by adding an
integer j to the a’s and subtracting j from the 8’. Any solution can be used to obtain a
peripheral retiming. For simplicity, a; = 0 is selected. This choice forces 3; = Wy;, which
in turn forces a; = W;; — $,. Each entry in the matrix is then checked to ensure that
a; + B; = Wy, if a violation occurs, the matrix is not satisfiable and no peripheral retiming
exists for the circuit. The pseudo-code for this algorithm is given in Figure 2.14. The
complexity of solve.pwm(W) is O(k), where k is the number of integral (non- *) entries in
W, since the consistency check needs to examine each integral entry in the matrix. The
arbitrary selection oy = 0 may not be the only arbitrary assignment necessary to compute a
complete set of a’s and B’s. The circuit may have sub-circuits which are disjoint, leading to
a corresponding disjoint matrix with many * entries. In this case, an arbitrary assignment
to an « or a # must be made for each disjoint submatrix. The algorithm in Figure 2.14
assumes only one connected component in the graph. It needs to be applied repeatedly
to each connected component in the graph. Since the complexity of finding the connected

components is O(m + n) the overall complexity is O(maxz(k, m + n)).

2.3.6 Legal Resynthesis Operations

Permitting negative latches on the peripheral edges is a legitimate operation as

long as the resynthesized circuit has a legal retiming. This leads to the following question:

Can we guarantee that the resynthesized circuit always has a legal retiming?
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/* inputs: path weight matrix, ¥
outputs: status, solution vectors « and S

*/
solve_pwm(W){

/* initialize « and S vectors */

/* compute f's %/
for j from 1 to n
B; = u(,j);

/* compute a's */
for i from 2 to n
a; = W(i,1) - By;

/* check consistency of solution */
for i from 2 to n
for j from 2 to n
if(H(i,j) t= a; + 6;)
return("no solution exists"”, «a, f);

return("valid solution exists", a, f3);

Figure 2.14: Solving the Path Weight Matrix
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To examine this further we need to define a synchronous communication graph®.

Definition 2.3.5 A synchronous communication graph is one in which each path between

an input pin and an output pin has a non-negative path weight.
The following lemma states how a synchronous communication graph can be legally retimed.

Lemma 2.8.4 The following lag function results in a legal retiming in a synchronous com-

munication graph:
a) Li(v) = sp(v) for each internal vertez. sp(v) is the weight of the shortest path to the
outputs, i.e. the path with the least weight between vertez v and an output pin.
b) Li(v) = 0 for each I/O pin
Proof.

The edge weight in a retimed circuit is given by
wr(eyw) = w(ew) + L(v) — L(u)

where edge e, is from vertex u to vertex v and L is the lag function.

Consider an internal edge and the lag function given in the statement of the lemma.
wr(ewy) = w(eyy) + 3p(v) — sp(u)

For w,(ey,) to be non-negative, w(eyy) + sp(v) — sp(u) > 0 or sp(u) < w(ey,) + sp(v).
This is obviously true since the weight of the shortest path from u to an output pin cannot
be more than w(ey,) + sp(v), or the shortest path would be the edge (u,v) followed by
the shortest path from v to an output pin. Thus this retiming results in all internal edges

having non-negative weights.

Now consider an output edge. For an output edge, Li(v) = 0.
wr(euv) = 'w(euv) + Ll(”) = Ll(u) = w(ey)+0— sp(u)

Now, w(ey,) — sp(¢) > 0 since sp(u) < w(ey, ). Thus, w,.(ey,) > 0.

Finally, consider an input edge. For an input edge, L;(u) = 0. Thus.

wr(euv) = w(euu) + Li(v)-0= 'w(e,,.,) + 'SI)(U)

®This is related to the definition of a synchronous circuit presented in [44].
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Since each input pin has exactly one out-edge, w(eyy) + sp(v) is the shortest path between
the input pin u and the outputs. We know that all path weights between an input pin and
an output pin are non-negative. Thus, w(ey,) + sp(v) is non-negative and w,(ey,) > 0 for
an input edge.

Thus, the ‘specified retiming is legal since all resulting edge weights are non-

negative. n

This result is used to prove the following theorem which precisely states the conditions

under which a legal retiming exists.

Theorem 2.8.3 A communication graph has a legal retiming if and only if it is syn-

chronous.

Proof.
If part:

Follows directly from Lemma 2.3.4.
Only if part:

If the resulting retiming is legal, then each edge weight in the retimed graph is
non-negative. Thus, the path weight between an input pin and an output pin must be
non-negative. By Lemma 2.3.1, retiming cannot change the path weight between an input
pin and an output pin. Thus, the path weight between an input pin and an output pin
must have been non-negative before the retiming. Therefore, the communication graph was

(and is) synchronous. |

Note that since the initial communication graph has no negative edges (it rep-
resents a real circuit) it is synchronous. Peripheral retiming preserves the synchronous
property since retiming does not change the path weight between an input and an output
pin. However, resynthesis can change the communication graph and hence it may destroy
the synchronous property.

Let us see how this can happen. Let G; be the communication graph before
resynthesis and G be the graph after resynthesis. If there was a path between input ¢ and
output j in G; and there is a path between them in G,, then the path weight for this path
in Gp is o; + ;. This is the same as the path weight W;; in G;. Since G, is synchronous.

this path weight is non-negative. Now consider the case in which no path existed in G,
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between input i and output j and resynthesis creates a path. The path weight for this path
in Go is a; + B;. Since a; and B; may be negative and G; did not force a non-negativity
constraint on «; + 3; (since no path existed between input : and output j), it is possible
that a; + §; may be negative, thus destroying the synchronous property. Note that output
J does not actually depend on input i; however, resynthesis created a pseudo-dependency
between the two.

An example is shown in Figure 2.15(a). This circuit has a peripheral retiming
shown in Figure 2.15(b). Resynthesis discovers that the three-input OR gate g;, can be
replaced by a two-input OR gate g, (Figure 2.15(c)). The communication graph for this
circuit is not synchronous since there exists a path of negative weight (-1) between input a
and output outl. By Theorem 2.3.3, this circuit has no legal retiming. Let us see what
went wrong in terms of the logical functionality of the circuit. The circuit can be viewed as
a two-stage pipeline with the latches separating the two stages. a is an input to the second
stage of the pipeline and outl an output of the first stage. Combinational resynthesis makes
a first stage output depend on a second stage input. As a result no position of latches can
be found in the circuit that will retain the original functional behavior. -

Thus resynthesis must ensure that it does not introduce a pseudo-dependency with
a negative path weight; this is the only condition that the resynthesis must satisfy. There
are two possible ways of dealing with this situation. We can check each resynthesis operation
to ensure that it does not lead to such a topology. This method has the limitation that
we need introduce these checks as part of the combinational resynthesis procedure, a move
that will not permit us to use existing combinational optimization programs unaltered.
Alternatively, a checkpointing approach can be adopted, where at various points in the
resynthesis procedure we check that the current graph is synchronous. If not, we revert
to the last synchronous graph and reject the resynthesis steps that follow. The checking
involves just computing the path weight matrix, which is a fast (O(e-min(m,n))) operation.
If the resynthesis techniques used are unlikely to destroy the synchronous property then the

second method is preferable.

2.4 Peripherally Retimable Circuits: General Topology

Theorem 2.3.2 states the necessary and sufficient conditions under which a circuit

has a peripheral retiming. However, it gives no feel for the general topology of these circuits.
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Plpelined Clrcuit . Peripherally Retimed Circuit

(a) (b)

Figure 2.16: Pipelined Circuits and their Retiming

In order to better understand them we would like to characterize them in terms of their
general topology.

Figure 2.16(a) shows the general topology of circuits that permit a peripheral
retiming. A peripherally-retimed circuit is shown in Figure 2.16(b). This has been ob'ta.ined
by moving the latches forward through the circuit, borrowing latches at the inputs when
required. Circuits satisfying this topology are called balanced or pipelined circuits. Note
that inputs and outputs are permitted to and from each stage of the pipeline. This is more
general than simple pipelines, where data enters the first stage and the result leaves the last
stage. Of course any of the input or output vectors I; or O; may be empty.

It is now shown that this is exactly the topology corresponding to circuits that
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can be peripherally-retimed. Let C be a circuit that can be peripherally-retimed and C, be

the peripherally-retimed circuit. We need to show the following:
1. In C,, a; is non-positive for all ¢ and 8; is non-negative for each j.
2. There is no path from input i to output j such that a; + 8; < 0.

Let ¢; latches be at input ¢ and §; latches be at output j in C,. This can be modified to
obtain another solution as follows. Let a,q, be the value of the largest o;. Subtract aqz
from each a; and add it to each B;. The resulting values of a’s and B’s also satisfy the
path weight matrix. As in Figure 2.16(b), C, has non-positive a’s and non-negative 3’s.
To see that the 8’s must be non-negative, assume that this were not true, i.e. some 3; were
negative. Let i be an input from which there is a path to output j. Then the path w;veight in
C, from i to j must be negative since «; is non-positive. This cannot happen since the initial
graph, and hence the retimed graph, must be synchronous. Thus, all 3’s are non-negative.
" Another consequence of the initial graph being synchronous is tﬁat there cannot be a path
from ihput i to output j such that a; + B; < 0in the retimed circuit. Thus, C, satisfies both
the conditions listed above and its topology is precisely that of Figure 2.16(b). Therefore
C must have the topology of Figure 2.16(a).

The circuit in Figure 2.16(a) naturally suggests that the latches are pipeline latches
and that there is an underlying combinational logic block. Peripheral retiming exposes this
by moving the latches to the periphery. It may seem that the combinational logic can
be exposed by just ignoring the latches (replacing them by wires). This certainly is true.
However, once this circuit has been resynthesized, the latches need to be placed back in
the circuit. This needs to be done while guaranteeing that each input and output is in
the correct stage of the pipeline. Peripheral retiming handles this elegantly. The latches
at the periphery are place holders for this information. When the circuit is retimed after
resynthesis, retiming ensures that each input and output lies in the correct stage in the
pipeline. The significance of negative latches is reiterated; without them it would not be

possible to handle inputs and outputs from each stage.

2.5 Optimizing Sequential Circuits

Let us now see how the techniques discussed in Section 2.3 are applied to general

sequential circuits. For those circuits that can be peripherally retimed, the entire interior
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Figure 2.17: Acyclic Circuit with no Peripheral Retiming

logic block can be optimized and the latches replaced in the circuit. This section examines
those that cannot be peripherally retimed.

As is illustrated by the circuit in Figure 2.17(a), an acyclic circuit may not have a
satisfiable path weight matrix, and hence no peripheral retiming exists. Here, the two paths
from I to O have differing number of latches along them. In this case, satisfiable sub-
circuits (sub-circuits whose path weight matrices are satisfiable) are identified and created
by breaking the appropriate nets. Each sub-circuit is optimized separately, and the sub-
circuits are then reconnected. Consider the circuit in Figure 2.17(a). Breaking net z yields
the sub-circuit shown in Figure 2.17(b). z_out represents additional outputs of the sub-
circuit, and x_n represents additional inputs. This sub-circuit is satisfiable and the results
of Section 2.3 can be directly applied. Finally, a circuit equivalent to the original circuit
can be obtained by reconnecting the net x. Alternately, net y can be broken and the
corresponding sub-circuit, Figure 2.17(c) similarly optimized. Note that the optimization

of sub-circuits (b) and (c) can lead to very different results. It is not possible to predict a
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(@) (b)

Figure 2.18: Handling Cyclic Circuits

priori which starting point leads to a better solution.

In the case of sequential circuits that have cycles in them, they first need to be
made acyclic. Therefore, the first step is to choose a set of nets to cut such that all cycles
are broken. However, this may not be sufficient: the resulting acyclic circuit may still have
a path weight matrix that is not satisfiable. For example, breaking net = of the circuit
in Figure 2.18 will break the cycle, but as in Figure 2.17(a), net = or net y still must be
broken to make the path weight matrix satisfiable.

In most cases, there will be several choices of where to make cuts in the logic to
create a satisfiable path weight matrix. While it is not known a priort which cut will yield
the best results after optimization, it is simple enough to provide an interactive environment
to allow the designerv to experiment with several different cuts.

Consider an example of a sequential circuit that has a cyclic structure. Fig-
ure 2.19(a) shows a gate level schematic of an FsM implementation. This circuit is optimal

with respect to conventional logic minimization of the combinational logic between the
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latches: there are no redundant gates or connections. The cycles are broken by cutting the
nets pl and p2. This results in pseudo-inputs pl_in and p2_in and pseudo-outputs pl_out
and p2_out in the circuit. The circuit is then redrawn with the signal flow unidirectional
(Figure 2.19(b)). A peripheral retiming of this circuit is shown in Figure 2.19(c). An opti-
mization of the combinational block simplifies the logic part by observing that the output
of the NOR gate (signal z) may be replaced by the constant value 0 without changing the
functionality of the circuit. In testing terms, the output of the 2 is said to be untestable
for a stuck-at-0 fault.

This simplified circuit is shown in Figure 2.19(d). The circuit is retimed with a
legal retiming (Figure 2.19(e)).- The feedback connections are re-created and the final circuit
is shown in Figure 2.19(f). This circuit has three fewer gates than the initial circuit, which

represents a significant gain.

2.6 Computing Equivalent States Across Optimizations

The migration of latches raises concern about the starting state of FSM’s in the
minds of circuit designers and testers. The question that needs to be answered here is as
follows:

Given the starting state of the initial circuit, how is the the starting state of the

final circuit, obtained by applying retiming and resynthesis techniques on the
original circuit, determined?

This is contained in the more general problem of determining a state in the final circuit
that is equivalent to a known state in the initial circuit. An application for thi§ arises in
performing verification using simulation. If a set of simulation vectors and their responses
have already been developed for the original circuit, how can these be used for the modified
circuit? In order to use them again, each state in the original circuit needs to be replaced
with the corresponding state in the new circuit. In [76] a procedure is provided that handles
this problem for retimed circuits. Since combinational resynthesis does not migrate any
latches or change the function of the input gate of a latch, there is no change in the state
information in this step. Thus the use of the procedure described in [76] at each retiming
step is sufficient to tackle this problem.

Related to this is the issue of initialization sequences. Typically, the design of

a state machine is accompanied by the determination of an initialization sequence, i.e. a
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Figure 2.19: Example FSM Optimization
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sequence of input vectors that is guaranteed to bring the machine to some known state (re-
ferred to as the starting state) independent of the state it is currently in. Thus, the machine
may start in any possible state when it is powered on and going through the initialization
sequence brings it to the known starting state. The initializing sequence may be as simple
as a single input on a reset line. In [76] it is described how the initialization sequence
for a retimed circuit is determined given the initialization sequence for the initial circuit.
By an argument similar to that given for determining equivalent states, this procedure is
applicable when both retiming and resynthesis are used.

It should be noted that in general it is possible that we may not be able to find a
state equivalent to the starting state in a retimed circuit. After retiming, some or all of the
latches could possibly have been replaced with wires. The only values that these wires can
have are those that are consistent with the logical structure of the combinational network
(i.e. no value that is part of the satisfiability don’t care set [3] for the combinational circuit).
If the initial state is inconsistent with this then it will not be possible to find an equivalent
_state in the retimed circuit. For example consider the circuit in Figure 2.20(a). Consider
the state (L1 = 1, L2 = 0). This circuit is retimed to move the latches to the inputs of this
gate as in Figure 2.20(b). There is no state in this new circuit that is equivalent to (L1 =
1, L2 = 0) in the original circuit. Let us consider the state transition tables for the two
circuits given in Figure 2.20. A “-” in the PS column represents any possible state in the
machine. State 11 in the final circuit is equivalent to state 11 in the initial circuit. States
00, 10, 01 in the final circuit are all equivalent to state 00 in the initial circuit. However,
there are no states in the final circuit equivalent to either 01 or 10 in the initial circuit.

Note that the way in which the state (L1 = 1, L2 = 0) was reached was never
specified. The only way the machine can enter this state is if there is some implicit reset
circuitry in the latches. However, if all the logic associated with the reset circuitry ié made
explicit then this problem can never occur. The only way the latches can load data now is
through the primary inputs of the circuit. As a result, the values in the latches are always
consistent with the combinational circuit. Note that making the reset circuitry explicit
changes the circuit that is to be retimed and thus forces the resulting retimings to be
consistent with this new circuit. This results in less flexibility for the retiming algorithms.
In addition, since latches will migrate during retiming, the reset logic may no longer be
associated with the latches. Thus the reset logic will need to be implemented separately

from the latches.
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Figure 2.20: The Equivalent State Problem: An Example
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Making this logic explicit is only needed to guarantee that we will always be able
to find an equivalent state after retiming. Thus the reset logic needs to be put in only if the

algorithm given in [76] determines that no equivalent state exists in the retimed circuit.



Chapter 3

Implications and Applications

There was a large mushroom growing near her, about the same height as herself:
and, when she had looked under it, and on both sides of it, and behind it, it
occurred to her that she might as well look and see what was on the top of it.

— Lewis Carroll, “Alice in Wonderland”

The main theoretical ideas behind retiming and resynthesis were presented in
Chapter 2. In this chapter, the implications and applications of these ideas are considered.
First the implications in logical testing are examined; here it is shown how the sequential
testing problem for pipelined circuits is equivalent to combinational testing. Next, the
relationship with state assignment is explored and the space of equivalent circuits that can
be obtained using retiming and resynthesis examined. Finally, the application of retiming
and resynthesis in performance optimization is presented. Here the equivalence of the
performance optimization problem for pipelined circuits with the corresponding problem

for combinational circuits is demonstrated.

3.1 Relationship to Logic Testing

Section 1.2.1 introduced the need for testing circuits in order to detect manufac-
turing defects. These defects are modeled in terms of modifications in the circuit behavior
in the presence of these defects. The most common fault model is the single stuck-at fault
model where a single signal or a gate output is assumed to be stuck at a constant value.
0 or 1, in the presence of the fault. A test for a fault in a combinational circuit is an

input vector that distinguishes, at the outputs of the circuit, between a good and a faulty

57
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circuit. For sequential circuits the testing problem is more complicated. A test for a fault
may require the circuit to be in a particular state. Thus, a sequence of input vectors is
needed that will drive the machine to this state. This sequence is known as the justification
sequence. Next, the fault needs to be activated or excited by an ezcitation vector. However,
this may only propagate the fault effect to the latches. In order to be observed, this needs
to be propagated to the true outputs. This is done be applying another sequence of input
vectors, called the differentiation sequence, that propagate the effect to the true outputs.
Thus, the test for a fault in a sequential circuit has three parts: justification, excitation and
differentiation. The above is a very brief introduction to testing. Details may be found in
standard texts such as [15)]. A |

Work in logic optimization has established the relationship between logic opti-
mization and logical testing under the stuck-at fault model [26]. If a stuck-at fault cannot
be tested for a particular value, then the signal corresponding to the fault site can be per-
manently set to that value without affecting the functional behavior of the circuit. Thus,
that signal or gate can be removed and the circuit simplified. In fact, in the example in
Figure 2.19, the NOR gate was removed because its output was untestable for a stuck-at-0
fault in that combinational circuit.

Since combinational optimization techniques are being applied to sequential cir-
cuits, the obvious question that this raises in relation to teéting is whether combinational
testing techniques can be applied to test faults in sequential circuits. The answer to this is
in the positive for a special class of sequential circuits, viz. pipelined circuits as described
in Section 2.4. This is the class of circuits that permit a peripheral retiming. The remain-
der of this section is devoted to proving this assertion, as well as providing a method that
generates tests for the sequential circuit from the combinational tests.

In the following discussion the description of pipelined circuits presented in Fig-
ure 2.16(a) is used. Let C be the pipelined circuit, C, be the peripherally-retimed circuit,
and C. be the combinational circuit exposed by peripheral retiming. The level of a latch
in C is defined as the index of the combinational logic block that it follows and the set
of latches at level ¢ is denoted as L;. Corresponding to each latch in C, there is a signal
connection in C.. The signals corresponding to L; are denoted as S;. The following lemma

that aids the proof of the main theorem can now be stated.

Lemma 3.1.1 Let C be in some state and let v; be the state vector for Ly, i.e., vy s a
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vector of the values stored in the latches in L. It is possible to observe the value vy on Sy

by selecting an appropriate input vector for C..

Proof. The proof is by induction on the level of the latches.

Induction Hypothesis: The statement in the lemma is true for all i < k.

Induction Basis: Let ¢ = 1. wv; is the result of some input vector v; applied in the
previous clock cycle. In C, v;, will result in v; on 5.

Induction Step: v is the result of some input vector vj, and previous state vx_; of Ly.
By the induction hypothesis we know that v, can be observed on S; by applying some
vector (vy, - v, +...-vy,_, ) in C.. Here “” indicates a concatenation of the vectors. Thus,
vy, is observed by the input vector (vy, - vy, - ...+ vy, ). Note that since vy, does not depend
on the inputs I, Iz, ...Ix_1, vy, does not cause any conflict with the previous assignments

invp -vp -0 [

With this the main result can now be proven.

Thedrem 3.1.1 Let z be a fault in C. x is testable in C. if and only if it is testable in C.

Proof.
If part:

Let z be testable in C. The justification sequence brings the circuit into the state
needed to test the fault. If = is in combinational block Cj4; in the pipeline then only the
state in Ly is of any concérn. (If z is in Cy then no justification sequence is needed.) Let
the justification sequence result in v; on Lj. By Lemma 3.1.1 we know that we can observe
v on Sy by applying (vy, - vg, - ... vy ) in C.. Let the éﬁ'ect of the test be observable at
outputs O in C. Let v;_; be the state in L;_; when the fault effect is observed at O;. Thus,
the excitation vector and the differentiation sequence need toload v;_; in L;—;. Again using
Lemma 3.1.1 we know that v;_; can be observed on S;_; by applying vy, - v, - ... vy_,.
Note that this vector still results in v) on Sy. Finally, all we need to observe the test at O
in C; is vj,. Thus, the test for the fault in C, is the input vector (vy, - vy, -...-vy,).

Only if part:
The proof here traces the reverse path of the proof for the if part. Let & be testable

in C. and (v, -vp, -.. .-vp) be a test. Then the sequence vy, , vp,, ..., vy, tests the faultin C. m
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We would like to use the combinational test in C, to generate a test for the fault in
C. This is easily accomplished by observing that in Lemma 3.1.1 vy, is a,ppliéd only in cycle
i. Thus, the test in C is (v, vp,,...,vy,). Here the “,” separating the vectors indicates that
they are applied in sequence.

It should be pointed out that in terms of obtaining test vectors these results are
practically not very significant since pipelined circuits are relatively easy to test. However,
this has an interesting application in testing using the scan approach !. If we identify
portions of the circuit that are pipelined then we know that the pipeline latches are not a
problem and we can determine tests for this part using combinational techniques. Thus,
the pipeline latches need not be scan latches and no additional testing penalty need be paid
for this. This application has been suggested in an independent analysis in [33].

3.2 Relationship to State Assignment

Figure 2.19 illustrates én example of applying retiming and resynthesis to a given
FSM implementation. Figure 3.1 shows the transition behavior of the initial and final circuits
in terms of their state transition tables. The only difference is in the third row in the table.
Here in the final circuit the transition is to the state 00 instead of 11. While it may seem
that this is a modification of the behavior of the state machine, in fact this is not so. States
00 and 11 are equivalent in the original machine and thus the switch in the transition from
00 to 11 preserved the original behavior of the circuit. Retiming and resynthesis exploited
this equivalence in simplifying the circuit. In this example, retiming did not change the
number or final position of the latches. However, it could potentially change that too. Thus,
the final circuit may correspond to a different but equivalent STG with some other state
assignment. This leads to the following question:

Given a circuit implementation with some state assignment, is it possible, using

only retiming and resynthesis, to obtain any equivalent implementation with
any other state assignment?

The following result partially answers this question.

'In the scan approach, the latches can be observed as true outputs. This reduces sequential testing to
combinational testing. Typically scan latches are more expensive in terms of area and testing time than
normal latches.
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Intial Circuit Final Circuit
PS IN NS OUT PS IN NS OUT
00 O- 10 1 00 O- 10 1
00 1- 11 0 00 1 11 0
01 00 11 0 01 00 00 0
01 10 01 1 01 10 01 1
01 01 10 1 01 o1 10 1
01 11 11 0 01 11 11 0
10 01 10 1 10 01 10 1
10 11 11 0 10 11 11 0
10 -0 00 0 10 -0 00 0
11 o- 10 1 11 0 10 1
11 1= .1 0 11 1- 11 0

Figure 3.1: Impact on Transition Behavior

Theorem 3.2.1 Given a machine implementation M, corresponding to a state transition
graph G, with a state assignment Sy, it is always possible to derive a machine M, corre-
sponding to the same state transition graph G, and a state assignment S, by applying only

a series of resynthesis and retiming operations on M;.

Proof.

Given M; we would like to obtain M, using only a series of resynthesis and retiming steps.
Figure 3.2(a) shows the schematic for M. N is the combinational logic that computés the
next state and output functions. Since there is a one-to-one mapping between the states of
M, and Mj, it is possible to construct a circuit C such that given the code for a state of M,
as input, the output is the code for the corresponding state in M. Similarly, the inverse cir-
cuit C~! can be constructed that takes a state of M, as input, and outputs the code for the
corresponding state in M. Note that C followed by C~! is the identity circuit. i.e., for this
circuit, the output is the same as the input. This construction is shown in Figure 3.2(b).
The inputs to the state latches are resynthesized as C followed by C~!. Now, the state
latches may be moved to between C and C~! by retiming as shown in Figure 3.2(c). This

circuit corresponds to the state assignment S;. Any other circuit corresponding to state



62 CHAPTER 3. IMPLICATIONS AND APPLICATIONS

M2's Code

M1's Code <+—— M1's Code

(a) Machine M1 (b) Resynthesize (c) Retime to get M2

Figure 3.2: Obtaining Equivalent FSM Implementations

assignment S, may be obtained by the resynthesis of the combinational logic. [ |

Theorem 3.2.1 does not consider the possibility of M, having an arbitrary sTG.
Let us now examine the limitations of retiming and resynthesis when M3 may have an
arbitrary sTG, G2, that is equivalent to G, for M;.

G, may be modified to obtain G, through a series of transformations: These
transformations can create states that are equivalent to existing states, mefge states that are
equivalent and modify state transitions to go to states equivalent to the original destinations.

Let us consider three such transformations.

2-way split A state s; in G, is equivalent to two states in G,. This is illustrated in
Figure 3.3. Here s; in G, is equivalent to states s;; and s12 in G2. The transitions

that go to s, are split between s;; and sy,. Besides this, G; and G, are identical.

2-way merge This is the opposite of a two-way split, here two equivalent states s and

$12 in G are merged to a single state s, in G3. (See Figure 3.3.)
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2-way split i1
_—

-_——

2-way merge

G1 G2

Figure 3.3: 2-way split and merge

switch Here a transition in G; to a state sq; is modified to go to an equivalent state s;2
in G;. (See Figure 3.4.)

Here the assertion is made that all valid transformations are some sequence or
combination of splits, merges and switches. A formal proof of this assertion is beyond the
scope of this work. The following lemma states the primitive operations that realize all

splits, merges and switches.

Lemma 3.2.1 2-way split and 2-way merge are the primitive transformations. Other trans-

formations can be built using a sequence of these.

Proof. A switch can be achieved by first applying a 2-way merge on the states involved
in the switch and then applying a 2-way split to effect the switch. This is illustrated in
Figure 3.5.

Multi-way splits and merges can be accomplished by a sequence of 2-way splits

and merges. [ ]

Thus, the task at hand has been reduced to showing that retiming and resynthesis

can handle 2-way splits and merges. Unfortunately, even this is difficult to handle. A few
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i3

G1 G2

Figure 3.4: Switch

2-way merge 2-way split

G1 G2

Figure 3.5: Switch using 2-way merge and split
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Figure 3.6: Labelled Cycle of Equivalent States

more definitions are needed in order to examine the restricted class of transformations that
can be handled.

Definition 3.2.1 A labelled cycle of equivalent states in an STG is a directed cycle
such that all state vertices in the cycle are equivalent and all transition predicate vectors on

the edges in the cycle have the same label.

Figure 3.6 is an illustration of this definition. Here the states s13,312,...81, are all equiva-

lent. The input i is the same transition predicate for each edge of the cycle.

Definition 3.2.2 A cycle preserving (cP) transformation does not create or destroy

a labelled cycle of equivalent states.

Figure 3.7 illustrates the non-CP versions of the three transformations described earlier.

The following lemma is the restriction of Lemma 3.2.1 to CP transformations.

Lemma 3.2.2 cP 2-way split and 2-way merge are the primitive CP transformations. Other

CP transformations can be built using a sequence of these.

Proof. Similar to proof for Lemma 3.2.1. ]

Finally it can be shown that retiming and resynthesis can handle cp transforma-

tions.
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o —_—a si1 s11 switch st1

E———
| PN )
2-way merge

s12 s12 s12
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Figure 3.7: Non-cP Transformations

Theorem 3.2.2 Let M, be an implementation corresponding to state assignment S, and
STG G and M, be an implementation corresponding to state assignment Sq and STG G,.
If G, is obtained from G, using only CP transformations then My can be obtained from M,

using only a sequence of retiming and resynthesis operations.

Proof. Lemma 3.2.2 permits us to restrict ourselves to CP 2-way splits and merges.

First consider G2 to contain a CP 2-way split of some state s; in G;. A transition
to sy in G corresponds to a transition to either sy; or $;2 in M, depending on the primary
input vector. Since the transformations are cP, the primary input vector and state s;
uniquely determine which of s1; or sy; is the destination state in M. This is not possible
for a non-cp 2-way split. Thus, the one-to-many mapping between the codes for M, and
the codes for M, is actually a one-to-one mapping between the M, codes plus the primary
inputs and My codes. This is accomplished through circuit C in Figure 3.8(b). Circuit C ~!
performs the inverse mapping which is a many-to-one mapping between M, codes and M,
codes and does not need I as input. Finally, Figure 3.8(c) shows how this circuit may be
retimed resulting in a circuit that corresponds to G,. As in Theorem 3.2.1. this may be

further resynthesized to any circuit M, that corresponds to state assignment S,.
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M2's Code

M1's Code <—— M1's Code

(a) Machine M1 (b) Resynthesize (c) Retime to get M2

Figure 3.8: Obtaining Equivalent FSM Implementations

Since each step in retiming and resynthesis is reversible, we can obtain M, given
M, using only retiming and resynthesis. But, M is obtained from M, by applying a 2-way

merge. Thus 2-way merges can be handled using retiming and resynthesis. [ |

This result shows that using retiming and resynthesis does not restrict you to
a small part of the solution space, but rather enables a very large space of functionally
equivalent circuits to be explored. However, it does not give any insight into how this space
may be searched for circuits that are optimal with respect to any given criterion. Also, it
should be noted that the circuits here are completely specified, i.e., there are no don’t care
conditions associated with the circuits. Additional advantage may be gained by exploiting

these don’t cares.

3.3 Performance Optimization

The three step procedure of peripheral retiming, combinational resynthesis and a

final legal retiming, to exploit combinational optimization techniques beyond latch bound- -
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aries was described in Chapter 2. In all the examples presented there, combinational opti-
mization was being used for area reduction. However, the retiming and resynthesis frame-
work does not specify the nature of the resynthesis permitted; any combinational resynthesis
is valid. This section examines the use of performance-directed resynthesis in this frame-
work. The crucial element in using the dual techniques of retiming and resynthesis is the
decision as to when, where, and in what order to apply these operations. Some preliminary
work in combining them has been done in [4], but the approach there is ad-hoc with no
optimality guarantees. Here a rigorous solution to this problem is considered for a special
yet important class of circuits, viz. pipelined circuits. (The work described in this section
was first presented in [50].) As seen previously, these are precisely the class of circuits which
permit a peripheral retiming. The problem of speeding up a pipelined circuit is transformed
into one of resynthesizing a combinational logic circuit with appropriate timing constraints.
This is achieved by first using peripheral retiming. The resulting maximal combinational
sub-circuit can be subject to any delay-reducing transformation in an effort to meet the
timing constraints specified for it. The timing constraints are based on the cycle time that
the designer desires. It is.shown that if the timing constraints on the maximal combinational
sub-network are met then it is always possible to retime the resynthesized circuit to meet
the desired cycle time. It is also shown that any circuit that meets the cycle-time constraint

can be obtained by peripheral retiming, a.ppropria.te r;esynthesis and then retiming.

3.3.1 Two Problems in Performance Optimization
Pipelined Performance Optimization

Pipelined circuits were introduced in Section 2.4. Recall that a pipelined circuit
of n stages consists of n combinational circuits (C,,...,C,) with stage ¢{ communicating
with stage ¢ + 1 through some signals that are latched. (See Figure 3.9(a).) Each C; may
have inputs I; and outputs O; besides the latched inputs and outputs used to communicate
with adjacent pipeline stages. This description of a pipeline is general since it does not
restrict all inputs to come in at the first stage and outputs to leave the last stage. Allowing
inputs to any stage (rather than just the first stage) in the pipeline provides the following
additional flexibility:

1. The pipeline can operate on multiple streams of data which may arrive separated from

each other by an arbitrary number of clock cycles.
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2. The pipeline can consider control signals that arrive in cycles subsequent to the initial

data and perform the remaining computation based on these.
Similarly allowing outputs from any stage permits the following:

1. Multiple computations may be performed with the different results being available
during different clock periods.

2. Error conditions or any status signals can be provided as outputs in the cycle they

are computed.

This description of pipelined circuits is general and includes most circuits that are considered
to be pipelined by digitd circuit designers. '

The performance optimization problem of pipelined circuits is to maximize the
clocking rate or equivalently minimize the cycle time of the circuit. This determines the
throughput of the circuit. Sometimes the cycle time, ¢, that needs to be attained is specified
as a constraint, based on the requirements of the system of which this circuit is a part. In

that case, the optimization problem is to meet the specified cycle time constraint. In general,
not all inputs are available at the clock edge; for example, they may arrive later because of
communication delays. Similarly some of the outputs may be required well before the clock
edge, say, in order to satisfy setup time requirements. Thus, with each input signal an arrival
time, a, is associated which is the time after the clock edge that the signal is available and
with each output signal a required time, r, is associated which is the time before the clock
edge that this signal must be ready. Let A and R be the sets of arrival times and required
times for the inputs and outputs respectively. These capture the timing constraints due to
the environment of this circuit. Thus an instance of the pipelined performance optimization
problem Pp, is specified as Pp = {C, ¢, A, R}, where C is the circuit and ¢ the desired cycle
time constraint. Note that this problem statement assumes that c is provided as part of the
problem. If the problem is to minimize ¢, this can be done by solving a number of problem

instances Pp, each with a known ¢, by performing a binary search for the least feasible c.

Combinational Speedup

The combinational speedup problem has been well studied in recent vears. Here a
given combinational circuit, C, is to be resynthesized so that it meets its timing constraints.

The timing constraints are specified as required times, r, on the outputs of the combinational
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Pipelined Circuit Peripherally Retimed Circuit

(a) (b)

Figure 3.9: Peripheral Retiming of Pipelined Circuits
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circuit. In this case these times are absolute and not with reference to any clock edge. As
before, the inputs may be arbitrarily delayed and an absolute arrival time a is associated

with each input. Thus, an instance of this problem, Pg, is specified as Pc = {C, 4, R}.

Problem Transformation

Given an instance of the pipelined performance optimization problem, Pp it is
transformed to an instance of the combinational speedup problem Pc. Subsequently it is
demonstrated how a solution of P¢ may be retimed to obtain a solution of Pp.

As described in Section 2.4 we obtain a peripheral retiming for the pipelined circuit
by retiming block C; by —(i — 1). (See Figure 3.9(b).) This is not unique, several possible
peripheral retimings exist. In terms of the circuit this implies that we sweep all the latches
forward through the circuit, borrowing latches at the inputs as needed. This results in the
peripherally-retimed circuit shown in the Figure 3.9(b). As before, peripheral retiming has
exposed a larger combinational circuit, C., which is the cascade of Cy,Cs,...,Cy,. This is
the combinational circuit that we will use for the transformed problem, P¢. In order to
complete the definition of Pc we need to specify A and R. We determine them by using
¢, A and R from Pp as follows. For an input to stage ¢ of C with arrival time « in P p the
arrival time in P¢ is a + (¢ — 1)c. For an output of stage ¢ in C with required time r in P p.
the required time in Pc is ic — r.‘ Note that it is easy to determine which stage an input or
an output belongs to by looking at the number of latches in the peripherally-retimed circuit
at that input or output. The intuition behind this choice of modifications of arrival and
required times is that it captures the fact that the input arrives only after : — 1 cycles and
the output is required only before the it* cycle. In the next section we will see how this

choice of A and R results in an interesting relationship between problems Pp and Pg.

3.3.2 Main Results

We would like to obtain a solution of Pp from a solution of P¢. It is not immedi-
ately obvious that this is possible, in fact it seems almost unlikely to happen as the analysis

below shows. However, we need a few simple definitions first.

Definition 3.3.1 A path in a circuit is an alternating sequence of consecutive connections

(possibly latched) and gates.

As in [43, 44] a propagation delay, d, is associated with each gate in the circuit.
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Definition 3.3.2 A segment of a path is a path from an input or a latch to an output or

a latch.

Definition 3.3.3 The delay of a segment, s, is the sum of the gate delays along the segment
and is denoted by D,.

Definition 3.3.4 The lumped delay of a segment s, denoted by A,, is the sum of the com-
binational logic delays associated with the gates and the times associated with late arrival

of an input or early requirement of an output. Thus, \y = a+ D; +r.

Of course, a or r are equal to 0 if the segment has no input or output respectively.

Definition 3.3.5 A latch is said to be forward blocked if it cannot be legally moved

forward across its output gate, g, without violating a cycle time constraint.
This may happen for two reasons:

1. There exists a path from an input to g which does not have any latch on it. Thus,
it is never possible to have a latch at each input of g which is needed for the legal
forward motion of the latch. (See Figure 3.10(a).)

2. There exists a path from a critical latch to g. Informally a latch is critical if it cannot
be moved forward without violating the cycle time constraint. (The formal definition
of a critical latch is deferred till later in this section.) Thus it is not possible to move

a latch from each input of g to its output. (See Figure 3.10(b)).

Definition 3.3.6 A latch is said to be backward blocked if it- cannot be legally moved
backwards through a gate g.

For this to happen, there must be a path from ¢ to an output which does not have a latch
on it. Thus, it is never possible to have a latch at each output of ¢, which is needed to move
this latch backwards. (See Figure 3.10(c).)

Consider a path, p, from an input of stage ¢ to an output of stage i + j in Pc.
Assume that the solution to P¢ just meets the delay constraints for this path, i.e. the path
is critical for P. Therefore the combinational logic delay, delay(p), along this critical path
is given by:

delay(p) = (i + jle—r)—(a+(i—1)c)— ¢
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Figure 3.10: Blocked Latch Motion

where € is an arbitrarily small positive number. Simplifying this results in:
delay(p)=(j+1)e—r—a—c¢ (3.1)

Now suppose that we do find a final retiming that meets the cycle time constraint ¢ along
this path. Since retiming does not change the number of latches between any input and
output, there will be j latches between the input-output pair in consideration. Thus, in the
retimed circuit this path has j + 1 segments. Then for each segment, A\; < ¢. Summing

over k for this path, we see that:

j
S A <(F+1)e
k=0

which gives ‘
. J
a+ > Dp+r<(j+1)

k=0
or equivalently

J
ZD’* <(J+le-r-a
k=0
But E{.=0 Dy, is delay(p) and we know from Equation 3.1 that this is equal to (j+1)e—r —

a — €. Thus we cannot add any delay to any segment without violating the cycle constraint.
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Therefore each path segment along this path is critical in as much as moving any latch
would violate the cycle constraint. It is possible that the solution to P ¢ may actually result
in the constraints along all paths in C, to be just met. In that case, for each path there is
only one available position of latches that will meet the cycle time constraint. Since different
paths overlap, it is possible that the positions of latches dictated by each path may be in
conflict.

To make matters worse, latches cannot be arbitrarily placed along a path as as-
sumed by the above analysis. The latch motion may be blocked in either the forward or
backward direction. This makes it even less probable that the latches can be positioned so
that for all the paths they lie at the single position that meets the cycle time constraint
and simultaneously avoid being blocked by the positions of inputs and outputs.

Since there are only discrete positions along the length of the path where a latch
may be placed, viz. before and after gates, the granularity of control that we have over
the latch positions is only the largest possible gate delay 6. To handle this, the following
relaxed problem is defined: Pp’ = { C,c+ §, A, R} derived from Pp. A solution to Pp’
exceeds the cycle time constraint for Pp by no more than é.

To show that any solution of P¢ can be retimed to get a solution of Pp’ a few

more concepts must be considered.

Definition 3.3.7 A segment is said to be critical if it just meets the performance con-
straints for that segment, i.e. the latch at the end of the segment cannot be moved forward
across a gate g without violating the constraints for Pp'. Thus, ¢ < M < ¢+ 6 and
Ak +dg > ¢+ 6 for a critical segment.

Definition 3.3.8 A segment is said to be violating if it does not meet the timing require-

ments for Pp'. Thus, \p > ¢ + 6 for a violating segment.
Definition 3.3.9 A path is said to be critical if all its segments are critical.
Definition 3.3.10 A latch is said to be critical if it terminates a critical segment.

Definition 3.3.11 A path is said to be violating if the last segment is violating and all the

other segments are critical.

We label each input of the circuit based on the number of latches at that input in the

peripherally-retimed circuit in Figure 3.9 (b). If an input has —(¢) latches. then its label
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is ¢. Each latch in a pipelined circuit can be labelled by a unique integer that specifies its

level in the circuit. This labelling obeys the following two rules:

1. If there is a purely combinational path (with no latches) from an input with label i
to this latch, then the label on the latch must be <.

2. If there is a path with no latches from a latch with label i — 1 to this latch, then its

label must be z.

For a pipelined circuit, a unique labelling exists for the latches which satisfies both rules.

The following basic lemma is critical to prove the equivalence of P p’ and Pc.

Lemma 3.3.1 Letk be any integer not exceeding the largest label on any latch in C. Then,

it 18 possible to legally retime C to C,., such that in C,:

1. There eiists a violating path from an input to an output that passes through latches
labelled only < k, OR

2. The following three conditions are satisfied:
(a) No segment starting at a latch or input labelled < k is violating.
(b) Each latch labelled < k is either critical or forward blocked.
(c) Each critical latch terminates a critical path from some input to that latch.

Proof. The proof is by induction on k.
-Induction Hypothesis: Assume the statement in the lemma is true for all ¢ < k.
Induction Basis: The statement in the lemma is proven for : = 0.
Let us try and place all latches (using retiming) with label 0 so that the input
segments do not violate the cycle time constraint ¢ + 4.

Case 1: It is not possible to do so. Then one of the following must be true.

1. There exists a path from an input to an output for which ¢« + D + r > ¢+ 4. This
path is a violating path from an input to an output and thus the first condition in

the lemma is satisfied.

o

There exists a path from an input, ¢, to a latch, [, for which ¢« + D > ¢+ 6. This latch
must be backward blocked or else we would have moved it backwards to get rid of

this violation. If it is backward blocked then the input gate of this latch must have a
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path to an output, o, with no latch on it. Thus, for the path from i to o, the following
must be true: a+ D +r > ¢+ 4. This follows from the fact that r is non-negative and
you need to go through at least the same and possibly additional logic while going
from i to o instead of going from ¢ to /. This input to output path is violating and

the first condition in the lemma is satisfied.

Case 2: It is possible to do so. Then we can move each latch with label 0 forward till
it is either critical or forward blocked. If a latch is critical then it must be so because it
terminates a critical path from some input. Now all three parts in the second condition of
the lemma statement are satisfied.

Induction Step: It is now proven for ¢ = k. As in the base step we can either place all
latches with label k without violating the cycle time constraint c+ 6, or we cannot. Consider
each of these separately.

Case 1: We cannot. Then by an argument similar to that used in Case 1 of the base case,
there is a segment from either a latch or an input to an output that is violating. In fact,
this violating segment must be from an input or a critical latch. To see why this must be
so, suppose that the violating segment is from a non-critical latch to the output. Since
the non-critical latch was blocked by either a critical latch or an input, the segment from
this critical latch or input to the output is violating. If it is from an input, then the path
from this input to the output is violating satisfying the first condition of the lemma. If it is
from a critical latch, by the induction hypothesis the critical latch terminates a critical path
from an input. This path along with the violating segment starting from this latch forms a
violating path from an input to an output satisfying the first condition in the lemma.
Case 2: We can. Then each latch with label ¥ can be moved forward until it is either
forward blocked or critical while ensuring that no segment is violating. For each critical
latch with label k¥ there must be a critical segment from an input or a critical latch. The
reasoning as to why all critical segments to a latch cannot be from non-critical latches is the
same as that used in Case 1 above. If the critical segment is from an input, then the critical
latch does terminate a critical path from an input. If it is from a critical latch, then by the
induction hypothesis this critical latch terminates a critical path starting at an input. The
concatenation of this critical path with this critical segment gives the required critical path
from an input for the critical latch with label & which satisfies the second condition in the

lemma. [ ]



3.3. PERFORMANCE OPTIMIZATION
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With this we can now prove the following.

Lemma 3.3.2 If the solution to Pc cannot be retimed to meet cycle ttme constraint ¢ + 6,

then there must exist a violating path from an input to an output.

Proof. Let £ be the maximum label on a latch in any retimed circuit. Using Lemma 3.3.1
with this k, we see that either there is a violating path from an input to an output, in which
case we are done, or all critical latche§ vyith label & terminate a critical path starting at
an input. Note that since the cycle time constraint was not met, there must be a violating
segment starting at a latch or input with label k. Actually this violating segment must
be from a critical latch or input with label ¥ by the same argument used in Case 2 of the
induction step in the proof for Lemma 3.3.1. If this is from an input then this segment
forms a violating path from an input to an output. If it is from a critical latch then this
segment appended to the critical path from an input terminating at that latch forms a

violating path from an input to an output. T om

Finally it is shown that the existence of a violating path implies that the constraint

for that path in P¢ was not satisfied.

Lemma 3.3.3 If there exists a violating path from an input to an output in any retimed

circuit equivalent to C, then the constraint for the corresponding path was not satisfied for
Pc.

Proof. By summing up the delay constraints along the violating path it is seen how the
delay constraint for the corresponding path cannot be met in Pc. Recall that a path is
violating if the last segment is violating and all other segments are critical. Let the violating
path have j + 1 segments. If 7 = 0, then ¢ + D+ r > ¢+ 6. The constraint on this path in
Pe is that (ke — r) — (e + (k= 1)e) > D or equivalently, a + r + D < ¢ (k is the label on
the input.). Thus, this constraint is violated. If ;7 > 0, then the following inequalities are
obtained from the fact that the path is violating.

a+Dy 2> ¢
D; >2 ¢ 1<i<j
r+D; > c+6é
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From these we see that:

J
a+ Y Di+r>(j+1)e (3.2)
k=0
The constraint on the same path in Pg is:

(G+k)e=-r)=(a+(k=1)) > iD;
k=0

This can be rewritten as:

J
G+ 1)c>a+ZD;+r
k=0
which is not met as we can see from Equation 3.2 above. [ ]

Theorem 38.3.1 IfP¢ has a solution then this can be retimed to give a solution of Pp'.

Proof. Follows from Lemmas 3.3.2 and 3.3.3. ]

From Theorem 3.3.1 we see that solving P is sufficient in order to obtain a solution
to Pp to within a gate delay. Now it is shown that any solution to P p must be a retiming

of a solution of P¢.

Theorem 3.3.2 If there exists a solution to 'P1; then this can always be obtained by retiming

some solution of Pe.

Proof. For any path from an input to an output in the retimed circuit the following

inequality must be satisfied for each segment: A\ < c. Summing over all segments:

i
a+ZD;+r<(j+1)c
k=0

The constraint on this path in P¢ is exactly this and is therefore satisfied. Since this is
true for all paths, C, for the solution of Pp is a solution of P¢. ‘The solution of Pp is then
obtained by moving in the peripheral latches by retiming,. [ |

Thus, for the pipelined problem to have a solution (within a gate delay) it is
necessary and sufficient that the combinational problem has a solution. This is significant
since it tells us that the problems are equivalent and therefore we need concentrate only on

the relatively simpler combinational speedup problem.
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Practical Experiences

Let me see: four times five is twelve, and four times siz is thirteen, and four
times seven 18 - oh dear!

- Lewis Carroll, “Alice in Wonderland”

In this chapter the practical aspects of the ideas developed in Chapters 2 and 3
are discussed. Their implementation as well as practical experiences with some circuits are

described. The implementation issues are considered first.

4.1 Implementation Issues

In Chapter 2 it was observed that not all circuits permit peripheral retiming; only
pipelined circuits do. However, the examples shown there illustrate that even if a circuit is
not pipelined, sub-circuits exist that are pipelined and retiming and resynthesis techniques
can be used on these sub-circuits. Given an arbitrary circuit, there are several possible
pipelined sub-circuits. (A trivial example of a pipelined sub-circuit is any single gate in the
circuit. Obviously this is not a very useful sub-circuit.) Ideally we would like to determine
the sequence of pipelined sub-circuits that need to be considered so as to guarantee that all
logical relationships between gates are exploited. This seems to be a very difficult task. In
the absence of this it is desirable to guarantee at least some locally optimum property of
the pipelined sub-circuits being examined. With this in mind two different techniques were

implemented to examine pipelined sub-circuits. These are now individually described.

4.1.1 Growing Pipelined Sub-Circuits from a Seed
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<

/* inputs: seed, network
outputs: network

*/

seed_network(seed, network){
/* initialize */
included = pending = ¢;
enqueue(pending, seed);
/* add until nothing is pending */
while(pending != ¢){
node = dequeue(pending);
add_node(node, included, pending);

}

~ return(network) ;
}
/* inputs: node, included, pending

outputs: included, pending
*/

add_node(node, included, pending){
/* initialize */
w_list = ¢;
/* consider each fanin */
foreach fanin of node{
v = - weight(edge(fanin, node));
if(fanin € included){
w_list = w_list U w;
} else if(fanin ¢ pending){
enqueue(pending, fanin);
}
}

/* consider each famout */
foreach fanout of node{
w = weight(edge(node, fanout));
if(fanout € included){
w_list = w_list U w;
} else if(fanout ¢ pending){
enqueue(pending, fanout);
}
}

lag = mode(w_list);
retime(node, lag);
included = included U node;

Figure 4.1: Growing Pipelined Circuits from a Seed
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The least property that is desirable from a pipelined sub-circuit is that it should
be maximal, i.e. no other gate in the circuit can be added to this sub-circuit and the
sub-circu&t still be pipelined. This property is relatively easy to guarantee if a given sub-
circuit is expanded incrementally by adding a node to it along with some of its in-edges and
out-edges as long as it retains the pipelined property. When no node can be added, then
the sub-circuit is maximal. The starting point is some arbitrary seed node which may be
specified by a designer in an interactive environment such as {70].

This is described in algorithm seed._network in Figure 4.1. Here the sub-circuit
is peripherally retimed as it is being constructed. network is the communication graph
representing the circuit!. The set included contains those nodes already included in the
sub-circuit along with all the edges between these nodes. pending is a queue of nodes
waiting to be added to included. To start with, included is empty and seed is added to
the front (enquéued) of pending. The algorithm proceeds by repeatedly taking a node from
the front of pending, and adding it to included till pending is empty.

The addition of node to included is done as follows. Figure 4.2 shows a node,
node, that is to be added next to included. Edge ¢ from included to node has weight w ;.

Similarly, edge j from node to included has weight w,u;. Consider the following scenario.
Vi wip, = -w

vy Wout; = W

Now, if node is retimed by a lag of w, there are no latches on any edge between node and
included. Combinational logic optimization can exploit the logical relationships implied
by all these edges.

In general, the above scenario will not always occur. In that case, it is not possible
to retime node so that all edges between it and included are latch-free. For any retiming
there is at least one edge between included and node that has non-zero edge weight. (See
Figure 4.3.) For combinational logic optimization the input to the latch on the edge is a
primary output of the combinational circuit, and the output of the latch is a primary input
to the combinational circuit. The non-zero edge weight need not be positive. A negative

edge weight corresponds to negative latches on the peripheral edges of a combinational

network.

'The restriction that the communication graph be acyclic was needed in Chapter 2 for describing periph-
eral retiming. This is now relaxed, i.e., the communication graphs being considered here may be cyclic.
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Figure 4.2: Adding node to included

primary input

ey

primary output

Sequential Network Combinational Part

Figure 4.3: Adding an Edge with w # 0 to included
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Since latch-free edges permit information to be used by combinational optimization
it is desirable that as many of these edges should be latch-free as possible. For an edge from
included to node to be latch-free after retiming node, the lag for node should be —wy,,.
Similarly, for an edge from node to included to be latch-free after retiming node, the lag
for node should be wqye;. Thus, the desired lag is the modal element of the following set:
{~Winy»- -+ = Win;s Wouty » - - +y Wout; }» 1.€., the element that occurs with the most frequency.

seed_network will retime node by this lag, and add it to included. All other
nodes connected to node that are not in included or pending are added to pending.
Thus, the network consisting of nodes in included grows radially out from seed. When
seed_network terminates, all the nodes in the circuit in the same connected component of
the network as seed are in included. This follows from the following two observations.
Each node that is in the same connected component as seed gets added to pending and
each node added to pending gets added to included. Thus, this meets the requirement
that included be maximal. As shown in Figure 4.3, the position of the latches determines
the combinational logic circuit obtained.

A note on the data structures that are used in practice. Since inclusion checks
need to be made on included, it is implemented as a hash table. Inclusion checks are also
made on pending; thus it is implemented as a hash table in addition to being implemented
as a queue. As the name suggests, w_.1ist is implemented as a list.

The algorithm is linear in the size of the ne:twork since each node is examined once
and each edge examined twice, once from each end.

Theorem 4.1.1 stated below describes the relationship between any two nodes in
included in terms of information that can be used by a combinational logic optimizer. The

following two lemmas aid its proof.

Lemma 4.1.1 In procedure add.node retiming node by lag results in at least one edge

between node and included to have weight equal to zero.

Proof. This follows from the fact that lag is selected from w_1ist and each element of

w_list corresponds to a lag that will result in some edge with weight 0 after retiming. =

Lemma 4.1.2 Let x and y be any two nodes in included at any point in the algorithmn

seed_network. There is an undirected path of zero weight between x and y.
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Proof.

The proof is by induction on the size of included.

Induction Hypothesis: The statement in the lemma is true for n < k nodes in included.
Induction Basis: The lemma statement is true for » = 2 since by Lemma 4.1.1 addition of
the second node to included is accompanied by the addition of a zero-weight edge between
it and the first node.

Induction Step: Let n = k — 1. By the induction hypothesis the lemma statement is
true for any pair of nodes in included. Let z be any node in included and y be the
node being added. By Lemma 4.1.1 there is some node z in included such that there is
a zero-weight edge from y to z after y is retimed by lag. The zero-weight path between @
and z concatenated with the zero-weight edge between z and y forms the zero-weight path

between = and y. [ ]

Theorem 4.1.1 Let z and y be any two nodes in included at any point in the algorithm

seed.network. Then one of the following must be true:
1. There is a directed path of zero weight from = to y.
2. There is a directed path of zero weight from y to z.

3. There is some node z in included such that there is a directed path of zero weight

from both x and y to 2.

4. There is some node z in included such that there is a directed path of zero weight
from z to both x and y.

Proof. The proof follows from Lemma 4.1.2 and the fact that if an undirected path exists

between x and y then one of the conditions in the theorem statement must be true. [ ]

The significance of this result is that combinational logic optimization of included

considers at least some interaction of any pair of nodes in included. This is certainly not

true for the initial circuit.

4.1.2  Clustering Combinational Logic Blocks

There are several decisions that are made by algorithm seed-network. It deter-

mines the order in which the nodes not yet in included are added, as well as the lag for
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/* inputs: network

outputs: PI_list_array, PO_list_array, node_list_array
%/

cluster(network, PI_list_array, PO_list_array, node_list_array){

/* initialize */

visited = ¢; current_block = 0;

/* start with primary_outputs */

foreach primary_output in network{

if primary_output ¢ visited{

/* new cluster discovered */
current_block++;
PI_list = PO_list = node_list = ¢;
visit(primary_output, visited, PI_list, PO_list,
node_list);
PI_list_arraylcurrent_block] = PI_list;
PO_list_array[current_block] = PO_list;
node_list_array[current_block] = node_list;

Figure 4.4: Clustering Combinational Logic Blocks: I

.retiming node. For each of these the intuitively better choice is made, but there is no guar-
antee regarding how good each of these decisions is. What is desirable is some more control
that the designer can exercise in the choice of the resulting circuits. For example if the de-
signer is provided with a schematic of a circuit in terms of its combinational logic blocks and
latches such as that shown in Figure 2.16 and he/she can specify the lag for each individual
block, then the resulting retimed circuit is completely under his/her control. The lags may
be selected by the designer based on information about the relative sizes of the logic blocks,
their logical functionality, etc. Note that it is not possible to determine the combinational
logic clusters by looking at the initial circuit just in terms of an interconnection of a large
number of gates and latches.

The connectivity information in terms of the combinational logic blocks can be

obtained by clustering the nodes of the network into combinational logic blocks. Two gates
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/* inputs: node, visited, PI_list, PO_list, node_list
outputs: visited, PI_list, PO_list, node_list
*/

visit(node, visited, PI_list, PO_list, node_list){
/* add node to approprite list */
if(node is a primary input)
PI_list = PI_list U {node};
else if(node is a primary output)
PO_list = PO_list U {node};
else
node_list = node_list U {node};
/* visit fanins in same cluster */.
foreach fanin of node{
if(w(edge(fanin, node)) == 0){
/* fanin in same cluster */
if(fanin ¢ visited){
visit(fanin, visited, PI_list, PO_list, node_list);

}
}
}
/* visit fanouts in same cluster */
foreach fanout of node{
if(w(edge(node, fanout)) == 0){
/* fanout in same cluster */
if(fanout ¢ visited){
visit(fanout, visited, PI_list, PO_list, node_list);

}

Figure 4.5: Clustering Combinational Logic Blocks: II
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are in the same cluster if there is a path between them of weight 0. Algorithm cluster
in Figures 4.4 and 4.5 describes the clustering process. On completion, PI_1ist_array,
P0_list_array, node_list_array, will contain the lists of primary inputs, primary outputs
and nodes; one for each cluster. These may be then used by a schematic generation routine
or for interactive querying as discussed in the previous paragraph. Clustering begins by
calling visit for a primary output node. visit recursively visits all nodes in the same
cluster and updates the list of primary inputs, primary outputs and nodes for this cluster.
The clustering is all done when there are no more primary outputs that have not been
visited. Once clustering is complete the circuit may be retimed with the designer specifying

the lag for each cluster.

4.2 Experimental Results: Area Optimization

4.2.1 Experimental Circuits

In the case of combinational logic optimization, a-large suite of benchmark circuits
has been accumulated by the research community and is available for distribution [47]. This
is not the case for the relatively new field of sequential circuit optimization. Thus, as part
of the experimental process a set of example circuits had to be collected. The circuits

examined are from the following sources:

¢ Circuits synthesized from the FsM descriptions provided by the International Work-
shop on Logic Synthesis [47]. The FsM’s are specified in terms of their state transition
table. Circuit implementations are obtained by running the state assignment program

NOVA [79].
e Circuits from speech 2 and image recognition 3 chips.
e Controllers from an industrial source.

¢ Sequential circuits used as benchmark circuits in sequential circuit testing [16].

2These are from the circuit described in [75].
3This circuit is obtained from a design provided by G. DeMicheli from Stanford University.
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4.2.2 Experimental Procedure and Results

In Section 4.1 it was observed that there are several possible sub-circuits that can
be considered for retiming and resynthesis given an arbitrary sequential circuit. Since it is
~ practically impossible to consider all possibilities, some choices need to be made to keep the
search space limited. The choice of the lag for retiming node in the procedure add.node is
an example of this. Another decision that needs to be made in procedure seed_network is
the choice of the seed'node. A desirable quality of the seed node is that the resulting sub-
circuit should have nodes from across latch boundaries (in the original circuit) in the same
combinational block so that logic relationships between them can be exploited. With this
reasoning, a good choice for a seed is the input node to a latch. Since the latches are pushed
radially outward from this point, nodes from both sides of the latch boundary get included
in the same combinational logic block. Of course, there is typically more than one latch in
the circuit and each latch input is a potential seed. Procedure experiment in Figure 4.6
outlines the experimental procedure that records the results of using each latch input as a
seed. Combinational logic optimization is done using misII (This is version 2, release 1 of
MIs [12]). Retiming to minimize latches is performed using the algorithm provided in [43].

The experimental results are not very encouraging. Only in one case is an area
reduction of more than 5% observed in the combinational resynthesis. (This reduction is
being measured with respect to a circuit in which the combinational logic and number of
latches have been already minimized.) This example is an image processing circuit where
a 6% reduction in the area was observed in the combinational part. The number of latches

remain unchanged. The next section examines possible reasons for these results.

4.2.3 Analysis of Experimental Results

The lack of positive results in the previous section demands a look into why this
is so. The following analysis aims to explain the experimental observations.

It is interesting to observe the combinational resynthesis step in terms of the
topology of the peripherally-retimed circuit and the combinational optimization techniques
used in misII.

First a look at the topology. It is common for primary inputs to fan out to a large
number of gates in a combinational circuit. Since register outputs are primary inputs to the

combinational logic, they share this high-fanout property. When the registers are moved to
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/* inputs: network
outputs: experimental results

*/

experiment (network) {
" foreach_latch(network, latch){
node = latch_input(latch);
new_network = seed_network(network, node);

/* optimize the area of the combinational logic */
combinational_area_optimize(new_network) ;

/* minimize latches using retiming */
retime_min_latches(new_network);

/* output the size of the circuit */
output (combinational_area(new_network), num_latches(new_network));

Figure 4.6: Summary of the Experimental Procedure
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L]

Peripherally Retimed
Initial Circuit oot

Figure 4.7: Register Outputs Form a High Fanout Cutset

the periphery, their previous input nodes have high-fanout (see Figure 4.7). Let us examine
the implications of this on the optimization techniques included in misII.

mislI has two main phases of optimization: circuit restructuring and node simpli-
fication. These are considered separately.

The circuit restructuring phase operates by collapsing (functional composition)
low-fanout nodes into their fanout nodes and then restructuring these large resulting nodes
using the algebraic techniques of cube and kernel extraction. Note that since the register
input nodes have high-fanout in the peripherally-retimed circuits, these nodes form a high-
fanout cutset of this network. This effectively restricts the restructuring to each side of
the original latch boundaries. However, this restructuring has already been exploited and
therefore nothing new is gained by migrating the latches. Completely collapsing the circuit.
and thereby removing the barrier to restructuring, is computationally too expensive and
impractical for reasonably-sized circuits.

The node simplification phase constructs the satisfiability don't care set [3] and
'simpliﬁes each node using two-level minimization with this don’t care set. Typically this

don’t care set is large and a filter is used that extracts only part of this don't care set for a
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node [67]. This is determined by looking at the topology of the network. For the topology
that we are working with, a network where the original register inputs form a cutset, the
filtering would restrict the don’t cares for a node to be generated only from other nodes
that are on the same side of the cutset. Again this has already been exploited and nothing
new is obtained from migrating the registers. Disabling the filter and using the complete
satisfiability don’t care set does not improve any of the results. This is partially to be
expected since the filter has been designed so that the quality of the results is almost as
good as what can be obtained with the entire satisfiability don’t care set. Finally, node
simplification using a subset of the observability don’t cares for a node [68] is considered.
Intuitively these don’t cares should be very useful in this case since the observability of
the nodes in sub-circuit C; (see Figure 4.7) is changed by adding sub-circuit C, and thus
additional simplification is possible?. A possible reason as to why these are not effective
is that only a subset of the observability don’t cares are being used and this may not be
sufficient.

Based on this it appears that the combinational optimization programs are trapped
in a local minimum and are not powerful enough to exploit the additional information that
is provided by the latch migration.

The following experiment helps substantiate these claims. Consider the example
circuit in F.igure 4.8(a). It consists of a two-stage pipeline. The first stage computes the
sum of two n bit numbers, a[n — 1: 0] and b[n — 1 : 0]. The second stage checks if the n + 1
bit sum is greater than 2". Figure 4.8(b) shows the peripheral retiming of this circuit. It is
instructive to see how misII optimizes this circuit after it is given the additional information
that the output of the adder is used only in the comparator. Two different optimization

techniques are tried.

1. The standard mislII script is used followed by simplification using a subset of the

observability don’t cares.

2. The circuit is first collapsed to two-level logic. This is then simplified using the two-
level logic minimizer ESPRESSO. Technique 1 is then applied to the resulting circuit.
The motivation behind collapsing the circuit to two-levels and using ESPRESSO is that

two-level minimization is very powerful and can exploit the observability don't cares

*The nodes in C} were initially observable at the latches (for the combinational part). These observation
points have been removed now.
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a[n-1:0] b[n-1:0] a[n-1:0] b{n-1:0]
(a) (b)

Figure 4.8: Example Circuit: add_comp
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completely.

In order to evaluate how well the optimized circuits are doing, the circuit for the
function f = (a[n — 1 : 0]+ b[n — 1 : 0]) > 2" is separately designed. The following is a

parametric description of this design.

zfi] = z[i-1] + a[i] + B[]
yli] = yli—1](afi] + bl]) + =i - 1] ali] 8[i]

z[-1] = 0
yl-1] = 0
f = yln-1]

The semantics of z[i] and y[i] are as follows. Let s[i] be the :*# sum bit and c[i] be the carry

out of the i*# bit of a ripple carry adder. s[i] and ¢[] are given by:

slil = ali] Bf%] cfi — 4] + a[3] b[d) cfi—1] + af3] O3] cli — ] + ald) Bi] ¢[i — 1]
cli] = ali] B[] + fi—1] (afs] + bf3))
c[-1] = o

z[d] is 1 if and only if ¢[i] = 1 or at least one s[j] = 1,0 < j < i. y[d]is 1 if and only if
c[i] = 1 and at least one s[j] =1,0< j < i.

This circuit is implemented using 8n — 8 literals in factored form. This is in
comparison to the adder followed by the comparator which is &~ 13n literals.

Figure 4.9 compares the sizes of the circuits obtained using the different methods
described here as a function of n. The curve labelled adder + comp represents the circuit
.obta.in.ed by optimizing the adder and the comparator separately and then combining them.

The following observations are made from this graph:

1. Only for very small n does misIl do a reasonable job when compared to the 8n — 8
circuit. However, as n increases misII quickly runs out of steam and it does not reduce

the size of the initial circuit.

(S

. Using ESPRESSO enables the observability don’t cares to be used and as a result the
quality is the same as the separately designed circuit. However, it is not practical to

collapse the circuit to two levels for larger n.
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Figure 4.9: Experimental Results for add_comp
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MAX MAX

(@) (b)

Figure 4.10: Example From a Datapath

Thus, it is seen that as the circuit size increases, misll is unable to exploit the additional
information (that the adder is being followed only by a comparator) in any way. It should be
noted that even for n = 9 the circuit sizes are relatively small (& 100 literals) in comparison
to the circuits used in the area optimization experiments in this section. Thus it is likely
that this limitation of misII is at least partially respomsible for the lack of substantial
improvements seen.

Current research in combinational logic optimization techniques (e.g. [60]) holds
some promise in terms of discovering more powerful techniques that do circuit restructuring
without collapsing and algebraic factoring. These are more likely to exploit the additional
information generated by latch migration for the combinational logic optimizers.

Analysis of pipelined datapaths gives some insight as to when there is inherently no
potential for further improvement and thus no use in expending any further effort. Consider
the circuit in Figure 4.10(a). Here the function MAX(a+b,c) is performed over two cycles.
with the addition being done in the first stage and the selection of the maximum done in
the second stage. No area improvement is obtained for this circuit. It is instructive to see
why this is so. Figure 4.10(b) shows the same circuit with a peripheral retiming. Note that

if ¢ = 0, then the output of this circuit is « + b. Thus, even though the output of the adder
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is not explicitly observable for this circuit, it is #mplicitly observable since it can be passed
on to the output of the circuit by setting ¢ to 0. Thus, no additional observability don’t
cares are generated by the cascade of the two logic blocks. We also note that the implicit
observability of the adder outputs forces the adder IO-map to be a Boolean function as
opposed to a Boolean relation [13], i.e. no two outputs of the adder are equivalent as far
as the MAX logic block is concerned. Thus, there is no flexibility in changing the logic
function of the adder block. It has been our experience that implicit observability is a
general characteristic of datapath circuits and this property does not make them amenable
to further area optimization using retiming and resynthesis techniques.

It is possible that for the example circuits there is no further potential for im-
provement using retiming and resynthesis techniques. However, since the set of examples

is not fully representative of different kinds of sequential circuits, no generalizations can be

made.

4.3 Experimental Results: Performance Optimization

4.3.1 Example Circuits and Experimental Procedure

Since the theoretical results in performance optimization were developed specifi-
cally for pipelined circuits, the experiments to evaluate their practical utility are also con-
ducted on pipelined circuits. Only one of the circuits among those described in Section 4.2.1
is pipelined, thus additional circuits are needed for this experiment. The following three

arithmetic circuits were designed for this purpose. Each of these is a two-stage pipelined

circuit.

ex1l A two-stage adder that adds four 8-bit numbers (4,B,C and D). The first stage
computes the partial sums A + B and C + D and the second stage computes the final

sum. Each adder is a ripple-carry adder.

ex2 A two stage adder that adds two 16-bit numbers. The first stage computes the sum of
the 8 least-significant bits and the second stage computes the final sum. Each adder

is a ripple-carry adder.

ex3 This circuit computes the parity of the sum of two 8-bit numbers (A and B). During

the first stage the sum is generated using a ripple-carry adder. In the next stage the
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Name Rsyn-Ret Ret-Rsyn PR-Rsyn-Ret
area | latches | cycle || area | latches | cycle || area | latches | cycle
exl 804 27| 144 | 518 28 | 154 758 25| 14.4
ex2 500 25| 16.6 542 22| 154 571 42 1 11.0
ex3 292 91 12.6 || 265 141 14.0 371 221 124

Table 4.1: Experimental Results: Performance Optimization of Pipelined Circuits

parity of the sum is computed using a balanced parity tree.

Three design scenarios are evaluated and the cycle time achieved by each is re-
ported in Table 4.1. The three scenarios explore different methods to obtain a faster version

of the initial pipelined circuit and are as follows:
1. resynthesis followed by retiming (Rsyn-Ret)
2. retiming followed by resynthesis (Ret-Rsyn)

3. the approach proposed in Section 3.3, i.e., peripheral retiming followed by resynthesis
followed by retiming (PR-Rsyn-Ret).

For purposes of this experiment only one delay optimization routine is applied, the critical-
path restructuring on a technology-independent network [73], as part of the resynthesis
procedure. The delay through the circuit is measured using a two-input NAND gate repre-
sentation of the circuit. Each gate contributes one unit of delay and each fanout contributes
an additional delay (0.2 units in this experiment). The area of the combinational pait is
measured as the number of literals (gate input connections) in the same 2-input NAND
representation. .

From the results in Table 4.1 we make the following observations.

1. The order of retiming and resynthesis operations impacts the value of cycle time that

can be achieved. Neither order can be counted on to be the best for all circuits.

N

The cycle time obtained by the proposed method matches or is better than the best

result that can be obtained by any combination of a single retiming and a single
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resynthesis step. This is what is expected theoretically and it is gratifying that this
is achieved in practice as well. It is clear from circuit ez2 that the additional flexibil-
ity gained from looking at the maximal combinational logic sub-network obtained by
peripheral retiming provides the optimization techniques greater freedom in restruc-

turing the circuit to reduce the cycle time.

In the current experiments there is an increase in the number of latches, over the initial
number of latches, when the proposed method is used. This is due to the fact that no
attempt is made to minimize the latches during retiming and also due to the particular
resynthesis technique used. The critical path restructuring increases the width of the circuit

and hence more latches are used.
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Chapter 5

Multi-Level Logic Minimization

“What a curious feeling!” said Alice, I must be shutting up like a telescope!”

And so it was indeed: she was now only ten inches high, and her face brightened
up at the thought that she was now the right size for going through the little door
into that lovely garden.

— Lewis Carroll, “Alice in Wonderland”

Symbolic variables and the encoding problems associated with them were intro-
duced in Chapter 1. This part of the thesis considers the input encoding problem for area
minimization. In addition to being a problem in its own fight, it is also an approximation
to the state assignment problem in sequential logic synthesis. Input encoding-based tech-
niques can be applied to state assignment by treating the state variable as an input to the
logic that computes the next state and output functions. The fact that it is also the output
of this description is not taken into account. This approximation is‘ valid when the output
logic is significantly larger than the next state logic. .

For the case of two-level logic, satisfactory solutions to the input encoding problem
were obtained by first using multiple-valued (MV) two-level logic minimization (e.g. [64]) and
then using the result of this to generate constraints that the encoding must satisfy (e.g. [59.
79]). The advantage of doing this is that multiple-valued logic minimization does not
depend on any choice of encoding and captures the effects of all possible encodings. Thus,
deferring the encoding until after minimization avoids restricting the minimizer to only
one encoding. However, for multi-level logic as the target implementation. the approaches
currently used tend to be “predictive” in that they determine encodings for which a multi-

level logic optimizer such as Mis [12] is likely to find common divisors (e.g. [25, 45. 34])

101
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and thus result in circuits with smaller size. Unlike the two-level case, the multi-level
logic optimizer is used only after the encoding has been selected. This asymmetry between
the approaches for two and multi-level logic arose from the fact that multi-level multiple-
valued minimization techniques had not been developed. The work presented in this chapter
attempts to fill this gap. It presents techniques for multi-level optimization of logic with

MV input variables.

5.1 Multi-Level Optimization Techniques

Let us first examine the general paradigm used in the area optimization of multi-
level circuits with Boolean (or binary-valued) inputs. Multi-level area optimization is a
collection of different techniques, each of which attempts to reduce the circuit size by ap-
plying some function preserving transformation on the given circuit. This section examines
the techniques that have been most successful.

Empirically it has been observed that the largest impact in terms of reducing the
circuit size is by using circuit decomposition. This involves introducing new functions in
the circuit and expressing other functions in the circuit in terms of them. Determining good
decompositions is a very difficult task. Brayton and McMullen presented a technique [10]
which determines circuit decompositions by first considering functions as algebraic polyno-
mials and then finding common sub-expressions in these polynomials. Each sub-expression
can then be implemented as a separate function and used repeatedly in each original oc-
currence. The common sub-expressions are also referred to as common factors or divisors.
While this is an approximation to the real problem, it is fast and produces results of accept-
able quality. These common sub-expressions are classified into two groups: common cubes,
which are expressions consisting of a single product term, and common kernels, which give
rise to common sub-expressions of more than one product term. This classification arises
because different techniques are used for detecting these two types of divisors.

Since algebraic decomposition techniques do not exploit any Boolean relationships
that exist between the different circuit components, further simplification is possible by
using these relationships. Boolean relationships have been exploited in different ways by
different programs. In Mis [12], this is done by considering each gate function in two-level
form and then simplifying this using a two-level minimizer. The relationships between the

different gate functions in the circuit are captured through the implicit don't caresextracted
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from the circuit [3]. In BOLD [8] connections are added to and deleted from gates as long
as this preserves logical behavior. In Lss [7] this is accomplished using a technique referred
to as global flow. The transduction method [60] uses the notion of permissible functions

towards this end.

5.2 Overview

Of the techniques introduced in Section 5.1, the one that is most difficult to extend
to circuits with symbolic (or MV) inputs is circuit decomposition. The major contribution
of this chapter is to describe such a technique. It demonstrates how common sub-expression
extraction can be extended to circuits with symbolic inputs while guaranteeing some opti-
mality for the final encoded circuit. This completes the missing link in multi-level multiple-
valued minimization since the other techniques used in multi-level synthesis can be easily
extended to handle MV inputs, as will be shown later in this chapter.

The following sections examine each of these optimization techniques. In each case
these techniques are first briefly explained for binary-valued variables and then it is shown

how these can be extended to handle MV variables.

5.3 - Circuit and Function Representation

Let a symbolic variable v take values from V' = {vg,v1,...,0p-1}. v may be
represented by a MV variable, X, restricted to P = {0,1,...,n — 1}, where each symbolic
value of v maps onto a unique integer in P . We can map several MV variables into a single
MV variable as follows. Let v1 and v2 be two symbolic variables taking values from sets V'1
- and V2 respectively. These may be replaced by a single symbolic variable v taking values
from V'1 x V2. This is in fact potentially better than considering v1 and v2 separately since
the encoding for v takes into account the interactions between v1 and v2. This enables us
to restrict ourselves to a single symbolic variable for the rest of this chapter.

Let B = {0,1}. A binary-valued function f, of a single MV variable X and m — 1
binary-valued variables, is a mapping: f : P x B™~! — B. Each element in the domain

of the function is called a minterm of the function. Let $ C P. Then X represents the

!The notation presented in this section is the same as that used in two-level multiple-valued minimiza-
tion [64].
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binary-valued function:

XS=

1 fXeS
0 otherwise

X5 is called a literal of variable X. If || = 1 then this literal is also a minterm of X. For
example, X{% and X{%1} are literals and X {9} a minterm of X. If S = ¢, then the value
of the literal is always 0. If S = P then the value of the literal is always 1. For these two
cases, the value of the literal may be used to denote the literal. We note the following;:

1. X5 C X2 if and only if S; C S,
2. XSt U XS = X51US:
3. XSinXS% = X5:n$:

The literal of a binary-valued variable y is defined as either the variable or its
Boolean complement. A product term or a cube is a Boolean product (AND) of literals.
If a cube evaluates to 1 for a given minterm, it is said to contain the minterm. A sum-
of-products (soP) is a Boolean sum (OR) of product terms. For example: X {01}y 4, is a
cube and X101}y, y, + XByyys is an sop. A function f may be represented by an sop
expression f. In addition f may be represented as a factored form. A factored form is

defined recursively as follows.

Definition 5.3.1 An SOP ezpression is a factored form. A sum of two factored forms is a

factored form. A product of two factored forms is a factored form.

X {013}y, (X {01}y, 4 X{3ly3) is a factored form for the SOP expression given above.

A logic circuit with a multiple-valued input is represented as an Mv-network. This
is illustrated in Figure 5.1. An MV-network 7, is; a directed acyclic graph (DAG) such that
for each node n; in 7 there is associated a binary-valued, MV input function fj, expressed
in sop form, and a binary-valued variable y; which represents the output of this node.
There is an edge from n; to n; in 7 if f; explicitly depends on y;. Further, some of the
variables in 7 may be classified as primary inputs or primary outputs. These are the inputs
and outputs (respectively) of the Mv-network. The Mv-network is an extension of the well-
known Boolean network [12] to permit MV input variables; in fact the latter reduces to
the former when all variables have binary values. Since each node in the network has a

binary-valued output, the non-binary(mv) inputs to any node must be primary inputs to
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muitiple-valued

signal
X /
\/\ y,

binary vatued signal

Figure 5.1: Representing Circuits as MV-networks

the network. The Mv-network computes logical functions in the natural way. Each node in
the DAG computes some function, the result of which is used in all the nodes to which an
edge exists from this node.

In the sequel, the naming convention used in this section for functions and variables
will continued. Functions names are bold lower case letters, binary-valued variables and
expressions are named with regular lower case letters, and the upper case letter X is reserved
for the MV variable.

It should be noted that multiple-valued functions of multiple-valued variables (re-
ferred to as discrete mappings) are not Boolean functions, nor are expressions representing
them Boolean expressions. However, properties of these functions and expressions are sim-
ilar to those of Boolean functions and expressions. Appendix A describes the relationship
between discrete mappings and Boolean functions and explains why properties of Boolean

expressions apply to expressions representing discrete mappings.
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5.4 Circuit Decomposition Using Kernels

This section presents multiple-valued decomposition using kernels along with its
interesting properties with respect to the final encoded circuit. In this direction, the process

of common sub-expression extraction when there are no MV variables is reviewed first.

5.4.1 Kernels and Kernel Intersections

Common sub-expressions consisting of multiple cubes can be extracted from ex-
pressions of binary-valued variables using the techniques described in [10]. These techniques
are referred to as algebraic since they treat expressions representing logic functions as mul-
tilinear monomials with unit coefficients over the variables {y1,#1,-..Yn,¥n}- This permits
efficient factorization and decomposition, though at the cost of optimality since the Boolean
identities, ¥1-¥1 = Y1, %171 = 0 are not used. Some definitions presented in [10] are reviewed
first.

Definition 5.4.1 An ezpression f is said to be cube-free if no cube divides all the cubes

in f.

The term ‘division’ here refers to algebraic division. For example, f4 = 41 y2 + ¥ y3 is
not cube free since the cube g divides both cubes in fy. f5 = 41 ¥2 + y3 is cube free. By
convention 0 and 1 are not cube free. In the sequel, unless otherwise mentioned, division

refers to algebraic division.

Definition 5.4.2 A kernel, k, of an ezpression f is a cube-free quotient of f and a cube

¢. A co-kernel associated with a kernel is the cube divisor used in obtaining that kernel.

As an example, consider the expression f5 = y; ¥4 + ¥2 ¥4 + y3 and the cube y,.
The quotient of f5 and this cube, f5/y4,is y1 + y2. No other cube is a factor of y; + y3,
hence it is a kernel of f5. The cube y, is the co-kernel used to derive this kernel. In general,
the co-kernel of a kernel is not unique.

SOP expressions may be alternatively viewed as sets of cubes (and vice versa). This
lets us define the intersection of two kernels £, and &; in the natural way as the set of cubes
present in both k; and k;. The following key result from [10] relates kernel intersections

and common sub-expressions.
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Theorem 5.4.1 (Brayton and McMullen) Two ezpressions have a common divisor of

more than one cube if and only if they have a kernel intersection of more than one cube.

This kernel intersection can then be used to find the common divisor. Thus, we can detect
- all multiple-cube common sub-expressions by finding all multiple-cube kernel intersections.
In [11] algorithms for detecting kernel intersections are described by defining them in terms
of the rectangular covering problem. Because of the ease in understanding the concepts
involved, the recta,ligﬁlar covering approach is used for developing the ideas in the rest of
this chapter. However, they hold with any technique for kernel extraction.

The rectangular covering formulation is explained through the following example.

Consider the expressions f7 and fs:

frr= nys+ wys+ U3
1 2 3
fs = nve+ Y+ u
4 . 5 6

The integer below each cube is its unique identifier used later to refer to this cube. The

kernels of f7 and fg are:

expression | co — kernel kernel
fr 1 V1Y + Y2ys + ¥s
fr Ys n + B
fs 1 V1Y + Y2Y + Ya
fs Yo n o+

The table below is the co-kernel cube matriz for the set of expressions. It lets us view all
kernels simultaneously and detect kernel intersections. A row in the matrix con"esponds
to a kernel, whose co-kernel is the label for that row. Each column corresponds to a cube
which is the label for that column. A non-zero entry in the matrix specifies the integer

identifier of the cube represented by the entry. This is the cube in the original expressions
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obtained by intersecting the row and column labels.

Y1 Y2 1Y Y29 N Y Y2Y Y3 Y4
110 o0 1 2 0 0 3 0
ys| 1 2 0 0 0 0 0 o
1]1]0 0 0 0 4 5 0 6
|4 5 0 0 0 0 0 o

A rectangle R is a sub-matrix of the co-kernel cube matrix. It is defined as a set
of rows S, = {ro,71,...,7m-1} and a set of columns S. = {cg,¢€1,...,cn-1} such that for
each r; € S, and each ¢; € S, the (r;, ¢;) entry of the co-kernel cube matrix is non-zero. R
covers each such entry. R is denoted as: {R(7o,71,...,7m-1),C(€0s€15.-.,Cn-1)}. Observe
that each rectangle that has more than one row indicates a kernel intersection between the
kernels corresponding to the rows in the rectangle. The columns in the rectangle specify
- the cubes of the kernel intersection. For example, {R(2,4),C(1,2)}, indicates the kernel
. intersection y; + ¥y, between the second and fourth kernels.

A rectangular covering of the matrix is defined as a set of rectangles that cover
the non-zero integers in tile matrix at least once (and do not cover a 0 entry). Once an
integer is covered, all its other occurrences are don’t cares (they may or may not be covered
by other rectangles). A covering for the above co-kernel cube matrix is: {R(2,4),C(1,2)},
{R(1),C(7)}, {R(3),C(8)}. A rectangular covering suggests a factorization of the original
set of expressions. If common factors are extracted and implemented separately then this
is referred to as a decomposition. The resulting implementation suggested by this covering

is:

fo = usye + ¥
f8 = Yo + Ua
fo

N+ Y

Using the well-accepted metric of circuit size, viz. the total number of literals in the factored
form of all the expressions [12], the above description has two fewer literals than the original

description. With larger factors the size reduction is significantly higher.
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5.4.2 Kernels and Multiple-Valued Variables

Now consider the case in which one of the input variables may be multiple-valued.

The following example has a single Mv variable X with six values and six binary-valued

variables.
fro= X0y gy + Xy ys+ s

1 2 3
fo = XBUy 5+ XGlpy+ w
4 5 6

Again, the integers below each cube are unique identifiers for that cube.

The definitions and matrix representations given in Section 5.4.1 are for binary-
valued expressions of binary-valued variables. These are now extended to binary-valued
expressions with one MV variable. (As in Section 5.3, only one of the variables is considered
to be MV, the others are binary-valued.)

Kernels and co-kernels are defined as in the case with binary-valued variables.
The co-kernel cube matrix is modified as follows. Each row represents a kernel (labelled
by its co-kernel cube) and each column a cube (labelled by this cube). The column cubes
contain literals of binary-valued variables only. Each non-zero entr:;' in the matrix now has
two parts. The first part is the integer identifier of the cube in the original expressions
(cube part). The second part is the MV literal (Mv part). The MV part ANDed with the
cube corresponding to its column and the co-kernel corresponding to its row forms the cube
specified by the integer identifier in the cube part.

The kernels of f; and fg are:

expression | co — kernel kernel
fr 1 X0y g + X3y 45 + 3
fr Ys Xy + xy,
fs 1 X0 g ys + XO gy 96 + w4
fs Y XG4y 4+ X6y,
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Q

The corresponding co-kernel cube matrix is:

)1 Y2 Ny Y2 Ys U ¥ Y2Y% Y3 Ui

1| o 0 1 2 0 0 3 0
0 0 xfla} x{(z o 0 1 0

ys | 1 2 0 0 0 0 0 0
xla}r x{22 o 0 0 0 0 0

1| o 0 0 0 4 5 0 6
0 0 0 0 X8G4 xG} o 1

ve| 4 5 0 0 0 0 0 0
xB4a x88 o 0 0 0 0 0

In the co-kernel cube matrix the cube part is given above the MV part for each
entry. The adjectives MV and binary will be used with co-kernel cube matrices and rectangles
in order to distinguish between the multiple-valued and the binary-valued case.

A recté,ngle is defined as in the case for all binary variables with one modification.
Now the rectangle is permitted to have zero entries also. Unlike the binary-valued case,
a rectangle here does not necessarily result in a common factor. It needs to satisfy some
additional conditions which are now considered.

Associated with each rectangle R is a constraint matriz M ® whose entries are the
MV parts of the entries of R. For example, for the MV co-kernel cube matrix given above,
M,, is the constraint matrix for the rectangle {R(2,4), C(1,2)}.

v x{01} x{2}
2y xe
A constraint matrix is said to be satisfiable if:

M(ij) = [UiM(iL ) n[U;M(i.j)] Vi j (5.1)

i.e. if a particular value of X occurs somewhere in row i and also somewhere in column

J, then it must occur in M(i,j). M, given above is satisfiable. If a constraint matrix
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is satisfiable then it can be used to determine a common factor between the expressions
corresponding to its rows as follows. The union of the row entries for row i, ( U; M (i,7) ),
is ANDed with the co-kernel cube corresponding to row :. Similarly the union of the column
entries for column 7, ( UJ; M(%,7) ), is ANDed with the kernel cube corresponding to that

column. This results in the following factorization of the expressions f7 and fs.

= {0.1,2} {0,1,3,4} {2.5} 1
fr X ys (X nt+ X y) + oy
f8 = X{3.415} y6 (X{01113"*} "N + X{2’5} Y2 ) + Yy

Note that there is now a common factor between the two expressions which was not evident
to start with. This common factor may now be implemented as a separate node in the

MVv-network and its output used to compute f; and fg as follows:

fro= X0 yoge + ys
fo = XU goye +
fo = xloasd}, o4 x{25},

Not all matrices are satisfiable. An example of this is as follows:

v x{1} x{2} x{s}
M= vy x

M, is not satisfiable since X {5} occurs in row 1 as well in column 2 but is not present in
M(@1,2).

Let MR be a satisfiable matrix. Let ¥i; be the cube indicated by the cube part
of entry (r;,¢;) in R. Let A; be the row label (i.e. t_he co-kernel) for row ; and T’ be the
column label for column ¢;. Thus, ¥;; = A; Tj M(4,7). The set of cubes Zj ¥ij is part of
some expression in the original set of expressions. This may be expressed as the following

factored form:
Dot = (UM, ) A (Z([UiM(i»j)] Pj)) (5.2)
J J
The factor (Z sUViM (4, 5)] L; )) is independent of and thus common to all :.

Let us now see why A/ must be satisfiable.

Theorem 5.4.2 The factorization specified by Equation 5.2 is valid if and only if M is
satisfiable.
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Proof. .

If part: This follows by multiplying the right hand side and comparing the correspond-
ing terms on each side. ,

Only if part: The proof is by contradiction. Let M be a non-satisfiable matrix and
suppose that Equation 5.2.is valid. Let (i,j) be an entry of M for which the condition
in Equation 5.1 is not met. On expanding out the factored form on the right hand side
of Equation 5.2, the term corresponding to ¥;; is A; T'; ([U;M (¢, 5)] N [U;M(4,5)]). Since
M(i,5) # (UMG, )] 0 [U;MG, D) we get Ai Ty ([UM(5,5)] 0 [UMG,H)) # .
Thus, Equation 5.2 is not valid. . m

Satisfiable constraint matrices are not the only source of common factors. In fact

the condition can be relaxed as we see below.
Definition 5.4.83 M, is a reduced constraint matrix of M if Vi,j M,(i,7) C M(i,7).

Note that this definition includes the original constraint matrix. An example of a reduced

Iy X1y x{2
7| xtar xis

constraint matrix for M, is:

A reduced constraint matrix that is satisfiable can be used to generate a common factor by
covering the remaining entries separately. For example, with the original expressions and

M3 we can obtain the following factorization.

fro= X0 g (x84 gy 4 xSy ) 4 X Oy g 4
f8 - X{3.4y5} Yo (X{1,3.4} n + X{2'5} Y2 ) +

Note that X{% 3 ys must be covered separately.

Thus far only the way in which factors may be extracted in Mv-networks has been
described. Algorithms for determining kernels as well as for rectangular covering have not
been discussed. These have been described in detail in [11, 63]. Typically at any time in the
circuit decomposition process there is a choice to be made between several possible factors.
One particulaichoice may restrict the choices available in the future. This is a general
problem even in the case of Boolean networks. In that case a locally optimal decision is

made based on the estimated gain of the factor. This is based on the size of the factor and
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the number of places where it is used. The situation is more complicated in MV-networks
since the size of the factor is not known until encoding. This makes it difficult to estimate
its potential gain. The discussion regarding how this is handled is deferred to the next
chapter. Some of the problems, that arise because of the difficulty in predicting the size of
MV-literals after encoding, are handled using the concept of incompletely specified literals,
which is now explained. However, first a few terms need to be formally defined that have

thus far been used in an intuitive way.

Encodings and Encoded Implementations

Definition 5.4.4 An encoding E, of the values of an Mv wvariable X is a mapping of
each distinct value of X to a distinct verter in some ¢-dimensional Boolean space, B1. The
encoded expression of a minterm X%, under E, denoted by £(X*, E), is the singleton
set containing the vertez in B9 that X* is mapped to. The encoded expression of a literal

of X 1is the union of the encoded expressions of its constituent minterms.

As an example, consider the following encoding, E;, for the values of X:

X000 Xx{}:100 x{2}:001
XBr:110 x™ 010 Xx05}:011

The variables sq, s; and s, are used for this 3 dimensional Boolean space. Here (X {9}, E,) =
{508152} and E(X{01} E)) = {05152, 5061%2}. A set of points in BY may be alternatively
represented as a sum-of-products expression equivalent to the vertices in this set. For ex-
ample £(X{%1}, E,) may be expressed as $p$152 + s0$192 or equivalently as §78;. Vertices
in B? that are not images of any value of X are don’t care vertices. For example, s¢57 32
and 3p3;3; are don’t care vertices for E,. They may be included in any encoded expression
for simplification.

Note that £ is an invertible function. Given any set of points in B (or an expres-
sion equivalent to these points) there is a unique literal of X that maps to them under £.
Thus, £-1 : B — P. '

The notion of an encoded expression is now extended to handle sets of expressions

that represent functions.

Definition 5.4.5 An encoded implementation of « set of erpressions {fi, fo... fn}

under encoding E, where each f; represents a P X B™~! function, is a set of expressions
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{fi» fas... f,} where each f; has been obtained from f; by replacing each MV literal in f; by
its encoded expression for E. It is denoted by E({f1, f2,---fa}, E).

For an Mv-network 7, the encoded implementation, £(7, E) for encoding F is obtained by
replacing the set of node function expressions by their encoded implementation. As before
&1 is the inverse function that can be used to obtain the original circuit from the encoded

implementation.

Incompletely Specified Literals

The notion of incompletely specified literals is introduced through an example.

Consider the following expressions in factored form:

fro= X012y (x0134} gy 4 x{28}y, ) 4oy
fs = XBAS gy (xlorsa} 4 x{25) Y2 ) + s
fo = Xx©

Note that f; could be modified as follows without changing the functional behavior.
fro= X026} o (x (0134} gy 4 x5}y ) + g

Replacing X {012} with X {0126} Jeaves the function unchanged since the multiplicative
factor, (X {0134} 4y 4+ X {25} 4, ), does not have X {6} anywhere in it. Thus, using a term
from two-level minimization, X {¢1:2} may be ezpanded to X {126}, With binary variables,
expansion always results in a decrease in the number of literals in the circuit size since
expanding a literal y; or #; results in the removal of this literal. However, expansion of
MV-literals does not result in their removal unless the expansion is to the literal 1. Thus,
it is not clear if expansion is useful in decreasing circuit size. Actually, as shown below, it
depends on the encoding chosen. Consider the encoded expressions of the unexpanded and

expanded literals with the following encoding, E;.

X{}:000 x{1}:100 x{2:001
xG 110 x4 o010 X011
Xx{e .10

gxlondt gy =

gxor2e gy = g

]
-
&
R
Zy
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With the following encoding, F,, we get:

X .000 x{}:100 Xx{2}:001
XB:110 x4 :o010 Xx05}:011
X111

8(X{0’112} 7E2) = 3’1
E(x128 B)) = & + 082

Thus, with F; expansion led to a smaller encoded implementation while with E,
it led to a larger encoded implementation.

Since it is not possible to predict the effect of expansion until encoding, it is best if
the decision to expand is deferred to the encoding step. This can be captured by permitting
the Mv-literal to be incompletely specified. An incompletely specified Mv-literal, X 5i(52},

represents the incompletely specified pseudo-function 2:

0 fXgS,US;
The value of of this pseudo-function is unspecified when X € S,;. This permits f; to be

expressed as:

f7 - X{O,l,z}[G] Ys (X{ocly&‘!} "N + X{2»5} Y ) + Y3

This makes it convenient to express the fact the expansion is optional and the decision
whether it should be done is left till the encoding step.
The discussion as to how the incomplete specification is practically determined

and used is deferred to the next chapter.

Main Results

Let us now see what the Mv-factorization process gains us in terms of the final
encoded circuit. We are interested in obtaining large common factors in the encoded im-
plementation. The work reported in [48] was carried out with the underlying assumption
that the common factors in the encoded implementation depend on the encoding chosen.

The following theorem shows that this assumption was not entirely valid.

2This is not a true function since the mapping is not uniquely defined for all elements of the domain.
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Theorem 5.4.3 Let f be a factor in i) = E(n, E). Then there exists a factor f in n such
that f = £(f, E).

Proof. The proof follows from the fact that £ is invertible. n = £~1(#, E). Let, f =
E-1(f,E). Since f is a factor in 7, f must be a factor in 7. ]

This result implies that if we consider two encodings, E;, and E,, then corresponding to
factor f; for E,, there is a factor fa for E;. Thus there is a one-to-one correspondence
between factors across different encodings. This implies that a choice of encoding can
only determine the particular encoded form of the factor and not its existence. Thus, it
may seem that we can always first select an encoding and then find the common factors
later. However, the catch here is that the techniques for finding common factors in Boolean
networks are algebraic and thus not strong enough to discover many good Boolean factors.
Using conventional algebraic factorization after selecting an encoding exposes only a fraction
of the common factors present. Thus, even though a common factor may exist in the Boolean
network it would remain undetected. (It may also be useless in one network and valuable in
the other. This is also related to the fact that for two functions to have a common factor the
only condition necessé,ry is that they have a non-zero intersection.) What is desirable is that
we should at least be able to obtain factors that can be obtained using algebraic techniques
and any possible encoding. The Mv-factorization process, using reduced constraint matrices,
aims to do exactly this. However, not all factors in all encoded implementations can be
obtained by this process. The following example helps illustrate the limitations.

Consider the following expressions and encoding:

fi o= xz3ty,
fo = x5l g,
X101 X111 X110
X{:001 Xx}:011 Xx{6:o010
With sg, s1, s as the encoding variables we obtain the following encoded implementation:
fs = wmsost + usose

fi = msos1 + ¥2 S0 32

Here, 51 + s2 is a kernel common to both expressions. However it cannot be obtained

by first doing Mv-factorization and then selecting an encoding since no kernels exist for fs



5.4. CIRCUIT DECOMPOSITION USING KERNELS 117

and fy. In this case all the variables involved in this kernel intersection are in the encoding
space. As a result the entire kernel intersection in the encoded implementation corresponds
to a single MV literal in the original circuit. However, any kernel intersection not comprised

entirely of the encoding variables can be detected as the following theorem states.

Theorem 5.4.4 Let k be a kernel intersection in i} = £(n, E) not comprised entirely of en-
coding variables. Then there ezists a common factor, k, eztracted using the MV -factorization

process for 7 (i.e. by using a reduced satisfiable constraint matriz) such that k= &k, E).

Proof. A kernel intersection, & of 7 implies a rectangle, Renc, of at least two rows, in the
binary co-kernel cube matrix for 7. Let A; be the co-kernel corresponding to row i of this
rectangle and 7; be the cube corresponding to column j. Let s; be the cube in A; that has
the variables used in the encoding of X. Similarly, let s; be the cube in 7; that has the
variables used in the encoding of X. We construct a rectangle R~ in the MV co-kernel cube
matrix as follows.

For each row and column of Renc construct a row and column of R~. The co-
kernel A;, corresponding to row i, and the cube I';, corresponding to column j in R~ are
obtained as follows.

Case 1: 35 | s; #1

T; = 7;/s;. Ai = \i/si;. The MV part of entry (i,j) in R~ is assigned the literal
E~1(s; 84, E).

Case 2: Vj,s;=1

Here all the bits of the encoding space are in the co-kernel. Let X% = £~1(s;, E).
Then, T'j = v; and A; = (A;/3;)X 5. The MV part of each entry of the ith row in R~ is
assigned the literal 1.

At this point there may exist columns in R~ that correspond to the same cube
and rows that correspond to the same co-kernel. Merge each such set of columns (rows)
into a single column (row) corresponding to that cube (co-kernel). The MV part of each
entry of this column (row) is the disjunction of the Mv parts of all the columns (rows) it
replaces.

Since there is at least one non-encoding variable in &, there is at least one I'; # 1.
This ensures that there are at least two non-zero cubes for each row r, of the MV co-kernel
cube matrix that is in R~. To see this let us assume this were not true, i.e. only one

cube existed for some row. But then v;/s; (7j/s; # 1) would divide all the cubes for the
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corresponding kernels in the binary co-kernel cube matrix. That cannot happen, otherwise
these “kernels” would not be cube free. Each row r is cube free, otherwise the corresponding
kernels in the binary co-kernel cube matrix would not be cube free. Thus, r corresponds to
a kernel in the original set of expressions.

From this it follows that M ®~ is a reduced constraint matrix of some matrix M ®
for some rectangle R in the MV co-kernel cube matrix. Th‘a.t MR~ is satisfiable follows from
_the construction of the Mv co-kernel cube matrix. Each MV part entry was constructed as
the product of the row and column components. Since M R~ is satisfiable, there exists a
common factor k in 7 corresponding to a reduction of R.

We now need to show that k = £(k,E). k = %; (I‘j [U,-XS"J']), where X5 =
M(3,j). This can be re-written as k = ¥, (T XUSi). Let XS = £-Y(sj, E). Now
XSi—YiSij is a don’t care for X in k, ie. k = > (I‘j X U;S;,-[S,-—U;S.-,-]) Thus, by expansion
k=3%; (I'j Xsi),giVing E(k,E)= Y ;(T; sj)=k. [

Theorem 5.4.4 gives the relationship between potential kernel intersections for the
MV variable expressions (reduced rectangles in the MV co-kernel cube matrix) and actual
kernel intersections for the encoded implementations (rectangles in the binary co-kernel
cube matrix). Note the significance of the result of Theorem 5.4.4. It says that we can view
all possible kernel intersections for all possible encodings as long as the kernel intersections
have at least one non-encoding variable.

In fact, the Mv-factorization process described is even stronger inasmuch as it can
potentially discover Boolean factors in the encoded implementation that could not have been
found using algebraic techniques. We illustrate this with the following example. Consider

the expressions:

fi = XUy + xBy,
fs = Xy + XUy
fo = Xy + xBy

Each of these has a single kernel corresponding to the co-kernel 1. The co-kernel

cube matrix for these expressions is given below. For clarity, only the MV part of the matrix
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has been shown since the cube part is obvious.

)1 Y2 Y3
1 x{ x( o
1| x( o xf{s
1l o Xx{4 x{3

Consider the rectangle R ={R(1, 2, 3), C(1, 2, 3)}. M ® is satisfiable. This leads to the

following decomposition:

fa =
fs =
fo =
f =

x{12) y,
X3y,
X Bl y,
XUy 4 XAy, + xBy,

Consider the following encoding for X:

x.01 x@ .11
XB:00 x{:10

This leads to the following encoded implementation:

fa
fs
fs
fr

= S$1Yy7
= S0 Y7
= 81 Y7

SoS1 % + SoY2 + S0 $1 Y3

fr is a non-algebraic or Boolean factor of fy, f5 and f;, since f; cannot be obtained from

far Fso fe by using algebraic division only. The Boolean identities, s-s = 1 and §-5s =0

have been used in the process.

Thus by using a procedure that is an extension of the known algebraic factoriza-

tion process, we have been able to see possible kernel intersections in all possible encoded

implementations as well as additional Boolean factors.
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5.5 Circuit Decomposition Using Common Cubes

5.5.1 Common Cube Extraction with Binary Variables

Sub-expressions consisting of single cubes are detected using cube extraction. This
is illustrated with the following example. Consider the expressions:
fo = eyt yivaw + us
fr = nyys
The cube y; ¥ is common to three cubes in the above expressions. This can be implemented
separately resulting in the following equivalent expressions.
fo = Ysus + Ysva + ¥s
fr = ¥ys
fs = nwp

Cube extraction, or finding common single cube divisors, was introduced in [14].
In [63] it was shown how rectangular covering can be used for this purpose. Rectangular
covering is done on the cube-literal matrix, which is now described. A row in this matrix
corresponds to a cube in the original expressions. A column corresponds to a literal. An
entry is 1 if the literal is present in the cube and 0 otherwise. For the set of expressions in

the example above we have the following cube-literal matrix.

i Y2 Y3 Y+ Us
hhy9311 1 1 0 0
ivays|1 1 0 1 0

¥s 0 0 0 0 1
fry2ys |1 1 0 0 1

As in Section 5.4.1, a rectangle, R, in this matrix is a sub-matrix, {S,.S.}, of non-zero
entries. S, and S, are the sets of rows and columns in this sub-matrix. A rectangle is
this matrix corresponds to a cube common to the cubes in S,. This is the cube formed
by the intersection of the literals in S.. In this example. the rectangle {R(1,2.4).C(1.2)}
corresponds to the cube y; y2 which is a common divisor of the cubes ¥; ¥2 ¥3, 11 Y2 y4 and

1 Y2 ¥s. As shown above this may be extracted and implemented separately.
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5.5.2 Common Cube Extraction with Multiple-Valued Variables

Let us now examine cube extraction using the cube-literal matrix when a single MV
variable may be present. This is best explained through the following example. Consider

the following set of expressions and the corresponding cube-literal matrix.

fo = XWywu+ Xy oy + s
fro= XBy oy

Xy oy us
Xy gy
Ys
XG oy yus

L = T
—_ O =
o O O =
o O = O
= = O o

Note that in this case the cube-literal matrix does not have any entries corre-
sponding to the MV variable. A rectangle is defined as in the binary case. However, it is
interpreted differently. The columns of the rectangle specify the binary variable component
of the common cube. The MV literal in the common cube is the union of the MV literals
of each of the cubes corresponding to the rows in the rectangle. Thus, for the rectan-
gle, {R(1,2,4),C(1,2)}, the common cube is y; y; X {123}, Extracting this results in the

following decomposition.

fe ve X ys + ys X yy + 45
fr = X8y
fo = XW23ly 4,

Let R be a rectangle in the cube-literal matrix. Let a; X 5¢ be the label of row r; and
#3; be the label of column ¢; in R. «; has only literals of binary-valued variables. Thus row
r; represents cube ¥ = a; X [[1;8;]. ¥ can be rewritten as a; X5 ([U,-XS"] (I1; /ij]).
Since ([U,-XS"] (I1;3 J]) is independent of ¢, this is a common cube to all ¥;.
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As in Section 5.4.2 the concept of incompletely specified literals is applicable here.
If X takes values from P = {0,1,2,3} then fg can be equivalently expressed as:

fo = X023y, 4

As with kernel intersections, we are interested in seeing if we can use this technique
to extract all common cubes for all possible encodings. The following example illustrates
the difficulty in doing this when the common cube in the encoded implementation consists

of only the encoding variables. Consider the following expressions and encoding:
fi = X 1} n
fi = X {2 Y2
x .1 x@ .o
Using the variables sg and s, for the encoding, we get the following encoded implementation.
f3
fa

Sos1 )

S0 81 Y2

Here, s, is a common cube among the two expressions. However, this cannot be obtained
by first detecting a common cube factor in the expressions with the Mv variables and then
selecting an encoding. This is because at least one common literal is needed in the cube-
literal matrix for a rectangle to be extracted, and this literal must be of a non-encoding
variable. There is no such common literal in this example.

However, as long as the common cube in the encoded implementation has at least
one variable besides the encoding variables then the technique outlined in this section is

sufficient to obtain it as shown by the following theorem.

Theorem 5.5.1 Let f be a single cube common factor in 7 = E(n, E), not comprised

entirely of the encoding variables. Then there exists a single cube common factor. f, in
such that f = (f,E).

Proof. Let f = 3 s where f is the cube with the non-encoding variables and s is the cube
with the encoding variables. Let ¢; be a cube in i for which f is a common cube. Then ¢;
can be written as f «; s; where q; is the cube with the non-encoding variables and s; is the

cube with the encoding variables. Corresponding to this cube there is a cube ¢; = £-1(¢;, E)
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inn. ¢; = a; B E-1(ss;, E). Let £~1(ss;) be the MV literal X 5i. Therefore, ¢; = o; # X 5.
Thus using the cube-literal matrix we can extract the cube, f = 8 [U;X5] = B XViSi that
is common to each ¢;. Now we need to show that £(f,E) = f. Let £-!(s, E) = X5. Note
that f can be equivalently expressed as, f =  XViSilS-UiSil| Thus, f may be expanded to

BXS. Now, E(f,E) = Bs = f. |

5.6 Circuit Simplification

The previous sections presented techniques for circuit decomposition in MVv-networks.
It is now shown how the other common multi-level optimization technique used with Boolean
networks, v¢z. node simplification can be used with almost no modification in the context
of the Mv-network. Node simplification involves using a two-level logic minimizer for each
node function. (Recall that each node function is stored in sop form.) Since we know how
to do two-level minimization with MV variables [64], nothing new needs to be developed
here.

In [3] it was shown how implicit don’t cares in the Boolean network are used in
node simplification to capture logical relationships between different nodes in the network.
These are now examined in the context of the Mv-network. The satisfiability don’t care set
(spc) for a Boolean network is defined as the set of signal values in the network that are

inconsistent with the network. For node ¢ in the network this is expressed as:
SDC(i) = fFi + vifi

This is the set of values for which the function computed by the node is not consistent with
the output value of the node. The complete set of satisfiability don’t cares for a network is
the union of the contributions of all the nodes, i.e. SDC = |J; SDC(i). Note that each node
function in the Mv-network is binary-valued, therefore its complement is defined. Thus, the
equation of SDC(3) is still valid in the Mv-network, only the domain now is P x B {m-1}

As an example consider the function represented by the e,fpression:
fi = X©y 4 x2y,
Here X takes values from P = {0,1,2}. f5 can be computed using DeMorgan’s Laws.

f=(X0O + 5 ) X2} 4 5 )= (X0 ¢ )X 15 ) =x0 5 $x02 g
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This is then used to compute SDC(3).
SDC(3) = (X y + XUB gy s + (X0 5y + X102 g )y

For a Boolean network, the observability don’t care (ODC) at a node is the set
of primary input values for which the output of this node is inconsequential (or cannot be

observed) at the primary outputs. For node i in a Boolean network O DC (i) is given by:
0DC(3i) = O(ijﬁ Fig)

Here F; is the function at primary output j and F Jys indicates the cofactor operation of
1

this node function with literal y;. The cofactor operation is defined as follows.

Definition 5.6.1 The cofactor of a function £ with respect to a literal l, denoted by fj, is

the function when | evaluates to 1.

Again note that in the Mv-network each node function is binary-valued, hence cofactor with
respect to a signal and its complement are defined and therefore the equation for ODC(3)
is still valid. As an example consider the following expressions that describe an Mv-network

with a single output y,.
fa = x{o hn

s = Xy

fi = w2y
Now, fy,, = X2 y; and f4y, = 0. Thus,
0DC(2) =X yHo=x0U 4 4

From the above we see that node simplification with implicit don’t cares is done in
an MV-network in exactly the same way as in a Boolean network. The concept of permissible
functions introduced in [60] for NOR gates is extended to Boolean networks in [68]. Here
it is also shown how a two-level minimizer is employed to use them. Thus, by a similar

argument to that used before, this is directly applicable in an MV-network.
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5.7 Logic Verification

Combinational logic verification (also referred to as Boolean comparison) is an
important part of any logic synthesis system. This is typically used to certify that the final
circuit description is functionally equivalent to the initial specification. However, it may
also be used during circuit optimization as in [8] to verify that the addition/removal of
certain connections is valid.

Verifying the equivalence of two functions f; and fa is equivalent to checking that
the function f1@ fp is always true. Thus, equivalence checking reduces to verifying that
a function is a tautology. Almost all verification techniques use some form of Shannon'’s
decomposition ( [35]). This is a decomposition of a function, f, in terms of the functions f,

and fz, i.e. the functions in the two half spaces * = 1 and 2 = 0. It is given by:
f=zf, + o5

The following classic result makes this decomposition useful in tautology checking,.

Theorem 5.7.1 f = 1 if and only if f, = 1 and £z = 1.

Thus, checking for f = 1 is replaced by the checks for f, = 1 and fz = 1. Theorem 5.7.1 is
used recursively on f, and fz. Each level in the recursion reduces the number of variables
in the function by 1 until finally no variables remain, i.e. the constant functions 0 and
1 remain. This decomposition is for binary-valued x. However, it is easily extended to
multiple-valued X [64] as follows:

f=XO0 0 +.. X0,

Here fy ;) is the value of f when X is equal to i. The following extension to Theorem 5.7.1

provides the recursive tautology check.
Theorem 5.7.2 f = 1 if and only if, for all i, fy i = 1.

This extension enables us to use all the Boolean network comparison techniques for Mv-
networks. Binary decision diagrams (BDD’s) [18] have been used very successfully for logic
verification [51]. These are a compact representation of a complete Shannon decomposition
tree. A BDD is a canonical form of a binary-valued function of binary-valued variables.

Hence verifying that two functions are identical reduces to verifying that their BDD’s are
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identical. In [74] the multiple-valued extensions to BDD’s are described. These are nat-
urally referred to as multiple-valued decision diagrams (MDD’s). It is demonstrated that
MDD’s are canonical forms of multiple-valued functions of multiple-valued variables. As
with BDD'’s the canonical form property of MDD’s implies that two functions are equivalent
if and only if their MDD’s are identical. This property enables them to be directly used for

verification in Mv-networks.



Chapter 6

Practical Experiences

“It’s all about as curious as it can be,” said the Gryphon.

— Lewis Carroll, “Alice in Wonderland”

"The optimization techniques for multi-level logic with multiple-valued inputs pre-
sented in Chapter 5 have been implemented as the program Mis-MVv [42] which is an ex-
tension of MIS to handle multiple-valued inputs. This choice of name arises from historical
reasons. The multiple-valued successor to the two-level logic minimizer ESPRESSO was
named ESPRESSO-MV; the abbreviation Mv standing for multiple-valued. It is only natural
that the multiple-valued extension of MIs be named Mis-Mv. Mis (Multi-level Interactive
Synthesis), as the name suggests, is an interactive program with the various optimization
techniques described in Section 5.1 being accessible through an interactive user interface.
MIS-MV provides the same interface (with some additions) as MIs and defaults to it when
all the inputs are binary-valued. The extensions include the capability of performing input
encoding so that it can be directly used for the input encoding problem, which is the moti-
vation for developing these ideas. This chapter examines the practica.l issues involved in the

implementation, as well as results of using Mis-MV for input encoding on a set of examples.

6.1 Implementation Issues

This section describes the interesting implementation issues and problems that are

specific to MIS-MV as well as the approaches used to tackle them.

127
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6.1.1 Size Estimation in Algebraic Decomposition

In algebraic factorization and decomposition of Boolean networks the sequence of
operations plays a critical part in the quality of the final results. The sequence referred
to here is the sequence in which the algebraic divisors (common kernels and cubes) are
extracted. The choice of a particular rectangle affects both the other available rectangles
as well as the cost of the rectangles. The exact (or globally optimum) solution to algebraic
decomposition is an open problem [63]. The solution accepted in the binary-valued case is
a locally optimal one, i.e. a greedy choice is made at each decision step. The evaluation
of a particular divisor is done by first estimating its size and then using this to determine
the size reduction that would result if this divisor were selected. Determining the size of a
divisor is not a problem in the binary-valued case since the size is directly measured in terms
of the number of literals in the divisor. Consider the following example. The expression
Y1 Y2 Y3 Y4 + Y1 Y2 Y3 ¥Us is factored as y; y2 ¥3 (4 + ys) by extracting the common cube
%1 Y2 y3. The size of the common cube is three literals and extracting this common cube
made it possible to represent the same function in five literals instead of eight, a saving of
three literals.

Unfortunately in the MV case there is no direct correspondence between the size
of the Mv-literal and its final encoded implementation. Consider the following example:
X0 gy, + XU}y ys is factored as X {01} 3 (x{0M23] y, + X{1}23] yo): X takes
values from {0,1,2,3}. Since the size of the encoded implementation of the Mv-literals is
a function of the encoding selected, it is not possible to predict the value of this factor in
terms of the size reduction obtained in the encoded implementation. In fact, depending
on the encoding, the factor may even result in an increase in size. Consider the following

encoding E; and the encoded implementation of the initial and factored expressions.
Xx}:.00 x{:10
x@.o1 xB .1
Initial expression:
SoS1 M Y2 + S0 Y3
Factored expression:
$1 4 (So ¥2 + S0 ¥3)

Thus, cube extraction results in a saving of two literals. However, consider the following
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encoding Es. .
X©:00 xtt:11
X :01 xB:10
Initial expression:

051 Y1 Y2 + Sos1 % Y3

Factored expression:

($o81 + s0s1) 4 (Soy2 + S0 ¥3)

In this case, MV-cube extraction actually results in an increase in size! Thus, the potential
reduction in size obtained using a factor must be estimated taking into account the effect
of encoding. However, no encoding exists yet; the minimization is being done in order to
select one. This is a cyclic dependency which must be broken.

The first attempt to model the effect of the encoding assumed that each Mv-literal
has an encoded implementation that is a single cube in the encoding space of minimum
dimension, i.e. the encoding is minimum length!. This turns out to be a poor estimate of
the effect of the final encoding. The reason for this is that the final encoding is the same
for all the Mv-literals and in most cases the encoded implementation of each Mv-literal will
not be just a single cube. This is a limitation of this modelling,.

This led to the next approach in which an actual encoding is done for the current
Mv-network. However, the Mv-literals are not replaced by their encoded implementations;
the codes are just used in the size estimation for factoring. This approach has the advan-
tage that the estimated size is valid for at least one encoded implementation. It has the
disadvantage that a relatively slow step of encoding must be done for the estimation. The
other potential problem with this is that the final encoding may be very different from the
one selected during estimations. However, based on experience with using this, it appears
that there are no big changes between the estimates and the results obtained with the final
encoding. This is l;he approach currently being used in Mis-mv. However, there is potential

for improvement here.

6.1.2 Incompletely Specified Literals

In Chapter 5 the notion of incompletely specified literals was introduced. An in-

completely specified literal captures the flexibility available to each literal in terms of how

'The minimum number of bits needed to encode a p-valued variable is [Ig(p)]-
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L]

much it can be expanded. In MIs-MV incompletely specified literals are used in two different

ways. These are now considered individually.

Node Simplification

As described in Chapter 5 each node function in the MV-network may be simplified
using a two-level minimizer (with or without a don’t care set). The result of using a two-
level minimizer is a prime and irredundant expression 2. Removing a redundant cube while
making an expression irredundant is obviously desirable since there are fewer cubes in the
resulting expression. However, as was observed in Chapter 5 expanding the Mv-literal need
not result in a size reduction in the encoded implementation. Let Xf 7 be a literal, X JS it
be the fully exﬁa,nded literal, (i.e. no other element can be added to S;* while preserving
logical functionality) and X JS 7" be the fully reduced? literal, (i.e. no other element can be
deleted from S;~ while preserving logical functionality). The range of possibilities available
to ij is captured by the incompletely specified literal X Js iS5 —]. This is illustrated
through an example. Consider the following prime and irredundant expression: y; X {0 +
y2 X1 + 4 y, X{01.2} The third cube may be reduced in X resulting in the equivalent
expression: y; X0 + gy, X1} + y; yo X{2}. Thus this expression may be represented
using incompletely specified literals as: y; X{0 + y, X1} 4 4 y, X {202,

It should be noted that the form of the final reduced expression depends on the
order in which the cubes are reduced [9]. This in turn determines the incompletely specified

literals. How a cube may be reduced depends on other cubes in the SOP expression.

- Local Observability Don’t Cares

Section 5.6 described how information about the circuit structure may be captured
through implicit don’t cares which may then be used in node simplification. While the spc
is relatively easy to compute, computing the ODC is computationally very intensive and
not feasible for most real circuits. However, a very limited form of the observability don’t
care information can be easily captured by just looking at the immediate neighborhood of a

particular node in the network. Consider the following example which consists of two node

2A two-level expression is irredundant if no single cube may be deleted from this expression while preserv-
ing functional equivalence. It is prime if no literal may be expanded while preserving functional equivalence.

. . A
Expanding an mv literal .Yf’ involves replacing st, with st, , where S; C Sj'.

] . . S . . -8 . -s;’ ) o
*Reducing a literal ;7 involves replacing X;Y with X7, where S;’ C Sj.
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functions:

fs = nye X2 4 g
fo = yo X013} 4y x {28}

X takes values from {0,1,...,7}. Note that X (34567} is an observability don’t care for
fs. This is so because in the only place that fg is used, it is ANDed with X {012} and
thus for each product term of fg only the values of X that are contained in {0, 1,2} are of
any interest; all others will be deleted by the AND. These observability don’t cares can be
directly utilized by capturing them in the form of incompletely specified literals in fg as

follows:

fs = 9y X0 4 g,
fo = y, XONBASET L oo y{2}B4567]

In this example, fg is being used in only one cube, i.e. yg appears in only one cube. In
general, a variable y, corresponding to node function f, will appear in several cubes. Let
18 XSiDi (T, 1i) be the i* such cube. ¥ is a literal of y and I} is a literal of some other
binary-valued variable yi.. Let A(fi) = U;(S;U D;), where j varies over all the cubes in f.
A(fi.) contains all the values of X that may appear in any cube of fi. Similarly, let A( f;)
be the set that contains all values of X that appear in fi. For literal Iy, let A(lx) = A(f)
if e = g and A(L) = A(fi) if I = G Let 0; = (8; U Di)N(NkA(lk)). For X ¢ O,
X SiDi (], 14) evaluates to 0. Thus, the value of !¢ is inconsequential for these values of X,
i.e. XP-0i is a don’t care for f at cube i. XNilP-0i) i5 a don't care for f at each cube i.
This may be directly used to modify the literals of X in f. Consider the following example
in which X € {0,1,2,3,4}.

fi = Xxlo2l
fa = X{0,1}[2,3]
fs = oy xOUM
fi = Xx{2}o3l
fs = gy XWHO
The local observability don’t cares for f; need to be computed. At f; it is X {234}, At f;

it is X{123} Combining these gives X {23} as a don’t care for f;. This enables f; to be

re-expressed as X {0}2:3],
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Since only the fanout nodes and their immediate fanins are considered, computing
this local observability don’t care information is a fast operation. It should be pointed
out that the don’t cares exploited in determining the incompletely specified literals are
compatible don’t cares [68]. All these don’t cares are valid simultaneously and may be used

independently of each other.

6.1.3 Satisfiable Constraint Matrices

Theorem 5.4.2 specifies that a factorization suggested by a rectangle in the co-
kernel cube matrix is valid if and only if its constraint matrix, M, is satisfiable. It is also
demonstrated in Section 5.4.2 how a common factor may be extracted using a reduced con-
straint matrix, M,, that is satisfiable. Thus, if M is not satisfiable there are two possibilities

for deriving a satisfiable matrix from it.

1. Obtain a sub-matrix that is satisfiable. This is accomplished by deleting some rows

and/or columns in M.

2. Derive a satisfiable reduced constraint matrix M, from M. This is done by expanding

some entries of M (deleting some values from the superscripts of the entries).

These are now considered individually. The following example is used to illustrate both

possibilities. Consider the network with the following two functions:

. = ¥y x {23} + ys U3 x {2} + s y4_-‘{{3"‘}

The following constraint matrix is obtained from the rectangular covering formulation. The

details of the formulation have been omitted here for brevity.

x2y x{2} xf{3}
x23} x{2} x84}

Note that M is not satisfiable since:

(WiMu] 0 [UiMy]) = X238 x23)
p— .X'{lt'zy:}}

# Mu
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Satisfiable Sub-matrices

There are several possible sub-matrices of M that are satisfiable. Column 1 may

be deleted resulting in M1 shown below.

u x{2} x{3}
T x2 x4

Alternatively, column 3 may be deleted resulting in My shown below.

x{2} x{2}
My =
M= ves @

Both M; and M, are satisfiable.

Similarly, deletion of either row is sufficient to generate a satisfiable sub-matrix.
However, a matrix with a single row is probably not very useful. The problem of choosing
the optimal set of rows and columns that need to be deleted can be formulated as a minimum

cost covering problem which is defined as follows.

Minimum Cost Covering Problem: Let A be an m X n binary matrix, i.e. each 4;; €
{0,1}. Associated with each column j in A is a cost for that column denoted by
¢;. Find a binary row vector x such that 4-xT > (1,1,...,1)T and >0, ;- ¢;is

minimum.

The constraint 4-xT > (1,1,..., l)T specifies that for each row ¢ there is at least one column
7 such that A;; = 1 and 2; = 1. Column j is said to cover row ¢. The minimum cost covering
problem is to find a set of columns that cover all rows with least cost. The minimum covering
problem can also be viewed as a minimum cost monotone ¢ CNF (conjunctive normal form)
satisfiability problem. z; is a binary-valued variable indicating whether column j is included
or not in the cover (x; = 1 indicates that it is included). Each row of 4 represents a clause
corresponding to the disjunction of variables for the non-zero elements in the row. Since
each clause is to be satisfied (i.e. at least one x; should be 1 for each row), the covering
problem is equivalent to finding an assignment of- the x;’s that satisfies the conjunction
of these clauses. The decision problem for minimum cost covering is NP-complete [31]:
however efficient heuristics exist which result in reasonably fast solutions for most practical

instances [63].

*A Boolean expression is said to be monotone if each variable appears in either uncomplemented or
complemented form but not both.
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The formulation of optimal row/column deletion as a minimum cost covering prob-
lem is done as follows. There is a column in A for each row r; and each column ¢; of M.
The columns of A will subsequently be referred to by the corresponding rows and columns
in M,i.e. as r; or ¢;. Let M;; be an entry of M where the satisfiability condition is violated.
Let V;; be the set of values that cause the violation, i.e. V;; = ([U;M;] N [U; Mi5]) — Mij.

To get rid of this violation one of the following must be done:

1. Delete row i.

2. Delete column j.

3. Delete all rows k such that (My; N V;;) # ¢. Let R be the set of these rows.

4. Delete all columns / such that (M N V;;) # ¢. Let C be the set of these columns.

This condition needs to be captured in A. Let z,, be the binary variable indicating if r;
is deleted. Similarly, z.; specifies if c; is deleted. Satisfying the above condition imp]jgs
finding a satisfying assignment for:
Ty, + Te; + H z,, + H T
kER leC
Note that this is not a CNF expression. Since the column covering formulation has a direct

correspondence with CNF expressions, this expression needs to be converted to a CNF. The
equivalent CNF is:

II H(xr,' + Tc; + Ty, + Itc,)

k€ER leC
Each clause in this expression specifies a row in A with a 1 in columns r;, cj, i and ¢.

Let column j correspond to a row (column) in M. The cost, cj, of column j of 4
should reflect the increase in size of the circuit if column j is included in the cover, i.e. the
corresponding row (column) deleted from M. An approximation to this is the estimated
size of the cubes in the original expressions corresponding to this row (column) in M. For
the given example and column c3, the cost is the estimated size of the cubes y; ¥4 X {3} and

ys ys X34}, The size estimation is done as described in Section 6.1.1.

Reduced Constraint Matrices

As with satisfiable sub-matrices there are several possible ways to derive a reduced

constraint matrix from a given constraint matrix. The value 3 may be deleted from My,
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giving M3 shown below.

u [ x(12} x{2} x} ]
Ma = | x@ x@ xGa

Alternatively the value 3 may be deleted from M;3 giving M, shown below.

[ x(12} x{2} xO

M, =
T xen x@ xea

Both these matrices are satisfiable. The problem of finding the optimal set of values to be
deleted (under a cost function described later in this section) can again be formulated as a
minimum cost covering problem. In this case each column of A is associated with a 3-tuple
(k,1, D), where the set of values D need to be deleted from M;;. As before, consider a
violation of the satisfiability condition at M ;; and let V;; be the set of values whose deletion
will remove the conflict, i.e. Vij = ([U;M;;] N [U;M;;]) — M;;. The values in Vj; may be

deleted from either row ¢ or column j. Thus, one of the following needs to be done:

1. For each k such that ML, NV;; # ¢, let Dg; = My; N V;;. Delete Di; from all such
Mjyj’s i.e., select all columns (k, j, Dy;) in the column cover. Let Cy be the set of these

columns.

2. For each [ such that My NV;; # ¢, let Dy = My N V;j. Delete Dy from all such
My’s, i.e., select all columns (¢,!, D ;) in the column cover. Let C; be the set of these

columns.

Let 2. be the binary variable specifying if the column c is included in the cover or not. The

condition that needs to be satisfied is:
IT e + II 2
c1;€Cy c2;€C>
This is equivalent to the CNF expression:
H H (e + mcn)
€1i€C| c2;€C,
This is captured by adding a row in 4 with ones in columns ¢y; and c3;.
The cost of a column should reflect the size of the extra logic needed to separately
implement that part of the cube that corresponds to the deleted entries. For the example

given and column (1,3, X 3}), it is the estimated size of the cube y; y4 X3}, As before the

size estimation is done as described in Section 6.1.1.
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6.1.4 The Encoding Problem

Section 5.4.2 formally introduced encodings and encoded implementations. This
section states the encoding problem that needs to be solved and the approaches used in
MIS-MV to tackle this. Given an Mv-network, an encoding needs to be selected such that
the size of the encoded network is minimized. The size is measured in terms of the factored
form literals of the encoded implementations of each node function. This is a difficult task
and there seems to be no easy solution to it. An approximate solution to this can be found
by minimizing the number of literals in SOP form in the encoded implementation of each
literal of X that appears in any node function. This is a relatively easier task to handle.

This problem is referred to as the minimum literal encoding problem and is stated precisely
below.

Problem P1: Minimum Literal Encoding Problem : Let S be a set of incompletely
specified literals of X. Find an encoding E, such that

Yo #lits((XSIP, EY)
XSilDiles

is minimized. #lits(£(XSiDil, E)) is the number of literals in £(X Si{Pil, E).

Input encoding for two-level implementations is currently handled by solving the

following problem which is referred to as the minimum cube encoding problem (59, 79).

Problem P2: Minimum Cube Encoding Problem : Let S be a set of literals of X.

Find an encoding E, such that

Z #cubes(E(X 5, E))

XSies

is minimized. #cubes(£(X S, E)) is the number of cubes in £(X 5, E).

P1 differs from P2 in two ways. First the cost function being minimized is different.
The second and more critical difference is that P2 does not consider incompletely specified
literals. These differences make it difficult for existing techniques for solving P2 to be used
directly or to be easily modified for P1. As a result an approach had to be developed to
tackle P1.

Since this was not the main focus of this research, a solution was sought that could

be implemented quickly. Algorithm sa_encoding described in Figure 6.1 is a very simplistic
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algorithm based on the concept of simulated annealing [41], which has been successfully used
to tackle several combinatorial optimization problems.

In the inner loop of the annealing, a new encoding is selected by doing a pairwise
swap of two codes in the encoding. If this results in a smaller size, then the new encoding
is accepted. If not, it is accepted with probability e“’f'._ 6 is the increase in size after the
swap. The function toss_a_coin outputs a 1 with probability p and a 0 with probability
- 1-p. 8ize(S,E) is ¥ ysupics #lits(E(XSIPI, E)), and is computed as follows. The sum
of product expression £(X %, E)) is minimized with a two-level minimizer with £(X Di, E))
as the don’t cares. The cost function for this minimization is the number of literals in the
sop form °. Since this step is to be performed in the inner loop of the algorithm only a
single ezpand step is used instead of a complete two-level minimization.

The temperatures are selected by a piece-wise linear cooling schedule. Two dif-
ferent rates of cooling are used: an initial rapid cooling and a final slow cooling. There
is- equilibrium at a particular temperature if three consecutive passes do not result in any
change in size. As will be seen in Section 6.2, the quality of results obtained from algorithm
sa_encoding is reasonably good. However, it is potentially very slow.

The definition of the minimum literal encoding problem has prompted other re-
searchers to look at solutions for it. Very recently a solution has been proposed [66], that

is based on the notion of dichotomies (78, 80]

6.2 Experimental Results

Two sets of experiments were conducted using MIS-MV for input encoding. These

were directed towards answering the following two questions.

1. How well does MIS-MV compare with other existing input encoding programs such as

NOVA [79], MUSTANG ([25], JEDI [45] and MUSE [34]?
2. What is the relative importance of the different multi-level optimization techniques?

The example descriptions used for these experiments are the 1989 International

Workshop on Logic Synthesis (IWLS) benchmarks of rsm descriptions [47]. The state

5The primary cost function generally used in two-level minimization is the number of cubes in the sop
form. However, when a two-level minimizer is used in a multi-level network for node simplification. the cost
function used is the number of literals in the sop form.
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/* inputs: S
outputs: E (the encoding)
*/

sa_encoding(s)
{.
E = random_encoding(S);
foreach T{ /* T is the temparature */
repeat {
newE = pairwise_swap(E);
6 = size(S, newE) - size(S,E);
if(6 < 0)
P=1;
else
p=e" #;
accept = toss_a.coin(p);
if(accept){
E = new E;
}

}until equilibrium;

}

return E;

Figure 6.1: Algorithm sa_encoding
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variable that is an input to this description is multiple-valued. The state variable that is

an output of this description is kept one hot; i.e. there is a separate signal for each value.

This is to enable the experiments to focus on input encoding and exclude output encoding

effects [56]. The experiments were conducted as follows:

¢ The minimum-length encoding was always used.

o A single simplified Boolean script ® was used both for multi-valued and binary-valued

optimization. The script has two main parts, node simplification followed by algebraic

restructuring. Encoding may be done at any point in the script.

o The script was run twice in all cases.

e For MIs-MV:

N

e For

N

(7]

. ESPRESSO was run on the unencoded machine.

. All or part of (depending on the stage where the encoding is done) the first script

was run on the Mv-network.

. The inputs were encoded, using the simulated annealing algorithm.

. Any remaining part of the first script and the complete second script was run on

the Boolean network.

NOVA, MUSTANG, JEDI and MUSE:

. These are general encoding programs tackling input, output and input-output

encoding. They were run in input oriented mode with the appropriate command
line options. (“-e ih” for NOVA, “-p -¢” for MUSTANG, “-e i” for JEDI and “-e p”
for MUSE.)

. ESPRESSO was run on the unencoded machine.
. The symbolic input was encoded.
. ESPRESSO was run again, using the unused codes as don’t cares.

. The script was executed twice to be compatible with the two scripts used for

MIS-MV.

8This is the standard Boolean script distributed with MIs release 2.1.
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L]

In order to examine the relative contributions of the different multi-level opti-

mization techniques, different runs of Mis-MV were considered with the encoding done at

different steps.

1.

2.

3.

At the beginning. These results reflect the quality of just the encoding program since

at this point it has exactly the same two-level information as the other programs.

After simplify. These results reflect the advantage gained by including node simplifi-
cation with the spc.

After algebraic optimization. These results reflect the additional advantage gained by

considering the algebraic restructuring techniques of Mis-mv.

Table 6.1 contains the results, expressed as the number of factored form literals in the

encoded implementation. The following observations are made from these results.

1.

[

MIs-MV performs very well in comparison with the other programs. Its result is
consistently either the best or close to (within 5%) the best among all programs.
In addition there are some cases where it does significantly better than the other
programs (e.g. keyb, tbk).

. The column labelled beginning reflects the performance of just the encoding algorithm.

These results indicate that it does a reasonably good job of encoding in comparison

with the other programs.

. For alarge number of cases the node simplification step in MIS-MV seems to contribute

the most.

However there are two cases (keyb and tbk) for which the algebraic optimizations are
the main contributors to the reduction in area. These are also the cases where MIs-MV
clearly out-performs the other programs. From this it seems that on the average MIs-
MV will do about as good or slightly better than other programs; when it can extract
useful algebraic factors in the Mv-network it will clearly out-perform other programs

that do not exploit this information.

. There are some examples (e.g. ezx2) where encoding after algebraic optimization results

in larger circuits in comparison with encoding at an earlier stage. This directly points

to inaccuracies in size estimation during algebraic decomposition.
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example || NOVA | MUSTANG | JEDI | MUSE |  best || beginning | simplify | algebraic
MIS-MV opt.
bbara 106 9% | 96 99 84 84 84 85
bbsse 151 148 | 125 126 130 130 132 131
bbtas 32, 37| 34 36 31 35 31 31
beecount 70 65 57 60 56 62 56 58 ,
cse 214 208 | 189 192 191 191 199 195
dk14 98 108 97 | 102 79 97 79 81
dk15 65 65| 65 65 65 65 68 69
dk16 351 314 | 254 | 244 225 225 247 261
dk17 58 69| 63 58 58 58 62 63
dk27 38 34| 30 29 27 27 27 27
dk512 93 78| 73 73 68 70 68 69
donfile 186 195 132 | 131 123 127 123 123
exl 246 252 | 256 | 239 232 240 232 236
ex2 167 197 | 179 | 169 143 143 144 154
ex3 98 98 | 87 96 82 82 86 82
ex4 84 73 71 72 72 90 74 72
ex5 83 80 79 79 67 67 69 69
ex6 98 90 91 92 84 85 85 84
ex7 94 100 93 84 78 89 79 78
keyb 195 203 | 186 | 180 146 186 172 146
kirkman 168 181 | 175 195 160 169 166 160
lion 16 14| 16 16 16 16 16 16
lion9 43 61 55 55 38 40 38 38
mark1 98 99| 94 92 90 90 94 92
mc 32 30| 32 30 30 35 30 30
modulol12 71 77| 58 72 71 71 71 71
opus 82 77| 83 70 70 87 70 T4
planet 551 538 | 454 | 511 466 512 466 473
sl 345 377 | 347| 291 249 335 253 249
sla 253 264 | 262 | 195 214 217 214 225
s8 48 47| 50 52 48 52 48 48
sand 542 519 | 552 | 498 509 523 509 528
shiftreg 35 34| 24 25 24 24 24 24
sse 151 148 | 125| 126 130 130 132 131
styr 501 460 | 413 | 418 438 442 438 465
tav 27 27| 27 27 27 27 27 27
thk 567 603 | 463 | 570 393 426 456 393
trainll 92 88| 65 79 59 60 59 59
train4 14 18 14 14 14 14 15 15
total 6163 6172 | 5566 | 5562 | 5087 H 5423 5243 5232

Table 6.1: Input Encoding Comparison
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6.2.1 An Example MIS-MV Run

In this section an example circuit is considered at various stages of optimization
using MIS-MV. The circuit selected for this purpose is keyb since it helps illustrate several
interesting aspects of the optimization in a single example. In the rest of this section a de-
scription of the circuit as output by MIs-MV is given along various points in the optimization
script and interesting aspects highlighted. This description is in terms of the expressions

describing the node equations.

Initial Circuit

Figure 6.2 shows the description of the initial circuit. The circuit has seven binary-
valued inputs named v0, vi, ..., v6 and a single MV variable v7 which has ningteen possible
values numbered 0, 1,..., 18. The complement of a binary-valued variable, v, is written
as v’. A literal of v7 is written as a set of values. For example, v7 (%1} js written as
{v7.0, v7.1[1}. An incompletely specified literal such as v7{01}23] is written as {v7.0,
v7.1[v7.2,v7.3]1} There are twenty one binary-valued outputs named v8.0, v8.1, ...,
v8.20. The node functions and output variables are referred to by the same name. If the
name is on the left hand side of an equation, it represents the function; if it is on the right

hand side of the equation, it represents the output variable of that function.

After Node Simplification

Figure 6.3 has the circuit description after node simplification. Note that v8.0,
v8.4, v8.6, v8.19 have been re-expressed in terms of the other node functions. This is a
result of using the SDC’s from the rest of the circuit in the simplification. These functions

also demostrate the use of incompletely specified literals after node simplification.

After Algebraic Decomposition

Figure 6.4 contains the description of the circuit after algebraic decomposition
using cube and kernel extraction. [23] is a common cube that has been extracted and used
in seven places. [21], [25] and [26] are common kernels. Also, local observability don"t
care information is used to derive the incompletely specified literal in {v8.10}. All values

that do not appear in [23] are used as don’t cares for this literal.
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{v8.0} = v0 v3 {v7.1[0} + v0 v2 {v7.100} + v0 v1 {v7.100} + v0 v& {v7.1[1}
+ v0 vb {v7.1[1} + v0 v6 {v7.100} + v1 v4 {v7.1,v7.400} + v1 v8 {v7.1,
v7.400} + v1 v2 {v7.1,v7.40} + v1 vé {v7.1,v7.40} + v1 v3 {v7.1,
v7.400} + v2 v4 {v7.1,v7.4,v7.700} + v3 v6 {v7.0, v7.1, v7.4,v7.7(]} +
v3 v6 {v7.0,v7.1,v7.4,v7.7[1} + v2’ v3 {v7.2, v7.3, v7.5,v7.6,v7.8,
v7.901} + vO {v7.2,v7.3[1} + v2 v3* {v7.2, v7.3,v7.5, v7.6,v7.8,v7.9(1}
+ v4 {v7.2,v7.5,v7.8,v7.11[1} + v2 v3 {v7.1,v7.2, v7.4,v7.5,v7.7,v7.80}
+ vb {v7.2,v7.5,v7.8,v7.11,v7.12, v7.140} + v6 {v7.2,v7.5,v7.8,v7.11,
v7.12,v7.14,v7.1600} + v1 {v7.2,v7.3,v7.5,v7.6[]} + v2 v6 {v7.1,v7.3,
v7.4,v7.6,v7.7,v7.90} + v3 v4¢ {v7.1,v7.3,v7.4,v7.6, v7.7,v7.9[1} + v2
vé {v7.1,v7.3,v7.4, v7.6,v7.7,v7.9(1} + v4 vB {v7.0, v7.1,v7.3,v7.4,
v7.6,v7.7,v7.9, v7.1000} + v4 v6 {v7.0,v7.1,v7.3,v7.4, v7.6,v7.7,v7.9,
v7.1000} + {v7.1701} + {v7.180} + v6 v6é {v7.0,v7.1, v7.3,v7.4,v7.6,
v7.7, v7.9,v7.10,v7.130}

{v8.1} = v3’ v4’ v5’ ve’ {v7.0(]}

{v8.2} = v3* v4’ v6’ v6 {v7.00} + v3’ v4’ v5 v6’ {v7.0[1} + v3’ v4 v5’ v6’
{v7.00}

{v8.3} = v3 v5’ v6’ {v7.00]}

{v8.4} = v0’ v1’ v2’ v3’ v4’ v6’ v6’ {v7.1[1}

{v8.5} = v0’ v1i’ v2 v3 v4’ v6’ v6’ {v7.3[1} + v0’ v1’ v2’ v3’ v4’ v5’ v6’
{v7.20} + v0* v1’ v2’ v3 v4’ v5’ v6’ {v7.1[]} + v0’> vi’ v2 v3’ v4’ v5’
v6’ {v7.100} + v0’ v1’ v2’ v3’ v4’ v6’ v6 {v7.1,v7.30} + v0’ v1 v2’ v3’
v4’ v6? v6’ {v7.1[1} + v0’ v1’ v2’ v3’ v4’ v6 v6’ {v7.1,v7.300} + v0’ w1’
v2’ v3’ v4 v6’ v6’ {v7.1,v7.3001} + v0 v1’ v2’ v3’ v4’ v6’ v6’ {v7.1[1}

{v8.6} = v0’ v1’ v2’ v3’ v4’ v5’ v6’ {v7.3[1}

{v8.7} = v1’ v2’ v3’ v4’ v5’ v6’ {v7.4[1}

{v8.8} = v1’ v2 v3 v4’ vB’ v6’ {v7.6[1} + vi’ v2’ v3 v4’ v6’ v6’ {v7.4[1}
+ vl v2’ v3’ v4' v’ ve’ {v7.5[1} + vi’ v2 v3’ v4’ v6’ vé’ {v7.4[1} +
v1’ v2’ v3’ v4’ v6’ v6 {v7.4,v7.6[1} + v1’ v2’ v3’ v4’ vB v6’ {v7.4,
v7.600} + v1 v2’ v3’ v4’ v5’ v6’ {v7.400} + v1’ v2’ v3’ v4 v5’ v6’
{v7.4,v7.60}

{v8.9} = v1* v2’ v3’ v4’ v6’ vé’ {v7.6[1}

{v8.10} = v2’ v3* v4’ v6’ v6' {v7.70]}

{v8.11} = v2 v3 v4’ v56’ v6’ {v7.900} + v2’ v3 v4’ v5’ v6’ {v7.7[1} + v2
v3’ va’ v’ v6’ {v7.7[1} + v2’ v3’ v&’ v5’ v6 {v7.7,v7.901} + v2’ v3’
v4’ v6 v6' {v7.7,v7.900} + v2’ v3’ v4’ v5’ v6’ {v7.800} + v2’ v3’ v4
v6? v6’ {v7.7,v7.900}

{v8.12} = v2’ v3’ v4’ v6’ vé’ {v7.901}

{v8.13} = v4’ v5’ v6’ {v7.1000}

{v8.14} = v4’ v5’ v6 {v7.100]1} + v4’ vb v6’ {v7.1001} + v4 v6’ vé’ {v7.10,

v7.12[1} + v4’ v6’ v6’ {v7.11,v7.120}

{v8.16} = v5’ v6’ {v7.13[1}

{v8.16} = v56’ v6 {v7.13[1} + v56 v6’ {v7.1300} + v56° vé’ {v7.140}

{v8.17} = ve’ {v7.1501}

{ve8.18} = vé {v7.1600} + v6’ {v7.160}

{v8.19} = v0’ v1’ v2’ v3’ v4’ v5’ v6’ {v7.30} + v0’ v1’ v2’ v3’ v4’ vb’
v6’ {v7.1[1} + v1’ v2’ v3’ v4’ v6’ v6’ {v7.6[]} + vi’ v2’ v3’ v4’ v§’
v6’ {v7.401} + v2’ v3’ v4’ v5’ v6’ {v7.7(1} + v3’ v4’ v5’ v6 {v7.001}

+ v3? v4’ v5 v6’ {v7.001} + v3’ v4 v8’ v6’ {v7.0[1} + v3’ v4’ v5’ v6’
{v7.000} + v3 v6’ v6’ {v7.0[]} + v4’ v5’ v6’ {v7.10[1} + v6’ vé’ {v7.13[1}
{v8.20} = {v7.18[]1}

Figure 6.2: keyb: Initial Circuit
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{v8.0} = {v8.5}* {v8.8}* {v8.11}’ {v8.12}* {v8.14}’ {v8.16}° {v8.18}’
{v8.19}* {v7.0,v7.4,v7.2,v7.3,v7.4,v7.6,v7.6,v7.7,v7.8,v7.9,v7.10,
v7.11,v7.12,v7.13,v7.14,v7.16,v7.17,v7.18[1}

{v8.1} = v3’ va’ v5’ v6’ {v7.001}

{v8.2} = v3’ v4’ v6’ v6 {v7.0[1} + v3’ v4’ v v6’ {v7.0(1} + v3’ v4 v5’ v6’
{v7.00}

{v8.3} = v3 v5° v6’ {v7.001}

{v8.4} = {v8.19} {v7.1[v7.2,v7.5,v7.8,v7.9,v7.11,v7.12,v7.14,v7.16, v7.16,
v7.17,%7.18]1}

{v8.5} = v0’ v1’ v2’ v3’ v4’ v6’ v6 {v7.1,v7.3[1} + v0’ vi’ v2’ v3’ v4’ v5
v6’ {v7.1,v7.30} + v0’ v1’ v2’ v3’ v4 v5’ v6’ {v7.1,v7.30} + v0’ v1°
v2 v3 v4’ v5° v6’ {v7.300} + v0’ v1’ v2’ v3 v4’ v5’ v6’ {v7.100} + vo0’
v1’ v2 v3’ v4’ v5’ v6’ {v7.1[1} + v0’ w1 v2’ v3’ v4’ v6’ vé’ {v7.1(1} +
v0 vi’ w2’ w3’ v4’ v5’ v6’ {v7.1[1} + v0’ vi’ v2’ v3’ v4’ v5’ v6’ {v7 201}

{v8.6} = {v8.19} {v7.3[v7.2,v7.5,v7.8,v7.9,v7.11,v7.12,v7.14,v7.15,
v7.16,v7.17,v7.18]}

{v8.7} = v1’ v2’ v3’ v4’ v’ v6’ {v7.4(1}

{v8.8} = v1’ v2’ v3’ v4’ v6’ v6 {v7.4,v7.600} + vi’ v2’ v3’ v4’ v5 v6’
{v7.4,v7.60} + v1’> v2’ v3’ v4 v6’ v6’ {v7.4,v7.6[0} + v1’ v2 v3 v4’ v5’
v6’ {v7.600} + v1’ v2’ v3 v4’ v6’ v6’ {v7.400} + v1’ v2 v3’ v4’ v5’ v6’
{v7.40} + v1 v2’ v3’ v4’ v5’ v6’ {v7.400} + vi’ v2’ v3’ v4’ v5' v6’
{v7.80}

{v8.9} = v1’ v2’ v3’ v4’ v6’ v6’ {v7.6[1}

{v8.10} = v2’ v3’ v4’ v6’ v6’ {v7.701}

{v8.11} = v2’ v3’> v4’ v6’ v6 {v7.7,v7.90} + v2’ v3’ v4’ v5 v6’ {v7.7,
v7.9[1} + v2’ v3’ v4 v6’ v6’ {v7.7,v7.900} + v2 v3 v4’ v6’ v6’ {v7.9[1}
+ v2’ v3 v4’ v5’ v6’ {v7.700} + v2 v3’ v4’ v6’ v6’ {v7.7[1} + v2’ v3’
v4’ v5° v6’ {v7.801}

{v8.12} = v2’ v3? v4’ v5’ v6’ {v7.90]}

{v8.13} = v4’ v6’ v6’ {v7.1000}

{v8.14} = v4’ v’ v6 {v7.10[1} + v4’ v5 v6’ {v7.10[1} + v4 v5’ v6’ {v7.10,
v7.12(1} + va’ v6’ v6’ {v7.11,v7.120}

{v8.15} = v5° v6’ {v7.13[1}

{v8.16} = v5’ v6 {v7.13[1} + v6 v6’ {v7.1300} + v6’ v6’ {v7.140}

{v8.17} = vé’ {v7.15[1}

{v8.18} = v6 {v7.1500} + v6’ {v7.160}

{v8.19} = {v8.2} + v5’ v6’ {v8.14}’ {v7.0,v7.10,v7.13[v7.12]1} + v1’ v2’ v3’
v4’ v5° v6’ {v8.14}’ {v7.4,v7.6[v7.0,v7.7,v7.10,v7.11,v7.12, v7.13]1} +
v0’ v1’ v2’ v3’ v4’ v5’ v6’ {v8.14}’ {v7.1,v7.3[v7.0, v7.4,v7.6,v7.7,
v7.10,v7.11,v7.12,v7.13]1} + v3’ v4’ v6’ v6’ {v8.11}’ {v8.14})’ {v7.7
[v7.0,v7.10,v7.11,v7.12,v7.13]}

{v8.20} = {v7.18[1}

Figure 6.3: keyb: Circuit after Node Simplification
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{v8.0} = {v8.5}’ {v8.8}’ {v8.11}’ {v8.12}* {v8.14}’ {v8.16}’ {v8.18}’ {v8.19}’
{v7.0.v7.1.v7.2,v7.3,v7.4,v7.5,v7.6,v7.7,v7.8,v7.9,v7.10,v7.11.v7.12.
v7.13, v7.14,v7.16,v7.17,v7.1801}

{v8.1} = v3’ [30] {v7.001}

{v8.2} = v3* [25] {v7.0[v7.2,v7.5,v7.8,v7.11,v7.13,v7.14,v7.15,v7.16, v7.17,
v7.181}

{v8.3} = v3 [29] {v7.00}

{v8.4} = {v8.19} {v7.1[v7.2,v7.5,v7.8,v7.9,v7.11,v7.12,v7.14,v7.15,v7.16,
v7.17,v7.181}

{v8.5} = v0 v1’ [23] {v7.1[v7.0,v7.10,v7.11,v7.12,v7.13,v7.14,v7.15, v7.16,
v7.17,v7.18]} + v0’ [26] {v7.1,v7.2,v7.3[v7.0,v7.7,v7.8,v7.9, v7.10,v7.11,
v7.12,v7.13.v7.14.v7.15,v7.16.v7.17,v7.18]}

{v8.6} = {v8.19} {v7.3[v7.2,v7.5,v7.8,v7.9,v7.11,v7.12,v7.14,v7.15, v7.16,
v7.17,v7.181}

{v8.7} = w1’ [23] {v7.4[v7.0,v7.10,v7.11,v7.12,v7.13,v7.14,v7.15,v7.16,v7.17,
v7.181}

{ve.8} = [26] {v7.4,v7.5,v7.6[v7.0,v7.7,v7.8,v7.9,v7.10,v7.11,v7.12,v7.13,
v7.14,v7.16,v7.16,v7.17,v7.18]}

{v8.9} = v1’ [23] {v7.6[v7.0,v7.10,v7.11,v7.12,v7.13,v7.14,v7.15,v7.16,v7.17,
v7.18]}

{v8.10} = [23] {v7.7[v7.0,v7.10,v7.11,v7.12,v7.13,v7.14,v7.15,v7.16,v7.17,
v7.181} :

{vs.11} = [21] {v7.7,v7.8,v7.9(v7.0,v7.10,v7.11,v7.12,v7.13,v7.14,v7.15,
v7.16,v7.17,v7.18]}

{v8.12} = [23] {v7.9[v7.0,v7.10,v7.11,v7.12,v7.13,v7.14,v7.15,v7.16,v7.17,
v7.18]}

{v8.13} = [30] {v7.1000}

{v8.14} = [28] {v7.10,v7.12(v7.2,v7.5,v7.8,v7.11,v7.13,v7.14,v7.15, v7.186,
v7.17,v7.181} + [30] {v7.11,v7.1200}

{v8.15} = [29] {v7.1300}

{v8.16} = [22] {v7.130} + [29] {v7.140}

{v8.17} = v6°’ {v7.15(1}

{v8.18} = w6 {v7.1600} + v6’ {v7.160}

{v8.19} = {v8.2} + {v8.14}> [28] [29] + v1’ {v8.14}' [23] [27]

{v8.20} = {v7.1801)

[21) = [23] {v7.2,v7.6,v7.8(v7.0,v7.10,v7.11,v7.12,v7.13,v7.14,v7.15,v7.16,
v7.17,v7.181} + v2* v3’ [25] {v7.1,v7.3,v7.4,v7.6,v7.7, v7.9[v7.2,v7.5,
v7.8,v7.11,v7.13,v7.14,v7.15,v7.16,v7.17,v7.18]1} + [24] [30]

[22] = v5’ v6 + v5 v6’

[23] = v2’ v3’ [30] {v7.1,v7.2,v7.3,v7.4,v7.5,v7.6,v7.7,v7.8,v7.90}

[24] = v2 v3 {v7.3,v7.6,v7.9} + v2’ v3 {v7.1,v7.4,v7.7} + v2 v3’ {v7.1,v7.4,
v7.7}

[26] = v4’ [22] {v7.0,v7.1,v7.3,v7.4,v7.6,v7.7,v7.9,v7.10[0} + v4 [29] {v7.0,
v7.1,v7.3,v7.4,v7.6,v7.7,v7.9,v7.10,v7.12(]}

(26] = v1’> [21] {v7.1,v7.2,v7.3,v7.4,v7.5,v7.600} + v1 [23] {v7.1,v7.40)

(271 = {v7.4,v7.600} + vo’ {v7.1,v7.30}

1

[28]) = {v7.0,v7.10,v7.13} + v3’ v4’ {v8.11}’ {v7.T7}
[29] = v5’ v6’
[30] = v4’ [29]

Figure 6.4: keyb: Circuit after Algebraic Decomposition
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Encoded Implementation

Figure 6.5 shows the final encoded implementation with the code selection being
done after algebraic decomposition. A five bit code is used for the nineteen values. The
code bits are [c0], [c1],..., [c4]. The encoding does a very good job and exploits the

don’t cares in the incompletely specified literals. A good instance of this is in [21] where:
E£(v7{13:46,7.9}2,5,811,13,14,15,16,17,18] ) — [¢1].
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{v8.0} = {v8.5}* {v8.8}’ {v8.11}* {v8.12}’ {v8.14}’ {v8.16}’ {v8.18}’
{v8.19}* [c1] + {v8.5}* {v8.8}’ {v8.11}’ {v8.12}’ {v8.14}’ {v8.16}’
{v8.18}* {v8.19}* [c2] + {v8.5}’ {v8.8}® {v8.11}’ {v8.12}’ {v8.14})’
{v8.16}’ {v8.18}’ {v8.19}* [c3] + {v8.5}’ {v8.8}* {v8.11}’ {v8.12}’
{v8.14}* {v8.16}’ {v8.18}’ {v8.19}’ [c4]

{v8.1} = v3’ [30] ([c0]’ [c3]’ [c4]

{v8.2} = v3’ [25] [c3]’ [c4l

{v8.3} = v3 [29] [c0]’ [c3]’ [c4]

{v8.4} = {v8.19} [c2]’ [c3] (c4]’

{v8.5} = vo’ [26] [c4l’ + v0 v1’ [23] [c0)’ [c2]* [c3] [c4]®

{v8.6} = {v8.19} [c2] [c3] [c4l’

{v8.7} = v1’ [23] [c0]’ [c2]’ [c4]

{v8.8} = [26] [c4]

{v8.9} = v1’ [23] [c2] [c3] [c4]

{v8.10} = [23]
{v8.11} = [21]
{v8.12} = [23]
{v8.13} = [30]
{v8.14} = [26]
{v8.18} = [29]
{v8.16} = [29]

[c2]? [e3]°

[c3]?

[c2] ([c3]’ [c4)?

[c1])’ [c2] [c3] [c4]

[c1]? [c3] + [30] [c1]’ [c2]’ [c3] [c4l

[c1]® (c2] [c3)’ [ec41’

[c1]’ [c2]’ [c3] [ca]® + [22] [c1]’ [c2] [ec3]’ [cal®

{v8.17} = v6’ [c1]’ [c2]’ [c3]’ [c4l®

{v8.18} = v6’ [c2]’ [c3]1’ [c4] + v6 [c1]’ [c2]’ [c3]® [cal’

{v8.19} = {v8.2} + {v8.14}’ [29] [c0]’ [c1]’ [c2] + w1’ {v8.14}’ (23] [c0]’
(c4] + v0? v1’ {v8.14}’ [23] [c01’ [c3] + {v8.14}’ [29] [c1]1’ [c2] [c3]°
Ccal’ + v3’ v4’ {v8.11}’ {v8.14}’ [29] [c1] [c2]’ [c3]°’

{v8.20} = [co0]

(c1]’ [c2] (4l

[21] = [23] [c0] + v2° v3? [25] [c1] + v2 v3 [30] ([c0]’ [c1] [c2] + v2’ v3
[30] [c0])® [c1]) [c2]’ + v2 v3’ [30] [c0]’ [c1] [c2]°
[22] = v6’ v6 + v5 v6’

[23] = v2? v3?
[25] = v4 [29]
[26] =

[29] = v56’ v6?
[30] = v4’ [29]

[30] [ci1]
[0’ + va’ [22] [c0]’ [c1] + v4’ [22] [c0]’ [c2]

vi’ [21] Ce1] [e3] + vi [23] [c0]’ [c2]’ [c3]

Figure 6.5: keyb: Circuit after Encoding
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Chapter 7

Conclusions

Thus grew the tale of Wonderland:
Thus slowly, one by one,

Its quaint events were hammered out -
and now the tale is done

— Lewis Carroll, “Alice in Wonderland”

Recent research in logic synthesis has made a significant impact on the way digital
circuits are designed today. However, current logic synthesis techniques focus only on com-
binational parts of the logic description. The research reported in this thesis attempts to
overcome this limitation. In particular, extensions of known combinational logic optimiza-
tion techniques are sought that are applicable in sequential logic synthesis. The motivation
behind this is to maximize the leverage that can be obtained from the large body of research
in combinational logic synthesis.

The first contribution of this work has been a clean formulation of the applica-
bility of combinational logic optimization techniques across latch boundaries. A precise
description of circuits for which latches may temporarily be removed is given. This enables
any combinational logic optimization technique to be used on these circuits. The latch
migrz;,tion is defined in terms of the well-developed concept of retiming. This enables the
interactions between retiming and combinational optimization to be easily examined. This
has some interesting results in performance optimization.

In terms of practical experiences, the results in area optimization have not heen
encouraging. No additional advantage seems to be obtained by considering logical rela-

tionships across latch boundaries. However, this may be only a property of the circuits
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examined or an artifact of the inability of current combinational optimization programs to
get out of a local minimum. Additional work needs to be done in two areas. First, it is
of interest to characterize circuits for which the additional information provided by retim-
ing and resynthesis can be exploited. Second, stronger combinational logic optimization
techniques are needed than those available currently. In performance optimization, these
ideas have already shown applicability for pipelined circuits. Their extensions to arbitrary
(non-pipelined) sequential circuits are currently being examined [72).

One inherent limitation of retiming and resynthesis is the inability to take into
account the final positions of latches during combinational resynthesis. This is important
in area optimization since any area reduction obtained by combinational optimization may
be offset by an increase in the number of latches during subsequent retiming. This is
less of a factor in performance optimization since the area increase does not affect the
primary objective, viz., improving the performance of the circuit. It must be pointed out
that the techniques presented in [58], which have some commonality with retiming and
resynthesis, do not have this limitation. They explicitly consider the cost of latches during
logic optimization. However, in order to do this each combinational logic optimization
technique needs to be redefined. As a result, existing programs cannot be used.

The second contribution of this thesis is the development of techniques for multi-
level multiple-valued optimization and their application to the input encoding problem
for multi-level logic. In addition to being a result in its own right it has application in
sequential logic synthesis where the input encoding problem may be used to approximate
the state assignment problem. The most siéniﬁcant developments here are the “algebraic”
factorization techniques, the notion of incompletely specified literals, and the formulation
of the minimum literal encoding problem. While initial results are promising, there are
two areas in which work needs to be done to increase practical applicability. The first
is a more accurate estimation of the size of algebraic factors. In the absence of this the
sophisticated algebraic optimization techniques are of little advantage since they are not
used correctly. The second is development of efficient heuristics to solve the minimum literal
encoding problem. The current approach of using simulated annealing is too slow to be an
acceptable solution. There is some work currently being done in this area [66]. Finally. in
order to completely solve the state assignment problem in sequential logic synthesis. the
output encoding problem for multi-level logic needs to be solved. This seems to be a very

difficult problem and there is no obvious direction to pursue.



Appendix A

Discrete Mappings and Boolean

Functions

“Please come back, and finish your story!” Alice called after it. And the others
all joined in chorus “Yes, please do!”.

— Lewis Carroll, “Alice in Wonderland”

A.1 Introduction

Most functions needed to specify the behavior of digital logic systems are binary-
valued functions of binary-valued variables ({0,1}" ~ {0,1}). These are also referred to as
switching functions [17]. The fact that all switching functions are also Boolean functions [17]
enables all properties of Boolean functions to be directly applied to switching functions;
these properties need not be proved separately. However not all functions that arise in the
context of circuit specification and design are switching functions. In the most general form
these functions are multiple-valued functions of multiple-valued variables. These functions
are referred to as discrete mappings. However, these functions are not Boolean functions
and hence properties of Boolean functions do not directly apply to them. This has two
consequences. First, it requires that all properties of Boolean functions be re-examined to
determine which of these hold for discrete mappings. Second, it results in an asymmetry
between discrete mappings and switching functions which is theoretically inelegant. This
chapter shows that corresponding to a discrete mapping there is a Boolean function which

can be used to evaluate the discrete mapping in a direct way. In addition, a compact and
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natural way of representing the Boolean formula corresponding to this function is presented.
Conventional methods of representing discrete mappings as factored form representations
are examined and their limitations pointed out. Finally it is shown that corresponding
to a set of expressions representing a discrete mapping there exists an equivalent Boolean
formula. This enables properties of Boolean formulas to be applied to these expressions.
This is what researchers have been doing intuitively in the past; this chapter provides the

justification for it.

A.2 Boolean Functions: A Review

This section provides a brief review of the background material needed in the rest
of this chapter. This material has been taken from the text [17].

A.2.1 Boolean Algebras

Consider a quintuple:
(B$ +v ‘9 0$ 1)

in which B is a set, called the carrier, + and - are binary operations on B, and 0 and 1 are
distinct members of B. The algebraic system so defined is a Boolean algebra provided the

following postulates are satisfied:

1. Commutative Laws. For all a,b € B:

a+b = b+a

e-b = b-a

2. Distributive Laws. For all a,b,c € B:

a+(b-c) = (a+bd) -(a+¢)
a-(b+c) = (a-b)+(a-¢)
3. Identities. For all « € B:
O+a = a

l-a = a
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4. Complements. For any a € B, there is a unique element ¢’ € B such that:

a+ad

il
-

ea-d = 0

The following properties are true for all a,b,c € B. These are useful in manipu-

lating Boolean expressions.
1. Associativity.

a+(b+c) = (a+d)+¢c
a-(b-¢c) = (a-b)-c

2. Idempotence.
a+a = a
a-a = a
3.
e+1 =1
a-0 = 0
4. Absorption.
a+(a-b) = a
a-(a+bd) = a

5. Involution.
('Y = a
6. De Morgan’s Laws.

(a+b) = o0
(¢ b) = d+V
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a+d-b = a+bd
a-(a"+b) = a-b
Consensus..

a-b+a -c+b-c = a-b+a-c
(a+b)-(a"+¢c)-(b+c) = (a+b)-(a'+¢)

A.2.2 Boolean Formulas

Given a Boolean algebra B, the set of Boolean formulas on the n symbols 1, 22,...,2,

is defined by the following rules:

1.

2

The elements of B are Boolean formulas.

. The symbols 2y, 23,...,T, are Boolean formulas.

. If ¢ and h are Boolean formulas, then so are:

(a) (9) + (h)
(b) (9)-(h)
(c) (9)

. A string is a Boolean formula if and only if its being so follows from finitely many

applications of the rules above.

A.2.3 Boolean Functions

An n-variable function f : B™ — B is called a Boolean function if and only if it

can be expressed as an n-variable Boolean formula.

A.3 Discrete Mappings

Let f : PyX Py X...X Pu_y = P, be a discrete mapping with P; = {0.1..... Pj-1}-

Let P = {PyX Py x...x P,}. fis not a Boolean function since it does not meet the condition

that f : B® — B for some Boolean algebra B. Corresponding to f there is the relation
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R C P defined in the natural way as the set of points in P consistent with f. Let B = 2°,
the power set of P, i.e. the set of all subsets of P. B is a Boolean algebra described by
(2P,u,Nn,d, P). Let £ : B — B be defined as:

&(z)=RNz z€B - (A

RNz is a Boolean formula and hence £ is a Boolean function. Equation A.1 is the minterm
canonical form for this function.

Let m € {Po X P X ... X Pa_y} and $(m) = {m} x P,. ¥(m) is the set of n + 1-
tuples corresponding to the n-tuple m that have all p,, possible values in the last field. £
corresponds to f in the sense that given any m, f(m) may be computed by £ as follows.
&(9(m)) is a singleton set containing the tuple in R with the first n fields bthe same as that
of m. Field n + 1 in this tuple is )f(m).

Example A.3.1 The switching function corresponding to an AND gate is used to illustrate
the above. Here f:{0,1}% — {0,1}. Consider m = (0,1).

R = {(0,0,0),(0,1,0),(1,0,0),(1,1,1)}
P(m) = {(0,1)} x {0,1}
= {(0,1,0),(0,1,1)}
£(¥(m)) = {(0,0,0),(0,1,0),(1,0,0),(1,1,1)} n {(0,1,0),(0,1,1)}
{(0,1,0)}

f(m) is the last field of the n + 1-tuple (0,1,0), i.e. f(m)=0.

Example A.3.2 Each person in a certain western town in to be classified as being one of
{ good, bad, ugly} (abbreviated as {g,b,u}). This classification is to be done based on the
person’s occupation which is one of {priest, teacher, outlaw} (abbreviated as {p.t,0}) and
their nature which is one of {honest, selfish, cruel} (abbreviated as {h,s,c}). To be good
you have to be a priest or be honest and not an outlaw. Cruel outlaws are ugly. Everyone
else is just bad.

The classification function is a discrete mapping f : {p,t,0} x {h,s,¢} — {g.b, u}.

Consider m = (t,c¢).

R = {(1)7 h» g)v(Pa S, y),(l), 679)7 (t9 h,‘(j),(t, Sab)w (ta Cs b)* (Ov ’I'~b)~(0~.'3-b)~ (0' c. ‘lt)}
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Y(m) = {(t’c)} X {g,b,u}
£(¥(m)) = RnNy(m)
= {(t’ C, b)}

f(m) is the last field of the n + 1-tuple (t,c,b), i.e. f(m)=0b.

A.4 Compact Representations of Boolean Functions

Typically functions need to be represented in some compact manner; it is not
possible to describe them in terms of all the points in the domain and the corresponding
range. Compact representations cluster points in the domain and describe f in terms of
these clusters. Generally, these clusters are fewer than the number of points in the domain.

As in Section A.3let B = 2P and m € P. Let m[j] be the value of field j in m. One
natural way to cluster pointsin P is to group all points with the same value of m[j] (for some
given.j) together and refer to them collectively. Let xfj = PyX...XPj_1XS5;XPjy1X...XP,.
Thus, xfj has all points for which m[j] € S;. For Example A.3.2 x{P is the set of all points

for which m[0] = p. Note that X?j € B and ij - X;’j-sj.

Theorem A.4.1 Let x = {xfjlj € {0,1,...,n},S; C P;}. Letb € B. b can be expressed

in terms of a Boolean expression restricted to elements of x.

Proof. The statement needs to be proven only for the atoms of B, (the singleton sets)
since any other element of B can be obtained by a union of the atoms. Let {a} be an atom
and a[¢] be field i of a. @ = N; (x;{“[i]}). _ [ |

An immediate corollary of this result is that R can be expressed as a Boolean expression
restricted to elements of x. Thus the Boolean formula in Equation A.1 can be re-written
by expressing R as a Boolean expression restricted to the elements of Y. In practice Theo-
rem A.4.1is not used to re-write R, but rather R is derived directly from some description
of the function.

Consider f in Example A.3.2. R is derived directly from the conditions specified as
follows. The set of points in P that represent priests or honest people who are not outlaws

is naturally expressed as:
&y (\{"} n ‘cé"})
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This can be simplified to:
X({)p} U (Xgh} n X({)t})

Similarly the set of points that represent cruel outlaws is: x({,o} g] xfc}. The rest of the people

are obviously expressed as:

&0 0P ) U (@ )

This can be simplified to:

(6 ndeet) u (6 n ™)

Thus, R can be expressed as:

(G (P U™ ndM MU n (6T nxd*H u g™ n ™ HNu g n (6 ndh)

A.5 Expressions Representing Discrete Mappings

Another way to cluster the pointsin the domain is to partition the domain based on
the value of the function. Let I = {mq,1,...,7p,—1} be a partition of Po X P; X ...X P,
such that: m € m; & f(m) = i. For the switching function f in Example A.3.1, 7p =
{(0,0),(0,1),(1,0)} and 7y = {(1,1)}.

Each 7; may be described by its characteristic function f; defined as follows.

fi:PoxPyx...X Po_y— {0,1} i€ P,
. 1 fméemn;
film) = N
0 otherwise

f; tests for membership in 7;; it evaluates to 1 for exactly the points in ;. The following
representation has been commonly used to describe the f; in the literature. Let § i € P

and X; be a pj-valued variable. X f 7 is termed a literal of X; and is defined as:

) 1 ifm[j]€ S,
XPi(my = L EMUIES;
0 otherwise

-Sj Sjo . . .S -S; .. -S; -Sj, .
X -X;,? is defined as the logical AND of X;™ and X}’2. Similarly, X" + X} is defined

as the logical OR of Xj'-slj ! and X;jz. The complement of a literal ij is denoted as ij

and defined as Xf P = .ij—sj . A factored form with these literals is defined recursively by

the following rules:
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1. A literal is a factored form.

2. The complement of a literal is a factored form.

3. The + of two factored forms is a factored form.

4. The - of two factored forms is a factored form.
A factored form, F; may be used to represent the f;.

Example A.5.1 An ezample of a factored form is:

For f in Example A.3.1 the following are the factored form representations of the f;:

fo=x + x[
fi=x{-x

For f in Example A.3.2 the following are the factored form representations for fg and f,:
b - X0 (x03)
fo = xPnxld

However, there seems to be no direct way to obtain f, since these expressions are not Boolean
and De Morgan’s Laws cannot be directly applied in this case. If they do hold then it must
be proven separately for these expressions. This is a limitation of this representation.

In Section A.3 it was shown how the Boolean function £ may be obtained given
the relation R for the discrete mapping. The rest of this section examines how the £ may be
obtained if the discrete mapping is specified as factored form expressions representing the
characteristic functions of the partitions. This is accomplished by first deriving a Boolean
formula for each factored form.

Let B be a Boolean formula generator; i.e. given a factored form F, B(F) is a
Boolean formula obtained from F.

B is defined recursively as follows:

L BX7) =¥ na
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2. BX;" + X372) = B(Xh

J 2

S.
)uB(X;,?)

3. B(X . X0

n J2

)= B(X3")n B(X ;)

Note that B(Xf ) = -‘;ST N z. This follows from:

S
A|
U,
<
|

P;—S;
Xj] J

=
o
&
I

P._S.
B(Xj’ 7y
= (P()XPIX...XPj_1X(Pj—Sj)XPj+1X...XPn_l)(Pn)n.’L'
= (P—(PXPxX..Xx Pi.y X Sj X Pjg1 X...X Ph_y X Pp))Na

= xfj Nz

In the following discussion when B(F) and F are followed by arguments they are
being used in place of the functions they represent. The following result shows how B(F)

can be used to evaluate F.
Theorem A.5.1
Flm)=0 = (B(F)#(m) =)
F(m)=1 = (B(F)(¥(m))= ¥(m))
Proof. The proof is by induction on the number of literals in F.
Induction Hypothesis: The theorem statement is true for all F with < k literals.
Induction Basis: Consider F with only one literal,i.e. F = X JS 5,

1. F(m)= 0. Then stj(m) = 0, which implies xfj N ¥(m) = ¢ since field j of no tuple

in xfj is the same as field j of any tuple in ¥(m).
2. F(m) = 1. Then st,-(m) = 1, which implies xfj N ¥H(m) = Y(m) since xfj contains
all tuples with the same field j as that of m.
Induction Step: Consider F with & literals. There are two cases.

1. F=F+F

Fi and F, have < k literals.
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L]

(a). F(m) = 0. Then Fi(m) = 0 and Fp(m) = 0. By the induction hypothesis,
B(F1)(¥(m)) U B(F2)(¥(m)) = ¢

(b) F(m) = 1. Then Fi(m) = 1 or Fp(m) = 1. By the induction hypothesis,
B(F1)(¥(m)) U B(F2)($(m)) = ¥(m).

2. F=F-F
F1 and F; have < k literals.

(a) F(m) = 1. Then Fi(m) = 1 and Fo(m) = 1. By the induction hypothesis,
B(F1)(¥(m)) N B(F2)(¥(m)) = p(m).

(b) F(m) = 0. Then Fi(m) = 0 or Fa(m) = 0. By the induction hypothesis,
B(F)($(m)) N B(F2)(¥(m)) = ¢

This result establishes the correspondence between B(F) and F. For the factored
form in Example A.5.1:

B((.’Y]{O,l} ‘X’2{2} + ‘Y‘Z{l}) . .Y3{0}) = (Y{o 1} NaznN Y{2} Nz U \({1} n l) n \{0} N
(Y{O'l} N Y{2} U Y{l}) n X30} Na

Note the similarity between the two expressions. There is an obvious one-to-one
mapping from the factored form to the Boolean formula. If the Boolean formula is ex-
pressed in terms of the x’s then the reverse mapping is also one-to-one. This is significant
since it shows that all properties for Boolean formulas (same as those for Boolean expres-
sions) hold for factored form expressions and they need not be proven separately. Thus
complementation using De Morgan’s Laws also holds for factored form expressions.

In the above discussion only a single factored form was considered. Recollect that
f is described in terms of a factored form F; for each f;. The following theorem shows
how the Boolean formulas for these factored forms are combined to give £(x) defined in
Section A.3.

Theorem A.5.2

fo) = u|BFENND]  iep,
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Proof. Let f(m) = j. By Theorem A.5.1:

i# ]

i1=]

¢
B(F)(¥(m)) = «
(F(¥(m)) { ()

Thus, £&(¥(m)) = ¥(m)Nn x,{,j}. This is a singleton set in which the n + 1-tuple has the first
n fields the same as m and the last field is j. This is consistent with the definition given in

Equation A.1. ]

For the switching function in Example A.3.1:

¥ = {(0,0,0),(0,0,1),(0,1,0),(0, 1, 1)}
X%O} = {(07070)’(07()’1)1(110’0)’(1’0’ 1)}
X({Jl} = {(1,0’0),(14071)’(1’1’0)’(1’ 1’ 1)}

o= {(0,1,0),(0,1,1),(1,1,0),(1,1,1)}
X% = {(0,0,0),(0,1,0),(1,0,0),(1,1,0)}
MY = {(0,0,1),(0,1,1),(1,0,1),(1,1,1)}
@ = (7 0xd?) 0z ) u (47 nd?) nen )

.= {(0,0,0),(0,1,0),(1,0,0),(1,1,1)} n=

This, as expected, is the same as that derived in Example A.3.1.

A.6 Conclusions

In Section A.3, it was shown how a Boolean function may be obtained given a
discrete mapping. Next, in Section A.4, it was described how the Boolean formula cor-
responding to this Boolean function may be expressed in compact form. This Boolean
formula may be manipulated using any property of Boolean expressions. This has direct
application in the simplification of Boolean expressions, both in sum-of-product form as well
as in factored form. In Section A.5, conventional methods for representing discrete map-
pings were presented. Since these do not involve Boolean expressions or Boolean functions,
noné of their properties can be directly used. but rather must be proved separately. Subse-
quently, it was demonstrated how these may be converted to the representation presented

in Section A.4 in order to exploit the properties of Boolean expressions.
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