
Copyright© 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires priorspecific permission.

\:

COMBINATIONAL LOGIC OPTIMIZATION

TECHNIQUES IN SEQUENTIAL LOGIC

SYNTHESIS

by

Sharad Malik

Memorandum No. UCB/ERL M90/115

28 November 1990

COMBINATIONAL LOGIC OPTIMIZATION

TECHNIQUES IN SEQUENTIAL LOGIC

SYNTHESIS

by

Sharad Malik

Memorandum No. UCB/ERL M90/115

28 November 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Combinational Logic Optimization Techniques in Sequential
Logic Synthesis

Sharad Malik

University of California Department of Electrical Engineering
Berkeley, California and Computer Science

Computer Science Division

Abstract

Designing an integrated circuit with over one hundred thousand components is a significantly

complicated task; impossible to handle without computing aids. Computer-aided design tools are

used in all aspects of the design: logical design of functional units, physical design of gates and

modules, placement and interconnect routing, logical and timing verification, and management of

design data. Of these, the automatic design of the logic components, referred to as logic synthesis,

was the last to come about; an indication of the inherent difficulty of this task. There was a lack of

sophisticated logic optimization techniques needed to generate high quality results. This prompted

research in this area and as a result there are now several commercially available design aids. Thus

far, logic synthesis has largely concentrated on combinational logic. This is an incomplete view,

since digital circuits are, in general, sequential in nature. This thesis attempts to overcome this

limitation. It presents techniques for the optimization of sequential logic circuits. In particular,

it considers extensions of known combinational logic optimization techniques that are applicable

in sequential logic synthesis. The contributions are in two areas. In the first part it is shown

how existing combinational logic optimization techniques can be directly applied in the expanded

context of sequential logic synthesis. The presented approach maximally exploits combinational logic-

optimization techniques, i.e. it can potentially detect any logical relationships that exist between

any two gates in the circuit, they need not be part of the same combinational logic block. In

the second part, techniques for the optimization of multi-level circuits with multiple-valued inputs

are presented. Logic optimization techniques used in multi-level circuits have been extended to

handle multiple-valued inputs. In addition to being a significant result in its own right, this has

direct application in the state assignment problem in sequential logic synthesis. In both these areas,

theoretical results are presented and implementation issues and practical experiences discussed.

tiik^J&tejJrjti-
Prof. Robert K. /Brayton

Thesis Committee Chairman

Acknowledgements
And its been this way for jive long years
Since we signed our souls away.

Jethro Tull, "War Child"

The five years that I have spent as a graduate student at Berkeley have been, at

some time or the other, tough, exciting, fun and depressing. If I have made it through this,

it is only because of the support, encouragement and friendship of several people. I got by

with a little help from my friends, nay, with lots of help from my friends.

There are two people without whom this thesis would never have been possible;

Bob Brayton and Alberto Sangiovanni-Vincentelli. They introduced me to the field of logic

synthesis and have taught me most of the things that I know about this subject.

Bob has been my research advisor for the last two and a half years. The time that

I have spent working on research with him has been extremely exciting - Bob's enthusiasm

and desire to pursue the unknown has been truly inspirational for me. From him I have also

tried to learn mathematical precision, both in the formulation and solution of problems, as

well as in written and oral exposition. I consider myself truly fortunate for having worked

with him.

I owe a lot to Alberto. First and foremost for giving me the opportunity to be part

of the excitement of the cadgroup, without which none of the work I have been involved in

would have been possible. I have profited from his advice, both technical and professional.

From Alberto I have learnt, (at least I think so!) the need for systematic rigor in research,

and clarity and focus in presentation. He has gone through multiple drafts of my writings

and several rehearsals for my presentations; painstakingly pointing out what needs to be

done differently and why. Thanks Alberto.

Two other people have had a significant impact on my research career. Kurt

Keutzer introduced me to intensity in research, with his work hard and play hard attitude.

He has also shown me the planning and organization that goes into a successful research

career l. I am indebted to Rick Rudell for guiding me in my early years in graduate school;

for being forever willing to help me in my work. This support was very important for me.

From him I have tried to learn the importance of practical concerns in the application of

research ideas.

^his is no way implies that I support his views on any matter!

11

I would like to thank Randy Katz for support during the initial stages of my

graduate student life. Randy encouraged me to pursue the path I thought best for my

research, I am thankful for that. Thanks are also due to him for serving on my qualifying

exam committee. I would also like to thank Prof. Dorit Hochbaum for sparing the time to

serve on both my qualifying exam as well as thesis committees.

Several people have made a direct contribution to the work in this thesis. All the

work was done with Bob and Alberto; it is impossible to separate out their contributions.

Luciano Lavagno was responsible for the implementation of Mis-MV, without him it may

not have become a reality. The initial work in retiming and resynthesis was done with

the assistance of Ellen Sentovich. The work on the performance optimization of pipelined

circuits was done with the assistance of Kanwar Jit Singh.

Cadgroup provided the unique environment for most of my work. Profs. Brayton,

Newton, Pederson and Sangiovanni-Vincentelli deserve special thanks for their efforts in

establishing this environment for us, the students in the group. The funding for my research

was provided by DARPA, NSF and industrial grants from AT&T, Bell Northern, California

Micro, IBM, Intel and Motorola. I gratefully acknowledge that. Thanks also to Digital

Equipment Corporation for the equipment used. Brad Krebs and Beorn Johnson provided

ready assistance with any hardware and software problems. Rick Spickelmier provided

ample assistance with tools he did and didn't write. I had many useful and enjoyable

interactions with other members in the group. In alphabetical order they are: Pranav Ashar,

Wendell Baker, Srinivas Devadas, Tim Kam, Luciano Lavagno, Bill Lin, Rick McGeer, Clio

Moon, Rajeev Murgai, Alex Saldanha, Hamid Savoj, Ellen Sentovich, Narendra Shenoy,

Kanwar Jit Singh, Arvind Srinivasan, Herve Touati, Tiziano Villa, and Albert Wang. Rick

McGeer deserves special mention. His firm belief that research must be fun helped keep the

right perspective on things. Thanks to Ellen for carefully reading through this manuscript

and in clarifying the ideas presented in the appendix. Thanks also to Umakanta Choudhury

for letting me commandeer his LaTex book during the writing of this thesis.

There are several researchers outside of Berkeley that I wish to thank. Al Dunlop

provided me with the opportunity to spend a fruitful summer at AT&T Bell Labs., Murray

Hill. Len Berman and Larry Carter arranged for me to spend some time at IBM Research

Division, Yorktown Heights. I thank Tzvi Ben-Tzur, Len Berman, Randy Bryant. Giovanni

De Micheli, Gary Hachtel, Bob Kurshan, Naotaka Maeda, and Louise Trevillyan for time

spent in technical interactions.

Ill

Kathryn Crabtree was a wonderful source of support, providing encouragement

when things were not going right. And without her, I couldn't have figured out the Berkeley

bureaucracy in a million years. Flora Oviedo provided valuable assistance with tilings

administrative as well as a ready smile to brighten up the cloudiest of days. Ted Goode

was always extremely helpful at the foreign students office, never letting me feel that I was

a "non-resident alien".

Ashi and Jean Malik provided me with the home away from home, giving me love,

support and good food, as and when needed. Thanks a lot guys. Thanks also to the Becks;

Fred and Polly, Dan and Annette, and Louie for making me feel part of the family. Ruth

Brayton was wonderful as my local Mom, giving affection and good advice in equal measure.

Life in Berkeley would not have been the same without my buddies, who made life

enjoyable even when it was trying hard to be otherwise. Tons of thanks to Jliingu, Khedkar,

Huzur, K. J., Munnu, Savita, Madhu, Mots, Asha, Tarun, Shashi, Keshav, Nandu, Vedant,

Ajay Amar, Murgai, Ashok Singhal, and Jaggu for providing the much needed support

mechanism. Thanks also to my roommates, Tom Chen, Huzur and D. G. for putting up

with my idiosyncrasies.

In its own way Berkeley made life enjoyable and interesting. Telegraph Avenue

chipped in with Cafe Med and Moe's. Sam and Andy and the rest of the crew at Coffee

Connection made the afternoon bianco ritual a pleasure. The 49er's and the A's kept the

morale up with their spectacular efforts.

My aunt and uncle, Mrs. and Mr. V. N. Bakshi provided me with encouragement

and the environment to pursue my academics in Delhi. My sisters Madhuri and Payal

contributed in their own little way by putting up with me at home, hoping that some day I

would be normal. It is not possible to thank the next three people enough with mere words.

Nonetheless, thanks to Aarti for all her love and willingness to undertake a difficult journey

with me. Thanks to Mom for her love and sacrifices that have made all this possible. And

last but not the least, thanks to Darshan Uncle, for being more than a father to me. It is

to him that I dedicate this thesis.

Contents

Table of Contents v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Vlsi Design and Logic Synthesis 1
1.2 Sequential Logic Synthesis 4

1.2.1 Problem Classification '. 5

1.2.2 Previous Work 10

1.3 Thesis Overview • 15

1 Retiming and Resynthesis 17

2 Basic Ideas 19

2.1 Clocking Methodology 20
2.2 Overview 21

2.3 Theoretical Formulation 22

2.3.1 Retiming: An Overview 23
2.3.2 Extensions to Retiming 26
2.3.3 Conditions for Peripheral Retiming 31
2.3.4 Computing the Path Weight Matrix 38
2.3.5 Solving the Path Weight Matrix 42
2.3.6 Legal Resynthesis Operations 42

2.4 Peripherally Retimable Circuits: General Topology 46
2.5 Optimizing Sequential Circuits 49
2.6 Computing Equivalent States Across Optimizations 52

3 Implications and Applications 57
3.1 Relationship to Logic Testing 57
3.2 Relationship to State Assignment 60
3.3 Performance Optimization 67

vi CONTENTS

3.3.1 Two Problems in Performance Optimization 68
3.3.2 Main Results 71

4 Practical Experiences 79
4.1 Implementation Issues 79

4.1.1 Growing Pipelined Sub-Circuits from a Seed 79
4.1.2 Clustering Combinational Logic Blocks 84

4.2 Experimental Results: Area Optimization 87
4.2.1 Experimental Circuits 87
4.2.2 Experimental Procedure and Results 88
4.2.3 Analysis of Experimental Results 88

4.3 Experimental Results: Performance Optimization 96
4.3.1 Example Circuits and Experimental Procedure 96

II Handling Symbolic Inputs 99

5 Multi-Level Logic Minimization 101
5.1 Multi-Level Optimization Techniques 102
5.2 Overview 103

5.3 Circuit and Function Representation 103
5.4 Circuit Decomposition Using Kernels 106

5.4.1 Kernels and Kernel Intersections 106

5.4.2 Kernels and Multiple-Valued Variables 109
5.5 Circuit Decomposition Using Common Cubes 120

5.5.1 Common Cube Extraction with Binary Variables 120
5.5.2 Common Cube Extraction with Multiple-Valued Variables 121

5.6 Circuit Simplification 123
5.7 Logic Verification 125

6 Practical Experiences 127
6.1 Implementation Issues 127

6.1.1 Size Estimation in Algebraic Decomposition 128
6.1.2 Incompletely Specified Literals 129
6.1.3 Satisfiable Constraint Matrices 132

6.1.4 The Encoding Problem 136
6.2 Experimental Results 137

6.2.1 An Example mis-mv Run 142

7 Conclusions 149

A Discrete Mappings and Boolean Functions 151
A.l Introduction 151

A.2 Boolean Functions: A Review 152

A.2.1 Boolean Algebras 152
A.2.2 Boolean Formulas 154

CONTENTS vii

A.2.3 Boolean Functions 154

A.3 Discrete Mappings 154
A.4 Compact Representations of Boolean Functions 156
A.5 Expressions Representing Discrete Mappings 157
A.6 Conclusions 161

Bibliography 163

viii .,,-,CONTENTS

List of Figures

1.1 General Sequential Circuit 5
1.2 Symbolic Specification of Logic: An Example 9
1.3 State Transition Tables and Graphs . 13

2.1 Edge Triggered and Transparent Latches 20
2.2 Sequential Circuits and Communication Graphs: An Example 24
2.3 Retiming: An Example 25
2.4 Legal Retiming: An Example 26
2.5 Example: Use of a Negative Latch 27
2.6 Peripheral Retiming 29
2.7 Peripheral Retiming: Example '. 29
2.8 Circuit with no peripheral retiming : Example 1 31
2.9 Circuit with no peripheral retiming : Example 2 32
2.10 Path weight matrix: Example 33
2.11 Computing the Path Weight Matrix 39
2.12 Operators "+" and "&" 40

2.13 Computing the Path Weight Matrix: Example 41
2.14 Solving the Path Weight Matrix 43
2.15 Introducing Pseudo-dependencies with Negative Path Weight 47
2.16 Pipelined Circuits and their Retiming 48
2.17 Acyclic Circuit with no Peripheral Retiming 50
2.18 Handling Cyclic Circuits 51
2.19 Example FSM Optimization 53
2.20 The Equivalent State Problem: An Example 55

3.1 Impact on Transition Behavior 61
3.2 Obtaining Equivalent FSM Implementations 62
3.3 2-way split and merge 63
3.4 Switch 64

3.5 Switch using 2-way merge and split 64
3.6 Labelled Cycle of Equivalent States 65
3.7 Non-cp Transformations 66

3.8 Obtaining Equivalent FSM Implementations 67

IX

LIST OF FIGURES

3.9 Peripheral Retiming of Pipelined Circuits 70
3.10 Blocked Latch Motion 73

4.1 Growing Pipelined Circuits from a Seed 80
4.2 Adding node to included 82
4.3 Adding an Edge with w ^ 0 to included 82
4.4 Clustering Combinational Logic Blocks: I 85
4.5 Clustering Combinational Logic Blocks: II 86
4.6 Summary of the Experimental Procedure 89
4.7 Register Outputs Form a High Fanout Cutset : ; 90
4.8 Example Circuit: addjcomp 92
4.9 Experimental Results for addjcomp 94
4.10 Example From a Datapath 95

5.1 Representing Circuits as MV-networks 105

6.1 Algorithm sa_encoding 138
6.2 keyb: Initial Circuit 143
6.3 keyb: Circuit after Node Simplification 144
6.4 keyb: Circuit after Algebraic Decomposition 145
6.5 keyb: Circuit after Encoding 147

List of Tables

4.1 Experimental Results: Performance Optimization of Pipelined Circuits ... 97

6.1 Input Encoding Comparison ' . . . 141

XI

xu LIST OF TABLES

Chapter 1

Introduction

Imperious Prima flashes forth
Her edict Ho begin it":
In gentler tones Secunda hopes
"There will be nonsense in it.n

- Lewis Carroll, "Alice in Wonderland"

This thesis examines the problem of automatically synthesizing digital logic cir

cuits. In particular, logic circuits with memory elements are considered; i.e. circuits that

exhibit sequential behavior. This introductory chapter is organized as follows. First, the role

of logic synthesis in the design of VLSI (Very Large Scale Integration) circuits is explained.

Next, the problem domain of sequential logic synthesis is introduced. A classification of

problems in this area is presented and previous work done for these problems is described.

Then the scope of this thesis is defined with respect to these problems. This chapter con

cludes with the organization of the rest of the thesis.

1.1 VLSI Design and Logic Synthesis

The design of a digital logic system goes through several stages. The typical design

flow is as follows:

Design Specification The desired behavior of the system is specified at some level of

abstraction. The exact level of detail may vary depending on the designers and the

specific system being designed.

2 CHAPTER 1. INTRODUCTION

Design Partition Typically systems being designed are sufficiently complex to merit being

broken up into smaller sub-systems in order to make the design task more tractable.

Logic Design Here the sub-system specifications are given structure. They are converted

to interconnected logic elements such as gates, logic modules (e.g. adders) and memory

elements. Part of the design specification typically includes some constraints that the

final design must meet, such as chip area and delay through the logic. Since the design

may not be ready for physical layout, the area and delay are approximated at this

level.

Physical Design After the individual components and their interconnections for each in

tegrated circuit (ic) in the system have been specified, they have to be mapped to

a physical layout that specifies the individual transistors and their interconnection.

In addition, all the ic's in the system need to be placed and interconnected on a

collection of printed circuit boards.

Several iterations through one or more of these stages may be needed before the design

meets its specification.

While the above design flow has remained largely unchanged, integrated circuits

have seen a rapid increase in complexity over the last two decades. Crossing the 100,000

mark in the number of transistors per ic (or chip) marked the entry into the era of very

large scale integration (vlsi). Since then it has been possible to design and manufacture ic's

with a few million transistors. The complexity presented in the design of circuits involving

such a large number of components cannot be managed without computing aids of some

sort. As a result a wide variety of Computer Aided Design (cad) tools have been developed

for helping designers with various aspects of the design. These tools perform two kinds of

tasks:

1. Routine Tasks: Several tasks in the design process are routine (e.g. design rule check

ing). These can be easily and efficiently automated making the task at hand faster

and less error prone.

2. Searching Large Design Spaces: The large number of components result in a combi

natorial explosion when we consider the possibilities at several stages in the design

process. Physical placement and routing is a classic example of this. Design tools per-

1.1. VLSI DESIGN AND LOGIC SYNTHESIS 3

form an efficient search of the solution space which would not be possible for human

designers.

In either case, these tools result in vastly reduced design time. This translates into cheaper

design costs as well as faster time to market a product. These advantages have made cad

tools an integral part of VLSI design. The following areas have been addressed by design

tools. They are stated here in rough chronological order of development.

Verification At several stages during the design, parts of the circuit need to be checked

to assure that they meet the timing and/or logical requirements for the design. Tra

ditionally, this has been done by simulating the circuit. Logic and timing simulators

have been developed that are capable of handling significantly complex circuits. In

recent years, formal verification techniques are gradually replacing simulation for logic

verification.

Physical Design The circuit designer's view of the integrated circuit is a geometric view of

overlapping polygons representing transistors and their interconnects. Physical design

tools enable design of gates comprising of several transistors, modules consisting of

several gates, the placement of these modules and gates in a two dimensional plane

and the routing of interconnections between these for each ic, and placement and

routing of ic's on printed circuit boards.

Design Management and Tool Integration Efficient management of the large amount

of data needed to store the different parts of the design in its various stages is a

formidable task. Design management tools handle the large databases needed for this

purpose. These databases also permit various tools working on a design to communi

cate with each other since all of them now interface with the same database.

Synthesis The logic design phase was the last to see some degree of automation. This is

an indication of its inherent difficulty and complexity. Currently, this is also the most

time consuming part of the design process. Synthesis efforts can be classified into two

categories based on their starting and ending points.

Behavioral Synthesis A description of the input-output behavior of the system is

converted to structure in the form of interconnected blocks of combinational logic

and memory elements. The blocks of combinational logic may have some known

4 CHAPTER 1. INTRODUCTION

functionality, e.g. a 16-bit adder, or may be specified as logic equations. It

has been difficult for design tools to achieve design quality comparable to that

attainable by human designers. As such these design tools are mainly of research

interest and this phase is still dependent on the skill of designers. (In [53] a

review of this subject is presented.)

Logic Synthesis The translation of memory elements and combinational logic blocks

(described as equations) into a set of interconnected primitive elements such as

gates and latches is termed logic synthesis. These primitive elements may be

part of a pre-designed library that is used in conjunction with a particular design

style (such as standard cell, sea of gates etc.). Since logic synthesis tools must

produce results that are comparable with those produced by human designers,

design optimization is a very important part of any tool. The metrics used to

evaluate the result are the size of the resulting circuit (which will impact the

final area), its delay (which determines the throughput or performance) and its

testability. These metrics will be examined in Section 1.2.1.

1.2 Sequential Logic Synthesis

The work presented in this thesis is concerned with design aids for synthesis.

In particular logic synthesis involving memory elements is considered, which is termed

sequential logic synthesis. Figure 1.1 shows a general schematic of a sequential digital logic

circuit. This has two parts; combinational logic and memory elements. The blocks of

combinational logic each compute an arbitrary Boolean logic function. Each block consists

of logic gates, such as and, or, not, connected to implement this function. Typically the

interconnection of these gates within a combinational logic block is acyclic. The memory

elements are used to store data between successive computations of the logic blocks. Thus

their introduction results in the circuit storing the past history of inputs. As a result they are

thought of as exhibiting sequential behavior, i.e., the circuit operates on input sequences and

produces output sequences. This is in contrast to a combinational logic circuit, which has

no memory and therefore produces a single output for a single input. The memory elements

are referred to as latches since they latch in the data present at their inputs. (A note on the

drawing conventions used in the sequel. Combinational logic is drawn using conventional

gate symbols or shaded ovals. Latches are depicted by rectangles.) This research focuses on

1.2. SEQUENTIAL LOGIC SYNTHESIS

Memory Element

Combinational Logic

Figure 1.1: General Sequential Circuit

a special class of digital circuits, viz. synchronous digital circuits. These circuits have the

property that all memory elements latch in their data synchronously with respect to a clock

signal that is common to the circuit. A large percentage of all circuits designed fall into

this category. Most existing research efforts in this area may be classified as combinational

logic synthesis since they deal with only the combinational parts of the design. The memory

elements are considered as if sacred and are not modified after their initial introduction.

This has traditionally been the case because combinational logic optimization has been well-

studied in the past and those results can be exploited here. Very little work that exploits

the ability to modify the memory elements has been done. The techniques proposed in this

thesis go beyond combinational logic optimization inasmuch as they consider altering the

combinational parts as well as the memory elements during design optimization.

1.2.1 Problem Classification

This section examines the various problems that arise in design optimization during

sequential logic synthesis. These may be classified along three orthogonal axes.

6 CHAPTER 1. INTRODUCTION

1: Optimization Criterion

Traditionally, the most important optimization criterion during ic design has been

minimizing the size of the resulting circuit. The size is measured in terms of the area

occupied by the layout. The reason for this pre-occupation with minimum area circuits has

been the correlation between the area'and the cost of the final circuit. In ic manufacture, the

yield (or the percentage of non-faulty components) is an exponentially decreasing function

of the size of the ic [54], Thus, larger circuits tend to have smaller yields which results in

higher cost per working component. However, in recent years the increasing maturity in ic

fabrication has resulted in more stable processes which have increased the size of circuits

capable of being manufactured with acceptable yields. As a result, area optimization has

become less important. However, to say that area optimization is not important any longer

is inaccurate. With increasing silicon real estate being available, the demands for it have

also increased. Designers are putting more and more functionality on a single chip, and

would like to have additional area available for adding resources, such as on-chip memory.

There has been an increasing demand for higher performance from circuits in the

past decade. This arises due to higher computational needs for complex computations as

well as increased volume of information being processed. In the context of synchronous

sequential circuits, the performance of a circuit is measured in terms of the cycle time of

its system clock. This determines the throughput of the circuit. If a synthesis tool does

not address the issue of meeting the performance constraint on a design, then it is counter

productive to the very use of synthesis. Designers would (and do) spend a significant amount

of time correcting the output of synthesis tools in order to meet the timing constraints.

Currently, for most applications it seems that performance is the paramount optimization

metric.

Once a circuit is manufactured, it needs to be tested to ensure that it has no

manufacturing defects. These tests are input stimuli that distinguish between good and

faulty circuits. Traditionally, testing has been considered to be a post design activity,

i.e. tests are determined only after the circuit design is complete. Recent research has

shown that testability considerations can be included as part of the design process. The

resulting circuits have higher coverage of potential faults as well as shorter test sequences in

comparison with those designed without these considerations. The final design is evaluated

in terms of its testability, which is measured as some function of the fault coverage and

1.2. SEQUENTIAL LOGIC SYNTHESIS 7

length of tests. Thus, in addition to area and performance, testability has emerged as an

important optimization criterion.

It should be pointed out that in a typical design scenario the desired metric is

some combination of performance, area and testability. The testability requirements are

specified in terms of the minimum acceptable coverage under some fault model. Typically

the performance constraints come from the system specification and it does not pay to do

any better than what is required. The optimization goal then is to minimize the area.,

maximize the testability (providing at least the minimum acceptable coverage) and meet

the specified performance constraint.

A final caveat: The word optimization is used in logic synthesis much in the same

way as it is in the context of optimizing compilers than in the strict mathematical sense,

i.e., the quality of the output is improved with respect to some metric as opposed to finding

some global maximum or minimum.

2: Input Specification

Inputs may be specified in several different ways to a logic synthesis system. The

most common way is to specify a set of Boolean equations that describe the combinational

logic blocks and the memory elements connecting the logic blocks. Equivalently, the com

binational logic blocks may be specified as an interconnection of logic gates. These two

specifications are considered equivalent since there always exists a trivial mapping that

converts one to the other. This form of the specification is referred to as a Boolean spec

ification. The specification is said to be mapped if the gates and memory elements in the

specification refer to specific members of some cell library. In general, mapped specifica

tions are outputs of synthesis systems; however they may also be inputs. An instance of

the mapped specification occurs in technology re-mapping of a design. Here, an already

existing design needs to be re-implemented in a new technology. Logic synthesis may be

used to improve the absolute quality of the previous design or to modify the implementation

to exploit/suit the new technology.

The system being described typically captures some real life situation. In addi

tional to variables that have binary or Boolean values, the specification may include symbolic

variables that represent the real-life variables. As an example, Figure 1.2 has a description

8 CHAPTER 1. INTRODUCTION

of the classic Mead Conway traffic light controller [55] in the bds language taken from [69] *.

The actual syntax and description is not significant here, what should be noted is the use

of non-binary-valued variables. Here the state variable representing the state of the traffic

lights is represented in symbolic form and can take on four possible values. Similarly, the

output variables representing the highway and farm lights can take on three values. Since

the logic is explicitly specified, this description is considered to be at the logic level even

though it involves symbolic variables. This form of specification is referred to as a symbolic

specification.

Since signals in a digital circuit can have only binary values 2 the symbolic vari

ables need to be encoded using binary-valued variables. The process of encoding replaces a

symbolic variable with a set of binary-valued variables known as encoding variables. Each

value of the symbolic variable is mapped to some binary pattern of the encoding variables

under the encoding. For example, in the case of the traffic light controller, the four state

values HG, HY, FG, FY may be represented as the bit patterns 00, 01, 10, 11 on two binary-

valued encoding variables. The resulting Boolean logic depends on the choice of encoding.

Thus, the area, performance and testability of the circuit may depend on the choice of

encoding. This gives rise to the encoding problem in logic synthesis wherein an encoding

needs to be determined for a symbolic variable such that the resulting logic is optimal under

some metric. The versions of the problem where the symbolic variables are inputs or out

puts of the combinational logic are referred to as the input and output encoding problems

respectively. When the symbolic variable is the state of a finite state machine, then this

variable is both an input as well as an output of the finite state machine combinational

logic. The additional constraint on the encoding is that the same encoding be selected both

for the input as well as the output variable. In this case the encoding problem is referred

to as the input-output encoding, or the state assignment problem. This taxonomy was first

introduced in [56].

3: Structure of Target Logic

Combinational logic is implemented as a set of interconnected logic gates. The

depth of the logic circuit is the maximum number of gates along any path from an input

lThis description has been slightly modified to highlight the symbolic nature of the variables.
2While circuits using multi-valued logichave been proposed, they have not yet become a practical reality.

Thus, it is fair to say that signals in digital circuits are binary-valued.

1.2. SEQUENTIAL LOGIC SYNTHESIS

MODEL traffic.light

hi, fl ! control for highway and farm lights

st<0>, ! to start the interval timer

nextState =

c<0>, ! indicating a car on the farm road

ts<0>, tl<0> ! timeout of short and long interval timers

presentstate ;

ROUTINE traffic_light_controiler;

neztState = presentState; st = 0;

SELECT presentState FROM

[HG]: BEGIN

hi = GREEN; fl = RED;

IF c AND tl THEN BEGIN

nextState = HY; st = 1;

END;

END;

[HY]:BEGIN

hi = YELLOW; fl = RED;

IF ts THEN BEGIN

nextState = FG; st = 1;

END;

END;

CFG]: BEGIN

hi ^ RED; fl = GREEN;

IF NOT c or tl THEN BEGIN

nextState = FY; st = 1;

END;

END;

[FY]:BEGIN

hi = RED; fl = YELLOW;

IF ts THEN BEGIN

nextState = HG; st = 1;

END;

END;

ENDSELECT;

ENDROUTINE;

ENDMODEL;

Figure 1.2: Symbolic Specification of Logic: An Example

10 CHAPTER 1. INTRODUCTION

to an output of that circuit. Circuits of depth two are treated rather specially. These two-

level circuits can be implemented easily as programmable logic arrays (pla's) which have

a very regular and compact layout. This feature made this form of logic a popular choice

in the early days of cad tools since they could do a reasonably good job of generating the

mask layout automatically. In addition, work had already been done in understanding and

optimizing two-level logic (e.g. [61]).

However, there exist some logic descriptions such as adders and parity trees which

have no compact two-level representation. These must be implemented as circuits of depth

greater than two, referred to as multi-level logic. For most circuits, permitting multiple levels

in the logic results in smaller circuits. In addition, large pla's tend to be slow because of

long diffusion Unes that need to be discharged 3. Even though multi-level logic typically

has more gates from an input to output than two-level logic, yet it may be faster since it

does not have the problem of long diffusion lines. Finally, it is noted that two-level logic

is always an option even with multi-level logic, since it is just a special case. These factors

result in multi-level logic being preferred to two-level logic.

The Problem Space

The three issues described above, viz. optimization criterion, input specification

and structure of target logic, form orthogonal axes that help define the space of problems

in sequential logic synthesis. Since each of the three axes permits several possibilities, the

complete problem space is their cartesian product. For example, one point in this space

is the area optimization problem for two-level logic implementation with Boolean input

specification.

In the next section, the previous work done in this general area is described, as

well as how it relates to these problems. This will establish the open problems and provide

the motivation for the work presented in this thesis.

1.2.2 Previous Work

There has been a substantial amount of work in the various problems described in

Section 1.2.1. Rather than describe the previous work separately for each of the individual

problems, the main approaches that have been used are examined, and it is shown how

3This problem is partially solved in pre-charged PLA's with metal lines; however at the expenseof more
complex clocking schemes and/or additional area.

1.2. SEQUENTIAL LOGIC SYNTHESIS 11

they apply for the various problems. Where the volume of literature in a particular area is

extensive, only a few representative works have been cited.

Combinational Logic Optimization

Combinational logic optimization is used in sequential logic synthesis as follows.

The combinational logic blocks are first separated from the memory units, optimized indi

vidually and then reconnected. The largest volume of work done in logic synthesis is in this

area, perhaps because this has the largest impact on the quality of the final results.

The earliest work in combinational logic optimization can be found in the work of

Quine [61] in minimizing the product terms in two-level representations of logic functions.

Two-level logic optimization for minimum area has since then been very well-studied. Both

exact [61, 52, 20, 64] as well as heuristic solutions [9] have been presented. The results

in [63] show that exact solutions can be obtained for significantly large examples by us

ing practically efficient algorithms. In addition, the heuristic algorithms produce results

that match or are close to the exact solutions. For all practical purposes this problem is

considered to be solved.

Multi-level combinational logic optimization has also gained significant maturity

in the past decade. The problem here is significantly more complicated than in two-level

logic since the possibilities of restructuring the logic are limitless in comparison. Nonethe

less, algorithms and programs that handle both area [21, 12, 8, 32, 60, 7] and performance

optimization [77, 73, 57, 6, 21, 32] have been developed. However, unlike two-level mini

mization, the exact algorithms [62] work only on very small circuits, so it is not known how

close the state of the art is to the global optimum.

Symbolic Minimization and Encoding

The state assignment problem has been well-studied since the 60's [39, 37, 1].

However, the first attempt to relate the problem with the final logic implementation was

made by DeMicheli et al. [59] in 1984 for two-level logic. Actually, the solution presented

there was the input encoding approximation to the state assignment problem. This was then

generalized in [56] to include output constraints for two-level logic. The general paradigm

followed there was to first perforin a symbolic minimization of the logic description, and

then use this to generate constraints that the encoding must satisfy. The approach used

12 CHAPTER 1. INTRODUCTION

in [79] is similar. Both of these techniques are heuristic in nature. In [30] exact solutions to

this problem have been provided, however these are not practical for any but the smallest

of circuits.

In the case of multi-level logic the approaches have not been as rigorous as those

for the two-level case. Again this can be attributed to the greater flexibility permitted

by multi-level logic. The approaches to the encoding problems here tend to be predictive

inasmuch as they select an encoding that is likely to result in smaller logic [25, 34, 45].

Symbolic minimization for multi-level logic has not been proposed thus far.

Retiming

Retiming was introduced as a technique to improve the performance of systems

at the micro-architectural level [44, 43]. This approach exploits the ability to change the

positions of latches in the circuit. If we restrict ourselves to edge-triggered latches, then

the cycle time of the system is the longest combinational delay between latches. Thus,

it is possible to minimize the cycle time by finding positions of latches that minimize the

longest combinational path between any two latches. It has been only recently that this

work has been used at the logic level [58]. Retiming does not modify any combinational

logic in the circuit. Thus, with respect to sequential circuit optimization the two techniques

of combinational logic optimization and retiming may be viewed as duals of each other.

Combinational logic optimization considers the latch positions to be fixed and modifies the

combinational logic; retiming considers the combinational logic to be fixed and modifies the

positions of latches.

Using State Transition Behavior

Sequential systems may be described by specifying their transition behavior in the

form of state transition graphs (stg's) or equivalently as state transition tables. Figure 1.3

shows the state transition table and graph for the traffic light controller described in Fig

ure 1.2. In the state transition table, each row describes a transition in the underlying finite

state machine. The transition is from present state PS under the input vector IN to next

state NS and the output produced is OUT. In the stg. the vertices represent the states. The

arcs represent the transitions. The labels of the form 'input/output' on each arc represent

the input vector that causes the transition and the output value produced. This is the

1.2. SEQUENTIAL LOGIC SYNTHESIS

not(c and tl) / W- GREEN: (I - RED; st - 0

ts / hi - RED: fl - YELLOW: st -1

not(ts) / hi. RED: tl - YELLOW;st - 0

not(c)ort1/hl-RED;fl-GREEN;st-1 X. _ / ts/hi-YELLOW: fl-RED; st-1

FG

not(not(c) or tl) / hi - RED: fI- GREEN: st - 0

c and M / hi - GREEN: I) - RED: st - 1

HY J not(ts)/hi.YELLOW:fl-RED;st-0

State Transition Graph: Example

PS IN

HG (not(candtl)

HG candtl

HY not(ts)

HY ts

FG not(not(c)crt1)

FG not(c)ort1

FY not(ts)

FY ts

NS OUT

HG hi o GREEN; fl o RED; st * 0

HY hi o GREEN; (I o RED; st = 1

HY hi = YELLOW; fl = RED; st = 0

FG hi = YELLOW; fl = RED; st»1

FG hi o RED; flo GREEN; st = 0

FY hi ° RED; fl ° GREEN; st ° 1

FY hi = RED; fl = YELLOW; st = 0

HG hi n RED: fl = YELLOW; st = 1

State Transition Table: Example

Figure 1.3: State Transition Tables and Graphs

13

14 CHAPTER 1. INTRODUCTION

same as a symbolic description of the system, since the state is represented symbolically

(unencoded) at this level. It is possible to use information about the transition behavior

to optimize the final circuit implementation. For example, information about equivalent

states may be exploited by modifying a transition to a state s to go to an equivalent state

s' [46] or by merging equivalent states into a single state as is done in state minimization.

Alternatively, the finite state machine (fsm) may be decomposed into a set of interacting

FSM's. There has been a lot of work done in FSM decomposition [38, 29, 2].

There is potential for exploiting more information at this level than would be

possible at the gate level. For example, information about equivalent states may be very

difficult to extract at the logic level. However, the general problem with this approach is

that it is not possible to accurately predict the impact of modifications made at this level

on the gate-level implementation. Researchers have proposed using different criteria such

as the number of edges [29] or the number of states [22] in the stg as a measure of the

complexity. However, none of these is a consistent reflection of the gate-level complexity.

The technique presented in [2] is an exception to this. Here a reasonable estimate of the

area and/or delay is included in the decomposition technique. However, this is restricted

to two-level implementations.

It may seem that even if the input specification is in the form of a gate-level netlist,

it may be advantageous to extract its transition behavior and use that in addition to any

other techniques that can be exploited at the gate level. The problem in doing that is the

combinatorial explosion involved in the extraction. Extracting the stg for any sequential

circuit with more than a few latches and inputs is generally considered infeasible.

Synthesis for Testability

Research in synthesis for testability started with work that related area optimiza

tion of combinational circuits with the single-stuck-at fault model in testing [3]. Here it was

shown that a prime and redundant circuit is fully testable under the single-stuck-at fault

model. Later in [36] a synthesis method for fully testable circuits under the multiple-stuck-at

fault model was developed. Synthesis techniques for fully testable sequential circuits have

been presented in [27, 28, 23]. The relationship between circuit performance and testability

was established in [40]. Here it was shown that testability need not be sacrificed for higher

performance. The problem of delay-fault testability was tackled in [24]. Here, synthesis

1.3. THESIS OVERVIEW 15

techniques for robust-path and gate-delay-fault testable circuits were presented.

There are two aspects of improving the testability properties of a circuit. The first

is increasing its testability; this has been described in the previous paragraph. The second

is making it more easily testable. This implies reducing both the computing time it takes

to derive these tests (e.g. [19]) as well as the time it takes to run these tests on the circuit

(e.g. [27]).

1.3 Thesis Overview

Since multi-level logic is the most prevalent target implementation, the work pre

sented in this thesis will focus on this form of logic implementation. An attempt is made

to build on previous work done in combinational logic synthesis and see the natural exten

sion of well-understood ideas there in the expanded context of multi-level sequential logic

synthesis.

The thesis is divided into two parts. In the first part, it is demonstrated how

the dual ideas of retiming and combinational logic optimization can be combined in such

a way as to maximize the use of combinational logic optimization. The results here apply

to both area and performance optimization. While synthesis for testability is not directly

considered, the relationship between the ideas presented here and the testability of the

resulting circuits is examined.

The second part presents techniques for the symbolic minimization of multi-level

circuits with symbolic inputs. This has direct application in the state assignment problem

for multi-level logic.

Chapter 2 describes the theoretical results developed in combining retiming and

combinational logic optimization. The procedure that utilizes both these techniques is called

retiming and resynthesis. Sequential sub-circuits for which all the latches can effectively be

ignored are considered. This enables them to be considered as combinational circuits. For

these circuits all the latches can be migrated to the periphery of the circuit by a procedure

that is an extension of retiming. One of the main results of this chapter are the necessary and

sufficient conditions on sub-circuits for which this is possible. This residt enables us to use

combinational logic optimization beyond latch boundaries; in fact it pushes combinational

optimization to its limits in the context of sequential circuits.

In Chapter 3 the implications and applications of these ideas are described. The

16 CHAPTER 1. INTRODUCTION

relationship of retiming and resynthesis to logical testing and state assignment is examined.

Then it is shown how these ideas can be applied towards the performance optimization of

sequential circuits. A special class of sequential circuits is considered, viz. pipelined circuits.

Here the equivalence between the performance optimization problem for pipelined circuits

and that for combinational circuits is established.

Chapter 4 discusses the issues involved in the practical implementation of retiming

and resynthesis as part of a sequential logicoptimization system, sis [70]. Specific algorithms

are presented as well as the experiences with using these on some real designs.

The second part of the thesis considers the symbolic minimization of multi-level

circuits with multiple-valued inputs. Chapter 5 presents extensions of the various multi

level optimization techniques used with Boolean circuits to handle multiple-valued inputs.

The main contribution of this chapter is the technique for factorization of logic expressions

with multiple-valued variables. This was the missing link in the multi-level optimization of

circuits with multiple-valued inputs. It is then shown how the results of symbolic minimiza

tion can be used to tackle the input encoding problem. This can be used to approximate the

state assignment problem; an approximation that is valid when the primary output logic

dominates the next state logic.

The implementation of these issues uncovers some interesting problems. These

practical issues are considered in Chapter 6 along with experimental results for the input

encoding of some real designs.

Finally, Chapter 7 summarizes what has been learned from this work and considers

future directions in»this area.

17

Part I

Retiming and Resynthesis

Chapter 2

Basic Ideas

"You can draw water out of a water-well," said the Hatter; "so I should think
you could draw treacle out of a treacle-well - eh, stupid?"

- Lewis Carroll, "Alice in Wonderland"

Over the last decade combinational logic optimization has attained a significant

level of maturity. (Some of the work done in this area was reviewed in Chapter 1.) The

problems and approaches there are well understood: almost fully in the two-level logic

case, and to a lesser extent in the multi-level logic case. However, in sequential logic

optimization their utility is restricted to individual portions of combinational logic. Logical

relationships are not exploited between gates that are separated by latch boundaries. What

is desirable is the ability to use the ideas in combinational logic optimization beyond latch

boundaries. In this direction we would like to push combinational logic optimization to

its limits, i.e., capture all the logical relationships that exist between gates in a sequential

circuit even though they may not belong to the same block of combinational logic. This

thought direction is a very natural one; it stems from the desire to build on what is already

known and forms the motivation behind the work presented in this part of the thesis. First

the application domain of these ideas is specified as a class of sequential circuits with specific

clocking methodologies. Then the suggested approach is described, which is termed retiming

and resynthesis since it combines retiming with resynthesis of combinational logic. (Most

of the work presented in this chapter was first reported in [49]).

19

20

Clock

Edge Triggered

Q
Transparent

CHAPTER 2. BASIC IDEAS

time

Figure 2.1: Edge Triggered and Transparent Latches

2.1 Clocking Methodology

As mentioned in Chapter 1, only synchronous sequential circuits are considered,

i.e., all memory elements latch their data synchronously with respect to a clock signal

common to the circuit. Within synchronous circuits there is flexibility as to when the data

is latched with respect to the clock edge. This is illustrated in Figure 2.1. Let D be the

input and Q the output of the latch. In edge-triggered latches the data present at the

clock edge (the rising edge in this case) is latched and available at Q. In transparent or

level-sensitive latches, the latch is transparent during the time the clock is high, i.e. the

data input is available at the output. The data value at the end of the clock high period is

latched.

This work is restricted to an edge-triggered clocking methodology. Thus, the word

"latch" in the following exposition refers to an edge-triggered latch or a flip-flop. It may

seem that this restriction is a fairly strong one given the designers' wisdom that transparent

latches result in higher performance. This fact is illustrated through examples in [65]. where

it is shown that by appropriately selecting the -clocking parameters it may be possible to

clock a synchronous system with transparent latches significantly faster than one with edge-

2.2. OVERVIEW 21

triggered ones. While that may sometimes be the case, a large fraction of ASIC (Application

Specific Integrated Circuit) designs are done using edge-triggered latches [5]. The principal

reason for this is the ease of analysis of circuits with edge-triggered latches. There are

no complex "time borrowing" scenarios and designers do not have to worry about "short

paths". Since ASIC's are the application domain where synthesis is the predominant design

methodology, this does not seem too restrictive.

Retiming algorithms have this restriction * and since this work uses retiming,

it is inherited. Current developments in exploiting retiming techniques with transparent

latches [71] could enable retiming and resynthesis to be applied to circuits with transparent

latches.

2.2 Overview

Sub-circuits in a sequential circuit are characterized for which the latches can ef

fectively be ignored and thus the sub-circuit can be considered as a combinational block.

This permits existing combinational logic optimization techniques to be used on it. This

approach is more powerful than combinational logic optimization, since it examines interac

tions between portions of logic separated by latches. As a result, the optimization process

makes full use of dependencies between gates. Moreover, it is guaranteed that it is com

plete, i.e., the largest sub-circuit for which this can be done is determined. This ensures that

no optimization that can be obtained by considering interactions between gates is missed.

Converting this sub-circuit to a combinational logic block can be viewed as a retiming pro

cess in which all the latches are pushed to the periphery of the sub-network. However, this

technique is more powerful than conventional retiming in that it permits negative latches

to be pushed to the periphery. This is equivalent to temporarily "borrowing" latches from

the environment, and is a legitimate operation as long as these latches are "returned" to

the environment at the end of the optimization process. This additional allowance is more

powerful since it permits a larger portion of the logic to be viewed as a single block than is

permitted by conventional latch movements using retiming. Next, this combinational logic

block may be resynthesized according to a specified cost function. This could be minimizing

the area, the delay or meeting a particular area/delay tradeoff. Conditions are specified

Retiming algorithms need this restriction in order to compute the cycle time of the circuit in polynomial
time.

22 CHAPTER 2. BASIC IDEAS

for the legal redistribution of latches in this circuit, i.e., conditions under which the latches

borrowed from the environment can be returned. The redistribution can be done while

satisfying constraints such as minimizing the number of latches subject to a specified cycle

time (if these constraints axe satisfiable) by using the algorithms described in [43]. Since

the optimization algorithms work directly on the gate-level netlist, they use the gate-level

complexity as their cost function, unlike algorithms that work on state transition graphs.

2.3 Theoretical Formulation

Let us first focus our attention on sequential circuits whose underlying topology

is acyclic. (These are also referred to as feed-forward circuits.) These circuits are modeled

by a directed acyclic graph called a communication graph2 where each vertex v represents

either

a) an input/output pin or

b) a combinational logic block.

The input/output pins correspond to the primary inputs and primary outputs of

the circuit. The granularity of the combinational logic block may vary: it may be a single

gate or a larger module such as an adder. The vertices in the graph are connected by directed

edges. A restriction is placed that each input pin has no incoming edges and exactly one

outgoing edge (a single-output source), and that an output pin has no outgoing edges and

exactly one incoming edge (a single-input sink). If a primary input is used in more than one

place in the circuit then this is captured by introducing a dummy vertex in the graph that

handles the multiple out-edges. (The out-edges are also referred to as fanout.) An internal

edge connects vertex u to vertex v if both u and v represent combinational logic blocks,

and the logic represented by v explicitly depends on the value computed at u. A peripheral

edge connects either an input pin to the logic block that uses that input or connects a

logic block that computes the value of an output to the corresponding output pin. Each

edge e has a corresponding weight w(e) representing the number of latches between the two

vertices it connects. An example of a sequential circuit and its communication graph is

shown in Figure 2.2. Note that the multiple fanout of primary input a is handled through

the internal vertex a' in the graph. For simplicity in the figure, if the edge weight is 0 then

2This is related to the definition of a communication graph presented in [44].

2.3. THEORETICAL FORMULATION 23

the edge label is omitted. A sequential circuit is alternatively referred to as a sequential

network. The terms circuit, network, and graph are used interchangeably whenever there

is no ambiguity.

A path between two vertices v\ and vi in the graph is a sequence of consecutive

edges from v\ to v^. The weight of a path is the sum of the weights of all the edges along

the path. In Figure 2.2, the path from input 6 to output / has weight 0, while the path

from b to e has weight 1.

2.3.1 Retiming: An Overview

The cycle time of a synchronous sequential circuit is determined by the length of

the longest path between any two latches in the circuit. The concept of retiming exploits

the ability to move the latches in the circuit in order to decrease the length of the longest

path in the circuit while preserving its functional behavior. Retiming algorithms were first

proposed by Leiserson et al. [44, 43]. To illustrate this with a small example, consider

Figure 2.3. The circuit on the left is functionally equivalent to the circuit on the right since

delaying the output of gate g by a cycle is equivalent to delaying each of its inputs by a

cycle. The movement of latches during retiming is quantified by an integer L(v) (called the

lag of v) for each vertex v, which represents the number of latches that are to be moved in

the circuit from each out-edge of vertex v to each of its in-edges. Thus, in Figure 2.3 the

circuit on the right is obtained from the circuit on the left by retiming g by +1. Similarly,

in obtaining the circuit on the left from that on the right g has been retimed by —1. For

input and output pins the lag is 0. Consider an edge e(«, v) in the circuit. Let w(e) be the

weight of the edge in the graph before retiming and wr(e) be the weight after retiming. wr

is determined from w and the lags by the following equation:

wr(e) = w(e) + L(v) —L(u)

This is used to prove a simple result that will be used frequently in the sequel.

Lemma 2.3.1 (Leiserson and Saxe) Letp be a path between input I and output j. Let

W{p) be the weight of this path. Let r be a retiming and Wr(p) be the weight of this path

after retiming. Then, W(p) = Wr(p).

Proof.

w(p) = J2 «>(*)
path ii^oj

24 CHAPTER 2. BASIC IDEAS

a _<

F>
92 V

rSZ)"

latch count

internal edge

input pin

LI d

Sequential Circuit

Communication Graph

output pin

combinational logic

peripheral edge

Figure 2.2: Sequential Circuits and Communication Graphs: An Example

2.3. THEORETICAL FORMULATION

retime g by +1

>

"b

_ _P

retime g by -1

Figure 2.3: Retiming: An Example

Wr(p)= Y, wr(e)= £ (w(e) + L(v)-L(u))
path i%-*Oj path ii—*oj

This sum telescopes:

Since L(oj) = L(i{) = 0,

Wr(p)= £ w(e) + L(0j)-L(ii)
path t,-—foj

Wr(p) = £ WM = W(P)
path i'i-*oj

25

The following definition is from [44].

Definition 2.3.1 A legal retiming is the assignment of an integer L(v) to each vertex in

the communication graph such that for each edge e, wr(e) > 0.

For a legal retiming, the edge weights of the retimed graph must be non-negative;

indicating a non-negative number of latches on each edge. Thus, there exists a real physical

circuit corresponding to this graph. This is not possible with negative edge weights in the

retimed circuit since there is no physical circuit component corresponding to a negative

latch. A legal retiming has been shown [44] to generate a circuit that is functionally equiv

alent to the original circuit. Figure 2.4 shows a legal retiming on the communication graph

of Figure 2.2. Here, the lag of </l is +1 and the lag for all other vertices is 0.

26 CHAPTER 2. BASIC IDEAS

Retiming-

Figure 2.4: Legal Retiming: An Example

2.3.2 Extensions to Retiming

It is now shown how retiming can be extended by introducing the concept of a

"negative" latch, i.e., an edge weightin the graph that is negative. Negativeedge weightsare

permitted on peripheral edges only. Allowinga negative edge weight n on a peripheral edge

is equivalent to "borrowing" n latches from the environment. The latches may be "returned"

by a subsequent retiming step, whereby n latches are forced to each edge with weight

—7i. The observation that the peripheral edge weights can temporarily take on negative

values allows retiming operations and subsequent optimizations that would otherwise not

be possible. This is illustrated with the circuit in Figure 2.5(a). Consider the latch on the

connection between r/2 and gZ. In order to move this latch from its present position either

#3 is retimed by -1 (for forward motion) or gl retimed by +1 (backward motion). If r/3

is retimed by -1, this will result in an edge weight of -1 at input d. If </2 is retimed by

+1 this will residt in an edge weight of -1 at output /. Thus, neither of these retimings

is legal. However, if this "illegal" retiming were permitted temporarily, then it is possible

to gain additional advantage over what is permitted by just legal retimings. Figure 2.5(b)

shows the circuit after </3 has been retimed by -1. The edge weight of -1 on input d is

2.3. THEORETICAL FORMULATION

a -h

;^>

g2yr
dZ>6

(a)

U

EV
r— g3 V -

..-1

(c)

a —

iy-\hr— g3 V

f •

•"'"T7
0»

sOt
rZ>£

(d)

Figure 2.5: Example: Use of a Negative Latch

27

28 CHAPTER 2. BASIC IDEAS

represented by the latch in dotted lines and with the label -1 on it. At this point, all the

gates in the circuit are part of a single combinational logic block. For this logic block, it

can be shown that the functionality remains unchanged if the connection from a to gl is

deleted, i.e., this connection is redundant or in testing parlance, untestable for a stuck-at-1

fault in the context of this combinational logic block. Thus, this connection may be deleted

and gl replaced by a wire. This simplified circuit is shown in Figure 2.5(c). Note that this

connection (from a to gl) is not redundant in the context of the priginal combinational block

(consisting of gl and g2) defined by the original position of latches. Only after we could

view all the gates as part of a single combinational logic block was this redundancy exposed.

Of course, this circuit still is not realizable since there is a negative latch at input d. This

situation can easily be rectified by retiming gZ by +1. This annihilates the negative latch

at input d resulting in the circuit in Figure 2.5(d). This example illustrates the advantage

gained by permitting illegal retimings temporarily. Later in this section it is shown why

this is a legitimate operation.

Let us now go back and see what enabled us to eliminate gl in the previous

example. Once we were able to consider all three.gates in the circuit as part of a larger

combinational block, we could use the combinational optimization technique of redundancy

removal to detect and delete the redundant connection. This is precisely what we were

looking for, i.e., a way to consider and exploit logical relationships between gates that

extend beyond latch boundaries. Ideally, we would like to push out all the latches in the

circuit to the peripheral edges. This results in no latches on any of the internal edges and

thus all the gates are part of the same combinational logic block. This permits the use

of any combinational logic optimization technique on this larger combinational block. The

notion of a peripheral retiming does precisely this.

Definition 2.3.2 A peripheral retiming is a retiming such that for each internal edge e,

wr(e) = 0.

This is graphically shown in Figure 2.6. After peripheral retiming, there are a, latches at

input pin i, fij latches at output pin j, and no latches on any internal edge.

The circuit in Figure 2.5(b) is a peripheral retiming of the one in Figure 2.5(a).

The same peripheral retiming is shown in terms of the communication graph in Figure 2.7.

The condition that wr(e) is 0 for all internal edges forces all latches to the pe-

2.3. THEORETICAL FORMULATION

Pure '1
Combinational
Logic

All internal edge
^^weights are zero

a J
z\

Figure 2.6: Peripheral Retiming

Peripheral
Retiming

Figure 2.7: Peripheral Retiming: Example

29

30 CHAPTER 2. BASIC IDEAS

ripheral edges. Note that the definition permits negative weights on the peripheral edges,

which corresponds to the negative latch concept presented earher. Permitting negative

latches temporarily on peripheral edges is a legitimate operation as shown by the follow

ing theorem. Functional equivalence here refers to the equivalence of the finite automata

corresponding to the initial and final circuits.

Theorem 2.3.1 A circuit that undergoesa peripheralretiming, combinational optimization

and a subsequent legal retiming is functionally equivalent to the original circuit.

Proof. Let C\ be the original circuit and Ci be the peripherally-retimed circuit obtained

with retiming r. Let a,- and (3j be the number of latches at the Ith input and jth output pin

in Ci. Let C<$ be the circuit obtained after combinational resynthesis, 7£, on the interior

combinational logic and let C4 be the circuit obtained after a legal retiming / on C3.

Let amin = |min(0,at*)| over all a; and let /?mtn = \min(Q,0j)\ over all (5j. Con

sider the circuit C5 obtained from C\ by adding amin latches at each input pin and /3man

latches at each output pin. C5 = delay(Ci, amtn + /?m,„), i.e. given an input-output vector

sequence (J, O) for C\, the input sequence X results in the output sequence O delayed by

<*min + Pmin cycles in C5. Let Cq be the circuit obtained by retiming C$ with r. This is

a peripheral retiming of C5 with a{ = a,- + amin and fij = (3j + /?min. Note that this is a

legal retiming since there are no negative latches, as a J and (3j are non-negative and there

are no other latches in the circuit. Here recourse is taken to the results in [44] that show

functional equivalence with legal retimings to claim that C& is equivalent to C5 3. Com

binational resynthesis, 7£, of the interior combinational logic of C$, resulting in the circuit

C7, obviously does not change its functionality since none of the functions of any primary

outputs or latch inputs are changed by this. Now, retiming / is applied to C7 to result in

C%. Note that since / was a legal retiming for C3 it must result in at least amin latches at

each input pin and /?min latches at each output pin. Also, by transitivity, Cg is equivalent

to C5. Hence, Cs =delay(Ci, am,„ +/?min)- Let Cq be obtained from C$ by removing am,-„

latches from each input pin and /3min latches from each output pin. Thus, C9 = delay(Ci,

0) i.e. Cq is equivalent to C\. Note that C9 is identical to C4 because the same resynthesis

11 and final retiming / were applied in order to obtain them, ensuring that they have the

same gate and latch netlists. Thus, C4 is equivalent to C\. •

Functional equivalence here is subject to being able to get the two circuits in equivalent states. The
problem of finding equivalent states for the original and retimed circuits has been looked at in [76] and is
discussed in Section 2.6.

2.3. THEORETICAL FORMULATION 31

b f
gi j©-

Figure 2.8: Circuit with no peripheral retiming : Example 1

2.3.3 Conditions for Peripheral Retiming

Not all circuit topologies permit a peripheral retiming. Two such topologies are

now considered.

Consider the circuit in Figure 2.8 and its corresponding communication graph.

All attempts to move the latch (either backward or forward) to the periphery result in a

negative weight on the edge between b' and g2. In fact, as will be shown later in this section,

this circuit cannot be peripherally retimed. Examining the circuit gives us some insight into

why this is so. The output c depends on the value of input b at two different times. Let us

assume that a peripheral retiming were possible. Then in the peripherally retimed circuit

c would depend only on one time value of b since all paths from b to c would have the same

number of latches, viz. a^ + fic. This would not capture the correct behavior and is the

reason why no peripheral retiming exists.

Now consider the circuit and communication graph in Figure 2.9. Again, it is not

possible to move the latches to the periphery without introducing a negative weight on the

internal edges (a',g2) and (b',gl). The intuition as to why a peripheral retiming does not

exist here is more complicated than in the previous case. For output c, inputs a and b are

delayed by 1 and 0 cycles respectively. For output rf, these inputs are delayed by 0 and 1

32

tF>

g2 V- d>

CHAPTER 2. BASIC IDEAS

c d

H 4

Figure 2.9: Circuit with no peripheral retiming : Example 2

cycles respectively. Let us assume a peripheral retiming were possible. Then c would see

a and b delayed by cta + Pc and on> + Pc respectively. Similarly d would see them delayed

by ota + (3d and at, + Pd respectively. The only difference in delays for the inputs that d

sees with respect c is due to the different number of latches on the peripheral edges at c

and rf, i.e. Pd - Pc- Thus, the input delays are the same for all the outputs except for a

constant offset that depends on the output and this offset is added to each of the input

delays. Clearly this is not possible for this example 4.

While these two examples give some insight into when a peripheral retiming may

not exist, by themselves they do not provide a characterization of circuits that permit a

peripheral retiming. In order to obtain such a characterization, the path weight matrix of a

network is defined.

Definition 2.3.3 A path weight matrix, W, of a sequential network is an m x n matrix,

where

1) m is the number of inputs

2) n is the number of outputs

3) Wij = * if no path exists between input i and output j

4Even though the circuits in Figure 2.8 and Figure 2.9 cannot be peripherally retimed, sub-circuits of
these circuits can. This is demonstrated later in Section 2.5.

2.3. THEORETICAL FORMULATION

W =

°1 °2

j1 1
•

>2 0 ~

'3
•

0

Figure 2.10: Path weight matrix: Example

33

4) Wij = ~ if two paths between input i and output j have different weights

5) W^ = 2^ w(e) if all paths between input i and output j have the same weight.
path i{—*oj

Figure 2.10 shows a communcation graph and the corresponding path weight matrix.

In addition, the satisfiability condition on the path weight matrix is defined, which

is directly related to the existence of a peripheral retiming.

Definition 2.3.4 A matrix W is satisfiable if

b) 3cti, 3Pj, 1 < i < m, 1 < j < n, a,-, fij G I such that for each Wij ^ *, W^ = a,- + Pj.

These two conditions have been motivated by the two examples considered above.

Cyclic circuits (assuming there is at least one latch on each path containing a cycle) will

have W^ = ~ for each path containing a cycle. Thus, only acyclic communication graphs

can have a satisfiable path weight matrix. Optimization of sequential circuits with a cyclic

structure is described in Section 2.5.

The following two lemmas are used to demonstrate the relationship between a

satisfiable path weight matrix and the existence of a peripheral retiming.

34 CHAPTER 2. BASIC IDEAS

Lemma 2.3.2 Let W be a satisfiable path weight matrix for a communication graph G.

Let ct\, a2,..., a;,..., am and P\, Pi,...,Pj-,...,pn be integers that satisfy W'. Let v be a

non-I/O vertex in the communication graph G and let /,(v) = a, - Y^path i,—u w(e)> where
ii is some ith input pin and there is path from this pin to v. Then, fi(v) is independent of

i.

Proof.

Let i\ and iv be two inputs each with a path to vertex v. Then:

fi(v) - cl\ - E w(e)
path »i —+v

f2(v) = a2 - E w(e)
path i-2—»•«

Let v have a path to some output o\ (it must have a path to some output pin). The weight

along the path from v to o\ is

E w(e)
path v—t-oi

The path from i\ to o\ has weight

E ™(e) + E w(e) = ai+Pi (2.1)
path i'i —•« pat/» w—•oi

The path from i2 to 0\ has weight

E w{e)+ E w(c) = a2+A (2.2)

Subtracting Equation 2.1 from Equation 2.2 yields

E w(e) ~ E w(e) = «2 - ai
path 12—•« patf»»i—'U

Rearranging, we obtain

ai - E wW =a2 - E w(e)
path ii—-v path »2—*u

/i(t>) = /2(t>)

2.3. THEORETICAL FORMULATION 35

Lemma 2.3.3 Let W be a satisfiable path weight matrix for a communication graph G. Let

cti, c*2,..., a,-,..., am andp\, /325 •••»/3j,... ,Pn be integers that satisfy it. The following lag

function, Lp(v), results in a peripheral retiming:

a) Lp(v) —a,- — 2J w(e) for each internal vertex
path ii—t-u •

b) Lp(v) = 0 for each I/O pin

where a,- is the a associated with the input i which has apath to vertex v, and E w(e)
path i{—v

is the weight of any path from input i to v.

Proof.

A peripheral retiming requires wr(e) to be 0 for each internal edge e. Each edge weight in

the retimed circuit is:

wr(eUv) = w(euv) + L(v) - L(u)

where w(euv) is the weight of the edge from u to v. L(u) can be expressed in terms of any

a, such that there is a path from the ith input to vertex u. Any such i suffices because L(u)

is independent of i by Lemma 2.3.2.

L(u) = a,- - E w(e)
path ii—u

If a path exists from input i to vertex w, then there is a path from input i to vertex u, and

L(v) can be expressed in terms of input i:

L{v) = Qi - E w(e)
path i{—v

Hence,

Wr(e«„) = w(euv) +ai- E w(e) - Ia,-- E w(e)
path ii—*v \ path !,•—•«

= vj{euv) - w(ettv) = 0

For an input edge, vertex u is an input pin, so L{u) = 0. In addition, each input edge has

the property w(euv) = E w(e), yielding
path i{—*v

«v(e««,) = w{euo) + c*i- Yl w(e)
path ii—-v

wr{eUu) = ««

36 CHAPTER 2. BASIC IDEAS

Similarly, for the output edges of the network, v is an output pin, so L(v) = 0. Thus:

«?r(euu) = w{euv) + L(v) - L(u)

= w(tuv) - Ia. - E w(e)
\ path !*,•—•«

For each output edge e between vertex u and I/O pin v,

E w(c) = a; +ft - w(eu„)

so the weight of the edge in the retimed circuit can be expressed as follows:

wr(euv) = w{euv) - [at - (a,- + Pj - w(euv))]

wr{eUv) - Pj

Thus, the specified lag function results in the desired edge weights for the internal

and peripheral edges that are required by the peripheral retiming. •

Theorem 2.3.2 A sequential network has a peripheral retiming ifand only if its path weight

matrix is satisfiable.

Proof.

If part:

Follows directly from Lemma 2.3.3.

Only if part:

It suffices to show that a circuit with a peripheral retiming has a satisfiable path

weight matrix. A circuit with a peripheral retiming has an integral (possibly negative) num

ber of latches, a,-, at the ith input and an integral (possibly negative) number of latches,

Pj, at the jth output, and no latches on any of the internal edges. Regardless of the path

chosen, the number oflatches between the Ith input and the jth output is a,- + pj (ifa path

exists) in the retimed circuit. By Lemma 2.3.1 this is the U',j)th entry of the path weight

matrix for the original circuit. Thus the path weight matrix is satisfied by these cv's and

/*'s. •

2.3. THEORETICAL FORMULATION 37

Note the significance of this result: it gives a complete characterization of the

class of sequential circuits for which all the latches can be pushed to the periphery, i.e., it

specifies the necessary as well as the sufficient conditions on the circuit topology.

A peripheral retiming involves finding a set of a's and /3's that satisfy the path

weight matrix. These a's and /3's specify the peripheral retiming. In the retimed circuit

there are a,- latches at the ith input pin and pj latches at the jth output pin. A matrix

that is satisfiable has no ~ entries, and has at least one set of a^s and ft's such that

a, + Pj = W^

For the communication graph in Figure 2.7, the path weight matrix is as follows:

f €

b 0 1

a 0 1

c * 1

d * 0

and can be satisfied by choosing, for example, «{, = 0, aa = 0, ac = 0, aj = —1, Pj = 0,

Pe = 1, resulting in the circuit shown on the right in that figure.

The path weight matrix for the circuit in Figure 2.8, which had no peripheral

retiming, is as follows:

c

a 1

b ~

The ~ in the second row rules out the possibility of a peripheral retiming. For the circuit

in Figure 2.9, the path weight matrix is as follows:

c d

a 1 0

6 0 1

It is easily checked that no a,-, pj exist by applying the conditions necessary to satisfy the

matrix. This yields

a1+pl = l (2.3)

a1+p2 = 0 (2.4)

a2 + pr = 0 (2.5)

38 CHAPTER 2. BASIC IDEAS

a2 + P2 = l (2.6)

Subtracting Equation 2.3 from Equation 2.4:

ft-A = -l

Subtracting Equation 2.5 from Equation 2.6 yields

This contradiction implies that the path weight matrix is not satisfiable.

2.3.4 Computing the Path Weight Matrix

It is now shown how the path weight matrix, W, is computed for a given com

munication graph. Each column of the path weight matrix contains information about the

number of latches between that output (corresponding to that column) and each of the

inputs. Thus, the column is a path weight vector for that output. The notion of a path

weight vector, V, can be extended to any vertex in the communication graph. V captures

information about the number of latches between that vertex and each of the inputs. As

with the outputs,

1. a * entry in the vector indicates that there is no path between the input corresponding

to that entry and this vertex.

2. a ~ entry in the vector indicates that there are differing number of latches along

different paths to the input corresponding to that entry.

With this a recursive procedure for computing W is now outlined. W is computed by

computing V for each of the outputs. For a vertex v in the graph, V(v) is computed by

first computing V{u) for each u such that the edge («, v) exists in the graph and then

composing these as described in Figure 2.11. The recursion stops at the inputs of the

graph. For input i, V has a 0 in the ith position and a * in all the other positions. The

pseudo-code for this algorithm is given in Figure 2.11. Some clarification is needed for

the operators "+" and "&" used in procedure compute.V. "+" is a binary operator whose

first argument is a path weight vector and the second is an integer. The result is a path

weight vector. The effect of "+" is to add on the additional number of latches along that

edge to the previously computed path weight vectorfor the source vertex of the edge. Each

2.3. THEORETICAL FORMULATION 39

/* inputs: communication graph, graph
outputs: path weight matrix, W

*/

compute_path_weight.matrix(graph){

/* compute V for each output and concatenate */
foreach_output(graph){

compute_V(output);

/* W is just the concatenation of these V's */
concatenate(W, V(output));

}

return W;

}

/* inputs: vertex, v
outputs: path weight vector, V(v)

*/

compute_V(v){

/* termination condition */

if(v is input){

/* for ith input vertex return vector with 0
at ith position and * at all others */

return input_V(v);

}

/* V initialized to vector with all *'s */

initialize(V(v));

/* recursive computation */
foreach_edge(e(u,v)){

compute_V(u);

V(v) = V(v) & (V(u) + w(e(u,v)));

}

return V(v);

Figure 2.11: Computing the Path Weight Matrix

40

k1

k2 &

k1 +k2 k2

(a)

CHAPTER 2. BASIC IDEAS

k2

(b)

k1

k1

if(k1=k2)
then k1

else-

Figure 2.12: Operators "+" and "&"

entry of this is computed according to the rules given in Figure 2.12(a). Here fcl and k2 are

integers. k2 is the second argument of the "+" operator. "&" composes the path weight

vectors produced after the "+" operation for all incoming edges. "&" operates on each

individual entry according to the rules specified in Figure 2.12(b). The aim is to obtain

the path weight vector for this vertex from the path weight vector of the source vertices

for each incoming edge. The execution of this algorithm has been shown in Figure 2.13 for

the graph in Figure 2.10. The dotted boxes show the computation needed to determine the

path weight vectors for vertices v\ and u2.

The algorithm in Figure 2.11 has complexity 0{e • m) where e is the number of

edges in the graph and m is the number of inputs. Each edge in the graph is visited exactly

once and "+" and "&" are applied exactly once for each edge. "+" and "&" have complexity

O(m) since they need to examine each entry of an m-entry vector. Thus compute_V has

complexity 0{e • m). Of course, compute_V(v) is executed only once for each vertex and

the result cached for any subsequent calls. The cache retrieval is assumed to be constant

time. This has not been explicitly stated in the algorithm. Note that the algorithm is

symmetric in terms of the inputs and outputs. The algorithm is described in terms of the

path weight vectors for the outputs which captures information about the number of latches

along paths from each of the m inputs. Alternatively, it can be described in terms of the

2.3. THEORETICAL FORMULATION

[1 0 *]

([0**] + 1)&[*0*]

| = [1 **] &[* 0 *]

j =1101

[1 0 1 (V1

r - o]

([#0*] + 1)&[*00]

= [* 1 *] & r o o]

j =r~o] j

r o o]

[0 • *] [* 0 *] [* * 0]

Figure 2.13: Computing the Path Weight Matrix: Example

41

42 CHAPTER 2. BASIC IDEAS

path weight vectors for the inputs of the graph (these correspond to the rows of the path

weight matrix). Their computation proceeds recursively forward from the inputs. In this

case the complexity of the algorithm is 0(e • n), where n is the number of outputs. Thus

the algorithm can be modified to select the direction of recursion based on the number of

inputs and outputs resulting in a complexity of 0(e •min(m, n)).

2.3.5 Solving the Path Weight Matrix

Once the path weight matrix, W, has been computed it needs to be solved to

find a satisfying assignment of a's and /?'s (or determine that none exists). If W has any

~ entries then it obviously is not satisfiable. For the rest of this section it is assumed

that W has no ~ entries. Note that W is either unsatisfiable or has an infinite number of

solutions. Given a particular solution, another valid solution can be obtained by adding an

integer j to the a's and subtracting j from the /3's. Any solution can be used to obtain a

peripheral retiming. For simplicity, a\ = 0 is selected. This choice forces Pi = Wu, which

in turn forces a,- = Wu —p\. Each entry in the matrix is then checked to ensure that

oti + Pj = W^; if a violation occurs, the matrix is not satisfiable and no peripheral retiming

exists for the circuit. The pseudo-code for this algorithm is given in Figure 2.14. The

complexity of solve_pwm(W) is 0(k), where k is the number of integral (non- *) entries in

W, since the consistency check needs to examine each integral entry in the matrix. The

arbitrary selection a\ = 0 may not be the only arbitrary assignment necessary to compute a

complete set of a's and /?'s. The circuit may have sub-circuits which are disjoint, leading to

a corresponding disjoint matrix with many * entries. In this case, an arbitrary assignment

to an a or a p must be made for each disjoint submatrix. The algorithm in Figure 2.14

assumes only one connected component in the graph. It needs to be applied repeatedly

to each connected component in the graph. Since the complexity of finding the connected

components is 0(m + n) the overall complexity is 0{max(k, m + n)).

2.3.6 Legal Resynthesis Operations

Permitting negative latches on the peripheral edges is a legitimate operation as

long as the resynthesized circuit has a legal retiming. This leads to the following question:

Can we guarantee that the resynthesized circuit always has a legal retiming?

2.3. THEORETICAL FORMULATION 43

/* inputs: path weight matrix, W
outputs: status, solution vectors a and ft

*/

solve_pwm(W){

/* initialize a and P vectors */

a = 0 = 0;

o;i = 0;

/* compute P's */
for j from 1 to n

Pi = w(i.j);

/* compute a's */
for i from 2 to n

en = M(i,l) - Pi;

/* check consistency of solution */
for i from 2 to n

for j from 2 to n

if(W(i,j) != a, + Pj)
return("no solution exists", a, P);

return("valid solution exists", or, p);

Figure 2.14: Solving the Path Weight Matrix

44 CHAPTER 2. BASIC IDEAS

To examine this further we need to define a synchronous communication graph5.

Definition 2.3.5 A synchronous communication graph is one in which each path between

an input pin and an output pin has a non-negative path weight.

The followinglemma states how a synchronous communication graph can be legally retimed.

Lemma 2.3.4 The following lag function results in a legal retiming in a synchronous com

munication graph:

a) Li(v) = sp(v) for each internal vertex. sp(v) is the weight of the shortest path to the

outputs, i.e. the path with the least weight between vertex v and an output pin.

b) Li(v) = 0 for each I/O pin

Proof.

The edge weight in a retimed circuit is given by

v>r(eUv) = w(euv) + L(v) - L{u)

where edge euv is from vertex u to vertex v and L is the lag function.

Consider an internal edge and the lag function given in the statement of the lemma.

wr(euv) = w(euv) + sp(v) - sp(u)

For wr(euv) to be non-negative, w(euv) + sp(v) - sp(u) > 0 or sp(u) < w(euv) + sp{v).

This is obviously true since the weight of the shortest path from u to an output pin cannot

be more than w(euv) + sp(v), or the shortest path would be the edge (u,v) followed by

the shortest path from v to an output pin. Thus this retiming results in all internal edges

having non-negative weights.

Now consider an output edge. For an output edge, Li(v) = 0.

Wr(euv) = w{euv) + Li(v) - Li(u) = w{euv) + 0 - sp{u)

Now, w{eut}) - sj)(u) > 0 since sp{u) < w{euv). Thus, ivr{euv) > 0.

Finally, consider an input edge. For an input edge, Li(u) = 0. Thus.

Wr(eUv) = w{euv) + Li(v) - 0 = w(euo) + sp{v)

lThis is related to the definition of a synchronous circuit presented in [44].

2.3. THEORETICAL FORMULATION 45

Since each input pin has exactly one out-edge, w(euv) + sp(v) is the shortest path between

the input pin u and the outputs. We know that all path weights between an input pin and

an output pin are non-negative. Thus, w(euv) + sp(v) is non-negative and ^(e^) > 0 for

an input edge.

Thus, the specified retiming is legal since all resulting edge weights are non-

negative. •

This result is used to prove the following theorem which precisely states the conditions

under which a legal retiming exists.

Theorem 2.3.3 A communication graph has a legal retiming if and only if it is syn

chronous.

Proof.

If part:

Follows directly from Lemma 2.3.4.

Only if part:

If the resulting retiming is legal, then each edge weight in the retimed graph is

non-negative. Thus, the path weight between an input pin and an output pin must be

non-negative. By Lemma 2.3.1, retiming cannot change the path weight between an input

pin and an output pin. Thus, the path weight between an input pin and an output pin

must have been non-negative before the retiming. Therefore, the communication graph was

(and is) synchronous. •
0

Note that since the initial communication graph has no negative edges (it rep

resents a real circuit) it is synchronous. Peripheral retiming preserves the synchronous

property since retiming does not change the path weight between an input and an output

pin. However, resynthesis can change the communication graph and hence it may destroy

the synchronous property.

Let us see how this can happen. Let G\ be the communication graph before

resynthesis and G2 be the graph after resynthesis. If there was a path between input i and

output j in Gi and there is a path between them in C?2, then the path weight for this path

in C?2 is a, + pj. This is the same as the path weight W^ in G\. Since G\ is synchronous,

this path weight is non-negative. Now consider the case in which no path existed in G\

46 CHAPTER 2. BASIC IDEAS

between input i and output j and resynthesis creates a path. The path weight for this path

in G2 is cti + pj. Since a,- and pj may be negative and G\ did not force a non-negativity

constraint oh a,- + Pj (since no path existed between input i and output j), it is possible

that a, + pj may be negative, thus destroying the synchronous property. Note that output

j does not actually depend on input i; however, resynthesis created a pseudo-dependency

between the two.

An example is shown in Figure 2.15(a). This circuit has a peripheral retiming

shown in Figure 2.15(b). Resynthesis discovers that the three-input or gate </i, can be

replaced by a two-input or gate g2 (Figure 2.15(c)). The communication graph for this

circuit is not synchronous since there exists a path of negative weight (-1) between input a

and output outl. By Theorem 2.3.3, this circuit has no legal retiming. Let us see what

went wrong in terms of the logical functionality of the circuit. The circuit can be viewed as

a two-stage pipeline with the latches separating the two stages, a is an input to the second

stage of the pipeline and outl an output of the first stage. Combinational resynthesis makes

a first stage output depend on a second stage input. As a result no position of latches can

be found in the circuit that will retain the original functional behavior.

Thus resynthesis must ensure that it does not introduce a pseudo-dependency with

a negative path weight; this is the only condition that the resynthesis must satisfy. There

are two possible ways of dealing with this situation. We can check each resynthesis operation

to ensure that it does not lead to such a topology. This method has the limitation that

we need introduce these checks as part of the combinational resynthesis procedure, a move

that will not permit us to use existing combinational optimization programs unaltered.

Alternatively, a checkpointing approach can be adopted, where at various points in the

resynthesis procedure we check that the current graph is synchronous. If not, we revert

to the last synchronous graph and reject the resynthesis steps that follow. The checking

involves just computing the path weight matrix, which is a fast (0(e-min{m, n))) operation.

If the resynthesis techniques used are unlikely to destroy the synchronous property then the

second method is preferable.

2.4 Peripherally Retimable Circuits: General Topology

Theorem 2.3.2 states the necessary and sufficient conditions under which a circuit

has a peripheral retiming. However,it gives no feel for the general topology of these circuits.

2.4. PERIPHERALLY RETIMABLE CIRCUITS: GENERAL TOPOLOGY 47

outl

o—3>:=D
=o4
;o4fRJ

out3

out2

(a)

[?S>
out3

out2

(b)

[£>- outl

r=D out3

out2

(c)

Figure 2.15: Introducing Pseudo-dependencies with Negative Path Weight

48 CHAPTER 2. BASIC IDEAS

(n-1)

Pipelined Circuit Peripherally Retimed Circuit

(a) (b)

Figure 2.16: Pipelined Circuits and their Retiming

In order to better understand them we would like to characterize them in terms of their

general topology.

Figure 2.16(a) shows the general topology of circuits that permit a peripheral

retiming. A peripherally-retimed circuit is shown in Figure 2.16(b). This has been obtained

by moving the latches forward through the circuit, borrowing latches at the inputs when

required. Circuits satisfying this topology are called balanced or pipelined circuits. Note

that inputs and outputs are permitted to and from each stage of the pipeline. This is more

general than simple pipelines, where data enters the first stage and the result leaves the last

stage. Of course any of the input or output vectors J, or Oj may be empty.

It is now shown that this is exactly the topology corresponding to circuits that

2.5. OPTIMIZING SEQUENTIAL CIRCUITS 49

can be peripherally-retimed. Let C be a circuit that can be peripherally-retimed and Cr be

the peripherally-retimed circuit. We need to show the following:

1. In Cr, a j is non-positive for all i and Pj is non-negative for each j.

2. There is no path from input i to output j such that a,- + Pj < 0.

Let a, latches be at input i and Pj latches be at output j in Cr. This can be modified to

obtain another solution as follows. Let amax be the value of the largest a,-. Subtract amax

from each a, and add it to each pj. The resulting values of a's and /Ts also satisfy the

path weight matrix. As in Figure 2.16(b), Cr has non-positive a's and non-negative p's.

To see that the /?'s must be non-negative, assume that this were not true, i.e. some pj were

negative. Let i be an input from which there is a path to output j. Then the path weight in

Cr from i to j must be negative since a j is non-positive. This cannot happen since the initial

graph, and hence the retimed graph, must be synchronous. Thus, all /?'s are non-negative.

Another consequence of the initial graph being synchronous is that there cannot be a path

from input i to output j such that ai+Pj < 0 in the retimed circuit. Thus, Cr satisfies both

the conditions listed above and its topology is precisely that of Figure 2.16(b). Therefore

C must have the topology of Figure 2.16(a).

The circuit in Figure 2.16(a) naturally suggests that the latches are pipeline latches

and that there is an underlying combinational logic block. Peripheral retiming exposes this

by moving the latches to the periphery. It may seem that the combinational logic can

be exposed by just ignoring the latches (replacing them by wires). This certainly is true.

However, once this circuit has been resynthesized, the latches need to be placed back in

the circuit. This needs to be done while guaranteeing that each input and output is in

the correct stage of the pipeline. Peripheral retiming handles this elegantly. The latches

at the periphery are place holders for this information. When the circuit is retimed after

resynthesis, retiming ensures that each input and output lies in the correct stage in the

pipeline. The significance of negative latches is reiterated; without them it would not be

possible to handle inputs and outputs from each stage.

2.5 Optimizing Sequential Circuits

Let us now see how the techniques discussed in Section 2.3 axe applied to general

sequential circuits. For those circuits that can be peripherally retimed, the entire interior

50 CHAPTER 2. BASIC IDEAS

x out y_out

yjn

<a> (b) (c)

Figure 2.17: Acyclic Circuit with no Peripheral Retiming

logic block can be optimized and the latches replaced in the circuit. This section examines

those that cannot be peripherally retimed.

As is illustrated by the circuit in Figure 2.17(a), an acyclic circuit may not have a

satisfiable path weight matrix, and hence no peripheral retiming exists. Here, the two paths

from I to O have differing number of latches along them. In this case, satisfiable sub-

circuits (sub-circuits whose path weight matrices are satisfiable) are identified and created

by breaking the appropriate nets. Each sub-circuit is optimized separately, and the sub-

circuits are then reconnected. Consider the circuit in Figure 2.17(a). Breaking net x yields

the sub-circuit shown in Figure 2.17(b). x.out represents additional outputs of the sub-

circuit, and xJn represents additional inputs. This sub-circuit is satisfiable and the results

of Section 2.3 can be directly applied. Finally, a circuit equivalent to the original circuit

can be obtained by reconnecting the net x. Alternately, net y can be broken and the

corresponding sub-circuit, Figure 2.17(c) similarly optimized. Note that the optimization

of sub-circuits (b) and (c) can lead to very different residts. It is not possible to predict a

2.5. OPTIMIZING SEQUENTIAL CIRCUITS 51

z in

z out

(a) (b)

Figure 2.18: Handling Cyclic Circuits

priori which starting point leads to a better solution.

In the case of sequential circuits that have cycles in them, they first need to be

made acyclic. Therefore, the first step is to choose a set of nets to cut such that all cycles

are broken. However, this may not be sufficient: the resulting acyclic circuit may still have

a path weight matrix that is not satisfiable. For example, breaking net z of the circuit

in Figure 2.18 will break the cycle, but as in Figure 2.17(a), net x or net y still must be

broken to make the path weight matrix satisfiable.

In most cases, there will be several choices of where to make cuts in the logic to

create a satisfiable path weight matrix. While it is not known a priori which cut will yield

the best results after optimization, it is simple enough to provide an interactive environment

to allow the designer to experiment with several different cuts.

Consider an example of a sequential circuit that has a cyclic structure. Fig

ure 2.19(a) shows a gate level schematic of an FSM implementation. This circuit is optimal

with respect to conventional logic minimization of the combinational logic between the

52 CHAPTER 2. BASIC IDEAS

latches: there are no redundant gates or connections. The cycles are broken by cutting the

nets pi and p2. This results in pseudo-inputs plJn and p2Jn and pseudo-outputs pljmt

and p2.out in the circuit. The circuit is then redrawn with the signal flow unidirectional

(Figure 2.19(b)). A peripheral retiming of this circuit is shown in Figure 2.19(c). An opti

mization of the combinational block simplifies the logic part by observing that the output

of the nor gate (signal a;) may be replaced by the constant value 0 without changing the

functionality of the circuit. In testing terms, the output of the x is said to be untestable

for a stuck-at-0 fault.

This simplified circuit is shown in Figure 2.19(d). The circuit is retimed with a

legal retiming (Figure 2.19(e)). The feedback connections are re-created and the final circuit

is shown in Figure 2.19(f). This circuit has three fewer gates than the initial circuit, which

represents a significant gain.

2.6 Computing Equivalent States Across Optimizations

The migration of latches raises concern about the starting state of fsm's in the

minds of circuit designers and testers. The question that needs to be answered here is as

follows:

Given the starting state of the initial circuit, how is the the starting state of the
final circuit, obtained by applying retiming and resynthesis techniques on the
original circuit, determined?

This is contained in the more general problem of determining a state in the final circuit

that is equivalent to a known state in the initial circuit. An application for this arises in

performing verification using simulation. If a set of simulation vectors and their responses

have already been developed for the original circuit, how can these be used for the modified

circuit? In order to use them again, each state in the original circuit needs to be replaced

with the corresponding state in the new circuit. In [76] a procedure is provided that handles

this problem for retimed circuits. Since combinational resynthesis does not migrate any

latches or change the function of the input gate of a latch, there is no change in the state

information in this step. Thus the use of the procedure described in [76] at each retiming

step is sufficient to tackle this problem.

Related to this is the issue of initialization sequences. Typically, the design of

a state machine is accompanied by the determination of an initialization sequence, i.e. a

2.6. COMPUTING EQUIVALENT STATES ACROSS OPTIMIZATIONS 53

p1_in

p2_in =Pl

P

outl

(a)

p1_in

-t-j^yTL p1_out p2_in =£*

HoO- p2_0Ut
p

12 -1

(C)

a
Uoutl

ffOp1- out

^=5~^_ p2_out

C
Oi

p

(e)

Figure 2.19: Example FSM Optimization

-y-j V p1_out

p2_out

(b)

jfjO{]- p1-out
outl

*0"lJ;^Q-[]- p2_out

(d)

\h^y
tl

(f)

54 CHAPTER 2. BASIC IDEAS

sequence of input vectors that is guaranteed to bring the machine to some known state (re

ferred to as the starting state) independent of the state it is currently in. Thus, the machine

may start in any possible state when it is powered on and going through the initialization

sequence brings it to the known starting state. The initializing sequence may be as simple

as a single input on a reset line. In [76] it is described how the initialization sequence

for a retimed circuit is determined given the initialization sequence for the initial circuit.

By an argument similar to that given for determining equivalent states, this procedure is

applicable when both retiming and resynthesis are used.

It should be noted that in general it is possible that we may not be able to find a

state equivalent to the starting state in a retimed circuit. After retiming, some or all of the

latches could possibly have been replaced with wires. The only values that these wires can

have are those that are consistent with the logical structure of the combinational network

(i.e. no value that is part of the satisfiabilitydon't care set [3] for the combinational circuit).

If the initial state is inconsistent with this then it will not be possible to find an equivalent

.state in the retimed circuit. For example consider the circuit in Figure 2.20(a). Consider

the state (Ll = 1, L2 = 0). This circuit is retimed to move the latches to the inputs of this

gate as in Figure 2.20(b). There is no state in this new circuit that is equivalent to (Ll =

1, L2 = 0) in the original circuit. Let us consider the state transition tables for the two

circuits given in Figure 2.20.- A "-" in the PS column represents any possible state in the

machine. State 11 in the final circuit is equivalent to state 11 in the initial circuit. States

00, 10, 01 in the final circuit are all equivalent to state 00 in the initial circuit. However,

there are no states in the final circuit equivalent to either 01 or 10 in the initial circuit.

Note that the way in which the state (Ll = 1, L2 = 0) was reached was never

specified. The only way the machine can enter this state is if there is some implicit reset

circuitry in the latches. However, if all the logic associated with the reset circuitry is made

explicit then this problem can never occur. The only way the latches can load data now is

through the primary inputs of the circuit. As a result, the values in the latches are always

consistent with the combinational circuit. Note that making the reset circuitry explicit

changes the circuit that is to be retimed and thus forces the resulting retimings to be

consistent with this new circuit. This results in less flexibility for the retiming algorithms.

In addition, since latches will migrate during retiming, the reset logic may no longer be

associated with the latches. Thus the reset logic will need to be implemented separately

from the latches.

2.6. COMPUTING EQUIVALENT STATES ACROSS OPTIMIZATIONS

PS

L1

>:

L2

(a)

IN NS

00 00

01 00

10 00

11 11

(a)

_o

State Transition Tables

PS

(b)

IN NS

00 00

01 01

10 10

11 11

(b)

Figure 2.20: The Equivalent State Problem: An Example

55

56 CHAPTER 2. BASIC IDEAS

Making this logic explicit is only needed to guarantee that we will always be able

to find an equivalent state after retiming. Thus the reset logic needs to be put in only if the

algorithm given in [76] determines that no equivalent state exists in the retimed circuit.

Chapter 3

Implications and Applications

There was a large mushroom growing near her, about the same height as herself:
and, when she had looked under it, and on both sides of it, and behind it, it
occurred to her that she might as well look and see what was on the top of it.

- Lewis Carroll, "Alice in Wonderland"

The main theoretical ideas behind retiming and resynthesis were presented in

Chapter 2. In this chapter, the implications and applications of these ideas are considered.

First the implications in logical testing are examined; here it is shown how the sequential

testing problem for pipelined circuits is equivalent to combinational testing. Next, the

relationship with state assignment is explored and the space of equivalent circuits that can

be obtained using retiming and resynthesis examined. Finally, the application of retiming

and resynthesis in performance optimization is presented. Here the equivalence of the

performance optimization problem for pipelined circuits with the corresponding problem

for combinational circuits is demonstrated.

3.1 Relationship to Logic Testing

Section 1.2.1 introduced the need for testing circuits in order to detect manufac

turing defects. These defects are modeled in terms of modifications in the circuit behavior

in the presence of these defects. The most common faidt model is the single stuck-at fault

model where a single signal or a gate output is assumed to be stuck at a constant value.

0 or 1, in the presence of the fault. A test for a faidt in a combinational circuit is an

input vector that distinguishes, at the outputs of the circuit, between a good and a faulty

57

58 CHAPTER 3. IMPLICATIONS AND APPLICATIONS

circuit. For sequential circuits the testing problem is more complicated. A test for a fault

may require the circuit to be in a particular state. Thus, a sequence of input vectors is

needed that will drive the machine to this state. This sequence is known as the justification

sequence. Next, the fault needs to be activated or excited by an excitation vector. However,

this may only propagate the fault effect to the latches. In order to be observed, this needs

to be propagated to the true outputs. This is done be applying another sequence of input

vectors, called the differentiation sequence, that propagate the effect to the true outputs.

Thus, the test for a fault in a sequential circuit has three parts: justification, excitation and

differentiation. The above is a very brief introduction to testing. Details may be found in

standard texts such as [15].

Work in logic optimization has established the relationship between logic opti

mization and logical testing under the stuck-at fault model [26]. If a stuck-at fault cannot

be tested for a particular value, then the signal corresponding to the fault site can be per

manently set to that value without affecting the functional behavior of the circuit. Thus,

that signal or gate can be removed and the circuit simplified. In fact, in the example in

Figure 2.19, the nor gate was. removed because its output was ^intestable for a stuck-at-0

fault in that combinational circuit.

Since combinational optimization techniques are being applied to sequential cir

cuits, the obvious question that this raises in relation to testing is whether combinational

testing techniques can be applied to test faults in sequential circuits. The answer to this is

in the positive for a special class of sequential circuits, viz. pipelined circuits as described

in Section 2.4. This is the class of circuits that permit a peripheral retiming. The remain

der of this section is devoted to proving this assertion, as well as providing a method that

generates tests for the sequential circuit from the combinational tests.

In the following discussion the description of pipelined circuits presented in Fig

ure 2.16(a) is used. Let C be the pipelined circuit, Cr be the peripherally-retimed circuit,

and Cc be the combinational circuit exposed by peripheral retiming. The level of a latch

in C is defined as the index of the combinational logic block that it follows and the set

of latches at level i is denoted as L-x. Corresponding to each latch in C, there is a signal

connection in Cc. The signals corresponding to Z, are denoted as S,\ The following lemma

that aids the proof of the main theorem can now be stated.

Lemma 3.1.1 Let C be in some state and let Vk be the state vector for L^, i.e.. Vk is a

3.1. RELATIONSHIP TO LOGIC TESTING 59

vector of the values stored in the latches in Lk. It is possible to observe the value Vk on Sk

by selecting an appropriate input vector for Cc.

Proof. The proof is by induction on the level of the latches.

Induction Hypothesis: The statement in the lemma is true for all i < k.

Induction Basis: Let i = 1. v\ is the result of some input vector v^ applied in the

previous clock cycle. In Cc, v^ will result in v\ on S\.

Induction Step: Vk is the result of some input vector vjk and previous state Vk-\ of £*.

By the induction hypothesis we know that vjt—i can be observed on S* by applying some

vector (v/l • u/2 •... •vik_l) in Cc. Here "•" indicates a concatenation of the vectors. Thus,

Vk is observed by the input vector (viL • y/2 •... • y/fe). Note that since y/fc does not depend

on the inputs I\,I2,.. .Ik-u vjk does not cause any conflict with the previous assignments

in vh • vh •... y/fc_1. •

With this the main result can now be proven.

Theorem 3.1.1 Let x be a fault in C. x is testable in Cc if and only if it is testable in C.

Proof.

If part:

Let x be testable in C. The justification sequence brings the circuit into the state

needed to test the fault. If a: is in combinational block Cjt+i in the pipeline then only the

state in Lk is of any concern. (If x is in Co then no justification sequence is needed.) Let

the justification sequence result in Vk on Lk. By Lemma 3.1.1 we know that we can observe

Vk on Sk by applying (viy • u/2 •... •vjk) in Cc. Let the effect of the test be observable at

outputs 0/ in C. Let v/_i be the state in i/_i when the fault effect is observed at Oi. Thus,

the excitation vector and the differentiation sequence need to load tf/_i in Li-\. Again using

Lemma 3.1.1 we know that v/_i can be observed on 5/_i by applying u/L • u/2 • ... • •»/,_l.

Note that this vector still results in i;* on Sfc. Finally, all we need to observe the test at 0\

in Cc is V[r Thus, the test for the fault in Cc is the input vector (v^ • u/2 •... • u/,).

Only if part:

The proof here traces the reverse path of the proof for the if part. Let x be testable

in Cc and (v/t •t»/2 •.. .-V[() be a test. Then the sequence v^, y/2,..., vjt tests the fault in C. •

60 CHAPTER 3. IMPLICATIONS AND APPLICATIONS

We would like to use the combinational test in Cc to generate a test for the fault in

C. This is easily accomplished by observing that in Lemma 3.1.1 v/. is applied only in cycle

i. Thus, the test in C is (v^, v/2,..., y/(). Here the "," separating the vectors indicates that

they are applied in sequence.

It should be pointed out that in terms of obtaining test vectors these results are

practically not very significant since pipelined circuits are relatively easy to test. However,

this has an interesting appUcation in testing using the scan approach 1. If we identify

portions of the circuit that are pipelined then we know that the pipeline latches are not a

problem and we can determine tests for this part using combinational techniques. Thus,

the pipeline latches need not be scan latches and no additional testing penalty need be paid

for this. This application has been suggested in an independent analysis in [33].

3.2 Relationship to State Assignment

Figure 2.19 illustrates an example of applying retiming and resynthesis to a given

fsm implementation. Figure 3.1 shows the transition behavior of the initial and final circuits

in terms of their state transition tables. The only difference is in the third row in the table.

Here in the final circuit the transition is to the state 00 instead of 11. While it may seem

that this is a modification of the behavior of the state machine, in fact this is not so. States

00 and 11 are equivalent in the original machine and thus the switch in the transition from

00 to 11 preserved the original behavior of the circuit. Retiming and resynthesis exploited

this equivalence in simplifying the circuit. In this example, retiming did not change the

number or final position of the latches. However, it could potentially change that too. Thus,

the final circuit may correspond to a different but equivalent stg with some other state

assignment. This leads to the following question:

Given a circuit implementation with some state assignment, is it possible, using
only retiming and resynthesis, to obtain any equivalent implementation with
any other state assignment?

The following result partially answers this question.

'In the scan approach, the latches can be observed as true outputs. This reduces sequential testing to
combinational testing., Typically scan latches are more expensive in terms of area and testing time than
normal latches.

3.2. RELATIONSHIP TO STATE ASSIGNMENT 61

rntial Circuit Final Circuit

PS IN NS OUT PS IN NS OUT

00 0- 10 1 00 0- 10 1

00 1- 11 0 00 1- 11 0

01 00 11 0 01 00 00 0

01 10 01 1 01 10 01 1

01 01 10 1 01 01 10 1

01 11 11 0 01 11 11 0

10 01 10 1 10 01 10 1

10 11 11 0 10 11 11 0

10 -0 00 0 10 -0 00 0

11 0- 10 1 11 0- 10 1

11 1- 11 0 11 1- 11 0

Figure 3.1: Impact on Transition Behavior

Theorem 3.2.1 Given a machine implementation Mi corresponding to a state transition

graph G, with a state assignment S\, it is always possible to derive a machine M2 corre

sponding to the same state transition graph G, and a state assignment S2 by applying only

a series of resynthesis and retiming operations on Mi.

Proof.

Given Mi we would like to obtain M2 using only a series of resynthesis and retiming steps.

Figure 3.2(a) shows the schematic for M\. N is the combinational logic that computes the

next state and output functions. Since there is a one-to-one mapping between the states of

Mi and M2, it is possible to construct a circuit C such that given the code for a state of Mi

as input, the output is the code for the corresponding state in M2. Similarly, the inverse cir

cuit C~l can be constructed that takes a state of M2 as input, and outputs the code for the

corresponding state in Mi. Note that C followed by C~l is the identity circuit, i.e., for this

circuit, the output is the same as the input. This construction is shown in Figure 3.2(b).

The inputs to the state latches are resynthesized as C followed by C~l. Now, the state

latches may be moved to between C and C~x by retiming as shown in Figure 3.2(c). This

circuit corresponds to the state assignment 52. Any other circuit corresponding to state

62 CHAPTER 3. IMPLICATIONS AND APPLICATIONS

M1's Code
Ml'sCode

F M1's Code M2's Code
I H M2'sCode

Ml'sCode Ml'sCode

(a) Machine M1 (b) Resynthesize (c) Retime to get M2

Figure 3.2: Obtaining Equivalent FSM Implementations

assignment 52 may be obtained by the resynthesis of the combinational logic. •

Theorem 3.2.1 does not consider the possibility of M2 having an arbitrary STG.

Let us now examine the limitations of retiming and resynthesis when M2 may have an

arbitrary STG, G2, that is equivalent to Gi for M\.

Gi may be modified to obtain G2 through a series of transformations. These

transformations can create states that are equivalent to existing states, merge states that are

equivalent and modify state transitions to go to states equivalent to the original destinations.

Let us consider three such transformations.

2-way split A state Si in Gi is equivalent to two states in G2. This is illustrated in

Figure 3.3. Here $1 in (?i is equivalent to states su and 512 in G2. The transitions

that go to s\ are split between Su and 512. Besides this, G\ and G2 are identical.

2-way merge This is the opposite of a two-way spht, here two equivalent states $u and

Si2 in Gi are merged to a single state $1 in G2. (See Figure 3.3.)

3.2. RELATIONSHIP TO STATE ASSIGNMENT 63

2-way split

=>

2-way merge

G1 G2

Figure 3.3: 2-way split and merge

switch Here a transition in Gi to a state Su is modified to go to an equivalent state 512

in G2. (See Figure 3.4.)

Here the assertion is made that all valid transformations are some sequence or

combination of splits, merges and switches. A formal proof of this assertion is beyond the

scope of this work. The following lemma states the primitive operations that realize all

splits, merges and switches.

Lemma 3.2.1 2-way split and 2-way merge are the primitive transformations. Other trans

formations can be built using a sequence of these.

Proof. A switch can be achieved by first applying a 2-way merge on the states involved

in the switch and then applying a 2-way split to effect the switch. This is illustrated in

Figure 3.5.

Multi-way splits and merges can be accomplished by a sequence of 2-way splits

and merges. •

Thus, the task at hand has been reduced to showing that retiming and resynthesis

can handle 2-way splits and merges. Unfortunately, even this is difficult to handle. A few

64 CHAPTER 3. IMPLICATIONS AND APPLICATIONS

G1 G2

Figure 3.4: Switch

2-way merge 2-way split
i2

s11

sGX»
s12

G1 G2

Figure 3.5: Switch using 2-way merge and split

3.2. RELATIONSHIP TO STATE ASSIGNMENT 65

Figure 3.6: Labelled Cycle of Equivalent States

more definitions are needed in order to examine the restricted class of transformations that

can be handled.

Definition 3.2.1 A labelled cycle of equivalent states in an stg is a directed cycle

such that all state vertices in the cycle are equivalent and all transition predicate vectors on

the edges in the cycle have the same label.

Figure 3.6 is an illustration of this definition. Here the states s u,si2,.. .Sin are all equiva

lent. The input i is the same transition predicate for each edge of the cycle.

Definition 3.2.2 A cycle preserving (cp) transformation does not create or destroy

a labelled cycle of equivalent states.

Figure 3.7 illustrates the non-CP versions of the three transformations described earlier.

The following lemma is the restriction of Lemma 3.2.1 to CP transformations.

Lemma 3.2.2 CP 2-way split and 2-way merge are the primitive CP transformations. Other

CP transformations can be built using a sequence of these.

Proof. Similar to proof for Lemma 3.2.1. •

Finally it can be shown that retiming and resynthesis can handle CP transforma

tions.

66 CHAPTER 3. IMPLICATIONS AND APPLICATIONS

2-way split

0 switch 0

2-way merge 0 0
G1 G2 G1 G2

Figure 3.7: Non-CP Transformations

Theorem 3.2.2 Let Mi be an implementation corresponding to state assignment Si and

STG Gi and M2 be an implementation corresponding to state assignment S2 and STG G2.

IfG2 is obtained from Gi using only cp transformations then M2 can be obtained from Mi

using only a sequence of retiming and resynthesis operations.

Proof. Lemma 3.2.2 permits us to restrict ourselves to CP 2-way splits and merges.

First consider G2 to contain a CP 2-way split of some state si in G\. A transition

to si in Gi corresponds to a transition to either sn or si2 in M2 depending on the primary

input vector. Since the transformations are CP, the primary input vector and state si

uniquely determine which of Su or $i2 is the destination state in M2. This is not possible

for a non-CP 2-way split. Thus, the one-to-many mapping between the codes for Mi and

the codes for M2 is actually a one-to-one mapping between the Mi codes plus the primary

inputs and M2 codes. This is accomplished through circuit C in Figure 3.8(b). Circuit C-1

performs the inverse mapping which is a many-to-one mapping between M2 codes and Mi

codes and does not need I as input. Finally, Figure 3.8(c) shows how this circuit may be

retimed resulting in a circuit that corresponds to G2. As in Theorem 3.2.1. this may be

further resynthesized to any circuit M2 that corresponds to state assignment 52-

3.3. PERFORMANCE OPTIMIZATION 67

Ml'sCode
•*» Ml'sCode

P Ml'sCode M2's Code
I H M2'sCode

Ml'sCode Ml'sCode

(a) Machine M1 (b) Resynthesize (c) Retime to get M2

Figure 3.8: Obtaining Equivalent FSM Implementations

Since each step in retiming and resynthesis is reversible, we can obtain Mi given

M2 using only retiming and resynthesis. But, Mi is obtained from M2 by applying a 2-way

merge. Thus 2-way merges can be handled using retiming and resynthesis. •

This result shows that using retiming and resynthesis does not restrict you to

a small part of the solution space, but rather enables a very large space of functionally

equivalent circuits to be explored. However, it does not give any insight into how this space

may be searched for circuits that are optimal with respect to any given criterion. Also, it

should be noted that the circuits here are completely specified, i.e., there are no don't care

conditions associated with the circuits. Additional advantage may be gained by exploiting

these don't cares.

3.3 Performance Optimization

The three step procedure of peripheral retiming, combinational resynthesis and a

final legal retiming, to exploit combinational optimization techniques beyond latch bound-

68 CHAPTER 3. IMPLICATIONS AND APPLICATIONS

aries was described in Chapter 2. In all the examples presented there, combinational opti

mization was being used for area reduction. However, the retiming and resynthesis frame

work does not specify the nature of the resynthesis permitted; any combinational resynthesis

is valid. This section examines the use of performance-directed resynthesis in this frame

work. The crucial element in using the dual techniques of retiming and resynthesis is the

decision as to when, where, and in what order to apply these operations. Some preliminary

work in combining them has been done in [4], but the approach there is ad-hoc with no

optimality guarantees. Here a rigorous solution to this problem is considered for a special

yet important class of circuits, viz. pipelined circuits. (The work described in this section

was first presented in [50].) As seen previously, these are precisely the class of circuits which

permit a peripheral retiming. The problem of speeding up a pipelined circuit is transformed

into one of resynthesizing a combinational logic circuit with appropriate timing constraints.

This is achieved by first using peripheral retiming. The resulting maximal combinational

sub-circuit can be subject to any delay-reducing transformation in an effort to meet the

timing constraints specified for it. The timing constraints axe based on the cycle time that

the designer desires. It is.shown that if the timing constraints on the maximal combinational

sub-network are met then it is always possible to retime the resynthesized circuit to meet

the desired cycle time. It is also shown that any circuit that meets the cycle-time constraint

can be obtained by peripheral retiming, appropriate resynthesis and then retiming.

3.3.1 Two Problems in Performance Optimization

Pipelined Performance Optimization

Pipelined circuits were introduced in Section 2.4. Recall that a pipelined circuit

of n stages consists of n combinational circuits (Ci,...,Cn) with stage i communicating

with stage i + 1 through some signals that are latched. (See Figure 3.9(a).) Each Ci may

have inputs I, and outputs Ot besides the latched inputs and outputs used to communicate

with adjacent pipeline stages. This description of a pipeline is general since it does not

restrict all inputs to come in at the first stage and outputs to leave the last stage. Allowing

inputs to any stage (rather than just the first stage) in the pipeline provides the following

additional flexibility:

1. The pipeline can operate on multiple streams of data which may arrive separated from

each other by an arbitrary number of clock cycles.

3.3. PERFORMANCE OPTIMIZATION 69

2. The pipeline can consider control signals that arrive in cycles subsequent to the initial

data and perform the remaining computation based on these.

Similarly allowing outputs from any stage permits the following:

1. Multiple computations may be performed with the different results being available

during different clock periods.

2. Error conditions or any status signals can be provided as outputs in the cycle they

are computed.

This description of pipelined circuits is general and includes most circuits that are considered

to be pipelined by digital circuit designers.

The performance optimization problem of pipelined circuits is to maximize the

clocking rate or equivalently minimize the cycle time of the circuit. This determines the

throughput of the circuit. Sometimes the cycle time, c, that needs to be attained is specified

as a constraint, based on the requirements of the system of which this circuit is a part. In

that case, the optimization problem is to meet the specified cycle time constraint. In general,

not all inputs are available at the clock edge; for example, they may arrive later because of

communication delays. Similarly some of the outputs may be required well before the clock

edge, say, in order to satisfy setup time requirements. Thus, with each input signal an arrival

time, a, is associated which is the time after the clock edge that the signal is available and

with each output signal a required time, r, is associated which is the time before the clock

edge that this signal must be ready. Let A and R be the sets of arrival times and required

times for the inputs and outputs respectively. These capture the timing constraints due to

the environment of this circuit. Thus an instance of the pipelined performance optimization

problem Vp, is specified as Vp = {C, c, A, R}, where C is the circuit and c the desired cycle

time constraint. Note that this problem statement assumes that c is provided as part of the

problem. If the problem is to minimize c, this can be done by solving a number of problem

instances Vp, each with a known c, by performing a binary search for the least feasible c.

Combinational Speedup

The combinational speedup problem has been well studied in recent years. Here a

given combinational circuit, C, is to be resynthesized so that it meets its timing constraints.

The timing constraints are specified as required times, r, on the outputs of the combinational

70 CHAPTER 3. IMPLICATIONS AND APPLICATIONS

Pipelined Circuit Peripherally Retimed Circuit

(a) (b)

Figure 3.9: Peripheral Retiming of Pipelined Circuits

3.3. PERFORMANCE OPTIMIZATION 71

circuit. In this case these times are absolute and not with reference to any clock edge. As

before, the inputs may be arbitrarily delayed and an absolute arrival time a is associated

with each input. Thus, an instance of this problem, Vc, is specified as Vc = {C, A, R}.

Problem Transformation

Given an instance of the pipelined performance optimization problem, Vp it is

transformed to an instance of the combinational speedup problem Vc- Subsequently it is

demonstrated how a solution of Vc may be retimed to obtain a solution of Vp.

As described in Section 2.4 we obtain a peripheral retiming for the pipelined circuit

by retiming block C, by —(i —1). (See Figure 3.9(b).) This is not unique, several possible

peripheral retimings exist. In terms of the circuit this implies that we sweep all the latches

forward through the circuit, borrowing latches at the inputs as needed. This results in the

peripherally-retimed circuit shown in the Figure 3.9(b). As before, peripheral retiming has

exposed a larger combinational circuit, Cc, which is the cascade of C\t C2,...,Cn. This is

the combinational circuit that we will use for the transformed problem, Vc- In order to

complete the definition of Vc we need to specify A and R. We determine them by using

c, A and R from Vp as follows. For an input to stage i of C with arrival time am V p the

arrival time in Vc is a + (i —l)c. For an output of stage i in C with required time r in Vp,

the required time in Vc is ic —r. Note that it is easy to determine which stage an input or

an output belongs to by looking at the number of latches in the peripherally-retimed circuit

at that input or output. The intuition behind this choice of modifications of arrival and

required times is that it captures the fact that the input arrives only after i —1 cycles and

the output is required only before the ith cycle. In the next section we will see how this

choice of A and R results in an interesting relationship between problems Vp and Vc.

3.3.2 Main Results

We would like to obtain a solution of Vp from a solution of Vc- It is not immedi

ately obvious that this is possible, in fact it seems almost unlikely to happen as the analysis

below shows. However, we need a few simple definitions first.

Definition 3.3.1 A path in a circuit is an alternating sequence of consecutive connections

(possibly latched) and gates.

As in [43, 44] a propagation delay, dg, is associated with each gate in the circuit.

72 CHAPTER 3. IMPLICATIONS AND APPLICATIONS

Definition 3.3.2 A segment of a path is a path from an input or a latch to an output or

a latch.

Definition 3.3.3 The delay of a segment, s, is the sum of the gate delays along the segment

and is denoted by Ds.

Definition 3.3.4 The lumped delay of a segment s, denoted by \s, is the sum of the com

binational logic delays associated with the gates and the times associated with late arrival

of an input or early requirement of an output. Thus, \s = a + Ds + r.

Of course, a or r are equal to 0 if the segment has no input or output respectively.

Definition 3.3.5 A latch is said to be forward blocked if it cannot be legally moved

forward across its output gate, g, without violating a cycle time constraint.

This may happen for two reasons:

1. There exists a path from an input to g which does not have any latch on it. Thus,

it is never possible to have a latch at each input of g which is needed for the legal

forward motion of the latch. (See Figure 3.10(a).)

2. There exists a path from a critical latch to g. Informally a latch is critical if it cannot

be moved forward without violating the cycle time constraint. (The formal definition

of a critical latch is deferred till later in this section.) Thus it is not possible to move

a latch from each input of g to its output. (See Figure 3.10(b)).

Definition 3.3.6 A latch is said to be backward blocked if it-cannot be legally moved

backwards through a gate g.

For this to happen, there must be a path from g to an output which does not have a latch

on it. Thus, it is never possible to have a latch at each output of g, which is needed to move

this latch backwards. (See Figure 3.10(c).)

Consider a path, p, from an input of stage / to an output of stage / + j in Vc-

Assume that the solution to Vc just meets the delay constraints for this path, i.e. the path

is critical for Vc- Therefore the combinational logic delay, delay{p), along this critical path

is given by:

delay(p) = ({i + j)c-r)- (a + (* - l)c) - c

3.3. PERFORMANCE OPTIMIZATION

(a) (b)

critical
latch

Figure 3.10: Blocked Latch Motion

output \

where e is an arbitrarily small positive number. Simplifying this results in:

delay(p) = (j + l)c —r —a —€

73

(c)

(3.1)

Now suppose that we do nnd a final retiming that meets the cycle time constraint c along

this path. Since retiming does not change the number of latches between any input and

output, there will be j latches between the input-output pair in consideration. Thus, in the

retimed circuit this path has j + 1 segments. Then for each segment, Xk < c. Summing

over k for this path, we see that:

X><(j +l)c

which gives

or equivalently

Jt=0

a+ J2Dk + r <(j + l)c

J2Dk<(j + l)c-r-a
k=0

But]£fc=o Dk is delay(p) and we know from Equation 3.1 that this is equal to (j + l)c —r —

a —€. Thus we cannot add any delay to any segment without violating the cycle constraint.

74 CHAPTER 3. IMPLICATIONS AND APPLICATIONS

Therefore each path segment along this path is critical in as much as moving any latch

would violate the cycle constraint. It is possible that the solution toVc may actually result

in the constraints along all paths in Cc to be just met. In that case, for each path there is

only one available position of latches that will meet the cycle time constraint. Since different

paths overlap, it is possible that the positions of latches dictated by each path may be in

conflict.

To make matters worse, latches cannot be arbitrarily placed along a path as as

sumed by the above analysis. The latch motion may be blocked in either the forward or

backward direction. This makes it even less probable that the latches can be positioned so

that for all the paths they he at the single position that meets the cycle time constraint

and simultaneously avoid being blocked by the positions of inputs and outputs.

Since there are only discrete positions along the length of the path where a latch

may be placed, viz. before and after gates, the granularity of control that we have over

the latch positions is only the largest possible gate delay 6. To handle this, the following

relaxed problem is defined: Vp' = { C, c + 6, A, R} derived from Vp. A solution to Vp'

exceeds the cycle time constraint for Vp by no more than 6.

To show that any solution of Vc can be retimed to get a solution of V-p' a few

more concepts must be considered.

Definition 3.3.7 A segment is said to be critical if it just meets the performance con

straints for that segment, i.e. the latch at the end of the segment cannot be moved forward

across a gate g without violating the constraints for Vp'. Thus, c < Xk < c + S and

Xk + dg > c + 6 for a critical segment.

Definition 3.3.8 A segment is said to beviolating if it does not meet the timing require

ments for V-p'. Thus, Xk> c + 6 for a violating segment

Definition 3.3.9 A path is said to be critical if all its segments are critical.

Definition 3.3.10 A latch is said to be critical if it terminates a critical segment.

Definition 3.3.11 A path is said to be violating if the last segment is violating and all the

other segments are critical.

We label each input of the ciraiit based on the number of latches at that input in the

peripherally-retimed circuit in Figure 3.9 (b). If an input has -(•*) latches, then its label

3.3. PERFORMANCE OPTIMIZATION 75

is i. Each latch in a pipelined circuit can be labelled by a unique integer that specifies its

level in the circuit. This labelling obeys the following two rules:

1. If there is a purely combinational path (with no latches) from an input with label i

to this latch, then the label on the latch must be i.

2. If there is a path with no latches from a latch with label i —1 to this latch, then its

label must be i.

For a pipelined circuit, a unique labelling exists for the latches which satisfies both rules.

The following basic lemma is critical to prove the equivalence of Vp and Vc-

Lemma 3.3.1 Let k be any integer not exceeding the largest label on any latch inC. Then,

it is possible to legally retime C to Cr, such that in Cr:

1. There exists a violating path from an input to an output that passes through latches

labelled only < k, OR

2. The following three conditions are satisfied:

(a) No segment starting at a latch or input labelled < k is violating.

(b) Each latch labelled < k is either critical or forward blocked.

(c) Each critical latch terminates a critical path from some input to that latch.

Proof. The proof is by induction on k.

Induction Hypothesis: Assume the statement in the lemma is true for all i < k.

Induction Basis: The statement in the lemma is proven for i = 0.

Let us try and place all latches (using retiming) with label 0 so that the input

segments do not violate the cycle time constraint c+ 8.

Case 1: It is not possible to do so. Then one of the following must be true.

1. There exists a path from an input to an output for which a + D + r > c + 6. This

path is a violating path from an input to an output and thus the first condition in

the lemma is satisfied.

2. There exists a path from an input, /', to a latch, /, for which a + D > c + 8. This latch

must be backward blocked or else we would have moved it backwards to get rid of

this violation. If it is backward blocked then the input gate of this latch must have a

76 CHAPTER 3. IMPLICATIONS AND APPLICATIONS

path to an output, o, with no latch on it. Thus, for the path from i to o, the following

must be true: a + D + r > c + 6. This follows from the fact that r is non-negative and

you need to go through at least the same and possibly additional logic while going

from i to o instead of going from j to /. This input to output path is violating and

the first condition in the lemma is satisfied.

Case 2: It is possible to do so. Then we can move each latch with label 0 forward till

it is either critical or forward blocked. If a latch is critical then it must be so because it

terminates a critical path from some input. Now all three parts in the second condition of

the lemma statement are satisfied.

Induction Step: It is now proven for i = k. As in the base step we can either place all

latches with label k without violating the cycle time constraint c+6, or we cannot. Consider

each of these separately.

Case 1: We cannot. Then by an argument similar to that used in Case 1 of the base case,

there is a segment from either a latch or an input to an output that is violating. In fact,

this violating segment must be from an input or a critical latch. To see why this must be

so, suppose that the violating segment is from a non-critical latch to the output. Since

the non-critical latch was blocked by either a critical latch or an input, the segment from

this critical latch or input to the output is violating. If it is from an input, then the path

from this input to the output is violating satisfying the first condition of the lemma. If it is

from a critical latch, by the induction hypothesis the critical latch terminates a critical path

from an input. This path along with the violating segment starting from this latch forms a

violating path from an input to an output satisfying the first condition in the lemma.

Case 2: We can. Then each latch with label k can be moved forward until it is either

forward blocked or critical while ensuring that no segment is violating. For each critical

latch with label k there must be a critical segment from an input or a critical latch. The

reasoning as to why all critical segments to a latch cannot be from non-critical latches is the

same as that used in Case 1 above. If the critical segment is from an input, then the critical

latch does terminate a critical path from an input. If it is from a critical latch, then by the

induction hypothesis this critical latch terminates a critical path starting at an input. The

concatenation of this critical path with this critical segment gives the required critical path

from an input for the critical latch with label k which satisfies the second condition in the

lemma. •

3.3. PERFORMANCE OPTIMIZATION 77

With this we can now prove the following.

Lemma 3.3.2 If the solution to Vc cannot be retimed to meet cycle time constraint c + 6,

then there must exist a violating path from an input to an output.

Proof. Let k be the maximum label on a latch in any retimed circuit. Using Lemma 3.3.1

with this k, we see that either there is a violating path from an input to an output, in which

case we are done, or all critical latches with label k terminate a critical path starting at

an input. Note that since the cycle time constraint was not met, there must be a violating

segment starting at a latch or input with label k. Actually this violating segment must

be from a critical latch or input with label k by the same argument used in Case 2 of the

induction step in the proof for Lemma 3.3.1. If this is from an input then this segment

forms a violating path from an input to an output. If it is from a critical latch then this

segment appended to the critical path from an input terminating at that latch forms a

violating path from an input to an output. •

Finally it is shown that the existence of a violating path implies that the constraint

for that path in Vc was not satisfied.

Lemma 3.3.3 If there exists a violating path from an input to an output in any retimed

circuit equivalent to C, then the constraint for the corresponding path was not satisfied for

Vc-

Proof. By summing up the delay constraints along the violating path it is seen how the

delay constraint for the corresponding path cannot be met in Vc- Recall that a path is

violating if the last segment is violating and all other segments are critical. Let the violating

path have j + 1 segments. If j = 0, then a + D + r > c+ 6. The constraint on this path in

Vc is that (kc —r) —(a + (k —l)c) > D or equivalently, a + r + D < c {k is the label on

the input.). Thus, this constraint is violated. If j > 0, then the following inequalities are

obtained from the fact that the path is violating.

a + Do > c

Di > c 1 < / < j

r + Dj > c + 6

78 CHAPTER 3. IfrlPLICATIONS AND APPLICATIONS

From these we see that:
j

a+J^Di + r> (j + l)c (3.2)
ib=o

The constraint on the same path in Vc is:

j

((j+ k)c-r)-(a + (k-l)c)> Y,Di
Jfe=0

This can be rewritten as:
- • 3

(j + l)c > a+ J] Di + r
fc=o

which is not met as we can see from Equation 3.2 above. •

Theorem 3.3.1 If Vc has a solution then this can be retimed to give a solution ofVp'.

Proof. Follows from Lemmas 3.3.2 and 3.3.3. •

From Theorem 3.3.1 we see that solving Vc is sufficient in order to obtain a solution

to Vp to within a gate delay. Now it is shown that any solution toVp must be a retiming

of a solution of Vc •

Theorem 3.3.2 If there existsa solution to V-p then this canalways be obtained by retiming

some solution of Vc -

Proof. For any path from an input to an output in the retimed circuit the following

inequality must be satisfied for each segment: A* < c. Summing over all segments:

j

a+ Y, Di1 + T< U+ l)c
Jb=0

The constraint on this path in Vc is exactly this and is therefore satisfied. Since this is

true for all paths, Cc for the solution of Vp is a solution of Vc. The solution of Vp is then

obtained by moving in the peripheral latches by retiming. •

Thus, for the pipelined problem to have a solution (within a gate delay) it is

necessary and sufficient that the combinational problem has a solution. This is significant

since it tells us that the problems are equivalent and therefore we need concentrate only on

the relatively simpler combinational speedup problem.

Chapter 4

Practical Experiences

Let me see: four times five is twelve, and four times six is thirteen, and four
times seven is - oh dear!

- Lewis Carroll, "Alice in Wonderland"

In this chapter the practical aspects of the ideas developed in Chapters 2 and 3

are discussed. Their implementation as well as practical experiences with some circuits are

described. The implementation issues are considered first.

4.1 Implementation Issues

In Chapter 2 it was observed that not all circuits permit peripheral retiming; only

pipelined circuits do. However, the examples shown there illustrate that even if a circuit is

not pipelined, sub-circuits exist that are pipelined and retiming and resynthesis techniques

can be used on these sub-circuits. Given an arbitrary circuit, there are several possible

pipelined sub-circuits. (A trivial example of a pipelined sub-circuit is any single gate in the

circuit. Obviously this is not a very useful sub-circuit.) Ideally we would like to determine

the sequence of pipelined sub-circuits that need to be considered so as to guarantee that all

logical relationships between gates are exploited. This seems to be a very difficult task. In

the absence of this it is desirable to guarantee at least some locally optimum property of

the pipelined sub-circuits being examined. With this in mind two different techniques were

implemented to examine pipelined sub-circuits. These are now individually described.

4.1.1 Growing Pipelined Sub-Circuits from a Seed

79

80 CHAPTER 4. PRACTICAL EXPERIENCES

/* inputs: seed, network
outputs: network

*/

seed_network(seed, network){
/* initialize */

included = pending = <j>\
enqueue(pending, seed);
/* add until nothing is pending */
while(pending !=</>){

node = dequeue(pending);
add_node(node, included, pending);

}
return(network);

}

/* inputs: node, included, pending
outputs: included, pending

*/

add_node(node, included, pending){
/* initialize */

w_list = <j>;
/* consider each fanin */

foreach fanin of node{
w = - weight(edge(fanin, node));
if(fanin € included)!

w_list = w_list U w;

} else if(fanin £ pending){
enqueue(pending, fanin);

}
}
/* consider each fanout */

foreach fanout of node{
w = weight(edge(node, fanout));
if(fanout G included){

w_list = w_list U w;

} else if(fanout g pending){
enqueue(pending, fanout);

}
}
lag = mode(w_list);
retime(node, lag);
included = included U node;

}

Figure 4.1: Growing Pipelined Circuits from a Seed

4.1. IMPLEMENTATION ISSUES 81

The least property that is desirable from a pipelined sub-circuit is that it should

be maximal, i.e. no other gate in the circuit can be added to this sub-circuit and the

sub-circuit still be pipelined. This property is relatively easy to guarantee if a given sub-

circuit is expanded incrementally by adding a node to it along with some of its in-edges and

out-edges as long as it retains the pipelined property. When no node can be added, then

the sub-circuit is maximal. The starting point is some arbitrary seed node which may be

specified by a designer in an interactive environment such as [70].

This is described in algorithm seed-network in Figure 4.1. Here the sub-circuit

is peripherally retimed as it is being constructed, network is the communication graph

representing the circuit1. The set included contains those nodes already included in the

sub-circuit along with all the edges between these nodes, pending is a queue of nodes

waiting to be added to included. To start with, included is empty and seed is added to

the front (enqueued) of pending. The algorithm proceeds by repeatedly taking a node from

the front of pending, and adding it to included till pending is empty.

The addition of node to included is done as follows. Figure 4.2 shows a node,

node, that is to be added next to included. Edge i from included to node has weight wini.

Similarly, edge j from node to included has weight woutj. Consider the following scenario.

Vi wini = -w

Vj woutj = w

Now, if node is retimed by a lag of w, there are no latches on any edge between node and

included. Combinational logic optimization can exploit the logical relationships implied

by all these edges.

In general, the above scenario will not always occur. In that case, it is not possible

to retime node so that all edges between it and included are latch-free. For any retiming

there is at least one edge between included and node that has non-zero edge weight. (See

Figure 4.3.) For combinational logic optimization the input to the latch on the edge is a

primary output of the combinational circuit, and the output of the latch is a primary input

to the combinational circuit. The non-zero edge weight need not be positive. A negative

edge weight coiTesponds to negative latches on the peripheral edges of a combinational

network.

lThe restriction that the communication graph be acyclic was needed in Chapter 2 for describing periph
eral retiming. This is now relaxed, i.e., the communication graphs being considered here may be cyclic.

82 CHAPTER 4. PRACTICAL EXPERIENCES

Figure 4.2: Adding node to included

primary input

primary output (<"***j

Sequential Network Combinational Part

Figure 4.3: Adding an Edge with w ^ 0 to included

4.1. IMPLEMENTATION ISSUES 83

Since latch-free edges permit information to be used by combinational optimization

it is desirable that as many of these edges should be latch-free as possible. For an edge from

included to node to be latch-free after retiming node, the lag for node should be -«;,„,-.

Similarly, for an edge from node to included to be latch-free after retiming node, the lag

for node should be wouti. Thus, the desired lag is the modal element of the following set:

{-w»m, ••. - Wim, u>ou*i,...,iVoutj}-> i-e«> the element that occurs with the most frequency.
seed-network will retime node by this lag, and add it to included. All other

nodes connected to node that are not in included or pending are added to pending.

Thus, the network consisting of nodes in included grows radially out from seed. When

seed-network terminates, all the nodes in the circuit in the same connected component of

the network as seed are in included. This follows from the following two observations.

Each node that is in the same connected component as seed gets added to pending and

each node added to pending gets added to included. Thus, this meets the requirement

that included be maximal. As shown in Figure 4.3, the position of the latches determines

the combinational logic circuit obtained.

A note on the data structures that are used in practice. Since inclusion checks

need to be made on included, it is implemented as a hash table. Inclusion checks are also

made on pending; thus it is implemented as a hash table in addition to being implemented

as a queue. As the name suggests, wJList is implemented as a list.

The algorithm is linear in the size of the network since each node is examined once

and each edge examined twice, once from each end.

Theorem 4.1.1 stated below describes the relationship between any two nodes in

included in terms of information that can be used by a combinational logic optimizer. The

following two lemmas aid its proof.

Lemma 4.1.1 In procedure add_node retiming node by lag results in at least one edge

between node and included to have weight equal to zero.

Proof. This follows from the fact that lag is selected from w_list and each element of

w_list corresponds to a lag that will result in some edge with weight 0 after retiming. •

Lemma 4.1.2 Let x and y be any two nodes in included at any point in the algorithm

seed-network. There is an undirected path of zero weight between x and y.

84 CHAPTER 4. PRACTICAL EXPERIENCES

Proof.

The proof is by induction on the size of included.

Induction Hypothesis: The statement in the lemma is true for n < k nodes in included.

Induction Basis: The lemma statement is true for n = 2 since by Lemma 4.1.1 addition of

the second node to included is accompanied by the addition of a zero-weight edge between

it and the first node.

Induction Step: Let n = k - 1. By the induction hypothesis the lemma statement is

true for any pair of nodes in included. Let x be any node in included and y be the

node being added. By Lemma 4.1.1 there is some node z in included such that there is

a zero-weight edge from y to z after y is retimed by lag. The zero-weight path between x

and z concatenated with the zero-weight edge between z and y forms the zero-weight path

between x and y. •

Theorem 4.1.1 Let x and y be any two nodes in included at any point in the algorithm

seed-network. Then one of the following must be true:

1. There is a directedpath of zero weightfrom x to y.

2. There is a directedpath of zero weight from y to x.

3. There is some node z in included such that there is a directed path of zero weight

from both x and y to z.

4- There is some node z in included such that there is a directed path of zero weight

from z to both x and y.

Proof. The prooffollows from Lemma 4.1.2 and the fact that if an undirected path exists

between x and y then one of the conditions in the theorem statement must be true. •

The significanceof this result is that combinational logicoptimization of included

considers at least some interaction of any pair of nodes in included. This is certainly not

true for the initial circuit.

4.1.2 Clustering Combinational Logic Blocks

There are several decisions that are made by algorithm seed-network. It deter

mines the order in which the nodes not yet in included are added, as well as the lag for

4.1. IMPLEMENTATION ISSUES 85

/* inputs: network
outputs: Pl.list.array, PO.list.array, node_list_array

*/

cluster(network, PI.list.array, PO.list.array, node.list.array){
/* initialize */

visited = <j>; current.block = 0;

/* start with primary.outputs */
foreach primary.output in network{

if primary.output £ visited{
/* new cluster discovered */

current.block++;

PI.list = PO.list = node.list = 0;

visit(primary.output, visited, PI.list, PO.list,
node.list);

PI.list.array[current.block] = PI.list;
PO.list.array[current.block] = PO.list;
node.list.array[current.block] = node.list;

}
}

Figure 4.4: Clustering Combinational Logic Blocks: I

retiming node. For each of these the intuitively better choice is made, but there is no guar

antee regarding how good each of these decisions is. What is desirable is some more control

that the designer can exercise in the choice of the resulting circuits. For example if the de

signer is provided with a schematic of a circuit in terms of its combinational logic blocks and

latches such as that shown in Figure 2.16 and he/she can specify the lag for each individual

block, then the resulting retimed circuit is completely under his/her control. The lags may

be selected by the designer based on information about the relative sizes of the logic blocks,

their logical functionality, etc. Note that it is not possible to determine the combinational

logic clusters by looking at the initial circuit just in terms of an interconnection of a large

number of gates and latches.

The connectivity information in terms of the combinational logic blocks can be

obtained by clustering the nodes of the network into combinational logic blocks. Two gates

86 CHAPTER 4. PRACTICAL EXPERIENCES

/* inputs: node, visited, PI.list, PO.list, node.list
outputs: visited, PI.list, PO.list, node.list

*/

visit(node, visited, PI.list, PO.list, node.list){
/* add node to approprite list */
if(node is a primary input)

PI.list = PI.list U {node};
else if(node is a primary output)

PO_list = PO.list U {node};
else

node.list = node.list U {node};
/* visit fanins in same cluster */ •

foreach fanin of node{
if(w(edge(fanin, node)) == 0){
/* fanin in same cluster */

if(fanin g visited){
visit(fanin, visited, PI.list, PO.list, node.list);

}
}

}
/* visit fanouts in same cluster */
foreach fanout of node{

if(w(edge(node, fanout)) == 0){
/* fanout in same cluster */

if(fanout g visited){
visit(fanout, visited, PI.list, PO.list, node.list);
}

}
}

Figure 4.5: Clustering Combinational Logic Blocks: II

4.2. EXPERIMENTAL RESULTS: AREA OPTIMIZATION 87

are in the same cluster if there is a path between them of weight 0. Algorithm cluster

in Figures 4.4 and 4.5 describes the clustering process. On completion, PIJList.array,

P0_list_array, nodeJList^array, will contain the lists of primary inputs, primary outputs

and nodes; one for each cluster. These may be then used by a schematic generation routine

or for interactive querying as discussed in the previous paragraph. Clustering begins by

calling visit for a primary output node, visit recursively visits all nodes in the same

cluster and updates the list of primary inputs, primary outputs and nodes for this cluster.

The clustering is all done when there are no more primary outputs that have not been

visited. Once clustering is complete the circuit may be retimed with the designer specifying

the lag for each cluster.

4.2 Experimental Results: Area Optimization

4.2.1 Experimental Circuits

In the case of combinational logic optimization, a large suite of benchmark circuits

has been accumulated by the research community and is available for distribution [47]. This

is not the case for the relatively new field of sequential circuit optimization. Thus, as part

of the experimental process a set of example circuits had to be collected. The circuits

examined are from the following sources:

• Circuits synthesized from the fsm descriptions provided by the International Work

shop on Logic Synthesis [47]. The fsm's are specified in terms of their state transition

table. Circuit implementations are obtained by running the state assignment program

nova [79].

• Circuits from speech 2 and image recognition 3 chips.

• Controllers from an industrial source.

• Sequential circuits used as benchmark circuits in sequential circuit testing [16].

2These are from the circuit described in [75].
3This circuit is obtained from a design provided by G. DeMicheli from Stanford University.

88 CHAPTER 4. PRACTICAL EXPERIENCES

4.2.2 Experimental Procedure and Results

In Section 4.1 it was observed that there are several possible sub-circuits that can

be considered for retiming and resynthesis given an arbitrary sequential circuit. Since it is

practically impossible to consider all possibilities, some choices need to be made to keep the

search space limited. The choice of the lag for retiming node in the procedure add_node is

an example of this. Another decision that needs to be made in procedure seed_network is

the choice of the seed'node. A desirable quality of the seed node is that the resulting sub-

circuit should have nodes from across latch boundaries (in the original circuit) in the same

combinational block so that logic relationships between them can be exploited. With this

reasoning, a good choice for a seed is the input node to a latch. Since the latches are pushed

radially outward from this point, nodes from both sides of the latch boundary get included

in the same combinational logic block. Of course, there is typically more than one latch in

the circuit and each latch input is a potential seed. Procedure experiment in Figure 4.6

outlines the experimental procedure that records the results of using each latch input as a

seed. Combinational logic optimization is done using misll (This is version 2, release 1 of

Mis [12]). Retiming to minimize latches is performed using the algorithm provided in [43].

The experimental results are not very encouraging. Only in one case is an area

reduction of more than 5% observed in the combinational resynthesis. (This reduction is

being measured with respect to a circuit in which the combinational logic and number of

latches have been already minimized.) This example is an image processing circuit where

a 6% reduction in the area was observed in the combinational part. The number of latches

remain unchanged. The next section examines possible reasons for these results.

4.2.3 Analysis of Experimental Results

The lack of positive results in the previous section demands a look into why this

is so. The following analysis aims to explain the experimental observations.

It is interesting to observe the combinational resynthesis step in terms of the

topology of the peripherally-retimed circuit and the combinational optimization techniques

used in misll.

First a look at the topology. It is common for primary inputs to fan out to a large

number of gates in a combinational circuit. Since register outputs are primary inputs to the

combinational logic, they share this high-fanout property. When the registers are moved to

4.2. EXPERIMENTAL RESULTS: AREA OPTIMIZATION 89

/* inputs: network
outputs: experimental results

*/

experiment(network){
foreach_latch(network, latch){

node = latch.input(latch)j
new.network = seed_network(network, node);

/* optimize the area of the combinational logic */
combinational.area.optimize(new.network);

/* minimize latches using retiming */
retime.min.latches(new.network);

/* output the size of the circuit */
output(combinational.area(new.network), num.latches(new.network));

}
}

Figure 4.6: Summary of the Experimental Procedure

90

Initial Circuit

CHAPTER 4. PRACTICAL EXPERIENCES

Peripherally Retimed
Circuit

Figure 4.7: Register Outputs Form a High Fanout Cutset

the periphery, their previous input nodes have high-fanout (see Figure 4.7). Let us examine

the implications of this on the optimization techniques included in misll.

misll has two main phases of optimization: circuit restructuring and node simpli

fication. These are considered separately.

The circuit restructuring phase operates by collapsing (functional composition)

low-fanout nodes into their fanout nodes and then restructuring these large resulting nodes

using the algebraic techniques of cube and kernel extraction. Note that since the register

input nodes have high-fanout in the peripherally-retimed circuits, these nodes form a high-

fanout cutset of this network. This effectively restricts the restructuring to each side of

the original latch boundaries. However, this restructuring has already been exploited and

therefore nothing new is gained by migrating the latches. Completely collapsing the circuit,

and thereby removing the barrier to restructuring, is computationally too expensive and

impractical for reasonably-sized circuits.

The node simplification phase constructs the satisfiability don't care set [3] and

simplifies each node using two-level minimization with this don't care set. Typically this

don't care set is large and a filter is used that extracts only part of this don't care set for a

4.2. EXPERIMENTAL RESULTS: AREA OPTIMIZATION 91

node [67]. This is determined by looking at the topology of the network. For the topology

that we are working with, a network where the original register inputs form a cutset, the

filtering would restrict the don't cares for a node to be generated only from other nodes

that are on the same side of the cutset. Again this has already been exploited and nothing

new is obtained from migrating the registers. Disabling the filter and using the complete

satisfiability don't care set does not improve any of the results. This is partially to be

expected since the filter has been designed so that the quality of the results is almost as

good as what can be obtained with the entire satisfiability don't care set. Finally, node

simplification using a subset of the observability don't cares for a node [68] is considered.

Intuitively these don't cares should be very useful in this case since the observability of

the nodes in sub-circuit C\ (see Figure 4.7) is changed by adding sub-circuit C-i and thus

additional simplification is possible4. A possible reason as to why these are not effective

is that only a subset of the observability don't cares are being used and this may not be

sufficient.

Based on this it appears that the combinational optimization programs are trapped

in a local minimum and are not powerful enough to exploit the additional information that

is provided by the latch migration.

The following experiment helps substantiate these claims. Consider the example

circuit in Figure 4.8(a). It consists of a two-stage pipeline. The first stage computes the

sum of two n bit numbers, a[n —1:0] and b[n —1: 0], The second stage checks if the n + 1

bit sum is greater than 2n. Figure 4.8(b) shows the peripheral retiming of this circuit. It is

instructive to see how misll optimizes this circuit after it is given the additional information

that the output of the adder is used only in the comparator. Two different optimization

techniques are tried.

1. The standard misll script is used followed by simplification using a subset of the

observability don't cares.

2. The circuit is first collapsed to two-level logic. This is then simplified using the two-

level logic minimizer espresso. Technique 1 is then applied to the resulting circuit.

The motivation behind collapsing the circuit to two-levels and using espresso is that

two-level minimization is very powerful and can exploit the observability don't cares

4The nodes in C\ were initially observable at the latches (for the combinational part). These observation
points have been removed now.

92 CHAPTER 4. PRACTICAL EXPERIENCES

>2

a[n-1:0l b[n-1:0l a[n-1:0] b[n-1:0]

(a) (b)

Figure 4.8: Example Circuit: add.comp

4.2. EXPERIMENTAL RESULTS: AREA OPTIMIZATION 93

completely.

In order to evaluate how well the optimized circuits are doing, the circuit for the

function / = (a[n - 1 : 0] + b[n - 1 : 0]) > 2n is separately designed. The following is a

parametric description of this design.

x[i] = x[i - 1] + a[i] + b[i]

y[i\ = y[i - 1] (o[t] + b[i\) + x[i - 1] a[i] b[i]

x[-l] = 0

y[-l] = 0

/ = y[n-i]

The semantics of x[i] and y[i] are as follows. Let s[i] be the ith sum bit and c[i] be the carry

out of the ith bit of a ripple carry adder. s[i] and c[i] are given by:

s[i] = a[i] b[i] c[i - i] + a[i] b[i] c[i - i] + a[i] b[i] c[i —i] -f a[i] b[i] c[i - l]

c[i] = a[i] b[i] + c[i - 1] (a[i] + &[*])

e[-l] = 0

x[z] is 1 if and only if c[i] = 1 or at least one s[j] = 1, 0 < j < i. y[i] is 1 if and only if

c[i] = 1 and at least one a[/] = 1, 0 < j < i.

This circuit is implemented using 8ra - 8 literals in factored form. This is in

comparison to the adder followed by the comparator which is « 13n literals.

Figure 4.9 compares the sizes of the circuits obtained using the different methods

described here as a function of n. The curve labelled adder + comp represents the circuit

obtained by optimizing the adder and the comparator separately and then combining them.

The following observations are made from this graph:

1. Only for very small n does misll do a reasonable job when compared to the 8n —8

circuit. However, as n increases misll quickly runs out of steam and it does not reduce

the size of the initial circuit.

2. Using ESPRESSO enables the observability don't cares to be used and as a result the

quality is the same as the separately designed circuit. However, it is not practical to

collapse the circuit to two levels for larger n.

94

factored form literals

110.00

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

CHAPTER 4. PRACTICAL EXPERIENCES

Circuit Size vs. n

adder + comp

script + ode

esp + script + ode

designed_ckt
•

s

/

/ /

f

/.

/ f

/
/ /

/ /
//

// y
/I

/ /

f /

/ .,,>-"'
/ /

/ /
/ / /•'•"

t

/ /
/ 1

/ 1
/ 1

s

1 ,»''

^*^'*'

I s

2.00 4.00 6.00 8.00

Figure 4.9: Experimental Results for add-comp

4.2. EXPERIMENTAL RESULTS: AREA OPTIMIZATION

\Z7
r^—\ c

a b

J L

tT7
\ MAX / ^ MAX 7

(b)(a)

Figure 4.10: Example From a Datapath

95

Thus, it is seen that as the circuit size increases, misll is unable to exploit the additional

information (that the adder is being followed only by a comparator) in any way. It should be

noted that even for n = 9 the circuit sizes are relatively small (« 100 literals) in comparison

to the circuits used in the area optimization experiments in this section. Thus it is likely

that this limitation of misll is at least partially responsible for the lack of substantial

improvements seen.

Current research in combinational logic optimization techniques (e.g. [60]) holds

some promise in terms of discovering more powerful techniques that do circuit restructuring

without collapsing and algebraic factoring. These are more likely to exploit the additional

information generated by latch migration for the combinational logic optimizers.

Analysis of pipelined datapaths gives some insight as to when there is inherently no

potential for further improvement and thus no use in expending any further effort. Consider

the circuit in Figure 4.10(a). Here the function MAX(a + b,c) is performed over two cycles,

with the addition being done in the first stage and the selection of the maximum done in

the second stage. No area improvement is obtained for this circuit. It is instructive to see

why this is so. Figure 4.10(b) shows the same circuit with a peripheral retiming. Note that

if c = 0, then the output of this circuit is a + b. Thus, even though the output of the adder

96 CHAPTER 4. PRACTICAL EXPERIENCES

is not explicitly observable for this circuit, it is implicitly observable since it can be passed

on to the output of the circuit by setting c to 0. Thus, no additional observability don't

cares are generated by the cascade of the two logic blocks. We also note that the implicit

observability of the adder outputs forces the adder IO-map to be a Boolean function as

opposed to a Boolean relation [13], i.e. no two outputs of the adder are equivalent as far

as the MAX logic block is concerned. Thus, there is no flexibility in changing the logic

function of the adder block. It has been our experience that implicit observability is a

general characteristic of datapath circuits and this property does not make them amenable

to further area optimization using retiming and resynthesis techniques.

It is possible that for the example circuits there is no further potential for im

provement using retiming and resynthesis techniques. However, since the set of examples

is not fully representative of different kinds of sequential circuits, no generalizations can be

made.

4.3 Experimental Results: Performance Optimization

4.3.1 Example Circuits and Experimental Procedure

Since the theoretical results in performance optimization were developed specifi

cally for pipelined circuits, the experiments to evaluate their practical utility are also con

ducted on pipelined circuits. Only one of the circuits among those described in Section 4.2.1

is pipelined, thus additional circuits are needed for this experiment. The following three

arithmetic circuits were designed for this purpose. Each of these is a two-stage pipelined

circuit.

exl A two-stage adder that adds four 8-bit numbers (A,5,C and D). The first stage

computes the partial sums A + B and C + D and the second stage computes the final

sum. Each adder is a ripple-carry adder.

ex2 A two stage adder that adds two 16-bit numbers. The first stage computes the sum of

the 8 least-significant bits and the second stage computes the final sum. Each adder

is a ripple-carry adder.

ex3 This circuit computes the parity of the sum of two 8-bit numbers {A and B). Dtiring

the first stage the sum is generated using a ripple-carry adder. In the next stage the

4.3. EXPERIMENTAL RESULTS: PERFORMANCE OPTIMIZATION

Name Rsyn-Ret Ret-Rsyn PR-Rsyn-Ret
area latches cycle area latches cycle area latches cycle

exl

ex2

ex3

804

500

292

27

25

9

14.4

16.6

12.6

518

542

265

28

22

14

15.4

15.4

14.0

758

571

371

25

42

22

14.4

11.0

12.4

Table 4.1: Experimental Results: Performance Optimization of Pipelined Circuits

97

parity of the sum is computed using a balanced parity tree.

Three design scenarios are evaluated and the cycle time achieved by each is re

ported in Table 4.1. The three scenarios explore different methods to obtain a faster version

of the initial pipelined circuit and are as follows:

1. resynthesis followed by retiming (Rsyn-Ret)

2. retiming followed by resynthesis (Ret-Rsyn)

3. the approach proposed in Section 3.3, i.e., peripheral retiming followed by resynthesis

followed by retiming (PR-Rsyn-Ret).

For purposes of this experiment only one delay optimization routine is applied, the critical-

path restructuring on a technology-independent network [73], as part of the resynthesis

procedure. The delay through the circuit is measured using a two-input nand gate repre

sentation of the circuit. Each gate contributes one unit of delay and each fanout contributes

an additional delay (0.2 units in this experiment). The area of the combinational part is

measured as the number of literals (gate input connections) in the same 2-input NAND

representation.

From the results in Table 4.1 we make the following observations.

1. The order of retiming and resynthesis operations impacts the value of cycle time that

can be achieved. Neither order can be counted on to be the best for all circuits.

2. The cycle time obtained by the proposed method matches or is better than the best

result that can be obtained by any combination of a single retiming and a single

98 CHAPTER 4. PRACTICAL EXPERIENCES

resynthesis step. This is what is expected theoretically and it is gratifying that this

is achieved in practice as well. It is clear from circuit ex2 that the additional flexibil

ity gained from looking at the maximal combinational logic sub-network obtained by

peripheral retiming provides the optimization techniques greater freedom in restruc

turing the circuit to reduce the cycle time.

In the current experiments there is an increase in the number of latches, over the initial

number of latbKes, when the proposed method is used. This is due to the fact that no

attempt is made to minimize the latches during retiming and also due to the particular

resynthesis technique used. The critical path restructuring increases the width of the circuit

and hence more latches are used.

99

Part II

Handling Symbolic Inputs

Chapter 5

Multi-Level Logic Minimization

"What a curious feeling!" said Alice, I must be shutting up like a telescope!"

And so it was indeed: she was now only ten inches high, and her face brightened
up at the thought that she was now the right size for going through the little door
into that lovely garden.

- Lewis Carroll, "Alice in Wonderland"

Symbolic variables and the encoding problems associated with them were intro

duced in Chapter 1. This part of the thesis considers the input encoding problem for area

minimization. In addition to being a problem in its own right, it is also an approximation

to the state assignment problem in sequential logic synthesis. Input encoding-based tech

niques can be applied to state assignment by treating the state variable as an input to the

logic that computes the next state and output functions. The fact that it is also the output

of this description is not taken into account. This approximation is valid when the output

logic is significantly larger than the next state logic.

For the case of two-level logic, satisfactory solutions to the input encoding problem

were obtained by first using multiple-valued (mv) two-level logic minimization (e.g. [64]) and

then using the result of this to generate constraints that the encoding must satisfy (e.g. [59.

79]). The advantage of doing this is that multiple-valued logic minimization does not

depend on any choice of encoding and captures the effects of all possible encodings. Thus,

deferring the encoding until after minimization avoids restricting the miiiimizer to only

one encoding. However, for multi-level logic as the target implementation, the approaches

currently used tend to be "predictive" in that they determine encodings for which a multi

level logic optimizer such as mis [12] is likely to find common divisors (e.g. [25, 45. 34])

101

102 CHAPTER 5. MULTI-LEVEL LOGIC MINIMIZATION

and thus result in circuits with smaller size. Unlike the two-level case, the multi-level

logic optimizer is used only after the encoding has been selected. This asymmetry between

the approaches for two and multi-level logic arose from the fact that multi-level multiple-

valued minimization techniques had not been developed. The workpresented in this chapter

attempts to fill this gap. It presents techniques for multi-level optimization of logic with

mv input variables.

5.1 Multi-Level Optimization Techniques

Let us first examine the general paradigm used in the area optimization of multi

level circuits with Boolean (or binary-valued) inputs. Multi-level area optimization is a

collection of different techniques, each of which attempts to reduce the circuit size by ap

plying some function preserving transformation on the given circuit. This section examines

the techniques that have been most successful.

Empirically it has been observed that the largest impact in terms of reducing the

circuit size is by using circuit decomposition. This involves introducing new functions in

the circuit and expressing other functions in the circuit in terms of them. Determininggood

decompositions is a very difficult task. Brayton and McMullen presented a technique [10]

which determines circuit decompositions by first considering functions as algebraic polyno

mials and then finding common sub-expressions in these polynomials. Each sub-expression

can then be implemented as a separate function and used repeatedly in each original oc

currence. The common sub-expressions are also referred to as common factors or divisors.

While this is an approximation to the real problem, it is fast and produces results of accept

able quality. These common sub-expressions are classified into two groups: common cubes,

which are expressions consisting of a single product term, and common kernels, which give

rise to common sub-expressions of more than one product term. This classification arises

because different techniques are used for detecting these two types of divisors.

Since algebraic decomposition techniques do not exploit any Boolean relationships

that exist between the different circuit components, further simplification is possible by

using these relationships. Boolean relationships have been exploited in different ways by

different programs. In mis [12], this is done by considering each gate function in two-level

form and then simplifying this using a two-level minimizer. The relationships between the

differentgate functions in the circuit are captured through the implicit don't cares extracted

5.2. OVERVIEW 103

from the circuit [3]. In bold [8] connections are added to and deleted from gates as long

as this preserves logical behavior. In LSS [7] this is accomplished using a technique referred

to as global flow. The transduction method [60] uses the notion of permissible functions

towards this end.

5.2 Overview

Of the techniques introduced in Section 5.1, the one that is most difficult to extend

to circuits with symbolic (or Mv) inputs is circuit decomposition. The major contribution

of this chapter is to describe such a technique. It demonstrates how common sub-expression

extraction can be extended to circuits with symbolic inputs while guaranteeing some opti-

mality for the final encoded circuit. This completes the missing link in multi-level multiple-

valued minimization since the other techniques used in multi-level synthesis can be easily

extended to handle MV inputs, as will be shown later in this chapter.

The following sections examine each of these optimization techniques. In each case

these techniques are first briefly explained for binary-valued variables and then it is shown

how these can be extended to handle MV variables.

5.3 Circuit and Function Representation

Let a symbolic variable v take values from V = {vq, v\,.. . ,vn_i}. v may be

represented by a MV variable, X, restricted to P = {0,1,..., n - l}, where each symbolic

value of v maps onto a unique integer in P 1. We can map several mv variables into a single

MV variable as follows. Let vl and v2 be two symbolic variables taking values from sets VI

and V2 respectively. These may be replaced by a single symbolic variable v taking values

from V1 XV2. This is in fact potentially better than considering vl and v2 separately since

the encoding for v takes into account the interactions between vl and v2. This enables us

to restrict ourselves to a single symbolic variable for the rest of this chapter.

Let B = {0, l}. A binary-valued function f, of a single mv variable X and m - 1

binary-valued variables, is a mapping: f : P x Bm~l -> B. Each element in the domain

of the function is called a minterm of the function. Let S C P. Then Xs represents the

'The notation presented in this section is the same as that used in two-level multiple-valued minimiza
tion [64].

104 CHAPTER 5. MULTI-LEVEL LOGIC MINIMIZATION

binary-valued function:

xs=i 1 iix^s
[0 otherwise

Xs is called a literal of variable X. If \S\ = 1 then this literalis also a minterm of -Y. For

example, X^ and JY*0'1* are literals and X^ a minterm of X. If 5 = <j>, then the value

of the literal is always 0. If 5 = P then the value of the literal is always 1. For these two

cases, the value of the literal may be used to denote the literal. We note the following:

1. Xs* C Xs* if and only if Sl C 52

2. Xs' U Xs* = Xs*uS*

3. Xsi n Xs* = XSlClS*

The literal of a binary-valued variable y is defined as either the variable or its

Boolean complement. A product term or a cube is a Boolean product (and) of literals.

If a cube evaluates to 1 for a given minterm, it is said to contain the minterm. A sum-

of-products (sop) is a Boolean sum (or) of product terms. For example: JY*0,1^^ is a

cube and X^0^yiy2 + X^ffrtfo is an sop. A function f may be represented by an sop

expression /. In addition f may be represented as a factored form. A factored form is

defined recursively as follows.

Definition 5.3.1 An SOP expression is a factored form. A sum of two factored forms is a

factored form. A product of two factored forms is a factored form.

X{0,1'3,}y2(X{°'1}yi + X^ys) is a factored form for the sop expression given above.

A logic circuit with a multiple-valued input is represented as an MV-network. This

is illustrated in Figure 5.1. An MV-network r;, is a directed acyclic graph (dag) such that

for each node rc,- in n there is associated a binary-valued, MV input function fj, expressed

in sop form, and a binary-valued variable #,- which represents the output of this node.

There is an edge from n,- to nj in n if fj explicitly depends on yt. Further, some of the

variables in n may be classified as primary inputs or primary outputs. These are the inputs

and outputs (respectively) of the MV-network. The MV-networkis an extension of the well-

known Boolean network [12] to permit mv input variables; in fact the latter reduces to

the former when all variables have binary values. Since each node in the network has a

binary-valued output, the non-binary(MV) inputs to any node must be primary inputs to

5.3. CIRCUIT AND FUNCTION REPRESENTATION

multiple-valued
signal

binary valued signal

Figure 5.1: Representing Circuits as MV-networks

105

the network. The MV-network computes logical functions in the natural way. Each node in

the DAG computes some function, the result of which is used in all the nodes to which an

edge exists from this node.

In the sequel, the naming convention used in this section for functions and variables

will continued. Functions names are bold lower case letters, binary-valued variables and

expressions are named with regular lower case letters, and the upper case letter X is reserved

for the mv variable.

It should be noted that multiple-valued functions of multiple-valued variables (re

ferred to as discrete mappings) are not Boolean functions, nor are expressions representing

them Boolean expressions. However, properties of these functions and expressions are sim

ilar to those of Boolean functions and expressions. Appendix A describes the relationship

between discrete mappings and Boolean functions and explains why properties of Boolean

expressions apply to expressions representing discrete mappings.

106 CHAPTER 5. MULTI-LEVEL LOGIC MINIMIZATION

5.4 Circuit Decomposition Using Kernels

This section presents multiple-valued decomposition using kernels along with its

interesting properties with respect to the final encoded circuit. In this direction, the process

of common sub-expression extraction when there are no MV variables is reviewed first.

5.4.1 Kernels and Kernel Intersections

Common sub-expressions consisting of multiple cubes can be extracted from ex

pressions of binary-valued variables using the techniques described in [10]. These techniques

are referred to as algebraic since they treat expressions representing logic functions as mid-

tilinear monomials with unit coefficients over the variables {t/i, Jft,... t/„, yn}. This permits

efficient factorization and decomposition, though at the cost of optimality since the Boolean

identities, y\ -y\ = t/i, y\-yi = 0 are not used. Some definitions presented in [10] are reviewed

first.

Definition 5.4.1 An expression f is said to be cube-free if no cube divides all the cubes

in f.

The term 'division' here refers to algebraic division. For example, f± = y\ y2 -r y\ 2/3 is

not cube free since the cube y\ divides both cubes in f±. /s = y\ y2 + 2/3 is cube free. By

convention 0 and 1 are not cube free. In the sequel, unless otherwise mentioned, division

refers to algebraic division.

Definition 5.4.2 A kernel, k, of an expression f is a cube-free quotient of f and a cube

c. A co-kernel associated with a kernel is the cube divisor used in obtaining that kernel.

As an example, consider the expression fs = y\ y* + y2 y\ + 2/3 and the cube y4.

The quotient of /s and this cube, /s/tfa, is y\ + y2. No other cube is a factor of y\ + y2,

hence it is a kernel of /s. The cube y± is the co-kernel used to derive this kernel. In general,

the co-kernel of a kernel is not unique.

sop expressions may be alternatively viewed as sets of cubes (and vice versa). This

lets us define the intersection of two kernels k\ and k2 in the natural way as the set of cubes

present in both k\ and k2. The following key result from [10] relates kernel intersections

and common sub-expressions.

5.4. CIRCUIT DECOMPOSITION USING KERNELS 107

Theorem 5.4.1 (Brayton and McMullen) Two expressions have a common divisor of

more than one cube if and only if they have a kernel intersection of more than one cube.

This kernel intersection can then be used to find the common divisor. Thus, we can detect

all multiple-cube common sub-expressions by finding all multiple-cube kernel intersections.

In [11] algorithms for detecting kernel intersections are described by defining them in terms

of the rectangular covering problem. Because of the ease in understanding the concepts

involved, the rectangular covering approach is used for developing the ideas in the rest of

this chapter. However, they hold with any technique for kernel extraction.

The rectangular covering formulation is explained through the following example.

Consider the expressions f-j and fg:

h - 2/12/5+ 2/2 2/5 + 2/3

1 2 3

h = 2/12/6+ 2/2 2/6 + 2/4

4 . 5 6

The integer below each cube is its unique identifier used later to refer to this cube. The

kernels of ft and f$ are:

expression co — kernel kernel

h 1 2/1 2/5 + 2/2 2/5 + 2/3

h 2/5 2/1 + 2/2

h 1 2/1 2/6 + 2/2 2/6 + 2/4

A 2/6 2/1 + 2/2

The table below is the co-kernel cube matrix for the set of expressions. It lets us view all

kernels simultaneously and detect kernel intersections. A row in the matrix corresponds

to a kernel, whose co-kernel is the label for that row. Each column corresponds to a cube

which is the label for that column. A non-zero entry in the matrix specifies the integer

identifier of the cube represented by the entry. This is the cube in the original expressions

108 CHAPTER 5. MULTI-LEVEL LOGIC MINIMIZATION

obtained by intersecting the row and column labels.

2/1 2/2 2/1 2/5 2/2 2/5 2/1 2/6 2/2 2/6 2/3 2/4

1 0 0 1 2 0 0 3 0

2/5 1 2 0 0 0 0 0 0

1 0 0 0 0 4 5 0 6

2/6 4 5 0 0 0 0 0 0

A rectangle V, is a sub-matrix of the co-kernel cube matrix. It is defined as a set

of rows 5r = {ro, n,..., rm_i} and a set of columns Sc = {co, ci,..., cn_i} such that for

each r,- G 5r and each cj 6 5C, the (r,-, Cj) entry of the co-kernel cube matrix is non-zero. V,

covers each such entry. 11 is denoted as: {i2(ro, r*i,..., rm_i), C(co, ci,..., cn_i)}. Observe

that each, rectangle that has more than one row indicates a kernel intersection between the

kernels corresponding to the rows in the rectangle. The columns in the rectangle specify

the cubes of the kernel intersection. For example, {i2(2,4),C(l,2)}, indicates the kernel

intersection y\ + y2 between the second and fourth kernels.

A rectangular covering of the matrix is defined as a set of rectangles that cover

the non-zero integers in the matrix at least once (and do not cover a 0 entry). Once an

integer is covered, all its other occurrences are don't cares (they may or may not be covered

by other rectangles). A coveringfor the above co-kernel cube matrix is: {iZ(2,4),C(l,2)} ,

{-R(l),C(7)} , {J2(3), C(8)}. A rectangular covering suggests a factorization of the original

set of expressions. If common factors are extracted and implemented separately then this

is referred to as a decomposition. The resulting implementation suggested by this covering

is:

h - '2/5 2/9 + 2/3

h = 2/6 2/9 + 2/4

/9 = 2/1 + 2/2

Using the well-accepted metric of circuit size, viz. the total number of literals in the factored

form of all the expressions [12], the above description has two fewer literals than the original

description. With larger factors the size reduction is significantly higher.

5.4. CIRCUIT DECOMPOSITION USING KERNELS 109

5.4.2 Kernels and Multiple-Valued Variables

Now consider the case in which one of the input variables may be multiple-valued.

The following example has a single mv variable X with six values and six binary-valued

variables.

fa = X*0'1^! 2/5 + XWy2y5+ y3
1 2 3

/8 = X<3'4>2/! y6 + X<5>2/2 2/6 + 2/4

4 5 6

Again, the integers below each cube are unique identifiers for that cube.

The definitions and matrix representations given in Section 5.4.1 are for binary-

valued expressions of binary-valued variables. These are now extended to binary-valued

expressions with one MV variable. (As in Section 5.3, only one of the variables is considered

to be MV, the others are binary-valued.)

Kernels and co-kernels are defined as in the case with binary-valued variables.

The co-kernel cube matrix is modified as follows. Each row represents a kernel (labelled

by its co-kernel cube) and each column a cube (labelled by this cube). The column cubes

contain literals of binary-valued variables only. Each non-zero entry in the matrix now has

two parts. The first part is the integer identifier of the cube in the original expressions

(cube part). The second part is the MV literal (mv part). The MV part ANDed with the

cube corresponding to its column and the co-kernel corresponding to its row forms the cube

specified by the integer identifier in the cube part.

The kernels of fa and fa are:

expression co — kernel kernel

fa 1 X^ Vl </5 + -Y{2} 2/2 2/5 + 2/3

fa 2/5 A'*0'1) Vl + A'<2> y2

A 1 X<3'4> 2/1 2/6 + A^5> y2 y6 + y4

fa 2/6 X&^ fJl + A'<5> y2

110 CHAPTER 5. MULTI-LEVEL LOGIC MINIMIZATION

The corresponding co-kernel cube matrix is:

2/1 2/2 2/1 2/5 2/2 2/5 2/1 2/6 2/2 2/6 2/3 #4

1 0 0 1 2 0 0 3 0

0 0 jrttwi JfW 0 0 1 0

2/5 1 2 0 0 0 0 0 0

Xt0'1} X<2> 0 0 0 0 0 0

1 0 0 0 0 4 5 0 6

0 0 0 0 X<3«4> Jf{5} 0 1

2/6 4 5 0 0 0 0 0 0

X<3'4> X<5> 0 0 0 0 0 0

In the co-kernel cube matrix the cube part is given above the MV part for each

entry. The adjectives MV and binary willbe used with co-kernelcube matrices and rectangles

in order to distinguish between the multiple-valued and the binary-valued case.

A rectangle is defined as in the case for all binary variables with one modification.

Now the rectangle is permitted to have zero entries also. Unlike the binary-valued case,

a rectangle here does not necessarily result in a common factor. It needs to satisfy some

additional conditions which are now considered.

Associated with each rectangle 1Z is a constraint matrix Mn whose entries are the

MV parts of the entries of 1Z. For example, for the mv co-kernel cube matrix given above,

Mi, is the constraint matrix for the rectangle {R(2,4), C(l,2)}.

Mi =
X{o,i} xW

X<3'4> X<5>

A constraint matrix is said to be satisfiable if:

M(iJ) = [UiM(iJ)]n[UjM{iJ)] VLj 5.1)

i.e. if a particular value of X occurs somewhere in row •/ and also somewhere in column

j, then it must occur in M(i,j). Mi given above is satisfiable. If a constraint matrix

5.4. CIRCUIT DECOMPOSITION USING KERNELS 111

is satisfiable then it can be used to determine a common factor between the expressions

corresponding to its rows as follows. The union of the row entriesfor row j, (\Jj M(i,j)),

is ANDed with the co-kernel cube corresponding to row i. Similarly the union of the column

entries for column j, (\J{M(i,j)), is ANDed with the kernel cube corresponding to that

column. This results in the following factorization of the expressions f? and fa.

fa = X*0'1^ 2/5 (X*0'1'3^ 2/1 + X{2'5} 2/2) + 2/3

fa = X<3'4-5> y6 (X<°'1^4> m + X<2'5> y2) + y4

Note that there is now a common factor between the two expressions which was not evident

to start with. This common factor may now be implemented as a separate node in the

MV-network and its output used to compute fa and fa as follows:

fa = X*0'1^ t/5 2/9 + 2/3

fa = X<3'4'5> 2/6 J/g + 2/4
fa = *{0.1*4> yi + X{2,5} y2

Not all matrices are satisfiable. An example of this is as follows:

XW X<2> X<5>
M2 =

X<4> X<5> XM

M2 is not satisfiable since X ^5^ occurs in row 1 as well in column 2 but is not present in

M(l,2).

Let M^ be a satisfiable matrix. Let ^>,j be the cube indicated by the cube part

of entry (ri,Cj) in IZ. Let A,- be the row label (i.e. the co-kernel) for row r, and Tj be the

column label for column cj. Thus, ipij = A, Tj M(i,j). The set of cubes Ylj ^»'i 1S Part °f

some expression in the original set of expressions. This may be expressed as the following

factored form:

£>0- = [UjM(iJ)]A{ (^([UiMiijyiTj)] (5.2)

The factor fHj([u,M(i,j)] Tj)) is independent of and thus common to all i.
Let us now see why M must be satisfiable.

Theorem 5.4.2 The factorization specified by Equation 5.2 is valid if and only if M is

satisfiable.

112 CHAPTER 5. MULTI-LEVEL LOGIC MINIMIZATION

Proof.

If part: This follows by multiplying the right hand side and comparing the correspond

ing terms on each side.

Only if part: The proof is by contradiction. Let M be a non-satisfiable matrix and

suppose that Equation 5.2 is valid. Let (i,j) be an entry of M for which the condition

in Equation 5.1 is not met. On expanding out the factored form on the right hand side

of Equation 5.2, the term corresponding to j>ij is A,- Tj ([u,-ilf(*,,;)] n [UjM(i,j)]). Since

M(i,j) ? ([UiM(iJ)] n [UjM(i,j)]l we get A; Tj ([u,M(«,j)] n [UjM(i,j)]) ^ tfy.

Thus, Equation 5.2 is not valid. •

Satisfiable constraint matrices are not the only source of common factors. In fact

the condition can be relaxed as we see below.

Definition 5.4.3 Mr is a reduced constraint matrix of M if Vi,j Mr(i,j) C M{i,j).

Note that this definition includes the original constraint matrix. An example of a reduced

constraint matrix for M\ is:

" XW X<2>
^{3,4} X<5>

A reduced constraint matrix that is satisfiable can be used to generate a common factor by

covering the remaining entries separately. For example, with the original expressions and

M3 we can obtain the following factorization.

h = X<w> 2ft (JT<,A4> y, + Xf*5> y2) + Z»> * yb + y3

Note that X^0^ j/i2/5 must be covered separately.

Thus far only the way in which factors may be extracted in MV-networks has been

described. Algorithms for determining kernels as well as for rectangular covering have not

been discussed. These have been described in detail in [11, 63]. Typically at any time in the

circuit decomposition process there is a choice to be made between several possible factors.

One particular choice may restrict the choices available in the future. This is a general

problem even in the case of Boolean networks. In that case a locally optimal decision is

made based on the estimated gain of the factor. This is based on the size of the factor and

M3 =

5.4. CIRCUIT DECOMPOSITION USING KERNELS 113

the number of places where it is used. The situation is more complicated in MV-networks

since the size of the factor is not known until encoding. This makes it difficirit to estimate

its potential gain. The discussion regarding how this is handled is deferred to the next

chapter. Some of the problems, that arise because of the difficulty in predicting the size of

MV-literals after encoding, are handled using the concept of incompletely specified literals,

which is now explained. However, first a few terms need to be formally defined that have

thus far been used in an intuitive way.

Encodings and Encoded Implementations

Definition 5.4.4 An encoding E, of the values of an MV variable X is a mapping of

each distinct value of X to a distinct vertex in some q-dimensional Boolean space, Bq. The

encoded expression of a minterm Xa, under E, denoted by £(Xa,E), is the singleton

set containing the vertex in Bq that XQ is mapped to. The encoded expression of a literal

of X is the union of the encoded expressions of its constituent minterms.

As an example, consider the following encoding, jE7i, for the values of X:

X<0> : 000 X™ : 100 X<2> : 001

X<3>:110 X<4>:010 X<5> : 011

Thevariables so,«i and 32 areused for this3 dimensional Boolean space. Here £(X{°*, Ei) =

{3"o5i52} and S(X^0,1\Ei) = {s~oSis~2,sos~is~2}. A set of points in Bq may be alternatively

represented as a sum-of-products expression equivalent to the vertices in this set. For ex

ample £(X{0,1},i?i) may be expressed as s~qs~\S~2 + sqs~\s~2 or equivalently as s~\s~2. Vertices

in Bq that are not images of any value of X are don't care vertices. For example, sqs\$2

and sqS\s2 are don't care vertices for E\. They may be included in any encoded expression

for simplification.

Note that £ is an invertible function. Given any set of points in Bq (or an expres

sion equivalent to these points) there is a unique literal of X that maps to them under S.

Thus, £~l :Bq -* P.

The notion of an encoded expression is now extended to handle sets of expressions

that represent functions.

Definition 5.4.5 An encoded implementation of a set of expressions {f\,fa,.. .fn}

under encoding E, where each /,- represents a P x Bm~l function, is a set of expressions

114 CHAPTER 5. MULTI-LEVEL LOGIC MINIMIZATION

{/l? fa> ••• fn} where each fa has been obtained from fa by replacing each MV literal in fa by

its encoded expression for E. It is denoted by £({fa,fa,... /„},£?).

For an MV-network 77, the encoded implementation, £(r)tE) for encoding E is obtained by

replacing the set of node function expressions by their encoded implementation. As before

£~l is the inverse function that can be used to obtain the original circuit from the encoded

implementation.

Incompletely Specified Literals

The notion of incompletely specified literals is introduced through an example.

Consider the following expressions in factored form:

h = *{0X2) 3ft (X<M'M> 9, + -Y<2'5> fc) + »

h = *{3A8) J/6 (Xt"'1'3^ y, + X<w> »2) + 2/4

A = *t6>

Note that /V could be modified as follows without changing the functional behavior.

fa = X<0.1A6> y5 (X{0.1A4> yi + ^{2,5} ^ j + ^

Replacing X^0,1'2* with X^0,1,2»6^ leaves the function unchanged since the multiplicative

factor, (X^0'1'3'4* y\ + X^2'5* 2/2), does not have X*6* anywhere in it. Thus, using a term
from two-level minimization, X^0'1,2* maybe expanded to X^°'1,2,6K With binaryvariables,

expansion always results in a decrease in the number of literals in the circuit size since

expanding a literal y\ or y\ results in the removal of this literal. However, expansion of

MV-literals does not result in their removal unless the expansion is to the literal 1. Thus,

it is not clear if expansion is useful in decreasing circuit size. Actually, as shown below, it

depends on the encoding chosen. Consider the encoded expressions of the unexpanded and

expanded literals with the following encoding, E\.

X<°>

X<3>

1(6}

000 A'*1* : 100 X<2> : 001

110 X<4>:010 X<5>:011

101

£(_Y{o,i,2} Ex) = a- 5-2 + 5- -q

£(A-{o,i,2,6} fEi) = s-x

5.4. CIRCUIT DECOMPOSITION USING KERNELS 115

With the following encoding, E2, we get:

X<°>

X<3>

x<6>

000 XM : 100 X<2> : 001

110 X<4> : 010 X<5> : Oil

111

^X*0'1'2^) = 5"i

£(X^2^ ,E2) = a"! + s0s2

Thus, with Ei expansion led to a smaller encoded implementation while with E2

it led to a larger encoded implementation.

Since it is not possible to predict the effect of expansion until encoding, it is best if

the decision to expand is deferred to the encoding step. This can be captured by permitting

the MV-literal to be incompletely specified. An incompletely specified MV-literal, X51^,

represents the incompletely specified pseudo-function 2:

\ 0 if XgSi US2
The value of of this pseudo-function is unspecified when X G 52. This permits fa to be

expressed as:

fa = X*0'1'2^ 2/5 (X*0'1'3'̂ 2/i + *{2'5} 2/2) + 2/3

This makes it convenient to express the fact the expansion is optional and the decision

whether it should be done is left till the encoding step.

The discussion as to how the incomplete specification is practically determined

and used is deferred to the next chapter.

Main Results

Let us now see what the MV-factorization process gains us in terms of the final

encoded circuit. We are interested in obtaining large common factors in the encoded im

plementation. The work reported in [48] was carried out with the underlying assumption

that the common factors in the encoded implementation depend on the encoding chosen.

The following theorem shows that this assumption was not entirely valid.

2This is not a true function since the mapping is not uniquely defined for all elements of the domain.

116 CHAPTER 5. MULTI-LEVEL LOGIC MINIMIZATION

Theorem 5.4.3 Let f be a factor infj = £(n,E). Then there exists a factor f in rj sxich

thatf = £(f,E).

Proof. The proof follows from the fact that £ is invertible. n = £~l(fj,E). Let, / =

£~l(f, E). Since / is a factor in f), f must be a factor in rj. m

This result implies that if we consider two encodings, Ei and E2, then corresponding to

factor fa for Ei, there is a factor fa for E2. Thus there is a one-to-one correspondence

between factors across different encodings. This implies that a choice of encoding can

only determine the particular encoded form of the factor and not its existence. Thus, it

may seem that we can always first select an encoding and then find the common factors

later. However, the catch here is that the techniques for finding common factors in Boolean

networks are algebraic and thus not strong enough to discover many good Boolean factors.

Using conventional algebraic factorization after selecting an encoding exposes only a fraction

of the common factors present. Thus, even though a common factor may exist in the Boolean

network it would remain undetected. (It may also be useless in one network and valuable in

the other. This is also related to the fact that for two functions to have a common factor the

only condition necessary is that they have a non-zerointersection.) What is desirable is that

we should at least be able to obtain factors that can be obtained using algebraic techniques

and any possible encoding. The MV-factorization process, using reduced constraint matrices,

aims to do exactly this. However, not all factors in all encoded implementations can be

obtained by this process. The following example helps illustrate the limitations.

Consider the following expressions and encoding:

fa = X^*yi

fa = X<4'5'6>t/2

X^>:101 X<2>:111 X<3>:110

X<4> : 001 X<5> : Oil X<6> : 010

With so, 3i, s2 as the encoding variables we obtain the following encoded implementation:

fa = 2/1 -so -si + 2/1 so $2

fa = 2/2 *ro H + y2 s~0 s2

Here, .§i + s2 is a kernel common to both expressions. However it cannot be obtained

by first doing MV-factorization and then selecting an encoding since no kernels exist for fa

5.4. CIRCUIT DECOMPOSITION USING KERNELS 117

and fa. In this case all the variables involved in this kernel intersection are in the encoding

space. As a result the entire kernel intersection in the encoded implementation corresponds

to a single MV literal in the original circuit. However, any kernel intersection not comprised

entirely of the encoding variables can be detected as the following theorem states.

Theorem 5.4.4 Let k be a kernel intersection infj = £(n,E) not comprised entirely of en

codingvariables. Then there exists a commonfactor, k, extractedusing the MV-factorization

process for n (i.e. by using a reduced satisfiable constraint matrix) such that k = £(k,E).

Proof. A kernel intersection, k of fj implies a rectangle, lZenc, of at least two rows, in the

binary co-kernel cube matrix for fj. Let A, be the co-kernel corresponding to row i of this

rectangle and 7j be the cube corresponding to column j. Let s,- be the cube in A,- that has

the variables used in the encoding of X. Similarly, let Sj be the cube in "fj that has the

variables used in the encoding of X. We construct a rectangle 1Z~ in the MV co-kernel cube

matrix as follows.

For each row and column of lZenc construct a row and column of 1Z~. The co-

kernel A,-, corresponding to row i, and the cube Tj, corresponding to column j in 1Z~ are

obtained as follows.

Case 1: 3j \ sj ^ 1

Tj = Ijjsj. A,- = Aj/s,-. The MV part of entry (i,j) in 1Z~ is assigned the literal

£-\s{Sj,E).

Case 2: Vj, sj = 1

Here all the bits of the encoding space are in the co-kernel. Let XS{ = £~1{si, E).

Then, Tj = 7j and A,- = (A,7$t)X5'. The MV part of each entry of the ith. row in 1Z~ is

assigned the literal 1.

At this point there may exist columns in 1Z~ that correspond to the same cube

and rows that correspond to the same co-kernel. Merge each such set of columns (rows)

into a single column (row) corresponding to that cube (co-kernel). The MV part of each

entry of this column (row) is the disjunction of the MV parts of all the columns (rows) it

replaces.

Since there is at least one non-encoding variable in £\ there is at least one Tj ^ 1.

This ensures that there are at least two non-zero cubes for each row r, of the MV co-kernel

cube matrix that is in 1Z~. To see this let us assume this were not true, i.e. only one

cube existed for some row. But then Ij/sj {'yj/sj ^ 1) would divide all the cubes for the

118 CHAPTER 5. MULTI-LEVEL LOGIC MINIMIZATION

corresponding kernels in the binary co-kernel cube matrix. That cannot happen, otherwise

these "kernels" would not be cube free. Each row r is cube free, otherwise the corresponding

kernels in the binary co-kernel cube matrix would not be cube free. Thus, r corresponds to

a kernel in the original set of expressions.

From this it follows that Mn~ is a reduced constraint matrix of some matrix Mn

for some rectangle IZ in the MV co-kernel cube matrix. That Mn~ is satisfiable follows from

the construction of the MV co-kernel cube matrix. Each MV part entry was constructed as

the product of the row and column components. Since Mn~ is satisfiable, there exists a

common factor k in n corresponding to a reduction of IZ.

We now need to show that k= £(k,E). k= £j (Tj [u,X5"]), where XSii =
M(i,j). This can be re-written as k = Zj (Tj X°iSiA. Let XSJ = £_1(sj,.E). Now
XSj-UiSij -1S a don>t care for x in k^ -lQ fa _ jv /jv ^YUiSyto-UiStfA Thus, by expansion

*=Ei (Tj x5;), giving e(k, E) =Zj (r,-«,-) =k. •

Theorem 5.4.4 gives the relationship between potential kernel intersections for the

MV variable expressions (reduced rectangles in the MV co-kernel cube matrix) and actual

kernel intersections for the encoded implementations (rectangles in the binary co-kernel

cube matrix). Note the significance of the result of Theorem 5.4.4. It says that we can view

all possible kernel intersections for all possible encodings as long as the kernel intersections

have at least one non-encoding variable.

In fact, the MV-factorization process described is even stronger inasmuch as it can

potentially discover Boolean factors in the encoded implementation that could not have been

found using algebraic techniques. We illustrate this with the following example. Consider

the expressions:

fa = XM 2/1 + *{2} 2/2

fa = *{1> 2/i + X{3} 2/3

fa = X<4> y2 + X<3> y3

Each of these has a single kernel corresponding to the co-kernel 1. The co-kernel

cube matrix for these expressions is given below. For clarity, only the Mv part of the matrix

5.4. CIRCUIT DECOMPOSITION USING KERNELS

has been shown since the cube part is obvious.

2/1 2/2 2/3

1 xw X<2> 0

1 XM 0 X<3>

1 0 X<4> X<3>

119

Consider the rectangle IZ ={R(1, 2, 3), C(l, 2, 3)}. Mn is satisfiable. This leads to the

following decomposition:

h = X^y7

h = JTtW>»7

k = X{w>»7

A = *{1> Si + X<2-4> y2 + X<3> y3

Consider the following encoding for X:

XW:01 X<2>:11

X<3>:00 X<4>:10

This leads to the following encoded implementation:

/4 = si y7

fa = s~o 2/7

fa = s~i y7

fa = s~q si yi + s0 y2 + .s_0 s~i y3

fa is a non-algebraic or Boolean factor of /4, fa and /6, since fa cannot be obtained from

fiifaifa by using algebraic division only. The Boolean identities, $ • s = 1 and s • s = 0

have been used in the process.

Thus by using a procedure that is an extension of the known algebraic factoriza

tion process, we have been able to see possible kernel intersections in all possible encoded

implementations as well as additional Boolean factors.

120 CHAPTER 5. MULTI-LEVEL LOGIC MINIMIZATION

«

5.5 Circuit Decomposition Using Common Cubes

5.5.1 Common Cube Extraction with Binary Variables

Sub-expressions consisting of single cubes are detected using cube extraction. This

is illustrated with the following example. Consider the expressions:

k = 2/1 2/2 2/3 + 2/1 2/2 2/4 + 2/5

fa = 2/1 2/2 2/5

The cube 2/1 2/2 is common to three cubes in the above expressions. This can be implemented

separately resulting in the following equivalent expressions.

fa = 2/8 2/3 + 2/8 2/4 + 2/5

/- = 2/8 2/5

/s = 2/1 2/2

Cube extraction, or finding common single cube divisors, was introduced in [14].

In [63] it was shown how rectangular covering can be used for this purpose. Rectangular

covering is done on the cube-literal matrix, which is now described. A row in this matrix

corresponds to a cube in the original expressions. A column corresponds to a literal. An

entry is 1 if the literal is present in the cube and 0 otherwise. For the set of expressions in

the example above we have the following cube-literal matrix.

Vl 2/2 2/3 2/4 2/5

2/1 2/2 2/3 1 1 1 0 0

2/1 2/2 2/4 1 1 0 1 0

2/5 0 0 0 0 1

2/1 2/2 2/5 1 1 0 0 1

As in Section 5.4.1, a rectangle, IZ, in this matrix is a sub-matrix, {5r,5c}, of non-zero

entries. Sr and Sc are the sets of rows and columns in this sub-matrix. A rectangle is

this matrix corresponds to a cube common to the cubes in 5,.. This is the cube formed

by the intersection of the literals in Sc. In this example, the rectangle {i2(l,2,4),C(l,2)}

corresponds to the cube ij\ y2 which is a common divisor of the cubes tji y2 //.$, iji y2 y<\ and

Vi 2/2 2/5- As shown above this may be extracted and implemented separately.

5.5. CIRCUIT DECOMPOSITION USING COMMON CUBES 121

5.5.2 Common Cube Extraction with Multiple-Valued Variables

Let us now examine cube extraction using the cube-literal matrix when a single MV

variable may be present. This is best explained through the following example. Consider

the following set of expressions and the corresponding cube-literal matrix.

fa = X{1} 2/1 y2 2/3 + X{2} 2/1 2/2 2/4 + 2/5

fa = X<3> 2/1 2/2 2/5

2/1 2/2 2/3 2/4 2/5

XM 2/1 2/2 2/3 1 110 0

X<2> 2/1 yi 2/4 1 10 1 0

2/5 0 0 0 0 1

X<3> 2/1 2/2 2/5 1 1 0 ' 0 1

Note that in this case the cube-literal matrix does not have any entries corre

sponding to the MV variable. A rectangle is defined as in the binary case. However, it is

interpreted differently. The columns of the rectangle specify the binary variable component

of the common cube. The MV literal in the common cube is the union of the MV literals

of each of the cubes corresponding to the rows in the rectangle. Thus, for the rectan

gle, {£(1,2,4), C(l,2)}, the common cube is 2/1 2/2 X^1,2'3K Extracting this results in the

following decomposition.

fa = 2/8 *{1} 2/3 + 2/8 X& 2/4 + 2/5

fa = 2/8X<3>2/5

fa = X^yiy2

Let IZ be a rectangle in the cube-literal matrix. Let aiXSi be the label of row ?*,- and

/ij be the label of column Cj in IZ. a, has only Uterals of binary-valued variables. Thus row

r,- represents cube V'i = <*i XS: [YljPj]. 0, can be rewritten as a, XSi f[U/X"5'] [FI./A'])«
Since f[UfX5'] [IT//^/']) 1S independent of •/, this is a common cube to all </\'.

122 CHAPTER 5. MULTI-LEVEL LOGIC MINIMIZATION

As in Section 5.4.2 the concept of incompletely specified literals is applicable here.

If X takes values from P = {0,1,2,3} then /8 can be equivalently expressed as:

h = X^Myi y2

As with kernel intersections, we are interested in seeing if we can use this technique

to extract all common cubes for all possible encodings. The following example illustrates

the difficultyin doing this when the common cube in the encoded implementation consists

of only the encoding variables. Consider the following expressions and encoding:

fa = X^yi

fa = X&y2

JW :n x<2> :01

Using the variables so and «i for the encoding, weget the following encoded implementation.

fa = s0 si 2/1

fa = s~o si 2/2

Here, si is a common cube among the two expressions. However, this cannot be obtained

by first detecting a common cube factor in the expressions with the mv variables and then

selecting an encoding. This is because at least one common literal is needed in the cube-

literal matrix for a rectangle to be extracted, and this literal must be of a non-encoding

variable. There is no such common literal in this example.

However, as long as the common cube in the encoded implementation has at least

one variable besides the encoding variables then the technique outlined in this section is

sufficient to obtain it as shown by the following theorem.

Theorem 5.5.1 Let f be a single cube common factor in fj = £(n,E), not comprised

entirely of the encoding variables. Then there exists a single cube common factor, f, in n

such that f = £{f,E).

Proof. Let f —fi s where (5 is the cube with the non-encoding variables and s is the cube

with the encoding variables. Let c, be a cube in /) for which / is a common cube. Then c~

can be written as / a4 .s,- where a, is the cube with the non-encoding variables and .$, is the

cube with the encoding variables. Corresponding to this cube there is a cube c, = £~l(c~i, E)

5.6. CIRCUIT SIMPLIFICATION 123

in r}. a = cti (3 £~l(ssi,E). Let £~1(ssi) be the MV literal XSi. Therefore, a = a, (3 XSi.

Thus using the cube-literal matrix we can extract the cube, / = (3 [\JiXSi] = /? Xu«'5, that

is common to each c,-. Now we need to show that £(f,E) = f. Let £~l(s,E) = Xs. Note

that / can be equivalently expressed as, / = (3 xUiSi^s~UiSih Thus, / may be expanded to

(3XS. Now, £(/,£) = (3 s = /. •

5o6 Circuit Simplification

The previous sections presented techniques for circuit decomposition in Mv-networks.

It is now shown how the other common multi-level optimization technique used with Boolean

networks, viz. node simplification can be used with almost no modification in the context

of the MV-network. Node simplification involves using a two-level logic minimizer for each

node function. (Recall that each node function is stored in sop form.) Since we know how

to do two-level minimization with MV variables [64], nothing new needs to be developed

here.

In [3] it was shown how implicit don't cares in the Boolean network are used in

node simplification to capture logical relationships between different nodes in the network.

These are now examined in the context of the MV-network. The satisfiability don't care set

(sdc) for a Boolean network is defined as the set of signal values in the network that are

inconsistent with the network. For node i in the network this is expressed as:

SDC(i) = fafi+yiTi

This is the set of values for which the function computed by the node is not consistent with

the output value of the node. The complete set of satisfiability don't cares for a network is

the union of the contributions of all the nodes, i.e. SDC = Ui SDC(i). Note that each node

function in the MV-network is binary-valued, therefore its complement is defined. Thus, the

equation of SDC(i) is still valid in the MV-network, only the domain now is P x B^m~lK

As an example consider the function represented by the expression:

h = -Y<°> y, + X««> y2

Here X takes values from P = {0,1,2}. fa can be computed using DeMorgan's Laws.

/3 = (X{°> + iJi)(XU>2> + y2) = (X^2> + 2/1)(X<°> +2/2) =-Y<°> 2/1 +X*1'2* 2/2

124 CHAPTER 5. MULTI-LEVEL LOGIC MINIMIZATION

This is then used to compute SDC(Z).

SDC(3) = (X<°> 2/1 + X^2> 2/2)2/3 + (*<°> 2/1 + X^2> y2)y3

For a Boolean network, the observability don't care (odc) at a node is the set

of primary input values for which the output of this node is inconsequential (or cannot be

observed) at the primary outputs. For node i in a Boolean network ODC(i) is given by:

ODC(i) =n(Fjy.$Fjyr)

Here Fj is the function at primary output j and Fj indicates the cofactor operation of

this node function with literal 2/;. The cofactor operation is defined as follows.

Definition 5.6.1 The cofactor of a function f with respect to a literal I, denoted by t\, is

the function when I evaluates to 1.

Again note that in the MV-network each node function is binary-valued, hence cofactor with

respect to a signal and its complement are defined and therefore the equation for ODC{i)

is still valid. As an example consider the following expressions that describe an MV-network

with a single output 2/4.

fa = *{0'1}2/i

fa = X^yi

fa = 2/2 2/3

Now, fatj7 = X<2> 2/1 and /4j6 = 0. Thus,

01X7(2) = X<2> 2/1^0 = X*0'̂ + 2/1

From the above we see that node simplification with implicit don't cares is done in

an MV-network in exactly the same way as in a Boolean network. The concept of permissible

functions introduced in [60] for nor gates is extended to Boolean networks in [68]. Here

it is also shown how a two-level minimizer is employed to use them. Thus, by a similar

argument to that used before, this is directly applicable in an MV-network.

5.7. LOGIC VERIFICATION 125

5.7 Logic Verification

Combinational logic verification (also referred to as Boolean comparison) is an

important part of any logic synthesis system. This is typically used to certify that the final

circuit description is functionally equivalent to the initial specification. However, it may

also be used during circuit optimization as in [8] to verify that the addition/removal of

certain connections is valid.

Verifying the equivalence of two functions fi and f2 is equivalent to checking that

the function f\W $2 ls always true. Thus, equivalence checking reduces to verifying that

a function is a tautology. Almost all verification techniques use some form of Shannon's

decomposition ([35]). This is a decomposition of a function, f, in terms of the functions f x

and %, i.e. the functions in the two half spaces x = 1 and x —0. It is given by:

f = xfx + xfx

The following classic result makes this decomposition useful in tautology checking.

Theorem 5.7.1 f = 1 if and only iffx = l and ix = 1.

Thus, checking for f = 1 is replaced by the checks for fx = 1 and fx = 1. Theorem 5.7.1 is

used recursively on fx and f^. Each level in the recursion reduces the number of variables

in the function by 1 until finally no variables remain, i.e. the constant functions 0 and

1 remain. This decomposition is for binary-valued x. However, it is easily extended to

multiple-valued X [64] as follows:

f = X<0>fY{0} + .. .X*"-1^-!}

Here fyi.} is the value of f when X is equal to i. The following extension to Theorem 5.7.1

provides the recursive tautology check.

Theorem 5.7.2 f = 1 if and only if, for all i, f^to = 1.

This extension enables us to use all the Boolean network comparison techniques for mv-

networks. Binary decision diagrams (BDD's) [18] have been used very successfully for logic

verification [51]. These are a compact representation of a complete Shannon decomposition

tree. A BDD is a canonical form of a binary-valued function of binary-valued variables.

Hence verifying that two functions are identical reduces to verifying that their BDD's are

126 CHAPTER 5. MULTI-LEVEL LOGIC MINIMIZATION

identical. In [74] the multiple-valued extensions to BDD's are described. These are nat

urally referred to as multiple-valued decision diagrams (MDD's). It is demonstrated that

MDD's are canonical forms of multiple-valued functions of multiple-valued variables. As

with BDD's the canonical form property of MDD's implies that two functions are equivalent

if and only if their MDD's are identical. This property enables them to be directly used for

verification in MV-networks.

Chapter 6

Practical Experiences

"It's all about as curious as it can be," said the Gryphon.

- Lewis Carroll, "Alice in Wonderland"

The optimization techniques for multi-level logic with multiple-valued inputs pre

sented in Chapter 5 have been implemented as the program MIS-MV [42] which is an ex

tension of Mis to handle multiple-valued inputs. This choice of name arises from historical

reasons. The multiple-valued successor to the two-level logic minimizer espresso was

named espresso-mv; the abbreviation MV standing for multiple-valued. It is only natural

that the multiple-valued extension of Mis be named mis-mv. MIS (Multi-level Interactive

Synthesis), as the name suggests, is an interactive program with the various optimization

techniques described in Section 5.1 being accessible through an interactive user interface.

mis-mv provides the same interface (with some additions) as Mis and defaults to it when

all the inputs are binary-valued. The extensions include the capability of performing input

encoding so that it can be directly used for the input encoding problem, which is the moti

vation for developing these ideas. This chapter examines the practical issues involved in the

implementation, as well as results of using mis-mv for input encoding on a set of examples.

6.1 Implementation Issues

This section describes the interesting implementation issues and problems that are

specific to mis-mv as well as the approaches used to tackle them.

127

128 CHAPTER 6. PRACTICAL EXPERIENCES

6.1.1 Size Estimation in Algebraic Decomposition

In algebraic factorization and decomposition of Boolean networks the sequence of

operations plays a critical part in the quality of the final results. The sequence referred

to here is the sequence in which the algebraic divisors (common kernels and cubes) are

extracted. The choice of a particular rectangle affects both the other available rectangles

as well as the cost of the rectangles. The exact (or globally optimum) solution to algebraic

decomposition is an open problem [63]. The solution accepted in the binary-valued case is

a locally optimal one, i.e. a greedy choice is made at each decision step. The evaluation

of a particular divisor is done by first estimating its size and then using this to determine

the size reduction that would result if this divisor were selected. Determining the size of a

divisor is not a problem in the binary-valued case since the size is directly measured in terms

of the number of literals in the divisor. Consider the following example. The expression

2/i 2/2 2/3 2/4 + 2/i 2/2 2/3 2/5 is factored as 2/1 2/2 2/3 (2/4 + 2/5) by extracting the common cube

2/i 2/2 2/3- The size of the common cube is three literals and extracting this common cube

made it possible to represent the same function in five Uterals instead of eight, a saving of

three literals.

Unfortunately in the MV case there is no direct correspondence between the size

of the MV-literal and its final encoded implementation. Consider the following example:

XW 2/1 2/2 + XM 2/1 2/3 is factored as JT<°.i> 2/1 (X<0>M y2 + .yOHw] y3); X takes
values from {0,1,2,3}. Since the size of the encoded implementation of the MV-literals is

a function of the encoding selected, it is not possible to predict the value of this factor in

terms of the size reduction obtained in the encoded implementation. In fact, depending

on the encoding, the factor may even result in an increase in size. Consider the following

encoding Ei and the encoded implementation of the initial and factored expressions.

X<°> : 00 XW : 10

X<2>:01 X<3>:11

Initial expression:

Factored expression:

so si 2/1 2/2 + sq s~i 2/1 2/3

S\ 2/1 Uo 2/2 + -50 2/3)

Thus, cube extraction results in a saving of two literals. However, consider the following

6.1. IMPLEMENTATION ISSUES 129

encoding E2.

X<°>:00 XW:11

X<2>:01 X<3>:10

Initial expression:

Factored expression:

so si 2/1 2/2 + 50 5a 2/1 2/3

(s0si + sQ si) yi (so 2/2 + s0 y3)

In this case, MV-cube extraction actually results in an increase in size! Thus, the potential

reduction in size obtained using a factor must be estimated taking into account the effect

of encoding. However, no encoding exists yet; the minimization is being done in order to

select one. This is a cyclic dependency which must be broken.

The first attempt to model the effect of the encoding assumed that each MV-literal

has an encoded implementation that is a single cube in the encoding space of minimum

dimension, i.e. the encoding is minimum length1. This turns out to be a poor estimate of

the effect of the final encoding. The reason for this is that the final encoding is the same

for all the MV-literals and in most cases the encoded implementation of each MV-literal will

not be just a single cube. This is a limitation of this modelling.

This led to the next approach in which an actual encoding is done for the current

MV-network. However, the MV-literals are not replaced by their encoded implementations;

the codes are just used in the size estimation for factoring. This approach has the advan

tage that the estimated size is valid for at least one encoded implementation. It has the

disadvantage that a relatively slow step of encoding must be done for the estimation. The

other potential problem with this is that the final encoding may be very different from the

one selected during estimations. However, based on experience with using this, it appears

that there are no big changes between the estimates and the results obtained with the final

encoding. This is the approach currently being used in mis-mv. However, there is potential

for improvement here.

6.1.2 Incompletely Specified Literals

In Chapter 5 the notion of incompletely specified literals was introduced. An in

completely specified literal captures the flexibility available to each literal in terms of how

lThe minimum number of bits needed to encode a p-valued variable is [lg(p)"|.

130 CHAPTER 6. PRACTICAL EXPERIENCES
«

much it can be expanded. In mis-mv incompletely specified literals are used in two different

ways. These are now considered individually.

Node Simplification

As described in Chapter 5 each node function in the MV-network may be simplified

using a two-level minimizer (with or without a don't care set). The result of using a two-

level minimizer is a prime and irredundant expression 2. Removing a redundant cube while

making an expression irredundant is obviously desirable since there are fewer cubes in the

resulting expression. However, as was observed in Chapter 5 expanding the MV-literal need

not result in a size reduction in the encoded implementation. Let Xj3 be a literal, X^3
be the fully expanded literal, (i.e. no other element can be added to 5j+ while preserving

c.—

logical functionality) and XJJ be the fully reduced3 literal, (i.e. no other element can be

deleted from Sf while preserving logical functionality). The range of possibilities available

to Xj3 is captured by the incompletely specified literal xf3' *5j ~Sj \ This is illustrated
through an example. Consider the following prime and irredundant expression: 2/1 X*0* +

2/2 X*1* + 2/1 2/2 X^0'1,2*. The third cube may be reduced in X resulting in the equivalent
expression: 2/1 X^ + 2/2 X^ + 2/1 2/2 X&}. Thus this expression may be represented
using incompletely specified literals as: 2/1 X^0* + 2/2 X^ + 2/1 2/2 Xt2NM.

It should be noted that the form of the final reduced expression depends on the

order in which the cubes are reduced [9]. This in turn determines the incompletely specified

literals. How a cube may be reduced depends on other cubes in the sop expression.

Local Observability Don't Cares

Section 5.6 described how information about the circuit structure may be captured

through implicit don't cares which may then be used in node simplification. While the SDC

is relatively easy to compute, computing the ODC is computationally very intensive and

not feasible for most real circuits. However, a very limited form of the observability don't

care information can be easily captured by just looking at the immediate neighborhood of a

particular node in the network. Consider the following example which consists of two node

"A two-level expression is irredundant if no single cube may be deleted from this expression while preserv
ing functional equivalence. It is prime if no literal may be expanded while preserving functional equivalence.
Expanding an MV literal Ay involves replacing Xj3 with A".J , where Sj C Sj'.

aReducing a literal Xj3 involves replacing A'*-* with xf1' , where Sj' CSj.

6.1. IMPLEMENTATION ISSUES 131

functions:

A = ft ft *{0lW> + 94

fe = ft -Y{0'1,3'4> + to *<">

X takes values from {0,1,...,7}. Note that X^3,4,5'6,7^ is an observability don't care for

/6. This is so because in the only place that fa is used, it is ANDed with X^0,1'2* and

thus for each product term of fa only the values of X that are contained in {0,1,2} are of

any interest; all others will be deleted by the and. These observability don't cares can be

directly utilized by capturing them in the form of incompletely specified literals in fe as

follows:

fa = 2/1 2/6 *{0'1'2> + 2/4

fa = 2/2 X{0'1}[3,4,5'6'7] + 2/3 X{2}[3'4'5'6'71

In this example, fa is being used in only one cube, i.e. ye appears in only one cube. In

general, a variable y, corresponding to node function /, will appear in several cubes. Let

/« jv;5,[D,] (rjfc /«_) be tne jth sucn cube# /» [8 a literal of y and llk is a literal of some other

binary-valued variable yk. Let A(fa) = Uj(Sj UDj), where j varies over all the cubes in fk.

A(fa) contains all the values of X that may appeal- in any cube of fk. Similarly, let A(fk)

be the set that contains all values of X that appear in fk. For literal /&, let A(lk) —A{fa)

if lk = yk and A(lk) = A(fk) if lk = yk. Let O, = (5,- U Di)f](^A(lk)). For X £ 0„

XSi[Di) (pjfc /jj evaluates to 0. Thus, the value of/' is inconsequential for these values ofX,

i.e. Xp~°{ is a don't care for / at cube i. Xni^p~0i^ is a don't care for / at each cube i.

This may be directly used to modify the literals of X in /. Consider the following example

in which X G {0,1,2,3,4}.

fa = X<°'2}[3]

fa = X{0>1}[2'3]

fa = 2/1 2/2 X^>W

fa = X{2}[0'31

fa = 2/1 2/4 X{4}[0)

The local observability don't cares for f\ need to be computed. At fa it is A"*2,3,4}. At fa

it is A*1'2,3}. Combining these gives X^2,3* as a don't care for f\. This enables f\ to be

re-expressed as A'̂ °^2'3L

132 CHAPTER 6. PRACTICAL EXPERIENCES

Since only the fanout nodes and their immediate fanins are considered, computing

this local observability don't care information is a fast operation. It should be pointed

out that the don't cares exploited in determining the incompletely specified literals are

compatible don't cares [68]. All these don't cares are valid simultaneously and may be used

independently of each other.

6.1.3 Satisfiable Constraint Matrices

Theorem 5.4.2 specifies that a factorization suggested by a rectangle in the co-

kernel cube matrix is valid if and only if its constraint matrix, M, is satisfiable. It is also

demonstrated in Section 5.4.2 how a common factor may be extracted using a reduced con

straint matrix, Mr, that is satisfiable. Thus, if M is not satisfiable there are two possibilities

for deriving a satisfiable matrix from it.

1. Obtain a sub-matrix that is satisfiable. This is accomplished by deleting some rows

and/or columns in M.

2. Derive a satisfiable reduced constraint matrix Mr from M. This is done by expanding

some entries of M (deleting some values from the superscripts of the entries).

These are now considered individually. The following example is used to illustrate both

possibilities. Consider the network with the following two functions:

fe = 2/1 2/2 -Y{1'2} + 2/1 2/3 -Y{2} + 2/i 2/4X<3>

fa = 2/5 2/2 *<2'3> + 2/5 2/3 X& + 2/5 2/4*<3'4>

The following constraint matrix is obtained from the rectangular covering formulation. The

details of the formulation have been omitted here for brevity.

M =

Note that M is not satisfiable since:

J{i.2} jv;{2} XW

jy;{2,3} XW X<3-4>

([u,-Ma] n [UjMij]) = A-<l'2i3>nX{1'2'3>

= _y{1'2'3}

6.1. IMPLEMENTATION ISSUES 133

Satisfiable Sub-mat rices

There are several possible sub-matrices of M that are satisfiable. Column 1 may

be deleted resulting in Ml shown below.

X<2> X<3>

. x(2> X<3'4>

Alternatively, column 3 may be deleted resulting in M2 shown below.

A" {2,3} X<2>

Mi =

M2 =

Both Mi and M2 are satisfiable.

Similarly, deletion of either row is sufficient to generate a satisfiable sub-matrix.

However, a matrix with a single row is probably not very useful. The problem of choosing

the optimal set of rows and columns that need to be deleted can be formulated as a minimum

cost covering problem which is defined as follows.

Minimum Cost Covering Problem: Let A be an m x n binary matrix, i.e. each A,_, (E

{0,1}. Associated with each column j in A is a cost for that column denoted by

Cj. Find a binary row vector x such that .4-xT > (1,1,...,1)T and 5Z"=i Xj •Cj is
minimum.

The constraint A-x.T > (1,1,..., 1) specifies that for each row i there is at least one column

j such that Aij = 1 and Xj = 1. Column j is said to cover row i. The minimum cost covering

problem is to find a set of columns that cover all rows with least cost. The minimum covering

problem can also be viewed as a minimum cost monotone 4 CNF (conjunctive normal form)

satisfiability problem, xj is a binary-valued variable indicating whether column j is included

or not in the cover (xj = 1 indicates that it is included). Each row of .4 represents a clause

corresponding to the disjunction of variables for the non-zero elements in the row. Since

each clause is to be satisfied (i.e. at least one xj should be 1 for each row), the covering

problem is equivalent to finding an assignment of-the x/s that satisfies the conjunction

of these clauses. The decision problem for minimum cost covering is NP-complete [31]:

however efficient heuristics exist which result in reasonably fast solutions for most practical

instances [63].

4A Boolean expression is said to be monotone if each variable appears in either uncomplemented or
complemented form but not both.

134 CHAPTER 6. PRACTICAL EXPERIENCES

The formulation of optimal row/column deletion as a minimum cost covering prob

lem is done as follows. There is a column in .4 for each row r, and each column Cj of M.

The columns of A will subsequently be referred to by the corresponding rows and columns

in M, i.e. as r,- or Cj. Let My be an entry of M where the satisfiability condition is violated.

Let V{j be the set of values that cause the violation, i.e. Vy = ([u,-My] n [UjMy]) - My.

To get rid of this violation one of the following must be done:

1. Delete row i.

2. Delete column j.

3. Delete all rows k such that (Mkj f*l Vy) ^ (f>. Let R be the set of these rows.

4. Delete all columns I such that (M;/ DVy) ^ <f>. Let C be the set of these columns.

This condition needs to be captured in A. Let xr{ be the binary variable indicating if r,

is deleted. Similarly, xCj specifies if cj is deleted. Satisfying the above condition implies

finding a satisfying assignment for:

xri + xCj + II xn< + IIx*
k<=R l€C

Note that this is not a CNF expression. Since the column covering formulation has a direct

correspondence with CNF expressions, this expression needs to be converted to a CNF. The

equivalent CNF is:

II H(Xri + xcj + Xrk + XCl)
k€R l€C

Each clause in this expression specifies a rowin A with a 1 in columns r,-, c>, rk and c/.

Let column j correspond to a row (column) in M. The cost, Cj, of column j of .4

should reflect the increase in size of the circuit if column j is included in the cover, i.e. the

corresponding row (column) deleted from M. An approximation to this is the estimated

size of the cubes in the original expressions corresponding to this row (column) in M. For

the given example and column C3, the cost is the estimated sizeof the cubes 2/1 2/4 X"^3^ and

2/5 2/4 X^3,4*. The size estimation is done as described in Section 6.1.1.

Reduced Constraint Matrices

As with satisfiable sub-matrices there are several possible ways to derive a reduced

constraint matrix from a given constraint matrix. The value 3 may be deleted from M21

6.1. IMPLEMENTATION ISSUES 135

giving M3 shown below.

M3 =

M4 =

X<U> A^2> X<3>

X(2} xW X<3'4>

Alternatively the value 3 may be deleted from M13 giving M4 shown below.

X<1-2> X<2> X<>

X&M X<2> X<3'4>

Both these matrices are satisfiable. The problem of finding the optimal set of values to be

deleted (under a cost function described later in this section) can again be formulated as a

minimum cost covering problem. In this case each column of A is associated with a 3-tuple

(fc, /,.D), where the set of values D need to be deleted from M*/. As before, consider a

violation of the satisfiability condition at My and let Vy be the set of values whose deletion

will remove the conflict, i.e. Vy = ([u,My] n* [UjMy]) - My. The values in Vy may be

deleted from either row i or column j. Thus, one of the following needs to be done:

1. For each k such that Mkj n Vy ^ <f>, let Dkj = Mkj n Vy. Delete Dkj from all such

Mjy's i.e., select all columns (k,j,Dkj) in the column cover. Let Ci be the set of these

columns.

2. For each / such that M,j n Vy ^ <f>, let Da — M*,-/ n Vy. Delete Du from all such

M,/'s, i.e., select all columns (i,l,Du) hi the column cover. Let C2 be the set of these

columns.

Let xc be the binary variable specifying if the column c is included in the cover or not. The

condition that needs to be satisfied is:

n *cl4 + n x~.j

This is equivalent to the CNF expression:

n n (*cu- + *C2J)
ci;€Ci C2JGC2

This is captured by adding a row in .4 with ones in columns cu and c2j.

The cost of a column should reflect the size of the extra logic needed to separately

implement that part of the cube that corresponds to the deleted entries. For the example

given and column (1,3,A'̂ 3^), it is the estimated size of the cube 2/1 2/4 A'̂ 3^. As before the

size estimation is done as described in Section 6.1.1.

136 CHAPTER 6. PRACTICAL EXPERIENCES

6.1.4 The Encoding Problem

Section 5.4.2 formally introduced encodings and encoded implementations. This

section states the encoding problem that needs to be solved and the approaches used in

mis-mv to tackle this. Given an MV-network, an encoding needs to be selected such that

the size of the encoded network is minimized. The size is measured in terms of the factored

form literals of the encoded implementations of each node function. This is a difficult task

and there seems to be no easy solution to it. An approximate solution to this can be found

by minimizing the number of literals in sop form in the encoded implementation of each

literal of X that appears in any node function. This is a relatively easier task to handle.

This problem is referred to as the minimum literal encodingproblem and is stated precisely

below.

Problem PI: Minimum Literal Encoding Problem : Let 5 be a set of incompletely

specified literals of X. Find an encoding E, such that

£ Wit8(£(Xs*D*\E))
Xsd°i^S

is minimized. #lits(£(XSilDiKE)) is the number ofliterals in £(XsADi\E).

Input encoding for two-level implementations is currently handled by solving the

following problem which is referred to as the minimum cube encoding problem [59, 79].

Problem P2: Minimum Cube Encoding Problem : Let 5 be a set of Uterals of X.

Find an encoding E, such that

£ #cubes(£(Xs<,E))
Xsi€S

is minimized. #cubes{£(XSi, E)) is the number of cubes in £(XSi,E).

Pi differs from P2 in two ways. First the cost function being minimized is different.

The second and more critical difference is that P2 does not consider incompletely specified

literals. These differences make it difficult for existing techniques for solving P2 to be used

directly or to be easily modified for Pi. As a result an approach had to be developed to

tackle PI.

Since this was not the main focus of this research, a solution was sought that could

be implemented quickly. Algorithm sa_encoding described in Figure 6.1 is a very simplistic

6.2. EXPERIMENTAL RESULTS 137

algorithm based on the concept of simulated annealing [41], which has been successfully used

to tackle several combinatorial optimization problems.

In the inner loop of the annealing, a new encoding is selected by doing a pairwise

swap of two codes in the encoding. If this results in a smaller size, then the new encoding

is accepted. If not, it is accepted with probability e~7. 8 is the increase in size after the

swap. The function toss_a_coin outputs a 1 with probability p and a 0 with probability

1-p. size(S,E) is ^2xsAD^€S if:^'ls(£(Xs^D^JE))1 and is computed as follows. The sum
of product expression £(X5»', E)) is minimized with a two-level minimizer with £(X D,\ E))

as the don't cares. The cost function for this minimization is the number of literals in the

SOP form 5. Since this step is to be performed in the inner loop of the algorithm only a

single expand step is used instead of a complete two-level minimization.

The temperatures are selected by a piece-wise linear cooling schedule. Two dif

ferent rates of cooling are used: an initial rapid cooling and a final slow cooling. There

is equilibrium at a particular temperature if three consecutive passes do not result in any

change in size. As will be seen in Section 6.2, the quality of results obtained from algorithm

sa_encoding is reasonably good. However, it is potentially very slow.

The definition of the minimum literal encoding problem has prompted other re

searchers to look at solutions for it. Very recently a solution has been proposed [66], that

is based on the notion of dichotomies [78, 80]

6.2 Experimental Results

Two sets of experiments were conducted using mis-mv for input encoding. These

were directed towards answering the following two questions.

1. How well does mis-mv compare with other existing input encoding programs such as

NOVA [79], MUSTANG [25], jed-i [45] and MUSE [34]?

2. What is the relative importance of the different multi-level optimization techniques?

The example descriptions used for these experiments are the 1989 International

Workshop on Logic Synthesis (IWLS) benchmarks of FSM descriptions [47]. The state

6The primary cost function generally used in two-level minimization is the number of cubes in the sop
form. However, when a two-level minimizer is used in a multi-level network for node simplification, the cost
function used is the number of literals in the SOP form.

138 CHAPTER 6. PRACTICAL EXPERIENCES

/* inputs: S
outputs: E (the encoding)

*/

sa_encoding(S)

{
E = random.encoding(S);
foreach T{ /* T is the temparature */

repeat{
new-E = pairwise_swap(E);
6 - size(S, new_E) - size(S.E);
if (6 < 0)

P = i;
else

p = e " *;
accept = tossja_coin(p);
if(accept){

E = new_E;

}
}until equilibrium;

}
return E;

}

Figure 6.1: Algorithm sa_encoding

6.2. EXPERIMENTAL RESULTS 139
«

variable that is an input to this description is multiple-valued. The state variable that is

an output of this description is kept one hot; i.e. there is a separate signal for each value.

This is to enable the experiments to focus on input encoding and exclude output encoding

effects [56]. The experiments were conducted as follows:

• The minimum-length encoding was always used.

• A single simplified Boolean script 6 was used both for multi-valued and binary-valued

optimization. The script has two main parts, node simplification followed by algebraic

restructuring. Encoding may be done at any point in the script.

• The script was run twice in all cases.

• For mis-mv:

1. Espresso was run on the unencoded machine.

2. All or part of (depending on the stage where the encoding is done) the first script

was run on the MV-network.

3. The inputs were encoded, using the simulated annealing algorithm.

4. Any remaining part of the first script and the complete second script was run on

the Boolean network.

• For NOVA, MUSTANG, jedi and muse:

1. These are general encoding programs tackling input, output and input-output

encoding. They were run in input oriented mode with the appropriate command

line options, ("-e ih" for nova, "-p -c" for MUSTANG, "-e i" for JEDI and "-e p"

for MUSE.)

2. Espresso was run on the unencoded machine.

3. The symbolic input was encoded.

4. Espresso was run again, using the unused codes as don't cares.

5. The script was executed twice to be compatible with the two scripts used for

mis-mv.

This is the standard Boolean script distributed with MIS release 2.1.

140 CHAPTER 6. PRACTICAL EXPERIENCES

In order to examine the relative contributions of the different multi-level opti

mization techniques, different runs of mis-mv were considered with the encoding done at

different steps.

1. At the beginning. These results reflect the quality of just the encoding program since

at this point it has exactly the same two-level information as the other programs.

2. After simplify. These results reflect the advantage gained by including node simplifi

cation with the sdc.

3. After algebraic optimization. These results reflect the additional advantage gained by

considering the algebraic restructuring techniques of MIS-MV.

Table 6.1 contains the results, expressed as the number of factored form literals in the

encoded implementation. The following observations are made from these results.

1. mis-mv performs very well in comparison with the other programs. Its result is

consistently either the best or close to (within 5%) the best among all programs.

In addition there are some cases where it does significantly better than the other

programs (e.g. keyb, tbk).

2. The column labelled beginning reflects the performance of just the encoding algorithm.

These results indicate that it does a reasonably good job of encoding in comparison

with the other programs.

3. For a large number of cases the node simplification step in mis-mv seems to contribute

the most.

However there are two cases (keyb and tbk) for which the algebraic optimizations are

the main contributors to the reduction in area. These are also the cases where mis-mv

clearly out-performs the other programs. From this it seems that on the average MIS-

MV will do about as good or slightly better than other programs; when it can extract

useful algebraic factors in the MV-network it will clearly out-perform other programs

that do not exploit this information.

4. There are some examples (e.g. ex2) where encoding after algebraic optimization results

in larger circuits in comparison with encoding at an earlier stage. This directly points

to inaccuracies in size estimation during algebraic decomposition.

6.2. EXPERIMENTAL RESULTS 141

example NOVA MUSTANG JEDI MUSE best

MIS-MV

beginning simplify algebraic

opt.

bbara 106 96 96 99 84 84 84 85

bbsse 151 148 125 126 130 130 132 131

bbtas 32 37 34 36 31 35 31 31

beecount 70 65 57 60 56 62 56 58

cse 214 208 189 192 191 191 199 195

dkl4 98 108 97 102 79 97 79 81

dkl5 65 65 65 65 65 65 68 69

dkl6 351 314 254 244 225 225 247 261

dkl7 58 69 63 58 58 58 62 63

dk27 38 34 30 29 27 27 27 27

dk512 93 78 73 73 68 70 68 69

donfile 186 195 132 131 123 127 123 123

exl 246 252 256 239 232 240 232 236

ex2 167 197 179 169 143 143 144 154

ex3 98 98 87 96 82 82 86 82

ex4 84 73 71 72 72 90 74 72

ex5 83 80 79 79 67 67 69 69

ex6 98 90 91 92 84 85 85 84

ex7 94 100 93 84 78 89 79 78

keyb 195 203 186 180 146 186 172 146

kirkman 168 181 175 195 160 169 166 160

lion 16 14 16 16 16 16 16 16

lion9 43 61 55 55 38 40 38 38

markl 98 99 94 92 90 90 94 92

mc 32 30 32 30 30 35 30 30

modulol2 71 77 58 72 71 71 71 71

opus 82 77 83 - 70 70 87 70 74

planet 551 538. 454 511 466 512 466 473

si 345 377 347 291 249 335 253 249

sla 253 264 262 195 214 217 214 225

sS 48 47 50 52 48 52 48 48

sand 542 519 552 498 509 523 509 528

shiftreg 35 34 24 25 24 24 24 24

sse 151 148 125 126 130 130 132 131

styr 501 460 413 418 438 442 438 465

tav 27 27 27 27 27 27 27 27

tbk 567 603 463 570 393 426 456 393

trainll 92 88 65 79 59 60 59 59

train4 14 18 14 14 14 14 15 15

total 6163 6172 5566 5562 5087 5423 5243 5232

Table 6.1: Input Encoding Comparison

142 CHAPTER 6. PRACTICAL EXPERIENCES

6.2.1 An Example MIS-MV Run

In this section an example circuit is considered at various stages of optimization

using mis-mv. The circuit selected for this purpose is keyb since it helps illustrate several

interesting aspects of the optimization in a single example. In the rest of this section a de

scription of the circuit as output by mis-mv is given along various points in the optimization

script and interesting aspects highlighted. This description is in terms of the expressions

describing the node equations.

Initial Circuit

Figure 6.2 shows the description of the initial circuit. The circuit has seven binary-

valued inputs named vO, vl,..., v6 and a single MV variable v7 which has nineteen possible

values numbered 0, 1,..., 18. The complement of a binary-valued variable, v, is written

as v\ A literal of v7 is written as a set of values. For example, v7^0,1^ is written as

{v7.0, v7.1[]}. An incompletely specified literal such as v7^°'1H2'3l is written as {v7.0,

v7.1[v7.2,v7.3]} There are twenty one binary-valued outputs named v8.0, v8.1, ...,

v8.20. The node functions and output variables are referred to by the same name. If the

name is on the left hand side of an equation, it represents the function; if it is on the right

hand side of the equation, it represents the output variable of that function.

After Node Simplification

Figure 6.3 has the circuit description after node simplification. Note that v8.0,

v8.4, v8.6, v8.19 have been re-expressed in terms of the other node functions. This is a

result of using the sdc's from the rest of the circuit in the simplification. These functions

also demostrate the use of incompletely specified literals after node simplification.

After Algebraic Decomposition

Figure 6.4 contains the description of the circuit after algebraic decomposition

using cube and kernel extraction. [23] is a common cube that has been extracted and used

in seven places. [21], [25] and [26] are common kernels. Also, local observability don't

care information is used to derive the incompletely specified literal in {v8.10}. All values

that do not appear in [23] are used as don't cares for this literal.

6.2. EXPERIMENTAL RESULTS

{v8.0} = vO v3 {v7.l[]} + vO v2 {v7.lD} + vO vl {v7.lD} + vO v4 {v7.1[]}
+ vO v5 {v7.lQ} + vO v6 {v7.lD} + vl v4 {v7.1,v7.4a} + vl v5 {v7.1,
v7.4[]} + vl v2 {v7.1,v7.4n} + vl v6 {v7.1,v7.4D} + vl v3 {v7.1,
v7.4[]} + v2 v4 {v7.1,v7.4,v7.7D} + v3 v5 {v7.0, v7.1, v7.4,v7.7[]} +
v3 v6 {v7.0,v7.1,v7.4,v7.7[]} + v2' v3 {v7.2, v7.3, v7.5,v7.6,v7.8,
v7.9[]} + vO {v7.2,v7.3G} + v2 v3' {v7.2, v7.3,v7.5, v7.6,v7.8,v7.9Q}
+ v4 {v7.2,v7.5,v7.8,v7.11[]} + v2 v3 {v7.1,v7.2, v7.4,v7.5,v7.7,v7.8D}
+ v5 {v7.2,v7.5,v7.8,v7.11.v.7.12, v7.14Q} + v6 {v7.2,v7.S,v7.8,v7.11.
v7.12,v7.i4,v7.16d} + vl {v7.2,v7.3,v7.5,v7.6D} + v2 v5 {v7.1,v7.3,
v7.4,v7.6,v7.7,v7.9D} + v3 v4 {v7.1,v7.3,v7.4,v7.6, v7.7,v7.9[]} + v2
v6 {v7.i,v7.3,v7.4, v7.6,v7.7,v7.9[]j +v4 v5 {v7.0, v7.1,v7.3,v7.4,
v7.6,v7.7,v7.9, v7.10D} + v4 v6 {v7.0,v7.1,v7.3,v7.4, v7.6,v7.7.v7.9,
v7.10O} + {v7.17[]} + {v7.18D} + v5 v6 {v7.0,v7.1, v7.3,v7.4,v7.6,
v7.7, v7.9,v7.10,v7.13D}

{v8.1
{v8.2

v3'

v3;

v4J

v4]

vS1

vB1

v6' {v7.0[]}
v6 {v7.0D} + v3' v4' v5 v6' {v7.0D} + v3' v4 v5» v6J

{v7.0D}
{v8.3
{v8.4
{v8.5

= v3 v5» v6'

= vO' vl' v2

{v7.0O}
• v3' v4' v5J v6' {v7.lO}

vO' vl' v2 v3 v4' v5' v6' {v7.3D} + vO' vl* v2' v3' v4' v5' v6J
{v7.2D} + vO» vl' v2» v3 v4' v5' v6» {v7.lD} + vO' vl' v2 v3' v4' v5'
v6

v4

v2

{v8.6
{v8.7
{v8.8

+ vl' v2' v3' v4' v5' v6' {v7.5[]} + vl' v2 v3' v4' vS' v6' {v7.4d} +
vl' v2' v3' v4' v5' v6 {v7.4,v7.6[]} + vl' v2' v3' v4' v5 v6' {v7.4,
v7.6[]} + vl v2» v3' v4' v5' v6' {v7.4D} + vl' v2' v3' v4 v5' v6'
{v7..4,v7.6D}

{v8.9} = vl' v2' v3' v4» v5' v6' {v7.6[]}
{v8.10} = v2' v3' v4' vB' v6' {v7.7d}
{v8.1lj =v2 v3 v4' v5' v6' {v7.9D} +v2» v3 v4' v5' v6' {v7.7Q} +v2

v3' v4' v5' v6' {v7.70} + v2' v3' v4J
v4' v5 v6' {v7.7,v7.9D} + v2' v3' v4:
v5' v6' {v7.7,v7.9[]}

{v8.12} = v2' v3» v4» v5» v6' {v7.90}
{v8.13} = v4' v5' v6' {v7.1(>n}.
{v8.14} = v4' v5' v6 {v7.10[]} + v4' v5 v6» {v7.iO[3} + v4 v5' v6' {v7.10,

vS' v6' {v7.11,v7.12D}
{v7.13d}

v6 {v7.13Q} + vS v6' {v7.13D} + v5' v6' {v7.14D}
{v7.150}

{v8.18} = v6 {v7.15D} + v6' {v7.160}
{v8.19} = vO' vl' v2' v3' v4' v5' v6' {v7.3D} + vO' vl' v2'

v5' v6' {v7.6[]} + vl' v2'
v6' {v7.7D} + v3' v4' vS'

{v7.lQ} + vO' vl' v2' v3' v4' v5' v6 {v7.1,v7.3D} + vO' vl v2' v3'
v5' v6» {v7.1[]} + vO' vl' v2' v3' v4' v5 v6* {v7.1,v7.3[]} + vO' vl1
v3' v4 v5' v6» {v7.i,v7.3[]} + vO vl' v2' v3» v4» v5' v6' {v7.1[]}
= vO' vl* v2' v3' v4' v5' v6' {v7.30}
= vl' v2' v3» v4' v5» v6' {v7.40}
= vl' v2 v3 v4' v5' v6' {v7.6[]} + vl' v2' v3 v4' v5' v6' {v7.4[]J

V7.12C3} + v4'
{v8.15} = vS' v6'
{v8.16} = v5'
{v8.17} = v6*

v6' {v7.l[]} + vl' v2' v3' v4J
v6' {v7.4nj +v2' v3' v4' v5J
+ v3' v4' v5 v6' {v7.0C]} + v3J
{v7.0[]} + v3 vS' v6' {v7.0[]}

{v8.20} = {v7.18[]}

v5' v6 {v7.7,v7.9D} + v2' v3»
v5' v6' {v7.80} + v2' v3' v4

v4 v5' v6' {v7.0[]J + v3'
+ v4' v5' v6' {v7.10[]} + v5' v6' {v7.13[]}

v3» v4'

v3' v4J

v6 {v7.0a}
v4' v5' v6'

v5!

v5<

Figure 6.2: keyb: Initial Circuit

143

144 CHAPTER 6. PRACTICAL EXPERIENCES

{v8.0} = {v8.5}' {v8.8}' {v8.1l}' {v8.12}' {v8.14}' {v8.16}» {v8.18}'
{v8.19}' {v7.0,v7.1,v7.2,v7.3,v7.4,v7.5,v7.6,v7.7,v7.8,v7.9,v7.10,
V7.11,v7.12,v7.13,v7.14,v7.16,v7.17,v7.18a}

{v8.l} = v3' v4' vS» v6» {v7.00}
{v8.2} = v3' v4* v5' v6 {v7.0[]} + v3» v4' v5 v6' {v7.0[]} + v3' v4 vS' v6'

{v7.0D}
{v8.3} = v3 v5» v6' {v7.0Q}
{v8.4} = {v8.19} {v7.1[v7.2,v7.5,v7.8.v7.9,v7.11,v7.12,v7.14,v7.15, v7.16,

v7.17,.v7.18]j
{v8.5} = vO' vl' v2' v3' v4' v5' v6 {v7.1,v7.3[]} + vO' vl' v2' v3' v4' v5

v6' {v7.1,v7.3D} + vO' vl' v2' v3' v4 v5» v6' {v7.1,v7.3D} + vO' vl'
v2 v3 v4' v5' v6' {v7.3D} + vO' vl' v2' v3 v4' vS' v6' {v7.lO} + vO'
vl' v2 v3' v4' vS' v6» {v7.ia} + vO' vl v2' v3' v4» v5» v6» {v7.1[]} +
vO vl' v2' v3' v4' v5» v6' {v7.1[]} + vO' vl' v2' v3' v4' vS' v6' {v7.2[]}

{v8.6} = {v8.19} {v7.3[v7.2,v7.5,v7.8,v7.9.v7.11,v7.12,v7.14,v7.15,
v7.16,v7.17,v7.18]}

{v8.7} = vl' v2» v3» v4' v5» v6' {v7.4[]}
{v8.8} = vl' v2* v3' v4' v5' v6 {v7.4,v7.6D} + vl» v2' v3' v4' v6 v6'

{v7.4,v7.6D} + vl' v2» v3' v4 v5» v6' {v7.4,v7.6D} + vl' v2 v3 v4' v5'
v6' {v7.6D} + vl' v2' v3 v4' v5» v6' {v7.4D} + vl' v2 v3' v4' vS' v6»
{v7.4D} + vl v2» v3' v4' v5' v6» {v7.4D} + vl' v2» v3» v4' v5' v6»
{v7.5D}

{v8.9} = vl' v2' v3' v4' v5' v6' {v7.60}
{v8.10} = v2' v3' v4' vS' v6' {v7.70}
{v8.ll} = v2' v3' v4' v5* v6 {v7.7,v7.9D} + v2' v3' v4' v5 v6' {v7.7,

v7.9[]} + v2' v3' v4 v5' v6' {v7.7,v7.9[]} + v2 v3 v4» v5' v6' {v7.9[l}
+ v2' v3 v4' vS' v6' {v7.7D} + v2 v3' v4' vB' v6' {v7.7D} + v2' v3'
v4' v5' v6' {v7.8[]}

{v8.12} = v2» v3' v4' v5' v6' {v7.90}
{v8.13} = v4' v5' v6' {v7.10Q}
{v8.14} = v4' v5' v6 {v7.10Q} + v4' v5 v6' {v7.10O} + v4 v5' v6* {v7.10,

V7.12C]} + v4' v5' v6' {v7.ll.v7.12D}
{v8.1S} = v5' v6' {V7.130}
{v8.16} = v5' v6 {v7.13Cl} + vS v6' {v7.13D} + vS' v6» {v7.14Q}
{v8.17} = v6' {v7.1SO}
{v8.18} = v6 {v7.15D} + v6' {v7.16Q}
{v8.19} = {v8.2} + v5' v6' {v8.14}' {v7.0,v7.10,v7.13[v7.12]} + vl' v2' v3'

v4' v5' v6' {v8.14}' {v7.4,v7.6[v7.0,v7.7,v7.10,v7.11,v7.12, v7.13]} +
vO' vl' v2' v3' v4' v5' v6' {v8.14}' {v7.1,v7.3[v7.0, v7.4,v7.6,v7.7,
v7.10,v7.11.v7.12,v7.13]} + v3' v4' vS' v6' {v8.1l}» {v8.14}' {v7.7
Cv7.0,v7.10,v7.11,v7.12,v7.13]}

{v8.20} = {v7.18C3}

Figure 6.3: keyb: Circuit after Node Simplification

6.2. EXPERIMENTAL RESULTS 145

{v8.0} = {v8.5}» {v8.8}' {v8.1l}» {v8.12}' {v8.14}' {v8.16}' {v8.18}' {v8.19}'
{V7.0,v7.1,v7.2,v7.3,v7.4,v7.5,v7.6,v7.7,v7.8,v7.9,v7.10,v7.11,v7.12.
v7.13, v7.14,v7.16,v7.17,v7.18D}

{v8.l} = v3' [30] {v7.0[]J
{v8.2} = v3' [25] {v7.0[v7.2,v7.5,v7.8,v7.11,v7.13,v7.14,v7.15,v7.16, v7.17,

v7.18]}
{v8.3} = v3 [29] {v7.0D}
{v8.4} = {v8.19} {V7.1[v7.2,v7.5,v7.8,v7.9,v7.11,v7.12,v7.14,v7.15,v7.16,

v7.17,v7.18]j
{v8.5} = vO vl' [23] {v7.l[v7.0,v7.10,v7.11,v7.12,v7.13,v7.14,v7.15, v7.16,

v7.17,v7.18]} + vO' [26] {v7.1,v7.2,v7.3[v7.0,v7.7,v7.8,v7.9, v7.10,v7.11,
V7.12,v7.13,v7.14,v7.15,v7.16,v7.17,v7.18]}

{v8.6} = {v8.19} {v7.3[v7.2,v7.5,v7.8,v7.9,v7.11,v7.12,v7.14,v7.15, v7.16,
v7.17,v7.18]}

{v8.7} = vl» [23] {v7.4[v7.0,v7.10,v7.11,v7.12,v7.13,v7.14,v7.15,v7.16,v7.17,
v7.18]}

{v8.8} = [26] {v7.4,v7.5,v7.6[v7.0,v7.7,v7.8,v7.9,v7.10,v7.11,v7.12,v7.13,
V7.14,v7.15,v7.16,v7.17,v7.18]}

{v8.9} = vl' [23] {v7.6[v7.0,v7.10,v7.11,v7.12,v7.13,v7.14,v7.1S,v7.16,v7.17,
v7.18]}

{v8.10} = [23] {v7.7[v7.0,v7.10,v7.11,v7.12,v7.13,v7.14,v7.1S»v7.16,v7.17,
v7.18]}

{v8.ll} = [21] {v7.7,v7.8,v7.9[v7.0,v7.10,v7.11,v7.12,v7.13,v7.14,v7.15,
v7.16,v7.17,v7.18]}

{v8.12} = [23] {V7.9[v7.0,v7.10,v7.11,v7.12,v7.13,v7.14,v7.15,v7.16,v7.17,
v7.18]}

{v8.13} = [30] {v7.10D}
{v8.14} = [25] {V7.10,v7.12[v7.2,v7.5,v7.8,v7.11,v7.13,v7.14,v7.15, v7.16,

v7.17,v7.18]j + [30] {v7.11,v7.12D}
{v8.15} = [29] {v7.13[]}
{v8.16} = [22] {v7.13D} + [29] {v7.14D}
{v8.17} = v6' {v7.15[]J
{v8.18} = v6 {v7.1SD} + v6» {v7.16D}
{v8.19} = {v8.2} + {v8.14}' [28] [29] + vl' {v8.14}« [23] [27]
{v8.20} = {v7.18[]}
[21] = [23] {V7.2,v7.5,v7.8[v7.0,v7.10,v7.11.v7.12,v7.13,v7.14,v7.15,v7.16,

v7.17,v7.18]} + v2' v3' [25] {v7.1,v7.3,v7.4,v7.6,v7.7, v7.9[v7.2,v7.5,
V7.8,v7.11,v7.13,v7.14,v7.15,v7.16,v7.17,v7.18]} + [24] [30]

[22] = vS' v6 + v5 v6'

[23] = v2' v3' [30] {v7.1.v7.2,v7.3,v7.4,v7.5,v7.6,v7.7,v7.8,v7.9[]}
[24] = v2 v3 {v7.3,v7.6,v7.9} + v2' v3 {v7.1,v7.4,v7.7} + v2 v3' {v7.1,v7.4,

v7.7}
[25] = v4' [22] {v7.0,v7.1,v7.3,v7.4,v7.6,v7.7,v7.9,v7.10Q} + v4 [29] {v7.0,

V7.1,v7.3,v7.4,v7.6,v7.7,v7.9,v7.10,v7.12[]}
[26] = vl» [21] {v7.1,v7.2,v7.3,v7.4,v7.5,v7.6Q} + vl [23] {v7.1,v7.4D}
[27] = {v7.4.v7.6D} + vO' {v7.1,v7.3D}
[28] = Jv7.0,v7.10,v7.13} +v3' v4' {v8.1l}' {v7.7}
[29] = v5' v6'

[30] = v4' [29]

Figure 6.4: keyb: Circuit after Algebraic Decomposition

146 CHAPTER 6. PRACTICAL EXPERIENCES

Encoded Implementation

Figure 6.5 shows the final encoded implementation with the code selection being

done after algebraic decomposition. A five bit code is used for the nineteen values. The

code bits are [cO], [cl],..., [c4]. The encoding does a very good job and exploits the

don't cares in the incompletely specified Uterals. A good instance of this is in [21] where:
£(.y7{l,3,4,6,7,9}[2,5,8,H,13,14,15,16,17,18]) _ [cl]

6.2. EXPERIMENTAL RESULTS

{v8.0} = {v8.5}' {v8.8}' {v8.1l}» {v8.12}' {v8.14}'
{v8.19}' [cl] + {v8.5}' {v8.8}' {v8.1l}' {v8.12}
{v8.18}' {v8.19}' [c2] + {v8.5}' {v8.8}' {v8.1l}
{v8.16}' {v8.18}' {v8.19}' [c3] + {v8.5}' {v8.8}
{v8.14}' {v8.16}' {v8.18}' {v8.19}' [c4]

[30] [cO]' [c3]' [c4]

[c4]

[c3]' [c4]

[c3] [c4]'

+ vO vl' [23] [cO]

{v8.16}'
» {v8.14}'
• {v8.12}'
' {v8.1l}'

{v8.18}'
{v8.16}'
{v8.14}'
{v8.12}'

{v8.l}
{v8.2}
{v8.3}
{v8.4}
{v8.5}
{v8.6}
{v8.7}
{v8.8}
{v8.9}
{v8.10}
{v8.ll} = [21]
{v8.12} = [23]
{v8.13} = [30]
{v8.14}
{v8.15}
{v8.16}
{v8.17}

v3

v3

v3

[25] [c3]

[29] [cO]'

{v8.19} [c2]'
vO' [26] [c4]

{v8.19} [c2] [c3] [c4]'
vl' [23] [cO]' [c2]' [c4]

[26] [c4]

vl' [23] [c2] [c3] [c4]

' [23] [c2]' [c3]'

[c3]'

[c2]

[cl]

[25] [cl]

[29] [cl]

[29] [cl]

v6' [cl]'

[c3]'

[c2]

[c3]

[c2]

[c2]'

[c2]'

{v8.18} = v6' [c2]' [c3]'
{v8.19} = {v8.2} + {v8.14}

[c4] + vO' vl' {v8.14}'

[c2]' [c3] [c4]

[c4]'

[c3] [c4]

+ [30] [cl]' [c2]' [c3] [c4]

[c3]' [c4]'

[c3] [c4]' + [22] [cl]' [c2] [c3]' [c4]'

[c3]' [c4]'

[c4] + v6 [cl] ' [c2] ' [c3] ' [c4] '

[29] [cO]' [cl]' [c2] + vl' {v8.14}' [23]
[23] [cO]' [c3] + {v8.14}' [29] [cl]' [c2]

[c4]' + v3' v4' {v8.1l}' {v8.14}' [29] [cl] [c2]' [c3]'
{v8.20} = [cO] [cl]' [c2] [c4]
[21] = [23] [cO] + v2' v3' [25] [cl] + v2 v3 [30]

[30] [cO]' [cl] [c2]' + v2 v3' [30] [cO]' [cl]

[cO]

[c3]

[cO]' [cl] [c2] + v2' v3

[c2]'

[22] = v5' v6 + vS v6'

[23] = v2' v3' [30] [cl]

[25] = v4 [29] [cO]' + v4!

[26] = vl' [21] [cl] [c3]

[29] = v5' v6'

[30] = v4' [29]

[22] [cO]' [cl] + v4' [22]

+ vl [23] [cO]» [c2]' [c3]

[cO]' [c2]

Figure 6.5: keyb: Circuit after Encoding

147

148 CHAPTER 6. PRACTICAL EXPERIENCES

Chapter 7

Conclusions

Thus grew the tale of Wonderland:
Thus slowly, one by one.
Its quaint events were hammered out -
and now the tale is done

- Lewis Carroll, "AUce in Wonderland"

Recent research in logic synthesis has made a significant impact on the way digital

circuits are designed today. However, current logic synthesis techniques focus only on com

binational parts of the logic description. The research reported in this thesis attempts to

overcome this limitation. In particular, extensions of known combinational logic optimiza

tion techniques are sought that are applicable in sequential logic synthesis. The motivation

behind this is to maximize the leverage that can be obtained from the large body of research

in combinational logic synthesis.

The first contribution of this work has been a clean formulation of the applica

bility of combinational logic optimization techniques across latch boundaries. A precise

description of circuits for which latches may temporarily be removed is given. This enables

any combinational logic optimization technique to be used on these circuits. The latch

migration is defined in terms of the well-developed concept of retiming. This enables the

interactions between retiming and combinational optimization to be easily examined. This

has some interesting results in performance optimization.

In terms of practical experiences, the results in area optimization have not been

encouraging. No additional advantage seems to be obtained by considering logical rela

tionships across latch boundaries. However, this may be only a property of the circuits

149

150 CHAPTER 7. CONCLUSIONS

examined or an artifact of the inability of current combinational optimization programs to

get out of a local minimum. Additional work needs to be done in two areas. First, it is

of interest to characterize circuits for which the additional information provided by retim

ing and resynthesis can be exploited. Second, stronger combinational logic optimization

techniques are needed than those available currently. In performance optimization, these

ideas have already shown applicabiUty for pipelined circuits. Their extensions to arbitrary

(non-pipeHned) sequential circuits are currently being examined [72],

One inherent limitation of retiming and resynthesis is the inability to take into

account the final positions of latches during combinational resynthesis. This is important

in area optimization since any area reduction obtained by combinational optimization may

be offset by an increase in the number of latches during subsequent retiming. This is

less of a factor in performance optimization since the area increase does not affect the

primary objective, viz., improving the performance of the circuit. It must be pointed out

that the techniques presented in [58], which have some commonality with retiming and

resynthesis, do not have this Umitation. They exphcitly consider the cost of latches during

logic optimization. However, in order to do this each combinational logic optimization

technique needs to be redefined. As a result, existing programs cannot be used.

The second contribution of this thesis is the development of techniques for multi

level multiple-valued optimization and their application to the input encoding problem

for multi-level logic. In addition to being a result in its own right it has appUcation in

sequential logic synthesis where the input encoding problem may be used to approximate

the state assignment problem. The most significant developments here are the "algebraic"

factorization techniques, the notion of incompletely specified Uterals, and the formulation

of the minimum Uteral encoding problem. While initial results are promising, there are

two areas in which work needs to be done to increase practical appUcabiUty. The first

is a more accurate estimation of the size of algebraic factors. In the absence of this the

sophisticated algebraic optimization techniques are of Uttle advantage since they are not

used correctly. The second is development of efficient heuristics to solve the minimum Uteral

encoding problem. The current approach of using simulated annealing is too slow to be an

acceptable solution. There is some work currently being done in this area [66]. Finally, in

order to completely solve the state assignment problem in sequential logic synthesis, the

output encoding problem for multi-level logic needs to be solved. This seems to be a very

difficult problem and there is no obvious direction to pursue.

Appendix A

Discrete Mappings and Boolean

Functions

uPlease come back, and finish your story!" Alice called after it And the others
all joined in chorus "Yes, please do!".

- Lewis CarroU, "AUce in Wonderland"

A.l Introduction

Most functions needed to specify the behavior of digital logic systems are binary-

valued functions of binary-valued variables ({0, l}n t-+ {0, l}). These are also referred to as

switching functions [17]. The fact that all switchingfunctions are also Boolean functions [17]

enables all properties of Boolean functions to be directly appUed to switching functions;

these properties need not be proved separately. However not all functions that arise in the

context of circuit specification and design are switching functions. In the most general form

these functions are multiple-valued functions of multiple-valued variables. These functions

are referred to as discrete mappings. However, these functions are not Boolean functions

and hence properties of Boolean functions do not directly apply to them. This has two

consequences. First, it requires that all properties of Boolean functions be re-examined to

determine which of these hold for discrete mappings. Second, it results in an asymmetry

between discrete mappings and switelling functions which is theoretically inelegant. This

chapter shows that corresponding to a discrete mapping there is a Boolean function which

can be used to evaluate the discrete mapping in a direct way. In addition, a compact and

151

152 APPENDIX A. DISCRETE MAPPINGS AND BOOLEAN FUNCTIONS

natural way of representing the Boolean formula corresponding to this function is presented.

Conventional methods of representing discrete mappings as factored form representations

are examined and their Umitations pointed out. Finally it is shown that corresponding

to a set of expressions representing a discrete mapping there exists an equivalent Boolean

formula. This enables properties of Boolean formulas to be appUed to these expressions.

This is what researchers have been doing intuitively in the past; this chapter provides the

justification for it.

A.2 Boolean Functions: A Review

This section provides a brief review of the background material needed in the rest

of this chapter. This material has been taken from the text [17].

A.2.1 Boolean Algebras

Consider a quintuple:

(5,+,-,0,1)

in which B is a set, called the carrier, + and • are binary operations on B, and 0 and 1 are

distinct members of B. The algebraic system so defined is a Boolean algebra provided the

following postulates are satisfied:

1. Commutative Laws. For all a, 6 G B:

a+b = b+a

d'b = b-a

2. Distributive Laws. For all a, 6, c £ B:

3. Identities. For all a 6 B:

a + {b-c) = (a + b)-{a + c)

a-{b-\-c) = (a-b)+[a-c)

0 -f a = a

1-a = a

A.2. BOOLEAN FUNCTIONS: A REVIEW 153

4. Complements. For any a G B, there is a unique element a' G B such that:

a + a' = 1

a • a' = 0

The foUowing properties are true for all a, 6, c G B. These axe useful in manipu

lating Boolean expressions.

1. Associativity.

a-r(b + c) = {a + b) + c

a-(b-c) = (a-b)-c

2. Idempotence.

a + a = a

a-a — a

4. Absorption.

5. Involution.

6. De Morgan's Laws.

a 4-1 = 1

a-0 = 0

a + (a - b) = a

a • (a + b) = a

(a')' = a

;« + &)' = a'-6'

(a -6)' = a'+ 6'

154 APPENDIX A. DISCRETE MAPPINGS AND BOOLEAN FUNCTIONS

7.

8. Consensus.

a + a' -b = a + b

a •(a' -r b) = a •b

a-b-ra' -c-rb-c — a •6 + a' • c

(a + 6)-(a' + c).(6+c) = (a + 6) • (a' + c)

A.2.2 Boolean Formulas

Given a Boolean algebra B, the set of Booleanformulas on the n symbols x i, x2l..., x „

is defined by the foUowing rules:

1. The elements of B are Boolean formulas.

2. The symbols x\, x2i...,xn are Boolean formulas.

3. If g and h are Boolean formulas, then so are:

W (0) + W

(b) (*).(*)

(c) to)'

4. A string is a Boolean formula if and only if its being so foUows from finitely many

appUcations of the rules above.

A.2.3 Boolean Functions

An n-variable function / : Bn h* B is called a Boolean function if and only if it

can be expressed as an n-variable Boolean formula.

A.3 Discrete Mappings

Let / : P0x Pi x ... x Pri_i i-> P„ be a discrete mapping with P, = {0.1 pj-\}.

Let P = {P0x Pi x... x Pn}. /is not a Boolean function since it does not meet the condition

that / : Bn i-» B for some Boolean algebra B. Corresponding to / there is the relation

A.3. DISCRETE MAPPINGS 155

R C P defined in the natural way as the set of points in P consistent with /. Let B = 2P,

the power set of P, i.e. the set of aU subsets of P. B is a Boolean algebra described by

(2p,U,n,<£,P). Let f : B h+ B be defined as:

£(aO = Pna; iE5 (A.l)

P n £ is a Boolean formula and hence £ is a Boolean function. Equation A.l is the minterm

canonical form for this function.

Let m G {Po x Pi x ... x P„_i} and tf>(m) = {m} x Pn. V(m) is the set of n + 1-

tuples corresponding to the n-tuple m that have aU pn possible values in the last field. £

corresponds to / in the sense that given any m, /(m) may be computed by £ as follows.

£(V>(m)) is a singleton set containing the tuple in R with the first n fields the same as that

of m. Field n + 1 in this tuple is f(m).

Example A.3.1 The switching function corresponding to an and gate is used to illustrate

the above. Here f : {0, l}2 i-> {0, l}. Consider m —(0,1).

R = {(0,0,0),(0,1,0),(1,0,0),(1,1,1)}

tf(ro) = {(0,1)}x{0,1}

= {(0,1,0),(0,1,1)}

£W™)) = {(0,0,0),(0,l,0),(l,0,0),(l,l,l)}n{(0,l,0),(0,l,l)}

= {(0,1,0)}

f(m) is the last field of the n + 1-tuple (0,1,0), i.e. f(m) = 0.

Example A.3.2 Each person in a certain western town in to be classified as being one of

{ good, bad, ugly} (abbreviated as {</, 6,u]). This classification is to be done based on the

person's occupation which is one of {priest, teacher, outlaw} (abbreviated as {p, t. o}) and

their nature which is one of {honest, selfish, cruel} (abbreviated as {h,s,c}). To be good

you have to be a priest or be honest and not an outlaw. Cruel outlaws are ugly. Everyone

else is just bad.

The classificationfunction is a discrete mapping f : {p, t.o} x {h,s,c} \—> {g.b,u}.

Consider m = {t, c).

R = {(p,h,g),(p,s,g),{p,Ciy),{t'h,g),(tiS,b),[t,c,b).{oJi.b),(o,$.b).{o.c.u)}

156 APPENDIX A. DISCRETE MAPPINGS AND BOOLEAN FUNCTIONS

1>(m) = {{t,c)}x {</,&,«}

£('0(m)) = Pn^(m)

= {(t,c,6)}

/(m) is </ie last field of the n + 1-tuple (t,c,b), i.e. f(m) —b.

A.4 Compact Representations of Boolean Functions

Typically functions need to be represented in some compact manner; it is not

possible to describe them in terms of all the points in the domain and the corresponding

range. Compact representations cluster points in the domain and describe / in terms of

these clusters. Generally, these clusters are fewer than the number of points in the domain.

Asin SectionA.3let B = 2P and me P. Let m[j] be the value offield j in m. One

natural way to cluster points in P is to group all points with the same valueof m[j] (for some

given./) together and refer to them coUectively. Let xf = -PoX.. .xP,_i xSjXPj+i x.. .xPn.
Thus, Xj3 has all points for which m\j] GSj. For Example A.3.2 XoP* is the set of all points
for which m[0] =p. Note that xf GP and xf =Xj'~Sj •

Theorem A.4.1 Let x = {xf\j G{0,l,...,n},Sj CP,}. Let bGB. bcan be expressed
in terms of a Boolean expression restricted to elements of x>

Proof. The statement needs to be proven only for the atoms of B, (the singleton sets)

since any other element of B can be obtained by a union of the atoms. Let {a} be an atom

and a[i] be field i of a. a= n,- (xi*a^K •

An immediate coroUary of this result is that R can be expressed as a Boolean expression

restricted to elements of x- Thus the Boolean formula in Equation A.l can be re-written

by expressing R as a Boolean expression restricted to the elements of \. In practice Theo

rem A.4.1 is not used to re-write P, but rather R is derived directly from some description

of the function.

Consider / in Example A.3.2. R is derived directly from the conditions specified as

foUows. The set of points in P that represent priests or honest people who are not outlaws

is naturally expressed as:

A.5. EXPRESSIONS REPRESENTING DISCRETE MAPPINGS 157

This can be simpUfied to:

XoWu(x!*}nx?>)
Sinularly the set of points that represent cruel outlaws is: Xo nXi • The rest of the people

are obviously expressed as:

xJp>u(xiA>nx£>)u(x^nx!'})
This can be simpUfied to:

(xi'} nx<">) u (x<°> nx\^)

Thus, R can be expressed as:

(x{29} n(x0p} u(x\h} nxit}))) u(x?} n((x?} n*{•*>) u(x0o} n*<**>))) u(*<"> n(x0o} n y<c}))

A.5 Expressions Representing Discrete Mappings

Another way to cluster the points in the domain is to partition the domain based on

the value of the function. Let II = {xo,7Ti,...,xPn_i} be a partition of Pq XPi X... XPn_i

such that: m G 7r,- O f(m) — i. For the switching function / in Example A.3.1, 7To =

{(0,0),(0,l),(l,0)}and7n = {(l,l)}.

Each Ti may be described by its characteristic function /,- defined as foUows.

/.•:PoxP1x...xPn_iH-{0,l} iePn

(t \ / 1 if mGtt,
y 0 otherwise

/,• tests for membership in 7r,; it evaluates to 1 for exactly the points in 7r,. The foUowing

representation has been commonly used to describe the /,• in the Uterature. Let Sj C Pj

and Xj be a pj-valued.variable. Xj3 is termed a.Uteral of Xj and is defined as:

s j 1 if m[j]e Sj
XjJ(m)=(

y 0 otherwise

Xj31 -Xj32 is defined as the logical and oiXj'1 and A"J2J2. Similarly, A"^1 +X^7 is defined

as the logical or of Xj'1 and X}^2. The complement of a literal Xy is denoted as XjJ
S^ -P— S'and defined as Xj3 = XJ•/ 3. A factored form with these Uterals is defined recursively by

the foUowing rules:

158 APPENDIX A. DISCRETE MAPPINGS AND BOOLEAN FUNCTIONS

1. A Uteral is a factored form.

2. The complement of a Uteral is a factored form.

3. The + of two factored forms is a factored form.

4. The • of two factored forms is a factored form.

A factored form, ^ may be used to represent the /,-.

Example A.5.1 An example of a factored form is:

(*«»> jr<2> +x<1>).jt<°>

For / in Example A.3.1 the foUowing are the factored form representations of the /,:

2 _ y{0} , Y{0}
JO — -*0 + Al

h — «*o Ai

For / in Example A.3.2 the foUowing are the factored form representations for fg and fu:

U=X0Wu(*iWn*F)

However, there seems to be no direct way to obtain ff, since these expressions are not Boolean

and De Morgan's Laws cannot be directly appUed in this case. If they do hold then it must

be proven separately for these expressions. This is a limitation of this representation.

In Section A.3 it was shown how the Boolean function f may be obtained given

the relation R for the discrete mapping. The rest of this section examines how the f may be

obtained if the discrete mapping is specified as factored form expressions representing the

characteristic functions of the partitions. This is accompUshed by first deriving a Boolean

formula for each factored form.

Let B be a Boolean formula generator; i.e. given a factored form ^", B{T) is a

Boolean formula obtained from T.

B is defined recursively as foUows:

1. B(XfJ)=xf nx

A.5. EXPRESSIONS REPRESENTING DISCRETE MAPPINGS 159

2. B(X* +X*) = B(X?h)UB(XJ**)

3. B(xf* •X%>) =B{xf*)nB(xf*)

Note that B{xf) =xf na;. This follows from:

Y--5j _ yPj—Sj

B(xf) = B(Xp~Sj)
= (P0 x Pi x ...x P,_i x (Pj - Sj) x Pj+i x ...x P„_i x Pn)nx

= (P - (P0 x Pi x ... x Pj-i x Sj x Pj+i x ... x Pn_i x P„)) n X

= xyrix

In the foUowing discussion when B(f) and T are followed by arguments they are

being used in place of the functions they represent. The foUowing result shows how B{F)

can be used to evaluate T.

Theorem A.5.1

*"(ro) = 0 => (WWtn)) = «

T{m) = 1 => (B(F){ij)(m)) = tf(m))

Proof. The proof is by induction on the number of Uterals in F.

Induction Hypothesis: The theorem statement is true for all T with < k Uterals.

Induction Basis: Consider T with only one Uteral, i.e. T = X -J'.

1. ^"(m) = 0. Then Xy(m) = 0, which impUes x/ n ij>(m) = (f> since field j of no tuple

in XjJ is the same as field j of any tuple in ip{m).

o. c. c.

2. ^"(m) = 1. Then Xj3(m) = 1, wliich impUes XjJ H^(m) = 0(ro) since x/ contains

all tuples with the same field j as that of m.

Induction Step: Consider T with k literals. There are two cases.

1. T = Ti + T2

Ti and T2 have < k literals.

160 APPENDIX A. DISCRETE MAPPINGS AND BOOLEAN FUNCTIONS
«

(a). f{m) = 0. Then Fi{m) = 0 and F2(m) = 0. By the induction hypothesis,

tf(^i)Wm)) UB(r2)Wm)) = <f>-

(b) F(m) = 1. Then ^i(m) = 1 or T2(m) = 1. By the induction hypothesis,

U(*i)(lMm)) U0(JF2)(V(m)) = iP(m).

2. T = Ti • T2

?i and T2 have < k Uterals.

(a) F(m) — 1. Then Ti(m) = 1 and F2(m) = 1. By the induction hypothesis,

B(?i){i>(m)) n 5(^2)(^(m)) = tf(ro).

(b) F(m) = 0. Then ^i(m) = 0 or T2(m) = 0. By the induction hypothesis,

W)Wm)) n B(T2)^(m)) = 0.

This result estabUshes the correspondence between B(T) and T. For the factored

form in Example A.5.1:

B((.Y<W> Af>+jr«) •X,<°>) = (X{«> n, n x|21 n«u Y<» n*) n vf n*
= (x{M) nxl21 ux'^nxfn*

Note the similarity between the two expressions. There is an obvious one-to-one

mapping from the factored form to the Boolean formula. If the Boolean formula is ex

pressed in terms of the x's then the reverse mapping is also one-to-one. This is significant

since it shows that aU properties for Boolean formulas (same as those for Boolean expres

sions) hold for factored form expressions and they need not be proven separately. Thus

complementation using De Morgan's Laws also holds for factored form expressions.

In the above discussion only a single factored form was considered. RecoUect that

/ is described in terms of a factored form Tx for each /,-. The foUowing theorem shows

how the Boolean formulas for these factored forms are combined to give £[x) defined in

Section A.3.

Theorem A.5.2

Six) = Ui\(B(Ti))nxl:}} iePn

A.6. CONCLUSIONS 161

Proof. Let f(m) = j. By Theorem A.5.1:

[0(m) i = j

Thus, £(ip(m)) = ^(ra)fl Xn • This is a singleton set in which the n + 1-tuple has the first

n fields the same as m and the last field is j. This is consistent with the definition given in

Equation A.l. •

For the switelling function in Example A.3.1:

xi°} = {(0,0,0),(0,0,1),(0,1,0),(0,1,1)}

Xi{0} = {(0,0,0),(0,0,1),(1,0,0),(1,0,1)}

X{01} = {(1,0,0),(1,0,1),(1,1,0),(1,1,1)}

x{l} = {(0,1,0),(0,1,1),(1,1,0),(1,1,1)}

xi0} = {(0,0,0), (0,1,0), (1,0,0), (1,1,0)}

xl1} = {(0,0,1),(0,1,1),(1,0,1),(1,1,1)}

«*) = ((x0°} uxi{0})nx-nxf)u((xJ1}nxP})n.nxP)
. = {(o,o,o),(o,i,o),(i,o,o),(i,i,i)}nx

This, as expected, is the same as that derived in Example A.3.1.

A.6 Conclusions

In Section A.3, it was shown how a Boolean function may be obtained given a

discrete mapping. Next, in Section A.4, it was described how the Boolean formula cor

responding to this Boolean function may be expressed in compact form. This Boolean

formula may be manipulated using any property of Boolean expressions. This has direct

appUcation in the simpUfication of Boolean expressions, both in sum-of-product form as weU

as in factored form. In Section A.5, conventional methods for representing discrete map

pings were presented. Since these do not involve Boolean expressions or Boolean functions,

none of their properties can be directly used, but rather must be proved separately. Subse

quently, it was demonstrated how these may be converted to the representation presented

in Section A.4 in order to exploit the properties of Boolean expressions.

162 APPENDIX A. DISCRETE MAPPINGS AND BOOLEAN FUNCTIONS

Bibliography

[l] D. B. Armstrong. A programmed algorithm for assigning internal codes to sequential

machines. IRE Transactions on Electron Computers, EC-11:466-472, August 1962.

[2] P. Ashar, S. Devadas, and A. R. Newton. Irredundant interacting sequential machines

via optimal logic synthesis. IEEE Transactions on Computer-Aided Design, March

1991. To appear.

[3] K. Bartlett, R. K. Brayton, G. D. Hachtel, R. Jacoby, C. Morrison, R. Rudell,

A. Sangiovanni-VincenteUi, and A. Wang. Multi-level logic minimization using im-

pUcit don't cares. IEEE Transactions on Computer-Aided Design, CAD-7(6):723-740,

June 1988.

[4] K. A. Bartlett, G. BorieUo, and S. Raju. Timing optimization of multi-phase sequential

logic. In Proceedings of the Hawaii International Conference on System Sciences, pages

356-366, January 1990. To appear, IEEE Transactions on Computer-Aided Design,

January 1991.

[5] T. Ben-Tzur. Personal Communication, 1989.

[6] C. L. Berman, J. L. Carter, and K. F. Day. The fanout problem: From theory to

practice. In C. L. Seitz, editor, Advanced Research in VLSI: Proceedings of the 1989

Decennial Caltech Conference, pages 69-99. MIT Press, March 1989.

[7] C. L. Berman and L. Trevillyan. A global approach to circuit size reduction. In J. Allen

and F. T. Leighton, editors, Advanced Research in VLSI: Proceedings of the Fifth MIT

Conference, pages 203-214. MIT Press, March 1988.

163

164 BIBLIOGRAPHY

[8] D. Bostick, G. D. Hachtel, R. Jacoby, M. R. Lightner, P. Moceyunas, C. R. Morrison,

and D. Ravenscroft. The Boulder Optimal Logic Design system. In Proceedings of the

International Conference on Computer-Aided Design, pages 62-65, November 1987.

[9] R. K. Brayton, G. D. Hachtel, C. T. McMuUen, and A. Sangiovanni-VincentelU. Logic

Minimization Algorithms for VLSI Synthesis. Kluwer Academic PubUshers, 1984.

[10] R. K. Brayton and C. McMuUen. The decomposition and factorization of Boolean

expressions. In Proceedings of the International Symposium on Circuits and Systems,

pages 49-54, May 1982.

[11] R. K. Brayton, R. RudeU, A. Sangiovanni-VincenteUi, and A. Wang. Multi-level logic

optimization and the rectangular covering problem. In Proceedings of the International

Conference on Computer-Aided Design, pages 66-69, November 1987.

[12] R. K. Brayton, R. RudeU, A. Sangiovanni-VincenteUi, and A. R. Wang. MIS: A

multiple-level logic optimization system. IEEE Transactions on Computer-Aided De

sign, CAD-6(6):1062-1081, November 1987.

[13] R. K. Brayton and F. Somenzi. Boolean relations and the incomplete specification of

Boolean networks. In Proceedings of the International Conference on Very Large Scale

Integration, pages 231-240, August 1989.

[14] M. A. Breuer. Generation of optimal code for expressions via factorization. Commu
nications of the ACM, 12(6):333-340, June 1969.

[15] M. A. Breuer and A. D. Friedman. Diagnosis and Reliable Design of Digital Systems.
Computer Science Press, Woodland HiUs, CA, 1976.

[16] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles for sequential bench
mark circuits. In Proceedings of the International Symposium on Circuits and Systems,
May 1989.

[17] F. M. Brown. Boolean Reasoning. Kluwer Academic PubUshers, 1990.

[18] R. E. Bryant. Graph based algorithms for Boolean function manipulation. IEEE
Transactions on Computers. C-35(8):667-691, August 1986.

BIBLIOGRAPHY 165

[19] K-T. Cheng and V.D. Agrawal. Design ofsequential machines for efficient test genera

tion. In Proceedings of the International Conference on Computer-Aided Design, pages

358-361, November 1989.

[20] M. Dagenais, V. Agarwal, and N. Rumin. McBoole: A new procedure for exact logic

minimization. IEEE Transactions on Computers, C-33:229-238, January 1986.

[21] J. Darringer, D. Brand, J. Gerbi, W. Joyner, and L.TreviUyan. LSS: A system for

production logic synthesis. IBM Journal of Research and Development, 28(5):326-328,

September 1984.

[22] S. Devadas. Approaches to multi-level sequential logic synthesis. In Proceedings of the

Design Automation Conference, pages 270-276, June 1989.

[23] S. Devadas and K. Keutzer. Boolean minimization and algebraic factorization pro

cedures for fuUy testable sequential machines. In Proceedings of the International

Conference on Computer-Aided Design, pages 208-211, November 1989.

[24] S. Devadas and K. Keutzer. Necessary and sufficient conditions for robust delay fault

testabiUty. In W. J. Dally, editor, Advanced Research in VLSI: Proceedings of the Sixth

MIT Conference, pages 221-238. MIT Press, April 1990.

[25] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-VincenteUi. MUS

TANG: State assignment of finite state machines targeting multi-level logic imple

mentations. IEEE Transactions on Computer-Aided Design, CAD-7(12):1290-1300,

December 1988.

[26] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-VincenteUi. Optimal

logic synthesis and testabiUty: Two faces of the same coin. In Proceedings of the

International Testing Conference, pages 3-13, September 1988.

[27] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-VincenteUi. A synthesis

and optimization procedure for fully and easUy testable sequential machines. IEEE

Transactions on Computer-Aided Design, CAD-8(10):1100-1107, October 1989.

[28] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-VincentelU. Irredundant

sequential machines via optimal logic synthesis. IEEE Transactions on Computer-

Aided Design, CAD-9(1):8-18, January 1990.

166 BIBLIOGRAPHY

[29] S. Devadas and A. R. Newton. Decomposition and factorization of sequential finite

state machines. IEEE Transactions on Computer-Aided Design, CAD-8(11):1206-

1217, November 1989.

[30] S. Devadas and A. R. Newton. Exact algorithms for output encoding, state assign

ment and four-level Boolean minimization. In Proceedings of the Hawaii International

Conference on System Sciences, pages 387-396, January 1990. To appear, IEEE Trans

actions on Computer-Aided Design, January 1991.

[31] M. R. Garey and D. S. Johnson. Computers and Intractability, page 222. W. H.

Freeman and Company, 1979.

[32] D. Gregory, K. Bartlett, A. DeGeus, and G. Hachtel. SOCRATES: A system for

automatically synthesizing and optimizing combinational logic. In Proceedings of the

Design Automation Conference, pages 79-85, June 1986.

[33] R. Gupta, R. Gupta, and M. A. Breuer. BALLAST: A methodology for partial scan

design. In Proceedings of the International Symposium on Fault Tolerant Computing,

pages 118-125, June 1989.

[34] G. Hachtel, X. Du, and P. Moceyunas. Algorithms for state assignment based on

multi-level representation. In Proceedings of the Hawaii International Conference on

System Sciences, pages 367-376, January 1990. To appear, IEEE Transactions on

Computer-Aided Design, January 1991.

[35] G. D. Hachtel and R. M. Jacoby. Verification algorithms for VLSI synthesis. IEEE

Transactions on Computer-Aided Design, CAD-7(5):616-640, May 1988.

[36] G. D. Hachtel, R. M. Jacoby, K. Keutzer, and C. R. Morrison. On the properties

of algebraic transformations and the multifault testabiUty of multUevel logic. In Pro

ceedings of the International Conference on Computer-Aided Design, pages 422-425,

November 1989.

[37] J. Hartmanis. On the state assignment problem for sequential machines I. IRE Trans

actions on Electronic Computers, pages 157-165, June 1961.

[38] J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential Machines.
Prentice-Hall, Englewood CUffs, N. J., 1966.

BIBLIOGRAPHY 167

[39] R. M. Karp. Some techniques for the state assignment of synchronous sequential

machines. IEEE Transactions on Electron Computers, EC-13:507-518, October 1964.

[40] K. Keutzer, S. MaUk, and A. Saldanha. Is redundancy necessary to reduce delay? In

Proceedings of the Design Automation Conference, pages 228-234, June 1990. Accepted

for pubUcation, IEEE Transactions on Computer Aided Design.

[41] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Sci

ence, 220(4598):671-680, May 1983.

[42] L. Lavagno, S. Malik, R. K. Brayton, and A. Sangiovanni-VincenteUi. MIS-MV: Opti

mization of multi-level logic with multiple-valued inputs. In Proceedings of the Inter

national Conference on Computer-Aided Design, pages 560-563, November 1990.

[43] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing synchronous circuitry by

retiming. In R. E. Bryant, editor, Advanced Research in VLSI: Proceedings of the

Third Caltech Conference, pages 23-36. Computer Science Press, 1983.

[44] C. E. Leiserson and J. B. Saxe. Optimizing synchronous systems. Journal of VLSI

and Computer Systems, l(l):41-67, Spring 1983.

[45] B. Lin and A. R. Newton. Synthesis of multiple level logic from symboUc high-level

description languages. In Proceedings of the International Conference on Very Large

Scale Integration, pages 187-196, August 1989.

[46] B. Lin and A.R. Newton. Restructuring state machines and state assignment: Rela

tionship to minimizing logic across latch boundaries. In International Workshop on

Logic Synthesis, May 1989.

[47] R. Lisanke. Logicsynthesis and optimization benchmarks: User's guide, 1989. Address:

MCNC - P.O. Box 12889 - Research Triangle Park - NC 27709.

[48] S. MaUk, R. K. Brayton, and A. Sangiovanni-VincenteUi. Encoding symboUc inputs

for multi-level logic implementation. In Proceedings of the International Conference on

Very Large Scale Integration, pages 221-230, 1989.

[49] S. Malik, E. Sentovich, R. K. Brayton, and A. Sangiovanni-VincenteUi. Retiming

and resynthesis: Optimization of sequential networks with combinational techniques.

168 BIBLIOGRAPHY

In Proceedings of the Hawaii International Conference on System Sciences, pages 397-

406, January 1990. To appear, IEEE Transactions on Computer-Aided Design, January

1991.

[50] S. MaUk, K. J. Singh, R. K. Brayton, and A. Sangiovanni-VincenteUi. Performance

optimization of pipeUned circuits. In Proceedings of the International Conference on

Computer-Aided Design, pages 410-413, November 1990.

[51] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-VincenteUi. Logic verifica

tion using binary decision diagrams in a logic synthesis environment. In Proceedings of

the International Conference on Computer-Aided Design, pages 6-9, November 1988.

[52] E. McCluskey. Minimization of Boolean functions. Bell System Technical Journal,

35:1417-1444, April 1956.

[53] M. C. McFarland, A. C. Parker, and R. Camposano. The high-level synthesis ofdigital
systems. Proceedings of the IEEE, 78(2):301-318, February 1990.

[54] C. Mead and L. Conway. Introduction to VLSI Systems, chapter 2, pages 45-46.
Addison Wesley, 1980.

[55] C. Mead and L. Conway. Introduction to VLSI Systems, chapter 3, pages 85-86.
Addison Wesley, 1980.

[56] G. De MicheU. SymboUc design of combinational and sequential logic circuits imple
mented by two-level logic macros. IEEE Transactions on Computer-Aided Design,
CAD-5(4):597-616, October 1986.

[57] G. De MicheU. Performance-oriented synthesis of large-scale domino CMOS circuits.

IEEE Transactions on Computer-Aided Design, CAD-6(5):751-765,1987.

[58] G. De MicheU. Logic transformations for synchronous logic synthesis. In Proceedings
of the Hawaii International Conference on System Sciences, pages 407-416, January

1990. To appear, IEEE Transactions on Computer-Aided Design. January 1991.

[59] G. De MicheU, R. K. Brayton, and A. Sangiovanni-VincenteUi. Optimal state as

signment for finite state machines. IEEE Transactions on Computer-Aided Design.

CAD-4(3):269-285, July 1985.

BIBLIOGRAPHY 169

[60] S. Muroga. Y. Kambayashi, H. C. Lai, and J. N. CulUney. The transduction method
- Design of logic networks based on permissible functions. IEEE Transactions on

Computers, C-38(10):1404-1424, October 1989.

[61] W. Quine. The problem of simpUfying truth functions. American Math. Monthly,
59:521-531,1952.

[62] J. Roth and R. Karp. Minimization over Boolean graphs. IBM Journal ofResearch
and Development, 6(2):227-238, April 1962.

[63] R. RudeU. Logic synthesis for VLSI Design. PhD thesis, University of California,
Berkeley, April 1989.

[64] R. L. RudeU and A. Sangiovanni-VincenteUi. Multiple-valued minimization for PLA

optimization. IEEE Transactions on Computer-Aided Design, CAD-6(5):727-750,
September 1987.

[65] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun. checkTc and minTc: Timing
verification and optimal clocking of synchronous digital circuits. In Proceedings of the
International Conference on Computer-Aided Design, pages 552-555, November 1990.

[66] A. Saldanha, T. Villa,^. K. Brayton, and A. Sangiovanni-VincentelU. A framework for
satisfying input and output encoding constraints. Submitted to, Design Automation
Conference, 1991.

[67] A. Saldanha, A. R. Wang, R. K. Brayton, and A. Sangiovanni-VincenteUi. Multi
level logic simplification using don't cares and filters. In Proceedings of the Design
Automation Conference, pages 272-282, June 1989.

[68] H. Savoj and R. K. Brayton. The use of observabiHty and external don't cares for
the simpUfication of multi-level networks. In Proceedings of the Design Automation
Conference, pages 297-301, June 1990.

[69] R. B. Segal. BDSYN: Logic description translator; BDSIM: Switch level simulator.
Master's Thesis M87/33. Electronics Research Lab.. University of California. Berkeley.
May 1987.

[70] E. Sentovich. SIS: An interactive system for the synthesis of sequential logic circuits.
UnpubUshed Manuscript.

170 BIBLIOGRAPHY

[71] N. Shenoy, R. K. Brayton, and A. Sangiovanni-VincentelU. Retiming of circuits with

single-phase transparent latches. In preparation.

[72] K. J. Singh. Peformance Optimization of Digital Circuits. PhD thesis, University of

California, Berkeley. In Preparation.

[73] K. J. Singh, A. R. Wang, R. K. Brayton, and A. Sangiovanni-VincenteUi. Timing

optimization of combinational logic. In Proceedings of the International Conference on

Computer-Aided Design, pages 282-285, November 1988.
«

[74] A. Srinivasan, T. Kam, S. MaUk, and R. K. Brayton. Algorithms for discrete func

tion manipulation. In Proceedings of the International Conference on Computer-Aided

Design, pages 92-95, November 1990.

[75] A. Stoelzle, S. Narayanaswamy, K. Komegay, H. Murveit, and J. Rabaey. A VLSI

wordprocessing subsystem for a real time large vocabulary continuous speech recogni

tion system. In Proceedings of the Custom Integrated Circuits Conference, 1989.

[76] H. Touatiand R. K. Brayton. Computing initial states ofretimed circuits. UnpubUshed
Manuscript.

[77] H. Touati, C. Moon, R. K. Brayton, and A. Wang. Performance-oriented technology
mapping. In W. J. Dally, editor, Advanced Research in VLSI: Proceedings of the Sixth
MIT Conference, pages 79-97. MIT Press, April 1990.

[78] J. Tracey. Internal state assignment for asynchronous sequential machines. IRE Trans
actions on Electronic Computers, pages 551-560, August 1966.

[79] T. ViUa and A. Sangiovanni-VincentelU. NOVA: State assignment of finite state ma
chines for optimal two-level logic implementations. In Proceedings of the Design Au
tomation Conference, pages 327-332, June 1989.

[80] S. Yang and M. Ciesielski. On the relationship between input encoding and logic min
imization. In Proceedings of the Hawaii International Conference on System Sciences.
pages 377-386. January 1990. To appear. IEEE Transactions on Computer-Aided De
sign, January 1991.

	ERL-90-115 (1 of 2)
	ERL-90-115 (2 of 2)

