

Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

IMPROVING SOFTWARE FAULT TOLERANCE

IN HIGHLY AVAILABLE DATABASE SYSTEMS

by

Mark Sullivan and Michael Stonebraker

Memorandum No. UCB/ERL M90/11

8 February 1990

IMPROVING SOFTWARE FAULT TOLERANCE

IN HIGHLY AVAILABLE DATABASE SYSTEMS

by

Mark Sullivan and Michael Stonebraker

Memorandum No. UCB/ERL M90/11

8 February 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

IMPROVING SOFTWARE FAULT TOLERANCE

IN HIGHLY AVAILABLE DATABASE SYSTEMS

by

Mark Sullivan and Michael Stonebraker

Memorandum No. UCB/ERL M90/11

8 February 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

1. Introduction

Today, software errors rank with hardware and operator errors as asource offailures in fault tolerant
systems [13]. However, current trends may soon make software errors the most common cause offailures.
Redundancy can greatly limit hardware failures. Better user interface designs should reduce the number of
accidents caused by operators. On the other hand, the demand for increased functionality is making sys
tems programs like the data manager and operating system larger and more complex. The advent ofshared
memory multiprocessors may make concurrency-related errors more common. Even the increased speed
ofprocessors may work against software; more system capacity can allow more concurrent users and more
ambitious demands on the system. This paper considers several ways to reduce the impact of software
errors on reliabilityand availability.

In order to reduce theloss of reliability due to software errors, we must address the issue of error
latency. Current transaction processing systems CTPS) assume that the errors causing system failure are
fail-stop. When a tail-stop error occurs, it damages transient system state (pages in main memory) and
quickly halts the system. Techniques for repairing the system after these errors are well-understood [15].

The fail-stop error model, however, represents only part of the failure threat facing a real system.
Most hardware and all power failures are tail-stop, butmost system software errors damage transient state
without stopping the IPS. The broken system eventually detects its damage and tries to recover, but only
after adelay (the error latency). A latent software error might propagate damage topermanent state, mak
ing recovery impossible. The delay between error occurrence and damage to permanent state is termed
propagation latency.

Traditionally, commercial systems have increased software fault tolerance by improving the quality
and frequency of.software error checking [13]. Detecting errors quickly decreases error latency, hence
limits the chance that an error causes permanent damage before it is detected. Unfortunately, adding
software checkers to a system is expensive. Individual checkers mustbe designed for each data structure
and algorithm, and running themfrequently increases processor load.

Another approach to increasing software reliability is to limit the points at which errors can pro
pagate topermanent storage. Increasing propagation latency can beas effective as decreasing error latency

P(Latency = T)

*
error occurs

Error Latency (D)

Propagation Latency (G)

T (seconds)

P(E»G) is the probabilityof disaster

Approach One: add errorchecking

Decrease P(D>G) by decreasing D

ApproachTwo: limit propagation

Decrease P(D>G) by increasing G

Figure 1: Two Approaches to Increasing Software Fault Tolerance

for reducing the chance of disaster (see figure 1). Instead of checking more often, we prevent damaged
data from becomingpermanent untilexistingerror checkers havehadanopportunity to examineit Unlike
errorcheckers, the the techniques used to increase propagation latencyarenot tied to particular data struc
tures, so they do not need to be redesigned as the system evolves.

In thispaper, we are going to discuss several fault tolerance techniques whichhelpmaketheexisting
errorcheckers more effective. These techniques include:

(a) Page Guarding: write-protecting data not currently in use (e.g. disk cache) can decrease the
amount of data the checkers need to consider.

(b) Deferred Write: applying updates to copies of data records instead of thereal data records can
help keep transactions from propagating errors toone another. Broken transactions have achance to
detect their errors before writing shared data.

(c) Delayed Commit: preventing a transaction's effects from becoming permanent for a short time
after the transaction has completed increases propagation delay. The delay gives latent OS errors a
chance to materializebefore the transactions they affect arecommitted.

TPS simulations have been used to estimate theperformance impact of these techniques. The simu
lations indicate that none of these mechanisms reduce throughput by more than seven percent. Assessing
reliability has proved more difficult In order to analyze reliability, errors are grouped into classes. The
model oferrors emphasizes the concurrency management, recovery management, and pointer errors. Field
measurements indicate thesethree classes cause the mosttrouble for existing systems. The techniques are
then rated, in part, according to the error classes against which they are effective. Analytic models based
ondifferent assumptions about errors also help determine reliability effects.

The second part of the paper addresses availability. When recovery speed increases, the amount of
system downtime after a failure goes down. In order to make recovery fast, we must reexamine the deci
sion to use disk instead of non-volatile memory for permanent storage. By storing the tail of the transac
tion log in main memory, the system can avoid going to disk during transaction commit Non-volatile
memory improves recovery speed by making it unnecessary toreload the disk cache after a failure and
reducing the number of disk accesses required for log processing. However, memory-based permanent
storage faces an increased risk from software errors. In this section, we discuss the software reliability
differences between memory and disk storage. Non-volatile main memory can be protected against
software errors using many of the same techniques weuse todecrease the impact of software errors.

The paper has six sections. Wedescribe our model of the TPS and model oferrors before introduc
ing the fault tolerance techniques. Anevaluation section discusses simulations, reliability models, and pub
lished observations about errors in existing systems. The design of a DBMS with a main memory log is
outlined in the fourth section. The fifth section gives related work. We conclude with a summary of
resultsto dateandan outlineof several possible research directions.

2. TPS Model: Definitions and Assumptions

The TPS runs ona shared memory multiprocessor such as Spur [16]. It includes three kinds of pro
grams: applications (front-ends), the database management system (DBMS), and the operating system
(OS). Figure 2 shows the process structure of the TPS. Each application program runs as asingle process.
Each application communicates with a single DBMS process over a two-way message channel (UNIX
pipe). DBMS processes share aregion of main memory that contains adisk cache (buffer pool) and alock
table. Assume that the shared memory region in the DBMS is fixed size and cannot be paged outby the
OS.

A transaction is initiated by an application process and runs in one of the DBMS processes. Each
transaction operates on a small set of data records (its operands), some of which will bewritten. Records
are small (about 100 bytes) and reside inpages (4K or8Kbytes) which are read infrom disk on demand by
the buffer manager. Most data records are rarely rereferenced and are removed from main memory after a
few seconds (on anLRUbasis). Others are referenced often and rarely if everleave main memory.

Before completing, thetransaction produces a setof logrecords and copies themtorecovery store.
Recovery store, usually an area onmagnetic disk, holds all information used toreconstruct the system after
a failure and must be assumed safe from errors. After a system failure, the log records from committed
transactions are usedtoreproduce thevalues of operands written by thetransactions.

Improving Software Fault Tolerance
in Highly AvailableDatabase Systems

Mark Sullivan
Michael Stonebraker

ComputerScienceDivision
Department of Electrical Engineering and Computer Sciences

University ofCalifornia
Berkeley, California 94720

February 8,1990

Abstract

Software errors often damage the transient state of a transaction processing system (TPS) without
causing the system to fail immediately. We propose several techniques toincrease the chance of detecting
latent software errors before disaster occurs. "The sametechniques canimproverecovery speedby making
non-volatile memory amore practical medium for permanent storage. These techniques include:
(1) using hardware write protection toguard data in thedatabase buffer pool from errors,
(2) using a shadow-paging scheme to reduce thechance that an erring transaction propagates errors to

correct pages,

(3) inserting an artificial delay between the time atransaction completes itswork and the time it iscon
sidered committed. Because of the delay, errors may remain undetected for a longer time without
causing irrecoverable damage.

Simulations show these techniques reduce transaction throughput by aslittle asone to seven percent An
analytic model estimates reliability improvements given several possible models of errors. Our proposal
also outlines the software fault tolerance concerns in designing a data manager that writes log records to
non-volatile memory on commit insteadof disk.

This work is supported by National ScienceFoundation grant 87-15235

o
AppUtSttOOVtXKtMtB

o o

Dttbun

RaeawsyStora

Figure 2: TPS Process Structure

DBMS

At various points during the transaction, the TPS programs will check their data for consistency
using standard fault tolerance techniques (array bounds checks, check back pointers in linked lists, etc.).
These consistency checks are referred to collectively as the transaction error checker. Where possible,
the error checker is assumed to run at the end of the transaction, immediatelybefore commit If the error
checker detects an inconsistency, it willeither abort the transaction or causetheentiresystem to recover.

An error is an event that causes the TPS to write inconsistent values to data records. Error events
include:

(a) processor/device failures,

(b) propagated software errors which damage transient data (e.g. the process stack) and indirectly
damage data records,

(c) softwareerrors in systemsoftware (DBMS and OS),
(d) software errors in applications which misdirect thesystem software.

An error cluster is a collection of error events happening over a short time. The errors in a clusterare
caused by some outside event (hardware error, system load passes certain threshold, user repeatedly
attempts the same bad operation). Error events cause the running transaction toeither write aninconsistent
value into a record (wrong value errors) orwrite tothewrong record (wrong record errors).

Wrong record errors include operand, pointer, and meta-data errors. In operand errors, erring
software causes the transaction to use the wrong record as an operand. An operanderror might cause a
transaction thatissupposed to increase allemployee's salaries byten percent tomistake several items from
the inventory for employees and give them a raise too. Pointer errors happen when a transaction writes to
a data record thatis notan operand for the current transaction. Anuninitialized pointer or a array bounds
overflow fit into this error class. Decision errors, a special case of pointererrors,will be described in the
nextsection. Meta-data errorshappen when thedatastructures usedto find an operand are damaged. For
example, theoperating system could damage a DBMS process page table causing the DBMS to use data on
the wrong page.

Wrong value errorshappen when thetransaction usescorrect databut makes inconsistent changes to
records anyway. Forexample, a numerical error thatcauses fifty dollars to disappear from a bank balance
would be a wrong value error. Two special cases of wrong value errors are abort errors and

Term

Operand (Wrong Record)
Pointer (Wrong Record)

Decision (Wrong Record)
Meta-data (Wrong Record)

Wrong Value
Abort (Wrong Value)

Synchronization (Wrong Value)

Description
Application asks forwrongrecord

Uninitialized pointers
Defined in section 3

Operand namemisresolved
Correct record, bad update

records not restored after abort
locking protocol violated

Table 1: Error Classes

Term

Log error
Data error

Recovery store error

Description

Log recordsdamaged
Cache datadamaged,but not log
Recovery meta-data damaged

Table 2: Disaster Causes

synchronization errors. An abort error happens when atransaction aborts without cleaning up any writes
it has made. Synchronization errors happen when the locking protocols or other resource allocation proto
cols are violated (e.g twowriters ona single record, memory leak).

An error causes disaster if a damaged record cannot be restored to a consistent value during
recovery. There are three ways in which errors can cause disasters. A log error causes disaster bydamag
ing the transaction log. If the error is not detected before transaction commit, the TPS will not have a
correct record touse in recovery. A miscalculation that caused an employee's salary tobecome negative
would probably be alog error since the erring transaction would record the illegal value in the log. Data
errors damage data records but are not reflected in the transaction log. For example, an uninitialized
pointer may cause the DBMS to overwrite arecord in the cache. These errors cause disaster only when the
damaged record is flushed out of the main memory cache. A recovery store error isan error that causes
good data in recovery store to be overwritten. Such an error occurs when, for example, the transaction log
for one transaction is written over top of the tog for another.

Tables 1 and2 summarize the six error classes andthree kindsof disasters. Errors having to do with
bad output to the terminal are considered log errors (wrong value), since they cause disaster in away simi
lar to log errors.

3. Proposal: Five Software FaultToleranceTechniques

3.1. Page Guarding

Several factors work to increase the size of a program like the data manager. First, modules with
very different functionality are often combined into a single address space to increase intermodule com
munication speed. Modules inthe same address space can access services provided byone another with an
inexpensive procedure call. If they were in separate address spaces, communication cost would include
context switch overhead. Second, much of the DBMS or OS address space is devoted to disk cache. If
main memories become larger and disk access speeds remain constant the disk cache can be expected to
grow.

Unfortunately, access to large amounts of data becomes a liability when the program malfunctions.
An uninitialized pointer orarray out-of-bounds error can damage data unrelated to the code causing the
error. Worse, reliability concerns can override the need to add functionality orimprove performance by
discouraging system designers from adding new modules (e.g. new access methods or network protocols).
Further, much of the address space israrely referenced. Measurements from aVAX 11/780 show that the
mean interreference timefor a byteof the 42 BSD UNIX kernel is45minutes atpeak load [7]. Themean
interreference time is four hours during off-peak times.

The page guarding fault tolerance technique uses existing memory management hardware to restrict
access tothis unneeded data. In page guarding, the operating system makes some data pages unwritable by
clearing the write-access bit for the page in the (DBMS) process's page table. Software errors that cause a
transaction towrite tothese protected pages will betrapped by hardware. The DBMS can change the pro
tection for the page as needed through guard (write-protect) and unguard (unprotect) system calls. In order
toupdate apage, the DBMS must unguard the page, modify the data, and guard the page again.

3.1.1. Costs and Benefits

Theexact cost of updating aguarded page will depend onthe TPS hardware. The guard and unguard
operations must be system calls since they change the access bits inthe DBMS process's page table. Guard
and unguard must update the system's memory management unit (MMU) toreflect the new page protec
tion status. Guarding orunguarding several pages atonce will have roughly the same cost as guarding or
unguarding only one. The cost is dominated by the cost of the system call and the MMU update -costs
which are unrelated to the number of pages guarded or unguarded. Performance would be best if the
DBMS postponed reguarding the pages written byasingle transaction until transaction commit The tran
saction would make an unguard call the first time each page iswritten and a single guard call immediately
before commit Shifting page protections is particularly expensive in a shared memory multiprocessor,
since updating the MMU usually requires cooperation from all processors. In the Mach "shootdown"
algorithm, the cost is1to3.5 ms for atransaction processing workload on 9processor Sequent [4],

Guarding presents a model for large system programs that is between the multiple disjoint address
spaces model and the single address space model incost reliability, and ease of use. For one module to
access data owned by another, it makes a procedure call and unguards the data. Shifting protection boun
daries with guard/unguard calls is cheaper than making the full context switch required in the multiple
address space model Once the data has been unguarded, access cost is that of normal data in a single
address space. The guarding model makes system design easier because data belonging todifferent system
modules can begrouped together inasingle protection region when needed. A system program partitioned
intomultiple address spaces is obviously muchless flexible.

Because guarding isapassive method of error detection, itwill beparticularly cost effective for pro
tecting large disk caches. The error latency for pointer errors that damage cache data is reduced to zero.
Furthermore, any errors detected would probably notbe detected atall ina system without guarding. The
transaction error checkercouldnot possiblyexaminealldata in the cache forerrors.

3.1.2. Limits to the Effectiveness of Guarding

Unfortunately, guarding onlyprotects against pointer errors. Even then, atany given time, some data
records have to be unguarded so they can be updated. These records can still be damaged by pointer
errors. Notonlyis arecord being updated atrisk, butsoare many of therecords near it The unit of pro
tection mustbe at least as large as the page size imposed by the system hardware. Updating onerecord
requiresunguarding all of the recordson the page.

System designers face a performance/reliability tradeoff regarding the length of time pages are
unguarded and thecostof guarding. Reguarding apage immediately after it is written decreases theoppor
tunity for erring software to write the page. Ontheother hand, leaving thepage unguarded until commit
time can decreasethe number of guardsystem callsa transaction makes.

3.13. Unguard Keys: Restricting the Right to Unguard Data

A second reliability problem concerning guarding is that bad software can unguard pages just as
easily as good software. In thesimple guarding model, writing to data ata particular address involves two
decisions: the decision to unguard the data, and the decision to writeto it If an error affectsthe software
making both decisions, guarding is useless. We are going to call errors that make both decisions
incorrectly decision errors.

The problem of decision errors can be illustrated with this rather extreme example: Suppose the
system designer wanted to reduce thenumber of unguarded pages in thesystem tooneperprocessor. The
designer changes the compiler so that every store instruction it produces is surrounded by unguardO and
guardO systemcalls so thatonly the page being written is everunguarded. As intended, no software errors
will ever be able to damage pages other than the current one. Sadly, though, all pointer errors are now

decision errors. No softwareerrors canaffect the decisions to unguard andto writea pageindependently.
Part of the concern about decision errors is the any part of the DBMS can makean unguard call

Even if the program makes careful checks before unguarding, out of date orbroken code can avoid the
checks. Associating unguard keys with regions of guarded memory can limit the places atwhich decision
errors might occur.

Anunguard key isessentially acapability [11] for making unguard calls. In the DBMS, an unguard
key works as follows: during initialization, the DBMS guards one or more contiguous region of virtual
memory with a system call (GuardRegion(highJow)). GuardRegionO returns an unguard key, acapability
that gives itsholder the right to unguard pages inthe region. Subsequent calls to unguardO fail if the caller
does not pass the correct key as a parameter.

Inthe DBMS, the buffer pool would have several unguard keys - one for the data region, one for the
pinned catalogs, one for each type of pinned index. If a transaction wanted to unguard a data page, for
example, it would have to go through the buffer manager, since only the buffer manager would have the
key. If a caller tried to unguard buffer manager meta-data or one of the system catalogs, the buffer
manager would refuse. If another part of the DBMS tried to unguard data, the call would fail since it can
not produce the buffer pool key. The increase incost isnegligible. The OS am verify that akeyiscorrect
in a few instructions.

32. Deferred Write: Shadow Copy Limits Propagation

Guarding helps protect unused or read-only data from current transactions. Itisno help inprotecting
one transaction's unguarded pages from another transaction's errors. If the DBMS is broken enough to
ignore thelocking protocol, onetransaction can overwrite pages unguarded by another.

The deferred write fault tolerance technique helps address these concerns. As in the last technique,
all pages are write protected when not inuse. Instead ofunprotecting arecord to bewritten, however, the
transaction makes ascratch copy of the record inwritable virtual memory. Atcommit the transaction uses
the restore system call to copy the updated scratch record onto the original. During restore, the OS
unguards thepage containing theoriginal, performs the copy, and reguards it

Private

Address Space

Shared Memory

Scratch Area

Figure 3: TPS Process Structure

DBMS Processes

Guarded

The cost of deferred writewill differ from simple page guarding in several respects. First one sys
tem call isrequired to replace the old record with the new instead oftwo (there are still two TLB flushes).
Second, deferred write must copy the record twice: once tomake the scratch copy and once during restore.
Third, extra memory isrequired to store the scratch copies. Added memory use may increase the system's
page fault rate. Again, the system call costs can be reduced if all of the modified records are restored at
once. In deferred write, all pages written can beunguarded and guarded ina single system call. For the
page guarding technique, each page had to beunguarded with separate system calls.

3.2.1. Costs and Benefits

Ifwe look again at the process model for the DBMS (figure 3), we can see how deferred write helps
insulate transactions from oneanother. The DBMS processes share the write protected data in the shared
memory buffer pool Writable scratch copies ofrecords are in individual DBMS address spaces. Thus, if
one DBMS process makes an error, itnormally cannot hurt data belonging to another process. One transac
tioncanonlypropagate errors to another transaction by:

(a) committingwithoutdetecting the error,

(b) damaging the write-shared lock table,
(c) damaging the buffer pool meta-data (e.g. reallocating buffers incorrecdy),
(d) damaging disk files,

(e) violating the two phase locking protocol (e.g. copy before acquiring alock).
So, for example, if the transaction writes to the wrong record, the entire transaction has to complete suc
cessfully before the error propagates. This will help ensure that existing error checkers have achance to
detect an error before any damage either propagates oriscommitted. With page guarding, the erring tran
saction would unguard the wrong page and propagate theerror immediately.

Deferred write will also make unguard keys more effective. Since data is only unguarded after the
modifications are ready, the buffer manager can check over the proposed update before allowing it to
proceed. If the buffer manager has semantic information about the data to be modified, itcan examine the
before and after image of the record and decide if the update makes sense. Itcan, for example, check that a
modification to the system catalog make sense, or check that a data record update hasn't changed the
record's unique object identifier. When restore only happens at the end of a transaction, the buffer
manager can check that the transaction has produced correct log records before allowing the updated data
to be installed.

Deferred write has severalotheradvantages over pageguarding:

(1) The TLB consistency problem in shared memory multiprocessors may be simplified. Pages are
unguarded only during restore and only one processor's MMU need reflect the change.

(2) TheDBMS does nothave toknow the page size of the underlying hardware. It copies and restores
records of whatever size is convenient

(3) The page-level granularity of write protection causes less trouble for deferred write than simple
page guarding. Because scratch records are kept ona separate page from the one containing the
original data, other records inthe original page are only unguarded during the restore system call.

(4) Deferred write helps ensure that each unguard is followed by a guard. In page guarding, the tran
sactionmight forgetto reguard the pagesit has unguarded.

(5) Aborting transactions may be less likely to result in error. Since transactions never modify real
data until commit there is little to undo when the transactions abort

Deferred write does havethe disadvantage that pointers to the original record mustbe thrown away after a
writelock is obtained. All software must haveenough indirection that the scratch copy is always used in
place of the original.

3.2.2. SynchronizedWrite: UsingDeferred Write to Check Synchronization
Deferred write introduces several potential errors not present in simple page guarding. The transac

tion must now ensure that:

(1) updated data is returned to the same place it came from,
(2) all scratch records modified by a transaction are restored, and

(3) the granularity of thecopyis nolarger than thegranularity of locking.
Deferred write also changes the nature of synchronization errors. The restore system call serializes all
updates to a given record, even illegal ones. If a locking protocol error causes two transactions to write
same record, one update willbelost butthe two transactions cannot intermingle'writes.

Because of the enforced serialization in restore, a technique called synchronized write can help
detect synchronization errors. In synchronized write, the writer takes a checksum of its scratch record
before therecord is modified. Here, checksum could simply bea parity calculation. At restore, achecksum
of the original record is taken. If the new checksum isnot the same as the stored checksum, either we are
not restoring the record to the place it came from or someone else has written the data since the writer
copied it The cpu overhead for synchronized write can beless than twice that of deferred write since the
parity calculation will be cheaper than copy.

3.3. DelayedCommit: Trade ResponseTime for Reliability
Mostsoftware fault tolerance measures, including theones we have discussed so far, are designed to

help detect errors quickly. Deferred write isan exception. Itensures that an error inone transaction can
not propagate before the transactions error checker has achance to run. Our last fault tolerance technique,
delayed commit is another means of increasing theopportunity todetect errors.

In delayed commit an artificial delay Disinserted between the time atransaction completes and the
timeit is considered committed. When a transaction commits, it putsa timestamp in its logrecords, writes
the log records todisk, releases itslocks, and goes tosleep. After Dseconds, the system writes a second
timestamp to the log and the transaction commits. During recovery, the system reads the log to find L, the
latest timestamp before the failure. Only transactions with timestamps less than L-D are recovered, effec
tively increasing the propagation latency by D. If another transaction's log records are ready to go to the
disk, the second timestamp will be unnecessary.

Delayed commit allows the delayed transaction to take advantage of error checking inother transac
tions and in the OS. It helps when

(a) anerror strikes the transaction's data after thetransaction has finished error checking it (e.g. the
checker itself might have bugs),

(b) an OS error damages the transaction's data ina way thetransaction alone could notdetect (e.g.
synchronized write detects errors after theoffending transaction has committed),
(c)onetransaction using a shared data structure has lessthorough error checking than others,
(d) errors occur in clusters. Several errors might be propagated from the same source. If any error
fromthe clustercauses system failure, noneof the errors causedisaster.

Delayed commit can also decrease error checking overhead by allowing many independent transactions to
beerror checked together. Suppose theDBMS checks system catalog pages for structural integrity. These
checkscanhappen in thebackground rather than aspart of everytransaction.

Delayed commit will obviously increase the response time of transactions by D seconds. In most
applications, response time is crucial, however, even very small D(one percent of response time) can give
a lotof time for error checking. If Dis small relative to thevariation inresponse time, thedelay willprob
ably not be noticed by end users.

Delayed commit will only affect throughput when the need to write extra timestamps to the disk
affects throughput If the throughput rate is high, noextra timestamps are needed. The timestamp written
by the transaction attime I+D commits the transaction finishing attime I. If some bottleneck other than the
disk is causing throughput to be low, writing extra timestamps to the disk won't affect throughput How
ever, if the workload is disk-bound because transactions go to disk for data so often, delayed commit will
worsen throughput Finally, delayed commit causes more work tobe lost on failures than would be lostin
the crashof a normal system. All of the delayed transactions must be redone.

3.3.1. Artificial Delay in Meta-Data Management

A technique similar todelayed commit may beused toreduce the opportunity for meta-data errors to
cause disaster. In existing systems, meta-data isoften used immediately after it ischanged. For example,
file system meta-data ischanged when a file is extended. Usually a file isextended only when the DBMS
has to write to theendof the file. Thus, immediately after modifying the meta-data for the file, the meta
data is used. If an error caused the file to be extended incorrecdy, there is no delay before a disaster
occurs. Simple tricks, like extending the DBMS log file before it needs to be written, can permit adelay
period after meta-data errors inwhich disaster mightbeprevented.

4. Evaluation: Performance and Reliability

In the previous sections, we have sketched some ofthe performance and reliability effects of several
fault tolerance techniques. In order for the techniques tobe useful, system managers mustbeable toweigh
the techniques* performance costs against their reliability benefits. Therefore, amore quantitative analysis
of costs and benefits is required tocomplete ourevaluation of these techniques.

The performance evaluation is relatively straightforward. The next section presents simulation
results for transaction processing systems which use page guarding and deferred write. Ultimately, wewill
build and measure implementations of these techniques for the POSTGRES [28] data manager and Sprite
[26]operating system.

Quantitative reliability evaluation is considerably more difficult We would hire to project the
number of disasters that would occur ina target system with and without agiven combination of fault toler
ance techniques. Animplementation alone will not give us enough information. In general, it takes years
of operation to acquire sufficient data to generalize about system failures. Even then, observations would
not necessarily begeneralizable if only a few programmers developed the program, or if it was not widely
used.

A more practical way of quantifying the fault tolerance increase provided by these techniques is to
derive reliability measurements using observed errors from existing systems. The error data isbroken into
classes according tothefault tolerance techniques that prevent them. Inthe second section that follows, we
takethatapproach anddescribe someof thedifficulties withit

A third method for reliability evaluation is called error seeding. In error seeding, known errors are
inserted into either the program code [12] orinto both code and data [8] according to some fixed distribu
tion. By counting the number of times the seeded system fails (or has a disaster) during a testrun, we can
measure itsreliability. Reseeding and rerunning the test program many times increases the stability of the
measurements. By using the same error distribution to seed systems which use each fault tolerance tech
nique, wecan compare the effectiveness of different techniques. We discuss some analytic models based
onerror seeding andsomeof themethods' weaknesses inthelast subsection.

4.1. Simulation Study for Performance Analysis

To estimate theperformance impact of page guarding and deferred write, we have simulated a shared
memory multiprocessor TPS. The simulator uses the TPS model described inthe first section. Transactions
read and write pages, produce atransaction log, and commit The program simulates lock activity, memory
management and queueing behavior atdisk and cpu. Ituses an artificial workload generated using the fol
lowing parameters:

10

Processors 10,6-10 MIPS each
Disks 30-120, -28 ms per VO
Database 500MB, 50-350 users
Memory 50MB,4KB pages, 128byte records
Transactions mean size 8 records, 20% writes
Hot Spots 80% ofreferences to 20% ofdatabase
System Call 500 instructions
TLB Shootdown 4000 instructions

Copy Cost 4 instr/byte, 512 instr/record
DBMS processing 20,000 instr/page

The parameters were chosen to emphasize the differences between page guarding, deferred write,
and a traditional system under varying degrees ofresource contention. For each fault tolerance technique,
the parameters were adjusted to create disk-bound and cpu-bound runs. The cases were constructed by
modifying the cpu speed and number ofdisks until the desired resource became the bottleneck.

For our evaluation ofpage guarding, the TPS unguards apage when atransaction locks itfor writing.
Similarly, deferred write copies the record when a write lock is acquired. In both cases, the transaction
makes a single system call atcommit time to reguard pages and/or install the writes. Each guard, unguard,
orrestore operation paid the cost for a system call and deferred write paid the cpu cost for two copies. In
our initial simulations of page guarding, we did not consider the cost of MMU operations in a shared
memory multiprocessor. We consider guarding both in the case when MMU consistency is slow (shared
memory multiprocessor, TLB Shootdown algorithm) and fast (uniprocessor, single system call).

4.1.1. Simulation Results: Throughputand Response Time
Graph 1 compares the throughput of the deferred write and the guarding TPS to that of an

unmodified system. The results are normalized so that the throughput for each modified TPS isexpressed
as a percent of the normal system's throughput The curves have been smoothed slighdy. Any time the
difference between normal and modified system throughput was less than the standard deviation of the

On«iHrn(Q»j)

OurtagCD*) 9***
B B

Mill*1 pf^^"'" IIw tl—*•

Graph 1: Normalized Throughput Rate

»«tltllMlTlllllrflH

DctaadW*a(D*)

DrfndVM»(C^4
B Q

9IS0'

9SM-

nso> —

Graph 2: Guarding Throughput with TLB
Shootdown

03241

RafflarPay*

HitRt»

CD*)

(Cpu)

0318<

0312

O306'

DefcaodWrite (Qn) ISO

HtanfaBTok Goocmost lira

Graph 3: Buffer Hit Rate

11

• oTNondRapoa*

(CW

B—a

B—Q
150

—I—

259

MoteofOooconmUmb

Graph 4: Normalized ResponseTime

350

simulation runs, theywererecorded in the graph asequal (100%).
In graph 1, throughput degradation never exceeds two percent Not surprisingly, the techniques have

no impact atall in the disk-bound case. Deferred write and guarding only increase cpu demand so do not
affect throughput when the cpu isnot heavily utilized. Even inthe cpu-bound case, the throughput effects
of the algorithms are not significant The normal processing cost in the DBMS dominates the cost of the
extra copies and system calls. In general, guarding fares slightly better than deferred write when the MMU
update costs are not taken into consideration. The TLB shootdown algorithm (graph 2) dramatically
increases thecostof guarding butreduces throughput (over thenormal system) onlyby seven percent

Finally, wehad expected that deferred write might worsen the page fault rate, hence worsen perfor
mance. Although thepage fault is higher indeferred write, the difference did nothave much effect onper
formance. Graph 3 shows how buffer hit rate changes as the degree ofmultiprogramming. The amount of
scratch space required bydeferred write increases linearly with multiprogramming level

Graph 4 shows the response time differences in the algorithms, normalized in the same way as
throughput The response time difference between the three systems almost negligible. Even in the cpu-
bound case, the response time is dominated by disk latency. For these parameters, a one percent delay
added by delayed commit provides 100,000 to400,000 instructions per processor during which an error
mightbe detected (4 MIP processor, cpu bound).

42. Reliability Analysis Through Error Studies

There are two sources of existing system failure data: (unpublished) bugreport databases and pub
lished error studies. In general, neither source provides enough information toevaluate ourtechniques. A
bug report might describe the immediate cause of a failure (segmentation fault), the original cause (race
condition in network driver), or describe symptoms (garbage characters appeared on the screen). Often,
specifics about system behavior after the error are missing (e.g "then the system eventually crashed"). It is
this post-error behavior which both causes disaster and determines which fault tolerance techniques are
successful. Published studies summarize and categorize error data, hence provide lessdetailed information
than bugreports. The researchers conducting a study group errors into classes that may not have much
relation to ourtechniques. In spiteof these concerns, someuseful information can be garnered from pub
lished and unpublished error studies.

Recovery and Abort

Errors

Synchronizaiioo
Emn

Pointer Error*

12

DOS/VS MVS H Uipubl I
mvs i mvs m unpubi n

Table 3: Summary of Error Study Data

Several published studies examine the frequency oferror clusters. The existence ofsmall error clus
ters increases theeffectiveness ofdelayed commit Unfortunately, theinterval between errors in thecluster
must be extremely short (a small fraction of average transaction response time) for delayed commit tobe
useful. In two MVS studies ([32][24]), error clusters, were observed in 60% and 20% of all failures,
respectively. In the first study, 35% of these clusters were less than a minute apart on an IBM 3081 (finest
grain reported was one minute). Two sources for clustered errors were (a) error handlers failed (making the
original and the error spawned by the bad handler into an error cluster) (b) several transient hardware
errors occurred together. Asfarasdelayed commit is concerned, the results areinconclusive.

Other observations from the studies confirm that software errors correlate with high system load,
hardware errors, and highly interactive workload [18][32]. Also, Gray reports 99.25% of all software
errors are handled successfully by retry [13]. In an MVS retry study [24], retry was much less effective
(0-70%) but these retries were operating system recovery routines instead of full system rollbacks.

Table 3 matches the error classifications from six operating systemerror studies to our error classes.
In some cases, the match is crude. For example, all bad address trap errors are assumed to fit into our
pointer error class. Some of our error classes (value and operand) could not be discerned from the pub
lished information. Thepublished studies in thetable arefrom MVS ([32] [24], [24], andDOS/VS [10].

While not enough to compare the mechanisms fully, the studies indicate that some of the error
classes handled bestby our mechanisms are, in practice, important errorclasses (pointer, synchronization,
and abort). Of course, the errors observed the mostoften in thesestudies are not necessarily the ones that
have long errorlatencies. Thefailure information does notindicate how often disasters occurred as a result
of these errors or how long the error latency was. So, this information, in and of itself, does not indicate
that our mechanisms are necessary.

43. Error Seeding Analysis

In this section, we make a partial evaluation of page guarding using a family of analytic models
based on the error seeding idea Guarding will detect pointer errors only if the page struck by the error
happens to be guarded. If we use error seeding to simulate pointer errors, a location is chosen from the
database buffer pool according to some error distribution. The chosen location is either in a guarded page
(and is detected immediately) or in an unguarded page (and may be detected if examined by a transaction

13

error checker). Only permanent (buffer pool) pages are considered because pointer errors which hit tran
sient data pages can only contribute todisaster indirectly (through error propagation). Error propagation is
assumedto be represented in the seedederror distributions.

By considering the likelihood that the error distribution will select guarded pages, wecan get much
of the same information that would have come from the error seeding study. We will not, however, know
whether the seedederror would have caused a disaster. The modelswill also give us no new information
about the relative likelihood of pointer errors and decision errors. Also, onlysingle errors are considered.
Multiple (independent) errors would increase guarding's effectiveness since recovering from any of the
errorswould cause all to be repaired.

Differenterror distributions will make different pages candidates for error insertion. Some reason
able error distributions are:

(1) Uniform: every page isequally likely to behitbyan error. This isthe best case for guarding since
a large fraction of thebufferpool is guarded atany time.

(2) Locality-biased: the error will only affect one of the last K pages the system has used. The
assumption here is that pointer errors damage the buffer pool when a recendy used pointer is
reused inan incorrect way. For example, an uninitialized pointer variable on the stack is probably
most likely to contain asmall integer, and to crash immediately when the pointer isused. Disasters
are more likely if the uninitialized pointer reuses another pointer value. These pointer values are
most likely to point to recently-used data.

(3) Write-locality-biased: As above, but read-only data is never chosen. Pointer errors only occur
when the erring program writes to abad pointer location. This model assumes that data that isnor-
maUy never written is lessatriskof accidentally overwrite.

(4) IO-biased: errors affect pages only as they are being read in or written out (or soon after). Disk 10
has synchronization and buffer management (page replacement) associated with it and may be a
source of errors. Sometimes transient hardware failures causesoftware errors, as well.

(5) Point-of-control: only the page currently being written is ever affected. This isa lower bound
since, here, guarding givesno increase inreliability.

Each error distribution implies aprobability Pg that errors strike guarded pages. There isalso aprobability
Pe that, if the error strikes an unguarded page, the transaction error checker eventually looks atthe page
and detects the error. The models describedbelow use the following symbols:

M is the degreeofmultiprogramming
P is theaverage number of pages usedby a transaction
W is the fraction of pages written
C is the fraction of pagesin disk cache, but notin use

4.3.1.1. Uniform Distribution

In this distribution, all pages are equally likely tobehitby an error. Pages in the cache and read
only pages are guarded, so

P, =C +(1-W)*(1-Q.
In our simulations, most of the pages inmemory are notinuse because contention for locks, disks, and cpu
always outweighs contention for memory. Thus, Pg ranges from 97 to99 percent for simple page guard
ing. Deferred write unguards W records instead ofW pages, soitsPg will beslighdy larger.

4.3.1.2. Locality-Biased andWrite-Locality-Biased Error Distributions
Inthis distribution, the system has aK page working setof recently used pages. Only pages from the

working set can bedamaged bywrong page errors. A page from the working set isonly unguarded if writ
ten. Even the pages that were written are now guarded again if the transaction that wrote them has com
mitted. To determine Pg, we must determine what fraction of the last K pages used belong to uncommitted
transactions. Suppose for simplicity that a transaction touches its Ppages inorder one after another with
no rereferences.

14

In the steady state, atransaction completes after every 1/Ppage references. The chance that apage
touched i references ago belongs to acommitted transaction is then wM(\i/M\),P)/P. and, the chance that
the riage belongs to atransaction that is s The average Z* from 1to K
is the average number ofthe last Kreferences that went to transactions that are still uncommitted at the
time of the error.

Using these assumptions, we can compute Pg. In simple page guarding, Wpercent of the references
to uncommitted pages were writes. Thus, Pg =1-(W*(jjL*)). In the write-locality distribution, an error
can only strike pages that have been written, so the page is only guarded if the transactions is finished.
Hence, Pg =1-(TM For (P*10,M=100,W=.20) and K=50300,1000, Pg =0.82,0.84, and 0.89, respec
tively, using the locality-biased distribution. In the write-locality-biased distribution, Pg is 0.10,0.30, and
0.45 for the same parameters.

In deferred write, scratch pages belonging to the transaction do not become guarded when the tran
saction commits. These pages are reused (or at least are never guarded). Hence, for the locahty-biased
distribution, Pg =1-W. For the write-locality-biased distribution, Pg =0.

4.3.1.3. IO-biased Distribution

The link between device failures and software errors suggests that pages may be more subject to
error when they are read from or written to the disk. Of course, nothing suggests that device failures cause
pointer errors or that those pointer errors would primarily affect the data being transferred.

For this distribution, Pg is the ratio ofdisk reads to total disk operations. Data being written is
guarded while data being read cannot be. Suppose the cache hit rate is H. Then P*(l-H) pages must be
read during every transaction. Because W percent ofthe cache is dirty, the transaction flushes W*P*(1-H)
pages to disk. Assuming that transactions are small enough that only one page is written out on commit,
Pg = (P*W*(1-H) +1)/(P*(1-H)*(1+W)+1). Using the parameters (and hit rate) from our simulations, Pg
= 026.

4.3.L4. Summary of Error Seeding AnalysisResults
The analysis shows that the reliability increase provided by guarding varies significantly with the

error distribution. In all but the most pessimistic assumptions, however, the Pg is substantial (10% to
99%). Even ifPg is small, these are errors that transaction error checkers would normally not detect Sup
pose Pe is 50% (the checker is 50% effective against the pointer errors that itsees). Then, Pg of, say, 10%
in the write-locality-biased case implies an overall increase inpointer error detection from (90*50) 45% to
55%.

4.4. Performance and Reliability Evaluation: Conclusions
The simulation results make the performance of deferred write look promising. Since it provides

more protection than simple page guarding at nearly equal cost, deferred write will be preferable to guard
ing in most cases. Only when records are very large or when whole pages are being initialized byatransac
tion (hence nothing in the page needs to be protected during the transaction) might page guarding alone be
worthwhile.

Our reliability results are less conclusive. The error study shows that our techniques ar& attacking
the right problems. Concurrency, error recovery, and pointer management cause most failures. Intuitively,
this makes sense. Concurrency and error handling code is often complex and difficult to test Pointer
errors may simply be an early manifestation of many different kinds of control and data errors. These
errors are also difficult to correct since different parts of the system can be damaged each time the error
arises. Although our techniques are designed to protect against these kinds of errors, we have not been
able to quantify their fault tolerance impact

5. Fast Recovery: Main Memory as Recovery Store
The techniques wehave proposed to protect against long latency errors can also beused toimprove

recovery speed. The POSTGRES Storage System has a fast recovery mechanism that depends on non-

15

volatile main memory [30]. Even a traditional database storage system could recover faster if thedatabase
log and frequendy-used database pages did not need tobereread from disk during recovery. The hardware
challenges in building reliable non-volatile main memory have for the most part been solved [17][29].
Unfortunately, concern about software errors still forces TPS designers touse Disk Recovery Store (DRS)
instead of Main Memory Recovery Store (MMRS). With a few modifications, thetechniques discussed so
far cantip the scales toward usingMMRS.

5.1. Issues: What makes MMRS different from DRS?

Our model of MMRS is as follows: A region of non-volatile main memory is guarded for use as
recovery store. The DBMS maps this region into its shared memory. When atransaction commits, its log
records and any modified operands are copied to this region. The MMRS isstill managed as acache so log
records and data pages are aged out todisk eventually. On a failure, all main memory data except that in
MMRS isthrown away. Figure 4 shows how DBMS shared memory might take advantage of MMRS.

From the standpoint ofsoftware error protection, MMRS poses several problems not found in DRS:
(1) Error Propagation Speed: Broken software can damage memory faster than it can damage disk.

If a transaction decides to overwrite a location in main memory, it cando soin oneinstruction. The
advent of page guarding can only slow adetermined overwrite bya few more instructions. Des
troying data on disk takes several thousand instructions (from beginning to end) After the instruc
tions are complete, there isa delay of about 18 ms (180,000 instructions on a 10 MEP machine)
while thedisk seeks to thecorrect location. The extra workandextra latency in the DRS case give
the system achance todetect that it is inerror and fail.

(2) Data Error Buffering: Recovery causes the DRS system to throw away its cache. During
recovery, pages inthe cache damaged bylatent data errors will bethrown away as well. In DRS
systems, data errors are buffered in memory for seconds before being flushed to disk. Asmemories
become larger, this extra latency becomes even larger. MMRS moves data errors into recovery
store immediately upon commit hence, the data error becomes adisaster immediately.

(3) Meta-Data Risks: MMRS faces alarger threat from meta-data errors for three reasons. First disk
meta-data can bechecked for errors onevery write tothe disk. Main memory meta-data is used by

DBMS

Shared Memory

Main Memory Recovery Store

Figure4: AllocationofMMRS

16

hardware and is on the critical path for every instruction execution. The meta-data structures are
relatively inflexible (making error checker design hard) and error checking on use is severly res
tricted for performance reasons. Second, in DBMS systems, the disk meta-data for critical files
does not usually change very often. Memory allocation changes regularly, as pages are brought in
and out ofmemory. Ifthe chance oferrors is proportional to the frequency with which something is
updated (quite possible for propagated errors), main memory meta-data is more susceptible to
error. Third, MMRS is managed as a cache, so it requires some recoverable data structures
unnecessary for DRS. The dirty bits and buffer-to-disk-block mappings for the cache must survive
failures. Latent errors inthese data structures are thrown away with the data structures during DRS
recovery.

(4) Independent Failure Modes: If disk management and memory management software fail
independendy, DRS has an advantage. Failure ofdisk management software can cause a disaster
for either system. Memory management failure (direcdy) causes a disaster only in MMRS. Con
versely, though, there is a correlation between load on a device and failure rate in both the
hardware and software related to the device. MMRS may produce a reliability advantage by
lessening the disk load.

In thesection thatfollows, wereexamine theeffects of each error type onMMRS and make some sugges
tions to handle the increased danger of meta-data errors.

52. Error Analysis:What CausesMMRS Disasters?
In order for MMRS to beacceptable, errors must beno more likely todamage MMRS than DRS.

Earlier, we discussed three ways that errors could cause disaster, damaging the log, damaging data, and
damaging recovery store meta-data. In diis section, we are going to compare DRS and MMRS according to
the danger posed to each system by each ofthese kinds ofdisasters. Log errors were defined earlier as
errors whose effects are propagated tothe transaction log. These become disaster on transaction commit
For this analysis, we break data errors into three types: direct data errors, pointer errors, and indirect data
errors. Direct dataerrors are those thatcanaffect MMRS direcdy - meta-data anddecision errors. Pointer
errors are a special case ofdirect errors, since, ifa few precautions are taken, they can be neutralized with
guarding. Indirect data errors are those that affect data while it iswritable and are eventually aged into
recovery store.

5.2.1. Log Errors

Once a damaged log record is stored inrecovery store, the kind of recovery store used (MMRS or
DRS) will not matter. Log errors are more ofa concern toMMRS than DRS only because the latency ofa
disk write operation allows the system a chance to tail before the log write is complete. Log errors are
equivalent inMMRS and DRS if delayed commit isused to simulate the latency between the decision to
write to the log and the completion of the write.

522. Pointer Errors

In order for MMRS to be effectively protected against pointer errors, allcommitted data in MMRS
must be guarded. The simple page guarding technique will not besufficient since permanent records are
left unguarded during a transaction. Deferred write isbetter, but during restore, it too, leaves committed
data records unguarded. If a record is being restored into page P, a pointer error during the restoration
could damage the other records, on P. The risk to the unprotected pages can bereduced by (1) unprotecting
one page at a time so interrupts can be suspended during each copy, (2) only allowing the record to be
unprotected for thesingle process doing the copy, and (3) carefully coding and testing the OS restore rou
tine.

In environments in which a carefully-coded restore is impossible, the OS can maintain a guarded
backup copy of the page being updated. Before unguarding the original page, the system copies the page
into a writable backup page. After the copy, thebackup is unmapped (from the OS virtual address space),
and theoriginal is made writable. When restore is done, the original page is reguarded. Nomatter when a
pointer error occurs during restore, either the backup or the original is unwritable. The system must add to
its MMRS meta-data, however, the mapping between backup page and data page undergoing restore.
Below, wediscuss the performance implications ofcopying a full hardware page foreach record modified

17

by the transaction.

523. Indirect Data Errors

As we mentioned above, indirect dataerrors have a longer propagation latency in DRS than they do
in MMRS. If the system recovers between the time a data page is damaged and the time it is flushed to
recovery store, thedamaged page is thrown away without causing adisaster. By saving backup copies from
restore, MMRS can manufacture its own indirect error buffer. Backups for the last K buffers updated
could be saved (unmapped) in MMRS. On recovery, the backup and thetransaction log would be used to
reconstruct the current stateof the database. As in DRS, a checkpointing mechanism is required to bound
the number of log records touched during recovery. Also a second update to the same buffer shouldn't
require a new backup.

Depending on how much space isallocated for the buffer, MMRS can approach the fault tolerance of
DRS for indirecterrors. The cost however, is thatless memory is available for disk cache.

52.4. Direct Data Errors

Given guarding and the new restore algorithm, the only remaining software fault tolerance concern is
that errors somehow subvert the guarding mechanism and overwrite MMRS pages. The twotypes of errors
that might behave that way are decision errors and meta-data errors. 'We have already discussed a
capability-based mechanism for reducing the effects of decision errors. It would have tobeextended to
limit OS access to the DBMS buffer pool

For meta-data errors, we described three important differences between DRS and MMRS: meta-data
cannot be checked on use,meta-data is updated more often,andMMRSrequires cache management meta
data. The solution for all but the last of these is to treat MMRS meta-data differendy from other main
memory meta-data. Distinguishing MMRS meta-data can allow the system's MMU to check for bad
meta-data at run time efficiendy.

In current systems, the protection bits in a PIE are assumed to be the only information available
about whether ornot a page is writable. In fact those bits could bewrong either because they have been
recorded incorrecdy orbecause a writable FIE isaccidentally mapped todata that is supposed tobepro
tected. If, however, a database buffer pool uses a fixed size region of physical memory and that region is
always guarded, additional information isavailable. In this case, pages at the physical addresses associated
with the buffer pool should never be writable except during restore. Furthermore, since the buffer pool is
never paged, the addresses can bemapped into the DBMS process address space insequential order. Now,
the system has additional information that can be used to determine whether or not apage table entry has
been damaged.

An MMU could be modified to take advantage of thisinformation without slowing the critical path
of instruction execution. The modified MMUwouldhavetwo registers forthe baseandboundof the pro
tected region of physical memory. When the MMU isloaded with awritable page mapping, itcan quickly
check whether the physical address maps tothe buffer pool. Because the checks happen when the MMU is
loaded, they are not inthe critical path for most instructions. In order toallow the pages tobewritten dur
ing restore, the MMU would have to have a restore register containing the physical address of the one
page which iscurrendy being copied. If the MMU detects an invalid PTE load, itchecks the restore regis
ter to see if the FIE being loaded refers toarecord being restored. If the MMU is software-loaded (as in
the DECstation andSun architectures), themechanism justdescribed can be builtintosoftware rather than
the MMU hardware.

This kind of MMU management isadvantageous for several reasons. FirstPTEs can be checked on
reference. If abuffer pool page is ever accidentally mapped into writable memory, it is still protected. In
the background, the system can also check that the buffer pool addresses are always mapped in the correct
order. Second, thePTEs for the buffer pool are never modified. That removes thepossibility that thePTE
will bedamaged during an update. The downside is that the shared memory region must be fixed size and
contiguous inorder for this mechanism tobeefficient and safe. This limits the operating system's freedom
to allocate main memory.

fcofNcmd
TflTOBylpUt

4KP»B»(Cpa)
a a

8KPkf»(Cjn)
G ©

50 ISO 230

Nsoboi oxGoBCQtnstUra

Graph 5: Normalized Throughput

18

% ofNarad

Tteoogbpat

Log Only(Ddc)

LofOdy(Cpo)

o—©
SabCapy(M0 80'

B •
S*£oCapy(Qm)

B Q
250

Graph 6: Safevs.Normal Restore Algorithm

Performance of Main Memory Recovery Store

Making cache management meta-data (dirty bits and mappings) recoverable requires updates tothis
data to be logged. Delayed commit can help reduce MMRS vulnerability to errors in this meta-data.
Buffers loaded during the last D seconds could not contain data for committed transactions. Targeting the
buffers for replacement more than Dseconds ahead oftime reduces the effectiveness ofLRU replacement
but will guarantee that the D second old mapping meta-data is enough information for recovery. That
allows buffers loaded during thelastD seconds tobemarked unoccupied and allows the new mappings to
be thrown away. The buffer used todelay indirect errors also delays thetime until dirty bits must berecov
erable. Dirty bits donotneed toberecoverable until the backups for the buffers they represent are thrown
away.

53. MMRS Performance Impact

MMRS improves the recovery speed byreducing the amount ofdata, that must beread from disk dur
ingrecovery. The tail of thedatabase logand much of the most often used data is in protected memory,
henceis available after a crash.In order to determine theperformance impactof MMRS on normalsystem
operation, we modified our TPS simulator.

Performance of an MMRS system is different from thatof a traditional system in two ways. MMRS
systems do not write log data to disk on transaction commit but because of the safer restore operation,
they must copy a full page forevery data record the transaction modifies. Graphs 5 and 6 show the effects
of these twodifferences onperformance. In thegraphs, weshow MMRS systems with 8Kand4K pages.

In all cases, theadvantage of nothaving togotodiskoncommit makes MMRS faster, during normal
operation, than a traditional system. In thecpu-bound case, the copying costs of therestore algorithm start
todominate as thecpu becomes saturated. The original restore algorithm could be used instead of the safe
onein orderto lessen thecpucostof a transaction. Here, MMRS beats DRS unless thecpuis so saturated
that the difference in disk load does not matter.

6. Related Work

19

6.1. Writing Fault Tolerant Software

Strategies for improving software fault tolerance fall into three classes: fault prevention, error correc
tion, and retry. Errors can be prevented through modular design, exhaustive testing, and formal software
verification (techniques surveyed in [23]). Although all software designs incorporate one ormore of these
techniques, the complexity and size of concurrent programs like the OS and DBMS make error prevention
alone an insufficient approach.

Correction, or forward recovery, techniques use redundancy to detect and correct damage caused
by errors. One common forward recovery technique isN-version programming [2], inwhich several ver
sions of a program are designed independently by different programmers. The N versions run simultane
ously, comparing results and voting to resolve conflicts. In theory, the independent programs will fail
independendy. In practice, multiple version failures are caused by errors incommon tools, errors in pro
gram specification, errors inthe voting mechanism, and commonalities introduced during bug fixes. Furth
ermore, experimental work [19] has indicated that while N-version programming can increase reliability,
often independendy constructed programs fail onthe same input Not surprisingly, different programmers
often find the same hard tasks difficult to code correcdy.

Retry, or backward recovery, eliminates an error's effects and then reattempts the computation.
Recovery techniques which use data stored on disk for backward recovery are surveyed in [15]. Normally
in commercial systems, the retry uses the same software that just failed. There is evidence that in con
current system software (OS and DBMS), timing differences cause the software to execute differendy dur
ing retry, hence avoid repeating the error [13]. Some research systems attempt to avoid repeated failures
by using different code to execute the retry [27]. This technique only works if both versions of the code
areequallywell testedanddebugged.

62. Fast Recovery

Several systems have been designed so that recovery time is not bounded by magnetic disk access
speeds. One suggestion isto have two processors: one general purpose cpu for transaction processing and
one recovery cpu with access tonon-volatile storage [21]. The main cpu does not have access toMMRS;
atcommit time, it hands log records to the recovery cpu. The recovery cpu copies log records into non
volatile storage, collects them into batches, and writes the batches to disk. Although the approach requires
specialized hardware, the second cpu runs less complex software so it may beless vulnerable to software
errors. Thetwocpu approach increases danger of synchronization errors during commitand does notpro
tect the buffer pooL

The usual technique is to contain software errors so that only part of the system needs to be
recovered. Auragen and Tandem systems run on non-shared memory multiprocessors replicating critical
software components on more than one processor [5][3]. Their recovery mechanism assumes that OS and
DBMS errors will be contained on the machine thatcauses them. Each critical OS andDBMS process has
abackup process that can take over if the primary process fails. Recovery is faster than in normal back
ward recovery because thetakeover mechanism is faster than rollback and restart

Unfortunately, process-pair techniques involve a lot of communication overhead. The primary must
continually pass state information to the backup so that itwill be able to take over on a failure. Bytrusting
more of the low-level system software, we can trade off reliability against increased performance. For
example, the primary and backup could run on different virtual machines on the same physical machine
[6\. Object-oriented languages [31] or modular systems with typesafe languages [20] could use the com
piler to prevent errors from affecting both primary and backup. Guarding and deferred write put more
confidence in the OSvirtual memory management software than is required by process pair technique, but
less confidence in the message passing system. We expect these techniques to outperform process pairs
since communication goes through shared memory instead of aninterprocessor bus.

63. Measuring Software Fault Tolerance

Analytic models forjudging improvements insoftware reliability are sometimes used incommercial
systems ([12] surveys some of these techniques). Existing models, however, are oriented towards finding
trends in reliability improvement over a single system's lifetime. The most common models [25] [22]
assume that effort spent debugging a system will show diminishing returns over time. Given current and
past rate of bug fixes, these models project the increase in reliability expected from continued debugging.

20

Normally, the models cannot beused to weigh two alternative strategies for detecting errors.
Researchers evaluating fault tolerance techniques have used error seeding and randomized input

models. In [1] and [19], thousands ofrandom test cases were generated for test applications built with dif
ferent fault tolerance mechanisms (recovery blocks and N-version programs). Themechanisms were com
pared on the basis ofthe number ofthe random test cases that they failed on. These cases all involved sen
sor data for flight management applications. For aTPS, random input would notbeas interesting.

Error seeding is generally used to measure software reliability in the face of hardware faults (e.g.
[9][14]). ChiUarege and Bowen [8] simulated pointer errors with error seeding to evaluate the recovery
capabilities ofan IMS data manager and an MVS operating system. Errors were simulated by choosing a
random page of physical memory and overwriting its contents with garbage. Error latencies have been
observed using a fault injection model in [7]. All ofthese models used what we have called the uniform
error distribution.

7. Conclusions

As hardware becomes more reliable and non-volatile memory becomes more common, fail-stop
errors willbecome less and less the norm. We have suggested several techniques for reducing data unavai
labilitydue to long latency softwareerrors.

(1) Page guarding isa passive protection technique in which unused and read-only disk cache blocks
are write-protected. Page guarding allows hardware to prevent damage due to corrupted pointers.

(2) Unguard keys increase the effectiveness ofguarding by disallowing one module from unprotecting
another module's data.

(3) Deferred write helps keep damaged DBMS processes from propagating errors to healthy ones.
Because most shared data is protected until transaction commit, propagation only occurs if the error
remains undetected duringthe entire transaction.

(4) Synchronized write allows deferred write's todetect violations of the buffer locking protocol.
(5) Delayed commit gives the system extra time todetect errors before the affected data becomes irre

coverable.

All of these methods can be used in conjunction with theapplication-dependent error checking and safe
codingpractices commonly used in high-availability systems.

We have evaluated the performance and reliability impact of these techniques using both analytic
modelsand simulations. The overhead from our fault tolerance techniques is only noticeable in cpu-bound
systems. Even then, the effect onthroughput isnotsignificant unless theDBMS itself does very little pro
cessing. Although little is known about error distributions, our reliability analysis shows that page guard
ing is effective for all but the most pessimistic assumptions. A survey of existing system error data indi
cates the most commonerrors to occurin practice aretheonesourtechniques handle best These common
errors involve(a) concurrency and synchronization, (b) recovery and error handling, and(c)badpointers.

We also looked at theways in which the fault tolerance techniques could be used to support a main
memory recovery store. MMRS improves recovery speed by obviating the need toread thelog and reload
the buffer pool from disk after a failure. The software fault tolerance differences between main memory
and diskrecovery store comelargely from (a) faster propagation of errors in memory, and(b) more com
plex meta-data for memory management Our proposed techniques offer many ways to reduce or delay
software error propagation. Modifications to the software orhardware thatloads the MMUallows MMRS
meta-data to be safer than that used for the rest of memory.

8. Acknowledgements

Members of thePOSTGRES, Sprite, and RAID groups haveprovide comments and suggestions dur
ingthecourse of this work. Ramon Caceres, Peter Danzig, Anant Jhingran, Margo Seltzer, and Shin-Yuan
Tzou have been especially helpful

21

9. References

1. T. Anderson, P. Barrett, D. Halliwell and M. Moulding, "Software Fault Tolerance: An
Evaluation", IEEE Transactions onSoftware Engineering SE-11,12 (December 1985).

2. A. Avizienis, "The N-version approach to Fault Tolerant Software", IEEE Transactions on
Software Engineering SE-11,12 (December 1985).

3. J. Bardett "A NonStop Kernel", Proc Eighth Symposium on Operating Systems Principles, 1981.
4. D. Black, R. Rashid, D.Golub, R. Hill and R. Baron, "Translation Lookaside BufferConsistency: a

Software Approach", Proc. Third Architectural Supportfor Programming Languages and Operating
systems, April 1989.

5. A. Borg, W. Blau, W. Graetsch, F. Herrman and W. Oberle, "Fault Tolerance Under UNIX", ACM
Transactions on Computer Systems 7,1 (February 1989).

6. J. Buzen and U. Gagliardi, "The Evolution of Virtual Machine Architectures", AFIPS Conference
Proceedings,June 1973.

7. R. ChiUarege and R. Iyer, "Measurement Based Analysis of Error Latency", IEEE Transactions on
Computers C-36,5 (May 1987), 529-537.

8. R. Chillarege and N. Bowen, "Understanding Large System Failures - A Fault Injection
Experiment", International Symposium on Fault Tolerant Computing Systems, 1989.

9. A. Damm, "The Effectiveness of Software Error Detection Mechanisms in Real-Time Operating
Systems", International Symposium on Fault Tolerant Computing Systems, 1986.

10. A. Endres, "Software Errors in Systems Programs", IEEE Transactions on Software Engineering
SE-1 (June 1975).

11. R.Fabry, "Capability-based Addressing", Communications ofthe ACM 17,7(July 1974), 403-412.
12. A. Goel, "Software Reliability Models: Assumptions, Limitations, Applicability", IEEE

Transactions onSoftware Engineering SE-11,12 (December 1985).
13. J. Gray, "Why Do Computers Stop and What Can BeDone About It?", Proc. Sixth Symposium on

Reliability inDistributed Software andDatabase Systems, 1987.
14. U. Gunneflo, J.Karlsson and J.Torin, "Evaluation of Error Detection Schemes Using Fault Injection

byHeavy-Ion Radiation", International Symposium on Fault Tolerant Computing Systems, 1989.
15. T. Haerder and A. Reuter, "Principles of Transaction-Oriented Database Recovery", Computing

Surveys15,4 (December 1983).

16. M Hill, S.Eggers, J. Larus, G.Taylor and aL, "Design Decisions inSPUR", IEEE Computer 19,11
(November 1986).

17. R. Horst "Reliable Design of High Speed Cache and Control Store Memories", International
Symposium onFault Tolerant Computing Systems, 1989.

18. R. Iyer and D. Rossetti, "Effectof System Workload on Operating System Reliability: A study on
IBM 3081", IEEE Transactions onSoftware Engineering SE-11,12 (December 1985).

19. J. Knight N. Leveson and L. SJohn, "A Large-Scale Experiment in N-version Programming",
International Symposium onFault Tolerant Computing Systems, 1985.

20. B.W. Lampson and D. D. Redell, "Experiences with Processes and Monitors in Mesa", Comm. of
theACM23,2 (February 1980), 105-117.

21. T. Lehman and M. Carey, "A Recovery Algorithm for a High-Performance Memory-Resident
Database System", Proc. Thirteenth Very Large DataBases, December 1987.

22. B. Littiewood, "How to Measure Reliability and How Not To", IEEE Transactions on Reliability
R-28,2Q\mel979).

23. D. Morgan and D. Taylor, "A Survey of Methods for Achieving Reliable Software", IEEE
ComputerlOhhhjj, 2 (February 1977).

24. S. Mourad and D. Andrews, "On the Reliability of the IBM MVS/XA Operating System", IEEE
Transactions on Software Engineering SE-13,10 (October 1987).

22

25. J. Musa, "Theory of Software ReUability", IEEE Transactions on Software Engineering SE-1, 3
(September 1975).

26. J. Ousteriiout and al., "The Sprite Network Operating System", IEEE Computer 21, 2 (February
1988).

27. B. Randell, "System Structure for Software Fault Tolerance", IEEE Transactions on Software
Engineering SE-1,2 (June 1975), 220-232.

28. L.Rowe and M Stonebraker, "ThePOSTGRES Data Model", Proc. Thirteenth Intl. Conference on
Very Large DataBases, December 1987.

29. D. Sarrazin and M. Malek, "Fault-Tolerant Semiconductor Memories", IEEE Computer 17, 8
(August 1984).

30. M Stonebraker, "The POSTGRES Storage System", Proc. 1987 VLDB Conf. Conference,
September 1987.

31. B.Stroustrup, "The C++ Programming Language", Addison-Wesley, 1986.
32. P. Velardi and R. Iyer, "A Study of Software Failures and Recovery in the MVS Operating

System", IEEE Transactions on Computers C-33,6 (June 1984).

	Copyright notice1990
	ERL-90-11

