
Copyright© 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN APPLICATION-SPECIFIC AD HOC

QUERY INTERFACE

by

Brian C. Smith and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/106

21 November 1990

(Revised 23 May 1991)

AN APPLICATION-SPECIFIC AD HOC

QUERY INTERFACE

by

Brian C. Smith and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/106

21 November 1990

(Revised 23 May 1991)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AN APPLICATION-SPECIFIC AD HOC

QUERY INTERFACE

by

Brian C. Smith and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/106

21 November 1990

(Revised 23 May 1991)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

An Application-Specific Ad Hoc Query Interface*

Brian C. Smith, Lawrence A. Rowe
Computer Science Division-EECS

University of California
Berkeley, CA 94720

Abstract

An application specific databasebrowser is described thatallows end-users to express ad hoc queries
that include geometric, scientific, and business data.The browser has the desirable properties that it
is extensible, can be easily built using existing technology, and uses a paradigm that can be consis
tently applied across a wide variety of entity-oriented databases.

1. Introduction

An application-specific graphical user interface
(GUI) for specifying ad hoc queries can significantly im
prove end-user database applications. Suppose that you
had a database which contained all information about a

semiconductor fabrication facility including equipment,
utilities, and work in progress (e.g., lots, in-process mea
surements, etc.) and that a water line burst in the facility.
While water flooded onto the lab floor and surrounding
area, someone has to find the correct shutoff valve for the
water line among the hundreds of valves and dozens of
utility lines that feed the facility. After finding the valve,
the water line must be traced to determine the equipment
connected to the line, so it can be properly shut down be
fore turning off the water. Depending on how long it took
to find the valve, determine the equipment to shut down,
and do it, the cost of the accident could be substantial.

Disasters such as this indicate the need for an appli
cation-specific tool to allow a casual user to perform ad
hoc queries that include graphic data. With such a tool,
the user could query the database to find the appropriate
shutoff valves and determine what equipment must be
shut down before closing the valve. An SQL interface
could be used to query the database, but it requires a
skilled SQL user who is very familiar with the database
design.l Alternatively, ageneral-purpose GUI interface
for specifying ad hoc queries (e.g., SIMPLIFY from Sun
[19], Query-by-Example[23], the Data Access Toolset

*This research was supported by theNational Science Founda
tion (Grant MIP-8715557) and the Semiconductor Research

Corporation, Philips/Signetics Corporation, Harris Corpora
tion, Texas Instruments, National Semiconductor, Intel

Corporation, Rockwell International, Motorola, Inc., and Sie

mens Corporation with a matching grant from the State of
California'sMICRO program.

from Metaphor[4], VQL from Sybase[22], or
Databrowse[10], to name a few) could be used, but these
solutions all require the user to be familiar with the data
base design. Natural language interfaces (e.g., [9]) might
also provide a solution, but human factors studies indi
cate that GUI's make better user interfaces than natural

language interfaces given the current state of the art in
both technologies[3].

A better interface would display a schematic layout
of the facility that showed the utility lines and equip
ment, and allowed the user to find the shutoff valve and
equipment connected to the water line by pointing at the
water line with a mouse on the display. Figure 1 shows
an example of such a schematic layout display which
might be part of a larger application that also tracked
other relevant facility data.

This paper describes the design and implementation
ofa simple, extensible system, called CIMTOOL, that al
lows end-users to specify and run ad hoc queries without
having to know SQL or the database design. While the
tool described is used in the setting of semiconductor
manufacturing, the incremental query construction para
digm and alternative data presentations that it uses can be
incorporated into a wide variety of applications. In addi
tion, CIMTOOL was implemented using the Picasso
graphical user interface development environment, and
serves as an example of a "real" application using that
system. The remainder of the paper describes CIMTOOL
and how it was implemented. Section 2 describes the fea
tures of CIMTOOL in detail and presents the application
data model. Section 3 describes the implementation of
the system, and section 4 discusses our experience with
both the implementation and the incremental query con
struction paradigm. The data used in the examples is

1Ofcourse, youcould build predefined queries for anticipated
problems, but most problems are unanticipated

<*
View

AH
Redraw

[vf Equipment

• Utilities

j I Junction:

[vf Spaces
I')) IJJHUH) WJ.'.'.'.'.'.'.'.'.'.'.'.'.'.U.i.'.'.'.'.'.'.'.i.'J'.'.'.'.'.i M.'.'.W.i..' '.U '.'.'.'.'•'.'.'.'.'.'•U'.'. iihji»b™»™h™™bi»™™b™?'™

Figure 1: The schematic layout of the facility

stored in a relational database and represents the Berke
ley Microfabrication Laboratory (the "Microlab") which
is a 10,000square foot class 100 fabrication facility used
for research and education [21].

2. Interface

Figure 2 shows a screendump of the applicationas it
appears on a high resolution bitmap workstation.A floor-
plan of the facility is displayed in the main window
shown in the upper left corner of the figure. The window
in the upper right comer is a panel displaying twohierar
chical browsers for the equipment in the facility, each of
which allow the user to browse a list of equipment. A
panel is an auxiliary window of the applicationwhichthe
user may hide at any time. The panel in the lower right
corner displays two hierarchical browsers for the utilities
in the facility.

Figure 1 is actually an enlarged view of the main win
dow of CIMTOOL. This window displays the floorplan
layout of the facility. On a color monitor, entities are dis
played in different colors to make it easier for a user to

identify and locate different types of entities (e.g., equip
ment is green, walls are purple, and utilities are red). Var
ious mouse and keyboard inputs invoke operations that
allow the user to change the center of the view (i.e., apan
operation) and to magnify part of the image (i.e., a zoom
operation). Other navigation and display options are pro
vided by the buttons below the floorplan (e.g., pan, view
all, redraw, and zoom in or out by factors of 2). The
checkboxes on the right specify which entities are dis
played. For example, a user can toggle the display of
junctions at any time by clicking the mouse (i.e., "mous
ing") on the checkbox labeled "junctions". Turning off
the display of entities speeds up the refresh, pan and
zoom operations, since there are fewer objects to draw.

Figure 3 shows CTMTOOL's Equipment Panel. This
panel displays two hierarchical browsers, labeled "UN-
SELECTED" and "SELECTED", and several buttons.

The hierarchical browsers allow the user to view the

equipment in the facility. Since the Berkeley Microlab
contains over 125 separate pieces of equipment, a single
list would be too unwieldy. Consequently, the equipment
is listed by class, make, and instance. The class specifies

•*-y'~.$%3^$!>g^^

;-X->»•:••$,

Figure 2: A screendump of CIMTOOL

the type of equipment (e.g., "furnace" or "etcher"). The
make identifies the equipment manufacturer (e.g., a "Ty-
lan" furnace or "LAM" etcher). And, the instance speci
fies a unique identifier assigned to each piece of
equipment (e.g., "LAM-1").

To browse the equipment, the user clicks the mouse
on the item they want to see in more detail. For example,
the user has selected the etcher entry in the class column
of the "UNSELECTED" browser with the mouse is the

figure, indicating that he wants to see the list of etcher
manufacturers.

The user can then browse the etchers of a particular
make by selecting the desired manufacturer in the make
column or browse another type of equipment by select
ing a different class. Other mouse and keyboard inputs
allow the user to view more than one class or make of

equipment at a given time.
CIMTOOL partitions the equipment in the facility

into two disjoint sets: selected and unselected equipment,
which are always displayed in the "SELECTED" and
"UNSELECTED" browsers, respectively. At any given

time, the selected equipment roughly corresponds to the
equipment the user is currently manipulating, and the un
selected equipment is all remaining equipment. The user
modifies this selected set using either the graphic win
dow or the panel. In the graphic window, equipment may
be selected by pointing at a piece of equipment with the
mouse or by dragging a box around several equipment
icons. Commands are also provided to unselect equip
ment.

The user can also modify the selected set by clicking
the mouse near a particular class, make or instance of
equipment in the browser (which highlights the equip
ment thus selected) and executing the operations pro
vided by the buttons on the right side of the Equipment
Panel. For example, the Add button adds the highlighted
equipment in the "UNSELECTED" browser to the se
lected set. The Remove button removes items high
lighted equipment in the "SELECTED" browser from
the selected set.

The selected entities are highlighted in the main win
dow and listed in the "SELECTED" browser regardless

JSjfmtoolscM'«quqxninLpanal

- ; -r - wm$Km>

HRfWtllt

8ono«f

C»»<H008'

Furnace

Mauunno

Hate

Um»_
Plltntttttrm

Ssffttsroux)

Ttcreuct

iiiiiMiiiiiiiiiiiiiiiiiiiiiiiiii'i'ii'iiii"ini'ii"Mi 11 • ii • illinium

-$£&SCT£D

.. &*ts

m
hi 111111r

p«ft«

nun in

lllMIIIIIIIIII*^ :

^ &l<*k?

Figure 3: OMTOOL's Equipment Panel

of the selection method. By providing both methods of
selection and showing the results in both places, the sys
tem can be used to answer spatial queries such as "Where
is the LAM ether?" and "What is this piece of equipment
(that the mouse is pointing at)?" Picasso made the im
plementation of the symmetric selection method easy.
This is discussedfurtherin section3 on implementation.

The user can select entities using criteria other than
that provided by the hierarchical browser by executing
the operation provided by the Query button. When the
user presses this button, a dialog box such as the one
shown in Figure 4 is displayed (in this case, the dialog
box for querying lot information is shown). This dialog
boxlists all attributes of lots and allows the userto spec
ify values and ranges of the various attributes.

Thebuttons on therightsideof thedialogboxspecify
how the lots that satisfies the query are to be combined
withthecurrent setofselected lots.Thefollowing setop
erations that combine the result of the query, called the
query-set, andthe currentselected-set, are provided:

Add: result = selectedSet u querySet

Remove: result = selectedSet- querySet

SI ftiHool:qacry-oqtin4rtlao

,\S " s Qmrylfiiiate

*W«*WJiSMJ J

"• ¥fco«.+W«tt.Jl nov 1990|

a. < .in , nielli'

[• Proofst n|

• Uaitini

Qf Suss»nd«d

|Ef Finitntd
i• ADortrd

Saw**

Atotbldt I
l'i" i lilllll'V

fefcftt-*fc» J

•e*t*ofc

Figure 4: Query Lot Dialog Box

Selected Set

VJ^hs:

.Remove
Operation

Add,
Operation

•21'i'WWWfr^

Restrict,
«1^" Operat

,Replace
Operation

v Query Set

iV
Hgure 5: Summary of Joining Operations

Restrict: result = selectedSet n querySet

Replace: result = querySet
For example, to select just the lots that match the

query, the Replace command is executed. Or, to restrict
the currently selected lots to those that match the query,
the Restrict commandis executed. Executing the desired
operation by pressing a button hides the dialogs box, up
dates the "SELECTED" browser in the Lot Panel, and

updates the main window appropriately. The Lot Panel
is a panel similar to the Equipment Panel which dis
plays selected and unselected lots. Figure 5 summarizes
these operations in a Venn diagram.

The Equipment Panel also allows the user to browse
other information about equipment The Detail... button
pops up a menu that allows the user to view maintenance
logs for the equipment or to display an image of the
equipment Other equipment-specific functions can be
added to this menu such as activating real-time monitor
ing and control of the equipment viewing schematics,
and accessing an on-line video database that reviews dis
assembly procedures, theory of operation, and other rel
evant documentation.

Figure 6 shows an entity-relationship (ER) diagram
for the following entities in the database:

equipment (e.g., furnaces, etchers and micro
scopes),

utilities (e.g., gases, electricity and water),
junctions (e.g., shutoff valves, sprinkler heads

and outlets),
spaces which designate various areas of the

facility (e.g., rooms or areas such as
the lithography area), and

lots of wafers.

A panel similar to the Equipment Panel is defined
for each entity type that includes two hierarchical brows
ers, one for selected entities and one for unselected enti
ties, and buttons to modify the selected and unselected

LOT

Processed

By

SPACE Contains — EQUIPMENT Uses — UTILITY

Contains
Connected

Via

Part'

Of

JUNCTION

Figure 6: Entity-Relationship Diagram of the CIMTOOL Data Model

sets, query the entities, and examine more detailed data
about the entities. The keys in the hierarchical panels are:

equipment (class, make, name)
utility (class, name)
junction (kind)
space (clean-level, name)

The hierarchical browsers in the Lot Panel are differ

ent than the other panels. Users typically want to see
most lot attributes simultaneously and they do not prefer
one attribute over another. In this case, the hierarchy is
only one level deep and there are no duplicate entries, so
the browser simply displays a list of lots. Users normally
select lots using criteria specified by a Query operation
(e.g., "select all lots with yield less than 30%").

The relationships in the ER diagram in figure 6 are
summarized in Table 1. Knowing these relationships, the
user may formulate queries that use more than one entity.
For example, suppose the user wants to list utilities used
by the "LAM" etcher. To specify and execute this query,
the user clears the selected equipment list and selects the
desired etcher(s) either by selecting it in the graphic win
dow or the Equipment Panel. The user then executes the
Utility... operation in the Select menu in the main win
dow which displays the dialog box shown in figure 7.
The radio buttons on the left side of the dialog box allow
the user to specify the desired relationship which can be
either "Utilities connected to the Selected Equipment" or

"Utilities with Selected Junctions". In this case, the user

pressed the button labeled "Utilities connected to Se
lected Equipment", which indicates that the user wants to
select all utilities connected to the equipment in the se
lected set ofequipment (i.e., all utilities connected to the
specified etcher(s)). The buttons on the right side of the
dialog box allow the utilities that satisfy the query to be
combined with the currently selected utilities using the
same method as the Query dialog box.

A sequence of selection and join operations can be
performed to formulate complex queries incrementally.
For example, suppose the user wants to inspect lots pro
cessed by equipment using either the oxygen or nitrogen

Entity Relationship 1>pe
Equipment Uses Utility many/many

Connected by Junction one/many
Inside Space many/many
Processed Lot many/many

Utility Used by Equipment many/many
Has Junction one/many

Space Contains Equipment many/many
Contains Junction many/many

Junction Part of Equipment many/one
Part of Utility many/one
Inside Space many/many

Lot Processed by Equipment many/many

Table 1: Relationships Between Database Entities

fmtcol^oin-utffity .dialog a

ma

(§) Utilities connected to Selected Equipment ftterttfcW'

***fc«.«*

9£) Utilities with Selected Junctions R«*>l*e*

CArt&Sl

Figure 7: Query Lot Dialog Box

gas utilities. The user can execute the query by selecting
both oxygen and nitrogen in the Utility Panel, selecting
the equipment that uses these utilities through the Select
Equipment... dialog box, and selecting the lots pro
cessed by this equipment through the Select Lots.- dia
log box. At each step the user is given feedback, through
the panels and graphic window, that shows the result of
the currently specifiedquery.For comparison, the equiv
alent SQL query is:

select * from lot

where lot.rid = recipe_eq_map.rid AND
recipe_eq_map.ecj_id = equip.id AND
equip.id = eq_junction.eid AND
eq_junction.uid = utility.id AND

(utility.name = "oxygen" OR
utility.name = "nitrogen")

Althougheasierto use thanSQL, thead hocqueryfa
cility in CIMTOOLlacks the power of a full-function re
lational algebra. A relational algebra uses relations as
operands, and new relations are produced as the result of
an operation [20]. For example, a new relation can be
formed which is the result of a join between two distinct
relations. In CIMTOOL, relations are equivalent to
groups of entities, such as equipment or utilities. Since
the types of entities in CIMTOOL are fixed, there is no
operation corresponding to a join in the sense of a rela
tional algebra. In other words, there is no way to create a
newentitytypedynamically. Instead, the operations pro
videdthroughtheSelectmenu arethe composition of the
equi-join, a selection, and a projection operatorsin a re
lational algebra. CIMTOOL'sinterface provides no ana
log to the divide operation in a relational algebra. If the
power of a full relational calculus were requiredby an
advanced user, a panel could be added through which an
arbitrary,ad-hocquery could be entered either througha
GUI orby typing an SQL expression.2

CIMTOOL's interface is an alternative to a full func-

2Some GUI query interfaces show the SQL query currently
specified by the user. This featureis not currentlysupported in
CIMTOOL, but it couldbe added easily.

tionadhoc queryinterface that simplifies queryspecifi
cation by fixing the entity types, by providing
incremental feedback, and by making the common oper
ationseasy (e.g., selectionin thehierarchicalbrowser).A
formalhuman factors study to compare CIMTOOLwith
other ad hoc query interfaces has not been done, but our
experience indicates that end-users learn the application
with a minimal amount of training.

3. Implementation

This section describes the design and implementation
of CIMTOOL. CIMTOOL was built using the Picasso
GUI Application Development System [RKS90,
SRK90]] which uses the X window system [17] and is
implemented in Common lisp [18] and the Common
lisp Object System (CLOS) [5]. CIMTOOL uses fea
tures of Picasso and CLOS extensively.

CLOS is a multiple inheritance object-oriented pro-
gramming system for Common Lisp. The CIMTOOL
data structures are therefore object-oriented, and based
on a design presented in [12]. Since CIMTOOL models
a real-world environment (i.e., the fabrication facility)
the attributes of the various classes were largely dictated
by the properties of the real entities. Furthermore, we
wanted to access data already stored in a relational data
base, so the data structures were designed to allow us to
load the data easily from the database. Figure 8 shows the
class hierarchy for the CIMTOOL data structure design.

The facility class models the facility as a whole. The
equipment class models a piece of equipment in the facil
ity, such as the "LAM" etcher. The utility class models a
single utility line in the facility, such as an oxygen line.
The geometry and topology of a utility can be thought of
as a directed graph. This information is contained in the
classes connection and vertex, which correspond to the
edges and nodes of the directed graph, respectively. A
vertex is a point in the floorplan view of the facility. A
connection links two vertices by a straight line. The
space class represents an area in the facility, such as a
room. The walls attribute of a space contains the geome
try of the space, stored as a list of instances of the walls
class. Some of the walls are not really physical barriers,
but merely boundaries for an area in the facility (e.g., the
lithography area). These types of walls are represented
by instances of the virtual-wall class which is a subclass
of the walls class. Virtual walls are drawn on the display
in the same color as walls, but with dotted lines.

Junctions in the faculty, such as shutoffvalves, sprin
klers and wall outlets, are stored as instances of thejunc
tion class. The eq-junction class is a subclass of the
junctionclass that represents the junction used to connect
a utility to apiece of equipment Since there are hundreds
of junctions in the facility, data common to the types of

vertex fac-object connection

wall

Uuuiit££&Zk££££k

virtual-wall eq-junctlor

junct-kind

PJJA-J1WJJWAWJJ.WAWJ

Figure 8:The CIMTOOL Class Hierarchy

junctions within the facility, such as the bitmaps used to
draw a type of junction, is factored out and stored in the
junct-kind class.

In general, most classes are derived from the entity-
relationship diagram. Those classes in the figure but not
present in the ER diagram are used to model objects with
many pieces (e.g., connectionand vertex)or to model ob
jects in which parts were shared (e.g., walls). Relation
ships in the ER diagram are modeled as lists of object
identifiers stored in an attribute of the entity.

Just as CLOS provides a natural framework for data
structure design, Picasso provides a natural framework
for building GUI's. Trie Picasso framework defines five
object types: applications, forms, frames, dialog boxes,
and panels. An applicationis composed ofa collection of
frames, dialog boxes, and panels. A form contains fields
through which data can be displayed, entered, or edited
by the user. The graphical display area in the main CIM
TOOL window, along with the view controls, is an exam
ple of a form. Aframe specifies the primary application
interface. It contains a form and a menu of operations the
user can execute. The main CIMTOOL window shown

in Figure 1 is actually a frame. A dialog box is a modal
interface that solicits additional arguments for an opera
tion or user confirmation before executing a possibly
dangerous operation (e.g., deleting a file). The Query
Lot dialog box, shown in Figure 4, is an example of a di
alog box; the user is forced to respond before continuing.
Apanel is a nonmodal dialog box mat typically presents
an alternative view of data in a frame or another paneL
The Equipment Panel show in figure 3 is an example of
a panel.

Applications, forms, frames, dialog boxes and panels

are collectively called Picasso objects (PO's). Frame,
panel, and dialog box PO's are analogous to procedures,
co-routines, and functions found in conventional pro
gramminglanguages. Each can be passed parameters and
declare local variables. A variable which cannot be re

solved locally is searched for in its lexical parent Figure
9 shows the PO's in the CIMTOOL application. In the
figure, each PO indicates its lexical parent

Most CIMTOOL data structures are sets of CLOS

objects. In Common lisp, the natural way to represent a
set is as a list Three lists of equipment are maintained in
variables declared in the main-frame: equip-list,
sel—equip, and unsel-equip. These correspond to
all equipment, the selected equipment, and the unse
lected equipment, respectively. Note that the unselected
equipmentis just the set difference of the equip-list
and the sel-equip. Similar lists are defined for utili
ties, lots, junctions and spaces.

Other lists stored in variables defined in the main

frame completethe model of the facility.They are sum
marizedin Table2. Each list is populated with CLOS ob
jects created by loading data from a relational database
during the initialization of the tool The geometric, topo
logical, and reference information is also resolved at this
time.For example, the connections and vertices for util
ities are combined into polygons stored in main memory,
as is the geometric information for spaces, walls, and
equipment

Picasso provides a wide variety ofinterface abstrac
tions such as buttons, scroll-bars and menus, collectively
called widgets. Widgets are also represented by CLOS
objects.Two types of widgets were developed specifi
cally for this application: the graphics widget that dis-

Figure 9: PO's in CIMTOOL andtheirlexical parents

plays the facility floorplan and the hierarchical browser
widget mat implements the selected and unselected ab
stractions in the panels. These widgets use the tool data
structures as shown in figure 10 and described in the fol
lowing paragraphs.

The data displayed in the graphics widgetis a tree of
graphics shapes (i.e., objects of class shape). Two sub
classes of the shape class are thepolygon class and the
annotation class which represent polygons and text.
These classes are builtintoPicasso. All facility entities
that have a graphical representation (i.e., equipment,
spaces, junctionsand utilities) inherit from thepolygon
class. By inheriting from shapes, facility entitiescan be
displayed directlythroughthe graphics widget

The graphics widget stores a list specifying the cur

rent selection. The selection is a list of objects that are
currently selected and highlighted in the widget When
the mouse is used to select an item in the graphics wid-

Variable Element Type Description
eq-junct eq-junction Junction on the

wall-list wall
equipment
Walls referenced

connect-list connection
by spaces
Connection for

vertex-list vertex

utility graph
Vertices used by
walls junctions,
and connections

junct-kind-list junct-kind Junction types in
junct-list

Table 2: lists maintained by CIMTOOL

Selected

1 1

1

znz| I

sel-equip: (* *) unsel-equip: (* * ••• *)

equip-list:(lam-1 lam-2 • • • lona

Layout

fcrzJI II IIUUrilQJ

Figure 10: Tool Data Structures as Used by the Widgets

get, the nearest visible item on the screen is added to the
selection. If the selection of the graphics widget is mod
ified (e.g., by mousing in the graphics window), the ap
plication is notified through the binding mechanism
described below.

The hierarchical browser widget or "browser", dis
plays a list of entities. For example, the "SELECTED"
browser in the Equipment Panel displays the list of
equipment stored in the sel-equip variable. When an
item is selected in a browser, the browser selection is
modified to include the subset of items in the browser

that the user has selected. Like the graphics widget the
browser notifies the application when its selection
changes through the binding mechanism described in the
next paragraph.

Picasso provides a constraint mechanism for CLOS
object slots and Picasso variables in the form of bind
ings. A function can be bound to any Picasso variable
or CLOS object slot that will automatically update the
variable or slot when the value of the function changes.
Picasso is not the first toolkit to provide constraints.
GROW[l], ThingLab[6] and Garnet[8] are among the
systems to provide this feature. Although confusing to

use at first, constraints greatly simplified the implemen
tation of CIMTOOL.

Bindings are used to maintain consistency between
the browsers and the lists they display in CIMTOOL.
Figure 11graphically depicts the constraint network. For
example, the value displayed in the "SELECTED"
browserin the equipment panel is bound to the value of
the sel-equip variable of the tool. Thus, whenever
the sel-equip of the tool changes value, the browser
will automatically display the correct value. Similar
bindings are created for the other browsers.

Bindings are also used to link the graphics widget to
the internal data structures of CIMTOOL. The selection

of the graphics widget is bound to a list which is the con
catenation of the sel-equip, sel-util, sel-
space, and sel-junct variables of the tool. The
sel-equip variable is bound to the subset of equip
ment items in the selection of the graphics widget, and
the unsel-equip is bound to the set difference of the
equip-list and the sel-equip. Similar bindings
are created for lots, spaces, utilities and junctions.

Bindings are also used to prevent the user from exe
cuting illegal operations. For example, the Add opera-

Legend:

Figure 11: CIMTOOL constraint network

tion in the equipment panel is illegal when the selection
of the "SELECTED"browseris null (i.e., no equipment
has been specified to add), so the Add button should be
dimmed to reflect this state. This behavior is imple
mented by binding the dimmedslot of the Add button ob
ject to a function that returns true (Le., the button should
be dimmed) when the selection of the browser is null.

CIMTOOL, as described here, was originally written
in about a 2 week period, and consists of approximately
1400 lines of interface description code (includingcom

ments) and an equal number of lines of code for the ap
plication. We have made many changes since then,
including support for multimedia data as described in the
next section.

10

4. Discussion

This section discusses the rationale for CIMTOOL's
main memory database design, extensions made to CIM
TOOLto support multimedia data, and the extensibility
of the interface.

4.1 Main Memory Representation

When CIMTOOL is initialized, the data needed to
browsethe variousentity typesis loadedinto mainmem
ory from the database. For example,the class, make, in
stance, id, and geometric information for browsing
equipmentis retrievedfor allequipmentobjectsin the fa
cility.

We chose to load the data into main memory and run
queries locally, rather than execute queries in the data
base, to minimize interactive response time and to make
the implementationfeasible with our limited manpower
resources. We feared mat running queries remotely (i.e.,
in the database) to retrieve browsing data would be too
slow for the short interactive response time that CIM
TOOL requires [15]. Also, retrieving the data dynami
cally would almost always be unnecessary, since most of
the information loaded would not have changed since the
previous load.

Another option we considered was to use main mem
ory as a cache for the data in the database. Implementing
this strategy consistently would require a cache manage
ment policy. Since our data manager did not have such a
policy built in, we would have to modify other applica
tions that use the database. Because CIMTOOL was in

tended as a prototype application, we decided not to
pursue this option.

Instead, we chose to approximate a solution to the
problem of synchronizing the main memory cache and
the database. Wedid this by partitioning the data into two
groups, called "static" and "dynamic" data. Static data is
data that is unlikely to change over the duration of a ses
sion of CIMTOOL usage. An example of static data is
the schematic layout of the facility (people don't move
6000 pound machines too often!). Static data is loaded
once atCIMTOOL start-up.3 Dynamic data, on the other
hand, is data that is likely to change over the duration of
a CIMTOOL session. Equipment maintenance logs are
an example of dynamic data. Dynamic data is loaded
from the database as it is needed.

This approach works well for CIMTOOL since most
of the information used for browsing and selecting enti
ties is static. Furthermore, the static data is fairly small

3Ofcourse, if the tool were leftrunning continuously ona
workstation, we could reload the static data periodically.

(about 70 KBytes) and can easily fit into workstation
memories. Dynamic data that is used for selection is ac
cessed through the Query button in the panels. Since this
operation queries the database, it always accesses current
data, and a small delay seems acceptable for this interac
tion.

Thepartitioning provides a good, but not perfect, so
lution to the problem of synchronizing the main memory
database with its counterpart stored in the data manager.
An active database would provide a better solution. The
ideal tool would be a persistent programming language
with a main memory database, as suggested in [13].

4.2 Extensions

CIMTOOL allows the user to access business, scien
tific and graphical data through a uniform interface. The
most recent extension to the application has been to pro
vide access to video data. Our purpose for introducing
video was twofold. First, we wanted to prototype a sys
tem that could demonstrate the potential of this media to
the CIM research community. And second, we wanted to
provide the basis of multimedia extensions to Picasso.

To support video, we needed to introduce several new
hardware components to handle the data. Providing a
fully digital representation of the video data seemed an
overwhelming task, since no commercial products ex
isted at the time we implemented this extension, so we
opted for a hybrid analog and digital system.

The hardware consists of a Pioneer 4200 laserdisc

player whichprovides stereo sound and a standard NTSC
video signal mat can be viewed through a video window
interface card that displays the video signal in an X win
dow on a Sun Sparcstation. The player is controlled
through an RS-232 interface connected to a serial port on
the workstation, as shown in figure 12. ASCII commands
to the player allow the application to position the read
head at a video frame, to play until a certain frame is
reached, and to enable or disable either stereo channel or
the video display. The software interface consists of
about 300 lines of Common Lisp code.

The 30 minutes of video data on the videodisc con

sisted of approximately 5 minutes of still images of the
equipment in the laboratory, 10 minutes of introductory
material on semiconductor manufacturing, and a IS
minute overview describing the history and use of the
Berkeley Microlab [7]. In addition, since all audio data
was monaural (only the left stereo channel was used), we
had about 30 minutes of compact disc quality audio stor
age available on the right stereo channel. We used this
storage to record an audio help system.

The videodisc player associates a number with each
frame of video data. Frames are numbered sequentially
from the beginning of the disc. Segments of video data

11

NTSC

RS-232

Figure 12: Hardware/software configura
tion for video extension

are identified and stored for later retrieval. The indexing
mechanism consists of a hash table that maps a Lisp ex
pression to a structure giving the first frame number of
the segment, the last frame number of the segment, and
the state of the audio and video channels. To create the

index, we wrote a custom tool in PICASSO.

We modified the user interface to CIMTOOL in three

ways to demonstrate this new technology. First, we used
a hierarchical browser to provide an interface to the
video segments describing the Microlab. This example
used monaural video (i.e., one audio channel with video).
The data was indexed in a hierarchy, describing the chap
ters in the overview (e.g., "History", "Equipment", "Lab
Control", etc.), and the segments within the chapters
(e.g., "Chemical Etching Equipment"). The user can
browse the available segments and view them through
the Introduction Dialog shown in Figure 13.

The second way in which the user interface to CIM
TOOL was modified was through the addition of a new
item to the popup menu displayed by the Detail... button
in the Equipment Panel. The menu operation Pic
tures... displays still images of the selected piece of
equipment so the user can see what a particular piece of
equipment looks like. The user interface allows the user
to select the next and previous views through the View
Equipment dialog box shown in Figure 14. This exam
ple used single frame video data (i.e., no audio).

Additional operations could be added to this menu to
allow the user to access video data describing, for exam
ple, disassembly procedures and the theory of operation
for the selected piece of equipment. As the volume of
video data grows, users will naturally want to browse the
available data in an organized, but non-linear fashion.
The hierarchical browser is one possible interface to ad
dress this problem. Another solution is to use the Pic
asso hypermedia system, HIP [2].

The final way in which we modified the CIMTOOL
user interface was to add an audio help system. The in-

Figure 13: Introduction Dialog Box

terface consists of pressing the "Help" key on the key
board while the mouse is in a button, menu or other

interface widget for which the user wants help. Each in
terface object has an associated audio help track on the
disc that is played when help is requested. This example
used audio only data

Assuming that many people are using CIMTOOL or
other multimedia Picasso applications at the same time,
a storage and distribution system is required for video
data. One solution is to provide laserdisc players at each
workstation. There are several drawbacks to this solu

tion:

(1) The data on analog laserdiscs is write once,
and production of the discs is an expensive
and time consuming process unless a large
number of discs are pressed (e.g., more

Figure 14: View Equipment Dialog Box

12

than 500).
(2) Updating the data would be expensive,

since a new set of discs would have to be

produced for each update.
(3) Each disc holds only 30 minutes of data,

which is too little for all but the most mod

est applications. Using more than one disc
requires the user to unload and load differ
ent discs, similar to floppy discs on a PC.

The best solution is to provide a large, shared, video
database, accessible over the same network as the work

station, that stored compressed digital video data. Such a
database would have to allow for large amounts of stor
age and concurrent, real-time access. We are currently
developing a prototype video database server.

4.3 Extensibility

One ofthe best features ofthe CIMTOOL interface is

that it is extensible. When a new entity type is added to
the database, three steps are needed to incorporate the
new entity into the browser

(1) A new panel, similar to the Equipment
Panel, is constructed to display the entity.
This includes deciding on the hierarchical
ordering in the hierarchical browsers.

(2) A new dialog box, similar to the Select
Utility... dialog box, is added to support the
relationships between the new entity and
current entities. The dialog contains radio
buttons corresponding to each relationship.

(3) Some of the existing Select... dialog boxes
must be modified to reflect the new rela

tionships added by the entity.

For example, suppose we wanted to track personnel
in the facility. An entity of the new "personnel" type
might have the following attributes: name, social secu
rity number, status (student or staff), picture, research
group name, office location, and a list of equipment they
are authorized to operate.

To add this entity to CIMTOOL, we would construct
a Personnel Panel and a Select Personnel... dialog box.
The Personnel Panel would have two browsers, for
"SELECTED" and "UNSELECTED" personnel. The
browsers might be ordered by research group and name.

The personnel entity type has a many/many relation
ship with both the equipment and space entities. There
would be two corresponding radio buttons in the Select
Personnel... dialog box, one entitled "Select Personnel
Authorized To Use Selected Equipment" and the other
entitled "Select Personnel With Offices Inside Selected

Spaces".

Finally, the Select Equipment., and Select Space...
dialog boxes would need to be modified. A radio button
entitled "Select Equipment Usable By Selected Person
nel" would be added to the Select Equipment., dialog
box and a radio button entitled "Select Spaces Contain
ing Offices OfSelected Personnel" would be added to the
Select Space... dialog box. Users would be able to use
the modified application as soon as they understood the
meanings of the entities and the relationships, since the
query construction paradigm would be unchanged.

The ideas contained in the CIMTOOL user interface

can be applied to a wide variety of database application,
since the components of the interface can be obtained
from the entity-relationship diagram using the following
mapping:

(1) For each entity, a panel such as the Equip
ment Panel and a Select... dialog box such
as the Select Equipment... dialog box is
created. If the entity has graphic attributes,
it should appear in the main window as
well.

(2) For each relationship pertaining to an en
tity, a radio button is added to the Select...
dialog box for that entity.

(3) For entities with many attributes that could
be used for selection, a dialog box such as
the Query Lot dialog box is created. The
dialog box should contain fields for all in
teresting attributes that can be queried.

Reusing the paradigm in different databases would
have many advantages. Experience indicates that imple
mentation of new applications would consist of little
more than a straightforward surgery of an existing appli
cation. By the same argument, existing applications can
be easily extended. Alternatively, an application genera
tor could be built to create the applications from the ER
diagram. Users would require little or no training to use
the new application, since the query construction para
digm and its associated commands would be unchanged.
Finally, changes to the underlying database schema
would be transparent to the end users, provided the en
tity-relationship subset used by the application remained
unchanged4.

5. Conclusions

An application specific ad hoc query interface allows
end users who are unfamiliar with the design of a partic
ular database to express a useful subclass ofqueries. The
CIMTOOL application illustrates a query specification

4Ofcourse, changes in the underlying schema would require
some minor mechanical modifications to the application.

13

model and interface metaphor for one such query inter
face. The same ideas could be used in other databases

and applications. We believe that an application genera
tor could be created to generate applications like CIM
TOOL. Such a generator would be similar to the Query-
By-Forms application generator Application-By-Forms

[11].

Acknowledgments

We want to thank James Hopkins who measured the
Microlab by hand and painstakingly created the geomet
ric database used by CIMTOOL. We also want to thank
Joe Konstan, Chung Liu, and Steve Seitz who also
worked on Picasso for adding and modifying the ab
stractions needed to create CIMTOOL.

References

[1] P. S. Barth, "An Object-Oriented Approach to
Graphical Interfaces", ACM Transactions on
Graphics,Vol. 5, No. 2, April 1986, pages 142-
172.

[2] B. H. Becker and L. A. Rowe, "HIP: A Hyperme
dia Extension of the Picasso Application Frame
work", to appear in Proc. NIST Advanced
Information Interfaces: Making Data Accessible
1991.

[3] J. E. Bell and L. A. Rowe, "Case Study ofAd Hoc
Query Interfaces to Databases", Electronics Re
search Lab. Report M90/78, SEPT 1990.

[4] Data Access Toolset Manual (1990). Metaphor
Computer Systems.

[5] S. Keene, Object-Oriented Programming in
CommonLisp, Addison-Wesley, 1988.

[6] J. H. Maloney, et al., "Constraint Technology for
User Interface Construction in Thinglab II",
Proc. OOPSLA '89, New Orleans, LA. October,
1989.

[7] Microfabrication at UC Berkeley (video tape),
Electronics REsearch Laboratory, U.C. Be±eley,
1989.

[8] B. A. Myers, et aL "Comprehensive Support for
Graphical, Highly Interactive User Interfaces:
The Garnet User Interface Development Environ
ment", IEEEComputer, November, 1990.

[9] Natural Language™ Database Retrieval System
User Manual, Natural Language Incorporated,
Berkeley, CA. 1988.

[10] T.G. Rogers, R. G. G. Cattell, "Entity-Relation
ship Database User Interfaces", Readings in Da
tabase Systems, Morgan Kaufmann, San Mateo,
CA, pages 359-368.

[11] L. A. Rowe, ""Fill-in-the-Form" Programming",
Proc. 11th Int. Conf. on Very Large Databases,
Stockholm, August, 1985.

[12] L. A. Rowe and C. B. Williams, "An Object-Ori
ented Database Design for Integrated Circuit Fab-
rication", Proc. 1st Int. Conf. on Data and
Knowledge Systems for Eng. and Manuf., Hart
ford, CT, Nov 1987.

[13] L. A. Rowe,"Reporton the 1989 SoftwareCAD
Databases Workshop", Proc.11thIFIPCongress,
August 1989.

[14] L. Rowe, J. Konstan, B. Smith, S. Seitz and C.
Liu, "The Picasso Application Framework",
Submitted to UIST '91. Also available from Elec

tronics Research Lab. Memorandum M90/18,
Computer Science Division - EECS, U.C. Berke
ley, March 1990.

[15] W. R. Rubenstein, R. G. G. Cattell, "Benchmark
ing Simple Database Operations", Proc. ACM
SIGMOD1987, pp 387-394

[16] P. Schank, L. Rowe, J. Konstan, C. Liu, S. Seitz
and B. Smith, "Picasso Reference Manual",
Electronics Research Lab. Memorandum M90I

79, Computer Science Division - EECS, U.C.
Berkeley, May 1990.

[17] R. W. Scheifler and J. Gettys, "The X Window
System", ACM Trans, on Graphics Vol. 5, No. 2
(Apr. 1986).

[18] G. L. Steele, Common Lisp- TheLanguage, Dig
ital Press, 1984.

[19] SunSimplify™2.0 Reference Manual, Sun Mi
crosystems, Mountain View, CA. 1989.

[20] J. D. Ullman, Principles of Database Systems,
Computer Science Press, Inc., Rockville, Mary
land, 1982.

[21] K. Voros and P. K. Ko, "Evolution of the Micro-
fabrication Facility at Berkeley", Electronics Re
search Lab. Memorandum M89I109, SEPT 1989.

[22] VQL, (1989). Sybase, Inc.
[23] M. M. Zloof, "Query by Example", National

Computer Conference, 1975, Vol. 44, pages 431-
438.

14

