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Abstract

The task of creating the physical layout data for an integrated circuit is difficult,

due to the large number (105 - 107) of geometries that must be created, and due to the

large number of rules that govern the sizes, spacings, and overlaps of the geometries. As

a result, various methods for automatic layout generation have been proposed; symbolic

layout with layout compaction comprise one such method. A symbolic layout is a less-

detailed abstraction of the final, physical layout. A layout compactor is an optimization

program that maps a symbolic layout into a detailed physical layout, such that the layout

rules are satisfied and the layout area is minimized.

Three contributions to symbolic layout and layout compaction are presented.

Symbolic-layout models have been investigated, and a new model is proposed which is

technology and hierarchy-level independent. Most symbolic-layout models are specific to a

technology and to a hierarchy level. Results are presented to demonstrate the ability of the

proposed model to effectively capture a wider variety of layouts than other symbolic-layout

models, including layouts from different technologies, hierarchy levels, and design styles.

A new constraint-generation algorithm is reported and shown to effectively com

plement the proposed symbolic-layout model. The constraint-generation module of a layout

compactor analyzes the symbolic layout to construct the mathematical model of the lay

out that is subsequently used to drive the area optimization. A constraint generator must

execute efficiently, yet it must also capture all the relevant detail of the symbolic layout.

Results are presented which indicate that the proposed generator and model compare well

with the more restrictive, standard methods, even though the proposed methods are more

general.

A new. four-variable constraint, which significantly expands the domain of prob

lems amenable to layout compaction, is proposed as is an efficient algorithm for solving

mixed two and four-variable constraint problems. The types of constraints that can be sat

isfied by a layout compactor determine, in part, the set of designs to which the compactor



can be applied. The two-variable constraints used by most compactors are inadequate for

some layouts, such as analog designs and pitch-matching hierarchical designs, where more

complicated relationships between layout components must be satisfied. It is shown that

the addition of the proposed four-variable constraint-type can solve problems of this nature.

The addition of four-variable constraints significantly affects the addressed formulation of

the compaction problem, transforming it from class P to class NP. As a result, a heuristic

method for solving the mixed two and four-variable constraint problem has been developed.

The results presented herein show that the proposed methods efficiently accommodate com

paction problems that cannot be modeled or solved via the conventional two-variable model.

The presented models and algorithms have been implemented in a new layout-

compaction program called SPARCS (Spacing Program with ARbitrary Constraints). Re

sults obtained using SPARCS are included to demonstrate the utility of the proposed sym

bolic layout and layout compaction techniques. The SPARCS program is shown to be

significantly more general than other compactors while achieving similar levels of runtime

and area efficiency.

Professor A. Richard Newton
Thesis Committee Chairman
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Chapter 1

Introduction

Integrated circuits (ICs) have steadily grown in complexity since their invention,

and at present, very-large-scale integration (VLSI) has resulted in circuits ("chips") with

more than one million transistors. Any system of such scale is not amenable to manual

design. As a result a great deal of research has been conducted over the past 25 years in

computer-aided design (CAD) methods for ICs [64].

An integrated circuit is a planar structure that is fabricated by a sequence of

processing steps; each step modifies selected areas on the surface of the semiconductor

wafer. A layout is the geometric data that is used in this process. The layout geometries

define the areas that are modified at each step. The set. of geometries used in a particular

step is called a mask. Since several shapes are needed to define a basic electrical component,

like a transistor, the layout for a one million transistor circuit may consist of several million

geometries. The mask geometries must obey a large set of rules to insure that the circuit

will function. The rules specify, e.g.. sizes of geometries, spacings between geometries, and

the overlap of one geometry by another. The requirement, that the layout satisfy this large

set of intricate rules exacerbates the problem of creating a layout.

Symbolic layout with layout compaction has developed as one means of automating

the layout-creation phase of IC design. In this methodology the layout is described in an

abstract, high-level fashion. The layout is then automatically transformed into its detailed

geometric representation such that its area is minimized and such that the layout rules are

satisfied.

The results of new research in symbolic layout and lavout compaction are described

in this dissertation. In particular, three contributions are presented. The existing symbolic-



layout models are typically hierarchy-level dependent, and technology parameterized, not

technology independent. A new symbolic-layout model has been developed which is both

technology and hierarchy-level independent; it is thus able to represent a much wider variety

of IC designs. A new algorithm for constraint-graph generation is proposed. This algorithm

exploits the ability of the layout model to capture a wide variety of designs, with runtime

and area-efficiency results that are competitive with existing algorithms that operate on

less general layout models. The two-variable constraints used in layout compactors are

inadequate in some cases, such as analog designs with symmetric element configurations,

because relationships must be enforced between more than two elements. For such problems,

a new, four-variable constraint is proposed, as are algorithms for solving mixed two and

four-variable constraint systems. It is shown that these new constraints and algorithms can

effectively solve compaction problems, e.g., symmetric elements and hierarchy preservation,

that cannot be solved using existing methods. These three contributions are summarized

more fully in Section 1.5 of this Chapter.

1.1 Mask-Level Layout

The layouts for the first ICs were created by cutting openings in an opaque ma

terial, which was then reduced photographically to create the correctly-sized masks. Com

puter graphics was subsequently applied to the problem of entering mask data. A graphics

terminal was used to capture geometries digitized by the user via a mouse or some other

pointing device. This method of entering layout data manually is still used today in many

circumstances. Manual creation of mask-level layout is a difficult problem because of the

volume of data, and because of the number of and complexity of the layout rules.

The need to manually enter mask-level layouts is gradually being eliminated;

program-generated layouts are now common. A large investment is required to develop

and maintain a program that generates high-quality layout at the mask level. Part of the

development cost is due to the need to incorporate detailed knowledge of the layout rules

into the program. A large part of the maintenance cost is due to the fact that fabrica

tion processes constantly evolve, hence the layout rules constantly change. A program

that generates mask layout must be changed to accommodate the changing rules. The

cost of tracking fabrication-technology changes will continue to increase as more layout is

program-generated, if layout generators are required to produce mask-level layout.
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Integrated circuits are costly to manufacture; thus an IC design is carefully verified

as correct before it is produced. A mask-level layout is difficult to verify because such a

description does not directly correspond to descriptions of the design at other levels of

abstraction. A mask layout must therefore be reverse-engineered to map it into a higher-

level description, such as a net list, as part of the verification process.

These problems could be reduced if layouts were described at a higher level of

abstraction, and if automatic procedures were available to transform that higher-level data

into mask-level data effectively. A sufficiently general and flexible symbolic layout and

compaction system, as described in the next section, has the potential to provide such a

capability.

1.2 Symbolic Layout and Compaction

Symbolic layout was first proposed as a means of speeding up manual layout, by

allowing the user to produce layouts via an abstract, shorthand representation for IC mask

data [6.25]. The shorthand is ''symbolic*' in that symbols are used to denote the basic circuit

components (e.g., transistors, contacts) and wiring. The symbols are less detailed than their

mask equivalents. A symbolic layout is produced by placing symbols on a coarse grid, as

opposed to entering detailed mask geometries on a fine grid. The most common example

of a symbolic layout is the "stick diagram" style of representation, as shown in Figure 1.1.

that evolved from the style used in the STICKS system [83]. Other symbolic-layout styles

are presented later.

The coordinates in a symbolic layout that specify the positions and sizes of the

elements are "pseudo-coordinates", in that they are dimensionless and they do not express

the coordinates of a mask layout. The pseudo-coordinates do express the topology of the

layout, however. This topology is essentially preserved in the creation of the mask layout

from the symbolic.

A symbolic layout must be processed to create a corresponding mask-level layout.

In a typical system a symbolic layout undergoes two transformations. The first is called

symbolic translation: the symbolic elements are replaced with the mask geometries they

represent, such that the layout rules pertaining to the construction of the elements are

satisfied.

In the second transformation the positions of the layout elements in the plane are
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Figure 1.1: Stick-diagram style symbolic layout, as in [31].

modified by translation, such that the layout rules between elements are satisfied and the

layout area is minimized. This transformation is called layout compaction [4]. Lay

out compaction is an optimization problem, wherein the layout rules are constraints and

area minimization is the primary objective. Some compactors also optimize a secondary

objective, which is typically wire-length minimization.2

Figure 1.2 shows the circuit from Figure 1.1 after compaction by SPARCS, the

compactor developed in this project.3 The various compaction methods that have been

proposed are described in Chapter 2.

1.2.1 Advantages of Symbolic Layout with Compaction

Ideally, symbolic layout coupled with compaction has a number of advantages over

mask-level layout. A symbolic-layout methodology reduces the amount, of data that must

be entered to describe a layout. The layout-creation process is thus easier, regardless of

whether the data is entered manually or generated by a program. Since the design rules are

'Many authors use the term "compaction" to refer to the combination of symbolic translation and layout
compaction.

2A few symbolic-layout systems do not. employ layout compaction: in such systems the coarse grid is
defined such that the spacing rules between elements are satisfied for the set of allowed elements. Layouts
created in this manner are generally not as area-efficient as those created via other methods, hence nearly
all systems provide a compaction capability.

''The SPARCS program is described Chapter 8.



Figure 1.2: Layout of Figure 1.1 after compaction by SFWRCS (Chapter S).

satisfied by the system, the effort in layout generation can be concentrated on developing

a good layout topology, rather than on insuring that there are no design-rule violations.

Tools that, produce layout are easier to construct and maintain because the detailed design

rules are factored out. Symbolic layouts can be updated for new design rules more readily

than mask-level layouts: for modest changes in the rules, they can simply be re-compacted.

Significant effort is required to update a mask-level layout for nearly all design-rule changes.

Since symbolic layouts contain more structure than mask layouts, they can be verified more

easily. For example, the circuit components and the connectivity must be identified before

a layout can be verified against the corresponding schematic diagram. The components,

and sometimes the connectivity, are explicit in a symbolic layout: they must be extracted

from a mask layout, a process which itself may introduce errors.

However, symbolic layout and compaction systems are only useful if they can be

applied to realistic designs, and if the layouts they produce compare well to layouts produced

by other methods. To date, these systems have only been applied to a limited class of

problems. This is due to both conceptual and algorithmic limitations of the techniques that

have been employed. These problems, and several proposed solutions, will be described in



detail in this dissertation.

1.3 Layout Automation

Many techniques for layout automation have been investigated. The purpose of

this section is to show where symbolic layout and compaction fits within the spectrum of

IC layout problems.

1.3.1 Spectrum of Problems

As a layout is synthesized, it can be classified according to its degree of complete

ness or refinement. Similarly, layout tools can be compared according to the input data

they require and the transformations they perform on that data. Early in the design cycle

of an IC, the major functional blocks and their logical interconnections are identified but

their locations have not been determined. The blocks are loosely defined in that their aspect

ratios and terminal positions are not specified. A floorplanner takes a design at this level

and produces a more refined version; the block sizes, aspect ratios, and terminal positions

are assigned, and the blocks are placed (i.e., they are assigned locations in the plane of the

layout). A placement program solves a more constrained problem than a floorplanner.

The input to a placement program is a set of functional blocks and their interconnections,

but the block sizes and their terminal positions are specified. Like a floorplanner. the output

is a placement of the blocks.

Compared to a placement program's input, a floorplanner\s input is farther away

from an optimal layout and less detailed. The move set' of a floorplanner is thus more

general than that of a placer. Another way of viewing this is that a placement program is

more constrained than a floorplanner in the transformations that it can perform.

This argument suggests that layout data and thus layout problems can be thought

of as a continuum, as shown in Figure 1.3. Moving to the left implies that the layout data is

less refined; i.e.. the "quality'* of the layout decreases to the left and increases to the right-

Different tools are appropriate for different areas along the line. A tool moves the design

to the right as it transforms its input into its output. The transformations (moves) that

are allowed progress from coarse to fine as the design proceeds from the left to the right.

Coarse moves are needed early in the design, when the layout is far from an optimum. Fine

4The term move set refers to the transformations a tool may perform in creating its output.



moves are used later, when the layout is closer to an optimum, to further refine the layout

without undoing any of the optimizations already performed.

Coarse moves Fine moves

Less optimal More optimal

// //
Floorplanning Placement Compaction

Design evolution »

Figure 1.3: Spectrum of layout problems.

1.3.2 Compactor Move Set

Compaction occupies the region to the right of placement on the line in Figure 1.3.

The input to a layout compactor is a representation that is complete; i.e., the circuit com

ponents are placed and the routing has been implemented. The coordinates that specify the

positions of the layout elements express the topology of the layout, but not the coordinates

of the final mask layout. The layout topology is one of the most important pieces of infor

mation in the input layout. This topology is preserved, in that the ordering of elements that

are related by a spacing requirement is not changed. The ordering of unrelated elements

is allowed to change, though. Compaction differs from placement in that the topological

ordering of related elements does change during placement.

It is presumed that a layout to be compacted has already been optimized topolog-

ically. either by a human designer or by other programs. A compactor must, perform some

additional optimization of the layout without making any gross changes, that is. without

changing its topology. As a result, the primary move that a compactor perforins is trans

lation. A component can be translated by changing either one or both of its coordinates

in a single move, corresponding to one-dimensional and two-dimensional compaction,

respectively. Examples of each type of translation are shown in Figure 1.4. Some com

pactors also perform a second move, which is the insertion of jogs in wire segments. Jog

insertion is depicted in Figure 1.5. Wire jogging is fundamentally a two-dimensional move,

since it is comprised of choosing a wire to jog. then choosing a location along the wire for

the jog point. Any move besides translation and jog insertion (element swapping, rotation.



mirroring, etc.) is not considered to be a legal compaction move.

u
Initial configuration After 1-d move After 2-d move

Figure 1.4: One and two-dimensional moves.

Initial wire Wire after jog

Figure 1.5: Jog insertion.

In the following section symbolic-layout methods and compaction algorithms are

outlined, and the methods chosen for this work are described.

1.4 Symbolic Layout and Compaction Methods

Symbolic layout systems almost always include a compaction capability. Symbolic

systems that employ compaction are called relative-grid systems; those that do not are

called fixed-grid systems. In this section a relative-grid system is assumed. The detailed

characteristics of a symbolic-layout description are referred to in this dissertation as the

symbolic-layout model. That is, the symbolic-layout model is the representation of the

geometric and connectivity information used by the compaction program to calculate spac

ing requirements between pairs of layout elements. Symbolic-layout models are classified in

the following subsection.



1.4.1 Symbolic-Layout Models

Relative-grid symbolic-layout models can be distinguished according to whether

the layout primitives are typed or generic, and according to whether the model is hierar

chical or single-level. Models that can be used for only one level of the design hierarchy

are single-level models. Most single-level models are designed for the lowest, or leaf level of

the hierarchy, where the layout elements are transistors, contacts, etc. A model is hierar

chical if compacted cells from a given level can be used as primitive elements in higher-level

cells, which are themselves subsequently compacted.

A typed layout model is one wherein the system encodes specific information about

its primitives in terms of a type designation. This information includes the shape of the

element, and data used for computing spacing requirements to other elements. For example,

a diffusion-metal contact, a rectangular NMOS transistor, and a non-rectangular NMOS

transistor would all have different types.

The use of a typed layout model leads to area-efficient results for layouts comprised

of the encoded primitives, since the spacing computation can be special-cased to exploit their

type-specific characteristics. However, the use of types inherently limits the system to those

primitives that are pre-encoded: the system must be modified if a new element is added.

It becomes necessary to add new types when a system designed for one technology, such

as NMOS. is to be used for another, such as bipolar. In addition, hierarchical compaction

is cumbersome when a typed model is used. Hierarchical design implies that compacted

cells are to be used as primitive elements on higher levels. Each distinct compacted cell

corresponds to new a element of unknown type. Since the characteristics of a compacted cell

cannot be pre-encoded. most hierarchical systems use a. completely different layout, model

for levels above the leaf level. The most common higher-level model is limited to rectangular

elements (i.e.. the previously-compacted subcells) which are separated from one another by

the largest spacing rule: hence the results are often poor in terms of area efficiency.

In a generic model all elements are treated as arbitrary cells. No distinction is

made between primitives that represent contacts. MOSFETs. standard cells, etc. A generic

model consists of geometric and connectivity data only: it is thus a lower-level model than

a typed model. As a result, more effort is required to compute spacing requirements since a

case-analysis approach does not apply. However, a generic model can lead to a. system that

is truly technology independent and hierarchy-level independent, unlike systems that use
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typed models. Since all elements are modeled in the same manner, adding a new element

or using the system for a different technology can be done without modifying the programs.

Elements need not be rectangular, and it is not necessary to separate cells by the largest

spacing rule: hierarchical operation is thus more natural and more area-efficient results are

produced compared to other methods.

For these reasons, the generic modeling approach has been chosen for this research.

1.4.2 One-Dimensional versus Two-Dimensional Compaction

As noted above, the move performed by all compactors is translation in the plane.

A component, translation can be performed by changing either one of its coordinates (one-

dimensional compaction) or both of its coordinates (two-dimensional compaction) in a single

move. A true two-dimensional compactor5 can minimize the layout area directly. One-

dimensional compactors minimize area indirectly, by alternating horizontal and vertical

compaction iterations. That is, they minimize area by minimizing the pitch of the layout

in each dimension individually.

True two-dimensional algorithms will, in general, produce better results than one-

dimensional algorithms. However, there are several compelling reasons to choose a one-

dimensional compaction method. The general two-dimensional problem is NP-complete^

[66], and hence it is not a useful formulation for a practical system. One-dimensional

compaction has polynomial complexity, and the most general one-dimensional algorithms

have complexities that approach 0(rclog/?) for real examples. Heuristic two-dimensional

algorithms of polynomial complexity have been proposed [86.70]. but they are slower than

well-implemented one-dimensional algorithms. In addition, it has not been proven that they

are superior in terms of layout area to one-dimensional compaction with jog insertion [9].

These considerations, and others that will be given later, have led to the selection

of one-dimensional compaction for this research.

'A "true" 2-d algorithm considers both dimensions at the same time with equal weight. Less-general 2-d
algorithms change one of the dimensions preferentially.

6The class of NP-complete problems is that class for which there are no known polynomial-time
algorithms.



11

1.4.3 One-Dimensional Compaction Methods

One-dimensional compaction methods are reviewed in detail in Chapter 2. The

three algorithms that are the most common are the compression-ridge method [4], the

virtual-grid method [81], and the constraint-graph method [31]. Constraint-graph (or

"constraint-based") compaction is the most general method,' and it is the only method

that uses a global model of the layout. The constraint-graph method has been employed in

this research.

Overview of the Constraint-Graph Method

Like all one-dimensional methods, the constraint-graph method reduces the area

of the layout by minimizing its pitch in a sequence of spacing steps in alternating directions.

The layout is modeled as a weighted, directed, constraint graph. The constraint graph pro

vides a global view of the layout in the spacing direction. Distinct graphs are used for the

x and y-directions. Layout elements map to nodes in the graph, and spacing requirements

(constraints) map to weighted edges. The edge directions represent the ordering of the lay

out elements. The mapping of elements to nodes can be done in many ways. For example,

in SPARCS, a node is used for each element and for each wire segment that is perpendic

ular to the spacing direction. Segments that are parallel to the spacing direction are not

represented in the graph. The constraint graph is created by a constraint-generation

algorithm, which takes a symbolic layout as input and produces the graph as output.

The graph is analyzed to determine the new positions for the elements. A longest-

path analysis on the graph gives the minimum legal locations for the elements.8 Typically

only a subset of the elements must be placed at their minimum locations to achieve the

minimal layout: the elements in this subset are called critical elements. The other ele

ments are called noncritical or slack elements, since they can occupy a. range of positions

without increasing the size of the layout. The critical-path method, which is comprised of

two longest-path analyses, partitions the elements into these two subsets and determines

the range for each noncritical element. The locations of the noncritical elements can be

manipulated to satisfy a secondary objective, such as wire-length minimization.

From this overview, it is evident that the capabilities of a compactor are de-

'The other two methods can be modeled using the constraint-graph approach [86].
Tor example, if the layout is being compacted to the left, the longest-path analysis generates the smallest

legal j--coordinate value for each element.



12

termined by two factors, one pertaining to the input layouts and one pertaining to the

constraints. The layout model, plus the constraint-generation algorithm, determine the

spectrum of designs that can be processed by the system. The allowed constraint types,

plus the constraint-analysis algorithms, determine the optimizations performed.

1.5 Goals and Contributions

Previous symbolic layout and compaction systems have been limited in terms of

the IC technologies and layout styles they support. The basic goal of this work has been to

develop general symbolic layout and compaction techniques that apply to a broader range of

technologies and layout styles. The three main contributions that have been made towards

this goal are described in the subsections below.

1.5.1 A Generic Symbolic-Layout Model

The symbolic-layout model and the layout rules together determine the set of

designs that can be described to and processed by a system. Many symbolic layout models

allow only simple rectangular elements with one terminal (connection point) per side. Such a

modelcannot capture, e.g., a standard-cell design, sincestandard cells have several terminals

per side. Non-rectangular elements cannot be effectively accommodated by systems that

use such a model. Some systems handle simple layout rules only, leading to losses in area

efficiency or incorrect results. The standard symbolic-layout model assigns types to its

primitive elements, which are used to calculate the element-to-element spacing constraints.

A typed methodology inherently limits the system, as described above.

A new symbolic-layout model has been developed in this research. The model is

generic, meaning that the symbolic elements are not typed. All elements are modeled in a

single, consistent manner, regardless of whether they are compacted cells or leaf-level prim

itives. The model is comprised of blockages and connection areas. Any Manhattan shape

is a legal blockage, and any number of rectangular terminals is allowed. It is demonstrated

that this model is technology and hierarchy-level independent. The presented results also

show that this model leads to layouts that are at least as area-efficient as those produced

via other models, unlike previous work in generic-layout modeling.
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1.5.2 Efficient Constraint Generation

The layout model and the constraint-generation algorithm are closely-related en

tities. Given a layout model, the constraint-generation algorithm must be able to efficiently

process the layout and it must generate the set of constraints that leads to a minimal-area

layout.

A new constraint-generation algorithm has been developed in parallel with the

layout model. This algorithm generates constraint systems for leaf-level layouts that result

in layout densities as good as those produced by methods that rely on typed elements.

The same layout model and constraint generator can also be used at higher levels in the

hierarchy without modification. The constraints are computed such that layout elements

in higher-level designs are not separated by the largest spacing rule. Instead, elements at

all levels of the hierarchy are separated by the per-layer rules, and elements at all level are

allowed to merge (overlap) at their terminals. This produces much better area results in

hierarchical compaction than the standard method. In addition, the proposed constraint

generator is competitive in terms of execution time with other algorithms that are restricted

to typed layout models.

1.5.3 Dependent Constraints

All constraint-based compactors employ lower-bound constraints to limit the mini

mum separations between layout elements. Many also allow upper-bound constraints, which

limit maximum separations. Inclusion of both lower and upper-bound constraints results

in a great deal of flexibility. However, there are situations where these two constraint types

are insufficient. In particular, dependencies among constraints are needed for some designs.

A new constraint type, called an active constraint, has been defined and algo

rithms for resolving active constraints have been developed. Active constraints are a form

of dependent constraint. That is. the spacing between a pair of elements in the layout is

dependent on the spacing between some other pair. Active constraints can be used in a vari

ety of situations where electrically-matched structures are needed. For example, symmetric

layouts can be compacted such that they remain symmetric. Symmetry is very difficult to

maintain without active constraints.

In a hierarchical cell, a given subcell is typically repeated several times. Consider

a subcell .4 that is repeated more than once in the cell currently being compacted. The
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standard method of hierarchical compaction requires that adjacent cells be stretched such

that they pitch-match. Since the different instances of A typically have different cells as

neighbors, the stretching step changes the various copies of A differently. If this occurs,

the hierarchy is effectively lost, because the multiple instances of A are no longer identical.

Active constraints can be used in the stretching step to force multiple instances of a given

cell to remain the same. Other uses of active constraints are given later.

1.6 Outline of Dissertation

The remainder of this dissertation is organized as follows. A review of the previous

work in symbolic layout and compaction is presented in Chapter 2, followed by a justification

of the methods chosen for this work. A description of the factors that affect the design of

a symbolic-layout model, and a description of the high-level characteristics of the model

developed in this project, are given in Chapter 3. The subject of Chapter 4 is the cell model

proposed in this research. In Chapter 5 the constraint generator designed for this model is

described. The basic constraint solver is presented in Chapter 6. Active constraints, and

methods for solving them, are the subject of Chapter 7. The SPARC'S program, which is

the compactor developed to test the methods presented in this dissertation, is outlined in

Chapter 8. Overall results are presented in Chapter 9, followed by conclusions and future

work in Chapter 10.



Chapter 2

Previous Work and Choice of

Technique

2.1 Introduction

The primary purpose of this chapter is to review the previous work in symbolic

layout and layout compaction. The review is then used as a point of reference for this work.

Symbolic layout and layout compaction are distinct but closely-related topics.

Many different styles of symbolic layout have been proposed. Most of them are intended

for use with layout compaction, although symbolic layout has been used in a stand-alone

manner without a compaction capability. The major symbolic-layout styles are described

in this chapter.

A number of compaction algorithms with a variety of capabilities have been re

ported as well. Nearly all take a symbolic layout as input and produce a mask-level (i.e..

physical) layout as output. A few compactors have been reported which take a physical

layout as input instead. These tools must convert, the input layout's geometries into a form

where components (transistors, contacts, etc.) are the basic objects before any compaction

is performed; that is, they perform a physical-to-symbolic conversion as a pre-processing

step. It is thus reasonable to think of all compactors as taking a symbolic layout as input.

Previous work in compaction is described in this chapter, in terms of the algorithms used

and in terms of the classes of layouts processed.

This chapter is organized as follows. The next section describes some basic con-
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cepts and terms used in IC layout. Symbolic-layout methods are then classified and re

viewed, followed by a classification and review of layout compaction. The goals of this

project and the requirements implied by the goals are presented next. The chapter con

cludes with a justification of the methods chosen for this project.

2.2 IC Layout Terminology

Integrated circuits are planar structures composed of several layers of material,

each differing in its electrical properties. They are fabricated by a sequence of processing

steps; in a particular step specific areas of the semiconductor wafer are modified. The areas

are altered by depositing a material, such as aluminum or polysilicon, or by exposing them

to dopants to alter the semiconductor itself. The areas are defined using photolithographic

techniques. Overlaying several areas results in structures which form the basic circuit

components: transistors, contacts, capacitors, etc.. as shown in Figure 2.1.

silicon

dioxide aluminum

wire

silicon

dioxide

Figure 2.1: Cross-section of a circuit, with a transistor, a contact, and a wire.

An IC layout is the geometric data thai defines the areas to be processed. The

term layer refers to a given material that is created during a given step in the process

sequence. The layout data is broken down into per-layer sets of geometries. The set of

geometries that is associated with a particular layer is called a mask, layer, or level. The

mask-level layout of the components in Figure 2.1 is given in Figure 2.2.

A circuit consists of basic circuit components connected together by wiring. A

component is comprised of one or more shapes on one or more layers that are size-invariant

and that, are manipulated as a unit. In an MOS technology, for example, a rectangular

transistor is a component that can be specified by two overlapping rectangles, one on the

diffusion layer and the other on the polysilicon layer. Many authors refer to transistors as
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Figure 2.2: Mask-level layout of the circuit in Figure 2.1.
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devices. A wire is a shape on a single layer that has a fixed width but a flexible length. A

wire can be decomposed into a set of segments, each defined by two points and a width, as

illustrated in Figure 2.3. A collection of components and/or wire segments that is grouped

together and then treated as a unit is called a cell. Cells are often allowed to contain

other cells; this permits a cell hierarchy to exist. The term element will be used from

this point on to refer to a basic circuit component, a wire segment, or a cell. The terms

component and primitive will henceforth be used to denote any element except for a

wire segment. Figure 2.2 is redrawn as Figure 2.4 to indicate the components and wires.

In this dissertation wires will often be drawn with centerlines included to indicate their

directions. A component is basic if it cannot be expressed as a collection of lower-level

elements. A transistor is a basic component. A standard-cell is basic, if it is at the lowest

level of hierarchy, and it is not basic if its description is comprised of transistors, contacts,

and wires.

Figure 2.3: Wire segments.
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wires.

2.2.1 Layout Rules

To insure that a functional IC can be manufactured, a layout must satisfy a large

set of rules that specify relationships between the mask geometries. These rules are called

layout rules or design rules. Design rules for simple bipolar and NMOS processes are

given in [28] and [56], respectively.

Design rules fail into two categories: those that describe the construction of com

ponents are the intra-element rules, and those that describe the spacings between com

ponents are the inter-element rules. The intra-element rules include minimum size, max

imum size, minimum overlap, and minimum enclosure requirements. Figure 2.5 shows

typical intra-element rules for a polysilicon-to-metal contact. Most inter-element rules are

minimum-spacing rules, as exemplified in Figure 2.6.

a: minimum dimension

b, c: minimum overlaps

contact cut

metal

Figure 2.5: Intra-element rules for a poly-metal contact.

Design rules for industrial processes are complicated and often ill-specified. They



poly

D diffusion

gate

a: poly-poly spacing

b: diffusion-poly spacing

c: gate-poly spacing
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Figure 2.6: Inter-element rules between a transistor and a poly wire.

may exhibit dependencies on connectivity, context, width, and length. The importance of

always satisfying all the rules is unclear; sometimes certain rules can be safely violated.

There does not seem to be a canonical set of rules that can be used for all processes,

and rules tend to appear and disappear over time. For example, the Mosis CMOS rules

had a reflection rule in Revision 4 but not in Revision 5 [2], which seems to indicate that

reflection rules are disappearing. However, sources such as [76] indicate that reflection rules

will become more prevalent in the future. It is generally unclear how design rules will

continue to change over time.

Dealing with design rules is one of the most difficult aspects of layout automation.

As pointed out in [59]. simple CAD algorithms that allow only simple rules may execute

efficiently, but may produce poor quality layouts. Algorithms that handle more complex

rules may produce better results, but at a higher cost in development time and execution

time.

2.2.2 Fabrication Technologies

The term technology refers to a particular fabrication-process sequence. Bipolar

and MOS are the most common technologies currently available. The two prevalent MOS-

process variants are CMOS and NMOS. These two processes are very similar in terms of the

layout primitives they provide, and hence they are not considered to be different technologies

in this dissertation. A combination of the CMOS and bipolar technologies, called BiCMOS,

is becoming popular as well.
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Technology Independent Versus Technology Parameterized

The phrase "technology independent" is used with many different meanings in the

description of CAD tools. A distinction is made in this dissertation between technology

independence and technology parameterization. A CAD tool that works for a single IC

process is technology dependent. A CAD tool that works for all technologies is termed

technology independent. Most layout tools that operate on designs from a single process

are parameterized with respect to the sizes of the basic primitives and the design-rule

values. A tool that supports a single parameterized process, but no others, will be called

a technology-parameterized tool. Other phrases commonly used for this notion are

process independent, design-rule independent, and ground-rule independent.

Most symbolic layout and compaction systems are technology parameterized. An

important focus of this research has been in developing symbolic layout and compaction

techniques that are technology independent.

2.2.3 Hierarchy in Layout

Hierarchical methods are important in IC design, due to the complexity of the VLSI

circuits currently being built. A design that is not hierarchical is called flat. There are two

main reasons to use hierarchy in layout, one having to do with data storage and the other

with computation. If a given cell is repeated, it can be described in detail once and then

referenced multiple times, saving storage over a flat, representation. It is sufficient to perform

some analyses, e.g., design-rule checking, of a repeated cell once, saving computation time.

Hierarchical methods can also be beneficial in a divide-aud-conquer sense, whether cells are

repeated or not.

Allowing a cell to be composed of subcells is the basic mechanism needed to enable

hierarchical layout. In a cell at the lowest level of the hierarchy, which is called the leaf

level, the elements that comprise the cell do not contain subcells. The elements in a leaf-

level cell are called leaf-level elements. Transistors, resistors, contacts, etc. are leaf-level

elements.1 Cells that are not leaf-level cells are higher-level cells. Some hierarchical

systems treat the leaf-level elements in the same manner as higher-level subcells. while

others special-case the leaf-level elements.

The description of a cell in terms of its subcells (and/or its leaf-level elements) is

lThev are also basic elements.



21

called its definition. To use hierarchy effectively, there must be a way to model a cell from

the current level of the hierarchy in a simplified manner on the next level. A description of

a cell that is less detailed than its definition, but that is sufficient to represent the cell on

higher levels in the hierarchy, is called its abstraction. For example, a standard-cell can

be defined in terms of transistors, contacts, and wires, and it can be abstracted as a set

blockages and connection points.

Hierarchy-Level Independence

Layout tools can be classified according to the hierarchy level(s) of the data they

process. Parasitic extractors, for example, usually operate on leaf-level data, while timing

analyzers have been developed that operate on data from any level. It is advantageous

to develop tools for hierarchical layout systems that can process any level of the design

hierarchy in a consistent, uniform manner, as opposed to tools that use different modes of

operation for different levels, or only operate on a subset of the levels.

A tool that is appropriate for any level of the hierarchy is called hierarchy-

level independent. Nearly all symbolic layout and compaction systems are hierarchy-level

dependent. A major focus of this work has been on the development of a symbolic-layout

model and a constraint-generation algorithm that achieve hierarchy-level independence,

without a sacrifice in efficient.

2.3 Symbolic Layout Classification

As noted in Chapter 1. symbolic layout originated as a means for reducing the effort

needed to create IC layouts over that required to produce physical-level layouts. This reduc

tion is achieved through the use of a shorthand representation for IC mask data that consists

primarily of symbols rather than rectangles and polygons. The symbols usually represent

the leaf-level components available in the fabrication technology (e.g.. NMOS transistors.

PMOS transistors, and contacts, in CMOS), plus wires. The component symbols vary in

their level of abstraction: for example, some systems use symbols that resemble schematic

symbols while others use symbols that resemble mask-level components. In any case, the

symbols are less detailed than their mask equivalents. The components are interconnected

by symbolic wires, which are typically represented as zero-width lines. The symbolic rep

resentation may. or may not. contain the connectivitv of the lavout. The coordinates in a
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symbolic layout that specify the positions and sizes of the elements are pseudo-coordinates

that express the topology of the layout only.2 The initial topology of a symbolic layout is

important since it is assumed that significant optimizations have already been performed,

and thus compaction does not change this topology appreciably with respect to elements

that are related by design rules.3

There are several criteria by which symbolic-layout systems can be categorized.

One important criterion is whether or not the symbolic-layout method is used with a com

paction program. The term fixed-grid [31] has been used to denote symbolic layout meth

ods that do not employ compaction. The terms relative-grid [31] and relative-location

[23] have been used to describe symbolic layout methods that must be used with compaction

to generate legal layouts. These terms reflect the fact that the grid is used only to indi

cate the relative ordering of the layout elements. The gridline-spacing value of a relative

grid does not correspond directly to the dimensions of mask-level features. The relative

coordinate system is mapped to the coordinate system of the mask level by the compactor.

All layout systems employ a grid a.s a drawing aid and as a means of specifying

the smallest geometric feature that can be entered. The spacing between gridlines is one

characteristic that can be used to differentiate fixed-grid symbolic systems. The gridline

spacing, or resolution, is said to be coarse if it is of the same order as the maximum spacing

rule; it is fine if the spacing is significantly less than the maximum rule. So-called gridless

systems are fine-grid systems with the gridline spacing equal to the minimum resolvable

feature for the fabrication process.

Symbolic-layout systems can be classified according to a second criterion, namely

the level(s) of hierarchy they can accommodate. Systems that can be used for only one

level are called single-level systems in this dissertation. The standard term for single-level

systems that operate on the lowest level of the hierarchy, where the layout elements are

transistors, contacts, etc., is leaf-level. Single-level systems exist, for levels above the leaf-

level, where the elements are rectangular cells; these systems have been called block-level

or building-block systems. A system that handles multiple levels is termed hierarchical.

Finally, symbolic layout systems can be categorized as typed or generic. A typed

system performs case-by-case processing of the elements according to their types (e.g.. driver

"Here it is assumed that the system includes compaction.
"The topological ordering of dements that are not related by design rules is usually allowed to change

during compaction.
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transistor, contact, load transistor, etc.). A generic system models all elements as arbitrary

cells. A detailed comparison of typed versus generic symbolic-layout methods is given in

Chapter 3.

2.4 Symbolic-Layout Review

Fixed-grid systems are reviewed in the following subsection. A relative-grid form

of symbolic layout has been used in this work. Previous work in relative-grid systems is

described later in this chapter.

2.4.1 Fixed-Grid Symbolic Layout

In fixed-grid systems layouts are created by placing symbols on a grid whose

gridline-spacing value maps directly to a predetermined distance at the mask level. Af

ter the layout is composed a symbolic-translation step is performed, which replaces the

symbols with their mask equivalents.

Larsen, in 1971, described a character-based symbolic form that is the output of

a system for generating preliminary topological designs of random logic [45]. Larsen calls

his character-array layouts "discrete topological schematics". In 1973 an interactive editor

for them was presented [46]. Methods for automatically mapping a discrete topological

schematic into a mask-level representation were described by Larsen in 1978 [47]. A simple

example is given in Figure 2.7. This style uses a coarse grid with the gridline spacing set

to the maximum spacing rule: hence no design-rule checking is needed.

Barnes and Davis described a fixed, coarse-grid system in 1975 [6] that also uses

a worst-case grid spacing. The system they developed, called the Graphic Layout System,

performs some extraction and electrical-rules checking (ERC) functions in addition to the

symbolic entry, editing, and pattern-generation functions. The Graphic Layout System

uses a stick-diagram style for the layouts themselves, instead of an alphanumeric-character

style. The system accommodates CMOS, CCD. and IIL designs. According to Barnes and

Davis, the notion of using a symbolic methodology as an intermediate form between the

circuit-design activity and detailed layout was first proposed by .1.0. Campeau in 1967 [6].

The SLIC system, by Gibson and Nance. [25.26] is a character-based coarse-grid

system. This tool uses a gridline spacing that is smaller than the maximum spacing rule
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but larger than the minimum feature or minimum spacing rule. As a result a symbol-to-

symbol design-rule checker is included. The SLIC system also includes programs for net-list

extraction, ERC, and net-list comparison. Gibson and Nance noted that their methodology

is difficult to apply to complicated processes like CMOS while maintaining adequate area-

efficiency [26].

Advantages and Disadvantages

The advantage of fixed-grid systems is their simplicity compared to relative-grid

systems with compaction. However, their utility is limited by the very nature of the fixed

grid. Since the gridline spacing cannot be modified, a fixed-grid method is most appropriate

for technologies where the range of design-rule values is narrow, such as NMOS. Technologies

like CMOS, where the range in design-rule values is broad, cannot be captured effectively

via a fixed-grid style. A coarse gridline spacing wastes area. A fine spacing leads to better

area utilization, but many symbols must be entered for the larger features that span several

gridlines and many gridlines must be skipped between features related by the larger spacing

rules.4 The value of the gridline spacing is thus a critical parameter, because it represents

a compromise between area efficiency and productivity. A worst-case spacing simplifies

design entry and checking at the cost, of wasted area. A finer spacing leads to better area

utilization, but more data must be entered and design-rule checking must be added. As the

spacing becomes finer the entry and checking effort approaches that needed for mask-level

layout.

The fixed-grid systems outlined above are leaf-level, typed systems. Most fixed-

grid systems are character based, because they were developed before computer graphics

systems became inexpensive.

2.4.2 Relative-Grid Symbolic Layout

In relative-grid systems, the layout grid is used only to indicate the ordering of

the elements in the plane. The element locations, i.e.. the gridline locations, are changed in

a compaction step to correspond to the mask-level coordinate system. All compactors use

a relative-grid form of symbolic layout, and all relative-grid layouts must be compacted to

guarantee that the design rules are satisfied.

4This is essentially the point made in [26] with respect to CMOS.
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The Point-Component Model

Relative-grid systems generally model leaf-level layouts via a specific model called

the point-component model [31]. The primitives used in this model are rectangular,

with one connection per side, and they are symmetric about their centers in one or both

dimensions. The elements given in Figure 2.S are point components.

contact cut poly I I diffusion metal

m

MOSFETs contacts

Figure 2.S: Point components.

A point component occupies a single grid point on the relative grid. Since an

element may have only one connection per side, all wiring lies on the gridlines between

components and electrical connections are established by intersecting the endpoint of a

wire segment with the center point of a component. The layout in Figure 2.9 exemplifies

this model.

-H—iE-o D' -#-*-

Figure 2.9: Point-component layout.

In hierarchical compaction spaced cells from the current level in the hierarchy are

used as primitives on higher levels. Higher-level cells cannot In modeled via the point-

component model, because they nearly always have multiple connections per side. As

a result, systems that use the point-component model at the leaf level must employ a

substantially different model for higher levels. The modeling techniques used in this case

are described later in Section 2.6.1.

The point-component model has some advantages, but il also has several sprious

disadvantages. The advantages and disadvantages of this model are described in detail in
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the following chapter.

2.5 Layout Compactor Classification

Compactors operate by analyzing the layout to determine spacing requirements,

then moving components to reduce the size of the layout such that the spacing requirements

are satisfied. Hence they can be classified according to the input layouts they accept, and

the spacing algorithms they use.

- Compactors are usually classified according to the dimensionality of the spacing

algorithm, where dimensionality refers to the way that component translation is performed.

Algorithms that change either the ar-coordinate or the y-coordinate in a single move, but

not both, are one-dimensional methods; those that change both coordinates in a single

move, with each dimension considered equally, are two-dimensional methods. Several

heuristic algorithms have been reported with dimensionalities between one and two; these

approaches will be called intermediate methods.

The specific characteristics of the input layouts are an important classification

criterion for two reasons. First, the symbolic-layout form determines the class of layouts

that can be described, and thus processed by the system. Second, the symbolic layout

must be analyzed to determine the spacing requirements between element pairs. A simple

symbolic-layout form may be easy to analyze, but the class of layouts that can be described

may be limited and the area-efficiency of the results may be poor. A more general form

may describe a wider variety of layouts and may lead to better area utilization, but at the

cost of increased computation time in calculating the element-to-element spacings.

The classification criteria having to do with the input layouts mirror those pre

sented in Section 2.3. A compactor that can handle a single hierarchy level, regardless of

what that level is. is called a single-level or flat compactor. A single-level compactor can

be further classified according to the hierarchy level it. processes. Most single-level com

pactors process layouts from the lowest level of the hierarchy, and thus are called leaf-level

or leaf-cell compactors. Those that target a higher level, where the primitive elements

are multi-terminal cells, are called block-level or building-block compactors. The leaf-

level and block-level problems are usually treated quite differently from the perspective of

computing spacing requirements, as will be explained later in this dissertation.

A tool that can compact layouts from any level of the hierarchy is called a hier-
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archical compactor. It should be noted, however, that the term "hierarchical compaction"

most commonly refers to a very specific design style, wherein all hierarchy levels above

the leaf level are composed of pitch-matched subcells that connect by abutment. This

stretch-and-abut style of cell assembly is described later in this chapter.

2.6 Layout Compaction Review

The following review of compaction is primarily organized by dimensionality. The

types of layouts processed by each tool are mentioned as well.

2.6.1 One-Dimensional Compaction

One-dimensional compactors reduce the layout area via a sequence of horizontal

and vertical compaction iterations. In a horizontal iteration the components and the vertical

wire segments translate, and the horizontal wire segments change length. A vertical iteration

is similar. Many one-dimensional compactors have been reported; the various algorithms

they use are described below.

Compression-Ridge Compactors

The algorithm proposed by Akers. et al.. in 1970. appears to be the first reference

to compaction [4]. Although the method was not named in the original reference, other

authors have referred to it as the compression-ridge method and as the shear-line method.

In this algorithm, excess space is removed from the layout by searching for a band

of excess space, called a compression ridge, that spans the layout from left to right or

top to bottom. If a continuous band cannot be found, then several partial compression

ridges connected by orthogonal shear lines are used. Akers et al. called compression

ridges "cuts" and shear lines "rift lines". Compression ridges have the property that, when

they are removed, the two resulting parts of the layout can be pushed together and all

connections are restored. Figure 2.10 shows several partial compression ridges and several

shear lines. Figure 2.11 shows a sequence of compression-ridge compaction steps applied to

a simple example. The algorithm used to find a set of partial compression ridges and shear

lines is similar to a maze-routing algorithm, where the starting point, is an empty grid on

one edge of the layout and the target is any empty grid on the opposite edge.
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Figure 2.10: Partial compression ridges and shear lines, as in [4].

m
Figure 2.11: Compression-ridge example, as in [4].
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Akers' tool is for leaf-level bipolar layouts with a single metal layer. A coarse,

uniformly-spaced grid is used, with the gridline spacing chosen to accommodate the metal

layer. Components are rectangular, with their sizes rounded up to fit the grid. Compression

ridges are one grid wide in this scheme, and the input layouts must be design-rule correct.

According to Cho [17], the first actual implementation of the compression-ridge

algorithm was by Dunlop in the SLIP program [23]. Compression-ridge compaction was also

used as the global compaction phase in SLIM [22], which is described below. For efficiency

reasons SLIP was targeted for small, leaf-level NMOS layouts. In SLIP a finer grid is used,

hence component dimensions are not rounded up to fit a worst-case grid. The width of a

compression ridge must, therefore be calculated along with its path. The compression-ridge

method does not increase element-to-element spacings that are too small. As a result, the

sticks-style symbolic layouts processed by SLIP are converted into legal mask-level layouts

before the compression-ridge algorithm is applied.

Other than these early cases, the compression-ridge algorithm has not been applied

to leaf-level layouts. More recent applications of compression-ridge compaction have been

to block-level layouts [35,33,42]

The compression-ridge method gave rise to the field of layout compaction. How

ever, the algorithm takes a local, rather than a global view of the layout. It. does not appear

that the compression-ridge method can be naturally extended to handle user-defined con

straints and secondary objectives, such as wire-length minimization. In addition, it is not

efficient enough to handle large leaf-level problems, as noted in [23].

The STICKS System

The publication of Williams" STICKS system in 1977-7S [s4.s:i] firmly established

the relationship between symbolic layout and layout compaction. The term stick diagram

originated with this work. Astick diagram, as shown in Figure 2.12. is a particular symbolic-

layout style where the components are symmetric with a single connection per side and wires

are represented by centerlines. Many variations on this style have been used. Unlike many

other stick-style systems. STICKS could accommodate Manhattan "black box" cells with

multiple connections per side, and a mix of mask rectangles with symbolic elements. The

STICKS system was thus the first hierarchical symbolic layout and compaction system.

Compaction is performed first in this system, followed by symbolic translation. A
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Figure 2.12: A stick diagram as in the STICKS system [S3]

rule-based approach is used in the compaction step. For the horizontal step, collections of

elements ("structures*') are considered in increasing-x order; each collection is placed as far

to the left as possible. The vertical direction is processed in a like manner.

Williams took an ad hoc rather than an algorithmic approach to the layout-

compaction problem. However, he addressed several features that have come to be regarded

as important for a flexible, useful system. These include "corrals", which are flexible bound

aries that can be used to group elements together, "fractures", which are wire jogs, and

"absolute micron distance" specifications between symbols, which are fixed constraints.

Constraint-Based Compactors

It appears that FLOSS, described in 1977 [16], was the first constraint-based com

pactor, although this was not. disclosed in [16]. In fact, at least, one other constraint-based

compactor was reported [32] before the algorithms used in FLOSS were described in an oral

presentation in 1979 [17]. The FLOSS algorithms have not been disclosed in writing. A

large number of constraint-based compaction algorithms have subsequently been presented

[5.39.20.62.24.14.53.18].

Constraint-based compactors map the layout into a weighted, directed graph. Two

graphs are actually used, one for the j-direction and one for t he .(/-direction. Layout elements

map to nodes in the graph, and spacing requirements, i.e.. constraints, map to weighted
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edges. The edge directions specify the relative ordering of the corresponding nodes, while

the weights model the separation requirements. A simple layout and one possible constraint

graph for a horizontal compaction are presented in Figures 2.13 and 2.14, respectively. In

Figure 2.14 the source node s represents the left edge of the bounding box of the layout

and the sink node / represents the right edge. Design-rule separations between pairs of

elements are represented by lower-bound constraints, which correspond to equations of

the form xi —x\ > k, where *2 is the position of the right-most (top-most) element of the

pair, x\ is the position of the left-most (bottom-most) element, and k is their minimum

legal separation. The constraint graph is a global model of the layout in the direction of

compaction.

A

FETs

wires

contacts

Figure 2.13: An example layout,

Figure 2.14: Constraint graph for the layout in Figure 2.13.



33

The graph is constructed by a constraint-generation algorithm, which processes

the layout at the geometric level. A simple constraint generator would compare every pair

of elements in the layout and create a constraint for every pair related by one or more

spacing rules.5 The mapping of elements to nodes can be done in many ways. For example,

a connected set of elements maps to a node in CABBAGE [31]. If CABBAGE were run on

the layout in Figure 2.13, elements A, B, and C would map to one node instead of three. In

SPARCS, the compactor developed in this work, a node is used for each element and for each

wire segment that is perpendicular to the spacing direction. Wire segments that are parallel

to the spacing direction, like wire E in this example, are not in the graph because they do

not generate constraints and because their endpoints can be deduced from the locations of

the elements that they connect (D and F in this case). The graph in Figure 2.14 is the

graph SPARCS would generate. When multiple elements map to a single node, all those

elements move together. Since a horizontal compaction changes the element adjacencies

in the vertical direction and vice versa, the constraint graph must be rebuilt after each

compaction iteration.

The constraint graph is analyzed, or "solved", to determine the positions of the

elements. A longest-path analysis from the source node to all other nodes in the graph gives

the left-most position of each element. The longest-path problem is the dual of the well-

known shortest-path problem [74]. This first longest-path analysis determines the minimum

pitch of the layout in the compaction direction, i.e., the left-most position of the sink node.

The sink is assigned this position, then a second longest-path analysis is performed from

the sink to all nodes. This gives the right-most positions of the elements, subject to the

condition that the pitch is minimum.

Those nodes whose minimum and maximum coordinates are the same are the

critical nodes, meaning that the corresponding elements limit the pitch of the layout. An

edge between two critical nodes, whose weight equals the separation between them, is called

a critical edge. Generally some of the nodes are critical and some are not. The nodes

(elements) that are not on the critical path are called noncritical or slack nodes: they may

occupy the range of positions determined by the two longest-path analyses. The noncritical

elements can be positioned to satisfy a. secondary objective, which is most commonly wire-

length minimization. The problem of optimizing the positions of the slack elements is often

'This is not a practical algorithm, because it would execute >lowly and it would create many redundant
constraints. Efficient constraint generation is considered in Chapter 5.
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called the slack-distribution problem.

All constraint-based compactors use lower-bound constraints to model minimum

spacing requirements. Many current tools allow upper-bound constraints as well. ITpper-

bound constraints have the form x\ - £2 > —k. An upper-bound constraint limits the

maximum separation of two elements. An upper-bound constraint plus a lower-bound

constraint of the same magnitude is used to implement a fixed constraint; i.e.,

x2 —x\ > k, X\ —X2 > —k =» x-2 —#1 = k.

When both lower-bound and upper-bound constraints are allowed the constraint graph can

be cyclic. A graph is not solvable if it contains a cycle of positive weight, because the longest

path can be made arbitrarily long by simply traversing the cycle many times. A positive

cycle is often called an overconstraint. A practical constraint-based compactor must

detect overconstraints and provide an indication to the user as to which layout elements are

involved in the positive cycles.

The first constraint-graph compactor. FLOSS, was presented as an alternative to

standard-cell style place-and-route. As a result it operates on block-level layouts, not leaf-

level layouts. It is a single-level system, for MOS technologies. FLOSS appears to model

terminals as areas, not points.

The CABBAGE system is also a single-level system, for NMOS designs. Unlike

FLOSS. CABBAGE operates on leaf-level layouts rather than block-level layouts. The point-

component layout form is used. Connectivity is not part of the layout data: it is extracted

by the compactor in a pre-processing step. Automatic jog insertion is supported as well.

The SLIM program [22], a successor to SLIP, uses a combination of the compression-

ridge and constraint-based methods. A constraint-based algorithm is used to cluster ele

ments on critical paths together. Elements in the clusters are moved such that all free

space appears at the ends of the clusters. Dunlop called this phase "local compaction".

The compression-ridge method is then applied in a "global compaction" phase to remove

the re-arranged free space. Multiple-connection symbols are allowed, and jog generation is

performed.

The Python program was described in 1982 by Bales [.">]. Python differs from

previous approaches in that ageneric layout model is used. The use of a generic layout model

has many important advantages over the typed, point-component model: these advantages

are described in detail later in this dissertation.
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The initial constraint-based compactors used simple heuristics for positioning the

slack elements. One of the first researchers to use wire-length minimization as the objective

function for slack distribution was Schiele [67]. A number of other workers have addressed

the wire-length minimization problem via a number of approaches, including network flow

[24], and a graph-based Simplex algorithm [53]. Wire-length minimization as become the

standard objective of slack distribution.

Efficient longest-path algorithms that handle both lower and upper-bound con

straints have been presented by a number of workers, including Liao and Wong [51]. Two

of the first compactors to provide some mechanism for recovering from positive cycles are

described in [20] and [39].

Advantages and Disadvantages The constraint-based formulation is the most general

one-dimensional method, as indicated by the fact that the compression-ridge and virtual-

grid methods can be cast as constraint-based problems [86]. (The virtual-grid method is

described below.) The constraint-graph method uses a global model of the layout, unlike the

other two methods. The structure of this model enables a secondary objective to be added

easily, and external, user-supplied constraints can be incorporated readily. The compression-

ridge method has not been found to be well-suited to leaf-level problems. Constraint-based

compaction produces denser layouts than virtual-grid compaction, without, a significant

speed difference [9.18].

Virtual-Grid Compactors

Virtual-grid compaction was proposed by Weste in 1981 [81.80] as part of the

Ml'LGA system. The original intent of the method, as stated in [80]. was to produce

' adequate results quickly. The algorithm was designed for leaf-level MOS layouts, and the

typed, point-component layout model is used.

Virtual-grid compaction differs from other relative-grid methods in that the layout

grid is used to capture the geometric adjacencies of the elements as well as the topology.

(The grid does not serve this purpose for constraint-based compactors.) Since the grid

is used in this manner, all elements initially on a gridline must, remain on that gridline

throughout compaction as shown in Figures 2.15 and 2.16. In a horizontal iteration, for

example, the algorithm scans the grid column-by-column. As a column is scanned, element

pairs on the same horizontal gridline are compared to calculate a spacing requirement. The
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Figure 2.15: Virtual-grid layout.
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Figure 2.16: Partially compacted virtual-grid layout
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worst-case value for the column determines the gridline spacing.

Weste characterized virtual-grid compaction as a generalization of fixed-grid lay

out. The algorithm can also be viewed as a variant of the compression-ridge algorithm that

does not use shear lines.

A number of enhancements to the virtual-grid method have been reported. In

general, an element on gridline k influences gridline locations beyond gridline k + 1; hence

the original algorithm backtracked to gridlines k —1, k —2, etc. as needed. The algorithm

reported by Boyer [11] speeds up the method by using an additional geometric data structure

to avoid this backtracking. As noted above, virtual-grid compaction binds elements together

if they are initially on the same gridline, regardless of whether they are physically connected

or not. A number of "grid-splitting'" methods have been proposed to allow the elements

more freedom of movement [41,59,7].

Advantages and Disadvantages Initially virtual-grid compaction was advocated as a

faster compaction method than constraint-based compaction. However, it appears that the

speed advantage of the initial systems was the result of problem simplifications that may

not always be desirable.

Several of the important problems with the virtual-grid method are described in

[59]. Two of the problems result from undesirable binding of elements to gridlines. The

third is the inability of elements on a gridline to move slightly with respect to each other:

this prevents, for example, a contact and a wire from offsetting when the contact is wider

than the wire. In [59] the authors state that solving these problems resulted in a factor of

four increase in runtime over their standard virtual-grid implementation.

An important problem that was not mentioned in [59] arises when multi-terminal

elements (i.e.. those with more than one connection per side) are required. For example,

consider the layout shown in Figure 2.17. The large cell occupies a number of grids. Given

that all terminals must lie on gridlines and all elements on a gridline move together, there

are two possible ways to perforin a virtual-grid compaction in this case. One way is to allow

all gridline spacings to change; however, this changes the size of the large element. The

second possibility is to prohibit the gridlines that intersect the large element, from moving

with respect to each other, which preserves the size of the large element. Unfortunately,

this can lead to area inefficiencies or rule violations among the other elements on this set of

gridlines. This problem also occurs at the leaf level: a simple bipolar transistor spans three
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gridlines in one dimension (and one in the other). If these three gridlines were significantly

spread apart an unacceptable performance degradation would result.

Figure 2.17: Large element on a virtual grid.

2.6.2 Two-Dimensional Compaction

The general two-dimensional compaction problem was shown to be NP-complete

in 1982 by Sastry and Parker [66]. This is because this formulation of the problem docs

consider the ordering of related elements, unlike the methods described thus far. That

is, for two components that have a design-rule constraint between them, there are four

possible topologies as shown in Figure 2.18. The set of topologies can be described via a

mixed-integer programming approach, where integer decision variables are used to select a

particular topology. The example of Figure 2.18 can be described as follows:

*b > cn{k + .r„)

•''n > C\y{k + .17,)

yi> >c-2i{k + y»)

!Jn > c2-2{k + yb).

with one of the c,j equal to 1 and the rest equal to 0.

Branch-and-Bound

Several workers have attempted to solve the two-dimensional problem via branch-

and-bound algorithms. The basic approach can be summarizes as follows. At each step

a topology is selected by setting the decision variables. This results in two conventional
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Figure 2.18: Four possible arrangements of two elements.

constraint graphs, one for x and one for y. These graphs are then analyzed using the same

longest-path technique used in one-dimensional compaction, which results in a measure

of the layout area for the given state of the decision variables. The branch-and-bound

technique is used to explore the various topologies systematically, by changing the decision

variables at each step.

The method reported by Schlag et al. [68] considers all potential topologies; i.e., for

two elements, all four arrangements are possible. The starting layout is collapsed, meaning

that none of the spacing constraints is satisfied. The spacing-constraint violations are then

removed one-by-one, such that only the best layout is retained at each step. It appears that

the implemented algorithm accommodates block-level layouts.

Kedem and Watanabe [36] formulate the problem such that fewer topologies are

considered; for two elements, only two of the four possible arrangements are allowed. The

starting layout is constructed by beginning with an expanded layout, then setting the deci

sion variables using a greedy two-dimensional heuristic algorithm. The branch-and-bound

algorithm then optimizes this starting layout. The implementation reported operates on

leaf-level NMOS layouts described via the point-component model.

Advantages and Disadvantages The branch-and-bound approaches can guarantee an

optimal result, when all four topologies are considered, due to the fundamental properties

of the method. However, finding an optimum may require exponential time, because the

mixed-integer programming problem is NP-complete [61].

2.6.3 Intermediate Approaches

The large difference in computational complexity between one and two-dimensional

algorithms has led several workers to consider heuristic algorithms that lie somewhere be

tween the two. That is. both coordinates are changed during an iteration, but one dimension
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is preferred and the input topology is mostly unaltered. These methods try to realize some

of the advantages of two-dimensional compaction but at a lower cost in computation time.

Supercom paction

The supercompaction algorithm was introduced in 1983by Wolfet. al. [85,86]. This

algorithm does not attempt to minimize area; instead, it minimizes pitch. To minimize pitch

in the preferred dimension, the layout is permitted to grow in the orthogonal dimension.

A three-step method is used to monotonically reduce the preferred dimension. Let

the preferred dimension be y. In the first step, the critical path in y is determined. The y

dimension can only be reduced further if the critical path is broken. Accordingly, the second

step breaks the critical path by pushing elements apart in the x dimension. The third step

is simply a one-dimensional compaction of the modified layout in the y dimension. This

sequence can be repeated until the pitch in y is irreducible. The second, or "shearing" step

is the most important of the three. It finds a cutset, of the critical-path graph that is feasible

and that divides the graph such that the source and sink are in different components. The

cutset is feasible if each of its edges can be broken by shearing apart the element pair in x.

When no such cutset exists the layout is irreducible and the algorithm halts. Results were

reported for leaf-level NMOS designs.

Zone Refining

The zone-refining algorithm is a heuristic two-dimensional approach proposed by

Shin in 1986 [71.72.70]. The name follows from its resemblance to a physical process for

removing impurities from a crystal ingot.

The algorithm minimizes pitch, with the addition of two-dimensional movements of

the elements. The layout is initially compacted via one-dimensional compaction to produce

a starting configuration. The zone-refining phase consists of one or more subsequent passes.

In a vertical pass, the layout is processed from bottom to top on an element-by-element

basis6. Elements are removed from the bottom of the unprocessed part of the layout (the

"ceiling" of the top configuration) and reassembled on the top of the processed part (the

"floor" of the bottom configuration). When an element is moved from the ceiling to the

floor, its lateral position is altered as well, within a range about its current x-coordinate.

41 In practice, small clusters of elements are moved as unit:
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The lateral moves are performed such that the pitch of the layout in y does not increase.

Because the lateral movements are local, a sequence of several passes in the same direction

can be beneficial. This implementation processes NMOS and CMOS layouts.

Advantages and Disadvantages The intermediate approaches are more powerful than

one-dimensional compaction and less powerful than two-dimensional compaction. Likewise,

they lie between the two in CPU usage. Their performance compared to the other approaches

is likely to vary from design-style to design-style, due to their heuristic nature.

2.6.4 Hierarchical Compaction

A number of one-dimensional constraint-based compactors and virtual-grid com

pactors have hierarchical capabilities. The methods used are described below."

Constraint-Based

The most prevalent hierarchical method used in constraint-based systems will be

referred to herein as stretch-and-abut. It is described, for instance, in [39.24]. The basic

approach, for any level above the leaf level, is to create a cell at the current level by tiling

together rectangular subcells that connect by abutment. The "compaction" process is that

of manipulating the subcells such that they fit together in this fashion. The stretch-and-

abut method differs substantially from leaf-cell compaction: in fact, no process analogous

to leaf-level compaction is performed.

To illustrate the method, let the leaf-level be level 0 and consider a cell at the first

hierarchy level (level / = 1) above the leaf level. Each subcell is an instance of a rectangular

leaf-level cell which has been compacted to its minimum dimensious.,s The geometric model

of a compacted subcell consists of a rectangular border with terminal locations on the

border (Figure 2.19). In general the subcells from level 0 (the leaf cells) must be stretched,

since they are required to connect by abutment on level 1. After stretching, each subcell's

border is expanded by an amount equal to half of the maximum spacing rule for the given

technology. The terminals are extended to the new cell borders, and finally the cell at

level 1 is composed by tiling together the subcells. Expansion of the subcell borders is

'Some experiments in hierarchical zone-refining are described in [72]: otherwise, little work has been done
in two-dimensional hierarchical compaction.

"In practice, as described later in this section, the subcell graphs are generated but not solved at this
stage.
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necessary because the subcell internals are not modeled; the expansion insures that they

may be abutted without creating any design-rule violations (Figure 2.20).

Inpu
terminal

GND terminal

VDD terminal

GND

Figure 2.19: Compacted cell and border model.

MDR

expanded border

original border

Figun1 2.20: Border expansion.

The stretching step is performed as follows. Consider a cell Q comprised of two

neighboring subcells as shown in Figure 2.21. A constraint graph for Q is generated by first

representing each subcell by a graph that describes how its terminals can move relative to

each other and relative to its borders. These graphs are called port-abstraction graphs.

A port-abstraction graph can'be derived from a constraint graph via a partial transitive-

closure calculation f24l.9 The subcell terminals that must align are thou bound together

9This is an oversimplification. A cell cannot be independently stretched in r and y if ordinary constraint,
graphs arc used in both dimensions. Instead, one of the two constraint graphs must be augmented with
additional constraints before the port-abstraction graph is derived [Jtj.
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with fixed constraints; such constraints are called pitch constraints. This creates a graph

for Q which can be analyzed with the usual critical-path algorithm. After the graph for Q is

solved the terminal positions for subcells A and B are known. The new terminal positions

are applied to the constraint graphs for A and B\ the graphs are then re-solved to yield the

stretched subcells. The final result for Q is shown in Figure 2.22.

3B

3

Figure 2.21: Cell Q before pitch-matching.

3B

- MDR

Figure 2.22: Cell Q after pitch-matching.

Multiple hierarchy levels are handled by repeated application of the steps outlined

above: the overall method consists of three passes through the design hierarchy. The first

pass is a bottom-up traversal that operates as follows. The constraint graph for level / is
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generated by computing the port-abstraction graphs for the subcells at level i —1, instanci-

ating them at level i, and finally adding the pitch constraints. The port-abstraction graph

for level i can then Hkewise be computed. When the constraint graph for the top level is

created the first bottom-up pass is completed. The second pass is top-down. Port positions

are found for each level of the hierarchy, by solving the graph at level i and propagating

the port positions down to level i —1 as fixed constraints. When the leaf level is reached all

terminal positions are known and the leaf cells can be stretched to their final dimensions.

Finally, a third pass through the hierarchy bottom-up is used to tile each level.

Advantages and Disadvantages The stretch-and-abut method can produce good re

sults for some design styles. However, the method has a number of restrictions; namely,

pitch-matched subcells are required, the subcells must be rectangular, the inter-cell spacing

is worst-case, and copies of the same subcell are not necessarily the same after pitch-

matching. Pitch-matching does not work well for irregular design styles such as maerocell.

In some cases, non-rectangular cells are desirable. If copies of a subcell are stretched differ

ently from one another, then the hierarchy is effectively lost.10

Perhaps the biggest problem with this method is the worst-case inter-cell spacing.

Some technologies, such as CMOS, have a wide range of spacing-rule values. In Mosis

CMOS, the largest and smallest rules differ by a factor of 9 [2]. This means that the subcell

separation might be a factor of 9 larger than necessary.

A solution to the inter-cell spacing problem was proposed in 198(5 by Reichelt [65].

In this scheme additional elements are modeled in the port-abstraction graphs. The method

seems promising for reducing the inter-cell spacing, but it does not solve the other problems

with the stretch-and-abut. method.

Virtual-Grid

Virtual-grid systems process hierarchical designs in a manner similar to the stretch-

and-abut method [81.82.3.73]. That is. the leaf cells are compacted, then higher-level cells

are assembled by stretching and tiling.

According to Tan [73]. the initial systems either used the worst-case inter-cell

spacing [3]. or produced results that were not necessarily design-rule correct [81.82]. The

system described by Tan in [73] produces correct results without, a worst-case spacing by

A solution to this problem is proposed later in this dissertation.
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iterating over the cell hierarchy until there is no movement of the gridlines. This method

reportedly converges after four iterations in a typical case.

The advantages and disadvantages of the virtual-grid systems are essentially the

same as those of the constraint-based systems.

2.7 Summary of the Previous Approaches

An ideal symbolic layout and compaction methodology has several advantages over

mask-level layout generation, as outlined in Chapter 1. The preceding review indicates that

a number of systems have realized these advantages, but only for a limited set of technologies

and design styles.

The majority of the systems that process leaf cells handle digital MOS designs only.

Although it is not always stated directly, it appears that all such tools (except Python)

use a typed, point-component model as the leaf-level layout representation. The systems

that perform hierarchical compaction generally use the stretch-and-abut method with a

rectangular cell model; most also enforce a worst-case intra-cell spacing.

Very little work has been done in several areas, such as the application of symbolic

layout and compaction to non-MOS technologies like bipolar and BiCMOS. The additional

constraints imposed by analog designs have not been considered. The design and use of

layout-modeling techniques that are technology and hierarchy-level independent, has not

been well-studied.

2.8 Goals and Requirements

The overall goal of this research has been to develop symbolic layout and com

paction techniques that apply to a much broader class of IC designs than the previous

systems. To achieve these goals, the system must deal with a wide variety of elements as

primitives. It. should likewise handle any technology. It must not. impose any particular

design style on the user or on other tools. It must operate hierarchically, with or without

pitch-matched cells, and without a substantial area penalty over flat design. It must be

efficient, in terms of runtime and in terms of the density of the layouts produced. It must

be as modular and extensible as possible.
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These considerations have led to the selection of the following symbolic layout and

compaction methodologies.

2.8.1 Choice of Compaction Technique

No single compaction approach is best in all circumstances. It is thus important

to choose a technique that is effective for the broadest class of problems. Fewer layouts will

be produced manually as design automation matures. Automation has established a trend

towards layouts that are regular, not irregular. Layout sizes are constantly increasing, as is

the quality of machine-generated layouts. Most design styles tend to impose a number of

constraints on the layout (bus orientation, pin positions, cell pitch, etc.), thereby constrain

ing the compactor moves. These observations affect the choice of compaction technique.

The compactor must produce good, predictable results in a reasonable amount of time. It

must be able to handle large designs. It should be controllable, so that compacted cells can

be easily used to compose higher-level cells.

There are several compelling reasons to choose a one-dimensional compaction

method. From a practical perspective, two-dimensional compaction is superior to one-

dimensional compaction only in cases where it can generate a significantly better result, in

an acceptable amount of excess time, over a one-dimensional method. True two-dimensional

algorithms will, in general, produce better results than one-dimensional algorithms. How

ever, the general two-dimensional problem is NP-complete and hence is not a useful for

mulation for a practical system. Heuristic two-dimensional algorithms are slower than

well-implemented one-dimensional algorithms, and it has not been proven that they are

superior in terms of layout area to one-dimensional compaction with jog insertion [9],

One-dimensional compaction algorithms are faster than two-dimensional algo

rithms. One-dimensional compaction has polynomial complexity, and the most general

one-dimensional algorithms have complexities that approach 0(/Hog/;) for real examples.

In comparison, two-dimensional compaction is limited to smaller problems, and is likely to

produce significantly better results only in those cases where the starting layout is irregular,

far from optimal, and lightly constrained. By the above argument such layouts are likely

to be rare.

The constraint-based method is the most general one-dimensional technique. It is

the only one-dimensional method that employs a global model of the layout. It accommo-



dates external constraints and secondary objectives readily, and has been shown to be as

efficient as other one-dimensional methods. These considerations have led to the selection

of one-dimensional, constraint-based compaction for this research.

2.8.2 Choice of Symbolic Layout Technique

As noted above, a layout model is needed which can capture any layout, regardless

of its technology or hierarchy-level. This argues strongly for a type-free representation,

which includes geometric, connectivity, and logical data only. As a result, a generic modeling

approach has been employed in this project. The design of this model is presented in the

following two chapters.



Chapter 3

Symbolic Layout Models

3.1 Introduction

The symbolic-layout representation is a key factor in determining whether the de

sired advantages of symbolic layout and compaction can be achieved, for two reasons. First,

the representation determines the class of designs that can be accommodated. A simple

layout model might only handle NMOS designs at the leaf level, while a more general model

might handle multiple technologies or hierarchical designs. Second, it plays an important

role in determining the area-efficiency of the results, because the compactor must deduce,

from the layout representation, the set of constraints that leads to an area-efficient result.

In other words, the representation must contain sufficient detail that the degrees of free

dom in the layout can be expressed and exploited. For example, a model that only allows

rectangular shapes will lead to poor results when applied to layouts with polygonal shapes,

since the irregularity cannot be described. Figure :i.l illustrates this problem.
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Figure 3.1: Polygonal shapes modeled as rectangles.

This chapter begins with a list of the requirements a layout representation should
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fulfill. The existing symbolic-layout model is analyzed with respect to these requirements.

An ideahzed layout representation is then presented, followed by an outline of the high-level

characteristics of the layout form proposed in this project.

3.2 Symbolic-Layout Modeling Requirements

The following paragraphs summarize the requirements that must be fulfilled by a

symbolic-layout model. These requirements follow from the goals outlined in the previous

chapter.

Representable Elements and Extensibility. The layout model determines which ele

ments (primitives) are allowed, and the amount of detail in their description. In

addition, it determines how much effort is required to add a new element to the sys

tem. A new element might be a device from the same technology but with a different

shape, or a device from another technology.

The layout model should either accommodate all possible elements, or it should be

readily extensible so that new elements can be added easily.

Hierarchy-Level Independence. The layout model has a strong effect on the use of the

system for hierarchical design. A symbolic layout and compaction system should

employ a hierarchical data model; a spaced cell from level / in the hierarchy should be

usable as a primitive component on level / + 1 in a natural and efficient manner. In

addition, the model should not differ from one level of the hierarchy to another. That

is. all layouts should be represented in a uniform and consistent manner, regardless

of hierarchy level.

This requirement implies in part that the layout model should support arbitrary cells,

because the set of all possible compacted cells is infinitely large.

Terminal Merging. The spacing rules for IClayouts are connectivity-dependent, meaning

that features that are electrically connected can be located closer together than fea

tures that are not connected. In compaction terms, cells should conditionally overlap

(merge) at their terminals, as a function of connectivity.

The problem of formulating the spacing constraints as a function of connectivity is

called the terminal merging problem. The example shown in Figure 3.2 demon-
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strates terminal merging for a leaf-level MOS design. Nearly all compactors that

operate on leaf-level layouts implement some form of terminal merging. Terminal

merging should also occur at levels above the leaf-level, as shown in Figure 3.3. The

layout model should be capable of describing mergeable areas of the components,

regardless of their hierarchy level.

MOSFETs

wire

Before compaction After compaction

Figure 3.2: Terminal merging at the leaf level.

Tuneable Geometric Detail. The layout model should be constructed such that the level

of geometric detail of the components can be adjusted by the user. This capability is

especially important when a hierarchical design methodology is used.

A compacted cell should be abstracted geometrically before it is used as a primitive

component on the next level, to suppress unnecessary detail and thereby reduce the

computation time needed for compacting the next-level layout. A compacted cell

denoted .4i is shown in Figure 3.4. Several copies of the cell are arrayed together

to form cell B\ in Figure 3.5. In compacting B\. the subcell .4i given in Figure 3.4

is more detailed than necessary. A more abstract representation of A\ is depicted

in Figure 3.6. This representation is less detailed: hence B2 (Figure 3.7) compacts

more quickly than B\. If the level of detail of the abstraction can be varied, then the

tradeoff of CPU-time versus the area of the compacted result, can be varied as desired

by the user.

Technology Independence. The model should be general enough that any common IC

technology can be accommodated. Large-scale program modifications should not be

needed when a new technology is introduced.



terminals

Before compaction

compacted

standard cells

After compaction

Figure 3.3: Terminal merging at higher levels.
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Figure 3.4: Compacted coll A\

Figure 3.5: Cell B\. using arrayed cells from Figure 3.4.
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ittffiii.

p
Figure 3.6: A more abstract representation of the cell in Figure 3.4.

Figure 3.7: Cell B>. using arrayed cells from Figure 3.6.
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Level of Abstraction. The level of abstraction of the model should be selected such that

the symbolic layouts can be easily verified. Often-used information should be stored

with the model, rather than derived. In addition, the model should support a general

form of annotation and a general mechanism for adding structural information to the

data.

The requirements outlined here are the most important ones from a compaction

perspective. Other issues in symbolic-layout modeling are described as they arise in follow

ing sections.

3.3 Advantages and Disadvantages of the Existing Model

Although symbolic-layout models vary from system to system, their characteris

tics are similar in a broad sense. The prevailing leaf-level model is the point-component

model, which was outlined in the previous chapter. A point-component layout consists of

typed symbols interconnected by zero-width wiring. The type value is used in the symbolic-

translation step to map symbols into sized mask-level eciuivalents. It is often used in the

compactor as well, to calculate spacing constraints between pairs of elements. In the com

paction operation, the point components translate. The wiring translates and/or changes

length to maintain connectivity.

Above the leaf level, the prevailing model treats the layout as a collection of

rectangular subcells that connect by abutment. Wiring is not present, nor are leaf-level

components. A subcell is typically represented by a single rectangular blockage with con

nection points along its borders; the internal subcell geometries are not modeled. Subcells

cannot be modeled as point components, because they nearly always have multiple con

nections per side. Above the leaf level, the "compaction" operation has two phases, as

described in Chapter 2. First, the subcells are manipulated such that they pitch-match,

to enable connection-by-abutment. The subcells are then tiled together to complete the

layout. Because the cell internals are not. modeled, adjacent subcells are usually separated

by the worst-case design rule to ensure design-rule correctness.

The level of abstraction of the traditional symbolic-layout model is between that, of

the mask level and the schematic level. A circuit schematic consists of functional units and

their interconnections (connectivity). Most of the data at the schematic level is structural



55

and logical; little physical information is present. While a schematic may contain informa

tion on the sizes of the circuit elements, the placement and routing data is not present at

all. On the other hand the devices that comprise a functional unit are associated with one

another, and the description of the function that each unit performs is present. A design

at the mask level contains all element size, placement, and routing data, but none of the

grouping and connectivity data present at the schematic level. In particular, the geometries

that comprise the basic electrical elements are not associated with one another.

A typical symbolic layout has some of the structural information present in a

schematic but missing from a mask-level description. That is, the basic electrical compo

nents are identified, but other schematic-level information (e.g., logic function, connectivity)

is usually not present. There is more geometric information in a symbolic description than in

a schematic-level description, but less than that in a mask-level description. Hence the level

of abstraction lies between the mask and schematic levels. It is a subset of these levels as

well; it contains less geometric information than the mask level, and less logical/structural

information than the schematic level.

3.3.1 Advantages

The simple nature of the point-component model leads to several advantages. The

component sizes can be easily parameterized, and the connectivity of the layout can be

extracted readily. A point-component layout can be scaled in a straightforward manner.

The most important advantage of this model, however, is that the terminal-merging problem

can be easily solved. This is because the restriction to a few types with simple, known

configurations allows for the use of a case-analysis approach to merging.

Several researchers have described their use of type information in performing

terminal merging. In CABBAGE [31], the element types are used along with layer and

connectivity information to determine mergeability. The actual spacing requirements are

determined by special-purpose subroutines that use this data as input. If a new element

is added, new subroutines are written to accommodate it. The method described in [22]

works as follows. If two symbols are electrically connected, then all spacing rules with

respect to the interconnecting layer are ignored for that pair of symbols, if the widths of

the terminals on the interconnection layer are the same for both symbols. This scheme

allows, for example, a FET and a contact to merge if their widths are the same, but not
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if they differ. The compactor described by Kingsley [39] develops all spacing values by

pairwise analysis of symbols using their types. Several type-dependent operations used to

enable FET merging have been described by Tan [73]. These include pre-merging the source

and drain rectangles of adjacent FETs, and marking diffusion edges as invisible if they are

part of a FET and are coincident with the FET's gate. In the compactor described in [30],

transistors are modeled differently depending on whether or not they are being compacted

against metal wiring. The virtual-grid system reported in [10] models the diffusion part of

a MOSFET as a wire. Watanabe [79] uses a scheme which ignores spacings between two

rectangles from different elements that are electrically connected. This will prohibit two

FETs from merging fully, because the polysilicon gate of one device will generate a rule

spacing to the diffusion terminal of the other device.

3.3.2 Disadvantages

Unfortunately, the typed, point-component model has several serious disadvan

tages. These follow from the simple shapes it imposes, and from the use of the types

themselves.

Rectangular shapes are inadequate for asymmetric elements, such as the bent.

MOSFET shown in Figure 3.8. The simple connection mechanism (i.e.. the intersection of

a wire-segment endpoint with the center of a symbol) breaks down for some common IC

technologies. For example, a bipolar device with a single base, emitter, and collector cannot,

be modeled, because a wire drawn to the center of the transistor intersects two terminals and

thus the connection is'ambiguous (Figure 3.9). Furthermore, bipolar transistors often have

multiple emitter and/or collector terminals. Other leaf-level elements may have multiple

connections per side as well.

If the layout model is typed, then the system is limited to those known types. Such

a limitation makes it difficult to achieve technology independence, hierarchy-level indepen

dence, and extensibility. If types were only used in symbolic translation, a typed model

might not be severely limiting. However, the types are often used within the compactor

as well, as described in Section 3.3.1. Note that the type of an element also designates its

shape. Hence a typed system is not only limited to certain classes of elements, but also to

certain configurations of the supported types. For example, the two components in Fig

ures 3.8 and 3.10 would have different types, even though they are both MOSFETs. because



source

Figure 3.8: MOSFET that cannot be modeled as a point component.

base emitter collector

wire drawn to center

intersects emitter and

collector

Figure 3.9: Ambiguous connection of a bipolar transistor.
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their shapes, and hence their mapping and spacing requirements, differ.

drain

source

Figure 3.10: MOSFET with different type than that in Fig. 3.8.

The use of type information hinders extensibility, because the system must be

modified to understand and manipulate new types whenever a new element is added. Tech

nology independence is difficult to achieve, because incorporating a new technology usually

involves dealing with new elements, hence new types. The compacted cells that are cre

ated in hierarchical compaction, which are used as primitives on higher levels in the design

hierarchy, are effectively new types. The type of a compacted cell cannot be pre-encoded;

thus typed systems use one model for the leaf level, and a substantially different one for

all higher levels. As described previously, the higher-level model is comprised of abutting

rectangular cells, and "compaction" above the leaf-level is actually stretch-and-abut cell

assembly. A typed system is therefore hierarchy-level dependent.

In general, higher-level layouts should not be restricted to pitch-matched, rectan

gular cells. A pitch-matching design style does not work well in all cases, nor do rectangular

cells. Adjacent cells should not be separated by the maximum design rule: they should be

compacted together according to the per-layer rules, and they should merge at their termi

nals in the same manner as leaf-level elements. The typed model supports merging at the

leaf level readily. However, performing merging through the use of typed elements precludes

merging from occurring for cells on levels above the leaf level. Many layout styles employ

mergeable cells above the leaf level, as exemplified in Figure 3.3.
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3.4 An Ideal Symbolic-Layout Model

The previous section has illustrated the problems with the standard method of

modeling symbolic layouts, both at the leaf level and for hierarchical cases. Fortunately,

there is no fundamental reason to model IC layouts via the typed, point-component model.

Assume instead that there is a way to describe IC layouts in a generic, type-free fashion,

using only geometric and connectivity information. In this description cells would be al

lowed to have any Manhattan shape, and any number of terminals. Assume as well that

compaction algorithms can be developed for this model that compute element-to-element

spacings effectively, using only geometric and connectivity data. Under these assumptions,

all the problems mentioned previously, for typed systems, can be solved.

For example, such a system would not be limited to simple elements (i.e., point

components). New elements and new technologies could be readily accommodated, since all

that would be required is the addition of the geometric definitions of the new primitives; no

program modifications would be needed. Hierarchical compaction could be performed in a

more natural fashion, since compacted cells would be modeled in the same manner as leaf-

level primitives, and thus treated in the same manner by the compaction algorithms. This

would remove the distinction between leaf-level and hierarchical compaction. In addition,

a pitch-matched design style would be optional, not mandatory.

It appears that a generic layout description could lead to a system that is gen

eral, extensible, technology independent, and hierarchy-level independent. The remaining

question is whether such a system would be efficient, in terms of both layout area and CPU

time. It is shown later in this dissertation that an efficient system can be achieved when

a generic model is used, provided the model itself is properly designed, and provided the

constraint-generation algorithm used in the compactor is properly designed.

Symbolic layout and compaction systems use types in two operations, namely

symbolic translation and element-to-element spacing calculations. A generic layout model

would impact these two aspects of a symbolic system: the effect on each is described in the

following subsections.

3.4.1 Symbolic Translation

Since a generic model has no types, there is no symbolic-translation operation. All

layout elements are sized in a generic description. This docs not mean that, parameterized
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layout descriptions are disallowed; it simply means that such descriptions exist outside the

system.

The point-component model is one specific, high-level, parameterized layout form

that is suitable for a certain class of MOS designs. This form is useful in some circumstances,

just as other parameterized layout forms might be useful in others. A higher-level description

can be processed by a generic system by simply compiling the high-level form into the generic

form. It may be advantageous to produce the parameterized form as output of the system

as well. For a point-component layout form this is not difficult, since each component is

parameterized in a very simple fashion. The parameter values can simply be carried through

the system, allowing for transformation back into the point-component form at the end.

3.4.2 Layout Compaction

Compaction cannot occur until all component sizes and wire widths are mapped

in. Hence, the input layout to all compactors may be viewed as pre-sized. In principle, the

typed/parameterized nature of the traditional model need not be of any consequence at the

compaction level.

Unfortunately, many compactors make use of the element types in calculating the

element-to-element spacings, as described previously. One reason for this is to facilitate

terminal merging. Terminal merging is a difficult problem if the components are generic.

However, it will be show later in this dissertation that this problem can be efficiently solved.

3.5 Proposed Symbolic-Layout Model

The following sections describe a new modeling approach that attempts to imple

ment the ideal generic model described in Section 3.4. This model will be referred to as the

Berkeley Layout Model, or BLM.

Distinction can be made between symbolic layouts at the database level, at a.

particular hierarchy level, and at the component level. The component-level representation

will be called the cell model. The cell model of a component, is its geometric specification.

The term layout model will be used to refer to the representation of a symbolic layout,

from a particular level in the design hierarchy. The layout model consists of the components

and wiring, plus the connectivity data, for that given level. Note that many tools, including

compactors, processes one level of hierarchy at a time. The database representation will be
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referred to as the data model. The data model contains all the design information; i.e.,

the hierarchy, connectivity data, geometry, functional information, etc.

The layout and cell models proposed in this dissertation are third-generation mod

els. Their precursors are the models used in CABBAGE [31] and Python [5]. The data

model is a second-generation model. The first-generation model was implemented in the

Hawk/Squid system [37]. Comparisons with these previous models will be made as the

proposed model is described.

3.5.1 Layout and Cell Models

At compaction time, an IC layout from any level in the hierarchy can be described

as a collection of fixed-size cells interconnected by wiring. The wire segments are fixed-size in

their width dimension and flexible-sized in their length dimension. Consider a leaf-level MOS

layout. At compaction time the transistors and contacts are fixed-size components, even

though they are often described in a parameterized manner before symbolic translation.

Likewise, at compaction time, the wire segments have known, fixed widths. Similarly, a

microprocessor layout at the top level of the hierarchy consists of a few large, multi-terminal,

fixed-size cells (ALU, register file, controller, etc.) interconnected by wire segments. It is

apparent that the microprocessor layout and the leaf-level layout can be modeled in the

same manner if the cell model can capture, for example, symmetric components with a.

single connection per side, and asymmetric components with multiple connections per side.

A key ingredient in the BLM is a generalized cell model that can handle a very wide

variety of components efficiently. The cell model is comprised of blockages and connection

areas (terminals). The blockages are defined on a per-layer basis. Any Manhattan polygon

is a legal blockage. A terminal consists of one or more rectangular areas. Terminals are

not restricted in number or location. The cell model is described in detail in the following

chapter.

Wiring is modeled as sets of two-point segments. An instance of a simple cell,

called a routing instance or routing terminal, is placed wherever multiple segments

intersect. Several examples are given in Figure 3.11. This mechanism leads to a uniform

wiring model; all segments are two-point segments, and ail segments are terminated at both

ends bv terminals.
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Figure 3.11: Wiring decomposed into segments and routing instances.
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3.5.2 Data Model

The project described in this dissertation is part of a large IC design system under

development at U.C. Berkeley. The data manager in this system is called OCT [19]. The
OCT system is alow-level, object-oriented system, meaning that it provides mechanisms for

storing objects, interrelating objects, accessing objects, etc. However. OCT itself imposes

very little structure on the data. A data model is defined on top of OCT by specifying

the relationships between objects. In OCT terminology, such a specification is called a

policy; the data model for symbolic layouts is called the OCT symbolic policy [15].
The symbolic-layout policy is one of several policies that are currently implemented in the

Berkeley system. Objects in OCT are interrelated by an operation called attachment.

Attachments are directional; the parent, object is said to contain the child object, and

from the context of the child, the parent object is its container.

The highest-level object in OCT is the cell. A cell has one or more views, each of

which hasoneor more facets. Editing operations occur at the facet level. For example, the

process of creating a symbolic layout of an inverter circuit corresponds to creating a facet

of a view of a cell, which might be named "contents", "unspaced", and "inv". respectively.

The output of a compaction run on the inverter might be facet, "contents" of view "spaced"

of cell "inv". A facet is identified by a triple of the form cellname:viewname:facetname.

e.g.. inv:spaced:contents. When a. cell is included in another cell to create a hierarchy,

the child cell is represented by an instance object: the child is often referred to simply as

an instance. An instance of cell C is a reference to C. not a copy of it. plus a transformation
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which locates it in the coordinate system of the parent. The data that actually describes C

(i.e., one or more facets) is called the master of C.

In the symbolic policy, each cell has two representations, a definition and an ab

straction. The definition is stored in the contents facet of the cell; the abstraction is stored

in the interface facet of the cell. The terms definition/contents and abstraction/interface

are used synonymously in this dissertation. A cell's contents consists primarily of its sub-

cells, their interconnections, and the inputs/outputs of the cell, which are called its formal

terminals. A cell's abstraction is a summary of this information that is sufficient to rep

resent the cell on higher levels in the hierarchy. The geometric part of the abstraction

describes the cell's blocked areas and formal terminals. The connectivity part describes

sets of formal terminals that are electrically equivalent.

Additional structure can be built upon OCT data using the bag object. A bag is

an object that is used to group together other objects of any type. An example of bag usage

is given below. The symbolic policy allows for annotation of the design via the property

object. A property can be attached to any object, and it consists of a name, a type, and a

value. For example, a formal terminal can be marked as a signal net by attaching to it a

property named TERMTYPE, of type STRING, with value "SIGNAL".

Contents Facets

The contents facet simple:unspaced:contents for the symbolic layout shown in

Figure 3.12 is depicted in Figure 3.13. The symbolic hierarchy is terminated at the leaf level

by physical views. Since simple:unspaced:contents is a symbolic leaf cell, the masters

of A and B are physical views. Assume A's master is NMOS.2x3:physical:contents and

NMOS.2x3:physical:interface, and that B's master is COND.4x4-.physical:contents

and COND.4x4:physical:interface. The master of A has three formal terminals, named

"gate", "drain", and "sovrce". W'henever an instance is created, actual terminals are

created by OCT in one-to-one correspondence with the formal terminals of its master. The

actual terminals are attached to the instance object as shown in Fig. 3.13. An actual

terminal is a logical reference to the formal terminal: that. is. an actual terminal is not

geometric. In this sense, an acttial is to its formal in the same way that an instance is to

its master.

Connectivity is represented explicitly, through net objects. According to the sym-
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Figure 3.12: Symbolic leaf cell simple:unspaced:contents.

Figure 3.13: Contents facet for the cell in Fig. 3.12.
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bolic policy, nets contain segments and the actual terminals of major instances (e.g.,

A). All instances other than routing instances are major instances. Nets do not contain

actual terminals of routing instances (e.g., B); this allows an application to discriminate

between "significant" actual terminals and those used only in the implementation of wiring.

A net-listing program, for example, has no use for the routing terminals. Bag objects are

used to differentiate between major instances and routing instances; all major instances

are attached to a bag named INSTANCES, and all routing instances are attached to a bag

named CONNECTORS. These bags illustrate the use of the OCT bag object as a mechanism

for adding structure to the data model. Each segment contains the two actual terminals

it connects. Segments are associated with layers by attaching them to layer objects. This

simple, uniform connectivity model results in part from the decomposition of all wiring into

sets of two-point segments.

Formal terminals at the current level are created by promoting actual terminals.

In this example, there is one formal terminal, called "input". This terminal results from

promoting the actual terminal "drain" of instance A. A terminal object is created and

attached as shown in Fig. 3.13 to indicate this. The geometric model of "input" is part of

the interface facet of the master of A.

Interface Facets

The symbolic cell simple:unspaced:contents must be abstracted, geometrically

and logically, for use on the next level in the hierarchy.1 This abstraction is stored in the

interface facet of the cell, namely simple:unspaced: interface, shown in Figure 3.14.2

The interface has the same formal terminal as the contents. The formal terminal is the only

connectable part of simple:unspaced:interface: the remainder is blocked.

The OCT representation of the interface facet is shown in Figure 3.15. Interface

facets do not contain hierarchy, as they are a summary of the hierarchy beneath them. The

geometric implementation of a formal terminal is attached to the formal-terminal object as

shown in the figure. Each of these geometries is called a terminal frame. The geometric

objects that implement blockages are called protection frames. As in t he case of segments,

the geometric objects are assigned to layers by attaching them to layer objects.

lIn a real example, the cell would probably be compacted first.
2The abstraction is created automatically, and its level of geomet ric detail can be varied as well. The

manner in which this is done is described in the next chapter.
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Figure 3.14: Abstraction of the cell from Fig. 3.12.

facet

simcle:unspaced:interface

Figure 3.15: Interface facet for the cell in Fie. 3.1 1
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3.5.3 Design Flow Example

To illustrate how the BLM can be used, a bottom-up hierarchical compaction by

the SPARCS program is described in this subsection.

Consider the symbolic view unspaced of cell C at the current level. Its contents

facet C:unspaced:contents is created by placing instances and connecting them with seg

ments. Initially SPARCS opens the contents facet of C and reads each of its subcells Sj (its

instances) in turn. For each instance, its interface facet is opened and its protection frames

and terminal frames are read. The segments from C:unspaced:contents are then read, at

which point all necessary information about the input layout is known.

The data from the interfaces of the subcells, plus the segment data, is used to

generate the constraint graph for C. The constraint graph is then solved, and the solution

data is used to translate the subcells to their new locations and to grow/shrink the wire seg

ments. Typically the output is stored in a different view, for example C:spaced:contents.

The output is another symbolic view, not a physical view.

The interface representation C:spaced: interface is then computed. This inter

face representation can be used directly as a subcell on higher levels in the hierarchy.

3.5.4 Summary of Model Characteristics

The BLM data model satisfies the pertinent, requirements listed in Section 3.2.

The model is generic, hierarchy-level independent, and technology independent. That is.

OCT does not have specific types for MOS transistors, bipolar transistors, capacitors, etc.

The data model does not discriminate between the leaf level and higher levels. The data

model is not specific to any particular technology.

The level of abstraction of the data model is a superset of the mask and schematic

levels. Because the layout elements are sized, a mask-level representation can be generated

from a symbolic representation by simply discarding the connectivity information. If the

traditional layout model is used as the compactor's output form, then the output must

undergo a symbolic-translation step to "flesh out" the symbols into their detailed geometric

equivalents. If the output, form is a mask-level description, then the compacted cells cannot

be further processed by the symbolic system. The data model is a superset of the schematic

level, because all schematic-level information can be represented along with the symbolic

data. The extra information present in the BLM data model makes design verification
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easier. For example, many verification processes require the detailed connectivity of the

layout; this information is present in the model.

Many of the advantages of the BLM follow from the cell model, which is described

in detail in the next chapter.



Chapter 4

Cell Model

4.1 Introduction

The layout model proposed in this project is type-free, i.e., it is comprised of

geometric and connectivity data only, for the reasons given previously. This chapter presents

the cell-model portion of the layout model in detail.

The cell model uses protection frames and terminal frames for blockages and

connection areas, respectively. The basic protection-frame/terminal-franie idea is not new

[5,37]. However, the model, and the algorithm for creating the model from a compacted cell,

have been completely re-formulated in this project. The new model leads to substantially

denser layouts than the previous one. In addition, it has been designed to complement a

new, efficient constraint-generation algorithm which is described in the following chapter.

The next section introduces the notion of using edge types rather than element

types in cell modeling. Several options for representing blockages and terminals are then

described. The basic configuration of the BLM cell model is presented next, first for a single

mask layer then for multiple layers. This is followed by a description of the advanced features

of the model. The chapter concludes with a summary of the model and a comparison with

its predecessor.

4.2 Edge Types

As noted in the last chapter. SPARCS avoids the use of element-type information

to broaden its range of applicability. To do so, the layout must be described at a lower level.

09
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using geometric and connectivity data alone. To describe the layout at this level, the cell

model is defined in terms of two classes of shapes, namely blockage areas and connection

areas. These basic shapes are arranged in specific ways with respect to each other; for

example, a blockage on layer Li can abut a connection area on X,. but they cannot overlap;

also, a blockage that abuts a connection area is interpreted differently than one that is near

a connection area but not touching it.

To achieve high density, the basic mechanism used in this abstraction is to assign

types to edges rather than to components. In a sense the edge types provide the informa

tion that other systems encode as element types. The edge-typing mechanism is strictly

geometric in nature; hence it is technology and hierarchy-level independent. A simple set of

rules describes the relationships between the various types of edges. For example, one type

of edge always results in the generation of constraints to other edges, regardless of their

types, when the other edges are from different elements and on layers with which there is a

spacing requirement. Also, some edge types behave in a conditional manner as a. function

of connectivity data.

4.3 Blockages and Terminals

Consider the spaced NAND gate shown in Figure 4.1 whose contents facet, is

nand-.spaced: contents. A mechanism is needed to construct a geometric abstraction of

this cell, which will be used to represent it on higher levels in the hierarchy. The same

mechanism must also handle the modeling of the subcells of nand:spaced:contents; that

is. the transistors and contacts.

The abstraction (the cell model) must discriminate between blocked areas and

connection (terminal) areas. In Fig. 4.1. only a few areas of the cell are connectable on

the next level. The remainder of the cell must be modeled by blockages, so that other

elements on the next hierarchy level can be placed to avoid these areas. The masters of

the instances in Figure 4.1 require a similar model. The MOSFKT sources and drains are

connectable areas on the diffusion layer. The gate extensions are connectable areas on the

polysilicon layer, while the active area is blocked. Contacts do not contain blockages: they

are comprised of terminal areas only.

There is tremendous latitude in the design of a blockage and terminal model. The

next two subsections enumerate some of the options, and present the ones selected for the
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Figure 4.1: Spaced NAND gate nand:spaced:contents.

BLM cell model.

4.3.1 Blockages - Modeling Options

The following list contains several options for modeling the blocked part of a cell,

in order of increasing accuracy.

1. Use a single bounding-rectangle blockage that encloses all geometries.

2. Use per-layer bounding-rectangle shapes.

3. Use per-layer bounding-polygon shapes.

4. Use the actual geometries.

The CPU time needed for constraint generation depends on the total number of edges in the

layout description. Note thai the number of edges, and hence the processing time needed

for constraint generation, increases from choice one to choice four.

The first choice is often too crude to be useful, especially when the ratio of the

largest spacing rule to the smallest, spacing rule is large. To ensure a correct layout, adja

cent cells modeled in this fashion must be separated by the maximum design rule for the

technology. In Mosis CMOS this ratio is 9 [2]: the largest rule is 9A. which is the well-to-well

spacing when the wells are at different potentials. For some orientations, adjacent, instances

of nand:spaced can actually overlap by as much as 9A. Hence the first choice could un

necessarily increase the pitch of a cell composed of two instances of nand: spaced by up lo

ISA.
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For this cell, the second choice is not. appropriate either. Consider the METl and

MET2 layers of the spaced cell. The cell has been designed such that METl is used only

for vertical routing and MET2 is used for only horizontal routing. There is a free track on

METl in the middle of the cell. This area would not be usable if the METl blockage were

modeled by a single bounding-box. However, for modeling MET2. choice two is adequate in

this case because the geometry in the spaced cell on MET2 consists of a single rectangle.

The last choice can, with the proper constraint generator, produce areas nearly

equivalent to those obtainable using flat compaction, because the amount of geometric

detail present in the abstraction nand: spaced interface would be the same as that in

nand:spaced:contents. However, the amount, of CPU time needed for constraint genera

tion would also be about the same as that, needed for flat compaction, so such an abstraction

is pointless.

The third choice is the most appropriate, and it has been selected for the BLM.

However, there is not a unique set of polygons for most cells, including the current one.

One possible choice for nand:spaced is shown in Figure 4.2. The blockage for the METl

layer is shown in Fig. 4.3: note that two polygons are used, and that small gaps between

features have been filled. Using this abstraction, adjacent instances ofnand: spaced can be

compacted together such that, there is no loss in area efficiency compared to an abstraction

using all of the geometry. In addition, the number of edges in the abstraction in Fig. 4.2

is significantly less than the number in nand:spaced:contents, leading to CPU-efficient

compaction on higher levels. In the BLM, a. blockage is referred to as a protection frame.

Figure 4.2: Abstraction nand: spaced: interface for nand: spaced: contents.
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Figure 4.3: METl frames from Figure 4.2.

4.3.2 Terminals - Modeling Options

The connection areas of a cell can also be modeled in several ways. Three possi

bilities are:

1. Use per-layer points.

2. Use per-layer rectangular shapes.

3. Use per-layer polygonal shapes.

Early systems allowed for connections at points only. The connection point mod

eled the center of the actual connectable region. This model may waste area whenever

the terminal area, is wider than the wire segment that connects to it. This is a common

situation: for example, contacts between METl and other layers are usually larger than the

minimum widths of METl and the other wiring layers. If the wires are allowed to slide

along the terminal areas instead, smaller layouts can result as shown in Figure 4.4.

A more powerful model is to use rectangular areas for terminals, and allow termi

nals in the same electrical net and on compatible layers to merge. Note that one dimension

of a terminal area describes the interval along which a wire can slide, while the other

describes the depth of the mergeable region.

The third option listed above is more general still. However, it is nol clear whether

it is worth the effort required to implement it. Polygonal terminals cannot make much

difference in area over rectangular terminals unless segments are allowed to slide around
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Before horizontal compaction After horizontal compaction

Figure 4.4: Area savings due to sliding terminals.

corners, as shown in Figure 4.5. This implies that the direction of the segment would change

from horizontal to vertical, or vice-versa. Such a change is a topological change which is

outside the realm of the usual compaction move set. Polygonal terminals have not been

implemented, since they would complicate the system and since it appears that they would

seldom make a significant area difference. The second option, i.e.. per-layer rectangular

areas, has been selected as the BLM terminal model instead. The rectangle that represents

the terminal area on a given layer is called a terminal frame.

4.4 Basic Single-Layer Model

The BLM cell model will be described by first considering cases in which only a

single layer is present. The multi-layer case will be described after the single-layer case.

4.4.1 Protection Frames

To correctly model a cell, the protection frame(s) on a particular layer must cover

all unconnectable material on that layer. The frame(s) may. and is likely to. cover more

area than that, to simplify the representation of the cell on higher levels. The precise
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Figure 4.5: Polygonal terminal area.

to

definition of a protection frame has a large effect on the layout area. In fact, for maximum

area-efficiency, protection frames must also play a role in modeling the connectivity of the

cells they represent. This consideration is described in detail later in this chapter.

For the purpose of illustration, a definition for a crude set of protection frames is

given here. The definition that is actually used in the BLM will be presented later.

Definition 1 Crude Protection-Frame Set

A set of Manhattan polygons on a particular layer, which is guaranteed to cover all blockages

on that layer. That is, the protection frames cover everything on the layer except for the

connection areas.

For the geometries in Figure 4.6. a number of protection frames are valid. Some examples of

valid frames are given in Figure 4.7. Figure 4.8. and Figure 4.9. The frames in Figure 4.10

are not valid, because they do not cover all of the geometry they model.

Compaction constraints are generated by comparing the edges of neighboring

shapes. For example, if two instances of the abstraction from Figure 4.8 are placed as

shown in Figure 4.11, the spacing constraints needed to compact them in x are found by

comparing the right-hand edges of the shape on the left to the left-hand edges of the shape

on the right. To facilitate this process, edges are assigned types in this cell model, as

mentioned earlier. Edges are also assigned polarities: right-hand edges and bottom edges

have polarity rain, while left-hand and top edges have polarity max. Edge polarities are

indicated in Figure 4.11.
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Figure 4.6: Example geometries to be modeled by protection frames.

Figure 4.7: Possible protection frames for geometries in Figure 4.6.

Figure 4.8: Possible protection frames for geomet ries in Figure 4.6.
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Figure 4.9: Possible protection frames for geometries in Figure 4.6.

Figure 4.10: Illegal protection frames for geometries in Figure 4.6.
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Edges from protection frames that do not abut edges from terminal frames on the

same layer are denoted as type pf. In Figure 4.12, edges a, 6, and c are of type pf, but edge

d is not. The type and behavior of edges like </, as well as the other edges in Figure 4.12,

are described below. Since they model blockages, a pf edge Eki from element k on layer i

generates a constraint of value Sij to any other opposite-polarity edge Eij from element /

on layer j, where StJ- is the spacing rule between layers i and j, regardless of the type of Eij.

In other words, blockages (as defined thus far) must, always be spaced away from any other

shapes by the appropriate spacing rule, irrespective of whether the other shapes represent

blockages, wires, or terminals." The spacing rule between two blockages is synthesized by

comparing the max edges of the lower blockage to the min edges of the upper blockage; e.g.,

the right-hand edges of the left-most blockage are compared with the left-hand edges of the

right-most blockage (Figure 4.11).

max max

max

mm

mm

mm
max

Edge comparisons

max

max

mm

mm mm

Figure 4.11: Edge comparisons for constraint generation.

The process of creating the (crude) protection frames, which is called framing, is

given by the following algorithm.

Algorithm Fl

1. Read p = set of all blockages on layer L from contents facet.
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protection frame

terminal frame

Figure 4.12: Edges of type pf.

2. Pgma = grow(/>, a). (Grow blockages by o > 0)

3. Pgms = rnerge(/>5„ls). (Merge any intersections that result)

4. Pgms = shrink(/>5ms, a). (Shrink by the grow amount)

5. Write protection-frame set P = pgms into interface facet.

Algorithm Fl produces an interface facet from a contents facet. The protection frames

generated are guaranteed to cover at least all the area covered by the original blockages p.

since a > 0. Varying a controls the granularity of the result: any notches of width up to 2o

will fill, and any shapes separated by 2a or less will merge. The protection frames shown

in Figure 4.7 correspond to a small a value, while that shown in Figure 4.8 corresponds to

an a value of oc. An a value of zero returns the original blockages p.

4.4.2 Terminal Frames

The BLM terminal frames are defined as follows.

Definition 2 Terminal frames

Per-layer rectangles which cover the legal connection areas for other t< rminaf frames or for

wire segments that are in the same net and on compatible* layers.

There are no restrictions on the number of terminal frames or on their locations. However, to

connect to a terminal frame at least one of its edges must be accessible. That is. a terminal

'Compatibility is defined later. A layer is always compatible with itself.
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frame surrounded on all four sides by a protection frame on the same layer (Figure 4.13)

is not connectable. In addition, for legal connections, the wire segments must be no wider

than the terminals; consequently, the connection shown in Figure 4.14 is illegal.

terminal frame

Figure 4.13: Terminal that is not accessible.

%
1

\

1

— terminal

Figure 4.14: Illegal connection.

On a given layer the terminal frames do nejf overlap the protection frames: however,

the terminal and protection frames may abut. As a result the union of the protection frames

and the terminal frames on a particular layer covers all shapes on that layer. Terminal

frames on layer Li may overlap protection frames or terminal frames on other layers.

In addition to indicating connection areas for wiring, terminal frames denote

mergeable areas. In Figure 4.15. the master of routing instances A and B is modeled

by a terminal frame; no protection frames are present. Since they are mergeable areas on

the same layer and in the same electrical net. any relative spacing between .4 and B is

legal. Two possible post-compaction configurations are shown in Figure 4.16. Instance .4

in Figure 4.17 is modeled by a terminal frame abutting a protection frame on the same

layer. The minimum-area layout for this case is also shown in Figure 4.17. and again



electrically-connected areas on the same layer have merged.

B

Figure 4.15: Routing instances and segments.

AIB B A

Figure 4.16: Two possible compaction results for the example in Figure 4.15.

Before compaction After compaction

Figure 4.17: Merging example.
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Terminal-frame edges must be treated differently than protect ion-frame edges to

achieve merging. Protection frames are never mergeable. and edges of type pf always

generate constraints to other edges, regardless of type. On the other hand, the behavior

of a terminal-frame edge differs depending on whether the edge it is being compared to is
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from the samenet or not. Terminal frames can merge if they are on the samelayer2 and in

the same net; if the nets differ, then they behave like protection frames. Figure 4.18 depicts

two pairs of connected terminal frames; all shapes are on the same layer. In the horizontal

direction terminal frames A and B are mergeable, and C and D are mergeable, but A

(and B) cannot merge with either C or D since they belong to different nets. Accordingly,

edges a2 and bi behave like pf edges with respect to edges c\ and d\, even though they are

terminal-frame edges. The horizontal constraint graph that results is shown in Figure 4.19.

sm

A B

a a.
1 2 bl b2

c D

Cl °2 dl d2

Figure 4.18: Two pairs of connected terminals.

Figure 4.19: Constraint graph for example of Figure 4.18.

In the BLM terminal-frame edges are assigned two different types. If a terminal-

frame edge is not adjacent to a pf edge on the same layer then its type is tf. All edges

of the routing instances in Figure 4.18. for example, are tf edges. Edges a. b, and c" in

Figure 4.20 are tf edges. If a terminal-frame edge is adjacent to a same-layer protection

frame edge, then its type is btf. Edges c' and d in Figure 4.20 are of type btf. The btf

edge-type is described in the next subsection. An edge from a terminal frame that is not

connected to anything defaults to type pf.

2Terminal frames on different layers may sometimes merge as well. This issue is described later in this
chapter.
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Figure 4.20: Examples of tf edges.

A tf edge behaves as follows. Like pf edges, tf edges are usually compared to

edges of opposite polarity3. If a tf edge is compared to an opposite-polarity tf edge from

the same net then no constraint is generated. An example of this is the a2-b\ relationship

in the example of Figure 4.18. On the other hand, if the two tf edges being compared are

from different nets then a constraint of value Su is generated, just as if both edges were pf

edges. An example of this case is the 62-ci relationship in Figure 4.18.

Algorithm Fl can be readily modified to generate terminal frames as well:

Algorithm F2

1. Invoke Algorithm Fl to create pgms for layer L.

2. Read / = set of all terminal frames of formal terminals on layer L from

contents facet.

3. P = p,jma f| 7. (Subtract / from pgms to form the final protection

frames)

4. Write protection-frame set P. terminal-frame set T = / into interface

facet.

Note that the protection and terminal frames produced by Algorithm F2 may

abut, but they do not overlap.

4.4.3 Protection Frames and Terminal Frames Together

Most cells consist of both blocked areas and connectable areas, and hence they are

modeled by both terminal frames aud protection frames. Generally, such cells are partly

mergeable. as opposed to cells containing only terminal frames, which are fully mergeable.

and cells containing only protection frames, which are not mergeable at all.

*The one exception to this is described later.
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Consider the example shown in Figure 4.21. Edges a3 and 61 are electrically-

connected tf edges, hence there is no constraint between them. If the protection-frame

edge behind the terminal (edge ai) is modeled as a pf edge, then a constraint of value Su

is added between ax and 61 as shown in Figure 4.22 and the terminal areas do not fully

merge. If ai is modeled as a tf edge, then no constraints are added and the illegal layout

of Figure 4.23 results.

A

1
7/,a

B

°2
°3

b
l

Figure 4.21: Example with protection and terminal frames.

p 7//
f / * a

SU> 0 B

b
1

Figure 4.22: Unnecessary constraint that leads to incomplete merging.

Figure 4.23: Illegal layout due to over-merging.

The correct minimum-area layout for this example is shown in Figure 4.24. In

stance B is allowed to merge with .4 such that edges a2 and 61 are coincident. This degree
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of merging is legal, because a terminal frame is, by definition, a mergeable area for other

terminal frames on the same layer and in the same net. However, edge 61 cannot be any

farther to the left than a2. The amount of merging is limited because there is a blockage in

the neighborhood of the terminal. Note that this configuration is achieved if the constraint

between A and B is between edges «2 and 61 and has value zero, as shown in Figure 4.25.

Figure 4.24: Correct minimum-area result for example of Figure 4.21.

Figure 4.25: Limiting constraint that leads to result of Figure 4.24.

In the cases described in the previous sections, opposite-polarity edges were com

pared to generate constraints. No relationships between same-polarity edges have arisen.

This is because of the fact that, if the starting layout is non-overlapping, then an opposite-

polarity edge will always be encountered before a same-polarity edge from the same shape

(Figure 4.26). Because layout features have positive size, opposite-polarity relations like

pi-qi render same-polarity relations like pi-e/2 redundant for such cases.

In cases like that depicted in Figure 4.21. however, the relevant edges (a2 and

b\) have the same polarity. The rule value is not $;;. the layer / to layer i spacing rule;

rather, the rule value is zero. Furthermore, a constraint relation has been suppressed (edge

«i to edge 61). This illustrates the basic differences between a merging situation and a

non-merging one: namely, elifferent edges are compared and different constmint values are
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scan

Figure 4.26: Opposite-polarity edge is encountered before same-polarity edge.

used. This means that the layout model must facilitate the conditional comparison of edges,

as a function of connectivity information.

The behavior described in this subsection is achieved through the use of a third

edge type. That type is denoted the btf type, which is a mnemonic for the back edge of

a terminal frame. A terminal-frame edge that abuts a protection-frame edge on the same

layer is defined to be a btf edge. In the example given in Figure 4.21, a2 is a btf edge.

Since the btf edge delimits the mergeable region, the protection-frame edge at

the same location can be suppressed (e.g., a\). The suppression is done by marking the

protection-frame edge as invisible over the interval that the protection frame and btf edges

are coincident. This marking operation will be referred to as soft masking.4 Masking
makes intuitive sense; if there are twoedges from the same element on the same layer at the

same location, then one of them must be redundant. It should be noted that terminal-frame

edges are not assigned the btf type and and protection-frame edges are not soft-masked

at the cell-model level: instead, the edges are so indicated dynamically during constraint

generation.

4.5 Basic Multiple-Layer Model

This section describes the basic behavior of the BLM for multiple-layer cells.

4.5.1 Protection Frames

No new concepts are needed to model blocked areas on multiple layers. A distinct

set of protection frames is used for each layer. Edge types are assigned according to the

considerations described above for single-layer problems. That is. protection-frame edges

'The modifier -soft" is used to distinguish this form of masking from another form which is described
later in this chapter. This masking is termed soft because one of the edges remains visible.
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that do not abut terminal-frame edges on the same layer are assigned the pf type. A

protection-frame edge that does abut a terminal-frame edge on the same layer is masked

(made invisible). There are no restrictions on the edge relationships across layers: i.e..

within the model of a particular cell, protection frames on layer Lj can abut or overlap

protection frames on any other layer Lj arbitrarily.

4.5.2 Terminal Frames and Compatible Layers

Terminal areas are often connectablc on more than one layer. In the BLM. the

model of such an area consists of a terminal frame on each layer present in the logical

definition of the terminal. For example, a POLY-MET1 contact in a CMOS process can be

connected to by either a POLY wire or a MET1 wire. In this case, the cell is modeled by a

terminal frame on POLY, a terminal frame on MET1. plus an additional terminal frame on

the contact-cut layer COPO for each contact-cut present. The contact shown in Figure 4.27

therefore has four terminal frames and no protection frames. The contact-cut geometries

are modeled as terminal frames, even though wiring is not allowed on the COPO layer,

because thev are mergeable areas.

COPO

MET1

| | POLY

Figure 1.27: Terminal frames of POLY-MET 1 contact.

Terminal frames that are in the same net and on the same layer are always merge-

able. Same-net terminal frames that are on different layers may or may not be mergeable.

Assume that there is a rule Sij between layers /,, and Lj when they are not in the same

net. If those layers art allowed to merge when they are in the same net. then they axe

defined as compatible. For example, a terminal frame on COM) (the contact-cut layer for

XDIF-METI contacts) can merge with a terminal frame on ND1E when they are in the same

net. However, if their nets differ they must be separated by ~>A under Ihe Moms rules [2].

Hence NDIF and COND are compatible. On the other hand, a terminal frame on POLY can

never merge with one on NDIF. so POLY and XDIl" arc not compatible. A layer is always

compatible with itself. When a spacing requirement exists between two layers, the layers
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(or edges on them) will be referred to as related. Note that the compatibility notion is not

required between layers that are not related, such as POLY and MET2. The compatibility

information is determined by analyzing the design rules for the target technology.

If two opposite-polarity tf edges from the same net are being compared, and if

they are compatible, then no constraint is generated. If they are not compatible, then

the edges behave with respect to each other as if they were pf edges and a constraint is

generated. In the example shown in Figure 4.28 all instances are electrically connected and

all consist of only tf edges. The first two instances (A and B) are comprised of compatible

layers and hence they merge as shown in the spaced result. However. XDIF and COXD are

both incompatible with POLY and COPO, hence C does not merge with A or B.

NDIF

terminal

A

NDIF wire

NDIF-MET1

contact

i

B

Before compaction

MB

_ in nullum

After compaction

Figure 4.28: Illustration of compatible layers.

POLY-MET 1

contact

4.5.3 Protection Frames and Terminal Frames Together

If a protection frame abuts a terminal frame on the same layer, the protection-

frame edge is masked and the terminal-frame edge is assigned type btf. just as in the

single-layer case.
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4.6 Advanced Features of Cell Model

The preceding sections of this chapter describe the basic architecture of the cell
model. However, several other mechanisms must be incorporated into the model to achieve

maximum-density layouts. These features are described in this section.

4.6.1 Adjacent Protection Frames and Terminal Frames

The areas of cells that are adjacent to terminals must be carefully modeled to

insure that elements are allowed to merge as much as possible. In the BLM, as described to
this point, it has been implicitly assumed that any protection frame that abuts a terminal
frame originated from ageometry that was electrically connected to the terminal area. This
assumption was used to suppress (i.e., soft-mask) the protection-frame edges that touch
btf edges. Algorithm F2 does not guarantee that abutting terminal-frame and protection-
frame edges originate from electrically-equivalent shapes. In this subsection, the need for
guaranteeing that this condition is satisfied is described. Anew framing algorithm will be
given below, which does maintain the desired condition.

Under Algorithm F2, there are two ways that a protection-frame edge may come
to abut a terminal-frame edge. In one case, the protection-frame edge is from a geometry
that is electrically connected to the terminal frame. An example is given in Figure 4.29,
where the segment that attaches to the terminals in easel-.spaced:contents becomes a
protection frame in easel:spaced:interface. The second way in which the edges may
come to abut is due to blockages that are not connected to a terminal, but which grow into
the terminal area as a result of Algorithm F2. An example of this circumstance is given in

Figure 4.30.
Note that in the second case (Figure 4.30) the closest that a different-net blockage

can be to a terminal in the contents facet is the Su rule, assuming that the contents facet
(the layout that Algorithm F2 is applied to) satisfies the spacing rules. In other words, the
two protection frames in case2: spacedcontents must be separated from the terminal
frame by at least S,-,-; otherwise case2:spaced:contents is illegal. Hence the adjacency of
the frames in case2:spaced:interface is due to Algorithm I'2 alone.
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easel:spaced:interface

Figure 4.29: First case of abutting frames.

"• Algoriihm F2

formal

terminal

terminal

frame

case2:spaced:contents case2:spaced:interface

Figure 4.30: Second case of abutting frames.

90
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Problems with Connectivity-Independent Blockage Modeling

Maximal merging is not achievable when cells are abstracted via Algorithm F2,

since it cannot be assumed that abutting protection-frame and terminal-frame edges arise

from electrically-connected geometries. This problem is illustrated, for example, by the

single-layer layout given in Figure 4.31; the master of the large instance is shown in Fig

ure 4.32. The horizontal dimension after compaction is unnecessarily large by 5,-,- plus the

width of the small instance, due to the corner constraints shown in Figure 4.31. Note that

the fully-merged result would be legal, if the cell were modeled by its definition rather than

its abstraction. In addition, a design-rule check cannot be run when the large instance

is represented by its interface, since the wire connected to the terminal would be nagged

(incorrectly) as an error.

Before compaction After compaction

Figure 4.31: Density degradation in single-layer case.

V777A

contents

Algorithm

F2

interface

Figure 4.32: Master of large instance in Figure 4.31
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A density penalty results in multi-layer cases as well. Consider the layout shown
in Figure 4.33. The Mosis rule for NDIF to COND is 5A when they are from different nets.
Edge ax of the left-hand instance could have arisen from an NDIF edge from a different net
than the terminal, located to the left of the location of ax by the NDIF-NDIF rule (3A), as

shown in Figure 4.34. Since this may be the case, edges a\ and 62 must always be separated
by the NDIF-COND rule minus the NDIF-NDIF rule, which is 5A - 3A = 2A. As shown in
Figure 4.33, the final layout would thus be larger than necessary by 1A if ax had actually

arisen from a shape in the same net as the adjacent terminal frame.

*^"Y\
&-COND

Before compaction

After compaction

Figure 4.33: Density degradation in multi-layer case.

To solve these problems, the cell model must be extended such that the blockages

are modeled in a connectivity-dependent manner.

Connectivity-Dependent Blockage Modeling

It might appear that the above problems could be avoided by always stripping

back protect ion-frame edges from terminal-frame edges by one design rule (S,,) in the fram

ing procedure. For the cell in Figure 4.32. stripping the protection frames back produces
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D

Figure 4.34: Possible location of edge that generated a\.

the frames shown in Figure 4.35. This mechanism would solve the single-layer problem

(Figure 4.31). Unfortunately, it does not eliminate the density problem in the multi-layer

case as described above. Furthermore, it can obliterate features as shown in Figure 4.36,

which could lead to illegal compaction results on the next hierarchy level.

Figure 4.35: Frames for instance in Figure 4.32 stripped back by one rule.

Another possible solution is to explicitly propagate net identifiers from terminal

frames to protection frames. This solution is unwieldy because several terminal frames might

be coincident, with one protection-frame edge. Also, it would increase the time required for

constraint generation because protection-frame edges that are coincident with btf edges

would need to be processed rather than suppressed.

The mechanism for connectivity-dependent blockage modeling that has been im

plemented in the BLM is both simple and correct. It is specified by the following protection-

frame definition, which applies on a per-layer basis.

Definition 3 Protection-Frame Set

A set of Manhattan pejlygons on a particular layer, which is guaranteed to cover all blockages

on that leiyer. The protection frames do not overlap terminal frames em the same layer.
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h- < 2 Sa

AlgorithmF2; stripback

n
Figure 4.36: Feature obliterated by strip-back.

The protection freimes are edlowed to abut same-layer terminal frames only if they arise
from electrically-connected shapes. The protection fmmes are separated from same-layer
terminal frames by at least the Su ride if they are not from electrically-connected shapes.

The algorithm which creates these protection frames, and which is actually used

in the svstem, is:

Algorithm F3

1. Read p = set of all blockages on layer L from contents facet.

2. Invoke Algorithm Fl to create pgms for layer L.

3. Read / = set of all terminal frames of formal terminals on layer L from

contents facet.

4. tg = grow(/, Su). (Grow terminals by Su)

5. P = pgms f| Tg~. (Subtract t3 from p,jma to strip back protection

frames from terminals)

6. P = P U p. (Replace same-net protection frames that originally

abutted terminal frames)
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7. Write protection-frame set P, terminal-frame set T = t into interface

facet.

Algorithm F3 is implemented in the vulcan program [44]. The operation of Al

gorithm F3 is depicted in Figure 4.37. In essence, Algorithm F3 approximates the actual

geometry in the region about the terminal more closely than Algorithm F2. Algorithm F3

solves the density problems described above. Since a protection-frame edge is only allowed

to abut a terminal-frame edge if they are from the same net, the protection-frame edge

can be suppressed as described earlier, and there is no need to propagate net identifiers- to

protection-frame edges. It is easy to see that P and T cover all of the original geometry:

due to Step 6 of Algorithm F3, P covers at least p. and T = / as indicated in Step 7. Hence

the strip-back cannot obliterate features.

4.6.2 Elements that Violate Spacing Rules

Some leaf-level layout primitives are seemingly comprised of shapes that are closer

together than the rules would ordinarily allow. For example, consider the minimum-length

MOSFET in Figure 4.38. The diffusion areas (source and drain) are separated by 2A, while

the diffusion-diffusion spacing rule is 3A. The polysilicon gate abuts the two diffusions,

whereas diffusion and POLY must be separated by 1A under all other circumstances. It is

shown in this subsection how these •"violations" of the spacing rules can lead to layouts

that are unnecessarily large, if the cell model is not designed with such elements in mind.

These potential inefficiencies can occur due to both layer /' - layer / (same-layer) and layer i

- layer j (cross-layer) rules.

Consider just the NDIF layer in the example in Figure 4.30. The instance on the

left {A) is a minimum-length NMOS device. Terminal d is in the same net as terminal / of

instance B. As a result, there is no constraint between edges r/(J and b\. Edge a2. if treated

as a tf edge, is compared to min edges of shapes to its right. Thus, it is compared to b\.

and since a2 and &i are in different nets a constraint of value Su (3A) is added between

them. The spaced result will thus be wider than necessary by 1A. as shown. For maximum

density this constraint must be suppressed. Note that this constraint between a2 and &i

would not degrade the area of the layout if the diffusion terminals of the MOSFET were

separated by the minimum NDIF-NDIF spacing of 3A.

A second undesired constraint arises due to the cross-layer rule between edge a4
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Figure 4.37: Operation of Algorithm F3.
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Figure 4.39: Same-layer density degradation.
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on POLY and edge 61 ondiffusion. Ifno special mechanisms areemployed, then a constraint

will be added between a4 and 6X with value equal to the POLY-NDIF spacing (lA). This

constraint also results in a penalty of lA, as shown in Figure 4.40. If the MOSFET gate and

diffusion terminals were "legally" separated by the POLY-NDIF rule then this constraint

would not cause an area penalty either.

— 1

Before compaction After compaction

Figure 4.40: Cross-layer density degradation.

A MOSFET is one example of a primitive that is comprised of geometries that

are closer together than the rules would otherwise allow. The BLM cell model is able to

accommodate such elements without a density degradation, via. the extensions described

below.

Internal Edges and Notches

Edges such as ei2 and an in Figure 4.39 are internal to the MOSFET. and they

should not be processed in the same way as external edges such as a\. r/3, ei4. and r/(J.

External contours of cells are compared to generate compaction constraints: e.g.. external

max edges are processed in horizontal constraint generation by searching to the right for

external min edges of other elements. In Figure 4.39.edge ei2 is a max edge, but it is internal

to the cell because the region between a2 and ei$ cannot be occupied by a related shape

from another element. Any related shapes to the right of ei2 must lie at least as far to the

right as a5, if thev are connected to d. or at least as far as «« if they are not connected.
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Hence edges a5 and a& determine the necessary constraint relationships with shapes to the

right of A. The same-layer density-degradation problem can be solved by recognizing that

edges such as a2 are internal, and thus not subject to the usual processing.

Internal edges typically arise from notches in geometries that are too small to be

useful. It is helpful to consider the size of a notch in a shape that is usable. A usable

notch is one that is wide enough to fit another shape into. For most layers, a notch is not

useful unless another shape on the same layer can be placed there. Using this criterion, the

minimum width of a useful notch is

where u;min is the minimum width for features on the layer in question. Any notch smaller

than nmin may as well be eliminated since it cannot be used. A notch can be eliminated

by filling it with a protection frame without any loss in area efficiency.

In a fabricated MOSFET, there is no diffusion in the region between the source and

drain terminals, hence this area can be thought of as a notch in the diffusion. For the Mosis

rules, nmtn = 8A for diffusion, which is four times larger than the length of a minimum-

length MOSFET. As a result, MOSFETs are modeled in the BLM by filling the region between

the source and drain terminals with a protection frame on diffusion. Edges ei2 and <i5 thus

become btf edges rather than tf edges, and the same-layer density degradation does not.

occur.

Terminal-Frame Masking

The cross-layer problem illustrated in Figure 4.40 arose from a mergeable tf edge

(b\) that is mistakenly visible to another edge [a4) on a different layer. In general, a

tf edge that is legally merged with a terminal frame of another element should not be

otherwise visible to that element, provided that it is guaranteed to remain in the mergeable

area. Terminal d of A is a mergeable region for compatible tf edges from the same net.

This implies that edge 61 can legally lie anywhere within the area defined by d. As long

as b\ does not move to the left past <i5. then by definition there is no violation between

instance .4 and edge b\, and 61 should otherwise be invisible to A.

This argument implies that two operations should be applied to edge 61. First,

a constraint of value zero should be added between edges «s and b\ to limit the leftward

motion of &t. Second, edge b\ should be marked as invisible to other edges of instance .4:
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this avoids the undesired constraint between a4 and 61. The marking operation must be

performed on an instance-by-instance basis. That is, edge 61 must be marked as invisible

to instance A only; b\ is visible to edges from instances other than A.

It is possible to include these two operations for all pairs of same-net, same-

polarity, different-cell tf edges. However, this is not desirable because it incurs considerable

unnecessary overhead, and because it can lead to degraded area-efficiency. Many cells consist

of just terminal frames, hence they are fully mergeable. It would be costly to process

(unnecessarily) the edges of such elements with respect to same-polarity edges at all times.

Furthermore, if the merging-limiting constraint were added between all such pairs of same-

polarity tf edges, the layout area might suffer since the corresponding elements would be

artificially constrained to remain in their initial order.

What is desired is to perform these operations only in the cases where they are

absolutely required, namely when a terminal on layer Z, is closer than a rule to related

shapes of the same element that are not part of the terminal. They are needed for a

MOSFET, for example, because the drain terminal is closer than a diffusion-polysilicon rule

to the gate.

One possiblesolution would be to processtf edges (like b\) with respect to all edges

of nearby instances (like A) in a single operation. However, this sort of feature-oriented

constraint-generation scheme is not as efficient as the edge-oriented algorithm described in

the following chapter. A second possibility would be to add another edge type to the cell

model. The hypothetical type would apply to the back edges of certain terminal frames.

These edges would be processed with respect, to same-polarity tf edges to both add the

merging-limiting constraint and to mask the tf edges as invisible to the instance the back

edge belongs to. Ideally such edges should be identified according to the context in which

the cell is used. For example, a terminal that is not connected is the same as a protection

frame; hence only its outer edge needs to be processed and its back edge does not need to be

specially identified. Identifying the special back-edges would be cumbersome. To identify

«5, as would first have to be recognized as a back edge of a connected terminal frame. Then

the other edges of instance .4 would need to be searched to see if there are any related edges

on different layers Lj within 5tJ of «5. If one were found [a.4 in this case) then the type of

as could be altered.

The method used in the BLM to trigger the two operations is appropriate for

edge-oriented constraint generation and it does not require a new edge type. It, makes use
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of btf edges and the notch-filling scheme described above. As already defined, the btf

type generates a constraint to limit merging. This is augmented by a masking operation

termed hard masking. When the same-net, same-layer, same-polarity tf-btf relationship

is found, the tf edge is masked such that it is invisible to the element that the btf edge

belongs to. That is, the btf edge completely ("hard") masks the tf edge. However, the tf

edge remains visible to all other elements. For this method to operate properly, the edges

must be processed in a particular order, which will be described in the next chapter.

This scheme is correct and relatively simple, but it is not completely general be

cause it is triggered by a btf edge. A btf edge is present only if there is both a protection

frame and an adjacent terminal frame in the masking element. This is true for MOSFETs,

because of the notch-filling mechanism outlined above. Although one could imagine ele

ments that could not be modeled in this manner, they are not present in the common IC

technologies (bipolar, MOS); hence the hard-masking method has beenfound to be adequate

to date.

4.7 Summary of Cell Model

There are three edge types in the BLM cell model. The edge types are determined

from the protection frames and terminal frames of the interface facet of the cell being

modeled. The types are defined as follows.

Configuration Edge Type

coincident terminal frame and

protection frame on same layer
terminal frame edge: btf
protection-frame edge: masked

all other protection frame edges Pf
all other terminal frame edges tf

Table 4.1: Edge typing rules.

The typed edges generate spacing constraints via a simple set of rules, which are

summarized in the following table. In addition, the tf-btf interaction causes the tf edge

to be hard-masked (make invisible) with respect, to all other edges of the element that the

btf edge belongs to. Edge relationships that do not appear in the table are ignored.



Current Edge Second Edge
Type Polarity Net Layer Rule

P* Pf opposite — any Z>ij

P* tf opposite — any i>ij
tf tf opposite different any Jij

tf tf opposite same compatible none

tf tf opposite same incompatible S-

tf btf same same same 0

Table 4.2: Constraints generated by the various edge types.

4,8 Comparison with Previous Model
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The first use of a cell model based on blockages and connection areas was in

the Python compactor [5] and the Hawk/Squid framework [37]. Many important ideas,

including automatic frame generation, were contributed by these projects. Unfortunately,

the previous model did not support terminal merging. Merging is essential in achieving

layout densities that compete with the standard symbolic-layout model. For example, the

minimum POLY-POLY pitch for adjacent MOSFETs that is achievable using the previous

model is 9A, as shown in Figure 4.41. The model developed in this project is able to achieve

the minimum legal pitch of 4A.

r- r-

2 2 3 2 2

Minimum pitch, previous model Minimum pitch, proposed model

Figure 4.41: Comparison of previous cell model and proposed cell model.

To produce a generic model that also supports merging, the cell model was com

pletely re-formulated in this project. The edge-typing notion and the two forms of masking

are both part of the new formulation. The relationships between protection frames and

terminal frames are quite different and much more specific. For example, in the previ-
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ous model, terminal frames were required to overlap protection frames; also, protection

frames were not produced in a manner that allows for discrimination between same-net and

different-net blockages. The frames of the new model allow this net-based discrimination to

occur, which further enhances mergeability. The framing procedure has been re-formulated

as well to produce the new model.



Chapter 5

Constraint Generation

5.1 Introduction

In the constraint-generation phase of layout compaction, the spacing requirements

needed to satisfy the design rules and to maintain the connectivity of the layout are de

termined between all pairs of interacting elements. These requirements are represented via

a constraint graph, which is a global model of the layout that can then be analyzed to

determine the new element locations.

The generic-element layout abstraction used in SPARCS. i.e., the BLM, is powerful

in terms of its ability to capture a wide variety of designs. However, it is a significant problem

to generate the constraint graph for a design described in this manner, primarily because

the constraint generator must operate without element-type information. The constraint

generator must exploit the geometric information present in this low-level layout model

without a CPU-time degradation compared to methods that operate on higher-level, typed

layout models. A new constraint-generation algorithm which satisfies this requirement has

been developed. The new algorithm is described in detail in this chapter.

Chapter 5 is organized as follows. The next section contains a statement of the

constraint-generation problem, plus the additional requirements imposed by the goals of

this project. Previous work in constraint generation is then presented. The constraint-

generation algorithm developed in this project follows. The chapter concludes with the

theoretical and measured performance of the algorithm, and a summary.

104
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5.2 The Constraint-Generation Problem

The constraint-generation process takes as input a symbolic layout and the design

rules. Its output is a constraintgraph which is complete,1 meaning that all constraints which

are necessary to guarantee that a legal layout can be realized are present. Most of these

constraints, which will be referred to as implicit constraints, arise from minimum-spacing

requirements and from the requirement that the layout remain electrically connected. Other,

explicit constraints may also be added. For example, constraints might be included to

place the power and ground busses at specific locations in the compacted layout. Such

constraints are termed explicit because they cannot be deduced from the layout or the

design rules. The explicit constraints are often called user constraints in the literature.

For convenience, a source node and a sink node are typically appended to the graph as well.

The constraint generator must produce, for element Q, constraints with respect

to all elements R{ which might interact with Q and which are related to Q by one or more

design rules. This analysis is similar to a design-rule check, but with an important difference.

In design-rule checking, the layout elements do not move. Hence, for element Q, it is only

necessary to examine the elements within a worst-case distance of Q. In compaction, the

layout elements do move. It is not sufficient to confine the constraint-generation analysis

to a fixed-size window about Q. because elements that are initially far from Q may move

close to Q during compaction.

In one-dimensional compactors constraint generation is performed one dimension

at a time, because compaction in a particular dimension changes the element adjacencies

in the orthogonal dimension. In horizontal compaction the analysis compares the vertical

edges of the elements: in vertical compaction, the horizontal edges are compared.

In addition to being complete, the constraint graph should be minimal. A minimal

graph has no redundant constraints. The constraint AC in the graph shown in Figure 5.1 is

redundant, since the path ABC is longer than the path AC. Minimizing redundancy in the

constraint graph is important, because the runtimes of the constraint-solving algorithms

grow with the number of constraints.

'This does not mean complete in the graph-theoretic sense.
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Figure 5.1: Constraint AC is redundant.

5.2.1 Visibility Considerations

In a horizontal (vertical) compaction iteration, a simple but inefficient constraint

generator would compare every vertical (horizontal) edge of every element to every vertical

(horizontal) edge of every other element. The graphs generated by this algorithm would be

correct. However, the generation algorithm would require time proportional to the square

of the number of vertical (horizontal) edges in the layout, and many redundant constraints

would be generated. Practical constraint-generation algorithms, including the one described

in this chapter, use visibility techniques both to generate fewer redundant constraints and

to speed up the constraint generator itself.

Visibility considerations can be used to prune the search space in two ways. Con

sider a horizontal compaction step. A given vertical edge E needs only to be compared

to edges within the region defined by the projection of E on the vertical axis, as depicted

in Figure 5.2. Edges above and below this region, e.g. edge Ej, do not interact with E

because their vertical projections do not intersect.2 That is. edge Ej is not visible to edge

E. From now on, the projection of an edge will be referred to as its interval: when the

intervals of two edges intersect they will be said to overlap. This type of visibility analysis

will be called perpendicular visibility.

The second form of pruning that follows from visibility analysis, which will be

termed parallel visibility, concerns edges whose intervals elo overlap. Figure 5.3 shows

four rectangles arranged so that their intervals overlap. All rectangles are assumed to

be blockages that are on the same layer. Each rectangle needs only to be constrained

with respect to the rectangles visible to it, i.e., to its immediate neighbors. For example.

rectangle /*3 is not. visible to r\ because it is blocked by the intervening rectangle r2. Hence

the three constraints shown in Figure 5.3 are sufficient to model this layout for horizontal

2Actually, the interval of E must be enlarged to enable the generation of corner constraints. This factor
will be described later in this chapter.
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Figure 5.2: Visibility perpendicular to the spacing direction.

compaction. This conclusion also follows from a simple transitivity argument.

rl r2 r3 r4

Figure 5.3: Visibility parallel to the spacing direction.
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5.2.2 Additional Requirements

All constraint generators should produce a complete, yet minimal, set of con

straints. They should also be as efficient as possible in terms of memory and CPU-time

usage. In addition, several other requirements are imposed by the goals of this project, and

by the layout model chosen. These requirements are described in the following paragraphs.

Per-Layer Manhattan Shapes. The BLM cell model is defined in terms of per-layer

Manhattan geometries. The constraint generator must take advantage of this infor

mation by generating the constraints on a per-layer basis using per-layer rules. Also,

the polygonal shapes must be treated as such by the constraint generator. This means

that, for a given element, the boundary of the element on each layer must be modeled

as a set of edges, not a single edge.
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Merging of Generic Elements. The generator must support terminal merging without

using element-type information. This amounts to exploiting the edge types that have

been defined in the cell model.

Non-Transitive Spacing Rules. The constraint generator must not be restricted to tran

sitive spacing rules. Referring to Figure 5.4. the rules are transitive if Syg >

Sij + Wj + Sjk, where Wj is the minimum width for layer j. for all combinations

of layers. Note that constraint Sik must be generated if the rules are not transitive,

whereas it is redundant if they are.

Some constraint generators assume that the rules are transitive in order to simplify

the algorithms and to enhance runtime efficiency. However, real technologies, such as

CMOS, have non-transitive rules.

layer i

I I layer ;'

layer k

s..
y

w.
i s*

s«

Figure 5.4: Definition of transitive spacing rules.

5.3 Other Constraint-Generation Algorithms

The shadow-propagation method and the intervening-group method are the two

most common techniques for constraint generation. Each method is outlined below for a

horizontal compaction step: constraint generation for vertical compaction is similar. An

alternative constraint-generation approach has been used in this project. It is described in

detail followins; this section.

'The most-recent-layers algorithm [J 1] can he thought of as a variant of the shadow-propagation method
that applies to the virtual-grid environment.
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5.3.1 Intervening-Group Methods

Intervening-group methods use longest-path information to determine which pairs

of layout elements must be constrained. The first intervening-group method was proposed

by Kingsley [39]. An efficient implementation of the algorithm is described by Hedges et al.

in [29].

In generating a horizontal constraint graph, the layout elements are examined in

turn from left to right. When the current element ec is processed, it is compared against

all elements to its left, i.e., against all previously-processed elements. However, constraints

are not generated between all pairs.

Let the (already-processed) element that ec is currently being compared to be

denoted er. First, ec and er are checked to insure that their intervals overlap. Assuming

that they do, the graph as completed thus far is searched to determine if a path already

exists from er to ec. If a path exists, and if the length of that path is greater than or equal

to the maximum design rule (MDR), then no constraint is needed between er and ec. If not,

the geometries of ec and er are compared in detail to generate the necessary constraint.

Constraint generation for ec continues with the next element to the left of er. er_i-

A key fact that is exploited by the algorithm is that any elements further to the

left, that are constrained to be at least an MDR away from er, cannot affect the position

of ec. That is, the "intervening" element er blocks such elements with respect to ec. hence

they do not require constraints to ec. Let er_i be one such element. It follows in turn

that any elements to the left of rr_i that are constrained to be at least one MDR to its left

cannot affect ec either.

The implementation of Hedges et al. [29] uses bit vectors to store this longest-path

information. Each element has a bit vector, with one bit for each element to its left in the

layout. For an element c, the value of bit /' is 1 if element e-, is already constrained to be at

least an MDR to the left of e. In the above example, if a constraint is generated between er

and ec and if the value of the constraint is greater than or equal to the MDR. then the bit

corresponding to er is set in the bit vector of ec. The bit is likewise set if it was determined

that eT and ec were already constrained by a path at least one MDR long. Assume that er

is constrained to be an MDR or more from ec. The information that elements like er_l are

likewise separated from er (and hence cannot affect ec) is then inherited by ec. by ORing

ec's bit vector with that of er. When ec is being compared to er_i. the bit corresponding
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to er_i is found to be 1, so no further consideration of er_i is necessary.

As described above, a longest-path search is performed from ec to er if there is

no known path between them greater than or equal to one MRD in length; i.e., if the bit

corresponding to er in ec's bit vector is 0. In the simplest case, each such longest-path

computation requires time proportional to the number of edges in the partially-completed

graph. To reduce the runtime of the algorithm, the search is carried out in breadth-first

order to a limited depth only, typically from 2 to 4 nodes [29]. The runtime is thereby

reduced, but some redundant constraints are generated. If the longest-path search depth

were oo, no redundant constraints would be created.

Weaknesses

The intervening-group algorithm always performs a quadratic number of element

comparisons, because each element is compared with every element to its left in the layout.

In the best case, a linear number of longest-path analyses are performed as well. If bit

vectors are used to store the longest-path information, then the amount of storage needed

for them is quadratic, in the number of elements. These factors, namely quadratic storage

and quadratic runtime, indicate that the intervening-group method is best-suited to small

examples.

5.3.2 Shadow Propagation

The shadow-propagation algorithm was first, described by Hsueh [31]. The algo

rithm has since been implemented in a large number of compactors.

In the shadow-propagation method the layout is scanned in the direction of com

paction. In horizontal compaction, the layout is scanned from left to right. During the

scan, spacing constraints are generated by processing the right-side edges of each element

with respect to the left-side edges of other elements further to the right in the layout. The

method takes advantage of the fact that a max (right-hand) edge only needs to be processed

until it -sees" an appropriate min (left-hand) edge to its right. Consider the example given

in Figure 5.5. where all three shapes are blockages on the same layer. The right-hand edge

of A [a2) does not need to see any edges past element B. since the presence of B obviates

the need for a constraint between A and C. That is. the constraint between .4 and C is

dominated bv the sum of the AB and BC constraints: constraint AC is redundant. In
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visibility terms, as outlined earlier, a2 is covered by element JB, and therefore a2 does not

need to be processed once B has been reached.

Figure 5.5: Shadow coverage.

The progression of the algorithm, again for a case where all shapes are blockages

on the same layer, is depicted in Figures 5.6 through 5.10. At position A*2 in Figure 5.6.

edge a2 enters the shadow, which is a data structure that contains the currently-active max

edges. At all times, the shadow is comprised of the max edge segments that are visible to

an observer looking to the left from the current position in the layout. When position .V3

is reached constraint AB is generated, and at X4 AC is created, as shown in Figure 5.7.

At A5 and at A"6 portions of a2 become covered by the addition of edges b2 and c2 to the

shadow (Figure 5.8). At the next position, A't. three constraints are generated as indicated

in Figure 5.9. The last part of edge a2 is covered at A'g as depicted in Figure 5.10.

The covering operations are trivial in this contrived example; they are not this

simple in real examples, especially when terminal merging is allowed. For example, a

pf edge cannot be covered by a tf edge. Consider the three-instance example shown in

Figure 5.11, where all elements are on the same layer. Element A has a single protection

frame, while elements B and C are composed of terminal frames only and they are in

the same net. (The wire that connects them is omitted from Figure 5.11.) If edge a2 is

(mistakenly) covered by edge 62, the illegal result shown in Figure 5.11 could be produced.

To guarantee correctness, a2 cannot be covered until a max edge from a protection frame is

reached. That is, both pf and tf edges must be propagated until a same-polarity pf edge

is reached.

The complexity of shadow propagation depends strongly upon the data structures

used, the design rules allowed, and the degree of terminal merging allowed. A simple im

plementation on a worst-case layout has quadratic complexity [31]. A scanline traversal of

a layout with n edges perpendicular to the compaction direction requires 0(»logn) oper

ations. Assuming (unrealistically) that all other operations can be performed in constant
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Figure 5.6: Example of shadow propagation.

Figure 5.7: Example of shadow propagation, continued.
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Figure 5.8: Example of shadow propagation, continued.

Figure 5.9: Example of shadow propagation, continued.
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Figure 5.11: Illegal result if tf edge covers pf edge
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time, the lower bound on shadow propagation is thus O(n\ogn). Hsueh quotes a measured

complexity of 0(n12) [31].

Weaknesses

Although the shadow-propagation algorithm has proven to be a workable method

for constraint generation, it has several weaknesses. The weaknesses have to do with the

complicated data structures that are necessary to implement it. In particular, multiple

shadows are required because a separate shadow must be maintained for each mask layer in

the layout.4 The shadows should be implemented via geometric data structures that allow

new edges to be efficiently compared to them as the new edges are encountered. This is

needed to efficiently exploit the first type of visibility pruning noted earlier. Tree-oriented

data structures, such as the segment tree [63], are good candidates. However, they must

remain relatively well-balanced to achieve high efficiencies. Re-balancing is necessary even

in the simplest cases, such as those where the only layout elements present are rectangular

blockages.

Over a given interval each shadow must be able to represent one pf edge plus an

arbitrary number of tf edges, because only pf edges on the same layer can perform covering.

For example, the shadow contains one pf edge and two tf edges following edge c2 in the

example shown in Figure 5.11. Furthermore, the multi-edge intervals are not those that are

defined by the edges themselves. Rather, artificial intervals must be created dynamically,

by intersecting the real edges as shown in Figure 5.12. Also, shadows become covered in a

rather arbitrary manner. For example, a shadow edge that initially spans a wide interval

may fragment into many small pieces before it is completely covered. Both the artificial

intervals and the edge fragmentation necessitate additional, periodic re-balancing of the

shadow data structures as the algorithm executes.

5.3.3 Summary

The intervening-group and shadow-propagation methods are often compared to

one another. However, they are actually complementary, since one prunes the the search

space using geometric considerations (shadow propagation) while the other does so via the

4This statement is not strictly true; the layers can be grouped into equivalence classes such that one
multi-layer shadow suffices per class. It is still necessary to have multiple shadows, however, and multi-layer
shadows are themselves difficult to handle.
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•Two real edges Three shadow intervals

Figure 5.12: Shadow intervals defined by edge intersections.

use of longest-path information (intervening group). A detailed comparison of the two

approaches has not been published.

The argument put forth in favor of the intervening-group algorithm is that it is

simpler than shadow propagation and therefore faster [39,29]. This does not seem likely,

especially for large examples, because ofits quadratic complexity. Intervening-group meth
ods still must perforin detailed edge comparisons. If geometric pruning techniques (such as

those used in shadow propagation) are not employed, then the edge-comparison component,

of the algorithm could be an important factor in its runtime. This factor is most significant

when the elements have a large number of edges.

Theshadow-propagation algorithm uses visibility analysis quite effectively, thereby

pruning the search space geometrically. However, the data structure manipulation that is

necessary adds a significant component to the runtime of the algorithm. This factor makes

it difficult to design and implement an efficient constraint generator based on shadow

propagation for low-level layout models like the one used in this project.

The fundamental operation in constraint generation is the comparison of element

edges, whether or not longest-path pruning is employed. The research in constraint gener

ation in the SPARC'S project, which is described in the remainder of this chapter, has thus

concentrated on this aspect of the problem.
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5.4 Plane-Sweep Constraint Generation

The difficulties inherent in applying the shadow-propagation method to the layout

model used in this work have led to the investigation of alternative methods for constraint

generation. As a result a new algorithm, called perpendicular plane-sweep (PPS), has

been designed and implemented. The basic characteristic of this algorithm is that the layout

is scanned in the direction perpendicular to the spacing direction instead of parallel to it.

For example, if the spacing direction is horizontal then the layout is scanned from bottom to

top, rather than from left to right. The first constraint generator to employ perpendicular

scanning is described in [50].

The PPS method has several key advantages over the shadow-propagation method.

In particular, no explicit covering operations are needeel. even though the edge-comparison

search-space is pruned at least as effectively as in the shadow-propagation method. The

algorithm can be implemented with simpler data structures, and the overhead due to data-

structure maintenance is substantially reduced.

A brief description of the PPS algorithm appears in the following subsection. Pre

vious work in constraint generation via perpendicular scanning is described in Section 5.5.

5.4.1 Basic Operation

The basic operation of the plane-sweep algorithm is illustrated by considering

again the simple example of Figure 5.6, where all shapes are rectangular, all shapes are on

the same layer, and all shapes are protection frames. The simplifications made here will be

removed later in this chapter.

Since a horizontal spacing is assumed, the vertical edges of the elements participate

in constraint generation. For each vertical edge, its jvcoordinate will be referred to as its

loc coordinate, its lesser {/-coordinate as its min coordinate, and its greater ^/-coordinate

as its max coordinate. The loc. min. and max coordinates will be denoted C'toc. C'„,,„. and

Cmax, respectively. Similar definitions apply for horizontal edges. The edge definitions are

illustrated in Figure 5.13.

In horizontal compaction the algorithm operates by sweeping a horizontal scanline

across the layout vertically, from bottom to top. The scanline stops at discrete events.

which are defined by the Cm;n and Cmax coordinates of the edges. Processing only occurs at

events. The ^-coordinate of the scanline at a particular event is called the event coordinate.
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Figure 5.13: Edge definitions.

Ce. Disregarding (for now) interactions between corners of shapes, there are two types of

events.5 The first type corresponds to the case when the scanline reaches the lower y-

coordinate of an edge; i.e., when Ce equals Cmm of some edge. Such an event is called a

MIN event. The second type corresponds to the case when the scanline reaches the upper

^-coordinate of an edge; i.e., when Ce equals Cmax of some edge. Such an event is called a

MAX event.

Eachedge appears in twoevent queues, a MIN queue and a MAX queue. The C„,,„

ofeach edge is its key in the MIN queue, and its Cmax is its key in the MAX queue. The event

queues are sorted in increasing order; at all times, the first edge in either queue corresponds

to the Ce of the next event of that type. The movement of the scanline across the layout

from bottom to top (or right to left, in a vertical compaction) is realized by processing edges

in the order specified by the sorted event queues. The next event coordinate is determined

by the edge of lesser key from the MIN and MAX queues.

If the event is a MIN event, all edges whose C„,(n is equal to Cf are inserted into a

data structure called the edge structure. The edge structure is sorted in increasing order

of the Cioc coordinates of the edges. Upon insertion, each new edge is processed to generate

constraints. If the event is from the MAX queue, then all edges with the same Cmax are

deleted from the edge structure. At any point in time the edges in the edge structure are

those edges that are currently active. An edge participates in constraint generation only

while it is active, and an edge is active for all event coordinates between its Cmtn and Cmax

coordinates, inclusive.

5There are three types when corner constraints are computed as well. Corner constraints are addressed
later in this chapter.



119

The first event is always a MIN event as shown in Figure 5.14. In this example,

edges C\ and c2 are inserted into the edge structure at event Y\. Since there are no other

edges in the edge structure when event Y\ is reached, no constraints are generated. At

event Y2, edges a\ and a2 are activated by adding them to the edge structure (Figure 5.15);

there are now four active edges. Spacing constraints arise from the comparison of opposite-

polarity edges. Since edge a2 is a max edge, it has constraint relationships with min edges to

its right in the layout. Similarly, since edge a\ is a min edge, it has constraint relationships

with max edges to its left.

Figure 5.14: Initial scanline position - MIN event.

When a max edge is added to the edge structure, it is is processed by searching

through the edge structure in increasing x to generate constraints. In the case of edge

a2, the opposite-polarity edge c\ is encountered and a constraint is generated as shown in

Figure 5.15. Likewise, when a min edge is added, constraints are generated by searching

through the edge structure in decreasing x. The operation of searching the edge structure in

the direction of increasing coordinates {x in this case) will be called the walk-up operation,

since an edge is processed by "walking" through the active edges until an opposite-polarity

edge is encountered. The dual operation, for searching in the direction of decreasing co

ordinates, will be called the walk-down operation. For edge E these operations will be

denoted walk_up(£") and walk_down(£") (if the direction is not relevant, the operation will

be denoted walk(£) ). During walk(£) in this simple example, all edges from the same ele-
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Figure 5.15: Second scanline position - MIN event.

ment, all edges of the same polarity, and all edges from unrelated layers are skipped. When

walk-down(ai) is performed no constraints are generated, because there are no edges further

to the left in the edge structure.

It is important, for efficiency reasons, to visit as few edges as possible in the walk

operation. That is, the walk operation of an edge should be terminated as soon as that

particular edge is adequately constrained. In this example, the walk may terminate as soon

as an opposite-polarity edge is encountered; e.g., walk-up («',>) terminates at edge c\. The

actual termination criteria used in the PPS algorithm are more involved: they are described

later in this chapter.

Event I3 in Figure 5.16 is also a MIN event. The walk-down(d\) operation sees

c2 and the new constraint shown in Figure 5.16 is generated. The next event. Y4, is a MAX

event and all of the edges with Cmax = Ce are deactivated by removing them from the

edge structure. As shown in Figure 5.17. edges c\ and c2 are removed: they will no longer

participate in constraint generation.

The last event that causes constraints to be generated is event Y5. Both &i

and b2 lead to the generation of constraints as depicted in Figure 5.18. All other events

(Ye. Y7. Y's) are MAX events, and hence no more constraints result. Compared to the shadow-

propagation method, the plane-sweep algorithm creates one less constraint for this example.

It is clear, because of the fact that a layer is transitive with respect to itself, that the extra
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Figure 5.16: Third scanline position - MIN event,
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Figure 5.17: Fourth scanline position - MAX event



constraint shown in Figure 5.10 is redundant.
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Figure 5.18: Fifth scanline position - MIN event.
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5.4.2 Advantages

The major advantage of perpendicular scanning over the parallel-scanning ap

proach used in shadow propagation is that the edge-covering operations eire performed at

very low cost. A complicated shadow data-structure and the associated updating is not

required.

The perpendicular visibility analysis occurs automatically when perpendicular

scanning is used, due to the nature of the scanline. Two edges have overlapping inter

vals only if both edges are in the edge structure at the same time. In the above example,

the edges of B and C are not visible to one another because they are never simultaneously

active. An explicit operation is necessary to determine the shadow edge(s) that are per

pendicularly visible to a given edge in shadow propagation. In addition, if the edge under

consideration covers part of the shadow, the shadow must be explicitly updated.

Parallel visibility is also easy to exploit, because of the sorted edge structure. The

termination criteria for the walk operation can be defined to take advantage of parallel

visibility at least as effectively as the shadow-propagation method does. This point will

become apparent as this chapter proceeds.
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5.5 Previous Work in Plane-Sweep Constraint Generation

The PPS algorithm is based on the algorithm first described by Lengauer in 1983

[50]. A more detailed description of the algorithm, which will be referred to herein as the

D-L algorithm, was published in 1987 by Doenhardt and Lengauer [21]. Other contributions

to the technique were described by Malik in 1987 [55]. These algorithms for plane-sweep

constraint generation are described here. The PPS algorithm will be described in detail and

compared with these algorithms following this section.

Doenhardt and Lengauer treat the theoretical aspects of the constraint-generation

problem for layouts comprised of rectangles on a single layer. The primary emphasis of their

work is on generating a minimal set of constraints. As pointed out in [21], the transitive

reduction of a (non-minimal) constraint graph corresponds to the desired minimal set.

The abstraction of real layouts with many layers and polygonal shapes to single-

layer, rectangle layouts is not addressed in [21]. The authors do state that the abstraction

of real layouts to their layout model is "nontriviaT.

Actually, Doenhardt and Lengauer present a family of algorithms, each of which

provides a different degree of merging. The simplest algorithm. 6'c/?o. runs in O(nlogn)

time but does not allow any merging. Since all rectangles are on the same layer and no

merging is allowed, the walk operation can be terminated as soon as the first rectangle in the

edge structure6 is encountered, as illustrated in the example in the preceding section. The

walk operation thus requires 0{ 1) time per rectangle. If the active rectangles are stored in

a balanced binary tree, then maintaining the active rectangles and sorting the event queues

take 0(nlog/i) time for an w-rectangle problem. This leads to the overall time-bound of

0(/? log/?).

The algorithm outlined in Section 5.4.1 does not create a transitive reduction;

under the current assumptions, as many as 2m—1 constraints can be generated when ??-l are

sufficient. For example, the constraints drawn as dashed lines in Figure 5.19 are redundant.

The redundant constraints are avoided in Gen0 by storing constraints on a tentative basis

until MAX events, instead of generating them immediately during MIN events. This is

accomplished by maintaining, for each rectangle /?,. a pointer to the rectangle currently

to its left, called canel{Ri). These pointers are initialized and updated at MIN events. In

eThe D-L algorithm is rectangle-based, not. edge-based. In this explanation of tlie D-L method, the term
"edge structure" actually refers to a rectangle structure, and the walk operation procoses rectangles, not
edges.
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the case of R4 in Figure 5.19, cand(R4) is updated to point to i?i, #2* and Rz at events

Y2,13, and y5, respectively. At the MAX event for rectangle R{, constraints are generated

between /(#,-) and R{ if /(.ft,-) = cand(Ri), and between JK; and r(2?,-) if can(/(r(7?j)) = #,.

The notation r(JR,) means the right neighbor of R{ in the edge structure, and /(.ft,-) means

the left neighbor. The constraint between Rz and R4 is generated at Y7, e.g., because

carad(r(#3)) = Rz. This scheme is described more fully in [21].

Figure 5.19: Elimination of redundant constraints.

The merging problem, within this rectangle-based, single-layer model, is addressed

by several algorithms based on Gcjiq. The G(-n\ algorithm allows a rectangle to merge with

at most one neighboring rectangle. The asymptotic complexity of Gen\ is the same as that

of GeiiQ and an irredundant graph is produced, but at the expense of making two sweeps

of the layout, one from the bottom to the top followed by one from the top to the bottom.

The authors do not advocate the use q{ Genx because of the limited degree of merging that

it affords.

The parameterized algorithm Gen(k) is the most flexible variant of the D-L algo

rithm. The parameter k controls the amount of merging, in that a rectangle is allowed to
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merge with up to k neighboring rectangles that are in the same net. Since merging of up

to k rectangles is possible, the walk operation is 0(k) rather than 0(1), and the overall

runtime of Gen(k) is 0(n(k + log??.)). A single sweep of the layout is performed, and the

graph produced is not minimal, unlike Gen0 and Gen\. The Gen(k) algorithm is somewhat

involved; hence the description given in [21] is not reproduced here.

In [55], Malik extends the Geno algorithm of [50] to multiple layers. The main

contribution of Malik's algorithm is in the stopping criteria for the walk operation. In

the multi-layer case, the walk operation for an edge on layer Z, can always be terminated

when a blockage on the same layer is reached. This strategy is conservative; sometimes the

walk operation can be terminated sooner. In the example shown in Figure 5.20 (assuming

horizontal compaction), R\ and Rz are on layer i,-, and R2 is on layer Lj. If C\z <

Ci2+ W2+C2z then the processing of R\ can terminate at R2. This criterion can be encoded

as a function of I;, Lj, and W2. Such an encoding, which does not require transitive rules,

is proposed in [55] via the use of a three-dimensional array of bit vectors.
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Figure 5.20: Aggressive stopping criteria.

5.5.1 Weaknesses

The D-L algorithm is interesting and innovative from a theoretical perspective.

However, the algorithm does not directly apply to real layouts for the following reasons.

There does not seem to be an easy way to transform a realistic layout into a set

of single-layer problems. Consider an example comprised of two identical MOSFETs from a

simple technology as shown in Figure 5.21. Each MOSFET is represented by two rectangles,

one on POLY and one on NDIF. This example has been further simplified by excluding

terminal merging.
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Figure 5.21: Edge comparisons for two MOSFETs.

Four edge comparisons are necessary to derive the limiting constraint between

these two elements. Two of the comparisons are same-layer comparisons (Cpp and Cdd),

and two are cross-layer comparisons {Cpd and Cdp). The two same-layer comparisons can

be easily modeled via two independent single-layer problems.

The difficulty arises in attempting to model the cross-layer comparisons Cpd and

Cdp. To fit into a single-layer framework, synthetic layers must be derived for each compar

ison. Consider the Cpd case; the POLY rectangle from element A must be represented on a

synthetic layer, say layer POND. Likewise, the NDIF rectangle from B must be represented

on layer POND. Creation of this third layer allows for the comparison to be made. However,

note that the shape on POND differs depeneling on the insteince being moeleleel, as shown

in Figure 5.22. Similarly, in the case of the fourth comparison (C/p), the synthetic shapes

needed to model this rule are the complements of those used to model the Cpd comparison.

The necessary shapes for the C'dp comparison are given in Figure 5.23.

Figure 5.22: Synthetic layer for Cp<i comparison.
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Figure 5.23: Synthetic layer for C'dp comparison.

The synthetic shapes needed for these two cross-layer comparisons cannot be de

termined statically, since they differ as a function of the placement of the MOSFETs. The

synthetic shapes therefore cannot be stored in the MOSFET master. For this scheme to

work, an algorithm would have to be invented for dynamically generating layers like POND,

for all the layout elements that contain POLY or NDIF, as a function of the positions of the

elements.

Addressing terminal merging in a single-layer framework presents more problems.

As shown previously, terminal merging cannot be achieved unless cross-layer rules are sup

pressed. In the example presented in Figure 5.24, the two MOSFETs from Figure 5.21 have

been connected on NDIF. Several rules must be suppressed to achieve full merging; for

example, the POLY-NDIF rule between edges «3 and &i must be suppressed.
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Figure 5.24: Edge suppression for two connected MOSFETs.

The conclusion that the a3 —6i rule can be suppressed follows from the fact that .4

has a terminal on the same layer and in the same net as b\. In other words, this POLY-NDIF

rule is suppressed by considering the NDIF layer. A single-layer algorithm must model cross-
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layer rules via synthetic layers such as POND. Hence, in this example, the edge comparisons
on the POND layer would have to be conditionally suppressed as a function ofconnections
on the NDIF layer. It is inherently cumbersome to propagate information across layers in
a single-layer framework. Accordingly, the extensions necessary for merging would greatly
complicate any algorithm that performs constraint generation through a set ofsingle-layer

subproblems.

Even if the above problems could be efficiently solved, a single-layer model is still

undesirable, due to the amount of data required. Consider the problem of finding the

limiting constraint between two elements, each with shapes on the same three layers. The
number of edge comparisons is quadratic in the number of layers; i.e., nine comparisons

are necessary. Mapping the cross-layer comparisons to synthetic layers still requires nine

comparisons. However, the amount of data is increased in a quadratic way, which could be

a severe limitation for large designs.

The rectangle-based model does not readily accommodate the polygonal shapes

that are prevalent in the BLM cell abstractions: an edge-based model is more appropriate.

The polygons could be sliced into rectangles, but this would have to be done twice, because

the best rectangular decomposition for horizontal constraint generation is the complement

of the best decomposition for vertical constraint generation. The generation of corner

constraints is not addressed in [21], and transitive spacing rules are required. The extension

proposed in [55] does not address these issues either.

5.6 SPARCS Plane-Sweep Algorithm

The SPARCS PPS algorithm, which was first described in [13]. differs markedly

from the other plane-sweep algorithms." The differences are briefly mentioned here, then

described in detail as the chapter progresses.

The PPS algorithm is multi-layer and edge-based, rather than single-layer and/or

rectangle-based. Several of the problems described in the previous subsection are accord

ingly eliminated. The polygonalshapes present in the cell modelare treated as such, without

abstracting them to minimal enclosing rectangles, etc. Hence the full detail of the BLM cell

model is exploited. The algorithm supports terminal merging to an arbitrary degree, unlike

7Actually. the PPS algorithm was developed with knowledge of [50]. hut independent of the work de
scribed in [21].
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Gen(k); thus, layout density is not sacrificed by any artificial limits on mergeability. Also,

the spacing rules may be non-transitive.

Corner constraints, which must be generated to insure correct results, are men

tioned only in passing in [21] and not at all in [55]. The inclusion of corner constraints

and multi-layer merging has a major impact on constraint generation. The combination

of corner constraints and terminal merging requires the introduction of a new event type.

That is, the PPS algorithm employs three event types instead of the two types used in the

other algorithms. The need for a third event type, as well as the need for ordered processing

based on edge-type values, are each described later in this chapter.

5.7 MIN Event Processing

Most of the processing in the PPS algorithm occurs when edges enter the edge

structure; that is, when they become active. The processing at these MIN events depends on

the types and polarities of the edges. For a given edge E, there are three factors to consider:

the direction of walk(£), the characteristics of the edges that E generates constraints to,

and the criteria for terminating the walk operation. In the following subsections, the MIN-

event processing of each edge type is considered in terms of these factors.

5.7.1 PF Edge Processing

As noted in the previous chapter, pf edges are the edges of protection frames that

are not adjacent to connected terminal frames from the same element and on the same

layer. External edges from terminal frames that are not connected are also of type pf.

For all edge types, the direction of the walk operation is away from the interior

of the element. Thus, a max pf edge E is processed by searching the edge structure in the

direction of increasing coordinates using the walk_up() function; the walk-down() function

is used for a min pf edge.

A pf edge generates constraints to opposite-polarity edges only. During the walk

operation, tf and pf edges are examined. There is no need to consider btf edges, because

a pf or tf edge from the same element will always be encountered before the btf edge is

reached. Whenever an appropriate tf or pf edge is reached, a constraint of value S'ij (5,;

is the nominal spacing rule between layers / and j) is generated between that, edge and E.
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Stopping Criteria

In the example given in Figures 5.14-5.18, all geometries are protection frames
on the same layer. The stopping criterion is simple in this (unrealistic) case. The walk-
operation for any edge E can beterminated assoon asanedge Ej which leads to a constraint
is reached. That is, the operation terminates as soon as an opposite-polarity edge from a

different instance is found. This is true because any instances further along in the direction

of the walk operation are constrained by the partner edge(s) of Ej. The partner of edge

E, denoted p(E), is the edge that spans the same interval as £, is from the same shape,

and of opposite polarity. For example, if E is the left-hand edge of a rectangular shape,

p{E) is the right-hand edge. For polygonal shapes p{E) may be a set of edges.

When protection frames are present on multiple layers, walkCE") must continue

past the first opposite-polarity edge on the same layer as E. In Figure 5.25, instance B has

protection frames on three layers, all of which are related to layer L\, the layerof the single

protection frame of instance .4. The limiting constraint may be due to any of the frames

of B; hence walk>up(a2) cannot terminate at edge 6i; it must at least continue past all of

the min edges of B.
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Figure 5.25: Stopping criterion for pf edges.

Several means exist for terminating walk(£) in cases like that given in Figure 5.25.

The simplest method is to search until a same-polarity edge Es on the same layer, but from

a different element, is reached. The walk may terminate at E.H. because any edges further

along in the edge structure that would generate constraints to E will be constrained by Es.

For example, in Figure 5.25. walk_up(rt2) can terminate at edge 6«: any edges related to

edges on L\ that are further to the right of b(i will be constrained by 6fi, and thus it is not

necessary to constrain them with respect to «>.
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A more aggressive strategy is possible if extra information is stored, on a per-edge

basis, regarding the layers that interact with layer L. Let C be the set of all layers that

have design-rule relationships with respect to layer L. Then, the walk can be terminated

according to the above criterion, or as soon as an opposite-polarity edge on each layer in

£ is encountered. Assume that C is comprised of the three layers present in instance B in

Figure 5.25; then, walk(a2) can terminate once edge 63 has been reached.

Realistic situations are not restricted to pf edges; tf and btf edges are present as

well. Fortunately, the simple termination condition applies in general, provided that Es is

required to be a pf edge. It is incorrect to allow a tf or a btf edge to terminate the walk

operation of a pf edge, as exemplified in Figure 5.11. The aggressive strategy described

above could be modified to work when all three edge types are present. However, the simple

strategy is used instead; since some bookkeeping and storage overhead is incurred in the

aggressive method, it is not clear that a net savings would be realized by it.

There is one additional circumstance under which the walk operation of a pf edge

can be terminated; namely, the walk may terminate if an oppoMle-polarity pf edge, on

the same layer, and from the same instance is found. This can occur when a protection

frame has a concave region, or when an instance has more than one protection frame on a

given layer. Figure 5.26 illustrates the first case. The walk.up(a) operation can stop when

b is reached, since any shapes in the notch will have been caught by then and since any

shape further to the right of c will be constrained by c. The second case is illustrated in

Figure 5.27. Edge a2 does not need to be processed beyond edge a3, by the same argument

as the concavitv case.

c

a b

Figure 5.26: Walk termination, instance with notch.
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Figure 5.27: Walk termination, instance with multiple protection frames.
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5.7.2 TF Edge Processing

External terminal-frame edges, i.e., those that are not adjacent to opposite-polarity

protection-frame edges from the same instance and the same layer, are tf edges. Edges of

type tf are processed as follows.

During the walkoperation, a tf edge nominally sees opposite-polarity edges (with

one exception). A tf edge behaves with respect to a pf edge as if it were a pf edge. A tf

edge behaves with respect to a tf edge from a different net just as if both edges were pf

edges. In these two cases, opposite-polarity edges are compared, and a constraint of value

Sij is generated between the two edges when their layers are related. As in the case of pf

edges, same-polarity edges are of no consequence in these two cases. When a tf edge sees

an opposite-polarity tf edge from the same net and on a compatible layer no constmint

is genemteel, which thereby enables terminal merging. Any layer is compatible with itself,

hence two same-net, same-layer terminals are always mergeable.

As described in the previous chapter, tf edges also generate constraints to btf

edges on the same layer, in the same net. and with the same polarity. Hence the walk

operation must also examine same-polarity btf edges when a tf edge is being processed.

A tf-btf pair always generates a constraint of value zero, to limit the merge of the two

elements to the legal region. For convenience, a constraint generated from this relationship

will be referred to as a 6t constraint.
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Stopping Criteria

In cases where there are no btf edges, the stopping criteria for a tf edge are very

similar to those of a pf edge. Assuming that there are no btf edges, the walk operation

typically terminates when a same-polarity pf edge on the same layer is encountered. A tf

edge from a different net does not suffice, because of the merging considerations illustrated

in Figures 4.18 and 4.19. Opposite-polarity edges from the same instance also terminate

the walk operation, as described for pf edges.

If btf edges are present the stopping criteria are more involved. In addition to the

6j constraint that is generated between a tf-btf pair, the tf edge must be made invisible

(hard-masked) with respect to all other edges of the element that the btf belongs to. This

masking operation is necessary if full merging is to occur, as described in Chapter 4.

When the walk operation is performed and such a btf edge is found, the walk

terminates at that point. Furthermore, no other constraints to the element that owns the

btf can be allowed. This scheme is readily implemented. During the walk operation of the

tf edge, the constraints that are generated are tentatively placed in a buffer. If the walk

termination is due to a btf edge, any buffered constraints involving the element that owns

the btf are discarded. All other constraints in the buffer, plus the fir constraint, are then

added to the graph. All of the tentative constraints are valid if the walk terminates due to

a non-btf edge.

5.7.3 BTF Edge Processing

As described in Chapter 4, btf edges are those terminal-frame edges that are

adjacent to opposite-polarity protection-frame edges on the same layer and from the same

instance. The function of a btf edge is to limit the extent of the mergeable region, and to

suppress the processing of the coincident protection-frame edge. It was shown in Chapter 4

why both of these functions are needed to realize complete, and legal, terminal merging.

A btf edge exists only if the terminal it belongs to is connected. As a result, a

terminal-frame edge cannot be recognized as a btf edge in the instance master. Instead,

btf edges are recognized when they are added to the edge structure. When a connected

tf edge is inserted into the edge structure, the other active edges with the same C'ioc are

examined. If an opposite-polarity pf edge from the same instance and on the same layer

is found, the tf edge becomes a btf edge and the pf edge is soft-masked. An analogous
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check is performed when pf edges are inserted. This masking is static in the sense that

it does not occur during the walk operation. The parts of the pf and the tf that do not

overlap are processed normally. For example, if the Cmax coordinateof the masked pf edge

is greater than that of the btf edge, the pf must be un-masked when the btf leaves the

edge structure.8 Figure 5.28 depicts these two operations, which are readily triggered by

the scanline. This example illustrates another advantage of perpendicular scanning. The

protection-frame edge in Figure 5.28 is effectively partitioned into three sub-edges, without

ever actually dividing the edge. If shadow-propagation were used in this example, the edge

would have to be explicitly partitioned into three sub-edges in the shadow data structure.

Each of the three explicit sub-edges would have to be carried along in the shadow until each

became covered by some other edge or edges.

blockage

pf becomes un-masked

pf becomes masked

scan t
terminal

loc

Figure 5.28: Un-masking of a pf edge when btf leaves edge structure.

Unlike tf and pf edges, btf edges generate constraints with respect to same-

polarity edges. The direction of the walk operation for a btf edge is thus opposite to that

of a pf or tf edge. That is, if btf edge E is a min edge walk_up(£*) is performed: if £ is a

max edge walk_down(£) is performed (Figure 5.29).

A btf edge generates constraints to same-polarity, same-net. same-layer tf edges

only: these so-called Sj constraints always have value zero.

Stopping Criterion

Both tf and pf edges do need to be processed once a same-polarity, same-layer pf

edge from a different element is reached: in other words, once the "far side" of an appropriate

8Un-maiiking is described in more detail in Section 5.8.
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Figure 5.29: "Backwards" direction of walk operation for btf edges.

neighboring element is reached. This basic criterion also applies in the btf case. A min btf

edge E is processed by the walk_up() operation; thus an edge on the far side of an element

encountered during the walk must be of opposite polarity, i.e., amax-polarity edge. The edge

E3 that terminates the walk operation is therefore the first same-layer, opposite-polarity pf

edge reached during walk(£). Constraints to elements further along in the walk direction

are captured by Ea, according to the arguments given previously. An example is presented

in Figure 5.30.

walk(£ )

termination

Figure 5.30: Stopping criterion for a btf edge.

In the previous subsection, it is stated that the walk operation for a tf edge can

terminate once a btf edge is reached and the associated bj constraint is generated. It might

be expected that the tf-btf relation is symmetric, and that the walk of a btf edge should

likewise terminate as soon as a same-net, same-layer, same-polarity tf edge is reached. This

is not the case, however.

In the example shown in Figure 5.31. assuming a horizontal compaction step.

walk_down(c2) reaches tf edge b2 first. This leads to a dj constraint between wire B and
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instance C. It is incorrect to terminate walk-down(C2) at this point, because C and A

must be constrained as well. A constraint is needed between A and C because there is no

constraint between A and 2?, due to the fact that A and B are comprised only of tf edges

that are in the same net. The constraint between A and C is a bj constraint, like the B-C

constraint. Hence both a2 and b2 are hard-masked by C2.

NDIF

NDIF-MET1 contacts MET1 wire

Figure 5.31: Many-to-one masking by a btf edge.

The example in Figure 5.31 illustrates an important difference between hard and

soft masking - that is, soft masking is one-to-one, while hard masking can be many-to-one.

Soft masking occurs when a connected tf edge abuts apf edge from the same element and

layer: the pf edge is made invisible, and the tf edge becomes a btf edge. Exactly one edge

of each type is involved; multiple edges are not possible by the definition of the BLM cell

model. Hard masking is many-to-one. in that one btf edge can ma.sk several tf edges as

shown in Figure 5.31. The parts of edges et2 and b2 that overlap edge c2 are constrained to C

by {>t constraints and are otherwise invisible to C (the non-overlapping parts do not behave

in this manner as described previously). Similarly, a given tf edge can simultaneously be

hard-masked by several btf edges.
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5.7.4 Min Event Processing Order

At a MIN event, all edges with Cmm = Ce are activated (added to the edge

structure), then processed by either walk_up() or walk_down() as just described. If the

masking mechanisms were not used, then the newly-activated edges could be processed in

any order. However, since masking is performed, the edges must, be walked in a particular

order to achieve the maximum layout density.

Hard-masking occurs between a tf edge and a btf edge. Let E\t be a tf edge

from element 1, and let £26 be a btf edge from element 2. When E2b hard-masks Eu, a bt

constraint is added between them to prevent elements 1 and 2 from over-merging, then E\t

is made invisible to all other edges of element 2. Element 2 could also have a pf edge E2p

with Cmin = Ce. If walk(£2p) occurs before Eu is hard-masked, then a spurious constraint,

between Eu and E2p could result that artificially increases the separation of elements 1

and 2. This situation is illustrated in Figure 5.32. These undesired constraints are avoided

in the PPS algorithm by processing pf edges last, at MIN events. That is, at each Ce. all

newly-activated tf and btf edges are processed first, after which the new pf edges are

considered.

r
desired zero-valued constraint

\t

spurious E - E constraint

Figure 5.32: Potential spurious constraint if E2p is processed first

Figure 5.33 contains a pseudo-code description of the MIN-event segment of the

PPS algorithm.
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if (event.type == MIN) {
edgePtr = event.firstEdge; /* Q el't; points to an edge */
firstEdgePtr = edgePtr; /* first edge, this event */
eventCoord = edgePtr->coord; /* current event coordinate */

/* Add the new edges */
while (edgePtr != NIL && edgePtr->coord == eventCoord) {

addToEdgeStruct(eventCoord, edgePtr->edge);
edgePtr = edgePtr->next;

}

/* Perform the walk operation on the edges just added */
/* Process connected tfs */

edgePtr = firstEdgePtr;
while (edgePtr != NIL && edgePtr->coord == eventCoord) {

if (edgePtr->edge->netId != UNDEF k& /* ==> connected */
edgePtr->edge->masked == 'N') { /* ==> tf */
walkTF(eventCoord, edgePtr->edge, direction);

>

edgePtr = edgePtr->next;

>

/* Process connected, soft-masked tfs, i.e., btfs */

edgePtr = firstEdgePtr;
while (edgePtr != NIL kk edgePtr->coord == eventCoord) {

if (edgePtr->edge->netId != UNDEF &ft /* ==> connected */
edgePtr->edge->masked == 'S») { /* ==> btf */
walkBTF(eventCoord, edgePtr->edge, direction);

}

edgePtr = edgePtr->next;

}

/* Process pfs (unless masked) */
edgePtr = firstEdgePtr;
while (edgePtr != NIL && edgePtr->coord == eventCoord) {

if (edgePtr->edge->netId == UNDEF) { /* ==> pf */
if (edgePtr->edge->masked == 'N') {

walkPF(eventCoord, edgePtr->edge, direction);
}

}

edgePtr = edgePtr->next;

Figure 5.33: Pseudo-code for MIN event processing.
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5.8 Edge Un-Masking

Both forms of masking (hard and soft) are applied to a pair of edges Ei and

Ej. Masking alters the behavior of the PPS algorithm between Ei and Ej, but only over

the region that their intervals overlap. The edges behave as dictated by their basic types

otherwise. For the example shown in Figure 5.34, edge az is soft-masked by a2 over the

interval (A"2,A"3). However, az behaves like a pf edge for A"i < x < X2 and A'3 < x < X4.

One strength of the PPS algorithm is that an edge such as az can be partitioned as shown

connected terminal

blockage

Figure 5.34: Masking as a function of intersecting interval;

in Figure 5.34 implicitly, at a very low computational cost.

The PPS algorithm, as described so far, functions properly when the two edges

in a masking operation leave the edge structure at the same time. In this section, the

modifications to the algorithm which insure that it operates properly when the edges leave

at different times are described. The inclusion of corner constraints alters the treatment

described here. For clarity of presentation, however, corner constraints will be ignored until

a later section.

If one edge in a masking pair leaves before the other, the edge that remains active

must revert to its previous type. The implication of this is that the remaining edge may

need to be reprocessed. Consider a horizontal compaction iteration on the example shown

in Figure 5.35. Instance A is an NDIF terminal that is connected to instance B. an NMOS

transistor. At event Y'i edge a2 is activated. When walk_up(«2) executes a single constraint

is generated, namely the er constraint between et2 and b2. This constraint correctly models

the spacing requirement between .4 and B, over the interval that ei2 and b2 overlap. All
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events following Yi are MAX events. If no additional processing occurs, the compacted

result given in Figure 5.36 results; this layout violates the POLY-NDIF spacing rule between

A and the upper extension of the gate of B.

Figure 5.35: Connected terminal and transistor, before horizontal compaction.

MlMl

M
to

Mm$$8B¥&S

POLY-NDIF violation

Figure 5.36: Illegal compaction of example in Figure 5.35.

At Y2 edge b2 leaves the edgestructure: hence, from that point, edge ei2 is no longer

hard-masked by b2. As a result the sub-intervals of a2 and bz above Y2 (Figure 5.37) should

be constrained according to the tf-edge criteria described previously. The desired constraint

is pictured in Figure 5.37; with its inclusion a design-rule correct result is achieved. However,

as described thus far. the PPS algorithm has no mechanism to trigger the creation of the

a2-bz constraint, because constraints are only generated at MIN events, and there are no

MIN events following Yi.
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Figure 5.37: Constraint required between a2 and 63 above Y2.

The solution to this problem that has been incorporated in the PPS algorithm

follows from the observation that, in effect, a new eelge is created when an edge such as ei2

is unmasked. Indeed, the constraint in Figure 5.37 is created at Y2 if a two-step procedure

is followed:

1. Unmask ei2; [ei2 becomes an ordinary tf edge)

2. Invoke walk_up(a2). (creates the desired constraint)

This solution is correct for both types of masking. Whenever one edge in a masking pair

leaves the edge structure, the remaining edge is first unmasked, then processed by the walk

operation just as if it were a new edge. If both edges leave the edge structure at the same

Ce, no re-walking is performed.

5.9 Corner Constraints

In the examples presented to this point, constraints have been created between

edges whose intervals overlap. It is also necessary to add constraints between edges whose

intervals elo not overlap, when the intervals are separated by less than a spacing rule in the

direction orthogonal to the compaction direction. If these so-called corner constraints

are not added, violations may occur in the orthogonal direction as shown in Figure 5.38.

All compactors therefore compute corner constraints. Virtual-grid compactors typically

compact horizontally first and vertically second, with corner constraints included only on
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violation

d < S

Before horizontal compaction After compaction

Figure 5.38: Violation due to missing corner constraint.

the second iteration [81,11,73]. This is not adequate when the layout elements are general,

as they are in SPARCS. General elements may have concave regions; if corner constraints

are ignored in either direction, it is possible to create overconstraints by pushing an element

into a concave region that is too small for it.

Corner constraints can be caught by extending the edges of the elements appro

priately. Figure 5.39 shows two simple elements that are on the same layer (Li). In the

vertical direction, A and B are separated by less than Su; hence, in horizontal compaction,

az and 6i must be separated by 5„ to avoid a violation between ei4 and b2. If, for example,

the upper corner of 03 were extended by Su as shown in Figure 5.39. walk-down(61) would

see az and the necessary constraint would be generated. In the single-layer case, corner

constraints from a given edge E to all other edges can be found by either extending E or

by extending all other edges, but not both.9 If all edges were extended on both ends, then

false constraints would be created between edges separated by S'u < d < 25;/. whereas it is

only necessary to add a corner constraint between edges separated by el < Su.

There are a number of alternative algorithms for edge extension. One dynamic

mechanism is to alternatively extend or not extend edges, according to whether they are

being walked or not. However, static methods, where the edge extensions do not need to

be altered during the execution of the algorithm, are simpler and thus more efficient. A

second possibility is to extend all edges by Su/2. The disadvantage of this approach is that

both ends of each edge then require some additional processing.

A static method that extends onlv one end of each edge has been developed for

'The phrase "all edges"* is used loosely here. It is only necessary to extend edges that form convex corners.
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a extension

Figure 5.39: Corner visibility via edge extensions.

the PPS algorithm. The method follows from the observation that corner constraints can

be captured by either extending the upper ends of all edges, or the lower ends of all edges,

but not both. Figure 5.40 shows the first case. In the plane-sweep algorithm, extending the

lower end of an edge corresponds to putting it into the edge structure earlier than normal,

while extending its upper end corresponds to removing it from the edge structure later than

normal.

In the PPS algorithm of SPARCS. the method of extending the tipper end of each

edge has been selected. Each appropriate edge is extended by the corresponding per-layer

maximum spacing rule. The maximium spacing rule for layer /,,. denoted 5/. is the

largest rule involving layer £, (not the overall largest spacing rule). Kxtension by .S"/ guar

antees that any edge Ei that is a candidate for a corner constraint is seen during walk(£;).

However, a constraint, is necessary only if E, and Ej are separated in the orthogonal direction

by Sij or less. As a result, a constraint results if

£'< _ ("mid - ,(>' (5.1)

as shown in Figure 5.41.

Only those edges that form convex corners are extended: it. is not necessary to

extend the edges that meet at concave corners. This criterion applies to each edge-type

individually. The edges that form convex and concave corners are referred to as convex

and concave edges, respectively.

When an edge is extended, its Cmnx coordinate is increased by .*>'/. The original
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extension by 5.
i' I

Figure 5.40: Extension of upper corners only.

Figure 5.41: Constraint needed if C* - C'mid < S;j,
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maximum coordinate, before extension, is denoted CmM. The role of Cmid in the PPS

algorithm is described in the following section.

5.10 The Need for a Third Event Type

It is stated earlier in this chapter that a third event-type is needed, due to the

combination of masking and corner constraints. That statement is justified in this section.

In Section 5.8, the operation of the algorithm at MAX events is described for the

case when an edge 2?,, which masks a second edge Ej, leaves the edge structure before Ej.

Such a case results in Ej being unmasked and then processed by the walk operation as if it

were a newly-activated edge.

Corner constraints are triggered by extending the Cmax coordinates of convex

edges. As a result, it appears that any unmasking due to Ei is deferred until the scanline

is 5/ units beyond the actual upper end of £,. Edge Ej thus remains masked until the end

of the extension of Ei is reached, which may incorrectly suppress constraints and thereby

result in design-rule errors. Figure 5.42 illustrates the problem. At Ce = Y'2 edge b\ is

hard-masked by edge a*. Edge a2 is a convex btf edge, and it ha,s therefore been extended

as shown. (Most of the other edges are extended as well, but their extensions are not drawn

to simplify the figure.) At Y3, edge b\ should become unmasked. It does not, because the

Cmax coordinate of a2 is not reached until Ct = Y$. Since b\ remains (improperly) hard-

masked by a2 between events Y'3 and Y5, the POLY-NDIF constraint between a{ and 61 is

never generated and the resulting layout is not legal.

The layout error occurs because b\ remains masked beyond the interval over which

it intersects a2. the masking edge. The additional operation that is required is to unmask

b\ at Y3, even though the Cmax coordinate of its masking edge is not reached until Y5. This

new operation cannot be invoked unless edge a2 causes the scanline to stop at V3 as well as

Y'i and Y5; that is, a third event-type is needed.

The new event-type is termed the MID type. The edge coordinate that corre

sponds to a MID event is called the mid coordinate of the edge, and is denoted Cm;d- The

value of Cmid is the upper coordinate of the edge before it is extended by 5/. In Section 5.8

it was stated that the unmasking scheme described therein would be modified by the ad

dition of corner constraints. The modification is that all unmasking occurs at MID events,

rather than at MAX events. A third queue is used to schedule MID events.
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extension of a

a2 (btf)

Figure 5.42: Violation due to deferred unmasking.

In principle, because MID events are used for unmasking, they are only needed

for those edges that are extended and that mask other edges. Thus concave edges do not

require MID events because they are not extended. A convex pf edge must be extended, but

it does not mask other edges, unlike tf and btf edges: hence a MID event is not required.

However, for implementation ease, the current version of the PPS algorithm includes a MID

event for all extended edges.

5.11 Event Sequencing

All of the essential operations of the PPS algorithm have now been described. The

only remaining issue is the sequencing of events, when events of more than one type must

be processed at a. particular Ce. The events must be sequenced such that active edges are

not prematurely removed from the edge structure: if they are. necessary constraints might

be omitted.

Constraints are generated during the walk operation, which occurs as a result of

MIN and MID events. During MAX events edges are removed from the edge structure; no

other processing occurs. If MAX events and either MID or MIN events are to be processed at

the same Ce, the MAX events are thus processed last. If MIN and MID events are scheduled

at the same Ce, the MIN events are processed first. In principle. MIN and MID events can
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be processed in either order; this order has been chosen for minor, implementation-related

reasons.

The complete PPS algorithm is summarized in the pseudo-code presented in Fig

ure 5.43.

5.12 Performance of the PPS Algorithm

The complexity of the PPS algorithm is analyzed in this section and compared

with that of the D-L algorithm. Its measured performance is presented over a range of

problem sizes. In addition, it is compared with measured data from other compactors that

use different constraint-generation algorithms.

5.12.1 Complexity

The complexity of the PPS algorithm can be determined by considering the com

plexity of each step in the following decomposition.

• Scanline traversal of the layout

• Insertion into the edge structure

• Walk operation

• Edge masking and unmasking

• Deletion from the edge structure

The appropriate measure of problem size is the number of edges in the layout, which will

be denoted n. An assumption must be made regarding the arrangement of the edges in

the layout. Here, it will be assumed that the model layout, is rectangular with the edges

evenly distributed. A horizontal or vertical line drawn across the layout is thus expected to

intersect y/n edges.

Each edge has a MIN and a MAX event, and perhaps a MID event. The number

of events is at most 3n, which is O(n). Once the event queues are constructed, the scanline

traversal is O(n) as well. The time required to construct the event queues is the time needed

to sort three lists of at most n elements, which is 0(/>log7/). The mergesort algorithm is
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/*

* While (there are events)...

* pmin: next Q el't in MIN event Q

* pmid: next Q el't in MID event Q

* pmax: next Q el't in MAX event Q

*/

while (pmin != NIL II pmid != NIL II pmax != NIL) {
/*

* If pmin->coord == pmax->coord or pmid->coord == pmax->coord,
* then the deletions are done last.

*/

if ((pmin != NIL && pmin->coord <= pmax->coord) II
(pmid != NIL kk pmid->coord <= pmax->coord)) {
/*

* In a tie, do MIN events first

*/

if ((pmin != NIL kk pmid != NIL kk
pmin->coord <= pmid->coord) II pmid == NIL) -C
/*

* Process from the MIN list

*/

processMinEvents( ); /* already described */
} else {

/*

* Process the MID events

*/

eventCoord = pmid->coord;
while (pmid != NIL kk pmid->coord == eventCoord) {

if (pmid->edge->maskedEdge != NIL) {
/* current edge does mask other edges */
unmaskEdges(pmid->edge);

}

pmid = pmid->next;

}

/*

* Newly-visible edges are in type-specific lists.

*/

/* Were hard-masked tfs; now regular tfs */
edge = hardTFList;

while (edge != NIL) {
rewalkHardTF(eventCoord, edge, direction);
edge = edge->next;

}



/* Were btfs; now regular tfs */
edge = BTFList;

while (edge != NIL) {
rewalkBTF(eventCoord, edge, direction);
edge = edge->next;

}

/* Were soft-masked pfs; now regular pfs */
edge = PFList;

while (edge .»= NIL) {
rewalkPF(eventCoord, edge, direction);
edge = edge->next;

}

}

} else {

/*

* MAX event; delete edges from edge structure

*/

eventCoord = pmax->coord;

while (pmax != NIL kk pmax->coord -= eventCoord) {
deleteFromEdgeStruct(pmax->edge);
pmax = pmax->next;

}

Figure 5.43: Pseudo-code for PPS algorithm.

149
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used SPARCS, because it runs in O(nlogn) time regardless of the initial ordering of the

data [69]. All scanline processing can thus be accomplished in O(nlogn) time.

Operations involving the edge structure are affected by the data structures used

in its implementation. The edge structure of the PPS algorithm is implemented via a

doubly-linked list. A doubly-linked list is not the best-performing data structure. It was

selected nevertheless because it is relatively easy to implement and debug. A more efficient

edge-structure implementation could be substituted if desired.

The edge structure is sorted by the C/oc coordinates of the edges. Insertion of a

new edge is bounded by the number of edges already in the list. In the worst case, insertion

is thus 0(y/n) for a single edge, and 0(»1,5) for all edges. Substitution of a tree for the

doubly-linked list would reduce these bounds to O(logn) and O(nlogn), respectively.

The walk operation occurs once for each edge at its MIN event. A given edge can

also be processed again by the walk operation following a MID event. The total number of

walk operations is O(n), since it is bounded by the number of MIN events plus the number

of MID events.

The expected complexity of a single walk operation is difficult to quantify. In

a case comprised of only blockages that are all on the same layer, the walk operation is

0(1) because the first edge encountered satisfies the termination criterion. The inclusion of

terminal merging implies that walk(£) generally visits several edges, hence the complexity

is not 0(1). For the pathological case where all the active edges are same-layer, same-net

tf edges, the walk operation requires 0{\/n) time.

In a representative case walk(£) is expected to visit a number of edges, but much

less than the total number of active edges. This argument leads to the supposition that

an average walk operation should require much less than 0{>/n) time when >//7 edges are

active. The total time for all walk operations should therefore be much less than 0{nl*°)

in a typical case.

Edges are masked upon insertion or during the walk operation. Masking at in

sertion (soft masking) requires that only those edges with the same C'ioc coordinate be

examined: it is thus reasonable to regard the operation as 0( I). Masking during the walk

operation (hard masking) does not require any additional searching over that of the walk

operation itself. One btf edge can hard-mask several tf edges: this information is stored

with the btf edge in a. linear list. Only in highly unusual cases would a btf edge mask

more than one or two tf edges. The number of tf edges masked by a particular btf edge is
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therefore assumed to be bounded by a small constant. By these arguments, and since the

masking information is explicitly stored with the edges involved, an unmasking operation

requires 0(1) time. On a per-edge basis, it is thus reasonable to assume that all masking

operations can be performed in constant time.

Deletion from the edge structure consumes constant time, since the MAX queue

elements contain pointers to the edges to be removed. It follows that the total MAX-event

processing is 0[n).

The overall time-bound of the PPS algorithm is determined by summing the time

needed to execute each of these steps. However, the masking and deletion components can

be ignored since they have linear complexity are thus are not significant compared to the

others. As a result, the worst-case performance is given by

Total time = tscanline + ^insertion + twalk

= ts + ti + tw (5.2)

= nlogw + n1-5*?*1'5

= 0(nur>). (5.3)

Comparison with the D-L Algorithm

The complexity of the most, general version of the D-L algorithm. Gen{k). is given

by

TDL = 0(n(k-r logn))

= n log n + nk. (5.4)

The D-L algorithm's rectangle structure, which corresponds to the edge structure of the PPS

algorithm, is implemented via a balanced binary tree. When this data structure is used.

/,• is O(nlogn). The first term in Equation 5.4 thus corresponds to Ihe first two terms in

Equation 5.2. The second term in Equation 5.4 is due to the walk operation. The value nk

results because merging is limited to k neighboring rectangles in the D-L algorithm. The

PPS algorithm does not limit merging. If the D-L algorithm did allow unlimited merging,

then k would become >/n in the worst case.

The D-L and PPS algorithms thus exhibit the same walk-operation complexity

when the amount of merging is the same. The D-L algorithm is more efficient in the
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insertion-time component, but this is only due to the simpler data structure used in the

PPS algorithm.

5.12.2 Measured Performance

The performanceof the PPS algorithm has been measured on a set of eight similar

examples that range in size from 408elements to 1881 elements. Each example in succession

is about 200 elements larger than the preceding one. The examples were constructed by

replicating a 16-transistor standard cell called cl6_2 from the benchmark session of the

1986 MCNC Internation Workshop on Symbolic Layout and Compaction [1]. The smallest

example has two copies of the cell, and the largest has nine copies. The examples were

compacted flat, and the times were recorded for two spacing iterations, one per direction.

Figure 5.44 shows these measurements; as expected, the PPS algorithm's performance is

bounded below by 0(nlog/?) and above by 0(n15). The times in the graph are in DEC

VAX 8650 CPU-seconds.

Comparison of Measured Performance

The runtime performance of the PPS algorithm cannot be compared to the D-L

algorithm, because measured data is not provided in [21].

A direct comparison with a constraint generator based on shadow propagation is

not available. The shadow-propagation algorithm was implemented in an early phase of

this project. The complications encountered in adapting it to the generic layout model led

to the investigation of alternatives, and finally to the development of the PPS algorithm.

The PPS generator was found to out-perform the shadow-propagation generator and devel

opment of the shadow-propagation generator was terminated. Since the PPS generator was

subsequently refined further, a comparison is not valid.

A crude, indirect comparison can be made using results from the compaction

benchmark session of the 1987 International Conference on Computer Design [9]. Four

compactors were included in the session, including SPARCS. The Symbolics compactor [73]

and the MACS compactor [18] also participated: MACS uses shadow propagation for con

straint generation, and the Symbolics compactor uses the Most. Recent Layers algorithm

[11], which is an implementation of shadow propagation for virtual-grid compaction. Ta

ble 5.1 gives the total runtimes for each program on the two flat examples that all three
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nAL5 vs. PPS vs. nlog(n)
Seconds

Elements x \Qr

0.50 1.00 1.50

Figure 5.44: Measured performance of the PPS algorithm.



programs compacted. Times are in DEC VAX 8650 CPU-seconds.

Program Example Time Example Time

MACS afa 9 afakr 5

SPARCS afa 11 afakr 8

Symbolics afa 5 afakr 5
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Table 5.1: Results from [9].

The times listed in Table 5.1 are totals which include at least, two compaction

iterations, well generation, and CIF generation.10 Simple programs were used in the case of

SPARCS for well generation and CIF generation; these account for between 25 and 30% of

the runtimes quoted above for SPARCS.

The Symbolicscompactor performs two iterations [73], whereas SPARCS performed

5 iterations for the afa example and 3 iterations for the afakr example. On a per-iteration

basis, SPARCS thus performs quite well compared to the Symbolics compactor. The number

of iterations performed by MACS is not stated in [18]: however, it is unlikely that MACS

performed as many iterations as SPARCS. It is reasonable to conclude from this data that

the PPS algorithm, operating on a type-free layout model, compares well with the shadow-

propagation algorithm operating on the standard layout model.

The results from this benchmark exercise are presented in more detail in Chap

ter 9.

5.13 Summary

Efficient constraint generation is a design goal for any layout compactor. The use

of the low-level BLM layout model, and the adoption of an aggressive merging scheme, both

complicate the constraint-generation problem. It is thus especially important to develop a

fast constraint generator in this situation.

To be efficient for a wide variety of layouts, geometric pruning must be employed

in constraint generation. The shadow-propagation algorithm does so. and it can be imple

mented to operate efficiently in an asymptotic sense. However, the data structures that are

required are cumbersome and expensive to manage. The perpendicular-scanning approach

can be implemented to perform geometric pruning at least as well as the shadowing ap-

The CIF language is a textual language for describing physical layouts.
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proach, but with considerably less data-structure overhead. As a result, its performance

is better than shadow propagation (assuming the same layout model), even though its

asymptotic behavior is similar.

The PPS algorithm has been developed to accommodate corner constraints, ter

minal merging, non-transitive rules, and a generic, edge-based layout model. The results

presented in this chapter, as well as results which appear later in this dissertation, indi

cate that the PPS algorithm competes well with other approaches that, use more restrictive,

high-level layout models.



Chapter 6

Constraint Solution

6.1 Introduction

The constraint generator produces a weighted, directed graph, which is a global

model of the layout in the direction of compaction. Graphs are typically denoted G[V. E),

where V is the set of vertices and E is the set of edges. The graph G is analyzed to determine

the new locations for the layout elements. This processing is often called solving the graph.

In this chapter, the terms vertex and node will be used synonymotisly, as will the terms

constraint, edge, and arc.

The graph-solving algorithms used in SPARCS are described in this chapter. A

novel characteristic of these algorithms is their use of event-driven selective-trace tech

niques [14]. Event-driven selective-trace algorithms minimize redundant processing via a

scheduling mechanism whereby an element is processed only if a related, neighboring ele

ment changes state. In this context, element refers to a node in the graph, and a change in

a neighbor's state corresponds to a change in position of a fanin or fanout node. These algo

rithms (as well as prototype implementations of them) were originally suggested by Newton

[58]. Some improvements and enhancements for higher efficiency have been contributed in

the course of this project.

Chapter 6 begins with a problem statement, followed by a description of con

straint types and their effect on algorithms for graph analysis. The SPARCS longest-path,

overconstraint-detection, and slack-distribution algorithms are then described in turn. The

chapter concludes with a summary.

56
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6.2 Problem Definition

The primary objective in layout compaction is to minimize the area of the layout.

One-dimensional compactors minimize area indirectly, by minimizing the horizontal pitch

and vertical pitch in successive spacing iterations. The primary objective in one-dimensional

compaction can therefore be stated as

minimize t —s, (6.1)

where s and t are the coordinates of the source and sink nodes of the constraint graph,

respectively.

The primary objective can be realized by performing a. single-source longest-path

analysis on G [51]; this analysis will bedenoted lpCs) -1 In a horizontal (vertical)compaction

iteration, the longest-path analysis from the source node gives the minimum, i.e., left-most

(bottom-most) legal location for each node with respect to the source node. In general there

are several paths from s to any particular node v. At least one, but usually not all of the

paths limits the separation of 5 and v. A limiting path is a longest or tight path; the

other paths are referred to as slack paths. The edges that form the longest paths define a

so-called longest-path tree. Figure 6.1 illustrates the results of lp(.s) on a simple constraint

graph.

Figure 6.1: Result of lp(.s).

Since the minimum pitch is determined by the longest path(s) from s to t. any

node on a longest s-t path must be located at its minimum position to realize a minimum-

pitch layout. This is not true for the other nodes; they may occupy a range of locations

without increasing the size of the layout. To determine the upper bound on the ranges

of these slack nodes a second longest-path analysis is performed. This analysis is also a

single-source analysis, but it starts from the sink node and is likewise denoted lp(/). For

'The longest-path and shortest-path analyses on a directed graph are duals of one another [74].
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lp(0, the position ofthe sink node is taken to be that determined from lp(s). The output
of lp(0 is the maximum, i.e., right-most (top-most) location ofeach node, subject to the

condition that the pitch p = / - s is minimum.

Nodes which are on a longest s-t path (which is also a longest t-s path) are called

critical nodes. The arcs that constitute the path are called critical arcs, and the entire

path is called a critical path. The minimum and maximum locations of the non-critical

(slack) nodes define the intervals in which they can be located without affecting the pitch of

the layout. This two-longest-path analysis scheme is called the critical-path method, or

CPM. It is widely employed in operations research [48,77,57]. Figure 6.2 depicts the results

of the CPM on the graph of Figure 6.1.

Figure 6.2: Critical path for graph of Figure 6.1.

The critical-path method provides two legal solutions for the set of all slack nodes.

One solution is to locate all of them at their minimum locations, the other is to locate all of

them at their maximum locations. Neither of these choices is likely to produce a desirable

layout, even though the solutions are design-rule correct. As a result, the slack nodes are

placed by optimizing a secondary objective. The secondary objective that is most widely

employed is wire-length minimization [67.24,53,54].

The specific algorithms used in a constraint solver are a function of the constraint

types allowed. However, the overall method always employs the following three-step proce

dure:

1. perform lp(s).

2. perform lp(0,

3. perform slack distribution.

The various types of constraint that are present in G affect the algorithms used in these

analyses. Constraint types are addressed in the following section.



159

6.3 Constraint Types

Conventional compaction constraints are equations of the form x2 —x\ > k, where

x\ and x2 are the locations of elements 1 and 2, respectively, in the direction of compaction.

The quantity k is a separation requirement, which typically arises from a design rule.

In general four different constraint inequalities can be written. Considering a

horizontal compaction, and assuming element 2 [x2) is to the right of element 1 {x\), the

four inequalities are:

X2 — X\ > k

X2 - X\ > -k

X2 — X\ < k —» .Tl - X2 > -k

X2 - Xi < -k —* Xi - X2 > k

(6.2)

(6.3)

(6.4)

(6.5)

where k is a positive integer. The above equations can be visualized by choosing X\ as a

reference and drawing the allowed interval for x2, as shown in Figure 6.3.

V*
x + k

I

Figure 6.3: Four constraint inequalities.

6.2

6.3

6.4

6.5

Equation 6.2 is a positive lower-bound constraint: it limits the minimum spacing

between x2 and X\. Equation 6.4 is a positive upper-bound constraint: it limits the

maximum spacing between x2 and X\. Equation 6.3 is a. negative lower-bound constraint,

meaning that x2 can move to the left.of x\, but for a distance of k units or less only.

Equation 6.5 is a. negative tipper-bound constraint: x2 cannot be any further to the right

than x\ —k. Since Equations 6.2 and 6.3 are essentially the same, the term "lower-bound
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constraint" will be used to refer to them both. The term uupper-bound constraint" will

likewise refer to either Equation 6.4 or Equation 6.5. Most spacing-rule requirements map

to lower-bound constraints. Upper-bound constraints limit maximum separations; they are

used, for example, to implement sliding terminals. A lower-bound/upper-bound pair of the

same value implements an equality or fixed constraint.

6.3.1 Notation

A typical convention for drawing a constraint is to assume the greater-than-or-

equal-to relation (>), and to associate the head of the arc with the first variable in the

equation and the tail with the second.2 Under this convention, a lower-bound constraint

is termed a forward arc and an upper-bound constraint is a backward or back arc (Fig

ure 6.4).

Figure 6.4: Forward and backward arcs.

For convenience, an alternate notation which is equivalent to this one will be used

at times in this dissertation. In the alternate notation a single arc is used to denote both

a lower-bound and an upper-bound constraint. Two weights are associated with an arc in

the format L/U; L is interpreted as the lower-bound separation and /' is interpreted as

the upper-bound separation. If L = -oc (U = oo) there is no lower-bound (upper-bound)

constraint. The graph from Figure 6.4 is redrawn in Figure 6.5 to illustrate the alternate

notation. The algorithms presented later in this chapter are described in terms of this

alternate notation.

Regardless of the notation used, the direction of an arc has nothing to do with

the compaction direction. The direction of an arc specifies the relative placement of its

2This convention has. been used thus far in this dissertation.
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• /

10/20

Figure 6.5: Graph of Figure 6.4 in the alternate notation.

head and tail nodes only. That is, for a horizontal constraint graph, the arc directions

do not distinguish "compaction to the left" from ^compaction to the right*". In fact, a

compaction direction in this sense is meaningless. The critical path is independent of

whether compaction is leftward or rightward. Likewise, a well-behaved algorithm for slack

distribution does not have a direction-dependent behavior.

6.4 Constraint Types and Problem Structure

The structure of a constraint graph is a function of the types of constraints that

are allowed. Early compactors used lower-bound constraints only, whereas more recent

programs use upper-bound as well as lower-bound constraints. The graph structures that

follow from the inclusion of just lower-bound constraints, and from the inclusion of lower-

bound plus upper-bound constraints, are described in this section.

6.4.1 Acyclic Problems

Constraint graphs consisting only of lower-bound constraints must be acyclic. This

is easy to show; assume that such a graph does have a cycle, say from x\ to .r2 to .i'i as

depicted in Figure 6.6. This situation is clearly contradictory, because it indicates that x2

is simultaneously to the left and to the right of x\.

Assuming horizontal compaction, longest-path (LP) algorithms for acyclic prob

lems operate by "pushing" nodes to the right; the location of each node is computed from

the locations of its predecessors. In the example in Figure 6.7. # is initially at 0 and a.

b. and t are initially at -oo. If node a is processed first, it is pushed rightward to a new

location given by /„ = MAX(-oc.O + 2) = 2. If node b is then processed, its new location is
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Figure 6.6: Illegal cycle of lower-bound constraints.

given by pushing it to k = MAX(-oo,2 + 4,0-h 10) = 10. Node / is pushed to 12 in a similar

manner.

•*-• /

Figure 6.7: Illustration of "pushing" by lower-bound constraints.

A longest-path analysis can be performed in linear time on an acyclic constraint

graph. In this case, it is possible to define processing orders such that each edge is visited

only once. For example, a breadth-first traversal visits each edge one time, and each node

is visited (updated) one time for each of its fanin edges. The graph in Figure 6.8, which is

similar to that of Figure 6.7 but with different constraint values, provides an illustration.

One breadth-first order is (.s,a), (s.b). {a.b), {bj). Assuming the position of s is 0 and the

initial positions of all other nodes are -oc. the analysis proceeds as shown in Table 6.1.

•*-• t

Figure 6.8: Graph comprised of lower-bound constraints.

The best possible processing order would visit each node and each edge exactly



Edge Action

(s, a) a moves to 2

(s.b) 6 moves to 2

(a,b) 6 moves to 5

(b,t) t moves to 7
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Table 6.1: Breadth-first longest-path for graph in Figure 6.S.

once. An ordering with this property does exist for acyclic graphs. This ordering will be

called level order. The level of each node v is denned to be the length of the longest s-v

path in edges.3 Level numbers for the graph of Figure 6.8 are shown in Figure 6.9. The

longest path is computed by processing the nodes in level order. When node v is processed,

its fanin edges are visited to compute the new location for v. That is, for an edge (u, v), the

position of u, which is already known, along with the value of the ( m, v) constraint, is used

to compute the position of v. If v has multiple fanins. the one which maximizes i»'s position

determines the final position of v. Table 6.2 shows the progression of this processing order

for the graph of Figure 6.9. Each edge is visited once and each node's position is updated

once, as desired. This method requires a linear-time algorithm for computing the level

numbers. An algorithm for this task appears later in this chapter.

Figure 6.9: Level numbers for the graph in Figure 6.8.

Node Action Limited by

a a moves to 2 .s

b b moves to 5 a

t / moves to 7 b

Table 6.2: Level-order longest-path for graph in Figure 6.9.

^This is not. the same as the level order defined in [7-1]: that ordering nnmlxrs nodes according to the
shortest path, in edges, from the source.
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6.4.2 Cyclic Problems

Both upper-bound and lower-bound constraints are necessary in a practical com

pactor. When upper-bound and lower-bound constraints are present, cyclic constraint

graphs result.4 For example, the addition of upper-bound constraint (b.a) to the graph

of Figure 6.7 leads to a graph with one cycle as shown in Figure 6.10.

2

Figure 6.10: Cycle due to adding an upper-bound constraint.

When an upper-bound constraint is present, its effect is to ••pull" (rather than

push) the node at its head to the right. If an upper-bound constraint pulls node v to a

new position further to the right, the positions of all of the descendants of v are potentially

affected. Assuming that nodes a and 6 have been processed as described in the preceding

subsection, the upper-bound constraint from b to a in Figure 6.10 must be processed next.

The result is that the location of a becomes /„ = MAX(2.10 - 5) = 5; that is, the (6, a)

constraint has pulled a from 2 to 5. Since a moved, its descendants b and t must be

reprocessed to insure that they still satisfy the constraints, which they do in this example.

In the worst case, however,all descendants might moveto new positions. Hence the back-arc

processing should be scheduled to minimize reprocessing as much as possible.

The need for cyclic compaction graphs leads to two complications:

1. Linear-time longest-path analysis is not possible.

2. Unsolvable problems can occur.

A total ordering of the nodes that constitute a cycle does not exist. Hence processing a

cyclic graph implies that some backtracking is inevitable, which in turn means that a linear-

time LP algorithm does not exist. A graph with a. cycle of net positive weight, such as cycle

(s.a). (a.b). (b,s) of weight 2 + 4 - 3 = 3 in Figure 6.11. does not have a finite longest

4Graphs with both types of constraints are sometimes called mixed constraint graphs.
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path, because the length of the longest path can be made arbitrarily large by repeatedly

traversing the positive cycle. As a result the longest-path problem is not solvable when one

or more positive cycles exist.

Figure 6.11: Graph with a positive cycle.

Positive cycles arise due to illegal inconsistencies in the constraints. This can be

seen by examining the constraint equations for such a cycle. Referring to the graph in

Figure 6.11, and observing that the longest forward path from s to b is the (s.a), (a,b)

path, the constraint equations that relate s and b are

6,

3.

(6.6)

(6.7)

It is clear that b cannot simultaneously be 6* or more and 3 or fewer units to the right oi s.

Therefore the constraints do not correspond to a realizable placement of the elements.

The important considerations in processing cyclic constraint graphs are thus to

determine an efficient processing order for the longest-path calculation, i.e.. an order that

minimizes backtracking, and to provide a means for detecting problems with positive cycles,

or overconstraints. Each of these considerations is addressed in this chapter.

6.5 Previous Work in Cyclic Longest-Path Analysis

The longest-path problem is well-known and well-studied. However, compaction

constraint graphs tend to have a particular structure which can be exploited to develop an

efficient longest-path algorithm specifically for compaction applications. Previous work in

longest-path algorithms for cyclic compaction graphs is described in this section.

Bales proposed an event-driven algorithm for the longest-path problem in 1982 [5].

A queue is used as the scheduler for the vertices to be processed. Initially all vertices are
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scheduled. When a vertex v is processed, its position is determined by the positions of its

fanins, which can be either lower-bound or upper-bound constraints. If v moves to a new

location, its fanins and fanouts are scheduled for processing. Fanin/faiiout w is scheduled

for the current iteration if it is not already scheduled. It is scheduled for the next iteration

if it was previously scheduled in the current iteration. It is not scheduled if it is already

scheduled, but not yet processed, for the current iteration. The method converges in 0( V*3)

time in 0(V) iterations in the worst case, but its average time-performance is expected to

be 0{V15) [5].

Liao and Wong proposed an algorithm for mixed-constraint longest-path analysis

in 1983 [51]. The algorithm performs an alternating sequence of "push" and "pulP oper

ations on the graph. In a push operation only lower-bound constraints are processed, and

in a pull operation only upper-bound constraints are processed. The edges are partitioned

into two sets, Ej and Ef,, according to whether they are forward (lower-bound) or back

(upper-bound) edges, respectively. Let Gj = (V, Ej) be the graph induced by the forward

edges. The push step processes Gj only; the push algorithm is essentially a linear-time

longest-path method for acyclic graphs. Since back edges are ignored in the push step,

some of the constraints in E& might not be satisfied. The pull step corrects these viola

tions by moving the head vertex of any unsatisfied back edge by an amount large enough

to correct the violation. However, the pull step might create new violations among the

constraints in Ej. which means that another push step must be performed to correct them.

The push and pull steps are alternated until all constraints are satisfied. The algorithm

has a worst-case complexity of 0((Eb + i)E); convergence is obtained in at most Ef, + 1

iterations, where an iteration is comprised of one push and one pull step, unless there is a

positive cycle in the graph [.">!].

Loet al. proposed an event-driven variant of the Liao and Wong algorithm in 1987

[54]. This method retains the same time bound as the original algorithm, but it achieves

higher efficiency via the use of event-driven processing in the push operation.

6.5.1 Weaknesses

The above algorithms have desirable properties, but t hey nevertheless can be im

proved upon. The method proposed by Bales uses event-driven processing, which is ben

eficial. However, the processing order is not particularly efficient. The algorithm of Liao
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and Wong, and likewise that of Lo et al., can also be improved in the area of the processing

order employed. This point is illustrated in the following section.

6.6 Rationale for SPARCS Longest-Path Algorithm

As stated previously, the longest-path (LP) problem cannot be solved in linear time

on a cyclic constraint graph, because the existence of cycles implies that the longest-path

algorithm must backtrack. A key objective in formulating an LP algorithm in this situation

is thus to choose an efficient backtracking scheme. The backtracking scheme, or processing

order, should be selected according to the structure of the graphs that will be encountered.

6.6.1 Structure of Constraint Cycles

A cycle includes at least one lower-bound constraint (forward arc) and at least

one upper-bound constraint (back arc). Lower-bound constraints arise from design-rule

requirements, whereas upper-bound constraints arise from sliding terminals and from user

constraints. The number of lower-bound constraints is thus much larger than the num

ber of upper-bound constraints in most cases. The number of user constraints is usually

small; hence most of the upper-bound constraints are due to sliding terminals. The upper-

bound/lower-bound pair that implements a sliding terminal results in a 2-cycle.r> The

conclusion that follows from these observations is that most ejf the eyries in a typical con

straint graph are 2-cycles. This conclusion has been used to choose t he processing order for

the longest-path algorithm used in SPARCS, which is described later in this chapter.

6.6.2 Backtracking in the Push-Pull Algorithm

The push-pull algorithm of [51] exploits the fact that the number of lower-bound

constraints is typically greater than the number of upper-bound constraints. However, it.

does not take advantage of the observation that most cycles are short, where "short" refers

to the number of edges in the cycle. The graph in Figure 6.12 contains a 2-cycle. If the

push-pull algorithm is used to solve this graph, then two push passes and two pull passes

are required. During the first push pass node a is moved to 2. which is not its final, legal

position. However, its descendants c. el. and / are processed anyway, and they are positioned

'A fc-cycle is a directed cycle comprised of k edges.
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with respect to the current, illegal location of a. During the first pull pass, node a moves to

5, which invaUdates the positions of nodes c, d, and t computed in the first push pass. The

second push pass corrects the locations of c, d, and t due to the new position of a. The

final pull pass does not change any node locations, which terminates the algorithm. The

computation is summarized in Table 6.3. The total number of node-processing events is

12; each push operation processes 5 nodes, and each pull operation processes 1 node. The

processing of c, d, and t in the first push operation is not useful, since it is based upon an

illegal, intermediate position of node a. If this processing were eliminated, the number of

node-processing events would be decreased by 25%.

Figure 6.12: Graph with 2-cycle.

Node Initial Push.l Pull.l Push.2 Pull.2

s 0 0" 0" 0* 0*

a — OG 2 5* 5" O

b — •00 10* 10* 10* 10*

c —00 4 4 7"
— at

t

el — 00 6 6 9* 0*

t — 00 10 10 ir 11"

• /

(Starred entries are legal.)

Table 6.3: Push-pull algorithm on graph of Figure 6.12.

It is apparent from this example that a given node should not be processed while

any of its ancestors are in illegal positions.

6.6.3 Proposed Backtracking Order

Let v be the node at the head of a back arc that is on a longest path. The

the motivation for the proposed backtracking order is to minimize the pmcessing of the
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descendants of v while v is in an illegal position. If the cycle induced by a back-arc is

short, then an efficient backtracking scheme that satisfies this goal is to process the back-

arc immediately, as it is encountered, rather than after all the arcs in Ej are processed.

The effect of this ordering is that the influence of the back arc on u's position is accounted

for before its descendants are reached.

In the proposed method, the nodes are processed in level order. The level numbers

are computed by ignoring the back arcs; since the remaining arcs are forward arcs, the

graph induced by them is acyclic and the level ordering exists. Furthermore, the algorithm

is event-driven, meaning that a node is scheduled for processing only if one or more of the

nodes adjacent to it changes position.

The graph in Figure 6.12 is redrawn in Figure 6.13, with the level numbers in

cluded, to illustrate the method. As in the preceding examples, the position of s is ini

tialized to 0 and all other nodes are initialized to -oo. The execution of the algorithm is

summarized in Table 6.4.

This graph has a single node (a) with level equal to 1, and two nodes with level

equal to 2, namely nodes 6 and c. Node a is therefore processed first, which results in its

location being updated to 2 (Step 1). Since a moved its fanouts b and c are scheduled for

processing. Either 6 or c might be processed next, because their levels are the same. In the

worst case c is processed before 6; assuming this ordering, c moves to 4 and causes d to be

scheduled (Step 2). Of the two scheduled nodes, b and d, b has a lower level number so it

is processed next. The result is that b moves to lb = MAX(-oo.2 + 4.0 + 10) = 10 (Step 3).

The movement of b results in the scheduling of its fanouts. Node 6 thus schedules

t and a; a is scheduled due to the back arc (b.a).- Node a has the lowest level number

of the scheduled nodes; hence it is immediately re-processed, which causes its location to

be changed to 5 (Step 4). Note that a is now in its final location. Nodes b and c are

re-scheduled as a result of the movement of a as indicated in Table 6.1.

The location of 6 does not change when it is processed in Step o. thus the fanouts

of b are not scheduled.6 Node c then moves to 7, which would have scheduled d if it weren't

already scheduled. The next node processed is el. If node d were processed before Step 7

that computation would be useless, because el's fanin node c did not reach its legal location

until Step 6. Node / is processed in Step 8, terminating the algorithm. As in the case of

0Either b or c can be processed here, with no difference in the total miinher of node-processing events.
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node d, earlier processing of t would be based upon illegal locations of one or more of its

ancestors, and hence that processing would be of no use.

Figure 6.13: Graph of Figure 6.12 with level numbers.

Prev. New Nodes Sched.

Step Node Loc. Loc. Sched. Queue

1 a —oo 2 b,c c,d

2 c -00 4 d b,d

3 b -00 10* t,a a.el.t

4 a 2 5* b,c b, c, el, t

5 b 10* 10" — c. el. t

6 c 4 7* (d) el,t

7 d — 00 9* (t) t

8 t —00 11* — —

(Starred entries are legal.)

(Parenthetical entries are already scheduled.)

Table 6.4: Proposed algorithm on graph of Figure 6.13.

The total number of node-processing events is 8 for this example, which is 33%

less than that achieved by the push-pull algorithm. If bwere processed in Step 2 instead of

c, the number of events would be 7 which is 42%. less. This savings in computation results

from choosing a backtracking order that is suited to the expected structure of the constraint

graphs.

A formal description of the SPARCS LP algorithm appears in the following section.
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6.7 SPARCS Longest-Path Algorithm

As described in the preceding section, a key characteristic of the SPARCS longest-

path algorithm is that nodes are processed in level order. The level-number computation is

the first operation performed in the SPARCS LP algorithm.

6.7.1 Leveling

The back arcs (Ei,) are ignored in the level-number computation; hence the input

to leveling is Gj(V,Ej). By the argument given in Section 6.4.1, Gj must be acyclic. If it

is not, an error is reported to the user.

The level numbers are determined via the modified breadth-first search algorithm

given in Figure 6.14. Each vertex contains a field denoted "inDegree1* that is initiaUzed to

its indegree in Gj. For a given vertex v, inDegree is decremented by one whenever one of

its fanin edges e € Ej is visited. When inDegree reaches 0, v is placed at the end of the

scheduling queue and its level is set to be one greater than the level of the current vertex

(which is a fanin of v). This modification insures that vertices are not processed until all

of their fanin vertices have been processed.

It is easy to see that level () executes in linear time. Each node is scheduled

exactly once, namely when its inDegree value reaches 0. Thus there are a total of |V'|

nodes processed. Processing node v requires one pass through its fanout edges, hence each

edge is visited exactly one time. The overall runtime is therefore 0(V + £"/). but since

\E/\ > \V\ in most cases, level() can be regarded as O(Ej).

6.7.2 Longest-Path

A pseudo-code description of the event-driven longest-path algorithm used in

SPARCS is presented in Figure 6.15. This algorithm is executed after the level-number

computation of the preceding subsection. The input to longestPathO is the entire (cyclic)

graph G(V.E). The pseudo-code in Figure 6.15 solves the single-source problem from the

source node of G (i.e., lp(.s)): a similar routine is used to solve the single-source problem in

the reverse direction, starting from the sink node of 6'. This routine computes the minimum

legal location for v 6 V: the value is stored in the absLower field of r. The pseudo-code

assumes the alternate notation for G from Section 6.3.1.



level()

struct node *pn, *pfoN;

struct edge *pfoE;

int curLevel;

extern int enQueueO;

/* current node, fanout node */

/* fanout edge */
/* level of current node */

/* adds node to queue */
extern struct node *deQueue(); /* gets next node from queue */

SourceNode->level = 0;

enQueue(SourceNode);

/* assign source level of 0
/* schedule source to start

*/

*/

while ((pn=deQueue()) != NIL) {
curLevel = pn->level;

/*

Scan the fanout nodes of the current node. Each

fanout*s inDegree is decremented. When the inDegree
reaches 0, all fanins of pfoN have been processed,
so pfoN is assigned a level and put in the queue.

*

*

*/

for (pfoE = pn->fanout; pfoE != NIL;
pfoN a* pfoE->toNode;

pfoN->inDegree—;

if (pfoN->inDegree == 0) {
pfoN->level = curLevel + 1;

enQueue(pfoN);

>

pfoE = pfoE->next) {

/*

* Un-leveled node ==> directed cycle(s) are present.
*/

for (pn=NodeList; pn != NIL; pn=pn->list) {
if (pn->level == UNDEF) {

printf("level: illegal graph; cycle(s) present.\n");
return(ERROR);

}

}

Figure 6.14: Algorithm for level-number computation.
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longestPathO

{
struct node *pn; /* current node */
struct branch *pb;

extern struct node *heapDeleteMin();
extern void heapInsertO;
int newlb, newloc, maxSched;

int schedCount = 0;

maxSched = NumNodes*NumUppers;

SourceNode->absLower =0;

for (pb=SourceNode->fanout; pb != NULL; pb=pb->nextfo) {
heapInsert(pb->toNode); /* insert, mark as sched. */
schedCount++;

}

while ((pn=heapDeleteMin()) != NIL kk schedCount < maxSched) {
newlb = newub = -INFINITY;

for (pb=pn->fanin; pb != NIL; pb = pb->nextfi) {
if (pb->lower > -INFINITY) {

newlb = max(newlb, pb->fromNode->absLower+pb->lower);

}

>

for (pb=pn->fanout; pb != NIL; pb=pb->nextfo) {
if (pb->upper < INFINITY) {

newub = max(newub, pb->toNode->absLower-pb->upper);

}

>

newloc = max(pn->absLower, max(newlb, newub));
if (newloc != pn->absLower) {

pn->absLower = newloc;

for (pb=pn->fanin; pb != NIL; pb=pb->nextfi) {
if (pb->upper < INFINITY) {

if (pb->fromNode->sched == NIL(struct node)) {
heapInsert(pb->froraNode);
schedCount++;

}

}

}



for (pb=pn->fanout; pb != NIL; pb=pb->nextfo) {
if (pb->lower > -INFINITY) {

if (pb->toNode->sched == NIL(struct node)) {
heapInsert(pb->toNode);
schedCount++;

>

if (schedCount >= maxSched) {

printf("longestPath: overconstraint on forward pass\n");
printf(" current node: '/.s (%d)\n"f pn->name, pn->level);
printf(" sched. nodes: ");
heapNodePrintO;
exit(O);

return(OK);
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Figure 6.15: SPARCS longest-path algorithm.

As described in Section 6.6. longestPathO processes the scheduled nodes in level

order. Because of this, the scheduler must return the node of lowest level from the set of

scheduled nodes. A simple FIFO queue thus does not suffice as a scheduler. Instead, the

appropriate data structure for the scheduler is a heap (also called a priority queue). A heap

is a sorted data structure that supports, at least, the following two operations:

1. heaplnsert(r) - add element v with key k to the heap.

2. heapDelMinO - remove and return the element from the heap with the

smallest key.

An efficient heap implementation is an important component of an efficient implementation

of the SPARCS longest-path algorithm.

The scheduler used in SPARCS is a r/-heap, meaning that it is implemented via a

complete, heap-ordered r/-tree. A heap-ordered tree has the property that, for a node x and

its parent p(x). the key of the element in p(x) is less than or equal to the key of the element
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in x. This property guarantees that the element of minimum key is always stored in the

root of the tree. In a complete d-tree, each node has at most d children and new nodes

are added in breadth-first order. Johnson invented the d-heap in 1975 [34]. The actual

implementation used in SPARCS is similar to that described in [74].

Locating the element of minimum key requires O(l) time, but its deletion means

that heap-order must be restored to the remaining nodes in the tree. As a result, when

a complete d-tree is used, the heapDelMinO operation runs in O(d\ogdn) time, and the

heapInsertO operation takes 0(logdn) time [74]. If a. total of m heap operations are

performed, the overall runtime is thus 0(md logdn). The parameter el must be selected

experimentally, because the constant factors that multiply the runtimes for the heap oper

ations must be accounted for. The best value for d has been found to be three.

Performance

Assuming the alternate notation described in Section 6.3.1. a particular fanin

vertex 17; of vertex v is scheduled only if v changes and there is an upper-bound constraint

between them. A fanout vertex vj0 of vertex v is scheduled only if r changes and there is

a lower-bound constraint between them. If there are no upper-bound constraints then at

most |V| vertices are scheduled. Let the number of upper-bound constraints be A*. Each

upper-bound constraint causes the vertex at its head to to be re-processed at most once,

otherwise the graph has a cycle of net positive weight. In the worst case, each re-processing

of a vertex can cause V" other vertices to be scheduled. The overall worst-case complexity

for longestPathO is therefore O(VK). In practical cases the worst-case behavior of this

algorithm is seldom encountered, because most backtracking is local in nature.

Once the lower limit absLower for each vertex has been established, the algorithm

is executed in the reverse direction starting at the sink node to find the upper-limit value

absUpper for each node. If absLower = absUpper then r is a critical node.

Table 6.5 contains runtimes in CPU-seconds for several examples. The times in

clude all processing, that is. leveling, the forward and reverse LP analyses, and slack distri

bution (Section 6.9). The measurements were performed on a DEC VAX 11/785 running

Berkelev Unix.



Vertices Constraints Time

15

101

201

226

2,024

40,200

0.05

0.29

5.15
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Table 6.5: Execution times for the longest-path algorithm.

6.8 Positive Cycles

As described in Section 6.4.2, a graph with one or more overconstraints, i.e., di

rected cycles of net weight greater than zero, is inconsistent and unsolvable. Because a

directed cycle must contain at least one forward arc and at least one back arc, such a cycle

is sometimes referred to as a mixed positive cycle.

The existence of positive cycles can be detected in the time required to solve

a legal graph [5]. However, this information is of little use since the vertices and edges

which comprise the positive cycles are not enumerated. In such situations, the spacing

program should detect the cycles and report all vertices and edges involved in the limiting

lower-bound path and in the limiting upper-bound path from the left-most vertex to the

right-most vertex of each cycle.

The subsections below contain descriptions of previous work in overconstraint de

tection, and a description of the overconstraint-detection algorithm used in SPARCS. Over-

constraint detection is performed if longestPath0 is unable to converge in the maximum

number of iterations.

6.8.1 Previous Work

Some compactors determine the existence of overconstraints by iteration count,

but give no indication as to which particular constraints are inconsistent. The program

reported in [20] is able to detect an overconstraint. but only if it contains a single upper-

bound constraint. The program described in [39] copes with overconstraints by consecutively

ignoring constraints until the graph can be solved. Unfortunately, this results in an illegal

layout.

An efficient algorithm for solving this problem is proposed by Tsakalidis in [78]; this

method detects a single overconstrained cycle in O(V.E) time. An algorithm with similar

properties is alluded to in [71]. but the detailed description is in an internal memorandum
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and is therefore not available [75].

6.8.2 SPARCS Algorithm

The algorithm used in SPARCS and described here operates on a leveled graph and

uses the event-driven scheduling mechanism of longestPathO. As mentioned previously,

levelO detects all cycles comprised strictly of lower-bound and upper-bound constraints;

thus only mixed cycles are of concern following leveling.

The routine overconO in Figures 6.16 and 6.17 detects all left-most and right

most node pairs in the graph that are involved in an overconstraint. For each pair, the

worst-case paths, i.e., the largest lower-bound path and smallest upper-bound path, are

reported. If there are a number of overconstraints between a given node pair, the paths

causing the worst overconstraint are reported.

overconO

i
struct node *pn; /* ptr to current node */
struct edge *pe; /* ptr to current edge */
struct label *pl; /* ptr to current label */
int numOvers = 0;

extern struct node *heapDeleteMin();
extern void heapInsertO;

/* schedule nodes w/ a lower and an upper-bound fanout */
for (pn = NodeList; pn != NULL; pn = pn->list) {

if (pn->upperOutFlag && pn->lowerOutFlag) {
pi = createLabel(pn);
pl->origin = pn; /* label's origin node */
pl->lower - -INFINITY; /* initial path bound */
pl->upper = INFINITY; /* initial path bound */
pi->active = TRUE;

pn->labels = pi;

pn->labelCnt = 1;

heaplnsert(pn); /* schedule this node */



}

while ((pn = heapDeleteMinO) != NIL) {
/*

* Process the active labels of the current node

*/
for (pi = pn->labels; pi != NIL; pi = pl->next) {

if (pl->origin->labelCnt > 2 II pl->origin == pn) i
if (pl->active == TRUE) i

/* update/propagate to fanouts */
for (pe=pn->fanout; pe!=NIL; pe=pe->nextfo) i

if (pe->toNode != pl->origin) {
if (procFanoutLabels(pe, pn, pi)) -C

heapInsert(pe->toNode);

}

}

}
/* update/propagate to fanins */
for (pe=pn->fanin; pe!=NIL; pe=pe->nextfi) {

if (pe->fromNode != pl->origin) {
if (procFaninLabels(pe, pn, pi)) {

heapInsert(pe->fromNode);

}

>

}
/* deactivate unnecessary labels */

if (pl->origin != pn) {
discardLabel(pl);

}
/* check for overconstraint at this node */

if (pl->lower > pl->upper) {
numOvers++;

pn->overcon = TRUE;
pl->origin->overcon = TRUE;

>

}

}

if (numOvers != 0) {

printOverconPathsO; /* trace cycles via labels */
>

Figure 6.16: Main routine of overconstraint-detection algorithm.
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/*

* subroutine to update/propagate fanout labels
*/

procFanoutLabels(pe, porigin, pi)
struct edge *pe; /* fanout edge to process */
struct node *porigin; /* origin of labels */
struct label *pl; /* current label */
•C

struct label *pfoLbl, *pnewLbl;

int found, moved, newLower, newUpper;

int curUpper, curLower;

struct node *pfoN;

moved = FALSE;

found = FALSE;

pfoN = pe->toNode;

curUpper = pe->upper;

curLower = pe->lower;

pfoLbl = pfoN->labels;

for (; pfoLbl != NIL; pfoLbl = pfoLbl->next) {
if (pfoLbl->origin == pl->origin) {

/* Already on list so merge constraints */
newLower = max(pl->lower+curLower, -INFINITY);
if (newLower > pfoLbl->lower) {

pfoLbl->lower = newLower;

moved = TRUE;

}
newUpper = min(pl->upper+curUpper, INFINITY);
if (newUpper < pfoLbl->upper) {

pfoLbl->upper = newUpper;

moved = TRUE;

}

if (moved ft& pfoLbl->active == FALSE) {
pfoLbl->active = TRUE;

pfoLbl->origin->labelCnt++;

}

found = TRUE;
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if (found » FALSE) {
if (pl->origin->labelCnt > 2 11 pl->origin == porigin) {

/* must add a new label to list at fanout node */
pnewLbl = createLabel(pfoN);
pnewLbl->origin = pl->origin;
pnewLbl->lower= max(pl->lower + curLower, -INFINITY);
pnewLbl->upper= min(pl->upper + curUpper, INFINITY);
pnewLbl->active « TRUE;
pl->origin->labelCnt++;
moved = TRUE;

>

}
return(moved);
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Figure 6.17: procFanoutLabelsO subroutine of overconstraint algorithm.

Under the alternate graph notation presented in Section 6.3.1, all potential over-

constraints must contain at least one node that has at least one fanout edge with an upper

bound constraint and at least one fanout edge that has a lower-bound constraint. This

follows from the fact that non-mixed cycles have already been detected. The overconO

algorithm begins by scheduling these vertices.

The algorithm uses a labeling scheme to record positive cycles. A label is a small

data structure that propagates through the graph from node to node. Each node has a set

of labels containing its minimum and maximum allowable positions as determined up to

the current point in time, as well as the path that has been traversed in computing those

positions. When a node is processed its minimum and maximum positions are updated. If

the processing of the current, node ve causes the bounds on its position to change, its fanout

nodes are scheduled for later processing. The label of each fanout node vj is augmented In-

appending a new label to include the new bounds on its position, and to include the fact

that vc is in the path traversed to reach vj. Each label also has an entry that denotes the

node where the label originated, which in this case is vc.

As each node is processed its labels are scanned to check for two or more labels

that originated at a common node. Say for example that two such labels are detected. Each

label represents a different path from the common node to the current node. The minimum
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and maximum legal positions for the current node for each of the two paths are known and

are compared for consistency. If the minimum position from one path is greater than the

maximum position from the other an overconstraint exists. The two relevant paths can

be enumerated, since they are stored in the labels. If the paths are consistent there is no

overconstraint and the two labels are discarded.

The procFaninLabels () routine is similar to procFanoutLabelsO of Figure 6.17.

Performance

The algorithm presented herein has worst-case time and memory complexities of

0(VoE), where Vq is the number of vertices with at least one upper-bound fanout edge and

one lower-bound fanout edge. In most practical situations, this number is small relative

to the total number of vertices. Unlike the other overconstraint-detection algorithms, the

overconO algorithm finds all worst-case overconstraints in the graph in a single pass.

Table 6.6 contains the execution times of the overconstraint-detection algorithm

for three overconstrained graphs. The times are in seconds for a C-language implementation

running on a DEC VAX 11/785 under Berkeley Unix.

Nodes Lower-Bound

Constraints

Upper-Bound
Constraints

Overconst.

Paths

Time

15 217 11 1 .10

40 315 37 7 .41

101 2024 76 4 6.20

Table 6.6: Overconstraint detection times.

6.9 Slack Distribution

As mentioned in Section 6.2, the slack nodes may be assigned locations according

to a. secondary objective since they do not affect the critical path. The most appropri

ate secondary objective is minimization of the total wire length, subject to the constraint

that the critical nodes are not allowed to move. A number of algorithms for wire-length

minimization have been published [67.24.53.54].

Slack distribution is driven by a set of edge weights: the weight between nodes

j and k will be denoted Wjf.. The weights are typically derived from the resistivities and

widths of the layers of the fabrication technology. If j and k are connected by a polysilicon
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wire and k and / are connected by a metal wire, then Wjk > Vv\./. If m and n are connected

by a narrow metal wire and n and o are connected by a wide metal wire, then Wmn < Wno.

The weight between two nodes is interpreted as an attractive force. The net, directed force

on any node v is readily determined by summing the force(s) pulling it to the left and right

(or top and bottom).

6.9.1 SPARCS Slack-Distribution Algorithm

The slack-distribution scheme currently used in SPARCS is less sophisticated than

true wire-length minimization. However, it does produce the same result as wire-length

minimization for a restricted class of problems, and reasonable results in most other cases.

This simpler method was selected because wire-length minimization was not a focus of this

research.

The SPARCS algorithm is based on event-driven relaxation. A pseudo-code de

scription of slackO is presented in Figure 6.18. All slack nodes are initially scheduled

for processing. When node v is processed, its location is updated according to the current

positions of its neighbors. If v moves, its fanins and fanouts are queued for processing. The

algorithm terminates when the schedule queue becomes empty.

The behavior of slackO can be altered by changing the equation used to compute

the new location of v. The options are controlled by the variable slackMode (Figure 6.18).

If MODEl is selected the current node v is located according to the weighted average of

the forces on v. If M0DE2 is selected v is moved as far as possible in the direction of the

largest force. If M0DE3 is selected v is placed in the middle of its currently-allowed range of

positions.

The algorithm for slack distribution that is described here differs from wire-length-

minimization primarily because the current node v is positioned according to its immediate

neighbors1 positions only. This scheme is inadequate when the constraints between two or

more adjacent slack nodes are tight. In this case, the nodes must be clustered together

and treated as a unit. This clustering is a dynamic operation that should occur during the

execution of the algorithm as constraints become tight. In addition, two (or more) nodes

that have a fixed constraint between them should be clustered as well. This second form of

clustering, which is static, has been included in the SPARC'S implementation of slackO.



slack(slackMode)

int slackMode;

i
struct node *pn;

struct branch *br;

extern int enQueue(); /* adds node to queue */
extern struct node *deQueue(); /* gets next node from queue */
int leftForce, rightForce; /* total left/right forces */
int newub, newlb, newloc, numer, denom;

/* enQueue all slack nodes to begin. */
for(pn = NodeList; pn •= NIL; pn = pn->list) {

if (pn->absUpper != pn->asbLower) {
pn->loc = pn->asbLower; /* initial value */
enQueue(pn); /* schedule */

}

}

while ((pn=deQueueQ) != NIL) {
newlb = -INFINITY; newub = INFINITY;

rightForce = leftForce = 0;
for (br = pn->fanin; br!= NIL; br = br->nextfi) {

newlb = MAX(newlb, br->fromNode->loc+br->asbLower);

newub = MIN(newub, br->fromNode->loc+br->absUpper);
leftForce += br->force;

>

for (br = pn->fanout; br != NIL; br = br->nextfo) {
newlb = MAX(newlb, br->toNode->loc-br->absUpper);
newub = MIN(newub, br->toNode->loc-br->asbLower);

rightForce += br->force;

}

if (slackMode == MODEl) { /* weighted average */
if (leftForce == 0) {

newloc = newub;

} else if (rightForce == 0) {
newloc = newlb;

"} else {

numerator = (newub - newlb)*(rightForce);
denominator = leftForce + rightForce;
newloc = numerator/denominator + newlb;

>

} else if (slackMode == M0DE2) { /* largest dir. wins */
if (leftForce >= rightForce)

newloc = newlb;

else

newloc = newub;
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} else if (slackMode == M0DE3) { /* equalize free space */
newloc » (newlb + newub)/2;

}

/* If pn moved schedule its noncritical fanins/fanouts */
if (newloc != pn->loc) {

pn->loc « newloc;

for (br=pn->fanin; br != NIL; br=br->nextfi) {
if (br->fromNode->asbLower !=

br->fromNode->absUpper) {
enQueue(br->fromNode);

>

}

for (br=pn->fanout; br != NIL; br=br->nextfo) {
if (br->toNode->asbLower != br->toNode->absUpper) {

enQueue(br->toNode);

}

}

184

Figure 6.18: SPARCS event-driven slack-distribution algorithm.

6.10 Summary

Realistic constraint-based compaction requires that both upper-hound and lower-

bound constraints be supported, which means that cyclic graphs must be processed. The

need for cyclic graphs implies that an efficient processing order must be determined for

graph traversals, and that a means for detecting overconstraints must be provided. These

considerations have been addressed in this chapter.

The SPARCS algorithms for solving G were among the first lo employ event-driven

selective-trace techniques in layout compaction [14]. The backtracking order employed,

namely level order, results in fewer node-processing events than other approaches, for graphs

whose cycles are short. Level order is thus well-matched to the st met ure of most graphs that

arise in layout compaction. This combination of level ordering and event-driven processing

has led to efficient graph-solution algorithms for cyclic problems. A number of positive-

cycle-detection algorithms exist. Unlike other methods, the overconO algorithm described
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in this chapter returns all worst-case positive cycles in a single pass.



Chapter 7

Active Constraints

7.1 Introduction

A compactor's flexibility and generality are determined, in part, by the constraint

types supported. The combination of lower-bound and upper-bound constraints provides a

level of flexibility and generality that is sufficient for a wide range of layout problems. How

ever, these two constraint-types alone are not sufficient in a number of practical situations.

For example, analog circuit layouts are often constructed in a symmetric manner, to min

imize the effect of process gradients on critical, matched components [27]. Unfortunately,

symmetry cannot be easily maintained during compaction with conventional constraints.

This point is easy to show; conventional compaction constraints are two-variable inequali

ties, whereas a symmetry relationship cannot be described with less than three variables.

A new constraint type is therefore required in this situation.

Such a new constraint type, called an active constraint, has been proposed and

developed in this project [14]. An active constraint can be thought of as a mechanism for

making the spacing between one pair of layout elements functionally related to the spacing

between another pair. That is. when the spacing between the first, pair of elements changes,

the spacing between the second pair changes in response. The goal of the active-constraint

investigation has been to develop a mechanism that efficiently handles realistic compaction

problems, within the existing constraint-based compaction framework.

This chapter continues with several examples that motivate the need for an ad

ditional constraint type. The active-constraint problem is then defined, followed by an

outline of the method of solution. The proposed solution algorithm is then derived in de-
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tail. The theoretical complexity of the algorithm and its performance on several examples

are presented next. The chapter concludes with a summary.

7.2 Motivation

In this section, three examples are presented to motivate the need for a more gen

eral constraint type beyond the conventional, two-variable compaction constraints presented

previously.

7.2.1 Symmetric Configurations

Component matching is an important design consideration for analog circuits and

for some high-performance digital circuits. In these applications, sets of elements are re

quired to have identical electrical characteristics. For example, if the two input transistors

of a differential amplifier are not identical, an undesirable input-offset voltage will be present

which degrades the amplifier's performance.

One way in which component matching is addressed at the layout level is through

the use of symmetry. Symmetric component placements are insensitive to certain types of

fabrication-process gradients. The layout shown in Figure 7.1 is an example of a common-

centroid placement, which is often used in analog designs [27]. The four bipolar transistors

actually implement the two transistors of an emitter-coupled pair. The symmetry in x and

y leads to better matching than an implementation comprised of two larger transistors.

Compaction with conventional constraints alone does not preserve symmetry. Fig

ure 7.1 is redrawn in Figure 7.2 with the lines of symmetry indicated explicitly. Assuming

that the reference point of each bipolar transistor is its center, symmetry is maintained

about the horizontal line if and only if the following two equations are satisfied (in addition

to the design-rule constraints):

Ua-!Jh = Ub-Uh- ("•!)

!Jh-!Je = yii-Vd- (~-2)

Similar expressions apply in the horizontal direction. Equations 7.1 and 7.2 are four-variable

relations that cannot be transformed into conventional, two-variable compaction constraints.
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7.2.2 Hierarchy Preservation

The stretch-and-abut style of pitch-matching hierarchical compaction was de

scribed in Chapter 2. In this methodology, the subcells of the current ceil are stretched

such that connected terminals of adjacent subcells align. This guarantees that connection

by abutment is achieved when the current cell is assembled by tiling together the stretched

subcells.

A simple example of this layout style is presented in Figure 7.3. There are a total

of four instances of three unique cells. Cell .4 appears twice, but in different environments

in each case. When the stretching step is performed, the two instances of .4 do not, in

general, remain the same. If the instances of .4 stretch differently because of their dissimilar

environments, the resulting layout has four unique cells instead of three and the hierarchy

is lost.

Figure 7.3: Pitch-matching example with a repeated coll.

The desired outcome is to preserve the hierarchy by forcing the two instances of .4

to remain the same during the stretching step. The vertical pitch-matching step, for which

the parent-level constraint graph is shown in Figure 7.4. is used as an illustration. Consider

the spacing between terminal a, and the bottom edge of .4: this spacing must be the same

for instances 1 and 4. Similar conditions must be satisfied bv the other terminals on the
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left and right borders of A. In addition, the heights of the two instances of .4 must remain

identical. Using subscripts to identify the instances, these conditions can be stated as

o,-i - *1 —
a,-4 - s4,

Oj'l - «1 = aj4 — s4.

flfcl - &l = «Jfc4 - *4,

h -si = t4 - s4.

Figure 7.4: Vertical parent-level graph for example of Figure 7.3.

7.2.3 Equally-Spaced Configurations

There are a number of situations in which it is desirable to position a set of

elements such that the spacing between each pair of adjacent elements is the same. In the

macrocell design style, for instance, terminals often occur on the periphery of each macro.

If the inter-terminal spacings are minimum, the task of routing the macros together can

be difficult due to wiring congestion in the neighborhood of the terminals. The difficulty

in interconnecting the macros can be eased by spacing the terminals apart, such that the
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slack space is apportioned equally among them. For three terminals that are colinear in x,

for example, the desired condition is

xz — x2 = x2 — X\.

7.3 Problem Definition

The examples presented in Section 7.2 require constraints that relate the spacing

between pairs of layout elements to the positions of some number of other elements in the

layout. For a pair of elements i and j, this can be written as

Xj-Xi = F(xa,XbyXc,...) (7.3)

where F is some arbitrary function of the locations of elements a, b, c. etc.

The problem described by Equation 7.3 is very general, and may or may not be

solvable in a reasonable amount of CPU time, if at all. Fortunately, this level of generality

is not necessary. All of the examples presented in Section 7.2 can be modeled if a constraint

of the form

Xj - Xj = xn - xm (7.4)

is added to the conventional compaction constraints described in Chapter 6. The four-

variable constraint stated as Equation 7.4 is the basic form of the active constraint

addressed in this research.

The term ^active constraint" was selected to suggest an analogy with electric

circuit theory. In an electric circuit, a voltage-controlled voltage source is an element that

forces the voltage between one pair of nodes to be a prescribed function of the voltage

between another pair. As a class, elements such as voltage-controlled voltage sources are

called active elements. Active constraints are similar, in that a change in the separation

between one pairof nodes forces a corresponding change in the separation between the other

pair. (The meaning of the term active constraint in this dissertation is therefore not the

same as its meaning in optimization theory.)

It is important to note that Equation 7.4 is not transformable into a set of con

ventional, two-variable constraints. All two-variable constraints have the form

Xj > Xi ± k.
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where k is an integer constant. The fact that k is a constant precludes the transformation

of Equation 7.4 into three two-variable constraints.

The optimization objectives for compaction are unchanged with the addition of

active constraints. As presented previously, the primary objective is to minimize the pitch

of the layout in the spacing direction, and the secondary objective is to minimize the total

wire length.

7.4 Solution Methods

It is well-known that the longest-path and slack distribution problems, subject

to the conventional constraints that were presented in Chapter 6, can be formulated as

linear-programming (LP) problems. Linear-programming problems can be solved via gen

eral methods such as the Simplex method. In practice, compactors use the graph-based

formulation because graph-theoretic algorithms are more efficient than general LP algo

rithms like Simplex. This is the case because the structure of the graphs can be used to

synthesize efficient processing orders for the cost, functions of interest.

Incorporating active constraints results in a new problem that cannot be solved

by the existing graph-theoretic algorithms. An obvious question is whether or not the

compaction problem with active constraints can be formulated and solved as an LP problem.

Unfortunately, it cannot be. The simple graph in Figure 7.5 will be used to illustrate this

fact.

Figure 7.5: Illustration of the integer nature of the active-constraint problem.

The linear-programming formulation of the longest-path problem for the example

in Figure 7.5 is written

Minimize y = xf —xs
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subject to

X(x ^ Xg -f" £,,

Xt > Xa + 2,

** > xs + 5.

Letting #s = 0 for convenience, it is clear that the optimal solution is

xa = 2 or 3,

xt = 5.

If the active constraint

X( — Xd — Xq — Xg

is added to the problem, then the solution becomes

xa = 2.5.

xt = 5.

This solution is invalid, because xa does not take on an integer value. Since the units used

in compaction reflect the resolution of the fabrication process, noninteger coordinates are

illegal.

To guarantee integer-valued results, the longest-path problem with active con

straints must be formulated as an integer linear programming problem, viz.1

Minimize y = xt —xs

subject to

xa > xs + 2.

Xt > Xa + 2,

*t > xs + 5.

xt - -Co = xft -x9.

x3. xn. xt integer

'Actually, the longest-path and slack-distribution problems are ILP problems even without active con
straints. However, when there are only conventional constraints, the problem is totally iiuimodular. When
an LP problem is totally uniinodular. its solution is always integer-valued [61].
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The optimal solution to this simple ILP can be found by inspection: it is

xa = 3,

xt = 6.

It it interesting to note that none of the conventional constraints are tight when the pitch

is at its minimum value of 6.

The integer linear programming problem (ILP) is a well-known NP-complete prob

lem [61]. Since NP-complete problems require exponential time in general, it is not practical

to formulate and solve the active-constraint problem as an ILP problem. Another possible

approach might be to treat the problem as an LP problem, then round the result to obtain

an integer value for each variable. Unfortunately, the problem of rounding a real-valued

solution to a feasible, but not necessarily optimal, integer-valued solution is NP-complete

as well [61]. Hence it is also impractical to use a combination of LP and rounding to

solve the active-constraint problem. These concerns apply to both the longest-path and

slack-distribution problems.

It has been recently proposed that the active-constraint problem be formulated

as an LP problem and solved via the Simplex method [60]. However, by the reasons just

presented, this approach does not guarantee a legal solution.

7.4.1 Proposed Method

The proposed solution method for compaction with active constraints is a graph-

theoretic perturbation method, not an ILP-based method. The algorithm perforins several

single-source longest-path analyses for each active constraint. There are essentially two

phases in the proposed method - a. feasibility-determination phase, and an optimization

phase.

The method for processing an active constraint is initialized by performing lp(*).

just as in the CPM. with the active constraint excluded. Then, in the first phase, a com

putation is performed to determine whether the active constraint is feasible. If it is. an

optimization phase is entered in which the goal is to choose a value for the active constraint

that is feasible, and that perturbs the minimum-pitch, minimum-wire-length solution by

the smallest amount possible.

Although it is heuristic in nature, the proposed method has the following desirable

features:
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1. It is built upon the existing, efficient graph-solving algorithms.

2. Its complexity is polynomial, not exponential.

3. The algorithm performs efficiently on practical examples, in terms of lay

out quality and runtime.

The SPARCS active-constraint algorithm is described in detail in the remainder of

this chapter.

7.5 Feasibility Analysis Overview

The first phase of the proposed active-constraint algorithm is a feasibility analysis,

because some active constraints are infeasible. For example, it is impossible to make the

separation between nodes a and c equal to the separation between nodes b and c for the

graph in Figure 7.6; the a-c separation must always be larger than the b-c separation by at

least 1.

a b c

s • m* • »» — • 9* 9 i

1111

Figure 7.6: Infeasible active constraint.

For a single active constraint, e.g.,

xj -Xj = x„ -xm. (7.5)

the feasibility analysis begins by determining upper and lower bounds on the position of

each node in the active constraint. That is. bounds are found for each node *". j. m. and n

for the constraint given by Equation 7.5. After the node bounds are calculated, upper and

lower bounds on the separation between each pair of nodes are determined. In this case,

pair-separation bounds are found for the i-j pair and the m-n pair. It will be shown in

Section 7.7 that a given pair of nodes might have absolute lower and absolute upper bounds

on their relative separation. For example. Xj-xi might, be bounded by the interval [2.9]. If

absolute bounds exist for both pairs, and if those bounds do not intersect, then the active

constraint is infeasible.
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Even if the absolute bounds for both Xj —.r, and xn —xm intersect, the active

constraint might be infeasible. This is because, in some cases, the two intervals are not

simultaneouslyvalid. The graph in Figure 7.6 has this property; increasing the b-cseparation

increases the lower bound on the a-c separation. The final phase of the feasibility check

determines whether the separation intervals for each node pair simultaneously intersect,

and if so, over what domain.

The following few sections describe the feasibility analysis in detail.

7.6 Bounds on the Position of a Node

The symbols defined in Table 7.1 will be used to describe the bounds on the

position of a single node. All of the symbols take on integer values. The source node s is

reference point for all nodes in G, in that all node locations are relative to the source node.

For convenience, it will be assumed that s is located at zero.

Symbol Definition

k assigned position of node k
Lk absolute minimum position of node k

n soft maximum position of node k

rb absolute maximum position of node A-

Table 7.1: Notation for node bounds.

Constraint graphs are constructed such that all nodes are reachable from the source

node. As a result, the minimum position of any node k is bounded by the longest path from

£ to k. This bound will be referred to as an absolute minimum position, because any

node that is placed at a coordinate less than this bound violates one or more constraints.

In Figure 7.7, node a, for example, must be placed such that /„ > /,„ = 2: otherwise, the

(s.ei) constraint will be violated. Absolute minimum locations are indicated for each node

in Figure 7.7 in square brackets. These locations are computed in lp(.s). a single-source

longest-path analysis, which is the first phase of the critical-path method described in the

preceding chapter.

The critical-path method computes a maximum position for each node as well.

However, the maximum positions are not necessarily absolute. The maximum positions are

determined by placing the sink node / at its minimum location, i.e.. its position computed

by lp(s), then carrying out a longest-path analysis in the reverse direction, starting from
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Figure 7.7: Absolute minimum locations.

t. For the graph in Figure 7.7, the sink node t is located at 10. The results of lp(0 are

shown in Figure 7.8. The notation [a,(3] indicates the minimum and maximum location,

respectively, for each node.

[0,0] 10,10]

Figure 7.8: Minimum and maximum locations.

The graph in Figures 7.7 and 7.8 has no upper-bound constraints. The reverse

analysis lp(0 computes a maximum location for each node, subject to the condition that

the pitch is minimum. When upper-bound constraints are absent, these maximum locations

can be exceeded without violating any constraints. Exceeding a maximum location in this

case increases the pitch of the layout beyond its minimum value, but node locations can

still be assigned such that the layout satisfies all the constraints. For example, node 6 can

be legally placed at 9, provided / is moved to lt = 11. which increases the pitch of the layout

beyond its minimum value by 1.

Since they can be exceeded, these maximum positions will be termed soft maxi

mum positions. Violating a soft-maximum position incurs a cost, but does not violate any

constraints.

If the constraint graph contains upper-bound constraints, then absolute maxi-
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mum positions exist for at least some of the nodes. Like absolute minimum positions and

unlike soft maximum positions, absolute maximum positions cannot be exceeded without

violating constraints. The graph from Figure 7.8 is augmented with an upper-bound con

straint in Figure 7.9, and the range of legal positions for each node is indicated as before. If

lb > 6, then the (6, s) constraint of value —6 is not satisfied. Similarly, if la > 3 then h > 6

and the (6,5) constraint is again violated. Node t, on the other hand, is not affected by

the addition of the (b,s) constraint; lt can be increased beyond 10 without any constraint

violations.

10,0] 110,101

Figure 7.9: Addition of an upper-bound constraint.

The condition under which L'k exists can be deduced by comparing the graph in

Figure 7.8 to that in Figure 7.9. In Figure 7.8, the source node s is not reachable from

any node. In Figure 7.9. s is reachable from both a and b. but not from /. That is, there

are directed paths from a to s and from b to .s. but. not from / to s. The condition for

the existence of an absolute-maximum location follows from these observations: namely, if

there is a directed path from k to s, then Uk exists and is equal to the absolute value of the

length of the k-s path. If several such paths exist, l'k is the length of the longest one. If no

such path exists, Uk does not exist. This condition makes sense intuitively: the source node

is the reference for all nodes in G. Because of this. Lk is the longest forward path from s

to k. If there is a path back to * from k, that path must constrain the maximum location

of k, and that location must be absolute because .s is the global reference for all nodes.

The condition for the existence of L\ can also be deduced from the constraint

equations. The forward path to node b. for example, is given by

Xb > xn + 3

Xa > Xs + 2
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which reduce to

Xb > 5. (7.6)

If no other paths involving s and b exist, then Equation 7.6 completely describes the rela

tionship between s and 6. However, if the back arc (b,s) is included, the equation

Xb < xs + 6 (7.7)

also applies. Equation 7.7 clearly represents an upper bound on the position of b with

respect to s.

The existence of Uk can be determined by performing a single-pair longest-path

analysis from k to s. This analysis will be denoted lp(fr,s). The single-pair analysis is

essentially the same as the single-source analysis described previously.

The locations computed by lp(0 may or may not be absolute maximums, as

exemplified by Figure 7.9. Therefore, the results of lp(0 will always be taken to be soft

maximums, even though absolute maximums of the same value might exist as they do for

nodes a and 6 in Figure 7.9. It is not generally true that both maximum bounds are equal.

For the graph in Figure 7.10. which differs from that of Figure 7.9 in the value of the (b.s)

constraint. U'a = 5 and U„ = 17. and U'h - 8 and L\ = 20. Node / is unchanged: L'[ = 10.

but lp(/..s) is undefined so / has no absolute maximum. This is indicated by the notation

L't = oc. When node bounds are being addressed, the bound triples will be written in the

form [Lk.l'kJ'k] (Figure 7.10).

10.10,co]

Figure 7.10: Graph showing node bounds [Lk.L',k.l'ie].

The node bounds can be summarized as follows.

• Lk exists for all nodes, and is computed by lp(.«)
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• U'k exists for all nodes, and is computed by lp(0-

• Uk exists for those nodes for which a k-s path exists, and is given by

|lp(M)|-

7.7 Bounds on the Separation Between Two Nodes

The achievable distance (separation) between any two nodes i and j, i.e., Xj —Xi, is

generally an interval that is bounded both above and below. Table 7.2 contains the notation

that will" be used to describe these bounds.

Symbol Value Definition

dist(i,j)
d(ij)

Lij

interval

integer
integer
integer
integer
integer
interval

interval

synonym for Xj —Xi
current value of Xj —Xi
soft lower-bound on dist(i,j)
abs. lower-bound on distG", j)
soft upper-bound on dist (t,j)
abs. upper-bound on dist(i.j)

Table 7.2: Notation for bounds on the separation between a pair of nodes.

The computation of the bounds on dist (i,j) depends on whether the nodes have

absolute upper-bounds on their positions, and on whether there are directed paths between

them in the graph. If there are no i-j paths and no j-i paths, the nodes will be referred to

as independent; otherwise they are dependent.

There are four cases to consider in computing the bounds, each of which is ad

dressed in this section.

1. IIi = oo and Uj = oo, / and j independent.

2. Ui < oo and/or Uj < oc. i and j independent.

3. Ui = oo and Uj = oo. / and j dependent.

4. Ui < oc and/or Uj < oo. / and j de'pendent.

To clarify the description, it will be assumed that the direction of compaction is horizontal,

and that the element corresponding to node j is to the right, of the element corresponding

to node / in the lavout.
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7.7.1 Case 1

The first case is the simplest. It is required that there be no directed paths from

i to j or from j to i. As defined above, the two nodes are said to be independent under

this condition. In addition, Ui and Uj must be undefined. A graph G that fulfills these

restrictions is shown in Figure 7.11. Sinceonly lower-boundconstraints are present, Uk - oo

for all nodes k in G. The node bounds are shown in the figure.

[12,12,a?]

Figure 7.11: Graph with no upper-bound constraints, i-j, or j-i paths.

The distance between i and j can be reduced by moving j to the left (decreasing

xj), or by moving i to the right (increasing xj). The minimum i-j separation is obtained

by maximizing a-, and minimizing Xj. The absolute minimum position for node j is Lj = 8.

and the soft maximum position for / is U\ = 9. Hence the lower bound on the separation

between i and j, subject to the condition that the layout pitch is minimum, is

tf,- = Lj - Ui

= 8-9

= -1.

(7.8)

An upper bound on distO*. j) can be similarly defined. The maximum separation

is achieved by maximizing the position of j (moving it as far as possible to the right), and

by minimizing the position of / (moving it as far as possible to the left). The limits on these

movements are Uj and Z,-. The resulting upper bound on the separation is thus

= 8-3

7.9)

= o.
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The bounds given by Equations 7.8 and 7.9will be called soft minimum and soft

maximum bounds, respectively. This is due to the fact that the interval D\j = L'-, U-j
can be expanded both above and below, since it is determined by node bounds that are soft.

The interval can be expanded below by increasing U-, which decreases L\j = Lj - U-. The

interval can be expanded above by increasing £/j, which increases U-j = Uj —i,. However,

in both cases the size of the layout increases beyond its minimum pitch.

Since U' is defined for all nodes, soft bounds are defined on the minimum and

maximum separations between all node pairs.

7.7.2 Case 2

If U{ and/or Uj is defined, then distO'.j) has an absolute minimum and/or an

absolute maximum bound in addition to the soft bounds described above. A graph with

this property, obtained by adding an upper-bound constraint to the graph in Figure 7.11,

is shown in Figure 7.12. It will be shown shortly that the presence of Ui or Uj is one of two

conditions under which absolute bounds on dist(/,J) exist. For the moment, i and j are

required to be independent, as in Case 1.

[12,12, oo]

Figure 7.12: Graph with finite T,, and with / and j independent.

The effect of adding the {i,$) constraint is that /*s absolute maximum location is

now defined, with value Ui = |lp(/',.s)| = 10. Since £', is finite, there is an absolute limit on

the rightward movement of i, which in turn limits the minimum i-j separation. This can

be written as

Lij — Lj —( , (7.10)
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Compared to the soft minimum on distil.j) (Equation 7.8), the absolute minimum is

less restrictive in this example. However, L{j is an absolute minimum; the only way to

decrease the i-j separation further is to violate Lj, #,, or both. If either Xj < Lj or #,- > £/,-,

the constraints are not satisfied and the layout is illegal.

If Uj is finite, then a similar absolute maximum bound exists, which is given by

Ihj = Uj - Lh (7.11)

7.7.3 Case 3

The analyses in Cases 1 and 2 are valid when i and j are independent. Bounds

on dist(i.j) are derived in this subsection for the first of two cases wherein they are

dependent; that is, when there are directed paths between /' and j. Here. Ui and Uj are

undefined.

The CPM, which is comprised of lp(«) followed by lp(0. computes Lu and Uj.
for all nodes k. Placing all nodes such that Ik = Lk constitutes a feasible solution, as

does placing all nodes such that k- = U'k. However, other node-location assignments are

not necessarily feasible. For the graph in Figure 7.13, it. is not legal to place node i at U[
and node .;' at Lj simultaneously, because this placement violates the [i.j) constraint. In

Cases 1 and 2, the mixed assignments that were considered are feasible, clue to the assumed

independence of i and j.

[10,10,a>]

Figure 7.13: Graph with an i-j path.

The graph in Figure 7.13 contains a directed path from / to j. The existence of

an i-j path implies that there is an absolute lower bound on distO'.j). regardless of

whether Ui exists or not. The value of the absolute minimum separation is the length of

the longest path from / to j. which is denoted lpO'.j). The absolute and soft lower bounds
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are thus

Lij = lp(M) (7.12)

= 1

L'ij = Lj-Ul

= -6.

In this example, the absolute bound Lij is more restrictive than the soft bound L\j.

The soft upper-bound U-j can be increased at will for the graph in Figure 7.13,

by locating i at Li and then increasing Xj as much as desired. Any location for j is legal,

provided Xj > Xi +1. This is true because Uj = oo, and because there are no directed paths

from j to i in G.

A modified version of the graph of Figure 7.13 is presented in Figure 7.14. The

graph in Figure 7.14 has two paths from j to /, namely {j.i) of length -12 and (j, t), {1,i)

of length -9. If lp(j, i) is finite, as it is in Figure 7.14. then distO',7) has an absolute

maximum value, given by

Uij = |lp(j./)|. (7.13)

The absolute maximum bound l'ij is 9 in this case. If xj —J-, > 9. then the constraint

equation xt < Xi + 10 is not satisfied. If Xj - jr,- > 12, then the constraint, equation

Xj < Xi + 12 is not satisfied either. For the graph in Figure 7.14, the absolute interval is

thus

DU = [Lij.Uij]

= M].

7.7.4 Case 4

The final case allows for finite Ui and Uj. and for dependence (directed paths)

between i and j. This is the worst case, in the sense that, the movements of the nodes are

more constrained than in the preceding three rases.

Absolute bounds on distO'.j) arise from finite upper bounds on the positions

of nodes / and j {Case 2), and from directed paths between them (Case 3). The graph in
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[10,10,«>]

Figure 7.14: Graph of Figure 7.13 with j-i paths added.

Figure 7.12 has Ui = 10. The graph in Figure 7.15 has been obtained by adding a constraint

to the graph from Figure 7.12. The finite value of Ui leads to

Lij = Lj - Ui = -2

according to Equation 7.10. The new graph also has an i-j path, hence

lp(t.j) < oo = 2.

[12,12,«>J

[3,6,10]

Figure 7.15: Graph with U, and an i-j path.

(7.14)

(7.15)

It is clear that Equations 7.14 and 7.15 must both be satisfied. This is guaranteed

by simply taking the more restrictive value, or

l^ = MAX((£,-r/). ip(#.;))

= MAX (-2. 2)

= 2.

(7.16)



207

A dual argument leads to the following expression for Uij, when Uj and one or

more j-i paths exist:

Uij = VLW(Uj - L^ |lp(j, i)|) (7.17)

7.7.5 Summary

The bounds on the achievable separation between a pair of nodes in G are

Ulj = Uj -Li,

Lij = MAX((ij-lV), lp(*\j)),

u^ = Kn({Uj-Li), |ip(i,*)|).

The absolute bounds, which may or may not exist, arise from two sources - absolute

node-position bounds, and directed paths between the nodes. In effect, the lpO\j) and

lpO\ *) terms model the direct influence of node i upon node j and vice versa. The Lj —Ui

and Uj—Li terms model the effect of all other constraints in the system on the i-j separation.

These bounds are termed absolute because an illegal layout results if they are not obeyed.

The Lk and U'k values are defined for all nodes k, therefore D\j = [L'^.U-j] is

defined for all node pairs. These soft bounds can be exceeded (subject to Dij), but the

extent of the resulting layout will be larger than its minimum value.

7.8 Dependent and Independent Pairs

In Section 7.6, two nodes were defined as independent if their positions did not

affect one another. An analogous definition will be given here, regarding the distance

intervals of pairs of nodes.

Let D^ = [Lij.Uij] denote the absolute distance interval for one pair of nodes

/ and j, and let Dmn = [Lmn,Umn] denote the absolute distance interval for the second

pair m and n. In some cases, Xj —r, can be assigned any value in Dij without affecting

Dmn- When this is true, the pairs will be referred to as independent. For the graph in

Figure 7.16, the pairs i-j and m-n are independent. In this case, the absolute bounds are

Dij = [3.6].

DWM = [2.4].
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It is clear by inspection that the i-j separation does not affect the m-n separation and vice

versa.

Figure 7.16: Independent pairs i-j and m-n.

lixj - Xi does affect Dmn, the pairs will be termed dependent. For the graph in

Figure 7.17, the pairs are dependent. In this case, the absolute bounds are

Dij = [2,oo],

Dm,n = [4,oo].

Unfortunately, for the graph in Figure 7.17, any value assigned to distO'.j) alters the

bounds Dmn on the other pair, due to the {j.n) path. When d{i,j) = 3. for instance, the

absolute bounds on Dmn become

Dm,n = [5,oo].

This graph in fact has no feasible solution for the active constraint, due to the nature of

the dependency between the pairs. The spacings cannot be made equal: the m-n spacing is

always at least 2 units larger than the i-j spacing. Active constraints involving dependent

pairs are not necessarily infeasible, however. Feasibility calculations, for both independent

and dependent pairs, are presented later in this chapter.

7.8.1 Detecting Dependent Pairs

Fortunately, it is easy to detect whether or not. two node pairs are dependent. It

was shown in Section 7.6 that the position of some node a can affect the position of some

other node b if and only if there is a. directed path between them in the graph. This fact

generalizes readily to the influence of one pair upon another.
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[O.O.oo] [2,2,«>1

[4,4,«>]

[0,0,0] [4,4,a>]

Figure 7.17: Dependent pairs i-j and m-n.

Consider two nodes, one from each pair of the active constraint, say i and m.

Their positions are independent if there are no paths from i to m and no paths from m to i.

When this is true, i can be placed anywhere within its interval [Li, Uj, Ui] without affecting

the position of m, and vice-versa. If there are paths, then the positions of the two nodes

are affected by one another.

If nodes * and m are independent, and if nodes j and m are also independent,

then dist(.i,j) can be set to any value within its legal interval without affecting node

m. In addition, if node n is also independent of nodes /" and j, then n is unaffected by

the i-j spacing as well. Under these conditions of no inter-pair paths, there are no inter-

pair dependencies, and thus the pairs are independent. Each pair can be assigned any

separation within its legal interval without affecting the bounds on the separation between

the other pair.

The independence condition is thus that there be no i-m, i-n. j-m. j-n. m-i.

m-j, n-i, or n-j paths in G. If one or more of these paths exists, the pairs are dependent

and changing the spacing between one pair in general requires changing the spacing between

the other.

It might appear that eight single-pair analyses are required to determine the inde

pendence/dependence of the two node pairs. However, this is not the case: all of the eight

paths are checked for existence during the absolute pair-bounds calculation. In particular,

the paths are discovered as follows:
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i-m and i-n — in lp(/,j),
j-m and j-n — in lpO', i),
m-i and m-j — in lp(m.n),
n-i and n-j — in lp(n, m).

Therefore the cost of resolving whether or not two pairs are independent is zero, because

it is determined during the (mandatory) absolute-bounds calculation. During the absolute-

bounds phase of the analysis, a flag is set if any of these paths exists, which thereby signals

the need for the dependent-pair analysis described later in this chapter.

7.9 Feasibility of Independent Pairs

If the two pairs i-j and m-n are independent, then the feasibility of the active

constraint

Xj — Xi = Xn Xffi

is determined solely by the absolute pair bounds £>,, and Dmn. If the absolute bounds exist

for both pairs, then they must intersect and the domain of feasibility it given by

D = Dij f) Dmn = [L.U]. (7.18)

If Dij and/or Dmn are not defined, then the active constraint is unconditionally feasible.

For the graph in Figure 7.16, the pairs i-j and m-n are independent, and the

interval over which the active constraint is feasible is

D = Dij f| Dmn

= [3.6] 0 [2-4]

= [3,4].

7.10 Solution for Independent Pairs

When the two node pairs are independent, the feasibility requirement is that

D = [L,U] # 0.

In this section, it is assumed that the active constraint is feasible. Given a feasible active

constraint, the problem is to select a value A* such that A* = Xj - xj = x„ - xm lies in the
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feasible region, and such that the compaction objectives are optimized. Once a value for A*

is selected, it is enforced by augmenting the graph with fixed constraints of value A" between

the i-j and m-n pairs. When all active constraints are thus processed, final positions are

computed for all nodes via the usual graph-solving algorithms.

As described in Section 7.6, a separation value within the soft-bounds interval of

a node pair, e.g., A" 6 [L'{j, U-j], can be achieved without affecting the pitch of the layout.
That is, if Pmin is the minimum layout pitch that is obtained when the active constraint is

excluded, then i-j separation values within D\j will not lead to an increase in the pitch of

the layout beyond Pmjn. On the other hand, if the soft interval is exceeded by k units either

above or below, then the pitch grows by k units over Pmin. Exceeding either D'^ or D'mn

should thus be avoided if possible. If a soft interval must be exceeded by some amount k,

the goal is to minimize k.

Assuming temporarily that D = [—00,00], the solution process begins with the

computation of the intersection of the soft bounds of each pair. The intersection is denoted

d' = z>;,fK.» = [I'-ui-

Soft-bounds intervals always have finite lower and upper limits, therefore D' can be empty

or finite, but not unbounded.

7.10.1 Non-intersecting Soft Bounds

If D' = 0, then there is a gap between the soft intervals as shown in Figure 7.18.

Conceptually, the active constraint can be satisfied by extending the the lower interval

upward, extending the upper interval downward, or both. Because the pairs are independent.

D' u'u L'mn D'
ij J mn

Figure 7.18: D' = 0.

the layout pitch is optimized by the assignment

\} ij "*" Lmn IA = v J ^ L. (7.19)
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which extends each interval by half the distance between them.

The reason for this is as follows. Consider the case wherein Vmn —U-j = k, as

shown in Figure 7.18. Selecting X —U-j increases the pitch by k units, because the interval

Dmn must then be extended downward by k units. Selecting A" = L'mn increases the pitch

by k units as well, because D\ • must be extended upward by k units.

Choosing A' = U'j + k/2 extends the lower interval upward by k/2 units. As noted
above, enforcing the new i-j spacing is equivalent to adding a fixed constraint of value A"

between i and j. Since D\j has been exceeded, the longest path in G becomes k/2 units
larger than Pmin', furthermore, the longest path must pass through the new (i,j) constraint.

The upshot is that some of the paths in G have an additional k/2 units of slack once the

(i,j) constraint is added. In particular, any paths that limit the minimum m-n separation

must fall into this category, because the pairs are independent. Therefore the m-n spacing

can be increased by k/2 without any further increase in the pitch of the layout beyond

*min i A?/2.

Thus, when D; = 0 and the pairs are independent, the optimum value for A" is

half of the separation k between the soft intervals of the pairs. This causes each interval to

grow by k/2 units. But. since the pairs are independent, growing both by k/2 grows the

pitch by only k/2. This is not necessarily the case if the pairs are dependent, as will be

shown later.

7.10.2 Intersecting Soft Bounds

If the soft intervals do intersect, i.e..

D' = [L'.U'] ± 0.

then the active constraint can be satisfied without increasing the pitch of the layout beyond

Pmin. Since any value X e [L',U'] does not afTect the pitch, the optimization criterion

is to satisfy the active constraint within D' such that the wire length is minimized. A

representative case is shown in Figure 7.19.

The method used in SPARC'S in this circumstance is an extension of the slack-

distribution strategy described in the preceding chapter. As described before in Section 6.9.

the attractive force between two nodes g and h for slack distribution is a positive integer,

denoted U^/,.
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Figure 7.19: D' = [L',U'].

For a node pair i-j of an active constraint, Wjj may not exist. However, other

slack weights involving i and j do exist, e.g., between i and other nodes in G. As a result,

a slack weight is computed for each of the four nodes individually. The node weights are

signed integers; a positive value means that there is a net force to the right on the node,

and a negative value corresponds to a net force to the left. The weight for node g is denoted

wg.

The node weights are used to compute a weight for each pair. For the i-j pair,

and assuming i is to the left of j, the weight for the pair is given by

Wij = Wi — IVj.

The pair's weight can be positive, negative, or zero, which correspond to the desired effects

on the i-j spacing listed in the following table.

wu i-j Spacing

positive
negative

zero

shrinks

grows

no preference

If Wij and wm„ are both positive (negative), then both spacings should grow

(shrink). If the signs are different, then the value with the larger magnitude determines A".

The result is calculated by taking the sum

-; = wij + «'„,„

and assigning A" = Xj —r,- = .rn —xm as indicated in the table below.

<jj A*

positive
negative

zero

V

U'

(L' + U')/2
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This strategy of taking the extreme value of the slack interval is consistent with minimization

of the L1 norm of the constraint system [24].

7.10.3 Effect of Finite Absolute Bounds

Thus far it has been assumed that the region of absolute feasibility is the set of all

integers. The modification needed when the region is finite, i.e., when D = Dij f] Dmn =

[L, U], is described in this subsection.

It is possible to account for the effect of finite absolute bounds during the compu

tation of A" in each of the situations described above. For example, if D' = 0 and D is finite,

there are several possible configurations, including those shown in Figure 7.20. Referring

to Figure 7.20, if Dx is the absolute interval the optimum A" is Ui. This case could be

recognized initially and the averaging computation (Equation 7.19) could be avoided. Also,

cases like D2 could be recognized as having no effect on the computation of A". Similar

remarks apply when D' ^ 0.

D'.. D'
ij mn

\ I 1

D, D2

Figure 7.20: Two possible absolute intervals.

An alternative approach is to ignore D initially and compute A" as already de

scribed. Then, if

A* f| D = 0.

A" is set to L or U, whichever is closer. This mechanism leads to the same result, but

it enables a simpler and more structured implementation: hence it has been employed in

SPARCS.

7.10.4 Summary

The flow of the computing A' = Xj-x, = xn -xm. when the pairs are independent,

is as follows.
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1. Compute Dij and Dmn;

2. If Dij n Dmn = 0 stop (infeasible);

3. Otherwise compute D\j and Dmn;

4. If D'hnC., = «

(a) If U<j < L'mn then .V = (t* + L'mn)/2:

(b) EbeA- = (lfiM, + I'ij.)/2i

5. Otherwise

(a) Set A" according to slack calculation:

6. If A" n D ,* 0 then

(a) A" is legal;

7. Otherwise

(a) Move A" to nearest value in D;

8. Add fixed constraints of value A* between / and j, m and n.

7.11 The Dependent-Pairs Problem

When the two node pairs of an active constraint are dependent, more computation

is required to determine feasibility than in the independent-pairs case. Fortunately, the cost

of detecting that two pairs are dependent is zero, thus the additional checking is avoided

when the pairs are independent.

The absolute bounds on distO',j) and dist(m. n) give the independently achiev

able limits on the separation of pairs i-j and m-n. When two pairs are dependent, it is

not generally true that their absolute bounds are simultaneously valid. Another way of

viewing the situation is that the absolute bounds on the second pair may be altered when

the spacing for the first pair is set to a particular value. It was mentioned previously that

setting d(/.J) is mathematically equivalent to putting a fixed constraint between / and j

in G. When the new fixed constraint is added, the absolute bounds on the other pair may

be altered if the pairs are dependent.
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7.11.1 Examples

The example presented in Figure 7.5 is reproduced in Figure 7.21. The active

constraint of interest is

and the absolute bounds are

Xq — Xg — Xl —" Xa,

Dsa = [2,oc],

Dat = [2,oo].

The pairs are dependent in this case, because there are paths from both nodes in the first

pair (s and a) to both nodes in the second pair (a and /).

• /

Figure 7.21: Desired active constraint is xa - xs = xt —xa.

Suppose an attempt is made to satisfy the active constraint by choosing A* = 2.

which is within both Dsa and Dat. Choosing the s-a pair as the "independent** variable and

setting its spacing to 2 = xa - xs leads to the augmented graph shown in Figure 7.22. In
the augmented graph, the absolute bounds on the a-t separation are different than before;

i.e..

IX = [2.2].

Dnt = [3.oc].

Hence the value A" = 2 is not a feasible active-constraint value, because both pairs cannot

simultaneously take on this value.

This active constraint is indeed feasible: the question is. at what value(s) of A* is

it satisfied. It is clear that A must be at least 3. by the results of trying A = 2 on Dnt. It

is thus reasonable to check whether A" = :J is a feasible value. Sotting A* = 3 produces the
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Figure 7.22: A' = xa —xs = 2 is infeasible.

graph is shown in Figure 7.23, for which the bounds are

Dsa = [3,3],

Dat = [2,oo].

Since Dsn n Dat = 3, A" = 3 is a valid solution for the active constraint xa —x3 = .r* — xa.

In fact. A" = 3 is the optimal solution for this graph, because any larger value increases the

pitch. In this example the inter-pair dependencies do change the absolute bounds, but the

constraint is still satisfiable.

• /

Figure 7.23: A* = xa —xs = 3 is a valid solution.

The active constraint

•i'b - J"o = *c - *a

applied to the example shown in Figure 7.24 (from Figure 7.6) is ni rer satisfiable. Again

there are inter-pair paths, hence the pairs are dependent. The absolute bounds are

Dab = [l.oc].

Dac = [2.oc].
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a b c

Figure 7.24: Desired active constraint is xi, —xa = xc —xa.

Obviously, the minimum solution that might be feasible is A" = 2. Setting A" =

2 = Xf, - xa produces the augmented graph in Figure 7.25. As in the previous example, the

lower bound on the second pair. Iac, increases as a result. The new bounds are

Dab = [2,2],

Dac = [3,oo].

Figure 7.25: A" = Xf, - xa = 2 is infeasible.

Trying A" = 3 as in the previous example does not lead to a satisfiable constraint.

Rather than decreasing or staying the same, Lac increases again when A" is increased from

2 to 3, i.e.,

Dab = [3.3].

Dnc = [4.x]

for A" = 3. Indeed, by inspecting the graph, it can be seen that for any A" = o.

Dab = [ex. a].

Dac = [a+i.x].

In contrast with the preceding example, the inter-pair dependencies in this case change the

region of feasibility such that the constraint is never satisfiable.

Unlike the independent-pairs case, the absolute bounds do not provide enough

information to determine active-constraint feasibility when the pairs are dependent. As
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shown by the above examples, some or even all values A" 6 D may not be satisfiable. For

an active constraint

Xj — Xi = Xn Xfn,

what is desired is an indication of whether the i-j spacing affects the m-n spacing, and-if

so, in what manner. The following section address this question.

7.12 Properties of Dependent Pairs

To determine feasibility when two node pairs are dependent, it is necessary to

compute the effect of changing the spacing between one pair on the absolute bounds on

the separation of the second pair. The change in Dmn as distO'.j) is swept over its legal

range of values is thus considered in this section. It is convenient to begin by determining

the effects, due to changes in dist(/, j), on the bounds of a single dependent node q.

7.12.1 Bounds of a Dependent Node

Without loss of generality, it will be assumed that node i is bound to the source

node s with a fixed constraint of value 0. Therefore, sweeping distO.j) over [Lij,l'ij]

becomes one-to-one with sweeping Xj over the interval [Lj. Uj], and derivatives with respect

to Xj are equivalent to derivatives with respect to Xj-x; = dist{i.j). As previously stated,

setting distG, j) to some value k means that a fixed constraint of value k must be added

between * and j in G. Hence setting dist(/,j) = k = d{i.j) creates a bidirectional path

between j and i. and a bidirectional path between j and .s due to the assumed s-i constraint.

The following lemmas state some properties regarding the potential changes in Lq

and Uq that follow from increasing d(/,j) from Lij = Lj to (',, = Uj. The prototype graph

in Figure 7.26 is useful in visualizing the lemmas.

Lemma 7.1 (tight paths) Increeising dist O'.j) causes Lq to change, if and only if there

is a tight path from s to j to q. Likewise, increasing dist (/, j) causes l'<} to change if and

only if there is a tight path from q to j to s.

Proof: Lj and Lq are determined by tight s-j and s-q paths, respectively. Increasing Xj

therefore increases Lj. An increase in Lj causes a corresponding increase in Lq if and only

if there is an j-q path which is tight as well. Similarly. Uq increases only if there is a q-j-s

path that dominates all r/-.s paths. If this is the case, the q-j constraint must be tight.
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Figure 7.26: Bounds of node q are dependent on d(i.j).

Lemma 7.2 (monotonicity) The bounds on q are monotonia with respect to distG', j);

i.e., regardless of the direction of the path between j eindq, ein increase in dist(i.j) cannot

cause a decrease in Lq or Uq. Furthermore, dLq/elxj and dUq/dxj equal 0 or 1.

Proof: In the constraint equations, e.g., xq > Xj + ki and xq < Xj + k2. all variables

have the same sign, thus changing one leads to either no change or a change in the same

direction in the other. By Lemma 7.1, dist(/,j) affects Lq and/or Uq if and only if there

exist paths between j and q that are tight. Hence changing Xj leads to either a change in

the same direction in Lq and/or Uq (if the corresponding paths are tight), or to no change

(if the paths are slack or nonexistent). The values of the derivatives follow directly from

the constraint equations and whether or not the paths are tight.

Lemma 7.3 (path tightening) Suppose there is a j-q path in G which is loose at Xj = Lj.

As distO'.j) is increased, the path can becejme tight, after which it never becomes loose

again. That is. a j-q path cetn gofrom loose to tight, but not vice-versa, as Xj sweeps from

Lj to Uj.

Proof: Say the j-q path is tight for r, = .i'i. To become loose at. Xj - x\ + i. the longest

path to q must increase by 2 or more over its length at xj - x\. However, the coefficients of

the variables in the constraint equations are I, so an increase of one unit in any variable can

increase another by at most one. Thus, when x.j increases from x\ to x\ -f 1. xq increases

by 1 and the j-q path remains tight.

Lemma 7.4 (path loosening) As distO". j) sweeps from Lj to l'r a q-j-s path can go

from tight to loose but not vice-versa.

Proof: Assume there are 2 paths, one from q to s and another from q to j to .s. and that

the q-j-s path is initially tight. That is. the length of the ry-j-.s path is longer than the q-s
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path. Increasing Xj by 1 decreases the length of the j-s path by 1, hence the q-j-s path

length decreases by 1. Eventually, the q-j-s path becomes shorter than the q-s path, after

which the q-j path is no longer tight.

These lemmas lead to several conclusions regarding the functional relationships

between dist(i, j) and Lq, and between dist(/,j) and Uq. In particular, as dist(/,j) is

swept over its range of legal values from Lij to Uij, the limits on node q behave as follows:

Theorem 7.1 (slope transitions)

The rate of change of Lq either remains 0, remains 1, or goes from 0 to 1 overd±st{i,j) 6

[Lij,Uij], The transition from 1 to 0 cannot occur. The. rate of change ofUq either remains

0. remains 1, or goes from 1 to 0 over dist(/, j) € [Lij,Uij], The transition from 0 to 1

cannot occur.

Proof: From Lemmas 7.2, 7.3, and 7.4.

The behavior of the limits as specified in Theorem 7.1 is shown graphically in

Figure 7.27. It is important to note that functional relationships other than these are not

possible.

L ,U

I possible Lg
behaviors

possible £/,

behaviors

dist (ij)

Figure 7.27: All possible behaviors of Lq and Uq. by Theorem 7.1.

7.12.2 Lower Bound of a Dependent Pair

The lower bound on Dmn is given by

Lmn =MAX((/,n-rm), lp(w.w)).
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Since the choice of d(i,j) does not affect lp(n, ro) when all four nodes are distinct, the

situation of interest in this section is that wherein Ln —Um dominates Z/mn, i.e.,

"nxn — *^n ~~ ** n (7.20)

Here, the behavior of Lmn as a function of distU,j) is deduced from the results of the

preceding subsection. The (non-restrictive) assumptions are retained, thus Xj = dist(i,j),

Lj = Lij, Uj = Uij, etc. as before.

Table 7.3 summarizes the behavior of the slope of Lq, denoted dLq/dxj, due to a

change in dist(i, j). The first column gives the slope at the lower limit of dist(i,j), the

second column gives the slope at the upper limit, and the third column indicates any change

that occurs in the path from j to q. A corresponding summary for el.Uq/eixj is presented in

Table 7.4.

dLq/dxj @ Lij elLq/dxj m Uij j-q path

1

0

0

1

0

1

tight tight
loose loose

loose tight

Table 7.3: Summary of dLq/elxj.

dLq/elxj ® Lij elLq/dxj ® Uu q-j path

1

0

1

1

0

0

tight tight
loose loose

tight loose

Table 7.4: Summary of dl'q/dx;.

The slope of Lmn can be determined by differentiating Equation 7.20 to yield

dLmn dLn dUm

elx j (lxJ fU.i

(which is the same as differentia ting with respect to Xj-x; under the current assumptions).

The slope of £mn. and thus the shape of Lmn = F{dist{i.j)). can now be constructed

from the information in Tables 7.3 and 7.4. It is apparent that the slope of Lmn can only

take on the three values presented in Table 7.o. Furthermore, several important conclusions

regarding the transitions that elLmn/dx can make are presented as Theorem 7.2.

(7.21)



dLq/dxj dUq/dXj dLmn/elx

0 1 -1

0 0 0

1 1 0

1 0 1
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Table 7.5: All possible values of of rfXmn/f/j*.

Theorem 7.2 (slope monotonicity) .4s distO',j) increases from Lij to Uij. the slope

of Lmn = F(dist(i,j)) either remains constant or increases. The slope cannot decrease.

Proof: The slope can take on the three values in Table 7.5 only. There are four cases. The

statements below are supported by Theorem 7.1.

Case 1: Initially dLmn = —1, dLn = 0, dUm — 1. dLn can change from 0 to 1 only: dUm

can change from 1 to 0 only. Each change increases the slope by 1.

Case 2: Initially dLmn = 0, dLn = 1, dUm = 1. dLn must remain 1; if elUm changes from

1 to 0, the slope increases to 1.

Case 3: Initially dLmn = 0, dLn = 0, dUm = 0. dUm must remain 0: if dLn changes from

0 to 1, the slope increases to 1.

Case 4- Initially dLmn = 1, dL„ = 1. dUm = 0. dl'm must remain 0 and dLn must

remain 1, thus the slope cannot change.

Theorem 7.2 is summarized schematically in Figure 7.28. The solid segments

denote the initial behavior of each of the cases enumerated in the theorem. The dashed

segments indicate the effects of the possible changes in dLn and dl'm in each instance.

An active constraint that is feasible with respect to Lmn satisfies Lmn < d{i.j) for

at least one value in the interval dist(/*,j) G [Lmn'Umn]. The region of feasibility is thus

the set of integer-valued points on or below the line dist{i,j) = Lmv on a. plot such as

Figure 7.2S. This fact, along with Theorem 7.2. leads to a number of conclusions regarding

active-constraint feasibility. Two statements can be made immediately.

Theorem 7.3 If the active constmint is feasible with respect to Lmn at serine value d(i.j).

seiy d\. then it is feasible for any larger value ofdist(i.j).

Proof: Since d\ is feasible. Lmn[d\) < d\. To be infeasible at a larger separation d2 requires

Imnl^) > (h' This can only occur if dLmn/dx > 1. which is impossible.

Theorem 7.4 If the active constraint is infeasible eit some separation d\. then it is infea

sible for any smaller value of dist(i.j). In partieuleir. if it is infeasible at l'ij. then it is
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/
Case 1

/

/
Case 2, Case 3

/
Case 4

dist Uj)

Figure 7.28: Possible behavior of Lmn - F(dist(*, j)), from Theorem 7.2.

infeasible for all legal values of dist (i, j).

Proof: Similar to that of Theorem 7.3.

Theorems 7.3 and 7.4 can be used to begin developing a strategy for solving the

dependent-pairs problem. If the active constraint is found to be infeasible with respect to

Lmn at d(i,j) = di, there is no point in trying to enter the feasible region by decreasing

distO',j). However, the constraint may become feasible if dist (/.j) is increased to some

value d2 > d\. If it does become feasible at el2, there is no concern about it becoming

infeasible again at some d{i,j) > el2.

One remaining question is, if Xj - .r, = x„ - xm is infeasible at d\. at what value

of d(#.j) > eli might it become feasible? Obviously, if dLm„/dxj = I at. r/, the constraint

never becomes feasible, according to Theorem 7.2. However, if the slope at dx is -1 or

0 then Lmn might enter the feasible region at a larger d(i. j) value. Theorem 7.5 gives a.

bound on the increase in d(i,j) that is necessary to reach the feasible region. Note that

z = Lmn - dx is the amount that Lmn is outside of the feasible region when d(/. j) = r/t as

shown in Figure 7.29.

Theorem 7.5 Let z = Lmn-di be the amount by which Lm„ = F(dist(/. j)) is infeasible

eit d(i.j) = rfi. The constraint must become feasible at or before d2 = r/, + z: otherwise it

is always infeasible.
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Figure 7.29: Distance from infeasible value to feasible region.

Proof: By the geometry of the feasible region (Figure 7.30) and the possible slope values

of Lmn-, Lmn reaches the feasible region at d(i,j) = el\ + z/2 if the slope remains —1 from

d\ to d\ + z/2. Lmn reaches the feasible region at d2 = el\ + z if the slope of Lmn remains

1. If Lmn is also infeasible at el2. then the slope must change to 1 outside of the feasible

region and the constraint cannot be satisfied at any d(/.J).

7.12.3 Upper Bound of a Dependent Pair

The behavior of Um„ as a function of dist (/.j) is the dual of the behavior of Lmn.

Since the analysis for Umn is essentially the same as that presented in the last subsection,

only the results are given here. The upper bound on Dmn is given by

*• mn = '•' n ^m

when the length of the n-m path does not dominate: the corresponding slope of U

"Umn el L n fU-'i)}

elxj elx, dXj

IS

As in the case of Lmn. the slope of Umn takes on the values —1. 0. or 1 only. The slope of

Umn is a decreasing, rather than increasing function of dist (i.j). as stated in Theorem 7.6.
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F(dist (lj))

dist (ij)

Figure 7.30: Possible paths from infeasible value into feasible region.

Theorem 7.6 is sketched in Figure 7.31. The region of feasibility with respect to the upper

bound Umn is the set of integer-valued points on or above the line dist{i.j) = Um„.

Theorem 7.6 .4* dist(/,j) increases from Lij to Uij. the slope of Umn = F(dist(/.j))

either remains constant or decreases. The slope cannot increase.

Proof: Similar to Theorem 7.2.

Theorems 7.7 and 7.8 are the duals of Theorems 7.3 and 7.4. respectively. If the

active constraint is infeasible with respect to Umn at d(/, j) = d\. it might become feasible

if dist(Z.j) is reeluced (rather than increased) to some value r/0 < dx. Theorem 7.9 is

equivalent to Theorem 7.5: it gives a bound on the maximum decrease in dist (/.J) that is

necessary to reach the feasible region, if it is reachable.

Theorem 7.7 // the active constraint is feasible with respect to l'inn at some value of

d(i,j). say d\. then it is feasible for any smaller value ofdist(i.j).

Proof: Similar to Theorem 7.3.

Theorem 7.8 If the active constraint is infeasible at some separation elx. then it is infea

sible for any larger value ofdist(i.j). If it is infeasible at LtJ. then it is infeasible for all
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distuy)

Figure 7.31: Possible behavior of Umn = F{dist{i.j)), from Theorem 7.6.

legal values ofdist(i,j).

Proof: Similar to that of Theorem 7.4.

Theorem 7.9 Let z = d\ —Umn be the amount by which Umn = F(dist(/,j)) is infeasible

eit d(i,j) = d\. The constraint must become feasible within elo = d\ —z: otherwise it is

always infeasible.

Proof: Similar to Theorem 7.5.

These properties lead directly to the proposed algorithm for solving the dependent-

pairs problem which is described in the next section.

7.13 Dependent-Pairs Solution

One possible approach to solving the active-constraint problem, when the node

pairs are dependent, is to compute an explicit relationship between the pairs. That is. one

could designate one of the pairs, say i-j. as the independent pair, then compute a function

for the dependent pair's separation

d{m.n) = F(dist(/'.j)).

Note that dist(m.») is in general an interred, not a single value, for each value of

distG'. j).
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The function F could be tabulated by computing the Dmn bounds for every legal

value dist(i,j) £ Dij. This approach would be quite expensive, unless distO*,j) is only

legal over a narrow interval. Also, the absolute intervals D^ and Dmn are not necessarily

bounded, in which case it is unclear how to choose the domain for the independent pair.

Another approach to computing F is to construct an explicit mapping between

dist(m,n) and dist(i,j). In principle, this can be done by analyzing the various depen

dencies between the nodes in each pair, as was done earlier in this chapter to compute the

absolute and soft bounds on node-pair separations. However, the large number of possible

inter-pair relationships means that the number of cases to be investigated is large, thus this

approach would also be very expensive.

7.13.1 Proposed Solution

The proposed solution method for dependent pairs makes use of the properties just

derived regarding the behavior of dependent pairs. Using these properties, a method has

been developed wherein the function F is sampled twice, eit. most, for each active constraint.

This method is generally much more efficient than either of the above approaches.

The first few steps are identical to the independent-pairs algorithm, namely.

1. Compute D^ and Dmn\

2. If Dij n Dmn = 0 stop (infeasible) Otherwise continue:

3. Compute D\j and D'mn\

4. Compute X according to D'- n Dmn:

5. Adjust A' according to A* n D if necessary.

At this point, the value A" has been optimized and it it guaranteed to be realizable

by either pair individually. It remains to be determined whether A' can be simultaneously

realized by both pairs. If not, it is necessary to determine an adjusted value for A" that is

simultaneously realizable, if such a value indeed exists.

The next step is therefore to set

x; - xi = X
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by adding a fixed constraint to G between i and j. The modified graph is used to compute

a new absolute-bounds interval for the m-n spacing. If the new interval satisfies

Lmn S A S e-mn,

X is the simultaneously-feasible value that optimizes the objectives; a fixed constraint of

value A" is then added between m and n, completing the processing.

On the other hand, the new bounds on dist(m,n) may not intersect A". In this

case, X is increased or decreased according to Theorem 7.5 or 7.9. The adjusted value

for A", denoted A'*, may or may not lie within the bounds for the independent pair. If it

does, i.e., if Lij < XM < U^, the processing continues: otherwise the constraint is infeasible.

Assuming the new value A** is within Dij, the i-j fixed constraint is updated and Dmn is

recomputed. If A'* is still outside Dmn the constraint is infeasible over the entire domain

by Theorems 7.5 and 7.9. If this value for A"* does lie within Dmn the constraint is feasible,

A'* is the optimized value, so a fixed constraint is then added between m and n to complete

the processing.

7.13.2 Summary

When the pairs are dependent, the additional steps following the calculation of

the initial value A" are as follows:

1. Choose one pair, say i-j. to be the independent pair and set its value to

A" by adding a fixed constraint to 6':

2. Recompute Dmn using the augmented graph with d(i.j) —X\

3. If Lmn < X < Umn the constraint is satisfied: add a fixed constraint of

value A" between m and n and return:

4. Otherwise, compute z:

5. If z is outside Dij. the constraint is infeasible: remove the i-j fixed con

straint and return:

6. Otherwise, compute X" = A" ± z:

7. Modify the i-j fixed constraint to set its value to A" and recompute Dmn:
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8. If Lmn < A"* < Umn the constraint is satisfied; add a fixed constraint of

value X" between m and n and return;

9. Otherwise, the constraint cannot be satisfied; remove the i-j fixed con

straint and return.

7.14 Multiple Active Constraints

For a problem with a single active constraint, the proposed algorithm is optimal.

Multiple active constraints are handled by processing each constraint sequentially. The

algorithm does not synthesize a processing order for the constraints. Rather, they are

processed in the order specified by the user when the constraints are entered.

The sequential processing of multiple constraints does not guarantee a globally-

optimal result. However, it represents a reasonable compromise between optimality and

runtime efficiency. The problem of processing multiple active constraints simultaneously

is vastly more complex than the problem that has been addressed. It does not appear

likely that an efficient algorithm can be developed for simultaneously processing multiple

constraints.

7.15 Final Graph Solution

As the values are determined for each active constraint, fixed constraints are added

to the graph to guarantee that the selected values will be realized. When all the active

constraints have been processed, the perturbed graph is solved by the CIWI algorithms to

produce the final coordinates for all of the layout, elements.

7.16 Complexity Analysis

In addition to forming the basis for the proposed active-constraint algorithm, the

feasibility analysis dominates the computation time for an active constraint.

To compute the feasibility of

X j .1" j* = X n X m ,
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the absolute bounds for each pair Dij and Dmn are required. As shown earlier, the absolute

lower and upper bounds are given by equations of the form

Lij = mi((Lj-Ui), lp( i,j)),

u^ = Kn({Uj-Li)n |ip(i,t)|).

The following path analyses therefore appear to be needed for the initial computation of

Dij and Dmn.

lp(s): yields Li, Lj, Lm, Ln
lpO',3): yields Ui
lpO, s): yields Uj
lp(m,s): yields Um
lp(rc,s): yields Un
lpO\ j)' yields a component of Lij
lpO\ 0: yields a component of Uij
lp(m,n): yields a component of Lmn
lp(n, m): yields a component of Umn

It seems that one single-source analysis plus eight single-pair analyses are required for

the initial feasibility calculation. However, this is not the case. The algorithm has been

described in terms of single-pair analyses to help clarify its presentation. In its actual

implementation in SPARC'S, all graph searches are single-source analyses. For example, an

analysis such as lp(/,.<0 is never performed: instead, a single-source analysis from / (denoted

lp(/)) is used. The single-source analysis produces the longest pal lis from / to eill nodes

reeichable from node /. including both .* and j. if they are indeed reachable. As a result, the

following four single-source calculations are used to produce the same information as the

eight single-pair analyses listed above.

lp(/'): replaces lp(/..s). lpO'.j)
lp(j): replaces lp(j..s). lp(j./')
lp(/?0: replaces lp(m. .s), lp(m./?)
lp(w): replaces lp(»..s). lpO.m)

If Dij HDmn- the constraint might be feasible and the next step is to determine a

value A" for the constraint via the soft bounds on each pair. The soft bounds are given by

equations of the form

U' - U'. - I •
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The absolute lower-bounds are known for all nodes from lp(^); the soft upper-bounds are

not. As a result lp(0 must be computed to enable the calculation of D\j and D'mn. Given

Dij, D\j, Dmn, and D'mn, the cost of computing A" = Xj —Xi = x„ —xm is very low and
can be ignored for the present purposes.

If the pairs are independent the active constraint is fully processed once A* has

been selected. The cost of evaluating an active constraint when the pairs are independent

is therefore equal to the cost of six single-source longest-path analyses.

When the pairs are dependent, A" may not be realizable by both pairs simultane

ously. As described in Section 7.13, the pairs are checked to determine if A' is simultane

ously realizable by setting dist(i,j) to A" and recomputing Dmn. If X is not realizable

by both pairs at the same time, dist(£, j) is set to A** = X ± z and Dnm Is recomputed

once more. It was proven earlier in this chapter that these two samples of the function

dist(m, n) —F{dist{i,j)) are sufficient to determine a feasible value for the active con

straint, if such a value exists. The graph searches lp(s) (to update Lm and Ln), lp(m) (to

update Um and lp(m, n)), and lp(rc) (to update Un and lp(n. m)) are repeated each time

dist( m,n) = F{dist{i,j)) is sampled. The computational cost for a dependent pair, above

that of an independent pair, is thus the cost of either three or six single-source analyses of

G.

The performance that, is achievable in practice for the lpOO computation, which

visits all nodes and edges in G. is nearly linear in the size of 6'. Single-source longest-path

analyses from nodes other than s are faster than lp(s) because only a subgraph of 6' is

visited. This is due to the fact that, for nodes other than s, only a subset of the nodes is

typically reachable.

Each active constraint requires at least six but no more iliau twelve longest-path

analyses of G. At worst four of them visit the entire graph; the remaining analyses only

visit subgraphs. Strictly speaking, setting the value of an active constraint increases the

size of G, but by at most two fixed constraints. This increase in the number of constraints

is insignificant in practical cases, as the number of conventional constraints is usually much

larger than the number of active constraints. The size of G can thus be regarded as constant.

In summary, each active constraint requires between six and twelve path analyses

on G. The time required for each analysis is bounded above by the time required to

perform lp(jO. Thus the overhead for processing a single active constraint is constant, under

the (reasonable) assumption that the increase in the size of G due to the two additional
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fixed constraints is negligible. For n active constraints, the added complexity beyond a

conventional compaction without active constraints is therefore 0{n).

This analysis indicates that the complexity of the proposed algorithm, in theoret

ical terms, is very good. The examples presented in the next section show that the actual

performance achieved by the proposed algorithm, on practical examples, is also quite ac

ceptable.

7.17 Examples

Two practical examples are presented in this section to demonstrate the implemen

tation of the SPARCS active-constraint algorithm. In the first example, active constraints

are used to maintain hierarchy during pitch-matching. In the second example, active con

straints are used to maintain symmetry during the compaction of an analog amplifier circuit.

7.17.1 Hierarchy Preservation

The example used here is taken from one of the benchmarks used in the 1987

ICCD compaction session [S]. The circuit is from a CMOS technology with two levels of

metal. Counting the wiring channel as a cell, there are a total of four cells, three of which

are unique, arranged as shown in Figure 7.32. The symbolic layout, of the example, before

compaction, is shown in Figure 7.33. The goal in this case is to perform a pitch-matching

hierarchical compaction such that the two instances of cl6_2, which are identical before

compaction, are identical after compaction as well.

The result of a conventional compaction of this example by SPARCS is given in

Figure 7.34. It is obvious that the two instances of cl6_2 are no longer identical, and the

hierarchy has been lost.

During the horizontal pitch-matching step, if the corresponding pins of the two

instances of cl6_2 are related by active constraints as outlined in Section 7.2.2. the result

shown in Figure 7.35 is obtained by SPARCS. There are seven terminals on the top and

bottom of cl6_2. Each adjacent terminal pair of the top instance is constrained to the

corresponding pair of the bottom instance via an active constraint. In addition, the source

and the first terminal of each instance are likewise constrained together. There are thus

a total of seven active constraints employed. Since the active constraints force the pin
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Figure 7.32: Floorplan for the pitch-matching example.

separations of both copies of cl6_2 to changesuch that they remain the same, the hierarchy

has been maintained in the final result as shown in Figure 7.35.

The quantity of interest in runtime performance is the graph solution time for the

horizontal pitch-matching step, both with and without active constraints. Without active

constraints (Figure 7.34), the graph solution time is .50 seconds.2 With all seven active

constraints included, the graph solution time is 7.36 seconds. Including a single active

constraint results in a graph solution time of 1.33 seconds. Hence the runtime for graph

solution grows by a factor of 5.5 when the number of active const rain is grows by a factor of

7, which agrees with the theoretical 0{n) complexity. At present. SPA IK'S does not produce

port-abstraction graphs. Each instance is thus represented by its full constraint graph in

this example. The use of port-abstraction graphs for the instances would substantially

decrease the graph-solution times, both with and without active constraints.

7.17.2 Symmetry

The second example is a bipolar differential amplifier layout taken from an actual

industrial design. The design methodology used to create the original circuit is similar to

the gate-array methodology. A standard template cell is employed, which is comprised of a

number of pre-fabricated resistors, bipolar transistors, and capacitors. A particular circuit

2The runtimes in this section were measured on an IBM RTPC model 125 running MX version 2.2.1.
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Figure j .34: Result obtained via conventional pitch-matching.
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Figure 7.35: Result obtained with active constraints added.



238

function is obtained by selecting elements from the template and interconnecting them using

two layers of metal wiring.

The initial layout of the differential amplifier is shown in Figure 7.36. Only the

devices from the template that are used in the implemented circuit are shown. It can be seen

from the figure that the designer selected a symmetric collection of transistors to optimize

the electrical performance of the amplifier.

The goal in this case is to compact the layout while maintaining symmetry among

the bipolar transistors. The problem was made more difficult by removing the second level

of metal wiring. This allows the elements to move more freely during compaction, and

makes it less likely that the wiring itself will aid in keeping the layout symmetric.

The result of a SPARCS compaction, with conventional constraints only, of the

layout in Figure 7.36 is presented in Figure 7.37. A plot of just the bipolar transistors

appears in Figure 7.38. It is apparent that the symmetry present in the initial layout has

been destroyed.

The post-compaction layout that is obtained after the addition of six active con

straints in the horizontal direction and eleven active constraints in the vertical direction

is shown in Figure 7.39. The transistors alone are depicted in Figure 7.40. Unlike the

conventional compaction result, the desired symmetry has been maintained.

For pitch-matching cases like that of the preceding subsection, it is straightforward

to determine the node pairs that require active constraints; in the present case it is less

obvious. For the amplifier example the active constraints were added in an interactive

session in which the layout was compacted several times. After each compaction, active

constraints were added to correct asymmetries until the desired result was obtained. This

interactive methodology is reasonable, because circuits with symmetry requirements are

usually not large and the number of active constraints required is thus modest.

The overall runtime for this example without active constraints is 14.77 seconds.

With the 17 active constraints included, the runtime is 62.60 seconds. Thus the total

runtime with all 17 active constraints is only 4.2 times larger than the runtime with none.

7.18 Summary

A new. four-variable constraint termed an active constraint has been proposed.

The utility of active constraints in solving layout compaction problems that cannot be
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Figure 7.36: Initial layout of the differential amplifier.
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Figure 7.39: Amplifier compacted with active constraints.
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handled with conventional compaction techniques has been demonstrated.

In addition, an efficient algorithm for processing compaction graphs that include

active constraints has been developed and presented. This algorithm combines a rigorous

feasibility calculation with an efficient optimization calculation. It has been shown, both

theoretically and through measured results, that the proposed algorithm is an efficient and

practical extension to the existing constraint-based compaction methodology.



Chapter 8

SPARCS Implementation

8.1 Introduction

The SPARCS program [14,13] is a new layout compactor that has been written

to test the algorithms described in this dissertation. The name "SPARC'S" is actually an

acronym for Spacing Program with ARbitrary Constraints. The architecture of SPARCS,

and its relationship to other tools in the Berkeley CAD system, are the subject of this

chapter.

The interfaces between SPARCS and the Berkeley CAD framework are described in

the next section. The operation of SPARCS is then outlined. A description of the structure

of the program and an indication of its size, in lines of code, concludes the chapter.

8.2 System Organization

The SPARCS program is part of a large IC CAD system under development at the

University of California at Berkeley. The system is comprised of a number of application

programs, such as SPARCS, integrated into a common framework. The major elements of

the framework are the central data manager OCT, a graphical user-interface called VEM,

and a facility for tool integration called RPC [19]. Symbolic layouts that are manipulated

by SPARCS are stored in OCT, and displayed and edited via. VEM.

There are two interfaces between the framework and SPARCS. and thus two vari

ants of SPARCS that share the same core functions. The first interface allows the program

to be invoked directly from the user's command shell: that is. it operates in a batch or

245
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stand-alone manner. This interface is useful when user interaction is unnecessary or impos

sible, e.g., when SPARCS is called from another program as part of an automatic synthesis

procedure. This variant of the program is linked directly with OCT's procedural interface,

and each invokation maps to one CPU process. The second interface is used to invoke

SPARCS from an interactive VEM session. When the distinction is important, this second

variant of SPARCS will be referred to as RPC-SPARCS and the first as simply SPARCS.

RPC-SPARCS communicates with OCT and VEM through RPC, which is a special-purpose

remote-procedure-call package developed as part of the Berkeley framework. This mecha

nism enables RPC-SPARCS and OCT/VEM to run as separate, asynchronous processes; in

fact, the two processes are not required to run on the same machine. The diagrams in

Figures 8.1 and 8.2 show the relationships between OCT, VEM, SPARCS, and RPC-SPARCS.

8.3 SPARCS Operation

The basic operation of SPARCS is described in this section. The representation

of symbolic layouts in OCT was presented in Chapter 3. A portion of that description is

briefly summarized here to help illustrate the operation of SPARCS.

The highest-level object in OCT is the cell; each cell has one or more views. Each

view has one or more facets, upon which the editing operations actually occur. According

to the symbolic policy, a symbolic view has two facets, a contents facet, which is used to

store the detailed definition of the view, and an interface facet, which is used to store its

geometric abstraction. A facet is identified by specifying its cell name, view name, and

facet name. For example, inverter runspaced: contents refers to the contents facet of the

unspaced view of the cell called inverter.

Assuming that SPARCS is called with inverter runspaced: contents as the input

facet to be compacted, SPARCS immediately copies the input facet into the output facet

inverter:spaced:contents. The input facet is never actually read or modified, except at

the user's request; this helps to avoid loss of the original data in the event of a program bug

or system crash. The output facet is then opened, first to read the design data and later,

when the spacing operation has completed, to update the data.

After inverter:spaced:contents is opened. SPARCS reads the input design data

via the appropriate procedure calls provided by OCT. A number of consistency checks are
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Figure 8.1: Relationship between SPARCS and the framework.

Figure 8.2: Relationship between RPC-SPARCS and the framework.
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performed during the read operation. The input facet is read in three stages. First, the

instances are read. For each instance, the interface facet of its master is opened and read

to retrieve its protection frames and terminal frames. The wire segments are read in the

second stage on a layer-by-layer basis. Each segment is checked as it is encountered to

insure that the connectivity information is self-consistent. Any user-supplied compaction

constraints are read in the third stage.

The first spacing iteration commences with the generation of the constraint graph.

Each instance and each wire segment perpendicular to the spacing direction maps to a

node in G. The PPS algorithm is executed to derive all of the design-rule constraints. The

constraints necessary to force each wire segment to remain connected to the two terminal

frames at its ends are added next. The source and sink nodes are then created and con

straints are added from the source node to any nodes that have no fanins. Nodes that

have no fanouts are similarly constrained to the sink node. The weights needed for slack

distribution are installed in the graph after the source and sink are appended. Any user

constraints that are present are then added to complete the generation of G.

Once it is constructed, the constraint graph is processed to determine new loca

tions for the instances and segments. The instances translate in the direction of compaction.

The perpendicular segments translate as well; the parallel segments translate and/or change

length. The active constraints are processed first, as described in Chapter 7, if any are

present for the current compaction direction. The critical-path and slack-distribution anal

yses are then performed using the algorithms presented in Chapter 6.

After the graph has been solved, the SPARCS data structures are updated with the

new coordinates of the layout elements. This completes one compaction iteration. Com

paction in the orthogonal direction is typically performed next, by repeating the constraint-

generation, constraint-solving, and coordinate-updating steps. By default, SPARCS contin

ues to iterate until the layout size becomes constant. SPARCS can optionally iterate until

no layout elements move, or for a user-specified number of iterations.

The internal data structures of SPARCS contain the final coordinates of the el

ements in the compacted layout when the spacing iterations have completed. The out

put facet (inverter: spaced-.contents) is then updated to reflect the final coordinates.

SPARCS also stores some additional information in the output facet, namely the critical

path from the final spacing iteration, the arguments with which SPARCS was invoked, and

the convergence status.



249

At present, the design rules are stored in a text file. SPARCS runtime options can

be set on the command line or through a control file.

8.3.1 Constraint Entry-

Two stand-alone utility programs have been written to allow the user to add

compaction constraints to OCT facets. The constraints are stored using a combination of

OCT bag objects, OCT property objects, and the attachment operation. The putConst

program adds a conventional constraint between two instances, or between an instance and

a border of the layout. The second form enables the user to constrain instances to the

source or sink of the graph; a typical use is to bind I/O terminals to the edges of the cell.

The putAConst program adds an active constraint. The active constraint can be between

two pairs of instances, or between two instances and a border. An example of the second

form is the horizontal active constraint xa —xs = xt, —xs, where a and b are two instances

that are to be separated by equal amounts from the source node (left border).

8.3.2 Functions Specific to RPC-SPARCS

The SPARCS program can be used with or without a VEM graphics session. RPC-

SPARCS must be used in tandem with a VEM session; it has some additional editing and

display capabilities that are not possible in the the non-interactive variant.

RPC-SPARCS is invoked directly from any VEM window that contains the layout

to be compacted. RPC-SPARCS registers several of its own menus with VEM. The first menu

contains commands for starting a compaction run, killing a run, and exiting RPC-SPARCS.

The second contains the same runtime controls as the stand-alone version. The third menu

contains a number of commands for editing and displaying constraints graphically. The

fourth menu contains commands for highlighting the elements on the critical paths of the

layout.

8.4 SPARCS Structure

The structure of SPARCS follows its operation as described in Section 8.3. The

major components common to both SPARCS and RPC-SPARCS are:

• a data-manager (OCT) reader.
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• a constraint-graph generator,

• a constraint-graph solver,

• a data-manager writer.

RPC-SPARCS has an additional module that implements the commands and functions that

use VEM graphics.

The OCT reader produces an an internal representation of the layout from the

initial facet. The instances and segments are stored in separate linked lists. These geometric

objects are further processed to generate a structure that makes the edge information used

by the PPS algorithm readily accessible. For example, the protection-frame and terminal-

frame edges of each instance are stored, with each instance, in separate lists, according

to whether they are vertical or horizontal edges. Furthermore, additional data is stored

on a per-instance basis to facilitate efficient construction of the MIN, MID, and MAX event

queues of the PPS algorithm. Each user constraint is stored in one of four lists, as a function

of compaction direction and whether it is a conventional constraint or an active constraint.

The constraint generator is comprised of an implementation of the PPS algorithm

plus the additional functions described in Section 8.3. Implementations of the algorithms

presented in Chapters 6 and 7 constitute the constraint solver.

The OCT writer scans the internal data structures of SPARC'S, retrieves each corre

sponding OCT object in the output facet, and then updates its coordinate information. The

extra critical-path and run information that SPARCS saves in the output facet is collected

under a bag object named SPARCS-DATA.

8.4.1 Implementation

SPARCS is written in the C programming language [38]. To date it has run under

several versions of the UNIX1 operating system. Table 8.1 summarizes the size of SPARCS

measured in lines of code. The entry labeled "OCT reader/writer" also builds much of

SPARCS's internal data structure.

'UNIX is a trademark of AT&T.



Module/Function Approx. lines of C

Data struct, definitions 700

OCT reader, writer 5400

Constraint generator 6950

Constraint solver 3350

Control routines 350

Updating routines 500

RPC-SPARCS additions 1900

Miscellaneous 1150

Total 20300

Table 8.1: Size of the SPARCS program implementation.
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Chapter 9

Overall Results

9.1 Introduction

In the preceding chapters the major algorithms and models developed in this

project have been described. As each particular algorithm has been presented, results on

its performance have been presented as well.

The purpose of this chapter is to present some overall results for SPARCS that

illustrate the entire compaction process. Initially, data is presented to illustrate the relative

speeds of the various SPARCS algorithms. Then, a number of the applications for which

SPARCS has been used are are enumerated. Two particular applications are described

in more detail, namely a benchmark exercise from the 1987 Internation Conference on

Computer Design, and compaction of macrocell layouts. Comments are then made on

technology independence and hierarchy-level independence. The chapter concludes with a

summary.

9.2 Applications of SPARCS

The utility of the methods described in this dissertation has been proven by ap

plying SPARCS to many different IC layout-generation tasks. SPARCS has been used for a

number of terms in the graduate-level introductory course in VLSI design at U.C. Berkeley,

typically for manually-created hierarchical designs. The macrocell layout system Mosaico

produces symbolic layoutsonly [12]; it uses SPARCS in twomodes, which are both described

later in this chapter. Several leaf-cell synthesis systems use SPARCS to produce their final
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layouts. One is the GEM system [43], which produces random-logic cells. Another is the

OPASYN program [40], which is a silicon compiler for CMOS operational amplifiers. SPARCS

is also used by a technology-mapping system called KAHLUA [52]. This system first pro

duces a symbolic layout from a physical layout. The symbolic layout is then mapped to

a new technology by resizing the components and wiring, then performing a compaction

using SPARCS.

9.3 Runtime Analysis

The data presented in this section provides an indication of the runtime perfor

mance of the major phases of SPARCS. The graph in Figure 9.1 is useful in comparing the

constraint-generation time with the constraint-solution time. The eight examples used to

produce the graph are those employed in Chapter 5 to measure the performance of the PPS

algorithm. The examples range in size from 408 to 1881elements, and the runtimes (in DEC

VAX 8650 CPU-seconds) are for two spacing iterations, one per direction. This data indi

cates that SPARCS is well-balanced, in that the constraint generator and constraint solver

consume about the same amount of CPU time. The constraint solver is slightly faster, but

the constraint generator uses a less efficient data structure than necessary as its edge struc

ture. A better edge-structure implementation would increase the speed of the constraint

generator and further improve the balance between the two components.

The histogram presented in Figure 9.2 indicates the CPU-time distribution for a

typical example. The data is for a two-iteration run of SPARCS.

9.4 ICCD Benchmark Session

SPARC'S was one of four compaction programs invited to participate in a bench

marking session at the 1987 IEEE Internation Conference on Computer Design [13.8.9].

The other three programs were MACS, a one-dimensional constraint-based compactor [18],

a virtual-grid compaction system from Symbolics [73]. and Zorro. a zone-refining com

pactor [72]. The Symbolics compactor and MACS were developed in industrial laboratories,

whereas SPARC'S and Zorro were both developed at U.C. Berkeley.

All of the benchmark examples were created on a virtual-grid system, and a virtual-

grid language was used to describe them. Unfortunately, this limited the experiment to
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Figure 9.2: CPU-time distribution for a typical compaction run.
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point-component, MOS-technology examples.

The benchmark results are reproduced in Table 9.1 [9]. Times are reported in

VAX-8650 CPU-seconds, including the time required for well generation and conversion to

CIF, which is a standard physical-layout language. All of the examples are CMOS layouts,

except for n28, which is an NMOS layout. The afa, afavg. and n28 examples are leaf cells.

The afavg example was optimized manually for virtual-grid compaction by an experienced

virtual-grid user [8]. The remainder are pitch-matching hierarchical examples: mul2x2

is a multiplier circuit consisting of four cells, each of which is different. The mul4x4,

mul8x8, and mull6x16 examples are larger multipliers, all consisting of larger numbers of

instances of the same four cells as mul2x2, plus instances of a. fifth cell. The cl32 example

is comprised of two rows of standard cells, each with six cells, with a wiring channel between

the rows.

In terms of move-set generality, the four compactors can be ordered as follows.

Zorro has the most general move set: is an intermediate compactor, meaning that its move

set is more general than that of a one-dimensional compactor but less general than that

of a.two-dimensional compactor. MACS uses the one-dimensional constraint-based com

paction model with wire-length minimization, plus jog generation. SPARC'S differs from

MACS in that SPARCS does not perform jog generation, and SPARCS uses a heuristic for

slack distribution. The Symbolics Leaf Cell Compactor is an implementation of virtual-

grid compaction, hence its move set is the least general. However, the Symbolics system



Example

Compactor Area

(microns)
CPU

(sees)

afa

MACS

SPARCS

Symbolics
Zorro

143 x 166 = 23738

157 x 180 = 28260

160 x 189 = 30240

140.5 x 171 = 24025.5

9

11

5

430

afavg
MACS

SPARCS

Symbolics
Zorro

142 x 145 = 20590

157 x 151 = 23707

154 x 154 = 23716

128.5 x 151 = 19403.5

5

8

5

524

n28

SPARCS

Zorro

123 x 198 = 24354

108 x 187 = 20196

8

378

cl32

MACS

SPARCS

Symbolics
Zorro

627 x 354 = 221958

685 x 339 = 232215

675 x 330 = 222750

660 x 322 = 212520

41

51

57

301

mul2x2

MACS

SPARCS

Symbolics
Zorro

309 x 252 = 77868

343 x 255 = 87465

370 x 270 = 99900

312 x 252 = 78624

16

47

10

838

mul4x4

SPARCS

Symbolics
Zorro

649 x 601 = 390049

654 x 638 = 417252

577 x 577.5 = 333217.5

66

54

1904

mul8x8

SPARCS

Symbolics
Zorro

1285 x 1285 = 1651225

1276 x 1352 = 1725152

1138 x 1207.5= 1374135

89

245

11738

mull6xl6

Symbolics 2524 x 2780 = 7016720 1073

Table 9.1: ICCD benchmark results [9].
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consists of several additional programs. One of these is a preprocessor called the Symbolic

Compactor that attempts to improve symbolic layouts, prior to compaction, by changing

components, moving components to alter the topology, changing wiring layers, etc.

As expected, the area results for the most part follow the above ordering. SPARCS

generates denser layouts than the Symbolics system on the leaf cells, including afavg (the

example optimized for virtual-grid compaction), and on all the other examples except for

cl32. It appears from the plot in [9] of the Symbolics cl32 result that the Symbolic

Compactor was run on the routing area of this example. This effectively creates a different

initial topology for the wiring region, which includes jogs and wrong-way wiring. These

topological changes have a large influence on the final area, which accounts for the better

result of the Symbolics system in this case.

The MACS compactor produced better results in terms of area than SPARCS on

the leaf-cell examples. The jog-generation capability of MACS plays a large role in this

difference; there is also an argument that wire-length-minimization leads to higher densities

than other slack-distribution methods [24]. In addition, the two programs do not model

contacts identically. Close inspection of the plots ([9]) indicates that MACS used a more

aggressive contact representation than SPARCS; in fact, of the four programs, SPARCS used

the most conservative contact model. The Zorro program usually produced the densest lay

outs; however, it is interesting to note that one-dimensional compaction with jog generation

(MACS) was better than this intermediate compaction method in two of the cases.

Overall, the runtime efficiency of one-dimensional compaction relative to the in

termediate approach is apparent from the data in Table 9.1. The afa and afavg examples

can be used to compare the runtime performance of the three one-dimensional compactors

for leaf-cell compaction.

Using only the data in Table 9.1. it is clear that the runtime performance of

SPARCS is competitive with the two industrial programs. However, not all of the relevant

information appears in Table 9.1. In particular, the number of spacing iterations is not

indicated. At the time the benchmarks were submitted. SPARCS iterated until no elements

in the layout moved. This led to five and three iterations for the afa and afavg cases,

respectively. The Symbolics Leaf Cell Compactor performs two iterations. The MACS

paper ([18]) implies, but does not state, that MACS performs two iterations as well.

For the afavg example. SPARCS actually produced the reported area in two itera

tions. For the afa example, the area of the layout after two iterations is within 0.9% of the
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reported area. Hence SPARCS could have been stopped after two iterations in both cases

without significantly changing its area results.

The two programs used to post-process the SPARCS output (one to generate the

wells and one to transform the OCT data into CIF) were simple programs that were not

optimized for efficiency. As a result, these procedures accounted for about 2.5 seconds of the

reported runtimes for both examples. That is, the actual compaction times are about 8.5

seconds for afa, and about 5.5 seconds for afavg, for five and three iterations, respectively.

If two iterations had been performed in each case, and if better programs for the post

processing steps had been available, SPARCS would have produced layouts of equivalent

area in significantly less time than the data that appears in Table 9.1.

All of the the hierarchical examples (mul2x2, mul4x4, mul8x8. mull6xl6,

cl32) are described using two levels of hierarchy, and are designed for a pitch-matching

methodology. However, a decomposition using more than two levels of hierarchy is useful

for the larger multipliers. The following example, using mul4x4, illustrates how SPARCS

can be used to exploit this structural regularity.

The mul4x4 example consists of a 3x2 array of the afa cell, surrounded by in

stances of fal3. aahal, nandl, nand3, and celllc, as shown in Figure 9.3. Initially each

leaf cell was compacted until no elements moved. Table 9.2 summarizes this processing

(celllc consists of only four wires, and hence was not processed in this step). To pitch-

match the leaf cells for use in assembling mul4x4. the pitch constraints required to align

their ports were added manually, then the cells were respaced and their interface facets

were created. The time required for respacing and for creating the interface facets via the

vulcan program, and the resulting cell sizes, are given in Table 9.3. The multiplier has

three unique columns as shown in Figure 9.3. An intermediate hierarchy level was created

by constructing these three unique columns. For example, the pitch-matched versions of

aahal and nand3 were loosely placed and routed together to create the fourth column.1

The fourth column, composed of four pitch-matched leaf cells, was then compacted and its

interface facet was created. This procedure was also used for the first and second columns.

The data representing the column processing is summarized in Table 9.4. Finally. mul4x4

was assembled by placing and routing an instance of the first column, two instances of the

'The place-and-route steps were performed manually due to lack of a .suitable tool. Since these steps
require only simple arraying and river-routing algorithms, they could be easily automated, and the time
required to execute them would be insignificant.
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second column, and an instance of the fourth column. That is, the top-level representation

had four instances only, rather than the sixteen that would be present if a two-level hier

archy was used instead. This representation was compacted to generate the final layout.

The mul4x4 example was also compacted flat and the results of the two approaches are

given in Tables 9.5 and 9.6. The flat case takes 2.73 times longer and is 5.1% smaller than

the hierarchical case. The area figures are in A and include the well area, and the times, in

VAX-8650 CPU-seconds, include all processing except for CIF-file generation. A plot of the

hierarchical result is presented as Figure 9.4.

celllc nandl nandl nand3

fal3 afa afa aahal

fal3 afa afa aahal

fal3 afa afa aahal

Figure 9.3: Cell arrangement of mul4x4.

Cell Iter. Time Width Height. Area

aahal 3 3.77 94 100 9400

afa 5 8.75 105 120 12600

fal3 5 9.17 128 112 14336

nandl 3 1.22 25 58 1450

nand3 3 1.16 22 53 1166

TOTAL 24.07

Table 9.2: Initial leaf-level compaction, no constraints.

Comparing SPARCS with the Symbolics system on the hierarchical examples.

SPARCS is slower on the small examples, but its rate of CPU-time growth with problem size

is smaller, hence SPARCS becomes faster once the problem size reaches a certain point. The

Symbolics system is significantly faster on mul2x2. On mul4x4. SPARCS is less than 20%

slower, and on mul8x8. which is roughly four times the size of mul4x4. SPARCS is signif

icantly faster. (SPARCS was executed on all the examples except for the largest multiplier.



Cell Iter. Time Frames Total Width Height

aahal 2 3.19 1.80 4.99 96 123

afa 2 5.14 2.17 7.31 105 123

fal3 2 5.07 2.37 7.44 129 123

nandl 2 1.11 0.97 2.08 105 58

nand3 2 1.08 0.95 2.03 96 58

celllc 2 0.45 0.61 1.06 129 58

TOTAL 24.91

Table 9.3: Leaf-cell respacing, with pitch constraints.

Cell Iter. Time Frames Total

col. 1 1 2.08 1.42 3.50

col. 2 1 2.11 1.90 4.01

col. 4 1 1.72 1.59 3.31

TOTAL 10.82

Table 9.4: Column processing.

Cell

Hiera

Iter.

rchical

Time

F

Iter.

'lat

Time

mul4x4 1 4.31 5 175.09

leaf cells — 48.98 — —

columns — 10.82 — —

TOTAL 64.11 175.09

Table 9.5: Total time, hierarchical versus flat.

Method Width Height Area

hier. 416 401 166816

flat 405 392 158760

Table 9.6: Area comparison, hierarchical versus flat.
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Figure 9.4: mul4x4 result, via hierarchical compaction.
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which was not completed due to lack of time.)

Comparison with MACS on the hierarchical examples is not meaningful. The

MACS team did not submit results for any multiplier except the one with no repeated cells

(mul2x2). In the case of cl32, the MACS layout uses minimum-width wiring for the power

busses, rather than the wider wires that were specified and used by the other participants.

9.4.1 Summary of ICCD Results

Compactors can be compared in several ways, such as by the layout models they

support, by their move sets, and by their relative speeds. The ICCD benchmark experiment

was a good attempt at such a comparison, but the results are not entirely conclusive. The

initial layouts processed by the four programs were not identical. Some of the differences,

such as the difference in contact representations, resulted from the fact that the symbolic

layout language used to describe the benchmarks had to be translated into the different

formats that each tool uses as its input representation. Slight differences in interpretation

of the original language led, for example, to the different contact models. The Symbolics

system's pre-processor, the Symbolic Compactor, made significant changes to the routing

region of the initial layout of cl32. Such changes are perfectly reasonable in a produc

tion environment; however, for comparison purposes they partially invalidate the results

because the layouts that are actually compacted are not all identical. Also, the cl32 layout

compacted by MACS used different bus widths than those that were specified.

Overall, the area results predictably reflect the move sets. In terms of speed, the

one-dimensional compactors were all substantially faster than the intermediate compactor,

which is also a predictable result.

All of the benchmarks are point-component layouts. Point-component layouts do

not illustrate the more general nature of the SPARCS layout model. In a sense, point-

component layouts are a worst-case for SPARCS, because SPARCS does not. by design,

exploit element types whereas other compactors can. Nevertheless, two important conclu

sions can be drawn from the benchmark results. SPARCS produced layout areas that are

consistent with its move set. This implies that the proposed generic layout model does not

degrade layout density over well-implemented programs that use the more restrictive, typed

layout model. Also, the SPARCS runtimes are very competitive compared to the industrial

programs. This implies that the added generality of the generic model does not incur a run-
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time cost, due to the design of the model and due to the proposed PPS constraint-generation

algorithm. It should be noted that the two industrial programs are strong competitors; the

Symbolics system is a third-generation virtual-grid system, and the MACS program is a

sophisticated implementation of constraint-based compaction.

9.5 Macrocell Compaction

It was mentioned above that SPARCS is used in the Mosaico macrocell layout

system. At the phase in the design cycle where compaction is applied, macrocell layouts are

comprised of large, rectilinear cells with many terminals. The cells are not stretchable. The

cells are wired together using a variety of styles, including channel routing and switchbox

routing. As a result, pitch-matching hierarchical compaction cannot be applied to macrocell

designs.

The Mosaico system produces symbolic layouts only; hence all Mosaico layouts

must be compacted. These layouts are stored in OCT using the generic layout model.

Mosiaco uses SPARCS in two modes, one in which SPARCS compacts the entire top level of

the design flat, and one in which compaction is performed on each routing region individually

[12].

The flat case is the more difficult of the two, because the layouts are much larger.

Tables 9.7, 9.8, and 9.9 contain the results from [12]; the three examples are from industrial

sources. These examples were compacted flat. This data indicates that SPARCS produces

significant improvements in area for the automatically-placed examples, ckl and ck3. The

ck2 example was manually placed. In addition, the SPARCS runtimes are quite reasonable

compared to those of the other tools in the system.

Circuit Macrocells Pads Nets Pins Channels

ckl 8 5 29 58 17

ck2 12 39 262 691 54

ck3 23 17 129 458 43

Table 9.7: Test circuit statistics.

9.6 Technology Independence

SPARC'S has been successfully used on layouts from a number of IC technologies.



Circuit Placed Routed Compacted Area Savings (%)
After Compaction

ckl 1592x1415 1678x1562 1533x1433 16

ck2 17305x15620 17033x14982 15670x14982 1

ck3 2902x3607 4245x4904 4036x4112 20

Table 9.8: Areas (A) during the design cycle.

Circuit Placement Routing
Global Detailed

Compaction

ckl 140 5 22 21

ck2 n.a. 926 482 960

ck3 1203 74 140 480
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Table 9.9: Runtimes, VAX 8650 CPU seconds.

The ICCD results presented in this chapter include both NMOS and CMOS layouts. The

CMOS technology used is a modified version of the Mosis CMOS technology, which was

altered to complicate the design rules. SPARCS has been used to compact layouts from

several other CMOS technologies as well. In Chapter 7, results were presented for a bipolar

layout from an industrial fabrication process.

In all cases, no modifications to SPARCS were required when the technology was

changed. That is, no new element types or algorithms were necessary. All that is needed to

adapt SPARCS to a new technology is to modify its rules file to reflect the layer names and

spacing values of the new technology. These results prove that the algorithms described in

this dissertation are indeed technology independent.

9.7 Hierarchy-Level Independence

It has been stated that the algorithms and models used in SPARCS are hierarchy-

level independent, unlike those used in other systems. The results presented in this chapter

support this statement.

The mul4x4 example from the ICCD benchmarks shows that SPARCS can operate

in the pitch-matching mode used by other compactors. Other hierarchical styles require non-

rectangular subcells, and/or are not amenable to pitch-matching. SPARCS has processed a

large number of hierarchical designs in these otherstyles. One particular type of hierarchical

compaction for which SPARCS has been used extensively is the channel-by-channel style
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employed in Mosaico [12]. These problems include large numbers of non-rectangular cells,

and pitch-matching cannot be performed because the macrocells are of fixed size when the

compaction phase has been reached. The standard pitch-matching hierarchical method

simply cannot accommodate such designs.

9.8 Summary

The overall goal of this research has been to create practical symbolic layout and

compaction methods that apply to a wider variety of designs than the existing methods.

The results presented in this and preceding chapters show that this goal has been met.

SPARCS, the program that implements the methods that have been proposed, has

been shown to be technology independent and hierarchy-level independent. It has also been

shown that SPARCS is able to satisfy the special requirements of symmetry and hierarchy

preservation through the use of active constraints. The practical nature of the proposed

methods has been demonstrated by the fact that SPARCS has been used to compact a very

large number of designs from a wide range of design methodologies.

Finally, the ICCD benchmark results indicate that the proposed methods do not

sacrifice runtime or area efficiency compared to high-quality implementations of the existing,

less-general symbolic layout and compaction techniques.



Chapter 10

Conclusions and Future Work

Various forms of symbolic layout and layout compaction have existed for more than

a decade. These techniques have been employed in some settings, but, due to a number of

limitations, their use has not been widespread. The overall goal of this research has been to

investigate and develop more general models and algorithms for symbolic layout and layout

compaction, thereby widening the domain of problems suited to such a methodology. This

goal has been reached, through the three main contributions summarized in the following

section.

10.1 Contributions

10.1.1 A General Layout Model

Any system is only able to process the inputs that can be described within the

scope of its input model. Symbolic layout and compaction systems typically use a layout

model (input model) that can effective capture only a particular class of leaf-level MOS-

technology designs, because the layout model is defined in terms of a few simple, typed

primitives. Systems that use this model have been shown to produce area-efficient results

for the class of layouts that the model is intended for. However, the typed nature of the

model renders such systems cumbersome or unusable for many other classes of IC layouts.

A new layout model has been developed to address this problem. Its primary

characteristic is that it is generic rather than typed. In addition, the level of abstraction

of the proposed model is lower than that of the standard model. The proposed model is

266
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therefore more general, since it is not restricted to pre-encoded types of elements, nor to

elements with specific geometric configurations.

The results presented in this dissertation show that the proposed model effectively

covers a much wider domain of layout problems than typed models. In particular, it is

technology and hierarchy-level independent. It has also been shown that the generic model

is just as efficient as typed models on the class of layouts that typed models are designed

for.

10.1.2 Efficient Constraint Generation

The CPU time consumed by a one-dimensional compactor during constraint gen

eration is an important, if not dominant fraction of the overall runtime. The difficulty of

the constraint-generation problem increases when a generic layout model is used instead of

a typed model, because the constraints must be derived from lower-level information. That

is, the element types cannot be used as hints to aid the constraint-generation process, since

they are not present.

A new algorithm for constraint generation has been developed along with the

generic layout model, such that the model and the algorithm complement one another. The

layout model has been designed to ease the constraint-generation process wherever possible.

The constraint-generation algorithm has been designed to exploit the ability of the model

to capture geometric detail, without consuming an excessive amount of CPU time.

The proposed constraint-generation algorithm scans the layout in the direction

perpendicular to the compaction direction, unlike the standard methods, which scan in the

parallel direction. The primary advantage of perpendicular scanning is that nearly all of

the pruning operations used in the scan can be performed without the need for explicit

data structures. As a result higher efficiency is achieved, because the cost of maintaining

the data structures as the algorithm executes is reduced. This characteristic is of particular

importance for low-level models like the proposed generic model.

The previous work in perpendicular scanning is mostly theoretical in nature and

does not address many of the requirements pf a practical constraint-generation algorithm.

The work described in this dissertation has addressed these requirements, for a very general

class of layout problems. Unlike previous perpendicular-scanning algorithms, the proposed

algorithm accommodates multi-layer, non-rectangular geometries and non-transitive spacing
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rules. In addition, it supports terminal merging and the generation of corner constraints.

If these features are missing, the utility of the algorithm is severely reduced. The results

which have been presented herein show that the new algorithm performs well, in terms of

both CPU time and layout area.

10.1.3 Active Constraints

Conventional, two-variable compaction constraints are unable to model a number

of practical layout problems. For example, symmetry relationships, and the relationships

necessary to preserve hierarchy when multiple instances of the same cell are being pitch-

matched, cannot be represented by two-variable constraints. These relationships are par

ticularly important in analog layouts, which was the primary motivation for this work. The

addition of a four-variable constraint, termed an active constraint, has been proposed to

model relationships such as these.

It has been shown in this dissertation that a mixed-constraint system, comprised

of two and four-variable constraints, cannot be efficiently solved with existing algorithms.

A new algorithm has thus been developed to solve this problem. The proposed algorithm

combines a robust feasibility analysis with an optimization phase to compute the value for

each four-variable constraint. The proposed methodology has been shown to be efficient

both in theory and in practice. The usefulness of active constraints, and the algorithm for

solving the resulting mixed-constraint systems, has been demonstrated via realistic exam

ples. In particular, this approach can be used to maintain the required relationships among

components that arise in the output of tools such as analog-oriented routers, under layout

modifications or changes in layout rules.

10.2 Future Work

The compaction program SPARCS (Chapter 8) was written not only to test the

models and algorithms described in this dissertation, but to be a useful compactor as well.

The main limitations of SPARCS at present are its lack of an optimal slack-distribution

routine and its lackof a jog-generation capability. Neither of these capabilities wasaddressed

in this research, but both should be added to the program.

The constraint-generation (PPS) algorithm and the active-constraint, algorithm are

both amenable to speed improvements. For example, the PPS implementation uses a linear
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list for the active edges, which unnecessarily increases the edge-insertion time. The active-

constraint solver performs the lp(s) analysis a number of times. Each time, the entire

solution is re-computed; much of this re-computation can be avoided through the use of the

previous solution and the event-driven paradigm.

Compactors that use the conventional constraint model are in use today, even

though the existing constraint model is sometimes inadequate. Constraints of the form

H>a!a±k are continuous constraints in that x& and .r0 can assume any values that satisfy

the equation. In reality, some of the values that satisfy equations of this form are illegal.

For example, two contacts that are electrically connected are allowed to be either coincident

(fully merged), or separated by at least one spacing rule; intermediate separations are illegal.

Intermediate values are not prohibited by the existing constraint model. Situations such as

this require a discrete relationship between xa and Xb that prohibits the illegal values. Some

technology rules, such as reflection rules, also map to non-continuous constraints. Ideally,

there should be two forms of two-variable constraints, a continuous form and a discrete

form. Problems with this structure can be formulated as mixed-integer-linear-programming

(MILP) problems. Unfortunately, MILP optimization problems are NP-complete problems

[61] and thus very difficult to solve. At present, it appears that only the longest-path prob

lem has been addressed in the MILP context [49]. The slack-distribution and positive-cycle

problems have yet to be considered. Also, constraint-generation algorithms that synthesize

the discrete constraints have not been developed.

One-dimensional compaction was selected for this project for the reasons presented

in Chapter 2. However, there are situations in which the added complexity of a more

general, two-dimensional move set is justified. To date, only the extremes of two-dimensional

compaction have been studied. Very general methods have been addressed, but they are

limited to very small problems. At the opposite end of the spectrum, several methods that

are heavily based on one-dimensional compaction have been proposed as well. The middle

ground between these extremes has not been explored. Relatively structured designs which

must be of high quality, for instance the library cells of a standard-cell system, may be

amenable to such an approach.
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