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Nonlinear Control via Approximate
Input-Output Linearization:
the Ball and Beam Example t

John Hauser and Shankar Sastry Petar Kokotovic
Electronics Research Laboratory Coordinated Science Laboratory

University of California University of Illinois
Berkeley, CA 94720 Urbana, IL 61801

Abstract. In this paper, we study approximate input-output linearization of SISO nonlinear
systems which fail to have relative degree in the sense of Byrnes and Isidori. This work is in
the same spirit as the earlier work of Krener on approximate full state linearization by state
feedback. The general theory presented in this paper is motivated through it's application to a
common undergraduate control laboratory experiment—the balland beamsystem—where it is
shown to be superior to the standard Jacobian linearization.

Keywords. Nonlinear control, input-output linearization, approximate linearization.

1 Introduction

The past few years have seen the maturation of the use of differential geometric techniques in
understanding input-output and full state linearizationof nonlinear systems, normal forms and zero
dynamics. An elegant discussion of these results is in the work of Isidori [4]. The conditions for the
existence of full state linearizable nonlinear systems or for that matter systems which are input-
output linearizable are non-generic and it is of obvious interest to extend the results to situations
where these conditions fail but do so only slightly. Such a program was begun by Krener in [6], who
gave conditions for approximate full state linearization of nonlinear multi-input systems. In this
paper we take this program one step forward by discussingapproximate input-output linearization
of single input single output systems which fail to have relative degree in the sense of Byrnes and
Isidori [4]. Though in the same spirit as [6], it is different in detail in that the control objective is
tracking: i.e., a prescribed output function is required to follow a given specific function of time.
Such applications are prototypical in the flight control of aircraft where trajectory following rather
than set point regulation are paramount to performance.

Approximate linearization of nonlinear systems has, of course, a lengthy history, starting with
Jacobian linearizations and continuing with extended linearization [8] and pseudo-linearization [7].
Our approximate linearization is different in spirit in that it is specifically geared for tracking
problems rather than the regulation problems that the extended or pseudo linearization techniques
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appear to be useful for. Also, our approximation is not an approximation by a linear system or
family of linear systems but rather by a single input-output linearizable nonlinear system.

An outline of the paper is as follows: In Section 2, we start with an example drawn from
undergraduate control laboratories, the ball and beam experiment, and use it to study the failure
of exact input-output linearization and the latitude available in our proposed technique to do
approximate input-output linearization. We also compare the linearizations with the Jacobian
linearized system. In Section 3, we present the general method motivated by Section 2 to define
robust relative degree and approximate input-output linearization of SISO systems. Section 4 has
some concluding remarks.

2 The Ball and Beam Example

Consider a version of the familiar ball and beam experiment found in many undergraduate control
laboratories (see Figure 1). In this setup, the beam is symmetric and is made torotate ina vertical
plane by applying a torque at the point ofrotation (the center). Rather than have the ball roll
on top ofthe beam as usual, we restrict the ball to frictionless sliding along the beam (as a bead
along a wire). Note that this allows for complete rotations and arbitrary angular accelerations of
the beam without the ball losing contact with the beam. We shall be interested in controlling the
position ofthe ball along the beam. However, in contrast to the usual set-point problem, we would
like the ball to track an arbitrary trajectory.

Figure 1: The ball and beam system.

In this section, we first derive the equations of motion for the ball and beam system. Then,
we try to apply the techniques of input-output linearization and full state linearization to develop
a control law for the system and demonstrate the shortcomings of these methods as they fail on
this simple nonlinear system. Finally, we demonstrate a method ofcontrol law synthesis based on
approximate input-output linearization and compare the performance of two control laws derived
using differing approximations with that derived from the standard Jacobian approximation.

2.1 Dynamics

Consider the ball and beam system depicted in Figure 1. Let the moment of inertia of the beam
be J, the mass of the ball be M, and the acceleration of gravity be G.

Choose, as generalized coordinates for this system, the angle, 0, of the beam and the position,



r, of the ball. Then, the Lagrangian equations of motion are given by

0 = r + Gsin0 -r02
r = {Mr2 + J)0+ 2Mrf0 + MGr cos 0

where r is the torque applied to the beam and there is no force applied to the ball. Using the
invertible transformation

t = 2Mrf0 + MGr cos 0+ (Mr2 + J)u (2.2)

to define a new input, u, the system can be written in state space form as

Xi

&3

X4

X2

Xi r2x4 -G

x4

0

sin 33

/<*)
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+

0

0

0

1

u

(2.1)

(2.3)

where x = (xi, x2, x3, x4)T := (r, r, 0, 0)T is the stateand y = h(x) := r is the output of the system
(i.e., the variable that we want to control). Note that (2.2) is a nonlinear input transformation.

2.2 Exact Input-Output Linearization

We are interested in making the system output, y(t), tracka specified trajectory, yd(t), i.e.,y(t) -*
yd(i) as t -* 00.

Tothisend,we might try to exactly linearize the input-output response ofthe system. Following
the usual procedure, we differentiate the output until the input appears:

y = si,

if = x2,

y = x\x\ —Gsina;3,
j/(3) = x2x\ —GX4 cos £3 + 2X2^4 u.

6(«) <»(*)

(2.4)

At this point, if the coefficient of u (a(x)) were nonzero in the region of interest, we could use a
control law of the form

u=-±r [-»(*) +•] (2-5)a{x)

to yield a linear input-output system described by

y(3> = v. (2.6)

Unfortunately, for the ball and beam, the control coefficient a(x) is zero whenever the angular
velocity X4 = 0 or ball position a?i = r are zero. Therefore, the relative degree of the ball and beam
system is not well definedl This is due to the fact that

LgLfh(x) = 2x1X4 (2.7)



is neither nonzero at x = 0 (an equilibrium point of the undriven system) nor is it identically zero
on a neighborhood of x = 0. This is a characteristic unique to nonlinear systems. Thus, when the
system has nonzero angular velocityand nonzero ball position, the input acts one integrator sooner
than when the angular velocity is zero.

Thus we conclude the exact input-output linearization does not provide a methodology for
designing a trajectory tracking controller.

2.3 Full State Linearization

Next.we try our hand at fully linearizing the state of this system, that is to say, find a set of
coordinates and a feedback law such that the input-to-state behavior of the transformed system is
linear. The necessary and sufficient conditions for this were given by Jakubczyk and Respondek [5]
and, independently, by Hunt, Su, and Meyer [3].

First we check the dimension of the controllability distribution,

span ig adfg •••ad^gj (2.8)

where ad\g denotes the iterated Lie bracket [/, [/,•••[f,g] •••]]. Since, the matrix

Q(x) =

0 0 2xix4 4x2x4 + G cos x3

0 -2xix4 -2x2x4 - Gcos X3 -4xix^ + 3Gx4 cosx3
0-10 0

10 0 0

(2.9)

has full rank at x = 0 (detQ(0) = G2), it follows that the ball and beam is locally controllable.
The second requirement is not generic. It is required that the distribution

span^ad/flf ••• adnf2g} (2.10)
be involutive, that is, the Lie bracket of any two vector fields in the distribution should also be
contained in the distribution.

Checking the brackets for the ball and beam we find that

[g,ad2fg] = (2x1 - 2x2 0 0)T (2.11)

does not lie within the span of the first three columns (vector fields) of (2.9).
Failing this condition, we see that it is not possible tofully linearize the ball and beam system.

2.4 Approximate Input-Output Linearization

In this section, we see that, by appropriate choice of vector fields close to the system vector fields,
we can design a feedback control law to achieve bounded error output tracking. The control law
will, in fact, be the exact output tracking control law for an approximate system defined by these
vector fields.

Ideally, we would like to find a state feedback control law, u(x) = a(x) + /?(x)v, that would
transform the ball and beam system intcra linear system of the of the form yW = v. Then,
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Figure 2: Approximate input-output linearization: a chain of intergrators perturbed by small
nonlinear terms.

the system could be made to track an arbitrary (C4) trajectory, yd(t), asymptotically by using a
tracking control law of the form

v= yd4){t) + a3(yd3\t) - y<3>(*)) +a2(fci(t) - JJ(*)) +«i(w(*) - *(*)) + «o(w(*) - y(*)) (2-12)

where s4 + a3s3 + a2s2 + ais -f a0 is a Hurwitz polynomial. Note that y, y, etc., are all functions
of the state x.

Unfortunately, due to the presence ofthecentrifugal term r02 = xixj, theinput-output response
of the ball and beam cannot be exactly linearized. Here we try to find an input-output linearizable
system that is close to the true system. We present two such approximations for theball and beam
system. In each case, we will design anonlinear change of(state) coordinates, £ = <£(x), and astate
dependent feedback, u(x,v) = a(x) + P(x)v, to make the system look like a chain of integrators
(i.e., Brunovsky canonical form) perturbed by small higher order terms, ip(x,v), as depicted in
Figure 2. We also compare the performance of these designs to a linear controller based on the
standard Jacobian approximation to the system.

We then build an approximate tracking control law by designing u so that

v= yd4\t) +a3(yd3)(t) - fc(ar)) +a2(yd(t) - <h(*)) +«i(fa(*) - M*)) +<*o(Vd(*) - &(*)) (2-13)

making the error system into an exponentially stable linear system perturbed by small nonlinear
terms.

For each approximation, we present simulation results depicting (a) the output error, yd(t) -
<£i(x(*)), (b) the neglected nonlinearity, ^(x,w), (c) the angle of the beam, 0(t) = x3(r), and (d)
the position of the ball, r(t) = xi(t), for a desired trajectory of yd(t) = J2cos7rt/30, with R = 5,
10, and 15.

Approximation 1



Let fi = <f>i(x) = h(x). Then, along the system trajectories, we have

fi = ^2
& -<h (*)

f2 = —Gsinx3 + xix4

£3 = —Gx4COSX3
v V ^

f4 = Gx4sinx3 + (-Gcosx3)u

6(x) a(x)

or

£1 = £2
6 = & + Wz)

6 = U
£4 = 6(x)+ a(x)u=: v(x, ti).

(2.14)

In this case, the approximate system is obtained by a simple modification of the / vector field (i.e.,
by neglecting V>2(*))-

-0.002

60

(a) error (R - 5, 10, IS)

;iW-i=?

<c) theta (R - 5, 10, IS)

120. 60.

Figure 3: Simulation results for yd(t) = J2cos7rt/30 using the first approximation ((a) e = yd - <£i,
(b) rj>2, (c) 0, (d) r)

The simulation results in Figure 3 show that the closed loop system provides good tracking.
Notice that the tracking error increases in a nonlinear fashion as the amplitude of the desired
trajectory increases. This is expected since the approximation error term i>2(x) is a nonlinear
function of the state. A good a priori estimate of the mismatch of the approximate system for a
desired trajectory can be calculated using ^($~HWi &»&»%)) where $_1 : f »-+ x is the inverse
of the coordinate transformation. This in turn may be a useful way to define a class of trajectories
that the system can track with small error.

Approximation 2



Again, let fi = <f>i(x) = h(x). Then, along the system trajectories, we have

fi = ^
Zi=<fa{x)

£2 = -Gsinx3 + xix4
* , '

f3 = —Gx4COSX3+ x2x4 + 2x2x4m

U=MX) to(*.«)

f4 = xix4 + (-G cos x3 + 2x2X4) u
b(x) a(x)

or

(1 = £2

6 = 6

6 = fc + ifeOO
f4 = 6(x) + a(x)u =: u(x, u).

(2.15)

This time the approximate system is obtained by modifying the g vector field in a more subtle
way. Pulling back the modified g vector field (obtained by neglecting ^3(x,u)) to the original x
coordinates (using u as input) we get

0

0

0

1

g(x)

+

0

0

2Gxi x\ cos a?3 —Ax\ xix\
G(G cos2 X3 -2x2x4 cosars-xixjl sinxj)

2xix^sinx3
Gcos2X3-2x2x4 COSX3—xix^ sinx3

Aflf(x)

(2.16)

The system withg modified in this manner is input-output linearizable and is an approximation to
the originalsystem since Ag is small for small angular velocity, 0 = x4.
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Figure 4: Simulation results for yd(t) = Rcos 7rt/30 using thesecond approximation ((a)e = yd-(f>i,
(b) ife, (c) 0, (d) r)

The simulation results in Figure 4 show that the tracking error is substantially less than that
obtained by the first design.

Jacobian Approximation
To provide a basisfor comparison, we calculate a linearcontrol law based on the Jacobian approx
imation. Previously, we used the invertible nonlinear transformation of (2.2) to simplify the form



of x4. Since we are only allowed linear functions in the control, we must work directly with the
original input r and the true angular acceleration 0 = x4 given by

—MGx\ cos X3 —2Mx\x2X4 1
x4 = + :T .

Mxl + J ' Mx\ + J

We will linearize about x = 0, r = 0. Since the output is a linear function of the state, we begin
with fi = <j>i(x) = h(x). Then, along the system trajectories, we have

(1 = ^
t2=<h (x)

£2 = -Gx3 + xix^ + G(x3 - sinx3)
&=<M«) lfa(x)

& = —GX4

(2.17)

{4=^4 (x)
MG2 -G MG2xiCosx3 + 2MGxix2X4 MG2xx

J

a(x)

Mxl + J
_ MG*Xl , (SL - G \J +\J Mxl +Jj

6(x)

0.004 (a) «rror (R - S)

iln(x,r)
(2.18)

The Jacobian approximation is, of course, obtained by replacing the / vector field by its linear
approximation and the g vector field by its constant approximation.

6h*ta (R - S)

Figure 5: Simulation results for yd(t) = i2cos7rr/30 using the Jacobian approximation ((a) e =
W-*i,(b)«3,(c)0,(d)r)

Figure 5 shows the simulation results from the Jacobian approximation. Unfortunately, the
control system with the linear controlleris not stable for R greater than about 7.

The following table provides a direct comparison of the error e = yd - <j>\ for the three approx
imations:

R Approximation 1 Approximation 2 Jacobian Approximation

5 ±9.6 • lO"5 ±1.5 • 10-5 -4.7 • 10~3 +3.0 • 10-3

10 ±7.5 • lO"4 ±6.5 • 10"5 unstable

15 ±2.5 • lO"3 ±1.9 • lO"4 unstable



Note that Approximation 2 provides better tracking for this class of inputs by about an order of
magnitude over Approximation 1. Due to the large excursions from the origin, the Jacobian Ap
proximation is no longer a good approximation so the system goes unstable. Of course, the other
approximations will eventually go unstable as R becomes large.

In the next section, we will see that these approximations belong to a large class of approxi
mations that provide the model to design stable closed loop control laws for approximate output
tracking.

3 Theory for Approximate Linearization

In this section, we will consider single-input single-output systems of the form

x = f(x) +g(x)u ^y
y = h(x)

where x GRn, u,y GR, / and g are smooth vector fields on Rn (i.e., /(x) GTxRn = Rn, x GRn),
and h : Rn ->• R is a smooth function (smooth is understood to mean as differentiable as needed).
We assume that x = 0 is an equilibrium point of the undriven system, i.e., /(0) = 0.

If the control objective is tracking, the input-output linearization proceeds as follows: differen
tiate the output repeatedly until the input appears for the first time on the right hand side. Thus,
we obtain

y = Lfh(x) ,

V = L)K*)> (3<2)

yW = L)h{x) +LgLylh(x)u .

Here, Lfh{x) stands for the Lie derivative of h(x) along /, L2h(x) stands for Lf(Lfh)(x) and so
on. It follows that in (3.2) above, that

Lgh(x) =LgLfh(x) =•••=LgL}-2h(x) =0 for x GU (3.3)

where U is an open neighborhood of the origin. In the event that LgLy~ h(x) ^ 0 for x GU, the
system is said to have relative degree 7 and the control law

*=i^%)[-^(*H (3-4)
linearizes the system from v to y. However, it may happen that LgLj~ h(x) = 0 at x = 0 butisnot
identically zero in aneighborhood Uofx =0, i.e., XflXj-1/i(x) is a function which is oforder O(x)
rather than 0(1). Then, the relative degree of the system is not well defined and the input-output
linearizing control law of (3.4) is no longer valid.

(In the sequel we will use the 0 notation. Recall that a function S(x) is said to be 0(x)n if

\6(x)\
lim W^- exists and is ^ 0.
|xM) |x|"



Also, functions which are 0(x)° are referred to as 0(1). By abuse of notation, we will also use
the notation 0(x,u)2 tomean functions of x, uwhich are sums of terms of 0(x)2, 0(xu) or 0(w)2.
Similarly for 0(x, u)p.)

Failing this, we seek a set of functions of the state, 0,(x), i = 1,...,7, that approximate
the output and its derivatives in a special way. The integer 7 will be determined during the
approximation process.

Since our controlobjectiveis tracking, the first function, <£i(x), shouldapproximate the output
function, that is

h(x) = <f>i(x) + if>0(x, u) (3.5)

where ij>o(x,u) is 0(x,t*)2 (actually, ^0 does not depend on u, but for consistency below we include
it). Differentiating <f>i(x) along the system trajectories we get

<fr(x) = Lfh{x) + Lgh(x)u. (3.6)

If Lgh(x) is O(x) or of higher order, we cannot effectively control the system at this level so we
neglect it (and a small part of Lfh(x) if we so desire) in our choice of <£2(x):

Lf+guMx) = 4>2{x) + j>i(x, u) (3.7)

where ^>(x,u) is 0(x,u)2. We continue this procedure with

Lf+gu<l>i(x) = <l>i+i(x) + ^•'(aj»u) (3-8)

until at some step, say 7, the control term, Lg4>^(x), is 0(1), that is,

LJ+gu<l>-t(x) = Kx) + a(x)u (3-9)

where a(x) is 0(1). Using this procedure, it looks like we have found an approximate system of
relative degree 7. This motivates the following definition:

Definition 3.1 We say that a nonlinear system (3.1) has a robust relative degree 0/7 about x = 0
if there exists smooth functions <f>i(x), i —1, ..., 7, such that

h(x) = <t>\{x) + Tl)o(x,u)

Lf+gu<j>i{x) = &+i(x) + V>,(*,u) i=l,...,7-l (?-10)
Lf+gu<f>~r(x) = Kx) + a(x)u + V^fa, w)

where the functions ^,(x,«), i = 0, ..., 7, are 0(x,u)2 and a(x) is O(l).

Remarks

• In equation (3.10) above, the fa have the form

ipo(x,u) =^(x) , ^nj
V>,-(x, u) = V>J(x) + i>2{x)u, i = 1,..., 7 - 1

where if)}(x) is 0(x)2 and ijj2(x) is 0(x).

10



• There is considerable latitude in the definition of the <j>i(x) since each ip}(x) may be chosen
in a number of ways as long as it is 0(x)2.

We now characterize the robust relative degree. First, define the Jacobian linearized version of
the system(3.1) about x = 0, u = 0 to be

z = Az +bu (312)
y = cz

with A = D/(0), b= ^(O), and c = dh(0). Then, we have

Theorem 3.1 The robust relative degree of the nonlinear system (3.1) is equal to the relative degree
of the Jacobian linearized system (3.12) and so is well defined.

Proof: For i = 1,...,7 - 1> we nave

Lf+gu<f>i = Lf(j>i + Lg4>iu
= 4>i+i + # + 4>h

(3.13)

so that
&+i(s) = L}4>i(x)-il)}{x), (314,
#(x) = La4n{x).

Also, since ip}(x) is O(x)2, we have, for i = 1,..., 7 - 1,

d#(0) = 0 . (3.15)

Using this and the fact that /(0) = 0, the differentials of the functions <f>i are given by

dfa(Q) = <fo(0)-<tyj(0)
= c-0,

#2(0) = dl/fc(0) - #J(0)
= cP^i(0)./(0) + ^i(0).D/(0)-0 (3.16)
= 0 + c4,

d<£7(0) = cAt-1 .

Calculating the control coefficients, we find

#(0) = <tyi(O).0(O)
= c6,

^(0) = cAb,

^(0) = cAt-%
a(0) = cAi~lb.

11

(3.17)



Since ^2(0) = 0 and a(0) ^ 0, it follows that

cb = cAb = ••• = cA~r-2b = 0,

cAt^b ^ 0.
(3.18)

Thus,7, the robust relative degree of (3.1), is equal to the relative degree ofthe Jacobian linearized
system (3.12). From this, it is easy to see that 7 is independent of the choice of the neglected
functions ^(x,ti) of order 0(x,it)2 and is therefore well defined. E

An immediate corollary of this theorem is

Corollary 3.2 The approximate relative degree of a nonlinear system (3.1) is invariant under a
state dependent change of controlcoordinates of the form

u(x,v) = a(x) + P(x)v (3.19)

where a and ft are smooth functions and a(0) = 0 while /?(0) ^ 0.

In order to show that this procedure produces an approximationof the true system, we need to
show that the functions <£,(•) can be used as part of a (local) nonlinear change of coordinates. To
this end, we prove:

Proposition 3.3 Suppose that the nonlinear system (3.1) has approximate relative degree 7. Then
the functions </>{(•), i = 1, ..., 7, are independent in a neighborhood of the origin.

Proof: Since the <£,(•) are smooth, it is sufficient to check that the constant 7 x n matrix

D<Kp) =

" #1(0) • c

#2(0)
=

cA

. <%(<>) . . cAr~1 .

(from (3.16)) has full rank. If we multiply D<f>(0) on the right by the n x 7 matrix

[jF^bAt-H ••• b]
we get the nonsingular 7x7 matrix

" a(0) 0 ••• 0
* * • * • '.

: *-. *•• 0

* ... * a(0)

(3.20)

(3.21)

(3.22)

where V denotes possibly nonzero entries. This shows that D<f>(0) has a rank of 7 and the propo
sition is proved. "

12



With the 7 independent functions, &(•), in hand, we can, by the Frobenius theorem, complete
the nonlinear change of coordinates with a set of functions, 7?,(x), i = 1,..., n- 7, such that

Lgm(x)= 0 x G U.

Denning new coordinates, (£, 77), by

<fo(x)

£7

m

<f>t(x)

m(x)

we can rewrite the true system (3.1) as

£7-1 = f7 + ^7-l(x,7i)

£7 = b(Z,V) + a(f,7?)u

i = «K,i?)

(3.23)

(3.24)

(3.25)

2/ = fi + M*>w)

where g(f, 7/) is £/7? expressed in (f, n) coordinates.
Note that the form (3.25) is a generalization of the standard normal form of Byrnes and Isidori

[4,1] with the extra terms 4>i(x,u), i = 0,...,7 of0(x, u)2. Thus the control law

u =

<*(£>*?)
[-%(,*)+ v] (3.26)

approximately linearizes the system (3.1) from the input v to the output y up to terms of0(x, u)2.
If the robust relative degree of the system (3.1) is 7 = n, then the system (3.1) is almost

completely linearizable from input to state as well (since there will be no 77 state variables). This
situation was investigated by Krener [6] who showed that the system

x = f(x) + g(x)u (3.27)

with no output explicitly defined was linearizable to terms of 0(x,u)p iff the distribution

span \g adfg ••• ad1l~1g\ has rank n (3.28)

and the distribution

span ig adfg ••• adnf2gJ is order pinvolutive, (3.29)

13



i.e., has a basis, up to terms of 0(x)p, which is involutive up to terms of 0(x)p. Equivalently,
conditions (3.28) and (3.29) guarantee (through aversion of the Frobenius theorem with remainder
[6]) the existence of an output function h(x) with respect to which the system (3.27) has robust
relative degree n and further that the remainder functions ^,-(x,u) are 0(x,tj)p. Our development
differs somewhat from that in [6] in that we are given a specific output function y = h(x) and a
tracking objective for this output. However, there is a happy confluence of our results and those
of Krener for the ball and beam example of the previous section where it may be verified that the
condition of (3.29) is satisfied for p = 3 and further more the desired output function h(x) is in
fact an order p = 3 integral manifold of the distribution of that equation. Consequently the ball
and beam can be input-output and state space linearized up to terms of order 3.

As was remarked, after Definition 3.1, there is a great deal of latitude in the choice of the
functions ^}(x), i = 0,. ..,7 - 1, so long as they are O(x)2. To improve the quality of the
approximation, one may insist on choosing these terms to be 0(x)p for some p > 2. There is less
latitude in the choice of the functions il>?(x). They must be neglected if they are O(x) or higher
and not neglected if they are 0(1) (this determines 7). We cannot in general guarantee that an
approximation of 0(x, u)p for p > 2 can be found. At this level of generality, it is difficult to give
analytically rigorous design guidelines for the choice of the functions i>}(x). However, from the
balland beam example of section 2, it would appear that it is advantageous to have the i?}(x) be
identically zero for as long (as large an i) as possible. We conjecture that the larger the value of
the first i at which either^)}{x) or i>2(x) are nonzero, the better the approximation.

It is also important to note the distinction between the nonlinear feedback control law (3.26)
whichapproximatelylinearizes the system (3.25) and the linear feedback controllaw obtained from
the Jacobian linearization of the original system (3.1) given by

u=c^Tb^cA'fx +v] ' (3'30)
though, as we have shownin the proofof Theorem 3.1, they agree up to first order at x = 0 since
cAt-xb = o(O) and cJP - dLf<f>y(0) = dh(0). It is also useful to note that the control law (3.26) is
the exact input-output linearizing control law for the approximate system

ii = &

^ = ne,v)+<*,*)« (3-31)

y = ft

In general, we can only guarantee the existence of control laws of the form (3.26) that approxi
mately linearize the system up to terms of 0(x,u)2—the Jacobian law of (3.30) is such a law. In
specific applications, we see that the control law (3.26) may produce better approximations (the
ball and beam of section 2 was linearized up to terms of 0(x,?i)3). Furthermore, the resulting
approximations may be valid on larger domains than the Jacobian linearization (also seen in the
ball and beam example). We try to make this notion precise by studying the properties enjoyedby
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the approximately linearized system (3.1), (3.26) on a parameterized family ofoperating envelopes)
defined as:

Definition 3.2 We call U€ C Rn, e > 0, a family of operating envelopes provided that

Us C Ut whenever 6 < e (3.32)

and
sup{£ : Bs C U€) = e (3.33)

where Bs is a ball of radius 8 centered at the origin.

Remarks

• It is not necessary that each Uc be bounded (or compact) although this might be useful in
some cases.

• Since the largest ball that fits in Uc is Be, the set Ut must get smaller in at least one direction
as € is decreased.

The functions il>i(x, u) that are omitted in the approximation are of0(x, u)2 in a neighborhood
ofthe origin. However, if we are interested in extending the approximation to (larger) regions, say
of the form of Ue, we will need the following definition:

Definition 3.3 Afunction ij>: RnxR -• R is said to be uniformly higher order on UexBa C RnxR,
e > 0, if, for some a > 0, there exists a monotone increasing function of e, K€ such that

|V(x,u)| < eK€(\x\ + |u|) for x€Ue,\u\< a. (3.34)

Remarks

• If ij)(x, u) is uniformly higher order on U€ XB„ then it is 0(x,7i)2.

• This definition is a refinement of the condition that ij>(x, u) be 0(x, u)2 in as much as it does
not allow for terms of the form 0(u)2.

Now, return to the original problem. If the approximate system (3.31) is exponentially minimum
phase and the error term is uniformly higher order on Uex'B9t we may use the stable tracking
control law for the approximate system given by

u=-J^r [-&(£, 77) +yP +o^iGfJ7-1*-«+- +a0(yd - ft)] (3.35)

(with st + a-f-is'r-1 H t-a0a Hurwitz polynomial). We can now prove the following result:

Theorem 3.4 Let U€, e > 0, be a family of operating envelopes and suppose that

• thezero dynamics of the approximate system (3.31) (i.e., f) = qr(0,77)^ areexponentially stable
and q is Lipschitz in £ and 77 on $(UC) for each c and

• thefunctions V>i(x,7i) are uniformly higher order on UtX B^.
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Then, fore sufficiently small and desired trajectories with sufficiently small derivatives (yd} yd, ...,
yW), the states of the closed loop system (3.1), (3.35) will remain bounded and the tracking error
will be 0(e).

Proof: Define the trajectory error, e G R7, to be

" ei "ft" " yd
e2

=

ft yd

. et . .fr.
(t-i)

. Vd .

(3.36)

Then, the closed loop system (3.1), (3.35) (equivalently, (3.25), (3.35) ) may be expressed as

ei

e7_i

c7 J

or, compactly,

0

—tto — ai

1

-<*7-l

€l

e7_i

e 7 J

+

e = Ae + if)(x,u(x,yd))

V = g(ft*?)

^i(s,u(s,y<f))

^_i(x,ti(x,yd))
^(x,u(x,37</)) .

(3.37)

(3.38)

where yd := (yd,yd,...,3/^). Since the zero dynamics are exponentially stable, a converse Lya
punov theorem implies the existence of a Lyapunov function (see, e.g., [2]) V2(77) for the system

satisfying

77=5(0,77)

h\r}\2 < V2(n) < k2\v\2
«N(0,i|) <-kz\v\2

(3.39)

(3.40)

for some positive constants k\t fc2, £3, and fc4.
We first show that e and 77 are bounded. To this end, consider as Lyapunov function for the

error system (3.38)
V(eir))=eTPe-rfiV2(n) (3.41)

where P > 0 is chosen so that
ATP + PA = -I (3.42)

(possible since e = Ae is stable) and /j is a positive constant to be determined later.
Note that, by assumption, yd and its first 7 derivatives are bounded,

\e\<\e\ + bd**&\yW\<bd, (3.43)
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the function, g(ft 77) is Lipschitz

mw) - Q(e, *2)\ < vie1 - e\+w - *?2i), (3.44)

the function, ^(x, u), isuniformly higher order with respect to Ue XBa and u(x, yd) locally Lipschitz
in its arguments with w(0,0) = 0,

\2P1>(x,u{x,yd))\ < c'Kelu{\x\ + bd) (*,«) GUe XBai (3.45)

and x is a local diffeomorphism of (ft 77),

1*1 < u\e\+W). (3-46)

Using these bounds and the properties of V2(-), we have

^«tt.l) = ^(0,^)+^(«(ft>?)-<?(<>, 77)) (347)
< -h\n\2 + k4lq\v\(\e\ + bd)-

Taking the derivative of V(-, •) along the trajectories of (3.38), we find, for (x,u)eUeX B9,

V = -|e|2 +2eTP^(x,w(x,|/d)) +/i^g(ft77)
< -|e|2 + e\e\KM\*\+ bd + \n\) + /J.{-k3\n\2 + M9M(H + M)
< -(Q-€KJxbd)2 + (eKtlsbd)2

-(l|l - (eJC/x +M*4«M)2 +(eJCe/, +/l*4/,)2|l?|2 ( ,
_^3(M_^)2 +Mi^l ^ j
-{\-eKtlx)\e\2-\p.k3\n\2

< -($ - €/Ce/x)|e|2 - (f jiA* - (e/iTe/x +mM9)2)M2
+(eJSr€Wrf)2 +M^j^

Define
fc3 (3.49)

Then, for all /x < /zo and all e< min(fi, 47^77), we have

y<_ld! _^!+PfrW2 +(<K<lxbd)2- (3-50)
Thus, V < 0 whenever 1771 or |e| is large which implies that I77I and |e| and, hence, |f| and |x|, are
bounded. The aboveanalysis is valid for (x, u) G U€ x Bv. Indeed, by choosing bd sufficiently small
and appropriate initial conditions, we can guarantee that the state remains in Uc and the input
is bounded by o. Using this fact, we may abuse notation and write the function tl)(x,u{x,yd)) as
eil)(t) and note that

e = Ae + aftf) (3.51)

is an exponentially stable linear system driven by an order e input. Thus, we conclude that the
tracking error will be O(e). '-'
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4 Conclusion

In this paper, we have presented an approach for the approximate input-output linearization of
nonlinear systems, particularly those for which relative degree is not well defined. We saw that
there is in fact a great deal of freedom in the selection of the approximation. We have seen that,
by designing a tracking controller based on the approximating system, we can achieve tracking of
reasonable trajectories with small error. The approximating system is a nonlinear system, with the
difference that it is input-output linearizable by state feedback. We have shown some properties
of the accuracy of the approximation and in the context of the ball and beam example shown it to
be far superior to the Jacobian approximation. Future research in this area will include developing
methods to effectively search among the prospective approximate systems and to evaluate their
accuracy.
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