

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

EXACT ALGORITHMS FOR OUTPUT ENCODING,

STATE ASSIGNMENT AND FOUR-LEVEL

BOOLEAN MINIMIZATION

by

Srinivas Devadas and A. Richard Newton

Memorandum No. UCB/ERL M89/8

3 February 1989

EXACT ALGORITHMS FOR OUTPUT ENCODING,

STATE ASSIGNMENT AND FOUR-LEVEL

BOOLEAN MINIMIZATION

by

Srinivas Devadas and A. Richard Newton

Memorandum No. UCB/ERL M89/8

3 February 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

10inp1 1010 0001 OUt1

01 inpl 0110 00-0 0Ut2

10inp2 1010 0011 0Ut2

-1 inp2 1011 0100 out3

1-inp3 0110 1000 out3

0-inp3 1001 1011 out4

-inp4 0010 1111 out5

-inp5 1101

(a) (b)

Figure 1: Symbolic Covers

1 Introduction

Encoding problems in switching theory include the input encoding and output encoding problems

which involve the assignment of binary codes to symbolic inputs and outputs so as to minimize a

given cost function (typically, the area of the resulting logic network). State assignment, one of the

oldest problems in automata theory, is also an encoding problem. If we view the State Transition

Table (STT) of a finite state machine (FSM) as a truth-table with a symbolic input corresponding

to the present states and a symbolic output corresponding to the next states, then state assignment

can be seen as an input-output encoding problem for the truth-table. This encoding problem has

associated constraints on the equality of codes that are assigned to the input and output symbols

(symbols that correspond to the same symbolic state in the sequential machine). Depending on

the targeted implementation, the goal of the encoding step, beit input or output encoding or state

assignment, varies.

Encoding problems are difficult because they typically have to model a complicated optimization

step that follows. For instance, if we have symbolic truth-tables like those in Figure 1, which are

to be implemented in PLA form, one wishes to code the inpl, .., inpN (otrfl, .., outM) so as to

minimize the number of product terms (or the area) of the resulting PLA after two-level Boolean

minimization. A straightforward, exhaustive search technique to find a optimum encoding would

require O(Nl) ((0(M\)) exact two-level Boolean minimizations. Two-level Boolean minimization

algorithms are very well developed - the programs ESPRESSO-EXACT [15] and McBOOLE [4]

minimize large functions exactly within reasonable amounts of CPU time. However, the number of

required minimizations makes an exhaustive search approach to optimum encoding infeasible for

anything but the smallest problems.

Exact Algorithms for Output Encoding, State Assignment
and Four-Level Boolean Minimization

Srinivas Devadas

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge

A. Richard Newton

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Abstract

In this paper, we present efficient, exact algorithms for the problems of output encoding,
state assignment and four-level Boolean minimization. All previous automatic approaches to
encodingproblemshave involved the use of heuristic techniques. Other than the straightforward,
exhaustive search procedure, no exact solution methods have been proposed.

The problems of output encoding and state assignment targeting two-level logic implementa
tions involve finding appropriate binary codes for the symbolic outputs or states so a minimum
number of product terms results after two-level Boolean minimization. A straightforward, ex
haustive search procedure requires 0(N\) exact Boolean minimizations, where N is the number
of symbolic outputs or states. We propose a novel minimization procedure of prime implicant
generation and covering that operates on symbolic outputs, rather than binary-valued outputs,
for solving the output encoding problem. An exact solution to this minimization problem is also
an exact solution to the encoding problem. Whileour coveringproblem is more complex than the
classic unate covering problem, a single logic minimization step replaces 0(N\) minimizations.

The input encoding problemcan be exactlysolved using multiple-valued Boolean minimiza
tion. We present an exact algorithm for state assignment by generalizing our output encoding
approach to the multiple-valued input case.

Four-level Boolean minimization entails finding a cascaded pair of two-level logic functions
that implement another logic function, such that the sum of the product terms in the two cas
caded functions or truth-tables is minimum. Four-level Boolean minimization can be formulated
as an encoding problem and solved exactly using our algorithms.

Wepresent preliminary experimental results which indicate that medium-sized problems can
be solved exactly. Computationally efficient heuristic approaches based on the exactalgorithms
are proposed for output encoding, state assignment and four-level Boolean minimization.

10inp1 1010 0001 OUt1

01 inpl 0110 00-0 OUt2

10inp2 1010 0011 OUt2

-1 inp2 1011 0100 OUt3

1-inp3 0110 1000 out3

0-inp3 1001 1011 out4

-inp4 0010 1111 out5

-inp5 1101

(a) (b)

Figure 1: Symbolic Covers

1 Introduction

Encoding problems in switching theory include the input encoding and output encoding problems

which involve the assignment of binary codes to symbolic inputs and outputs so as to minimize a

given cost function (typically, the area of the resulting logic network). State assignment, one of the

oldest problems in automata theory, is also an encoding problem. If we view the State Transition

Table (STT) of a finite state machine (FSM) as a truth-table with a symbolic input corresponding

to the present states and a symbolic output corresponding to the next states, then state assignment

can be seen as an input-output encoding problem for the truth-table. This encoding problem has

associated constraints on the equality of codes that are assigned to the input and output symbols

(symbols that correspond to the same symbolic state in the sequential machine). Depending on

the targeted implementation, the goal of the encoding step, be it input or output encoding or state

assignment, varies.

Encoding problems are difficult because they typically have to model a complicated optimization

step that follows. For instance, if we have symbolic truth-tables like those in Figure 1, which are

to be implemented in PLA form, one wishes to code the inpl, .., inpN (otttl, .., outM) so as to

minimize the number of product terms (or the area) of the resulting PLA after two-level Boolean

minimization. A straightforward, exhaustive search technique to find a optimum encoding would

require 0(N\) ((O(Ml)) exact two-level Boolean minimizations. Two-level Boolean minimization

algorithms are very well developed - the programs ESPRESSO-EXACT [15] and McBOOLE [4]

minimize large functions exactly within reasonable amounts of CPU time. However, the number of

required minimizations makes an exhaustive search approach to optimum encoding infeasible for

anything but the smallest problems.

Early approaches to state assignment (e.g. [1], [9], [7], [20]) targeted sum-of-products implemen

tations of finite state machines. Heuristic search methods attempted to produce a state encoding

that minimized the number of product terms in the resulting truth-table or the number of gates

in the resulting two-level network. More recently, multi-level combinational logic implementations

have been targeted [5] [21].

In [14], it was shown that the input encoding problem, when the objective is to minimize

the number of product terms in the eventual PLA, can be solved exactly by means of an exact

multiple-valued Boolean minimization. A minimum cardinality cover equal to the cardinality of a

one-hot coded cover is obtained and the number of bits required to code the symbolic inputs can

be minimized as a secondary objective. The program KISS [14] approximates the state assignment

algorithm as one of input encoding and produces FSMs implemented as PLAs whose product term

cardinality is no greater than that of a one-hot coded FSM. However, since the next state space

is completely ignored, no guarantees as to the global optimality of the result for the original state

assignment problem can be made.

Optimum state assignment requires the optimum integration of input and output encoding

algorithms. Unfortunately, no exact methods for output encoding (other than the trivial exhaustive

search method) have been proposed to date. Heuristic output encoding strategies (e.g. [13], [17])

have been proposed and used in conjunction with the approach in [14] to state assignment.

The problem of minimizing a cascaded chain of linked PLAs, multi-level Boolean minimization,

is one of great theoretical and practical interest. Several heuristic methods involving algebraic and

Boolean decomposition techniques have been proposed (e.g. [2], [8], [6]). An exact factorization

algorithm for single-output functions was proposed in [11]. In [6], the problem of decomposing

a given two-level function into a cascaded pair of two-level functions was posed as an encoding

problem (similar to that of state assignment) and solved heuristically. The method was inexact

because the associated output encoding problem could not be solved exactly.

In this paper, we present an exact algorithm for output encoding. The algorithm finds an

encoding that minimizes the number of product terms in an optimized PLA implementation. The

algorithm consists of the following steps:

1. Generation of generalized prime implicants (GPIs) from the original symbolic cover.

2. Solution of a constrained covering problem involving the selection of a minimum number of

GPIs that form an encodeable cover.

3. Encoding of the symbolic outputs respecting the encoding constraints generated during Step

2.

4. Given the codes of the symbolic outputs and the selected GPIs, a PLA with product term

cardinality equal to the number of GPIs can be trivially constructed. This PLA represents

an exact solution to the encoding problem.

Various techniques to generate GPIs that are modifications to classical prime implicant generation

techniques can be used in Step 1. The covering problem of Step 2 is more complex than the unate

covering problem and hence classical covering algorithms cannot be directly used. Step 3 involves

constrained encoding where the objective is to minimize the number of encoding bits required

to satisfy the constraints. This step is also NP-complete. However, our focus here is to exactly

minimize PLA product term cardinality and heuristically minimize PLA area.

We have also developed an exact state assignment algorithm that has essentially the same

structure as the above procedure. In the state assignment case, thr* present states are represented

as different values of a single multiple-valued variable (as in [14]). The covering problem is more

complex than in the output encoding case and so is the constrained encoding problem. We use the

formulation of [6] to pose the problem of four-level Boolean minimization as one of input-output

encoding and give an exact solution similar to our state assignment algorithm.

In Section 2, basic definitions and notations used are given. The exact output encoding algo

rithm is described in Section 3. We give theorems that prove the correctness of the procedure. The

procedure is generalized for the problems of state assignment and four-level Boolean minimization in

Sections 4 and 5. Pruning heuristics that can be used in the exact solution of the different covering

problems resulting in the output encoding, state assignment and four-level Boolean minimization

cases are described in Section 6. Techniques for the creation of reduced prime iindicant tables

are also described. Heuristics to minimize the number of encoding bits used are touched upon in

Section 7. Preliminary experimental results are presented in Section 8. In Section 9, we propose

some computationally efficient heuristics based on the exact minimization algorithms. Finally, in

Section 10, we describe how symbolic don't cares in output encoding can be handled.

2 Preliminaries

Let B = {0, 1},^ = {0, 1,2}. A logic (Boolean, switching) function // in n input variables,

a?i, £2,.. xn, and m output variables, j/i, 3/2* •• 3/m> is a function

ff:Bn -+ Ym

where x = [a?i, .. a?n] G £n is the input and y = [j/i, .. ym] 6 Y"m is the output of//. i?n

is the Boolean n-space associated with the function //. Note that in addition to the usual values

of 0 and 1, the outputs yi may also take the don't care value 2 (or —) Such functions are called

incompletely specified logic functions. A completely specified function / is a logic function

taking values in {0, l}m, i.e., all the values of the input map into 0 or 1 for all the components of

/. For each component of an incompletely specified logic function //, //,-, i — 1, .. m, one can

define: the ON-set, XiON C Bn, theset ofinput values x such that ffi(x) = 1, the OFF-set,

XiOFF, the set ofvalues such that ffi(x) = 0 and the don't care set XiDC, the set of values

such that ffi(x) = 2. A logic function with m = 1 is called a single-output function, while

m > 1, it is called a multiple-output function.

A cube in a Boolean n-space associated with a logic function, /, can be specified by its vertices

and by an index indicating to which components of / it belongs. An input cube c is specified by

a row vector c = [ci, .. cn] where each input variable takes on one of three values 0, 1 or 2 (or

—) A 2 in the cube is a don't care input, which means that the input can take the values of either

0 or 1. For example, the cube 002 is equal to the union of the cubes 001 and 000. A minterm is

a cube with only 0 and 1 entries. Cubes can also be classified based on the number of 2 entries in

the cube. A cube with k entries or bits which take the value 2 is called a fc-cube. A minterm thus

is a 0-cube.

A cube c\ is said to cover (contain) another cube C2, if each entry of C\ is equal to the corre

sponding entry of C2 or is equal to 2. The supercube of a set of cubes is the smallest cube that

covers each cube in the set. A minterm mi is said to dominate another minterm m2 (written

as mi D 7712) if for each bit position in the second minterm that contains a 1, the corresponding

bit position in the first minterm also contains a 1. Minterm m2 is dominated by mi (written

as m2 C mi). The conjunction of two minterms is the bitwise OR (written as | or U) of the

two minterms. The disjunction of two minterms is the bitwise AND (written as n) of the two

minterms.

A logic function may have multiple-valued or symbolic input variables and symbolic output

variables as in Figure 1. A symbolic input or output variable takes on symbolic values.

A finite state machine is represented by its State Transition Graph (STG) or State Transi

tion Table (STT), G(V, E, W(E)) where V is the set of vertices corresponding to the set of states

5, where ||5|| = Ns is the cardinality of the set of states of the FSM, an edge (v,-, Vj) joins vt- to vj

if there is a primary input that causes the FSM to evolve from state vt- to state Uj, and W(E) is

a set of labels attached to each edge, each label carrying the information of the value of the input

that caused that transition and the values of the primary outputs corresponding to that transition.

In general, the W(E) labels are cubes or minterms.

3 Output Encoding

3.1 Introduction

The output encoding problem entails finding binary codes for symbolic outputs in a switching

function as as to minimize the area or an estimate of the area of the encoded and optimized logic

function. Here, we are concerned with two-level or PLA implementations of logic and hence the

optimization step that follows encoding is one of two-level Boolean minimization.

An arbitrary output encoding of the function shown in Figure 1(b), is shown in Figure 2(a).

The encoded cover is now a multiple-output logic function. This function can be minimized using

standard two-level logic minimization algorithms. These algorithms exploit the sharing between

the different outputs so as to produce a minimum cover. It is easy to see that an encoding such

as the one in Figure 2(b), where each symbolic value corresponds to a separate output, can have

no sharing between the outputs. Optimizing the function of Figure 2(b) would produce a function

with a number of product terms equal to the total number of product terms produced by disjointly

minimizing each of the ON-sets of the symbolic values of Figure 1(b). This cardinality is typically

far from the minimum cardinality achievable via an encoding that maximally exploits sharing

relationships.

3.2 Review of Previous Work

Some heuristic approaches to solving the output encoding problem have been taken in the past (e.g.

[13], [17]). The program CAPPUCINO [13] attempts to minimize the number of product terms in

a PLA implementation and secondarily the number of encoding bits.

The algorithm in CAPPUCINO is based on exploiting dominance relationships between the

0001 001

00-0 010

0011 010

0100 011

1000 011

1011 100

1111 101

0001 10000

00-0 01000

0011 01000

0100 00100

1000 00100

1011 00010

1111 00001

(a) (b)

Figure 2: Possible Encodings of the Symbolic Output

binary codes assigned to different values of a symbolic output. For instance, in the example of

Figure 1(b), if the symbolic value outl is given a binary code 110 which dominates the binary code

100 assigned to out2, then the input cubes corresponding to outl can be used as don't cares for

minimizing the input cubes of out2. Using these don't cares can reduce the cardinality of the ON-

set of the symbolic value out2. In CAPPUCINO, dominance relationships between symbolic values

that result in maximal reduction of the ON-sets of the dominated symbolic values are heuristically

constructed. Satisfying these dominance relationships (which should not conflict) results in some

reduction of the overall cover cardinality. Minimum cardinality cannot be guaranteed because

all possible dominance relations are not explored, nor is an optimum set selected. A more basic

shortcoming is that dominance relations are not the only kind of relationships between symbolic

values that can be exploited. After a symbolic cover has been encoded, it represents a multiple-

output logic function and minimizing a multiple-output function entails exploiting other sharing

relationships than just dominance.

3.3 Conjunctive Relationships

Consider the symbolic cover of Figure 3(a). The function has one symbolic output and one binary-

valued output. Using dominance relationships alone in an encoding, it is not possible to reduce the

size of any of the ON-sets of the symbolic values. One such encoding is shown in Figure 3(b), with

outl given the binary code 00, out2 given 01 and outZ given 11. However, if we code outl with 11,

out2 with 01 and outZ with 10 as in Figure 3(c), we obtain a reduction in cover cardinality after

minimization (Figure 3(d)). Note that in a dominance relationship, the ON-set of the dominated

symbolic value is reduced. However, in Figure 3(c) and 3(d), it is in fact the dominating symbolic

value, outl, whose ON-set cardinality has been reduced from 1 to 0. This is because of the con-

101 outl 1 101 00 1

100 out21 100 01 1

111 out31 111 11 1

(a) (b)

101 11 1 . 10- 01 1100 011 ° JJ
111 101

(c) (d)

Figure 3: Dominance and Conjunctive Relationships

junctive relationship between the codes of out2, outZ and outl. outl = out2 \ outZ and hence

the ON-set of outl can be reduced using the ON-set of out2 and outZ. Just making outl dominate

out2 and outZ is not enough, the codeof outl has to be the conjunction (bitwise OR) of the codes

of out2 and outZ. Exploiting these relationships is basic to a multiple-output logic minimizer and

hence an exact encodingalgorithm has to take into account these relationships in order to produce

a minimumcardinality cover after optimization. Conjunctive relations may involve any number of

symbohc values. For instance, the code of a symbolic value may be the bitwise OR of three other

symbolic value codes.

Enumerating dominance or conjunctive relationships is very time-consuming. Finding the re

duction in cover cardinality that can be accrued via an encoding satisfying each dominance or

conjunctive relationship requires an exact logic minimization. Also, these relationships interact in

complex ways and their effects are not simply cumulative. To solve the output encoding problem

efficiently and exactly, we have to modify the prime implicant generation and covering strategies

that are basic to two-level Boolean minimization.

3.4 An Exact Algorithm for Output Encoding

In this section, we present an exact algorithm for output encoding that guarantees a minimum

cardinality encoded cover. As described briefly in Section 1, this algorithm is a four-step procedure.

These steps are described in detail in the remainder of the section.

Weare givena symbolic cover S with a singlesymbolic output (see Section 3.6 for generalization

to the multiple symbolic output case). The different symbolic values are denoted ui, .., vjv. The

ON-sets of the V{ are denoted C%. Each d is a set of D{ minterms {m,i, .. miDi}- Each minterm

8

1101 (outl) 110- (out1,out2)
nn °„tl 1100 (OU12) 11-1 (0Ut1,0Ut3)
?? °"„ 1111 (out3) 000- (out4)

llll !, • 0000'(OC«4)
nnm °Z -0001 •0014
0001 OUt4 v '

(a) (b)

Figure 4: Generation of Generalized Prime Implicants

m,j has a tag as to what symbolic value's ON-set it belongs to. Note that a minterm can only

belong to a single symbolic value's ON-set. Minterms are commonly called 0-cubes.

3.4.1 Generation of Generalized Prime Implicants

The generation of generalized prime implicants (GPIs) proceeds as in the well-known Quine-

McCluskey (Q-M) procedure [12], with some differences.

1-cubes are constructed by merging all pairs of mergeable 0-cubes. If two 0-cubes with the

same tag, (»,-), are merged then the 1-cube has the same tag (©,-). On the other hand, if a 0-cube

of tag (vi) is merged with a 0-cube with tag (vj), the resultant 1-cube has a tag (vt-, Vj). The rule

for canceling 0-cubes covered by 1-cubes is also different from the Q-M method. A 0-cube can be

canceled by a 1-cube if and only if their tags are identical. A 1-cube 11- with tag (ui, v2) cannot

cancel a 0-cube 110 with tag (vi).

The above can be generalized to the fc-cube case.

1. When two fc-cubes merge to form aH 1-cube, the tag of the k + 1-cube is the union of the

two fc-cube tags.

2. A k -f 1-cube can cancel a /z-cube only if the k + 1-cube covers the Ar-cube and they have

identical tags.

A cube with a tag that contains all the symbolic values (vi, .., v^) can be discarded and is

not a GPL These cubes are not required in a minimum solution (Theorem 3.3). The generation of

generalized prime implicants for the symbolic cover of Figure 3(a) is shown in Figure 4. We have

x GPIs with associated tags.

3.4.2 Selecting a Minimum Encodeable Cover

Given all the GPIs, we have to select a minimum subset of GPIs such that they cover all the

minterms and form an encodeable cover. If we did not have the additional restriction of encodeability

for a selected subset of GPIs, then the output encoding problem would be equivalent to two-level

Boolean minimization. The selection is carried out by solving a covering problem (Section 6 deals

with the covering problem). In the sequel, we describe what an encodeable cover means.

Consider a minterm, m, in the original symbolic cover S. Let the minterm belong to the ON-

set of vm. Obviously, in any encoded cover the minterm m has to assert the code given to vm,

namely e(vm). Let the selected subset of GPIs be pi, .., pa- Let the GPIs that cover m in this

selected subset be pm,i> ••> Pm,M- For functionality to be maintained, the following relation has to

be satisfied, for all minterms m € S.

M

U fX «*.,". i) = <Vrn) Vm (1)
t=l j

where the vPmii j represent the symbolic values that are in the tag of the GPI pm,,. In Figure 5.

we have a selection of GPIs for the symbolic cover of Figure 4(a) (whose GPIs are enumerated in

Figure 4(b)). We have selected the GPIs 110-, 11-1 and 000- from Figure 4(b) in Figure 5(a).

The constraints corresponding to Eqn. 1 for each minterm are given in Figure 5(b). The minterm

1101 is covered by both selected GPIs, one of which has a tag (otitt, out2) and the other has a tag

(outl, outZ). Therefore, Eqn. 1 specifies

e(outl) n e(out2) (J e(outl) f\ e(outZ) = e(outl)

for the minterm xxx and other constraints for the remaining minterms. If a minterm is covered by

a GPI with the same tag as the minterm, then the constraint specified by the minterm via Eqn. 1

is an identity.

Eqn. 1 gives a set of constraints on the codes of the symbolic values, given a selection of

GPIs. If an encoding can be found that satisfies all these constraints, then the selection of GPIs

is encodeable. However, a selection of GPIs may have an associated set of constraints that are

mutually conflicting.

10

1101 e(outl) n e(out2) U e(out1)n e(out3) =e(outl)
1100 e(out1) n e(out2) = e(out2)

110- (outl, out2) 1111 e(out1) n e(out3) = e(out3)
11-1 (outl, out3) 0000 e(out4) = e(out4)
000- (out4) 0001 e(out4) = e(out4)

(a) (b)

Figure 5: Encodeability of Selected GPIs

3.4.3 Dominance and Conjunctive Relationships to Satisfy Constraints

The constraints specified by Eqn. 1 can be satisfied by means of dominance and conjunctive

relations between symbolic values. Continuing with our example, to satisfy

e(outl) D e(out2) (J e(outl) D e(outZ) = e(outl)

one has three alternatives:

1. e{out2) D e(outl)

2. e(outZ) D e(outl)

3. e{outl) C e{out2) \ e(outZ)

Given an arbitrary constraint, a set of dominance and conjunctive relationships can be derived such

that satisfying any single relation satisfies the constraint. Dominance and conjunctive relationships

may conflict across a set of constraints. For instance, one cannot satisfy both e(outl) D e(out2)

and e(out2) D e(outl). This represents a cycle in the dominance graph. Also, if one picks the

equality in choice (3) above, then we require e(outl) D e(out2) and e(outl) D e(outZ). In that

case, one cannot satisfy both (1) and (3) with the same encoding.

Given a selection of GPIs, we derive a set of constraints via Eqn. 1 and construct a graph where

each node represents a symbolic value. Directed edges in the graph represent dominance relations

and undirected edges enclosed by arcs represent conjunctive relations. Each directed edge and arc

has a label, corresponding to the minterm that produces the constraint represented by the edge or

11

arc. The graph corresponding to the selected GPIs of Figure 5 is shown in Figure 6(a). A directed

edge from outl to out2 implies the code of outl should dominate the code of out2. The dotted arc

around the two undirected edges emanating from outl implies that the code of outl should be equal

to or be dominated by the conjunction (bitwise OR) of the codes of its fanout symbolic values,

in this case, outl and outZ. That is, e(outl) C e(out2) | e(owt3). outl is called the parent in

the conjunctive arc and out2 and outZ, the siblings in the conjunctive arc. The conjunctive arc

specifies equality or dominance, however, due to other relationships equality may be specifically

required (see Lemma 3.4). In the case of conjunctive dominance the edges will be undirected, in

the case of conjunctive equality the edges will directed towards the siblings to indicate that the

parent dominates the siblings.

The graph corresponding to a selection of GPIs is encodeable and logic functionality is main

tained, if two conditions are met. One selects either an edge or an arc of each label. In the case of

selecting an arc, all dominance edges covered by the arc (implied by the conjunctive relationship)

are also selected. For some selection,

1. There should be no directed cycles in the graph.

2. The siblings in any conjunctive equality arc should not have directed paths between each

other.

3. No two conjunctive equality arcs can have exactly the same siblings and different parents.

4. The parent of a cojunctive equality arc should not dominate any symbolic value/node that

dominates all the siblings in the arc.

The graph of Figure 6(b), derived from the graph of Figure 6(a), satisfies these properties and

hence the selection of GPIs is valid. This implies that we can find an encoding such that the

optimized cover has 2 product terms.

Given a constraint specified by Eqn. 1 of the form

an&ncUandne|Jan/n$f=a (2)

we have more complex choices than the equation in our example. To satisfy a C\ b Dc = a, for

instance, we need to satisfy both b D a and c D a. This merely corresponds to a pair of directed

edges that have to be selected simultaneously. Further, one can satisfy aDbDc \J aOdDf = a

by satisfying bDc [J df) f D a. This corresponds to a conjunctive relationship with nested

12

1111 1111

1100

1100

(a) (b)

Figure 6: Encodeability Graphs

disjunctive terms. The siblings here are disjunctive nodes bn c and d (1 /. These disjunctive

nodes are dominated by 6, c and d, f respectively. Conditions 2-4 should be satisfied for arcs whose

siblings are disjunctive nodes as well. The symbolic values whose disjunction forms the disjunctive

node are called the ancestors of the node. The ancestors dominate the disjunctive node. Also, if

all the ancestors dominate a particular symbolic value, then the disjunctive node also dominates

that value. For instance, if we have all the ancestors of a disjunctive node dominating the parent

of a conjunctive arc that the node is a sibling of, then we have a cycle in the graph rendering it

unencodeable.

3.4.4 Constructing the Optimized Cover

If a selection of GPIs has been made that covers all minterms and is encodeable, then an encoding

can be trivially found that satisfies the constraints (see Theorem 3.5). We can now construct an

encoded and optimized cover. The cover will contain the selected GPIs. For each GPI, the output

combination in the cover is found using the tag corresponding to the GPI. The codes corresponding

to all the symbolic values in the tag of the GPI are intersected (bitwise ANDed) to produce the

output part. Continuing with our example, the GPIs selected and the tags for the GPIs are shown

in Figure 7(a). These GPIs have an associated graph that is encodeable and an encoding satisfying

the constraints is givenin Figure 7(b). Note that the encoding has to satisfy conjunctive equivalence

e(outl) = e(out2) \ e(outZ), rather than conjunctive dominance e(outl) C e(out2) | e(outZ).

13

110-(out1,out2) °U!I">llii-i iou«i.out3! °^;>

(a) (b) (c)

Figure 7: Consructing the Optimized Cover

This is because of the dominance relationships c(outl) D e(oiit2) and e(owtl) D e(owt3). We have

constructed the optimized cover with the GPIs by intersecting the codes of symbolic values in the

tags of each GPI to obtain the output part (Figure 7(c)).

3.5 Correctness of Procedure

Proposition 3.1 The selection of a minimum cardinality encodeable cover from the GPIs repre

sents an exact solution to the output encoding problem.

In the remainder of this section, we will justify Proposition 3.1. First, we show that logic

functionality is retained.

Lemma 3.2 Satisfying Eqn. 1 and constructing the output part as in Section 3-4-4 retains logic

functionality.

Proof: We construct the output part of a GPI by intersecting all the codes of the symbolic values

contained in its tag. That is precisely the intersection term in Eqn. 1. The output of a minterm in

a PLA is the OR of all the outputs asserted by the cubes that cover the minterm. This corresponds

to the union (OR) in Eqn. 1. Thus, satisfying Eqn. 1 implies that each minterm asserts the same

output combination as it would have in the original encoded but unoptimized cover. Q.E.D.

Next, we show that the canceled fc-cubes during GPI generation are not necessary in a minimum

solution.

Theorem 3.3 i minimum cardinality encodeable solution can be made up entirely of GPIs.

Proof: Assume that we have a minimum cardinality solution with a rube c\ that is not a GPI.

Let the tag of c\ be T. We know a GPI p\ exists such that p\ D c\ ••• •! ^uch that the tag of p\ is

T. Replacing c\ with p\ will not change the cardinality of the cov< • I lie minterms corresponding

to p\ —c\ will be covered by an extra GPI p\ and therefore E«i> . I for those minterms will be

14

110- 01

11-1 10

000- 00

different. However, the extra tag in the equation merely represents an extra option in the graph

corresponding to the encodeability. Since the original graph was encodeable, adding edges with the

same label as the labels of edges originally contained in the graph will not change the encodeability.

We have also discarded cubes with tags that contain all the symbolic values. If such a cube exists

in a minimum encoded cover, it asserts the output combination given by the intersection of the

codes of all the symbolic values. If this intersection is null (all Os), then the cube can be discarded

to obtain a smaller cover. If the intersection is not null and the cube asserts some outputs, then it

means that for the bits corresponding to these outputs, all the codes of the symbolic values have

a 1. We can reduce the codes of the all the values and still maintain their identities by discarding

these outputs. Then, the cube asserts a null output combination and can be discarded. Thus, the

cube is not required in a minimum cover.

Hence, we have a minimum cardinality encodeable selection can be made up entirely of GPIs.

Q.E.D.

Thus, if one selects a minimum set of GPIs that cover all minterms and have an associated set

of constraints by Eqn. 1 that is encodeable, we are guaranteed a minimum solution to the encoding

problem. It remains to prove that the conditions to the satisfied by the graph for encodeability are

necessary and sufficient conditions.

Lemma 3.4 If a conjunctive arc is required in a graph to produce a selection of choices that is

encodeable, then the arc represents a conjuntive equality constraint.

Proof: Without loss of generality, assume we have a constraint specified of the form of Eqn. 2.

We require the choice a conjunctive arc of the form bn c \J df) f Da, only if (6 "ft a or c $ a)

and (d ~fi a or e ~$ a). Else, we can make b D a and c D a to satisfy aClbD c — a or d D a and

e D a to satisfy addDe = a. This implies we have to select an edge a D 6 or a D c and an edge

a D d or a D e. Say, we have to select a D b and a D d. This means bf\ c C a and d(l f C a.

Therefore, bDc \J dC\ f ~fi a and we can only satisfy 6 fl c (J dD f = a. The same argument

holds if we originally select edges a D c and oDeor any other combination. Q.E.D.

Theorem 3.5 Conditions 1-4 stated in Section 3.4-3 are necessary and sufficient for the graph to

be encodeable.

Proof: Necessity: If the graph is cyclic, then we have two dominance relations v\ D v2 and v2 D t!i

that cannot be satisfied simultaneously. If two siblings v-i and v2 of a conjunctive arc have a directed

15

path between each other, it implies that v\ D V2 or V2 D v\. However, we require v\ | V2 = i>3-

If vi D v2 (v2 D vi) then vi = V3 (t>2 = v3), which is not allowed. If two conjunctive equality arcs

with exactly the same siblings exist, the two parents will have to have the same code to satisfy both

equalities. This is not allowed. If a graph violates Condition 4, then the conjunction of the siblings

in the arc is dominated by some symbohc value that is dominated by the parent. This means that

the parent both has to dominate and equal the conjunction of the siblings.

Sufficiency: Given a graph satisfying conditions 1-4, the procedure below constructs a correct

encoding. The procedure assumes all conjunctive arcs are binary, but can be easily generalized.

We initially set the codes of all values to null. For each conjunctive arc, we code the siblings

with 01 and 10 and the parent with 11, except or the cases 7 and 8, where more bits may be used.

For all other values (or nodes):

1. If the node dominates a single sibling, we append that sibling's code to the node.

2. If the node dominates both siblings, we append the parent's code to the node.

3. If the node dominates parent, we append the parent's code to the node.

4. If the parent dominates the node, we append the parent's code to the node.

5. If a single sibling dominates the node, we append the code of the sibling to the node.

6. If both siblings dominate the node, we append the code of all zeros to the node.

7. If a node dominates a single sibling and is dominated by the parent, then we perform the

following steps. We append the node and the sibling it doesn't dominate with 101, the

dominated sibling with 100 and the parent with 111. In the case of K nodes forming a chain

from parent to a sibling, we use K + 2 bits, code the parent with K + 2 Is, topmost node

(level 1) and non-dominated sibling with K + 1 Is, a node at level i with A' + 2 - i Is and

the dominated sibling with one 1.

A node cannot dominate both siblings and be dominated by the parent due to Condition 4.

8. If a sibling is a disjunctive node, then we have to code the ancestors correctly. If one of the

ancestors is dominated by the parent, we are back to Case 7. If both ancestors are dominated

by the parent, then we code the parent with 1111, one ancestor with 1010, the other with

0110 and the sibling gets the intersection 0010. The other sibling's ancestors are coded such

that it gets the code 1101. If neither ancestor is dominated by the parent, then we code one

16

of them with 101, the other with 100, the sibling gets the intersection 100 and the ancestors

of the other sibling are given codes such that the other sibling gets 011.

Next, for each conjunctive arc, the siblings, parent, all nodes dominated by the parent and

dominating a sibling and all ancestors of disjunctive node siblings are merged into a composite

node. The graph is levelized. If L is the number of levels in the graph, the topmost set of nodes is

appended a code of length L with L Is, the next level codes with L —1 Is and so on. Appending a

code to a composite node implies that all the nodes contained in the composite node are appended

with the same code. Q.E.D.

3.6 Multiple Symbolic Outputs

The procedure outlined can be generalized to the case where we have multiple symbolic outputs.

Each minterm initially has a number of tags equal to the number of symbohc outputs. Each tag

corresponds to the symbolic value whose ON-set the minterm belongs to, for each symbohc output.

Minterm pairs are merged and the operations on the tags are performed exactly the same as before.

A k + 1-cube cancels a fc-cube only if all of its tags are identical to the corresponding tags of the

&-cube. Cubes with tags such that all corresponding symbohc values are contained in the tag can

be discarded. Thus, the GPIs can be generated. We have separate graphs representing encoding

constraints for each symbohc output. Given a selection of GPIs, these graphs can be constructed

and checked for encodeability as before. All the graphs have to be encodeable for a selection of

GPIs to be valid.

The generalization to functions with both symbohc and binary-valued outputs is described in

Section 4.2.

3.7 The Issue of the All Zeros Code

If a code of all zeros is given to a symbohc value, then it is possible that one or more GPIs can be

dropped in a PLA implementation, from an otherwise minimum cover. This is because in a PLA

implementation, one is only concerned with the ON-sets. The procedure presented has not taken

this fact into account.

A solution is to perform N + 1 minimizations where N is the number of symbohc values. One

minimization is as before. In the other N minimizations, we drop all the minterms in the ON-set

of each of the iV symbohc values, one value's ON-set at a time. We select the best solution out of

17

0 S1 S1 1

1 S1 S2 0

1 S2 S2 0

0 S2 S3 0

1 S3 S3 1

0 S3 S3 1

Figure 8: State Transition Table of Finite State Machine

the N + 1 minimizations. The reason we have to perform the first minimization without dropping

any of the minterms is that the all zeros code cannot appear in conjunctive relations, since it is

dominated by all other codes. Hence, constraining oneself to use a code of all zeros may result in

a sub-optimal solution.

We can prove the following theorem which gives conditions where multiple minimizations are

not required.

Theorem 3.6 Given a cover with one or more symbolic outputs and binary-valued outputs if all

minterms in the cover belong to the ON-set of at least one binary-valued output, then there can be

no advantage to using an all zeros code.

Proof: The only advantage in using an all zeros code is that minterms may be dropped by putting

them into OFF-sets. We can always satisfy required dominance and/or conjunctive relationships

via codes other than the all zeros code. In the case of a cover with the property mentioned above,

we cannot drop any of the minterms. Hence, we can obtain a minimum cardinality solution without

using the all zeros code. Q.E.D.

4 State Assignment

4.1 Introduction

The state assignment problem is an input-output encoding problem with equality constraints on

the symbohc inputs and outputs. In Figure 8, a State Transition Table (STT) of a finite state

machine (FSM) is shown. The present states (2nd column) can be viewed as a symbolic input and

the next states (3rd column) can be viewed as a symbohc output.

An input encoding problem in isolation can be solved by representing the symbohc input as a

multiple-valued variable [14], where each distinct symbolic value represents a distinct value of the

multiple-valued variable. Exact minimization of the resulting multiple-valued function produces a

18

10 10000 1010

01 10000 0110

10 01000 1010

-1 01000 1011

1-00100 0110

0-00100 1001

-00010 0010

-00001 1101

(a) (b)

Figure 9: Multiple-Valued Functions

minimum cardinality multiple-valued cover. The symbohc cover of Figure 1(a) has been represented

as a multiple-valued function in Figure 9(a). The symbohc value inpl is the value 10000, inp2

is 01000 and so on. Minimizing the function produces the result of Figure 9(b). The merged

input imphcants in the minimized multiple-valued cover represent constraints that the binary codes

assigned to the symbohc values have to satisfy, in order to produce an encoded binary cover with

the same cardinality as the minimized multiple-valued cover. Any set of these input constraints

can always be satisfied by some encoding.

A symbohc value is contained in a multiple-valued imphcant if the position corresponding to

the symbohc value has a 1 in the imphcant. For instance, the symbohc values inpl and inp2 are

contained in the imphcant 11000. The constraint specified is that the supercube of the codes of all

the symbohc values contained in the imphcant should not intersect any of the codes given to the

symbohc values not in the imphcant. In our example, it means that the smallest cube covering

the codes assigned to inpl and inp2 should not intersect the codes of inpZ, inp4 and inpb. Each

distinct multiple-valued imphcant specifies a distinct constraint on the codes that can be assigned

to the symbohc values. As mentioned previously, an encoding satisfying the constraints specified

by any set of multiple-valued imphcants can always be constructed.

To solve the state assignment problem exactly, one can treat the present state space as a

multiple-valued variable and solve the resulting output encoding problem exactly. Modifications

that are required to the strategy presented in Section 3 will be described in the remainder of this

section.

19

01 10000 0110

10 11000 1010

-1 01000 1011

1-00100 0110

0-00100 1001

-00010 0010

- 00001 1101

4.2 Generation of Generalized Prime Implicants

We now have a function with multiple binary-valued inputs, a single multiple-valued input, one

symbohc output and multiple binary-valued outputs, that is to be encoded. Each minterm has a

tag corresponding to the symbohc next state whose ON-set it belongs to. Each minterm also has

a tag that corresponds to all the outputs asserted by the minterm.

Two minterms or 0-cubes can merge to form a 1-cube. Merging may occur between minterms

with the same binary-valued part and different multiple-valued parts or uni-distant binary-valued

parts and the same multiple-valued part. The next state tag of the 1-cube is the union of the next

state tags of the two minterms. As in the Q-M method, the binary-valued output tag of the 1-cube

will contain only the outputs that both minterms asserted. A 1-cube can cancel a 0-cube if and

only if their next state and binary-valued output tags are identical and their multiple-valued parts

are identical. Thus, a 1-cube 1 Oil (where the second term is a multiple-valued imphcant) cannot

cancel 1 001 even if their next state and output tags are identical. This is because the merging of

the multiple-valued part represents an input constraint as described in Section 4.1. One exception

is when the multiple-valued input part of the 1-cube contains all the symbohc states —in this case

the imphcant represents an input constraint that is satisfied by any encoding.

Generalizing to Ar-cubes, we have:

1. A k + 1-cube formed from two fc-cubes has a next state tag that is the union of the two k-

cubes' next state tags and an output tag that is the intersection of the outputs in the fc-cubes'

output tags.

2. A k + 1-cube can cancel a fc-cube only if their multiple-valued input parts are identical or if

the multiple-valued input part of the k + 1-cube contains ah the symbohc states. In addition,

the next state and output tags have to be identical.

A cube with a next state tag containing all the symbohc states and with a null output tag can

be discarded. The generation of GPIs for the FSM of Figure 8 is depicted in Figure 10. 13 GPIs

are eventually produced.

4.3 Selecting a Minimum Encodeable Cover

Given all the GPIs, we select a minimum encodeable set that covers ah minterms by solving a

covering problem (Section 6), as before. However, the definition of encodeabihty is different due to

the complication of having the input constraints.

20

0 100 (S1)(01)
1 100 (S2) ()
1 010 (s2) ()
0 010 (S3) ()
toot (S3)(0T)
0001" (S3)(0T)

-100 (s1,s2)()
•o no••(8ivs3) •()"* o 111 (si, s3) o
0 101 (s1,s3)() -011 (s2, s3)()
1 110(s2)() 1 111 (S2,s3)()

-010 (S2,s3)() 110 <$1'S2'S3H)
••T01T(S2;*S3)-g

0 011 (s3)()
-001 (S3) (01)

Figure 10: Generation of GPIs in State Assignment

An input constraint may conflict with dominance or conjunctive relations. Therefore, when

we pick a set of GPIs, we need to check that the input constraints, given by the merging of the

multiple-valued imphcants, as well as the relations given by Eqn. 1 are compatible. In [13], the

question of compatibility between input constraints and dominance relationships was posed and

a theorem stating necessary and sufficient conditions for compatibility was given. Here, we have

a more complex case of possibly mutually conflicting input, dominance and conjunctive relations.

We can prove the following theorem.

Theorem 4.1 Given a set of dominance and conjunctive relations represented by a graph and a

set of input relations, a necessary and sufficient set of conditions for the existence of an encoding

satisfying all the relations are:

1. Conditions 1-4 of Theorem 3.5 are satisfied.

2. For any state tuple si, s2 and sZ such that si D s2 and s2 D sZ, no input relation should

exist such that the position corresponding to si and sZ has a 1 and the position corresponding

to s2 has a 0.

3. No input relation should exist where all the siblings of a conjunctive equality arc have a 1 and

the parent 0. In the case of the siblings being disjunctive nodes, no input relation should exist

where one or more ancestors of each disjunctive sibling have a 1 and the parent 0.

Proof: Necessity: The proof of the necessity of Condition 1 is identical to the proof in Theorem

3.5. Assume a set of relations violates Condition 2 and an encoding exists satisfying ah relations.

The encoding will have a bit in the codes of si, s2 and s3 such that sl/s3 have Is in the bit and 52

has a 0 or sl/sZ have 0s and s2 has a 1, to satisfy the input relation. In the former case, 52 ~$ sZ

21

and in the latter si "$ s2 and the output relations could not have been satisfied. The same is true

in the disjunctive node case as well.

Assume an input constraint exists where ah the sibhngs of a conjunctive equahty arc have a 1

and the parent a 0. The supercube of the codes of the sibhngs of an equahty arc always intersects

the code of the parent. This means the input constraint cannot be satisfied if the output relations

are satisfied.

Sufficiency: We will show how an encoding can be constructed if Conditions 1-3 are satisfied. We

first construct an encoding satisfying the dominance and conjunctive relations the procedure of

Theorem 3.5. Pick an arbitrary input constraint from the input constraint set. We group the

states with Is in the constraint into Ql and the states with 0s into Q0. We are guaranteed via

Condition 3 that if qi 3 q2 and q2 D 93, then both q\ and qz don't belong to Ql or don't belong to

Q0. If qi G Ql and qz € Q0, then we append a column to the states' codes such that all q € Ql

have a 1 and all q € Q0 have a 0. If q\ € Q0 and qz € Ql, then we append a column to the states'

codes such that all q € Q0 have a 1 and all q 6 Ql have a 0. This does not violate the dominance

relations.

Next, we consider the conjunctive arcs. We have six possible cases, enumerated below.

1. Parent in Q0, all sibhngs in Ql: Cannot occur due to Condition 4.

2. Parent in Ql, all sibhngs in Q0: Without loss of generality, assume a binary conjunctive

arc with two sibhngs. The initial encoding satisfies the equality constraint for the arc. We

append to the code of all q € Ql, including the parent the code 110. Hence, dominance

relations within Ql are not changed. The two sibhngs in Q0 are appended with 010 and 100.

The sibhngs are never required to dominate each other. If any states in Q0 are required to

dominate all or any of the siblings in Q0 or states in Ql, we can append the code 111 to

those states. The states in Q0 that have to be dominated by any of the sibhngs or any of

the states in Ql can be appended with the code of the dominating sibhng or in the case of

multiple dominating sibhngs, the code 000.

3. Parent + some sibhngs in Ql, other sibhngs in Q0: We code the parent and sibhngs in Ql

with a 1 and the sibhngs in Q0 with a 0. If no other dominance relations between states in

Q0 and Ql exists, code the rest of the states in Q0 with a 0 and Ql with a 1. Else, do the

same as in Case 2, using more bits.

4. Parent + some sibhngs in Q0, other sibhngs in Ql: Consider a binary conjunctive arc. The

22

sibling in QO is appended with the code 01, the parent 11 and the sibling in Ql with 10. We

can maintain other dominance relations as before.

5. Parents + all sibhngs in Ql: Code all parents and sibhngs as well as the other states in Ql

uniformly with a 1 or a 0, depending on other dominance relations.

6. Parents + all sibhngs in QO: Similar to Case 5.

Q.E.D.

4.4 Constructing an Optimized Cover

Once the GPIs have been selected and an encoding satisfying all relations is found, it a simple

matter to construct the optimized cover. The output tag of each GPI gives the outputs asserted

by the GPI. Intersecting the binary codes of all states in the next state tag gives the next state

part (in binary form). The multiple-valued input part of a GPI is replaced by the supercube of the

codes of all states in the multiple-valued imphcant.

Arguments very similar to those of Section 3.5 can be used to show that the procedure described

in this section does indeed result in a minimum solution to the state assignment problem.

5 Four-Level Boolean Minimization

5.1 Introduction

The problem of multi-level Boolean minimization aims at finding an optimum representation of a

logic function as a cascade of two-level logic functions. The objective is to minimize the area of the

eventual implementation. The problem we address is the following:

Given a two-level function, find an optimum decomposition of the function into two two-level

functions such that the inputs to the first function are the original primary inputs, the inputs to

the second function are outputs of the first function and the outputs of the second function are the

original primary outputs. An optimum representation is defined a representation where a function

of the number of product terms in the two-level functions is minimized.

Example decompositions are shown in Figure 11. Several points are worthy of note.

1. We consider that all the primary inputs (Pis) or a selected subset of Pis feed into the first

function and all the primary outputs are asserted by the second function. However, in an

23

M/ M/ \U \U

ORIGINAL

PLA

\i/ \l/ \i/ \]/

(a)

M/ M/ M/M/

PLA-I

PLA-I

\/ \/ \/ \/ \/
\\y \\s \\s \U \!/

PLA II

\1/ N/ \l/ Nl/

(b)

Figure 11: Logic Decomposition

PLA-II

\1/ \|/ \l/ \l/

(C)

optimum decomposition, an output of the first function may, in fact, be a direct connection

to a primary input and be used in the second function, as shown in Figure 11(b). Similarly,

a primary output may, in fact, be asserted by the first function and pass unchanged through

the second function.

2. A subset of primary inputs may be initially specified for a decomposition as shown in Figure

11(c). This is the more general case of decomposition. Note that, even in this case, some

intermediate hnes (ILs) may, in reality, be Pis or POs.

3. The cost function that is optimized should ideally be the area of the decomposed functions,

i.e. a function of the number of Pis, POs, ILs and product terms in each function or PLA.

Since, we cannot easily estimate the number of ILs beforehand (it involves an encoding step),

the cost function used here is a hnear weighted sum of the number of product terms in the

two PLAs (the cost function may be non-linear if required).

This problem was first addressed in [18]. In [6], a decomposition heuristic based on multiple-

valued minimization was proposed. Given a two-level cover and a subset of selected inputs, the

algorithm in [6] performs the following steps:

1. The two-level cover is made disjoint in the selected subset of inputs. This identifies a set

of disjoint input combinations for the selected subset. The combinations may be cubes or

minterms.

24

2. A PLA with the input combinations represented as values of a symbohc input and asserting

the original outputs is constructed. This PLA is called the driven PLA.

3. A driving PLA with the original input combinations producing a symbohc output is con

structed. The symbohc values asserted by the symbohc output of the driving PLA and the

symbohc values taken by the symbohc input of the driven PLA have a one-to-one correspon

dence.

4. The driving and driven PLA form a cascade. We have now an input-output encoding problem.

The problem is approximated as an input encoding problem for the driven PLA and solved

using multiple-valued minimization.

This algorithm is heuristic because the size of the driving PLA is not taken into account - the

output encoding problem for the driving PLA is completely ignored.

In the next section, we describe how the state assignment algorithm described in Section 5 can

be modified to the four-level Boolean minimization case.

5.2 Modifications

There are two important differences between the four-level Boolean minimization problem addressed

here and the state assignment problem. Firstly, in the Boolean minimization problem, we have two

distinct covers rather than a single one. Our goal is to minimize a hnear weighted sum of the two

cover cardinalities. The second difference is more subtle. The combinations corresponding to the

selected inputs become values of a symbohc input to the driven PLA which are to be re-encoded.

If one symbolic value always asserts the same primary output as another values (for the different

unselected input combinations), these two values can have the same code in the driving or driven

PLAs. Constraining them to have the same code or constraining them to be different may result in

a sub-optimal solution to the output encoding problem and therefore for the Boolean minimization

problem. We have to use this extra degree of freedom in an optimum way.

The generation of generahzed prime implicants (GPIs) is separate for the two covers. For

the driving PLA with the symbohc output, GPIs are generated as described in Section 3.4.1. The

symbohc input in the driven PLA is replaced by a multiple-valued variable. The generation of GPIs

is similar to the state assignment case - a k + 1-cube cancels a fc-cube only if the multiple-valued

input parts and the output tags are identical (the binary-valued input parts will differ).

25

We thus have two sets of GPIs and we have to select a subset from each of the two sets such

that the subsets cover all the minterms in each cover and together form an encodeable cover. Like

in the state assignment case, we have equahty constraints between the symbohc values representing

the same selected input combination. The compatibility between the input relations given by the

selected subset of GPIs for the driven PLA and the output relations given by the selected subset

of GPIs for the driving PLA is determined via the conditions of Theorem 4.1. A difference is that

some symbohc values may be allowed to have the same code and hence Conditions 1-4 of Theorem

3.5 may be relaxed for these values. For example, cycles are permitted within these values alone

and these values can be parents of a conjunctive arcs with exactly the same sets of sibhngs.

The covering problem to be solved in the output encoding, state assignment and four-level

Boolean minimization cases is described in the next section.

6 Solving the Covering Problem

6.1 Introduction

The classical covering problem of two-level Boolean minimization involves finding a minimum set

of prime imphcants (Pis) that form a cover for a logic function. Here, we have the additional

restriction on the selected generalized prime imphcants (GPIs) - they have to form an encodeable

cover. The definition of encodeabihty varies for the output encoding, state assignment and four-

level Boolean minimization cases. However, the covering algorithm need only be concerned with a

black box that determines encodeabihty of the selected set of GPIs and a few other properties of

the constraint graph associated with the selected GPIs (Section 6.4).

In Section 6.2, we first describe how various techniques for generating the prime imphcants of

binary-valued output functions can be used to generate all the GPIs for functions with symbohc

outputs. In Section 6.3, we review strategies for solving the classical covering problem and in

Section 6.4 we describe our approach to solving the covering problem with associated encodeabihty

constraints.

6.2 Reduced Prime Implicant Table Generation

Many techniques for determining all the Pis of singleand multiple-output logic functions have been

pubhshed in the past [12] [19]. An algorithm based on the recursive decomposition of a function

followed by a pairwise consensus operation has been reported [3] and has been improved upon in

26

0001 outl

00-0 out2

0011 out2

0100 out3

1000 out3

1011 out4

1111 out5

0001 11110

00-0 11101

0011 11101

0100 11011

1000 11011

1011 10111

1111 01111

(a) (b)

Figure 12: Transformation for Output Encoding

the program McBOOLE [4]. Other techniques have been reported in [15]. These techniques not

only efficiently generate Pis without duphcation of effort but also create a reduced prime implicant

table. In the prime imphcant table of the Q-M algorithm, each column in the table corresponds to

a minterm of the function and each row to a PI. In a reduced prime imphcant table, each column

corresponds to a collection of minterms (i.e. a larger subspace), all of which are covered by the

same set of Pis. Thus, using the algorithms of [15] for example, rather than the Q-M method leads

to a more efficient creation of the prime implicant table.

We cannot directly use these techniques on functions with symbohc outputs to generate all

GPIs. The canceling rule for GPIs is not the same as the cancehng rule for Pis. However, we can

transform a function with a symbohc output into a function with multiple binary-valued outputs

such that the Pis for this new multiple-output function have a one-to-one correspondence with the

GPIs of the original function. This is illustrated in Figure 12. The function with a symbohc output

of Figure 1(b) has been duplicated in Figure 12(a). Each symbohc value is replaced by an output

combination to produce the binary-valued multiple-output function of Figure 12(b). M outputs

are required if there are M symbohc values. A symbohc value has an output combination of all Is

and one 0 in a unique identifying position. These outputs perform the same function as the output

tag in GPI generation (Section 4.1).

Lemma 6.1 The Pis of thefunction obtained via the transformation described are the GPIs of the

original function with the symbolic output.

Proof: The set of outputs asserted by any cube in the new function is the set of symbolic values

not in the tag of the corresponding cube in the original function. While generating the Pis for

the binary-valued multiple-output function, a cube, c\, cancels another cube, C2, only if c\ covers

27

0 S1 S1 1

1 S1 S2 0

1 S2 S2 0

0 S2 S3 0

1 S3 S3 1

0 S3 S3 1

0001 1 110110

1 001 0 101 110

1 010 0 101 101

0 010 0 011 101

1 100 1 011 011

0100 1 011 011

(a) (b)

Figure 13: Transformation for State Assignment

C2 and the outputs asserted by c\ are the same as the outputs asserted by C2. This implies that

the set of symbohc values in the tag of the two corresponding cubes in the original function are

identical and C\ would have canceled C2 there as well. Finally, cubes in the binary-valued function

formed with a null output combination are discarded. This corresponds to discarding cubes with

tags containing all the symbohc values. Q.E.D.

Thus, via this transformation we can make use of the classical techniques for prime imphcant

generation. In the state assignment case, we have a symbohc or multiple-valued input variable.

We also have the restriction during GPI generation that the multiple-valued part of a k + 1-cube

that cancels a fc-cube has to be identical. This does not apply to PI generation in multiple-valued

input, binary-valued output functions [16]. We thus have a more complex transformation in the

case of a function with symbohc input and output. This transformation is illustrated in Figure

13. In Figure 13(a), we have duplicated the State Transition Table (STT) of Figure 8. The new

function of Figure 13(b) has three sets of binary-valued outputs. The first set corresponds to the

original binary-valued outputs in the STT. The second set corresponds to the next states. Given

Ns states, we have Ns binary-valued outputs in this set. This set performs the function of the

next state tag in GPI generation (Section 4.2). The third and last set of outputs incorporates the

restriction of the equality of the multiple-valued input parts for cube cancellation. This set of Ns

outputs corresponds to the present state space. It is constructed hke the second set - each state

has a unique TVs-bit code with Ns —1 Is and one 0.

The argument that generating the Pis for this transformed function is equivalent to generating

the GPIs for the original function follows in a similar way to the proof of Lemma 6.1.

In the four-level Boolean minimization case, we generate the GPIs for the driving PLA by

transforming it as in Figure 12. The driven PLA has a symbohc input and binary-valued outputs.

28

We append a set of outputs corresponding to the symbohc input like the present state set (in the

state assignment case) and generate the Pis for the transformed function.

Once the GPIs have been generated, the additional outputs are discarded, since we have to

solve a different covering problem from the standard covering problem. The next state tags and/or

output tags for each GPI are constructed by finding all the symbolic values whose ON-sets intersect

the GPI.

6.3 The Classical Covering Problem

The standard branch-and-bound solution to the minimum cover problem involves the foUowing

steps (rows correspond to Pis and columns to collections of minterms):

1. Remove columns that contain other columns and remove rows which are contained by other

rows. Detect essential rows (a column with a single 1 identifies an essential row) and add

these to the selected set. Repeat until no new essential elements are detected.

2. If the size of the selected set exceeds the best solution thus far, return from this level of

recursion. If there are no elements left to be covered, declare the selected set as the best

solution recorded thus far.

3. Heuristically select a branching row.

4. Add this row to the selected set and recur for the sub-table resulting from deleting the row

and all columns that are covered by this row. Then, recur for the sub-table resulting from

deleting this row without adding if to the selected set.

In [15], a lower bounding technique based on a maximal independent set heuristic was proposed. In

Step 2, a maximal set of columns, all of which are pairwise disjoint is found using a straightforward,

greedy algorithm (Finding a maximum independent set of columns is itself NP-complete). Because

each column must be covered and all the columns in the maximal independent set share no row in

common, the size of the maximal independent set is a lower bound on the number of rows required

to complete the cover. At Step 2, the recursion can be bounded if the size of the selected set at

Step 2 plus the size of the maximal independent set equals or exceeds the best solution known.

29

6.4 Covering with Encodeability Constraints

The algorithm we use is a modification of the algorithm described in the previous section. The

modifications are described in the sequel.

In Step 1, a row (GPI) is deemed to contain another row (GPI) only if the tags of the two GPIs

are identical or the tag of the first GPI is a subset of the tag of the second (This may happen lower

in the recursion after some columns have been deleted). The lower bounding criterion at Step 3

uses the size of the maximal independent set of columns. This bound is looser than in standard

covering because even if a cover can be constructed with a number of elements equal to the lower

bound, it may not be encodeable.

Once the selected set covers all elements, we perform an encodeabihty check. If the cover is

encodeable, we declare the solution as the best recorded until then. If not, we perform another

branch-and-bound step to find the minimum number of GPIs (rows) which when added to the

selected set renders it encodeable. The GPIs during this branch-and-bound step are selected from

the current sub-table in the recursion. This branch-and-bound step is now described.

1. If the selected set is encodeable, then declare the selected set as the best encodeable solution

thus far. If not, check if the size of the selected set plus a lower bound on the required number

of rows to produce an encodeable set equals or exceeds the best encodeable solution obtained

thus far. If so, return from this level of recursion.

2. Heuristically select a branching row.

3. Add this row to the selected set and recur for the sub-table resulting from deleting this row.

Then, recur on deleting the row without adding it to the current set.

We are no longer concerned with covering the minterms in this branch-and-bound step, since all

minterms have already been covered. We estimate the lower bound on the number of GPIs required

to render the graph encodeable by finding the number of disjoint violations of the encodeabihty

conditions of Theorem 3.5 and Theorem 4.1. In the sequel, we elaborate on disjoint violations.

If there are two cycles in the graph such that the edges in cycle 1 have different labels from all

the edges in cycle 2 and no unselected GPI exists that contains both minterms corresponding to

the labels of any pair of edges, then two GPIs are required to break both cycles. These two cycles

are disjoint cycles. Similarly, assume we have two instances of directed paths between siblings of

a conjunctive arc. If the two sets of edges in the two paths have disjoint sets of labels and no

30

unselected GPI exists that covers the pair of minterms corresponding to any pair of edges in the

two paths, then two GPIs are required to remove the two violations. We can have disjoint violations

of Conditions 3 and 4 of Theorem 3.5 as well.

Disjoint violations of Condition 2 of Theorem 4.1 would have 2 state-tuples with dominance

edge pairs that have different pairs of labels with the same GPI restriction as the restriction above.

Similarly, one can have disjosint violations of Condition 3 of Theorem 4.1.

The heuristic selection of a GPI to add to the selected set at Step 2 is performed by selecting a

GPI that covers a large number of minterms corresponding to the labels of edges that are involved

in violations of the encodeabihty conditions.

7 Heuristics to Minimize the Number of Encoding Bits

Given a set of compatible input and output relations, in order to minimize the area of the PLA

implementation, one wishes to construct an encoding satisfying ah relations using a minimum

number of bits.

Heuristics were proposed in [14] and [6] for encoding a set of input relations with a minimal

number of bits. The heuristics of [14] were extended to include dominance relations in [13]. We

propose the following procedure based on the procedures of [6] and [13].

1. Compact the set of input relations using techniques of [14] and [6]. Some input relations may

be imphed by others.

2. Represent the reduced set of input relations by a matrix, where each column corresponds to

a symbohc value and each row to a constraint. Construct an encoding as the transpose of

the matrix, i.e. each symbohc value/node receives as a code the column corresponding to the

node in the original matrix. This encoding is guaranteed to satisfy the input relations [14].

3. Find the set of dominance relations between each pair of nodes that are not satisfied. No dom

inance relation could have been violated. Select a maximal disjoint set of pairwise dominance

relations (By disjoint, we mean that the two nodes in the dominance relation are distinct

from the nodes in the other dominance relation). Satisfy these relations by adding a single

bit to the encoding. Do so till all dominance relations are satisfied.

4. Conjunctive relations have to satisfied for each bit in the encoding. If for a given conjunctive

equality arc, a bit in the codes corresponding to the parent/siblings in the arc violates the

31

relation, it can only be because the bitwise OR of the sibhngs is a 0 and the parent is a 1

(This is because all the dominance relations have been satisfied). We try the choices of raising

the bits in each possible subset of the sibhngs to a 1 (from a 0). At least one of these choices

will not violate the dominance relations. However, an input relation may be violated and/or

a dominance relation may no longer be satisfied.

5. For the input relations that are not satisfied, append a set of bits corresponding to the

transpose of the compacted set of relations. Go to Step 3.

The procedure will converge since the set of relations is compatible.

8 Experimental Results

In this section, we present preliminary experimental results we have obtained on a set of examples.

In our current implementation, generahzed prime imphcants are generated via the procedures of

Section 3.4.1 and Secion 4.2.

The results obtained using the output encoding algorithm are given in Table 1. In the table,

the number of inputs to the function (inp), the number of minterms in the original function (min),

the number of symbohc values (val), the number of binary-valued outputs (out), the number of

GPIs generated (gpi), the number of product terms in the minimized result (prod), the number

of encoding bits (enc) and the CPU time in minutes required for GPI generation, covering and

encoding on a microvax-III (CPU time) are given for each example. For example ex5, the covering

problem could not be solved in less than a CPU-hour. For example ex6 ah the GPIs could not

be generated due to memory limitations. However, examples ex3 and ex4 which have upto 20

symbohc values have been successfully encoded. An exhaustive search method is not feasible for

these examples.

Results obtained using the state assignment algorithm are given in Table 2. The number of

inputs (inp), states (sta), outputs (out) and edges (edg) are indicated for each FSM. Also, the

number of GPIs generated (gpi), the number of product terms in a minimum encodeable result

(prod), the number of encoding bits required (enc) and the CPU time in minutes on a microvax-III

are given. Again for examples fsm5 and fsm6, an exact solution could not be found. An exhaustive

search method is only feasible for fsml.

We beheve that using the transformations of Section 6.2 prior to prime imphcant generation will

increase the size of the examples that can be handled, since a reduced prime implicant table can be

32

EX inp min val out gpi prod enc CPU

time

exl 2 4 4 1 6 3 2 0.1m

ex2 4 15 6 1 23 6 3 0.9m

ex3 6 44 16 2 194 14 6 10.4m

ex4 8 113 20 0 950 50 9 53.6m

ex5 10 213 20 1 8807 - - > lh

ex6 12 410 32 0 >9999 - - -

Table 1: Results Using Output Encoding Algorithm

EX inp sta out edg gpi prod enc CPU

time

fsml 1 3 1 6 13 3 3 0.05m

fsm2 1 8 1 16 91 2 3 4.1m

fsm3 7 16 4 118 1094 46 7 22.1m

fsm4 2 24 1 96 5810 23 12 43.7m

fsm5 8 20 6 107 >9999 - - -

fsm6 7 19 2 170 >9999 - - -

Table 2: Results Using State Assignment Algorithm

33

directly constructed. In the next section, we describe some CPU and memory-efficient heuristics

based on the exact algorithms of Sections 3-5.

9 Computationally Efficient Heuristic Minimization Strategies

The exact algorithms described in Sections 3-5 may require inordinate amounts of memory or CPU

time to run due to the foUowing reasons:

1. The number of GPIs may be too large.

2. Checking for encodeabihty given a set of input, dominance and conjunctive relations can be

accomphshed in polynomial time by checking for the conditions of Theorem 4.1. However, we

have a number of alternatives in choosing these relations. We conjecture that the problem of

checking if an arbitrary set of GPIs can satisfy Eqn. 1 via some encoding is NP-complete, since

the number of equations can be exponential and each equation represents multiple choices.

3. The classical covering problem is NP-complete and we have an additional branch-and-bound

step in our covering problem.

The programs ESPRESSO-EXACT and McBOOLE appear to be capable of exactly minimizing

most encoded FSMs. However, functions hke those of Figure 12(b) and Figure 13(b) have huge

numbers of Pis. This and having to continually check for encodeabihty are the reasons why the

exact output encoding and state assignment algorithms fall short of the performance of exact two-

level logic minimization algorithms. Many heuristics based on the exact procedures described here

are now proposed. These heuristics may result in sub-optimal solutions but are computationally

efficient.

During GPI generation as described in Section 3.4.1, one can discard (or not generate) GPIs with

tags that contain more that k < N —1 symbohc values, where N is tha total number of symbolic

values. If k = 1, we have a disjoint minimization problem, equivalent to that of minimizing each of

the symbohc value ON-sets separately. If k = N —1, we have an exact output encoding algorithm.

Reducing the number of symbohc values that can be contained in a GPI has two advantages.

Firstly, the number of GPIs is reduced. Secondly, the encodeability check becomes easier because

the constraints specified by Eqn. 1 are simpler.

Another strategy which can be used in conjunction with the above heuristic or in isolation

is to define a stronger form of encodeabihty that is easier to check for. As long as the definition

34

includes the conditions of Theorem 3.5 and Theorem 4.1, we will obtain an encodeable solution. The

heuristic may miss an optimum solution because it may consider the solution not encodeable, when

in reality it is encodeable. A stronger definition of encodeabihty would restrict the alternatives

in satisfying a constraint given by Eqn. 1. Consider Eqn. 2. We have 7 possible choices in

satisfying the constraint. If we restricted all relations to be dominance relations, we have 3 choices

in satisfying Eqn. 2. Similarly, if we restricted all relations to be conjunctive, we have 4 alternatives.

One can also spend a specified amount of time (or backtracks) checking for encodeabihty of a set

of constraints and consider the selected set of GPIs to be not encodeable if a selection of edges

representing a compatible set of relations has not been found within the prescribed hmit.

A third heuristic approach is based on the iterative optimization strategy to two-level logic

minimization, first used in MINI [10]. In the state assignment case for instance, one can begin with

the given STT represented as GPIs and iteratively reduce, reshape and expand the GPIs while

maintaining coverage of the minterms and encodeabihty. Since the iterative optimization approach

has met with great success in the heuristic two-level logic minimization area, we feel that this

approach holds the most promise.

10 Symbolic Don't Cares

Don't cares for binary-valued functions are simply represented and exploited in logic minimization.

Functions with symbohc outputs may have associated don't care conditions with certain input

combinations as weU. These don't cares are called symbolic don't cares.

A symbohc don't care is defined on the set of symbohc values that the function can take. For

instance, the cube 1010 in the function of Figure 14 is a symbohc don't care. A symbolic don't

care may encompass all the symbohc values of the function or only a subset. Cube 1011 of Figure

14 is a don't care which can take on only a subset of the complete set of symbolic values.

One can produce an exact solution to an output encoding problem under an arbitrary symbolic

don't care set as follows. Add the don't care minterms to the ON-sets of each of the symbohc

values that the minterm can take. GPIs are generated as before. However, we may have a situation

where two identical Ar-cubes have tags such that the first one's tag is a subset of the other. In this

case the first k-cube cancels the second.

Given all the GPIs, the covering problem is solved as before. The minterms corresponding to

the symbohc don't cares have to be covered as well and Eqn. 1 has to be satisfied for them, else

35

0000 outl

0011 outl

0001 out2

0100 out2

0101 out3

1000 out4

1010 outl /out2/out3/out4

1011 out1/out2

Figure 14: Symbohc Don't Cares

they may assert an invalid binary combination in the encoded cover. However, Eqn. 1 for these

minterms has more choices, since a minterm effectively belongs to multiple symbolic value ON-sets

(multiple vms in Eqn. 1). Any one of these constraints is to be satisfied. For example, we may

have

outl n out2 [J outl n outZ = outl or out2

for a symbohc don't care.

11 Conclusions

In this paper, we presented exact algorithms for the problems of output encoding, state assignment

and four-level Boolean minimization.

The procedures described are much more efficient than a straightforward, exhaustive search

procedure to solve these problems. We proposed a novel minimization procedure of prime imphcant

generation and covering that operates on symbohc outputs, rather than binary-valued outputs, for

solving encoding problems.

Preliminary experimental results indicate that medium-sized problems can be solved exactly.

Computationally efficient heuristic approaches based on the exact algorithms have been proposed.

The efficiency and quality of these heuristic approaches is currently being evaluated.

12 Acknowledgements

The interesting discussions with Tony Ma, Robert Brayton and Alberto Sangiovanni-Vincentelh on

state assignment are acknowledged. This research was supported in part by the Defense Advanced

Research Projects Agency under contract N00014-87-K-0825.

36

References

[1] D. B. Armstrong. A programmed algorithm for assigning internal codes to sequentialmachines.

In IRE Transactions on Electron Computers, pages 466-472, August 1962.

[2] R. Brayton, R. Rudell, A. Sangiovanni-Vincentehi, and A. Wang. Mis: a multiple-level logic

optimization system. In IEEE Transactions on CAD, pages 1062-1081, November 1987.

[3] R. K. Brayton, G. D. Hachtel, Curt McMullen, and A. Sangiovanni-Vincentehi. Logic Mini

mization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[4] M. Dagenais, V. K. Agarwal, and N. Rumin. Mcboole: a procedure for exact boolean mini

mization. In IEEE Transactions on CAD, pages 229-237, January 1986.

[5] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-Vincentehi. Mustang: state as

signment of finite state machines targeting multi-level logic implementations. In IEEE Trans

actions on CAD, pages 1290-1300, December 1988.

[6] S. Devadas, A. R. Wang, A. R. Newton, and A. Sangiovanni-Vincentehi. Boolean decomposi

tion in multi-level logic optimization. In Journal of Solid State Circuits, April 1989.

[7] T. A. Dolotta. The coding of internal states of sequential machines. In IEEE Transactions on

Electronic Computers, pages 549-562, October 1964.

[8] D. Bostick et. al. The boulder optimal logic design system. In InVl Conference on Computer-

Aided Design, November 1987.

[9] J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential Machines. Prentice-

Hall, Englewood Cliffs, N. J., 1966.

[10] S. J. Hong, R. G. Cain, and D. L. Ostapko. Mini: a heuristic approach for logic minimization.

In IBM journal of Research and Development, pages 443-458, September 1974.

[11] E. Lawler. An approach to multi-level boolean minimization. In Journal of the ACM, 283-295

1964.

[12] E. J. McCluskey. Minimization of boolean functions. In Bell Lab. Technical Journal.

pages 1417-1444, Bell Lab., November 1956.

37

[13] G. De Micheh. Symbohc design of combinational and sequential logic circuits implemented by

two-level macros. In IEEE Transactions on CAD, pages 597-616, September 1986.

[14] G. De Micheh, R. K. Brayton, and A. Sangiovanni-Vincentehi. Optimal state assignment of

finite state machines. In IEEE Transactions on CAD, pages 269-285, July 1985.

[15] R. RudeU and A. Sangiovanni-Vincentehi. Exact minimization of mutiple-valued functions for

pla optimization. In Proc. IEEE Int. Conf. on CAD (ICCAD), pages 352-355, 1986.

[16] R. RudeU and A. Sangiovanni-Vincentelh. Multiple-valued minimization for pla optimization.

In IEEE Transactions on CAD, pages 727-751, September 1987.

[17] A. Saldanha and R. H. Katz. Pla optimization using output encoding. In Int'l Conference on

Computer-Aided Design, pages 478-481, November 1988.

[18] T. Sasao. Pla decomposition. In MCNC 1987 Logic Synthesis Workshop, May 1987.

[19] P. Tison. Generalization of consensus theory and application to the minimization of boolean

functions. In IEEE Transactions on Computers, pages 446-450, August 1967.

[20] H. C. Torng. An algorithm for finding secondary assignments of synchronous sequential cir

cuits. In IEEE Transactions on Computers, pages 416-469, May 1968.

[21] W. Wolf, K. Keutzer, and J. AkeUa. A kernel finding state assignment algorithm for multi-level

logic. In Proc. of 25th Design Automation Conference, pages 433-438, June 1988.

38

	Copyright notice1989
	ERL-89-8

