

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE FRONT END TO SIMULATOR INTERFACE

by

Thomas L. Quarles

Memorandum No. UCB/ERL M89/43

24 April 1989

THE FRONT ENDTO SIMULATOR INTERFACE

by

Thomas L. Quarles

Memorandum No. UCB/ERL M89/43

24 April 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THE FRONT END TO SIMULATOR INTERFACE

by

Thomas L. Quarles

Memorandum No. UCB/ERL M89/43

24 April 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

in

Preface

This memo is one of six containing the text of the Ph.D. dissertation Analysis of Performance

and Convergence Issues for Circuit Simulation. The dissertation itself is available as UCB/ERL

Memorandum M89/42. The other appendices are available as:

Memo number Title

UCB/ERL M89/44 The SPICE3 Implementation Guide
UCB/ERL M89/45 Adding Devices to SPICE3
UCB/ERL M89/46 SPICE3 Version 3C1 Users Guide
UCB/ERL M89/47 Benchmark Circuits: Results for SPICE3

This memo was originally Appendix A of the dissertation and contains a description of the

interface between the Numeg front end and the SPICE3 circuit simuator. This version describes the

interface as of the release of SPICE3, version 3C1.

Table of Contents

Chapter 1 : The Front End to Simulator Interface 1
1.1 : Introduction 2

1.1.1 : Terminology 2

12 : System overview 4

1.2.1 : Simulator objects 4
1.2.2 : Front end objects 6

1.2.2.1 : Name space management 6
12.2.2 : Parse trees 6

12.2.3: Plots 7
13 : Error handling g

1.4 : Data Structures 13
1.5 : Simulator subroutines 20
1.6 : Front end subroutines 31

1.6.6 : Poinrwise output 34
1.6.7 : Windowed output 36
1.6.8 : General routines 38

1.7 : Changes since version 1.0 44

CHAPTER 1

The Front End to Simulator Interface

The remainder of this chapter is the detailed description of the interface from a front end to a

circuit simulator. This interface was originally designed for SPICE3 as one of the major module

separation points, but as the utility of the idea became apparent, the idea was expanded toencompass

othersimulators. Almost all of the development work for this interface was done in various versions

ofSPICE3, but the extensions ofthe interface to support many other simulators has been a joint effort

with Ken Kundert, Tom Laidig, and Don Webber.

The changes described inthe final section ofthis chapter refer to differences since a preliminary

version of this interface (Vl.O) was described in a manual accompanying the SPICE3B1 release, and

are provided in an attempt to provide continuity in documentation from release to release. This

chapter currently describes version 2.0.

1.1. Introduction

Tliis paper is an attempt to bring all the circuit simulators being written together under one

common interface so that work being done on the development of an input language, graphics output,

data management, and user interface need not be duplicated. The assumption is made that the front

end will be linked with the simulator and will then interact withit through a series of subroutine calls.

In order to make it possible to simply relink the front end with a different simulator, we present here

a complete set of definitions of routines that we believe are sufficient for all current simulators.

1.L1. Terminology

For this to work, we make a few assumptions about the simulator and about terminology that

makes everything much easier, andthat all current simulators can readily agree on.

References to the front end in this document can either refer to the front end itself or to a

separate back end which does data collection. Since the purpose of this document is to explain how

these front and back end systems interact with the simulator, not how they interact with each other,

we have chosen to refer to them collectively as the front end. When we refer to a drcuit we mean a

set of instances and their models which are all interconnected to form a single connected circuit that

will be treated as one in a simulation. While some simulators may only support a single circuit, most

simulators allow several circuits to be defined at a time and switch between them based on a parame

ter passed on all of the function calls. When we refer to a device we mean a category of circuit ele

ments, such as 'resistor', 'capacitor', or 'bipolar transistor'. When we refer to a model we mean a

named set of parameters selected by the programmer for a device which are likely to be common to

several instances. When we refer to an instance we mean a specific instantiation of a model which

has terminals connected to other instances making up a circuit A node is a connection point between

elements of the circuit, sometimes known in other systems as a net A signal is a circuit variable

which is naturally computed by the simulator and is output to the front end. All node voltages are

signals, and additional signals such as currents may be created by the simulator. An analysis is the

smallest component of a simulation which the simulator will perform. Generally, an analysis will

result in a single output, and will be independent of other analyses, but an analysis may also modify

and change the results of another analysis, such as a sensitivity analysis which causes additional com

putation and output to result during ac, dc, and transient analyses, or the 'options' analysis generally

used to modify the simulation program's overall parameters. A task is a collection of analyses which

should be performed together by the simulator in a single call from the front end. Finally, when we

refer to a plot we mean a collection of data associated with single analysis which would be used to

generate one or more actual plots.

12, System overview

Trie interface between the simulator and the front end is a fairly simple interface, using a rela

tively small set of routines for manipulating each type of object Trie simulator provides a library of

subroutines to the front end which supplies the main program to interact with the user and call the

simulator as needed. The objects can generally be split into two categories, those the simulator main

tains at the request of the front end, and those the front end maintains at the request of the simulator.

1.2.1. Simulator objects

The simulator and front end agree on die existence of six different types of simulator objects, a

circuit, a node, a model, an instance, a task, and an analysis. A circuit is the top-level construct

which a simulator manipulates, and thus contains all the other objects. Functions are provided to

create and delete circuits. A circuit is made up of a set of interconnected nodes and instances. Nodes

are second level objects, and are attached directly to the circuit. Functions are provided to create and

delete nodes, set parameters on diem and query their parameters. Additionally, since instances and

nodes must be connected together, functions are provided to connect a terminal of an.instance to a

node and to locate a node within the circuit, either by name or by reference to the terminal of an

instance it is connected to. Models are second level objects, and functions are provided to create and

delete them, set and query their parameters, and to find them by name within the circuit Instances

are always instances of a specific model, and thus third level objects. Functions are provided to

create and delete instances, to set and query their parameters, and to find mem by name within the

circuit Finally, analyses and tasks have a relationship very similar to mat between instances and

models. Functions are provided to create and delete tasks, as well as find them by name within the

circuit they were declared in. Analyses can be created, found within the circuit or task, and have

parameters set and queried.

Although there are a large number of total functions, their operations are all quite similar, mak

ing them simple to use.

The only moderately complicated aspect of using these functions is the technique used to find

the arguments to use in them. Some objects are relatively simple, circuits and tasks come in only one

variety, and have no operations which apply directly to them. Nodes come in only one variety, but

have attributes which can be modified by the program, thus their set and query functions. For each

object which has set and query functions, there will be a description of the capabilities of that object

in an array of IFparm structures. These capabilities will be in the form of keywords to identify the

capabilities to the user, integer id's to be used when communicating to the simulator, longer descrip

tive messages, and a type field which signals the type of data needed orsupplied and other properties

of the transaction. Generally, the front end will search through such a table until the proper keyword

match is found, then use the type information to properly format the parameter for the simulator and

the id to identify die transaction to the simulator in a call to the proper function.

Analyses are more complicated yet, in that there are several types of analyses, thus an array of

IFanalysis structures is provided to allow the front end to search through and identify the type of

analysis it wants. Actual identification of the analysis is by the index, starting from zero, of the

desired analysis in this array. Each analysis then provides an array of EFpaim structures to describe

the operations that can be performed onthat specific type of analysis.

Devices are the most complicated object of all and provide an array of IFdevice device descrip

tors. The front end uses the zero based index of the proper device descriptor in this array to identify

the type of device. Each of these IFdevice descriptors provides a set of IFparm arrays of parameters

for bom the models and instances of the device it describes.

While the set of functions provided isquite extensive, many of the functions are expected to be

used frequently, and thus should be fast, while others are provided for completeness and to help a

front end which wishes to trade off efficiency for simplicity or memory use. Specifically, the find

functions will generally be slow since they must search through large data structures, while the create,

delete, bind, set parameter, and query parameter functions should be simple to implement and can be

expected to be quite fast

1.2.2. Front end objects

Trie front end manipulates sets of data known as plots and parse trees for complicated expres

sions, as well as maintaining the symbol tables for the overall system.

1^2.1. Name space management

The front end is responsible for maintaining all names used in the entire system. Rather than

manipulate names directly, the front end and simulator pass around tokens known as IFuid's, interface

unique identifiers. The front end is able to map an IFuid into its corresponding name or other

identification on demand, but as far as the simulator is concerned, this simple object which can be

compared for equality using the standard = operator in C is all that it needs to know about. When

ever die simulator wishes to create an object with a new name, it must go through the front end to

have an IFuid generated correctly. IFnewUid generates an IFuid for the simulator. It is assumed that

the simulator will rarely need to generate names from scratch, but that they will usually be related to

an IFuid provided by the front end from userdata. For example, an internal node in a device should

be identified by the device name plus some further distinguishing characters. Since die front end will

keep any two devices from having the same name, this will prevent name conflicts in simulator gen

erated names as long as, for example, a character which is illegal in user supplied names is added in

die process. Thus, IFuid requires an existing IFuid as one argument along with an additional charac

ter string to be used to make die name unique. Note that IFuid's are especially useful to graphical

interfaces where nodes may not have names which are meaningful to die user, but the system can

easily translate some identifier to a piece of geometry to highlight

1222. Parse trees

The front end provides parse tree support to the simulator to allow for complicated expressions

that are evaluated at run time. The front end will parse such an expression into a parse tree data

structure, and on demand, through a function provided in that structure, evaluate the expression and

its partial derivatives. This function, known genetically as IFevai does not necessarily exist by this

name, but is simply the name of the function pointer in the parse tree structure. Making this a per-

parse tree pointerallows for a system which compiles and loads code for parse tree evaluation.

1.2.2.3. Plots

Each analysis will generally produce a single plot as output A plot may be as simple as a sin

gle vector of data at an operating point of the circuit, or a multi dimensional plot of one or more

dependent variables as one or more independent variables changes through a range. Functions are

provided to indicate the beginning and end of a plot, to provide data within the plot, to define an

additional dimension on the plot, and to provide further information about the data being output, such

as the units it is measured inor the type of scale it is appropriate toplot it against

8

13. Error handling

All the functions used to interface between the front end and the simulator return an error code.

Error codes are simple integers with specific meanings as defined in the header file IFerrmsgs.h. A

return value of zero indicates no error, error codes from 1 to E_PRIVATE are generic codes that apply

to many simulators, and codes above E_PRIVATE are simulator specific. Currentiy, there is expansion

space reserved between the highest defined shared error code and E_PRIVATE, but simulator specific

error codes should explicitly add the constant E_PRIVATE to each of their codes to allow for further

expansion of the shared message list In addition to the simple integer error codes used for errors,

there are two additional sources of information about errors which can be used whenever the error

code is non-zero. The global variable errRtn can be set to point to a constant character string and

will be interpreted by the front end as the point in the analysis where the error was detected. The

global variable errMsg is used to contain a descriptive message about the error. Since most messages

will contain variable length descriptive information which will be assembled into a buffer using

sprintf, the calling routine will free it after printing the message, thus the message pointed to by

errMsg should be dynamically allocated with malloc. Both errRtn and errMsg should be defined in

the front end and referenced as external variables by the simulator. This will ensure against multiple

definitions or no definition. The name pointed to by errRtn should not be dynamically allocated since

this win not be freed by the front end, thus allowing it to be used even in the case of a malloc error.

After output, both errMsg and errRtn will be cleared to NULL by the front end to prevent incorrect

future messages from a simulator that chooses not to set both in every case. In the interests of max

imum flexibility, the simulator is allowed to set either, both, or neither of errMsg and errRtn, and the

front end should do something sensible in all cases. It is strongly recommended that the simulator set

both unless it is using a standard error code, in which case it should still set errRtn. In the case of

returns from front end or back end routines called by the simulator, the return codes and conventions

are the same, and the simulator may wish to simply pass the codes on up the calling hierarchy to the

front end.

The following is a summary of the error codes currendy defined in IFerrmsgs.h. It is expected

that this list will grow, so any messages you add to it locally will probably need to be renumbered

and added in again with each successive version of this header file from Berkeley. If you find the

need for additional public error codes which should be produced by several simulation programs,

please let us know so we can put them in this document and in the master copy of the header file.

1.3.1. OK

No error.

13.2. E_PAUSE

EJPAUSE is a special return code provided for the simulator to indicate to various levels of its

own code as well as the front end that it is pausing asa result of a request from the front end, and not

terminating normally or in error.

133. E_PANIC

This is a very vague message that is provided for errors that don't fit into any other category

and are of the type that can never occur, but paranoid programming practice dictates that a test for

them be made anyway.

13.4. EJEXISTS

An attempt has been made to create a model, instance, node, or analysis that already exists.

This can be either an error or a warning, depending on the amount of state maintained by the front

end. As a warning, it allows a front end to maintain a minimal amount of state about models,

instances, and analyses, andstill correctly handle cases where a user makes a second reference to one.

If the front end is careful about state and never repeats a creation, then this indicates an error in that

data. The creation routine will not create a new model instance, or analysis, but will instead find and

return the existing one.

10

Not all simulators provide this level ofchecking, and it is undefined what will happen in such a

simulator if a duplicate of a device is created.

1.3.5. E_NODEV

An attempt has been made to reference a device which doesn't exist

13.6. E_NOMOD

An attempt has been made to reference a model which doesn't exist

13.7. E_NOANAL

An attempt has been made to reference an analysis which doesn't exist

13.8. E_NOTERM

An attempt has been made to bind a circuit node to a terminal that isn't defined for the

specified device.

13.9. EBADPARM

A parameter specification is in error, because the specified parameter number is not validin this

circumstance.

13.10. E_NOMEM

The simulator has run out of memory. This is usually a fatal error, and the simulation in ques

tion can not be resumed. The exact state of the circuit involved is undefined, although it is

guaranteed that the circuit can be freed with the deleteCircuit function, and if the circuit has reached

the simulation stage, the simulation can be restarted without difficulty, although continuation is not

possible.

11

13.11. E_NODECON

A node binding for a terminal of an instance has been specified for a terminal that is already

bound. The simulator must bind the terminal to die new node, but this error is returned as a warning

that a rebinding is occurring.

13.12. E_UNSUPP

The front end called a function which the simulator has not implemented. For full functional

ity, all the described functions should be implemented, but in some implementations some of the

functions will be left out either because the simulator can't support them or because the interface is

only partially implemented.

13.13. EJPARMVAL

The parameter specified is not in the legal range for this parameter. The specification has been

rejected by the simulator.

13.14. E_NOTEMPTY

The device, model, analysis, or node specified to a deletion function is still referenced by some

thing and cannot be deleted.

13.15. E_NOCHANGE

The simulator has reached a point where it can no longer accept additions to or changes in the

structure of the circuit, and the operation requested by the user would have made such an addition or

change. The requested operation is rejected.

13.16. ENOTFOUND

Tlie simulator has been asked to find something and has not been successful in locating it

12

13.17. EJBAD_DOMAIN

The output package has detected some incompatibility between the pairing of OUTbeginDomain

and OUTendDomain calls or the nesting level of the calls at the time OUtyData or OUTwData was

called.

13

1.4. Data Structures

A variety of data structures are used to pass data back and forth between the simulator and the

front end. These data structures are all defined in IFsimJi, which should be included by all routines

using this interface.

1.4.1. IFparm structure

The IFparm data structure is a low level structure, arrays of which are used within other struc

tures to describe the bulk of the data concerning die simulator's capabilities to the front end by

describing the parameters available. The IFparm data structure consists of four fields used to describe

the data involved.

typedef struct sEFparm {
char *keyword;
int id;

int dataType;
char "'description;

} IFparm;

Trie keyword entry is a one word character string which would be used on an input line to indi

cate the beginning of an entry of this type. To avoid problems with special characters which may be

used by some parsers, the keyword should use a very restricted character set We recommend restrict

ing the keyword to letters, digits, and underscores, with the first character a letter. The id field is a

simple integer which uniquely identifies this parameter within the set of parameters in this array of

IFparm structures. This is a simple integer since integer comparison is much faster than string com

parison, and it allows simple aliasing of keywords. The dataType field is an integer that holds one of

the values defined in the IFsim.h header file. Trie legal values for dataType currently include the prim

itive types IF_FLAG, IFJNTEGER, IF_REAL, IFCOMPLEX, IF_NODE, IF_STRING, DFJNSTANCE,

IF_PARSETREE, and vectors of these primitive types (indicated by or'ing IFJVECTOR with the proper

type). This identifies the type of argument the keyword should be associated with in an input or the

type of value to be returned in response to a query. The parser should use this to determine how to

interpret the argument and to place it in the correct field of the union used to pass data to the

14

simulator or extract the result from the returned union. The dataType field also may have a bit set

indicating theparameter is required (IF_REQUIRED), which allows the front end to do some additional

error checking by not asking the simulator to run an analysis if all parameters are not specified, but

the simulator should not depend on this level of checking, it is simply provided as a level of optimi

zation for front ends which wish to save some time processing bad inputs. There are also bits for

indicating whether the description is of an input data item valid in a parameter call (IF SET), is an

output data item valid in a question call (IF_ASK), or is both. As a special case, if it is not indicated

as an input or output data item, it is an input parameter which the simulator recognizes as being a

normal parameter under the circumstance, but one which this simulator chooses not to support

Finally, the simulator can indicate that additional information is required to specify the parameter

more precisely by setting the IF_SELECT or IF_VSELECT bit If either of these bits are set, then the

'selector' parameter may contain an integer or vector of integers respectively to further specify the

parameter. It is intended that these be used to provide access to individual elements in arrays of

parameters without having to set or output the entire array. See setNodeParm and askNodeQuest for a

more detailed description of this mechanism.

The description is a longer, more descriptive character string that describes the parameter. The

description should be short enough to easily fit on a single line of a standard terminal, but sufficiently

detailed to identify the function of the parameter to a user of the program. Note that the order in

which parameters are passed to the simulator is not defined, andmay be the order in which the user

specified them, die order the simulator defined diem in or completely random at the option of the

front end.

1.4.2. IFuid datatype

Trie datatype IFuid is defined in the header file to facilitate the exchange of the unique

identifiers used in place of names. Tins datatype is intended to be a pointer, thus the front end can

have it point directly to the name in question, can have it point to some data structure, or can, in a

machine dependent implementation, have it contain some other data such as an integer.

15

1.43. IFparseTree structure

This structure is designed to allow the front end to read and partially parse a complex expres

sion which the simulator can later call to have evaluated. This structure contains all the information

the simulator needs to determine the variables involved and how to have the tree evaluated.

typedef struct sIFparseTree {
int numVars; /* number of variables used */
int *varTypes; /* array of IFvalue types describing values */
IFvalue *vars; /* array of IFvalues describing values */
int ((*IFeval)0); /* function to call to get evaluated */

} IlTparseTree;

numvars is the number of variables used in the parse tree, vars is an array of the actual param

eters used in the expression. Note that all of the variables must be names ofsignals, either those gen

erated normally by the circuit or those in the list of special signals provided in the IFsimulator struc

ture. IFeval is a function provided by the front end which will evaluate the equation represented by

the parse tree structure and its partial derivatives. IFeval is described in greater detail in the chapter

on front end functions.

1.4.4. IFvalue structure

The structure used to pass data values to and from the simulator is defined as:

typedef union uIFvalue{
int iValue; /* integer valued data */
double rValue; /* real valued data */
complex cValue; /* complex valued data */
char *sValue; f* string valued data */
IFuid uValue; /* instance valued data */
IFnode nValue; /* node valued data */
IFparseTree *tValue; /* parse tree */
struct {

int numValue; /* length of vector */
union {

int *iVec; /* pointer to integer vector */
double *rVec; /* pointer to real vector */
complex *cVec /* pointer to complex vector */
char **sVec; /* pointer to string vector */
IFuid *uVec; f* pointer to instance vector */
IFnode *nVec; /*pointer to node vector */

}vec;

16

}v;
} IFvalue;

All of the possible parameter types can be placed in this structure, integer values in the iValue

field, reals in the rValue field, node pointers in the nValue field, and strings in the sValue field. Vec

tors are given as a length in v.numvalue field with an array of values in one of the v.vec.Xvec fields.

Flags are passed in the iValue field, with the convention that any non-zero value corresponds to set

ting the flag, and zero corresponds to clearing it

1.4.5. IFdevice structure

This structure is used to describe a device to be parsed, along with its parameters and the

corresponding information, if any, about the model used for the device.

typedef struct sIFdevice {
char '"name; /* name of this type of device */
char '"description; /* description of what the device is */

int terms; /""number of terminals on this device */
int numNames; /'"number of names in termNames */
char **termNames; /* pointer to array of pointers to names */

I* array contains 'numNames' pointers */

int nnmlnstanceParms; /* number of instance parameter descriptors */
IFparm *instanceParms; /* array of instance parameter descriptors */

int numModelParms; /* number of model parameter descriptors */
IFparm *modelParms; /* array of model parameter descriptors */

} IFdevice;

Name is the character string used to describe all devices of this type, such as 'resistor'. Again,

to prevent problems with special characters in parsers, the name should be limited to letters, digits,

and underscores, with the first character a letter. Description is a one-line description of the device.

terms is the number of terminals allowed on the device. To allow for devices with a variable number

of terminals, if terms is negative, then at least -terms terminals must be present, but any number

larger than that is legaL TermNames is a pointer to an array of length numNames of character

pointers, each of which points to a character string describing a node of the device. If terms is non-

17

negative, then it is equal to numNames, while if it is negative, its absolute value must be less than or

equal to numNames. There are two arrays of IFparm structures for each device. Trie instanceParms

array is of length numlnstanceParms, and contains parameters and questions that apply to individual

instances. The modelParms array is of length numModelParms, and contains parameters and ques

tions that apply to a device model The front end will use these structures to determine what opera

tions are legal oneach device and pass the appropriate IFparm id back to the simulator as necessary.

1.4.6. IFanalysis structure

typedef struct sIFanalysis {
char *name; /* name of this analysis type */
char '"description; /* description of this analysis type */

int numParms; /* number of analysis parameter descriptors */
IFparm *analysisParms; /* array of analysis parameter descriptors */

} IFanalysis;

This structure is used to describe an analysis that can be performed by the simulator. Name and

description are respectively one word and one line descriptions of the analysis being offered. Once

again, name should be composed only of letters, digits, and underscores with a leading letter. The

analysisParms array describes the parameters and queries that are applicable to this particular

analysis.

1.4.7. IFsimulator structure This structure consists of a number of pointers to functions that the

parser may use, as well as tables of data. The parser will obtain this simulator data by calling the

simulator routine XXXinit(). This routine returns apointer to a copy of the following IFsimulator struc

ture.

typedef struct sIFsimulator {
char '"simulator, /* the simulator's name */
char ^description; /* description of the simulator */
char*version; /* version or revision of simulator */

int ((*newQrcuit)0); /* create new circuit*/
int (C"deleteCircuit)()); /* destroy old circuit's data structures */

int ((*newNode)());
int ((*groundNode)());
int (C"bindNodeX));
int ((*findNode)0);
int ((*instToNodeX));
int ((*setNodeParmX));
int ((*askNodeQuest)0);
int (C"deleteNode)());

int ((*newInstanceX));
int ((*setInstanceParm)0);
int ((*askInstanceQuest)());
int ((*findlnstance)());
int ((*deletelnstance)0);

int ((*newModel)0);
int ((*setModelParm)());
int ((*askModelQuest)());
int (C"findModel)());
int ((*deleteModel)0);

int ((*newTaskX));
int ((*newAnalysis)0);
int ((*setAnalysisParm)());
int ((*askAnalysisQuestX));
int ((*findAnalysis)0);
int ((*findTask)0);
int ((*deleteTask)0);

int (C"doAnalysesX));

int numDevices;
IFdevice **devices;

int numAnalyses;
IFanalysis **analyses;

int numNodeParms;
IFparm *nodeParms;

int numSpecSig;
char **specSigs;

} IFsimulator;

/* create new node */
/* create ground node */
/* bind a node to a terminal */
/* find a node by name */
/* find node attached to a terminal */
/* set a parameter on a node */
/* ask a question about a node */
/* delete a node from the circuit */

/* create new instance */
/* set a parameteron an instance */
/* ask a question about an instance */
/* find a specific instance */
I* delete an instance from the circuit'"/

/* create new model */
/* set a parameteron a model */
/* ask a questions about a model */
/* find a specific model */
/* delete a model from the circuit*/

/* create a new task */
/* create new analysis */
/* set a parameter on an analysis */
/* ask a question about an analysis */
/* find a specific analysis */
/* find a specific task */
/* delete a task */

/* run a specified task */

/* numberof device types supported */
/* array of device type descriptors */

/* number of analysis types supported */
/* array of analysis type descriptors */

/* number of node parameters supported */
/* array of node parameter descriptors */

/* number of special signals legal in parse trees */
/* names of special signals legal in parse trees */

18

The functions pointed to by this structure are described in the chapter on interface subroutines.

The simulator character string is the name of the simulator itself. NumDevices contains the number

of devices which are described in the devices array. Devices is an array of pointers to IFdevice struc

tures for the numDevices devices supported by the simulator. Analyses is an array of pointers to

19

IFanalysis structures describing the numAnalyses different analyses supported by the simulator, num-

NodeParms is die number of parameters supported onnodes in die circuit, and nodeParms is the array

of descriptors of those parameters. numSpecSig and specSigs provide a list of special signal names

which identify signals which may be used in parse trees even through they may notnormally occur in

the circuit as dependent variables. Typically, these will be die independent variables, such as time, of

the various types of analyses which the simulator may wish to allow to occur in parse trees. Use of

these variables in parse trees requires special action on the part of the simulator, particularly in the

case of multiple analyses where a particular variable may not be active in certain situations. Some

reasonable value should be used, and the action documented in the description of the function.

1.4.8. IFfrontEnd structure

typedef struct sIFfrontEnd {
int ((*IFnewUidX));
int ((*IFpauseTest)0);
double ((*IFsecondsX));
int ((*IFerrorX));
int ((*OUTpBeginPlotX));
int ((""OUTpDataX));
int ((*OUTwBeginPlot)0);
int ((*OUTwReferenceX));
int ((*OUTwData)0);
int ((-"OUTwEndX));
int (C"OUTendPlot)0);
int ((*OUTbeginDomain)0);
int ((*OUTendDomainX));

} IFfrontEnd;

/* create a new UID in the circuit */
/* should we stop now? */
/* CPU time so far */
/* output an erroror warningmessage */
/* start pointwise output plot */
/* data for pointwise plot */
/* start windowed output plot */
/* independent vector for windowedplot */
/* data for windowed plot */
/* signal end of windows */
/* end of plot */
/* start nested domain */
/* end nested domain */

int (ftecffjattritpaesfc&ftutes of node */

This structure is used by the front end to describe itself and the back end to the simulator. The

functions whose pointers are required in the structure are all described in the front end subroutines

section.

20

1.5. Simulator subroutines

Since we want to allow for several simulators to be supported by the front end in as modular a

fashion as possible, we define the following subroutines for communication between the front end and

the simulator. These are the subroutines that must be implemented by the simulator for the front end

to calL Note that only the 'genetically named' subroutine XXXinit is defined as having a known name

while all others may have any name at all, but are listed by the names given to them in the IFsimula

tor and IFfrontEnd data structures described in the previous section for ease of identification. It is

STRONGLY recommended that for simplicity, each simulator or front end or major section thereof

have a unique two or three letter prefix that is prepended to all external names, including the names

of these functions, to prevent name clashes.

hi the description of the functions below, many parameters are described as GENERIC * or GEN

ERIC **. This should be the ANSI standard void * or void ** notation, but many C compilers do not

support this yet, so you may wish to use char * and char ** instead. To make this substitution easier,

everything has been declared with GENERIC which is typedef&to voidin the IFsimJi header file if the

preprocessor symbol _ JTDC_ _ is defined, or to char otherwise.

1.5.1. XXXinit

int XXXmit(frontEnd, description)
IFfrontEnd *frontEnd;
IFsimulator '"'"description;

The function XXXinit performs whatever simulator specific initialization is needed, and allows

the front end and simulator to exchange information about each other. The actual name of the func

tion should be derived from the simulator, thus SPIinit initializes spice, while RLXinit would initialize

relax. By naming the simulator initialization function this way, several simulators can be used from

within one front end at one time. The front end supplies a pointer to an IFfrontEnd structure which

describes itself and the (possibly separate, possibly integrated) back end to the simulator. In return,

the simulator provides a pointer to it's IFsimulator structure which describes to the front end all the

21

remaining interface facilities. This function is the only one in the simulator or front end which has a

fixed name, all other functions are accessed through the IFsimulator and IFfrontEnd structures, thus

allowing for the possibility of multiple simulators accessible from one front end or multiple front ends

for one simulator by changes in thisone routine at some point in the future.

1.5.2. newCircuit

int newCircuit(circuit)
GENERIC **circuit;

NewCircuit is a function that allocates the structure necessary to describe a circuit, and sets

♦circuit to be a pointer to the newly allocated structure. Each succeeding call from the parser will

contain this pointer as one of its arguments to identify which circuit the call applies to.

1.53. deleteCircuit

int deleteCircuit(circuit);
GENERIC *circuit;

DeleteCircuit is a cleanup function that recursively traverses all the data structures mat may be

associated with circuit and frees them. After return, circuit is no longer a valid circuit pointer and its

use in anysubsequent subroutine calls will cause unpredicatable results.

1.5.4. newNode

int newNode(circuit, node, nodeUid);
GENERIC *circuit;
GENERIC **node;
IFuid nodeUid;

This function will be called by the front end whenever a new circuit node is to be created. The

pointer pointed to by node will be set to a value to be used by the front end for all future references

to this node. It is expected that the simulator will keep the node IFuid it receives in order to describe

its output and to produce error messages. The simulator may also wish to assign its own node

numbering based on these calls, node is the unique identifier assigned by the front end for this node.

22

Note that it is an error to call this function with a IFuid that matches that passed to a previous call,

although it is not necessary for the simulator to check for this error.

1.5.5. groundNode

int groundNode(circuit, node, nodeUid);
GENERIC *circuit;
GENERIC **node;
IFuid nodeUid;

This function creates a node exacdy as newNode does, but it indicates that this is the ground

node, and thus must be called exactly once for each circuit This subroutine will return E EXISTS if

a ground node has been previously defined for this circuit and die value of the ground node is NOT

changed. This subroutine must be called before any other reference is made to the ground node by

any other call to the simulator.

1.5.6. bindNode

int bindNode(circuit, instPtr, terminal,node)
GENERIC *circuit;
GENERIC *instPtr,
int terminal;
GENERIC *node;

This function connects a terminal of an instance to a node in the circuit The terminal parame

ter is used to select a terminal by number. Terminals of the device are numbered from 1 to the max

imum terminal number allowed, while nodes are passed by the pointers returned by newNode and

groundNode. Note that the terminal numbering is assumed to correspond to die ordering of the term-

Names field in the device structure.

13.7. findNode

int findNode(circuit, node, nodeUid)
GENERIC *circuit;
GENERIC **node;
IFuid *nodeUid;

23

This function allows the front end to find a node pointer from the node's unique identifier. The

arguments are all exacdy as in newNode, but the node must already exist or the error E_NOTFOUND

will be returned.

1.5.8. instToNode

int instToNode(circuit, instPtr, terminal, node, nodeUid)
GENERIC *circuit;
GENERIC *instPtr,
int terminal;
GENERIC **node;
IFuid *nodeUid;

This function allows the front endto find the node pointer and node unique identifier of the cir

cuit node a particular terminal of an instance is bound to. If the node has not been bound yet, instTo

Node will return the node this terminal will be connected to by default if no call to bindNode is made

and the simulator provides default bindings,otherwise it will set node and nodeUid to NULL.

1.5.9. deleteNode

- int deleteNode(circuit, node);
GENERIC '"circuit;
GENERIC * node;

This function is used to indicate to uk simulator that the last attachment to the specified node

has been deleted and the node will no longer be used. Since the simulator may keep reference counts

on nodes, it may detect a call to deleteNode that MUST be ignored because the node is still in use and

return the E_NOTEMPTY error code, but the simulator's behavior in such a situation is undefined

since it need not do such reference counting. Note that it is always illegal to delete the ground node.

13.10. setNodeParm

int setNodePann(circuit, node, parm, value, selector)
GENERIC ""circuit;
GENERIC '"node;
int parm;
IFvalue *value;
IFvalue ""selector;

24

The node node in circuit circuit has its parameter parm set to the appropriate value taken from

die value structure. The selector structure provides additional information about the way the parame

ter is to be modified. Specifically, it is either an integer or vector of integers which selects a specific

entry from the set of possible values to set For example, if a possible parameter is a multi

dimensional matrix, and a user wishes to change only a single entry in the matrix, rather than passing

the entire matrix it is possible to set the selector structure to have the array of matrix subscripts to

specify the element to be changed and place justits value in the value field. Another parameter with

a similar but not identical name may be used to manipulate the entire array or matrix. Note that for

any parameter not declared with the IF_SELECT or IF_VSELECT bit in its IFparm structure, this argu

ment is ignored.

13.11. askNodeQuest

int askNodeParm(circuit, node, quest, value, selector)
GENERIC *circuit;
GENERIC '"node;
int quest;
IFvalue *value;
IFvalue '"selector;

The node node in circuit circuit is queried for die value of its parameter quest which is returned

in the appropriate field in the supplied value structure. As with the setNodeParm function, the selec

tor allows the specification of a single value within a uni- or multi- dimensional array, but is ignored

unless IFjSELECT or IFJVSELECT is specified in the IFparm structure for the parameter.

1.5.12. newlnstance

int newlnstance(circuit, modelPtr, instPtr, nameUid)
GENERIC *circuit;
GENERIC *modelPtr,
GENERIC **instPtr,
IFuid nameUid;

Circuit is the circuit structure describing the circuit this instance is to be a part of. ModelPtr

will be a pointer to the actual model that is to be instantiated. InstPtr points to the pointer the newln-

25

stance routine should initialize to point to the new instance. Nameid is the unique identifier of the

instance to be created.

1.5.13. setlnstanceParm

int setInstanceParm(circuit, instPtr, parm, value, selector)
GENERIC *circuit;
GENERIC *instPtr,
int parm;
IFvalue *value;
IFvalue *selector;

This function is used to set a single parameter on a instance to a specified value. instPtr is the

instance pointer provided by the newlnstance function.

1.5.14. asklnstanceQuest

int askInstanceQuest(circuit, instPtr, parm, value, selector)
GENERIC ""circuit;
GENERIC *instPtr,
int parm;
IFvalue *value;
IFvalue *selector,

This function can be used at any time to determine the current value of any of the queryable

parameters described in the instanceParms array. Trie first two parameters are- used simply to identify

the instance in question, parm is one of the id's from the instanceParms array, and identifies the exact

parameter to be returned, while value points to an empty IFvalue structure which will be filled in as

appropriate by the simulator.

1.5.15. findlnstance

int findlnstance(circuit, devlndex, instPtr, instUid, modelPtr, modelUid)
GENERIC *circuit;
int '"devlndex;
GENERIC **instPtr,
IFuid instUid;
GENERIC *modelPtr;
IFuid modelUid;

26

This function is used to allow the front end to find an instance pointer from whatever informa

tion it has available about the instance. The pointer pointed to by instPtr will besetto the necessary

instance pointer if the information is sufficient and the instance is found, otherwise findlnstance will

return E_NOTFOUND. Hie information required to identify the instance is simply the minimum of the

following needed to uniquely identify it, provided in any sensible combination. The more information

provided, the more efficiently the instance can be found, with the most important information being

described first instUid is the unique identifier of the instance to be found and MUST be supplied.

devlndex is a pointer to the (0 based) index into die device array in the IFsimulator structure of the

description of this device type. If devlndex points to -1, it will be set to the correct value on return.

modelPtr is the model pointer for the model this instance is thought to be an instance of A value of

NULL indicates the model pointer is not known. modelUid is the unique identifier of the model this

instance is thought to be an instance of. A value of NULL indicates the model identifier is unknown.

1.5.16. deletelnstance

int deletelnstance(tircuit, instPtr)
GENERIC *circuit;
GENERIC '"instPtr,

This function removes the specified instance from the circuit After return, instPtr is no longer

valid and should not be used in any further subroutine calls.

1.5.17. newModel

int newModel(circirit, devlndex, modelPtr, modUid)
GENERIC *circuit;
int devlndex;
GENERIC **modelPtr,
IFuid modUid;

This function is similar to the newlnstance function, except it creates a model instead of an

instance, thus treating modUid and modelPtr as nameUid and instPtr were treated in newlnstance.

devlndex is a specification to the simulator of die type of model which is being created. The model

type is defined as the (0 based) index to the description of the device in the devices field of the

27

IFsimulator structure.

1.5.18. setModelParm

int setModelParm(drcuit, modPtr, parm, value, selector)
GENERIC ""circuit;
GENERIC *modPtr;
int parm;
IFvalue *value;
IFvalue *selector;

This function is identical to setlnstanceParm, except it applies to parameters of a model instead

of an instance.

1.5.19. askModelQuest

int askModelQuest(circuit, modelPtr, parm, value, selector)
GENERIC *circuit;
GENERIC * modelPtr,
int parm;
IFvalue ""value;
IFvalue ""selector;

This is similar to the asklnstanceQuest function, but applies to parameters of a device model

instead of an instance.

1.5.20. findModel

int findModel(circuit, devlndex, modelPtr, modelUid)
GENERIC ""circuit;
int ""devlndex;
GENERIC **modelPtr;
IFuid *modelUid;

This function allows the front end to attempt to get a model pointer from whatever information

it has about the model, devlndex is the device index ofthe device type the model is an instance of,

and may be specified as -1 if it is unknown. The actual index value will be returned to facilitate

obtaining information from the IFdevice structure for further operations on the model. modelUid

specifies the unique identifier of the model being looked for, and must be supplied. modelPtr points

to a pointer which will be set to the desired model pointer if the specified model is found. If the

28

specified model can't be found either because it doesn't exist or because not enough data has been

supplied, findModel returns EJNOIFOUND.

1.5.21. deleteModel

int deleteModel(circuit, modelPtr);
GENERIC *circuit;
GENERIC *modelPtr;

This function removes the specified model from the circuit After return, modelPtr is no longer valid

and should not be used in any further subroutine. If any instances of the specified model exist,

deleteModel should return E_NOTEMPTY without deleting anything

1.5.22. newTask

int newTask(circuit, taskPtr, taskUid);
GENERIC ""circuit;
GENERIC """"taskPtr,
IFuid taskUid;

A task is a grouping of analyses that are to beperformed as a group bya single call to doAna-

lyses. The simulator is free to re-arrange analyses within a task if doing so will improve its

efficiency, but may not move analyses between tasks. This function creates a new task associated

with the given circuit with die unique identifier specified and returns a pointer through taskPtr.

1.5.23. newAnalysis

int newAnalysis(circuit, analmdex, analysisUid, analysisPtr, taskPtr);
GENERIC *circuit;
int anallndex;
IFuid analysisName;
GENERIC """"analysisPtr;
GENERIC -"taskPtr,

This function creates a new analysis within the specified task, and sets the pointer pointed to by

analysisPtr to be the appropriate analysis pointer.

29

1.534. setAnalysisParm

int setAnalysisParm(circuit, analysisPtr, parm, value, selector)
GENERIC ""circuit;
GENERIC ""analysisPtr;
int parm;
IFvalue *value;
IFvalue *selector;

This function sets a parameter for the specified analysis.

13.25. askAnalysisQuest

int askAnalysisQuest(circuit, analysisPtr, parm, value, selector)
GENERIC *circuit;
GENERIC ""analysisPtr;
int parm;
IFvalue ""value;
IFvalue *selector,

This function provides information about the specified analysis request

1.5.26. findAnalysis

int nndAnalysis(circuit, anallndex, analysisPtr, analysisUid, taskPtr, taskUid)
GENERIC ""circuit;
int ""anallndex;
GENERIC **analysisPtr;
IFuid analysisUid;
GENERIC ""taskPtr;
IFuid taskUid;

This function is provided to allow the front end to locate a specific analysis from limited infor

mation. analysisUid is the unique identifier of the analysis to be found and must be specified.

anallndex is a pointer to the index used in the newAnalysis call, and is set on return. taskPtr is a

pointer to the task this analysis is a member of, and may be passed as NULL if it is not known.

taskUid is the unique identifier of the task this analysis is a member of, and may be passed as NULL

if it is not known. If both taskPtr and taskUid are passed as null, then for the return value to be

defined, the analysisUid must be unique over all analyses in all tasks.

30

1.5.27. findTask

int fmdTask(circuit, taskPtr, taskUid)
GENERIC *circuit;
GENERIC **taskPtr;
IFuid taskUid;

Ibis function allows the front end to geta task pointer from the task unique identifier.

1.538. deleteTask

int deleteTask(circuit, taskPtr)
GENERIC ""circuit;
GENERIC ""taskPtr;

This function deletes the specified task and all analyses in it

1.539. doAnalyses

int doAnalyses(circuit, restart, taskPtr)
GENERIC ""circuit;
int restart;
GENERIC *taskPtr;

This function instructs the simulator to perform the analyses within the specified mslr that have

been requested by previous function calls.

The restart parameter has several different values which determine how the simulator will

proceed. If restart is RESUME, the simulator should attempt to resume from where it stopped if possi

ble even if that is in the middle of a paused or aborted analysis, and failing that, restart the aborted

simulation without rerunning the entire task. If restart is RESTART, the simulator should throw away

any analysis results obtained so far for this task and start all over again. If restart is SKIPTONEXT,

the simulator should give up on the analysis in progress, but attempt to continue with any other

scheduled analyses in this task. When starting an analysis from the beginning, the value RESTART

should be given.

31

1.6. Front end subroutines

All output from the simulator must pass through a consistent interface since the front end

should have complete control of the display at all times to eliminate confusion due to terminals with

graphics and alphanumeric modes, intermixed output, and othersuch difficulties. The functions below

fall into three categories, those which are generic, and thus used by all simulators, those which are

tuned for simulators which generate their output as a setof values for a single value of their indepen

dent variables (pointwise output), and those which generate their output as a set of solutions for a sin

gle signal at a set of values for their independent variables (windowed output). Note that calls to the

pointwise and windowed functions may NOTbe mtermixed.

These calls all return an error condition as described earlier in this interface manual If the

error return is not OK, then die operation requested may not have been completed, and future calls

may or may not succeed depending on the type of error. The simulator must NOT terminate, but

should try to interpret the error code. If this is not possible, the simulator may wish to return this

code to the front end. The output package will have set errRtn and errMsg, thus if you do not pass

the error on, you must clear errRtn and free errMsg.

Note that each output call has an analysisPtr with it This pointer serves to uniquely identify the

analysis the plot is associated with and should be checked on each call. Some simulators and/or

simulations may produce output for two ormore of their analyses mtermixed, and the output package

should be prepared for it

Finally, note that as an optimization for the simulator, since the output system will, in general,

not want to save the entire output and the simulator will need to generate additional identically sized

vectors, the output system is to copy the contents of the vector which it wants but does NOT become

responsible for the vector or for freeing it as is usual for a passed objea of type BF_VECTOR. This

applies to the vectors passed to OUTpData, OUTwReference, andOUTwData.

32

1.6.1. IFnewUid

int EFnewUid(circuit newuid, olduid, suffix, type, pointer)
GENERIC ""circuit;
IFuid ""newuid;
IFuid olduid;
char *suffix;
int type;
GENERIC *pointer;

This function allows a simulator to generate a new IFuid from an existing IFuid. The new

IFuid will be named as if the name corresponding to olduid had the character string suffix appended to

it with a front end specified character added to ensure uniqueness. Trie suffix must be made entirely

from alphanumeric characters, upper and lower case letters and digits. The type field is used to

specify to the front end the use that will be made of the IFuid. In the event that names must be gen

erated from scratch for such things as time, the olduid should be specified as die reserved IFuid value

0. Current legal types are UE>_ANALYSIS, UDTASK, UEDJNSTANCE, UID_MODEL, UID SIGNAL,

and UID_OTHER for an id to be used to name an analysis, task, instance, model, any node or other

naturally computed output of the circuit, and any other type of IFuid that is needed respectively.

pointer is an optional pointer supplied to the simulator to point to the structure to be associated with

the IFuid being created. This pointer may be left out completely, or may beignored by the front end,

but is supplied for the front end's convenience in maintaining its data structures in which it may wish

to keep a pointer to die structures associated with an IFuid.

1.62. IFeval

int BFeval(tree, result, vals, derivs)
IFparseTree ""tree;
double ""result;
double '"vals;
double *derivs;

This function is a generic function passed by the front end in the IFparseTree structure which is

used to evaluate the parse tree given. Trie given parse tree is to be evaluated with its tree->numVars

variables given the values from the vector vals. The scalar result of evaluating the tree is placed in

33

result, while a set of partial derivatives with respect to the input variables is placed in the vector

derivs.

1.63. IFpauseTest

int IFpauseTestO

This function is a simple function passed from the front end to the simulator as part of the

IFfrontEnd structure and is used to signal the simulator that the front end wants control. Since the

front end can not take control away from the simulator and expect to return without damage to the

simulator's data structures, the simulator must relinquish control when necessary. This is accom

plished by having the simulator call the IFpauseTest function frequently (at least as frequendy as it

can conveniently stop). Trus function can allow the front end to perform short operations which

require no access to the simulator (window redraws by the back end, for example), and to indicate by

a non-zero return value that it wants total control at die simulator's earliest convenience.

1.6.4. IFseconds

double IFsecondsO

Tins function is provided to allow simulators and front ends which agree to do soto provide the

facilities for statistics gathering. This function should return the run time for the job in seconds as a

double precision floating point number. The run time does not have to be absolute, but the difference

between successive calls should provide accurate elapsed CPU time. If the front end does not wish to

provide such capabilities or is unable to do so because of the operating system, it may return the con

stant 0.0, and should expect and document that all time related statistics from the simulator will be

meaningless.

1.6.5. IFerror

int IFerror(flags, format, names);
int flags;
char ""format;
IFuid ""names;

34

This function provides a way for the simulator to output messages to the user through the front

end without interfering with whatever the front end may be doing with the terminal display, flags is

one of ERRJNFO, ERRWARNING, ERRFATAL, orERRPANIC, indicating that the message is a sim

ple informational status message that the front end should provide a way of enabling and disabling

based on user preference, a warning message, anerror message that will-probably cause the simulator

to fail, and an extremely serious error from which the simulator won't even try to recover. Note that

after anERRJPANIC, the simulator may be in such a bad state that it is impossible to perform further

operations on the current circuit Format is a textual message that should be displayed to the user.

The format string will be processed by a mechanism similar to printf, and all printf conventions

should be observed, including modifiers on %s and using %% to place a % in the output Only %s

format items will be interpreted properly, and the data for them comes from the array of IFuid's

pointed to by names. This function is provided in this form to allow for the greatest flexibility in

error message output, since it permits the front end to get the IFuid's directly. One benefit of this is

that a graphic front end may wish to highlight the objects corresponding to the IFuid's in different

colors and fill in some descriptive information in the message rather than using a possibly cryptic

name whichthe user may not understand in the message itself.

1.6.6. Pointwise output

Two functions are intended specifically to support pointwise output, OUTpBeginPlot and OUTp

Data. OUTpBeginPlot describes the plot to beproduced to the output routines, and is called once per

plot OUTpData is called repeatedly and supplies data for one set of values of the independent vari

ables per call. OUTendPlot indicates that the plot is completed and no more calls to OUTpData will

be made.

1.6.6.1. OUTpBeginPlot

int OUTpBeginPlot(ckt, analysisPtr, analUid, refName, refType,
numNames, dataNames, dataType, plotPtr);

GENERIC *ckt;
GENERIC ""analysisPtr;

35

IFuid analUid;
IFuid refName;
int refType;
int numNames;
IFuid ""dataNames;
int dataType;
GENERIC **plotPtr;

This function describes the plot to be produced to the output package, ckt is the circuit pointer

used by the front end to identify die circuit to the simulator. analysisPtr is an analysis pointer as

returned to the front end in a previous call to the simulator's newAnalysis function. IFuid is the

unique identifier for the analysis that analysisPtr refers to. These two should serve to uniquely iden

tify the analysis to the front end and thus allow access to any additional information it may have

about the plot refName is the IFuid of the slowest varying reference or independent variable of the

plot, or is NULL in the case of a single point output, such as an operating point refType is die type

(as used in the IFparm structure) of the reference variable. numNames is the number of variables

named in the dataNames array. dataNames is an array of the unique identifiers which are associated

with the data to be output in the vectors handed to OUTpData. A NULL IFuid (Le. (IFuid) 0) indicates

that the corresponding data point is not interesting and should not be saved. Trie IFuid refName MAY

appear in the dataNames array, butdoes not need to. If refName does appear in dataNames, then the

two values provided for it in the OUTpData call MUST be the same or the results will be unpredict

able. dataType is the type (as used in the IFparm structure) of all of the values to be returned by

OUTpData (without the IF_VECTOR attribute). Finally, plotPtr is an identifier created by the back

end to identify the plot, and will be supplied by the simulator in all future OUT* calls regarding this

plot

1.6.6.2. OUTpData

int OUTpData(plotPtr, refValue, valuePtr)
GENERIC *plotPtr;
IFValue *retValue;
IFvalue *valuePtr;

36

Ibis function actually delivers the data described in OUTpBeginPlot for a single value of the

reference variable. plotPtr is the pointer retumed by OUTpBeginPlot above and is used to ensure that

plot data doesn't get mixed up between plots since multiple plots may be active at once. refValue is

the value (of the type indicated by refType in the OUTpBeginPlot call) of the reference vector. Note

that for multi-dimensional plots (more than one independent variable), this will be the value for the

independent variable which is changing MOST rapidly, values for the other independent variables are

obtained from previous calls to OUTbeginDomain. If refUid was given as the reserved IFuid 0, then

the refValue is uninteresting and should be ignored. valuePtr is a pointer to an IFvalue structure of

type IF_VECTOR of whatever type was given for the dataType in the call to OUTpBeginPlot The

length of the vector valuePtr MUST be the same as the value of the numNames parameter passed to

OUTpBeginPlot

1.6.7. Windowed output

When oulputting windowed data, provision is made for the possibility that different nodes in the

circuit may have a different time scale (reference vector) associated with them, and that there may be

several different groupings of these during the course of the simulation. Four functions are intended

specifically to support windowed output, OUTwBeginPlot, OUTwReference, OUTwData, and

OUTwEnd. These functions declare an output, present values for the independent variable and the

dependent variables, and signal the end of output for a specific window. The output routines may

assume that windows are non-overlapping and that all reference and data values from one window are

given before any from the next window. When a new window begins (as indicated by a call to

OUTwEnd) the data from the previous window may be considered complete.

1.6.7.1. OUTwBeginPlot

int OUTwBeginPlot(ckt, analysisPtr, analUid, refName, refType,
numNames, dataNames, dataType, plotPtr);

GENERIC *ckt;
GENERIC *analysisPtr;
IFuid analName;
IFuid refName;

37

int refType;
int numNames;
IFuid *dataNames;
int dataType;
GENERIC **plotPtr;

This function begins a windowed output plot The arguments are the same as for OUTpBegin

Plot, but the data for the plot will be delivered using the windowing output functions instead of the

pointwise functions. The vector dataNames is provided for the convenience of the output package, so

that all the dependent variables are known in advance. Also, the dependent variables are referred to

using their index in this vector by calls to the function OUTwData.

1.6.7.2. OUTwReference

int OUTwReference(plotPtr, valuePtr, refPtr)
GENERIC *plotPtr,
IFvalue *valuePtr,
GENERIC **refPtr;

Triis routine outputs a window's worth of the reference vector. Several calls will usually be

made to this routine with overlapping values when different nodes have different time scales. The

plotPtr specifies the analysis this applies to, valuePtr provides a vector of the type given in OUTwBe

ginPlot of data covering one window of values for the reference variable. refPtr is used to return to

the simulator a pointer it will use to refer to this particular reference vector during the remainder of

this window.

1.6.7.3. OUTwData

int OUTwData(plotPtr, index, valuePtr, refPtr)
GENERIC *plotPtr,
int index;
IFvalue *valuePtr;
GENERIC *refPtr;

OUTwData supplies output data for a single signal for an entire window. The plotPtr gives the

analysis this data is for, the index gives the index of the output vector being provided within the

dataNames array provided in the call to OUTwBeginPlot, valuePtr is a vector of whatever type was

38

specified in OUTwBeginPlot providing the values. The number of elements in the vector in valuePtr

and the number of elements in the vector provided to OUTwReference when the given refPtr was

retumed must match.

1.6.7.4. OUTwEnd

int OUTwEnd(plotPtr)
GENERIC ""plotPtr,

This call indicates that all data for the current window is complete andthe output system should

prepare to receive data for the next window. This function may optionally be called at the end of the

plot or a domain, but is not needed at those points since OUTendDomain and OUTendPlot both imply

the end of a window.

1.6.8. General routines

There- are a number of routines which are used byboth windowed and pointwise output

1.6.8.1. OUTendPlot

int OUTendPlotiplotPtr)
GENERIC *plotPtr;

This call indicates to the output system that all the data for the specified plot has beendelivered

already and any clean-up operations may be performed.

1.6.8.2. OUTbeginDomain

int OUTT>eginDomain(plotPtr, refUid, refType, outerRerValue)
GENERIC *plotPtr,
IFuid refUid;
int refType;
IFvalue *outerRefValue;

When a plot has two or more independent variables, it is assumed that they willbe swept in the

fashion of nested loops, with one swept through its entire range before the next one is changed. This

function specifies to the output package that this sort of sweeping is taking place. Each call to OUTbe-

39

ginDomain indicates a variable that will be swept and must match up with a corresponding call to

OUTendDomain. The most recent OUTbeginDomain not yet closed by the corresponding OUTend

Domain specifies the only reference variable which may change, with the values of all less rapidly

changing reference variables specified by the intervening OUTbeginDomain calls. An arbitrary nesting

level is permitted. There is an implied OUTbeginDomain/OUTendDomain pair in the OUTwBeginPlot

or OUTpBeginPlot and OUTendPlot function calls, so an explicit call is not required for the outermost

reference variable or the only reference variable in simple plots. Note that this structure requires that

all OUTwBeginPlot or OUTpBeginPlot calls within one plot occur at exactly the same nesting level

and with exactly the same set of reference variables active at each call.

1.6.8.3. OUTendDomain

int OUTendDomain(plotPtr)
GENERIC *plotPtr,

Closes the innermost pending OUTbeginDomain call, thus allowing the reference variable at the

next higher nesting level to change.

1.6.8.4. Domain use Example

IFvalue innerRef, outerRef;
IFvalue dataValues;
GENERIC *pltptr,
IFuid iid, jid;

IFnewUid(ckt, &iid, (IFuid)0, "i", mD_OTHER)
IFnewUid(ckt, &jid, (IFuid)0, "j", UIDOTHER)
/* initialize the plot */
OUTpBeginPlot(ckt, analPtr, analUid , iid, IF_REAL, numdata, dataNames, IFREAL, &pltptr)
for (i = istart; i <= istop ; i++) {

outerRefiValue = i;
/* tell the output package that we are
* going into a nestedloop, and give the
* value of the outer loop since it won't
* change within this inner loop
•/

OUTbeginDomain(pltptr, jid, IFREAL, AouterRef);
for (j = jstart; j <= jstop ; jWjstep) {

/* crunch away, leave results in dataValues */
dataValues.vec.dvec = compute(i, j);
innerRef.rValue = j;

40

/* and output the results */
OUTpT>ata(pltptr, &innerRef, &dataValues);

}
OUTendDomain(pltptr);

}
outEndPlot(pltptr);

Note that the call to OUTbeginDomain gives the value of the reference variable in the enclosing

(implied) domain (i), and the name and type of the reference variable in the inner domain (j), while

the OUTpData call only provides a value for the innermost domain's reference variable j.

1.6.8.5. OUTattributes

int OUTattributes(plotPtr, varName, param, value)
GENERIC ""plotPtr,
IFuid *vafUid;
int param;
IFvalue *value;

This function allows the simulator to provide additional information to the output system about

the plot in general or about specific variables in the plot If varUid is NULL, then the data is a default

for this plot which overrides the defaults described here only for this plot If varUid is not NULL,

then it is the unique identifier of one of the variables in the plot specified by plotPtr. and provides

overriding values for just that variable. The possible values for the parameters and their meanings

are:

parameter

OUT SUBTITLE

OUT INTERP POLY

OUT INTERP SINE

OUT INTERP EXP

OUT UNITS

out scale lin

out~scale"log

value type value meaning
char *

int

mt

int

char *

none

none

An optional one line descriptive tide.
Only applicable to the entire plot
The number of points used to interpolate
values using polynomial interpolation.
A value of zero implies interpolation
is not appropriate. For values of 1,
2, 3, 4 specify respectively piecewise
constant linear, quadratic, or cubic
interpolation.
The number of points used to interpolate
values using sinusoidal interpolation.
The sinusoid used should be contiguous
harmonics of a fundamental, whose
frequency equals the reciprocal of the
difference between the maximum and

minimum values of the independent
variable.

The numberof points used to interpolate
values using exponential interpolation.
The name of the units the data is in.
The output should be plotted on a linear scale
The output should be plotted on a log scale

OUT_GRIDJRECT none

OUT_GRID_SMrra none

OUT GRID POLAR none

The output should be plotted on a
rectangular grid.
The output should be plotted on a
smith chart

The output should be plotted on a
polar grid.

OUTSTYLEPOINTS

OUT_STYLE_CURVES

OUT STYLE COMB

OUT RELTOL

OUT ABSTOL

none

none

none

The plot should show only points
without a connecting curve
The plot should have a smooth curve
fitted through the points based on
the interpolation parameter above.
The plot should be a comb or
bar-graph type plot

double The relative precision of a variable.
Values of a variable smaller than this
threshold times die maximum value of the
variable are considered noise.

double The absolute precision of a variable.
Values of a variable smaller than this
threshold are considered noise.

41

default

none

none

The interpolation attributes are usually specified for the independent variables only. When

given for a particular independent variable, they are applied when interpolating any dependent vari

able over intervals of that independent variable.

42

Calls to this function must follow the call to OUTwBeginPlot or OUTpBeginPlot immediately,

and precede all calls to outBeginDomain or any data output functions. Note that this function may

thus provide attributes for a reference variable which has not yet been encountered in an OUTbegin

Domain call.

For consistency, it is recommended that the value of OUTJJNITS be in a standard form. For

simple units, the standard symbol should be used. Below is a partial list of standard symbols, with

some alterations to avoid unusual characters such as Greek letters.

Standard

Abbreviation Meaning
V Volt
A

W

Ampere
Watt

J Joule

ohm ohm

S Siemens
F Farad

H

s

Henry
second

Hz Hertz

K

C

Coul

degree Kelvin
degree Celsius
Coulomb

Wb Weber

T Tesla

m meter

in inch

For more complicated units, the standard symbols should be combined according to a fixed set of

rules whenever possible: a product of units is formed by placing a hyphen between them; a ratio of

units is formed by placing a slash between them, and only one slash is allowed in the entire units

string; a power of a unit is represented by a caret and a number following the unit; as special cases of

powers, the square root of a unit is written as sqrt(unit) and the cube root of a unit is written as

cbrt(unit); parentheses can be used for grouping; no spaces should appear in the units string.

Exponentiatian has the highest precedence, followed by multiplication, die division. Some examples

of units strings formed according to these rules are:

V/sqrt(Hz)
ohm^VAm-Kn

43

A clever plotting package can take advantage of this standardization to do some formatting, such as

raising the exponents or displaying a ratio with the numerator over the denominator.

44

1.7. Changes since version 1.0

This section summarizes the changes made in this document since the first released version,

Vl.O. Subsections will provide summaries of changes from each version to the next, with a detailed

breakdown of each of the chapters.

1.7.1. V2.0

The most significant change is the introduction of the output features. Also affecting existing

code, the 'type' field passed to many of the simulator routines has been deleted. It is now assumed

that the simulator can determine the type of an instance or model it is passed. Additionally, the rou

tines pauseTest, IFnodeName, and IFdevName have been moved into the new front end data structure,

and their descriptions moved to the chapter on front end routines. In the process, IFnodeName and

IFdevName have been replaced by a new more general routine, IFnewUid. Finally, IFuid's, as

described in the overview, have been introduced in place of explicit pointers to names throughout the

system. There is nothing to prevent the IFuid's from being the pointers to the names as used in previ

ous versions, but this permits the front end more flexibility. Some changes in the naming of the

parameters in the documentation has also been made to make their purpose clearer, along with some

typographical corrections. These last changes are not described in more detail since they should not

affect existing code.

1.7.1.1. Introduction

Trie terminology section has been expanded to cover more of the terms used throughout the

document

1.7.1.2. Overview

The symbol which indicates the presence of the ANSI standard C constructs such as void* or

void** has been changed from 'ANSI* to _ _STDC_ _ to comply with the latest draft ANSI standard.

45

The notion of a restricted character set for node and device names was introduced, along with

the concept of IFuid's, InterFace Unique IDentifiers, instead of pointers to device names. This change

allows systems that don't have a simple textual format as their base to use the simulators more easily.

1.7.1J. Error Handling

Additional description of errRtn and errMsg was added making it clear that the front end must

declare them in such a way as to actually allocate storage, and that various combinations of these two

may be set or not set by the simulator.

The error code E_BAD_DOMAIN was added to the list of standard error codes.

1.7.1.4. Data structures

The description of the IFparm structure has been expanded, and new bits in the dataType field

have been defined.

The IFdevice structure has had a field added to it This field indicates the length of the term-

Names array independent of the number/minimum number of terminals as indicated by the terms field.

The names newCkt and newCircuit were used interchangeably in the previous draft. They have

been consistently renamed to newCircuit

The IFfrontEnd data structure was introduced.

The names numDevices and numAnalyses were used throughout the description, but the actual

code and header files used numdevices and numanalyses. The code and header files have been

corrected. The subroutine insfToNode was mistakenly described under the name devToNode. The

description has been corrected to refer to the instToNode subroutine correcdy now.

1.7.L5. Simulator subroutines

All of the subroutines in the front end that were previously described here have been moved to

the front end interface section, while the general description at the beginning of this chapter has been

moved to the overview.

46

The SIMinit function has been renamed to have a simulator specific name. The old functionality

can be obtained by writing a function for each simulator called SIMinitwhich reads:

int SIMinit(frontEnd, simulator)
IFfrontEnd *frontEnd;
IFsimulator **simulator;

{
return (SPIinit(frontEnd, simulator));

}

where SPIinit is a simulator dependent name. Similarly, an expanded front end may call more than

one XXXinit function.

Trie subname argument to newNode has been deleted.

The findlnstance and findModel functions have been augmented to allow them to return the type

of the device they have found if the type is unknown, thus that parameter has been changed from an

int to an int*

The taskType argument to the newTask function has been deleted since it was put in acciden

tally and only in the documentation.

The secondargument to deleteTask is only a GENERIC *, not a GENERIC**.

1.7.1.6. Front end subroutines

Trie pauseTest function has been renamed IFpauseTest and described completely.

Trie IFfrontEnd structure has been introduced, and the routines IFnodeName, IFdevName, and

IFpauseTest have been moved that that structure. SIMinit has been modified to pass this entire struc

ture instead of just the pauseTest function.

	Copyright notice1989
	ERL-89-43

