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ABSTRACT

Advances in semiconductor fabrication capabilities and CAD (Computer Aided Design) tools
have made it feasible to design and fabricate single-chip processors. With increasing integration,
more and more complexity is being put on chip to achieve higher and higher performance. One
approach is to use the increasing integration to provide larger on-chip conventional memories on
traditional sequential execution CPU chips. (A trend in this direction has been an increase in the.
use of larger and larger on-chip caches for implementing von Neumann architectures.) The oppo-
site approach is to use the increasing chip real estate to implement less dense but more functional
(smart) memories. These smart memories can be employed to support out-of-order execution
architectures, which are non-von Neumann machines that attempt to achieve higher performance
than traditional von Neumann architectures by waiving the sequential execution requirement.
Although the advances in semiconductor technology and CAD now make it feasible to implement
single-chip out-of-order execution architectures, there are several circuit design challenges that
must be surmounted. These challenges relate to the smart memories that are needed for imple-
menting out-of-order execution models. This dissertation addresses the circuit design challenges

of the smart memories that are required for implementing out-of-order execution VLSI architec-
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tures and proposes some solutions.
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CHAPTER 1

Introduction

1.

1.1. Smart Memories

Traditionally, in a digital system the logic/control section is conceptually separate from the data
storage section as in Fig. 1a, with a distinct boundary separating the two sections. The memories in the
data storage section are just conventional READ/WRITE memories. But when the logic/control section
partially overlaps the data storage section, a new species of memory, smart memory, emerges as in Fig.
1b. This memory-logic hybri_d derives its "smartness" from embedding logic m memory. It may be
' necessary to intermingle memory and logic in this way to improve the performance of the overall sys-
tem. The granularity of the intermingling may be at the level of a data cell (i.e. each cell has embedded
logic) or at the level of a memory subsystem (i.e. several cells share some embedded logic). So, one can
visualize a "smartness" spectrum where on one end you have "full smartness" (i.e. each cell has embed-
ded logic) and on the other end you have conventional memories (i.e. no cell has embedded logic). One
can also define a logic-memory “"conceptual distance" spectrum that corresponds to the "smartness”
spectrum: “"conceptual distance" of 0 for "full smartness” but "conceptual distance” of = for conven-

tional memories.

The content addressable memory (CAM) is a smart memory that can be used to illustrate the fore-
going points. It has a logic-memory “"conceptual distance” of "0". In the conventional memory, the
address is given to access the data, while in the CAM, the data is given to access the address. Such a

memory is used where it is necessary to know what memory words contain a certain bit pattern (like in



parallel processing, expert systems, and artificial intelligence applications). If an N-word RAM is used,
N cycles would be needed to sequentially search through the N words of the memory to determine the
memory words that match the given bit patten. But by employing some logic in each data cell, a CAM
can simultaneously match each memory word against the bit pattern in a parallel fashion. In other
words, it performs parallel data search without extensive address handling. Therefore, a CAM can be
viewed as an efficient hardware substitute for a RAM plus a searching algorithm. Adding a comparator
logic to the RAM cell in Fig. 2a gives the CAM cell in Fig. 2b. The detailed circuits are in Figs.3a &
3b. In Fig. 3b, the EXCLUSIVE-OR circuit is the comparator added to each RAM cell to give the CAM

cell.

The video RAM (VRAM) is another smart memory that readily comes to mind. It has a non-zero
logic-memory “conceptual distance" since clusters of simple data cel;s share the-embedded logic. The
VRAM is a smart memory that combines a conventional RAM with serial access registers and some
control logic to support bit-mapped graphics display systems [1]. A bit-mapped graphics display system
is a technique that is needed to efficiently implement real time graphic simulators, higher resolution
displays, and combined text and graphics in color on a single screen. This technique provides unlimited
fiexibility in the images which can be displayed by allowing each pixel on the screen to be individually
controlled by one or more bits of information in a bit-mapped memory. Traditional RAMs are inade-
quate in supporting bi.tamapped graphics display systems because they do not have the necessary
bandwidth to supply information for refreshing the screen while also allowing a graphics processor
sufficient access to the memory to update it [2]. In comparison, the VRAM is ideally suited for bit-
mapped graphics systems because of the way it uses 2 ports. The first port is a parallel port that allows
data to be written to and read from the memory in a normal fashion, while the second port is connected

to a high-speed internal shift register so the memory can tumn out serial data at video frequencies.



In the area of computer architecture, smart memories are needed to relieve the so-called von Neu-
mann bottleneck [3], [4]. The von Neumann bottleneck is the separation of processor from memory as
in Fig. 1a and is the main determinant of the upper bound of the performance of von Neumann architec-
tures [3]. The bottleneck is opened only slightly in very high performance von Neumann machines like
the Cray-1, by employing a wide, high speed channel between the processor and memory [3]. This
approach, however, does not address the problem fundamentally. The Connection Machine is a non-
von Neumann machine that solves the bottleneck problem by permitting the processor and memory to
co-mingle, thereby eliminating the bottleneck altogether [5]. A specific Connection Machine implemen-
tation -the CM-1- achieves tﬁis goal by linking 64K single bit processors, each with 4K bits of private
memory as shown in Fig. 4 [6]. In this machine, processing is integrated into and distributed throughout
the memory in such a way that an allocation of memory for any piece of data automatically allocates
processing for that data. Here, the combination of 4K bits of conventional memory with 1-bit ALU and

supporting logic gives a smart memory with a non-zero logic-memory "conceptual distance".

1.2. Smart Memories for Out-of-Order Execution Architectures

The out-of-order execution architecture is another non--von Neumann computing style that can
employ smart memories. By executing instructions out-of-order, out-of-order execution architectures
hope to achieve higher performance than traditional sequential execution machines. Out-of-order execu-
tion machines can use a centralized control like the scoreboard used in the CDC 6600 [7], or a decen-
tralized control like the Tomasulo Algorithm used in the IBM 360/91 floating-point unit (8). HPS
(High Performance Substrate) [9] is an out-of-order execution microarchitecture that uses the latter
approach. It uses data flow techniques to coordinate out-of-order execution. In other words, execution is
driven by the availability of data. Operations whose operands are not ready do not block subsequent

ones; rather they wait in rest areas (Node Tables) until their operands arrive. HPS employs a modified



Tomasulo Algorithm to achieve maximum concurrency while preserving any precedence. In the decen-
tralized control approach used by HPS, some of the control is distributed throughout the memories mak-
ing them "smart". For sake of clarity, let the HPS smart memories be divided into 2 classes: smart data
memories (memories that store only data) and smart instruction memories (memories that store both

data and instructions). The smart memories for HPS are listed below:

Type __ Features
CPU SMART MEMORIES:

1) Register Alias Table (RAT)

Smart Data Memory (SDM)

i) Has 3 ports for concurrent accesses
by 3 function units.

ii) Has 3 back-to-back cells to support
Branch Prediction and Exception
Handling,.

iii) A 5-bit multi-port CAM field
for associative distribution of results
into current and backup copies.

iv) Maintains the data dependency
information for each register entry
by having a tag field.

v) Does 15 accesses per cycle : 6 READs,
3 WRITE:s and 6 associative WRITEs.

2) Node Table (NT)
- Smart Instruction Memory (SIM)

i) Buffers microoperations
awaiting data/control operands.
Uses CAM for associative
WRITE into waiting entries.

ii) Has priority encoding scheme to
schedule microoperations.

iii) Discards appropriate
microoperations during
Branch or Exception Repair.

3) Active Instruction Table (AIT)
- Smart Instruction Memory (SIM)
i) Used for detecting and retiring
completed instructions.
ii) Uses a content addressable



counter to keep track of the
unexecuted microoperations.
iii) Keeps track of the exception status

for each instruction.
iv) Does sequential retirement using a
shift register.
v) Discards appropriate instructions
during repair.
4) Memory Write Buffer (MWB)
- Smart Instruction Memory (SIM)
i) Used in memory management unit.
ii) Needs CAM to do memory data forwarding.
iii) Does sequential retirement using a
shift register.
iv) Discards appropriate instruction
during repair.
5) Node Cache
- Smart Instruction Memory (SIM)
: i) Used in the instruction unit as a
smart on-chip instruction cache.
ii) Uses a multi-port CAM.
iii) Supports branch prediction and
exception handling.
_—
FLOATING POINT UNIT (FPU)
SMART MEMORIES:
1) FPURAT
same as CPU RAT.
%
CACHE CONTROLLER
SMART MEMORIES:
1) Repair Stack
- Smart Instruction Memory (SIM)
i) Discards appropriate memory writes.
2) Other Smart Memories i) Smart memories for instruction
- Smart Instruction Memories (SIMs) decoding and instruction unit

stall signal generation.

The "smartness” of the HPS memories poses significant circuit design challenges. In the first

place, the increased functionality reduces the bit density. Yet, it is imperative to have the memories



on-chip to exploit the high-speed advantage of on-chip communications. Therefore, one of the major
circuit design challenges is to maximize the bit density without sacrificing the functionality. A longer
cycle ( because of the many operations that have to be performed per cycle), and higher power dissipa-
tion and higher peak currents (because of the multiplicity of bit lines and match lines that have to be
precharged) are other problems resulting from the enhanced capability of these smart memories. Other
difficulties include layout irregularity (resulting in pitch-matching problems etc.), longer (therefore
more capacitive) bit lines, and increased design effort. Making these memories multi-port to support
increased on-chip parallelism compounds the above problems. This dissertation explores the circuit
design altemnatives needed for implementing Smart Memon;ies for Out-of-Order Execution VLSI
Architectures. HPSm [10], a single-chip version of HPS, would be used as the reference out-of-order

execution architecture. .

1.3. Dissertation Outline

in Chapter 2, a brief description of HPSm would be presented to give the necessary motivation for
the smart memories that will be discussed. The Node Table (NT), the HPSm Smart Instruction Memory,
would be described in Chapter 3, while the Register Alias Table (RAT), the HPSm Smart Data
Memory, would be described in Chapter 4. Chapter 5 gives a broad treatment of smart memory design

alternatives and costs. The thesis ends with Conclusions in Chapter 6.
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CHAPTER 2

HPSm : An Out-of-Order Execution VLSI Architecture Case Study

2'

2.1. Introduction

This chapter gives the system context of the smart memories to be discussed in later chapters. It
provides a qualitative description of HPSm [1] - the single-chip version of HPS - that is being used as
the research vehicle for the study of smart memories for out-of-execution VLSI architectures. Its block

diagram and data path are shown in Figs. 1 & 2 respectively.

2.2. Overview

HPSm is a data flow engine that can be viewed as a 5-stage pipeline as shown in Fig. 3 [2]. How-
ever, it must be stressed that the HPSm pipeline is unlike the classical pipeline in the sense that the exe-

cution of operations are data-driven. For this reason, Fig. 3 is termed a simplified view of the pipeline.

In the 1st stage (FETCH), a 64-bit very long instruction word (VLIW) [3] consisting of 3 "RI_SC-
like" instructions (e.g ALU operation) is fetched by the IU using branch prediction. This instruction is
decoded into a data dependency graph with each operation forming a node in this graph. Tags are allo-
cated to the output result and input operands of each operation for data flow graph construction pur-
poses. In the MERGE stage, the merger merges the decoder output (instruction data dependency graph)
into the current data flow graph. The merging process uses a modified Tomasulo Algorithm [4] and the
RAT.



The EXECUTE stage executes operations in a data-driven manner. The operations after having
been decoded into data flow nodes are sent to 3 node tables : 1 node table for each function unit. Opera-
tions wait in the node tables until their operands arrive. An operation whose operands are ready is exe-
cuted by the function unit attached to the node table. If more than one operation is ready, a scheduling
algorithm is used to determine the oldest eligible operation for execution. After execution, the results
are distributed on the distribution bus to 3 node tables (2 ALU NTs and MEM NT) and the RAT. Con-
trol information about completion is sent to the TU (so that new instructions can be brought into the

engine) and the RETIRE and other control units.

Finally, in the RETIRE stage, an instruction retires from the machine after all its operations have
been executed and all instructions before it have retired. Operations whose operands are not ready do
not block the execution of other operations : they just wait until their operands arrive. The machine is

therefore data-driven; hence, the name "data flow".

2.3. Major Components

The HPSm microarchitecture (see Chapter 5 of Reference [11) consists of 6 major components: the
instruction unit (IU), 4 smart memories (the Register Alias Table and 3 Node Tables), the function
units, the Floating Point Unit (FPU) and the Memory System (see Fig. 1.). The first four components are
designed for implemeqtation in a single (11.5mm x 11.5Smm, 1.6 pm) CMOS chip. This chapter will
concentrate on the smart memories and how they are connected in the HPSm CPU chip. The FPU and
Memory System would not be discussed; the interface to them will only be mentioned whenever

appropriate.
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2.3.1. Instruction Unit

The 1U (Fig. 2.) fetches instructions, determines the next instruction address, performs branch
prediction, executes unconditional jump and branch instructions, assigns tags to instructions and gen-

erates SAVE/REPAIR signals.

23.2. Node Table (Smart Instruction Memory)

For each function unit, the corresponding node table (NT) buffers the operations (e.g. ALU ADD)
waiting for their operands to arrive. Using the Tomasulo Algorithm, it enforces data flow dependencies
between operations and removes data antidependencies *. It schedules operations and discards appropri-

ate operations during repair. This smart memory will be covered in detail in Chapter 3.

23.3. Register Alias Table (Smart Data Memory)

The Register Alias Table (RAT) is a smart register file that has high bandwidth to support 15
accesses per cycle. It maintains dependency information for each register entry, provides the source
operand values and the tag of the operation producing the source operand values, removes data output
dependencies and repairs the contents of each register entry if necessary. This smart memory will be

covered in detail in Chapter 4.

2.3.4. Function Units

The function units perform branch prediction verifications, arithmetic and logic operations, data

memory accesses, and coprocessor data transfers.

* An operation, A, has an anti data dependency on another operation, B, if both share the same register but A must read from the register
before B writes into it so that A does not get the unintended value. An operation, C, has an output data dependency on another operation, D, if

both must write into the same register but C must write before D does o that the operations that depend on C's result do not get D’s result in-
stead.
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2.4. Global Busses and Signals

The global busses are the REGISTER ADDRESS bus (3 x 6 bits in Fig. 4), the TAG bus (3 x 5
bits in Fig. 5), the READY bus (3 x 1 bit in Fig. 6), the VALUE bus (3 x 32 bits in Fig. 7), and the
CHECKPOINT IDENTIFICATION bus (3 x 1 bit in Fig. 8). The global signals are the EXCEPTION
SAVE signal (1 bit), the EXCEPTION REPAIR signal (1 bit), the EXCEPTION STATUS signal (3
bits), the JUMP TARGET PENDING signal (1 bit), the BRANCH PENDING signal (1 bit), the
BRANCH REPAIR signal (1 bit), the BRANCH VERIFY signal (1 bit), the NODE TABLE OVER-
FLOW signal (1 bit), and the IU STALL signal (1 bit). Figure 9 summarizes the timing of the global
busses and signals.

2.4.1. REGISTER ADDRESS Bus

The REGISTER ADDRESS bus connects the RAT, the IU, the NT’s and the function units (Fig.
4). It is made up of 3 sub-busses; one for each function unit. Each sub-bus coqsists of 1 VALID bit and
5 ADDRESS bits. The VALID bit inhibits or permits an access while 5 ADDRESS bits indicate the
register entry to be accessed. The bus switches before the rising edges of the 4-phase clocks and stays
stable for a phase as shown in Fig. 9. In phase 1 (phase 2), the IU drives each sub-bus with the register
address of the source 1 (source 2) operand for the corresponding function unit. In phase 3, each FU
drives its address sub-bus with the VALID bit indicating whether the result on its VALUE sub-bus is
valid, and drives the ADDRESS sub-bus with the destination address for the result. In phase 4, the IU

drives each sub-bus with the destination register address for each microoperation in the VLIW.

2.4.2. TAG Bus

The TAG bus connects the IU, the RAT, the NT’s and the FU’s (Fig. 5). It consists of 3 5-bit sub-

busses. The TAG bus switches before the rising edges of the 4-phase clocks and stays stable for a phase.
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In phase 1 (phase 2), the RAT drives the TAG bus with the tags fetched from the source 1 (source 2)
registers of the issued microoperations. In phase 3, the FU’s drive the TAG bus with the tags of the dis-
tributed results. In phase 4, the IU drives the TAG bus with the tags of the results of the issued

microoperations.

2.4.3. READY Bus

The READY bus connects the IU, the RAT, the NT’s and the FU’s (Fig. 6). It consists of 3 1-bit
sub-busses. The READY bus switches before the rising edges of the 4-phase clocks and stays stable for
a phase. In phase 1 (phase 2), if the operand 1 (operand 2) addressing mode is register, the RAT drives
the corresponding READY bus with the READY bit fetched from the source registers. Otherwise the
READY bus is driven to "1". In phase 3, the FU’s drive each READY sub-bus to indicate if the
corresponding VALUE sub-bus contains a valid distribution result. In phase 4, the IU drives the
READY bus to "0". |

2.4.4. VALUE Bus

The VALUE bus connects the IU, the RAT; the NT’s and the FU’s (Fig. 7). It consists of 3 32-bit
sub-busses. The bus switches before the rising edges of the 4-phase clocks and stays stable for a phasé.
In phase 1 (phase 2), if the operand 1 (operand 2) register address is not "Register 31", the RAT drives
the corresponding VALUE bus with the operand values fetched from the source registers. Otherwise, if
the register address is "Register 31", the IU drives the VALUE bus with the FETCH PC value; other-
wise the IU drives the bus with the sign extended result of the source register number (for literal mode).
In phase 3, the FU'’s drive the VALUE bus with their evaluation results. In phase 4, the contents of the

bus are don’t care.
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2.4.5. CHECKPOINT IDENTIFICATION Bus

The CHECKPOINT IDENTIFICATION bus connects the IU, the NT's and the FU's (Fig. 8). It
consists of 3 1-bit sub-busses. It is used only in phases 2 and 3. In phase 2, the IU drives the bus with
the CHECKPOINT IDENTIFICATION of the currently active checkﬁoint. In phase 3, the FU’s drive
the bus with the identification of the checkpoint to whose exception-repair range (see Chapter 4 of

Reference [1]) the finishing microoperation belongs to.

2.4.6. EXCEPTION SAVE Signal

The EXCEPTION SAVE signal is generated by the IU and is monitored by the IU, the RAT, the
NT’s, and the FPU (Fig. 10). It indicates whether an exception check action is to be performed in a
cycle. It switches at the rising edge of ¢3 (Fig. 9) and remains stable for the entire cycle. It crosses the

. chip boundary.

24.7. EXCEPTION REPAIR Signal

The EXCEPTION REPAIR signal is generated by the IU and is monitored by the IU, the RAT, the
NT’s, the FPU, and the memory system (Fig. 10). It indicates whether an exception repair action is to be

performed in a cycle (see Chapter 4 of Reference [1]). It switches at the rising edge of ¢4 (Fig. 9) and

A
remains stable for the entire cycle. It crosses the chip boundary. .

2.4.8. EXCEPTION STATUS Signal

The EXCEPTION STATUS signal is generated by the function units and is monitored by the IU
(Fig. 11). It consists of 3 1-bit sub-signals. It indicates what type of exceptions occured during the FU

evaluation of the last cycle. It switches at the rising edge of ¢3 and remains stable for a phase (Fig. 9).
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2.49. BRANCH VERIFY/REPAIR Signals

The BRANCH VERIFY/REPAIR signals are generated by the SECONDARY_ALU and moni-
tored by the FPU, the IU and the NT"s (Fig. 12). They switch at the rising edge of ¢3 and remain stable

for the entire cycle. They cross the chip boundary.

2.4.10. BRANCH PENDING and JUMP TARGET PENDING Signals

The BRANCH PENDING and the JUMP TARGET PENDING signals are generated by the IU
and monitored by the FPU, the IU and the NT’s (Fig. 13). The BRANCH PENDING signal indicates
whether there is a branch prediction yet to be verified by the SECONDARY_ALU (see below). The
JUMP TARGET PENDING signal indicates whether there is an active microoperation which is going to
write into REGISTER 31. The signals switch at the rising edge of ¢4 and remain stable for the entire

cycle (Fig. 9). They cross the chip boundary.

24.11. NODE TABLE OVERFLOW Signal

The NODE TABLE OVERFLOW signal is generated by the NT’s and is monitored by the instruc-
tion cache controller (Fig. 14) that is off-chip. It indicates whether any of the NT’s is full. It switches at

the rising edge of ¢; and remains stable for the entire cycle. It crosses the chip boundary.

2.4.12. INSTRUCTION UNIT STALL Signal

The INSTRUCTION UNIT STALL signal is generated by the instruction cache controller and is
monitored by the IU, the NT’s, and the FPU (Fig. 15). The signal crosses the chip boundary and is set
TRUE in phase 2 if at least one of the following is true:

(1) the instruction cache misses;

(2) the NODE TABLE OVERFLOW signal is TRUE;
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(3) the BRANCH PENDING signal is TRUE and the instruction
output latch contains a conditional branch microoperation;
(4) the JUMP TARGET PENDING signal is TRUE and the instruction

output latch contains a jump instruction.

2.4.13. NEW CONDITIONAL BRANCH and NEW JUMP Signals

The NEW CONDITIONAL BRANCH and the NEW JUMP signals are generated by the instruc-
tion cache controller and monitored by both the IU and the instruction cache controller. The NEW
JUMP signal indicates whether a jump microoperation has just been fetched. The NEW CONDI-
TIONAL BRANCH signal indicates whether a new conditional branch microoperation has just been
fetched.

2.4.14. NEW MICROOPERATIONS Signal

The NEW MICROOPERATIONS signal is generated by the IU and is monitored by the NT’s

(Fig. 16). It provides the opcodes, the destination register addresses, and the destination tags for the new

microoperations in phase 4.

2.5. Detailed Pipeline Timing

2.5.1. Core Timing

This subsection gives a detailed description of the HPSm pipeline. The simplified pipeline dis-
cussed in section 2.2 above followed an instruction from its entry into the machine to its exit. It did not
shed enough light on the role of the smart memories. In this subsection, the pipeline is viewed from the

standpoint of the smart memories rather than from that of an individual instruction. Let the core timing
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(1] of the pipeline be defined as the minimum signal propagation timing for each microoperation. That

is, the core timing is the ideal timing for any microoperation without events such as IU stalls, multiple

cycle FU evaluation, and delays due to data dependencies.

The core timing is shown in Fig. 17. Each HPSm microoperation spends at least 4 cycles in the

pipeline. The 4 cycles are in turn divided into 8 sub-cycles as described below:

Sub-cycle Description
—_— . JCSCTphon _

sub-cycle 1

This sub-cycle is the entire first cycle during

which the FETCH_PC is determined by the IU.

This involves incrementing the last FETCH_PC, adding
an offset to it, and selecting 1 of the 6 potential PC’s
according to the conditions by the instruction decoding,
external interrupts and data path execution.

sub-cycle 2

This sub-cycle is made up of phases 1, 2, and 3 of

the second cycle. In this sub-cycle, the FETCH_PC is
transmitted off-chip to the instruction cache and used to
access the tag and data stores.

sub-cycle 3

This sub-cycle is phase 4 of the second cycle. In

 this sub-cycle, the first part (the source addressing modes

and register numbers) of the fetched instruction is fetched
from the instruction cache.

sub-cycle 4

This sub-cycle is phase 1 of the third cycle. The

first source operands are fetched from the RAT if

the mode is not literal or the register is not
REGISTER 31.

If the mode of a source operand is literal, the sign
extended result of the register number is chosen to drive the
TAG, the READY, and the VALUE busses. If the mode is
register and the register is REGISTER 31, the IU drives
the TAG, the READY, and the VALUE busses.
The operands are latched into the NT’s at the

rising edge of ¢».

sub-cycle 5

This sub-cycle is phase 2 of the third cycle. The
second source operands are fetched from the RAT if
the mode is not literal or the register is not
REGISTER 31.

If the mode of a source operand is literal, the sign
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extended result of the register number is chosen to drive the
TAG, the READY, and the VALUE busses. If the mode is
register and the register is REGISTER 31, the IU drives

the TAG, the READY, and the VALUE busses.

The operands are latched into the NT’s at the rising edge

of ¢3. The second part of the fetched instruction

(opcodes and output operand specifiers) is fetched from

the instruction cache in this sub-cycle. The IU STALL
signal (evaluated in sub-cycles 3 and 4) is also transmitted
on-chip in this sub-cycle.

sub-cycle 6

This sub-cycle is phase 3 of the third cycle. The

input operands of the fetched microoperations,if they are not
ready, will monitor the TAG, READY, and VALUE busses
in this sub-cycle to receive the operand values.

sub-cycle 7

This sub-cycle is phase 4 of the third cycle.

If both input operands of the incoming microoperations are
ready, and the pending bitis "1", the microoperation
becomes eligible for execution. If there is no older

eligible microoperation in the same NT, the microoperation
is fetched from the NT and submitted for execution.

sub-cycle 8

25.2. Extended Timing

This sub-cycle consists of phase 1, 2, and 3 of
cycle 4. The FU evaluates a microoperation and puts its
result on the TAG, READY, and VALUE busses.

If events like stalls and delays occur, a microoperation can spend more than 4 cycles in the HPSm

pipeline. When the core timing is extended for some microoperations, it may not be extended for the

subsequent microoperations. The events that can prevent a microoperation from immediately advancing

from one stage to the next are discussed below.
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2.5.2.1. Instruction Unit Stalls

The IU can stall due to instruction translation buffer misses, instruction cache misses, jump target

pending, node table overflow , or double pending branch prediction. .

2.52.1.1. Jump Target Pending Stall

The jump target pending stall occurs when the next fetch address cannot be determined at the
moment a jump operation is executed. In the HPSm microarchitecture, control transfer to an arbitrary
program location is performed by having a microoperation loading REGISTER 31 with the target
address and then execute a jump microoperation. If the rnicrooperation loading REGISTER 31 has not
finished execution when the jump microoperation is fetched, all the microoperations within the fetched
instruction will be prevented from being latched into the NT’s and from reserving the output RAT
entries. They will keep repeating their third sub-cycle of the core timing until the jump target pending

signal goes to "0". None of the subsequent instructions will be fetched.

2.5.2.1.2. Node Table Overflow Stall

The node table overflow stall occurs when at least one of the NT’s is full. The microoperations
within the fetched instruction will be prevented from being latched into the NT’s and from reserving the
output RAT entries. They will keep repeating their third sub-cycle of the core timing until the node

table overflow signal goes to "0". None of the subsequent instructions will be fetched.

2.5.2.1.3. Double Pending Branch Prediction Stall

The double pending branch prediction stall occurs if another conditional branch is encountered in
the instruction stream before the prediction for the previous one has been verified. The second condi-
tional branch instruction will be forced to go through the third sub-cycle of the core timing until the

BRANCH PREDICTION PENDING signal goes to "0". None of the subsequent instructions will be
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fetched.

2.5.2.2. Data/Control Dependency Delays

If at least one of the input operands is not ready at the time a microoperation reaches sub-cylce 6,
it will be forced to go through sub-cycle 6 again until both the input operands are ready. This means that
the delayed microoperation will stay in an NT and monitor the TAG, the READY, and the VALUE
busses to receive the input operand(s). ’I’pere can be several microoperations waiting at sub-cycle 6 in

the NT’s at the same time. The microengine continues issuing the subsequent instructions.

2.5.2.3. Function Unit Conflict Delays

If there is more than one microoperation eligible for execution at the same time in the same NT,
only the oldest firable microoperation is fired to the attached FU for execution. The others will have to
‘wait until they become the oldest firable entry; therefore, they are forced to go through sub-cycle 7

again. The microengine continues issuing the subsequent instructions.

2.5.2.4. Multiple-cycle FU Evaluation

If the microoperation takes more than one cycle to evaluate, it will not finish sub-cycle 8 until the
FU finishes the evaluation. Since all the multiple-cycle FU’s are pipelined in the HPSm microarchitec-

ture, a multiple-cycle FU evaluation does not block any of the subsequent instructions.
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2.6. Conclusions

The foregoing paragraphs reveal that HPSm is an out-of-order execution microarchitecture where
several events occur in the various components in an overlapped and decentralized manner. HPSm uses
this decentralized control approach to maximize the throughput and to avoid the complexity problems
of controlling an out-of-order execution machine in a centralized fashion. It is clear from the above dis-
cussion that smart memories are needed to support HPSm’s style of decentralized control. The roles that
the smart instruction memories (NT’s) and the smart data memory (RAT) play in supporting the decen-

tralized control are bome out by the above paragraphs.

The roles of the smart memories were clarified by looking at the pipeline not only from the
viewpoint of the instructions but also from the viewpoint of the memories. The above sections reveal
the activities in the smart memories when an instruction can be executed with the core timing (i.e.
minimum timing with no stalls) and when it cannot because of stalls. The NT is discussed in the riext
chapter while Chapter 4 covers the RAT. The paramount constraint on the design of thése smart
memories is that they must satisfy the requirements specified in this chapter in a single-chip environ-

ment,



21

References
(1] Wen-mei Hwu, "HPSm: Exploiting Concurrency to Achieve High Performance in a Single-chip

Microarchitecture” Ph.D. Dissertation, Computer Science Division, EECS Dept., University of Califor-

nia, Berkeley, CA. 94720, 1987.
[2] Wen-mei Hwu and Yale Patt, "HPSm, a High Performance Restricted Data Flow Architecture Hav-
ing Minimal Functionality", in The 13th International Symposium on Computer Architecture Confer-

ence Proceedings, Tokyo, Japan, June 1986.

[3] Joseph A. Fisher, "The VLIW Machine: A Multiprocessor for Compiling Scientific Code" IEEE

Computer, vol. 17, July 1984, pp. 45-53.

[4] Tomasulo, R. M., "An Efficient Algorithm for Exploiting Multiple Arithmetic Units," IBM Journal

of Research and Development, vol. 11, 1967, pp. 25-33. Principles and Examples, McGraw-Hill, 1982.



HPSm Block Diagram

prefetch
h check,] status insfruction instryction
afus
N _ FPU
ALU I MEM RET CON
I I repair
L o e distribution 1

Figure 1




Data-Path Current Design

I-cache

1

chip boundary
Instruction Unit RAT
YV Py
\ 4 A4
\ 4 9 @ ~
@ + % ' —e
IR
o 2 )
= = =
=} © <
ALU NT o ALU/CAN NT o ALU/MEM NT €
2 % A
\ \ AR / 4 AR J v Yy
T3 1 I
\/ —\/ \/
ALU U/CON —\FPU/ME
v \ 4

Figure 2




’ FETCH INSTRUCTION / DEC

-

, ' MERGE NODES

-

| EXECUTE

-

| DISTRIBUTE RESULTS

-

I RETIRE CHECKPOINT

Fig. 3: HPSm Simplified Pipeline



The Register Address Bus

10U

(Instruction Unit)

I

RAT

(Register Alias Table)

v

A A A

!
Y

NT
(Node Table)

N/
I1st ALU

h /

NT
(Node Table)

A

*

NT
(Node Table)

Figure 4




The Tag Bus

10U RAT
(Instruction Unit) (Register Alias Table)

NT ' NT NT

(Node Table) (Node Table) (Node Table)
N/ N/ N/
1st ALU 2nd ALU CACHE

Figure 5




The ready Bus

1U RAT
(Instruction Unit) (Register Alias Table)

\ A Yy
: l vy | l vy l \ A
NT _ NT NT
(Node Table) (Node Table) (Node Table)
<
<<

Figure 6



The Value Bus

RAT

(Register Alias Table)

10

(Instruction Unit)

32

1l v 11 v ] &

‘NT
- (Node Table)

Nstas

Figure 7

NT
(Node Table)

g

2nd ALU

NT
(Node Table)

]

CACHE



4

The Checkpoint Identification Bus

10

(Instruction Unit)

I

A

y
.

l

NT
(Node Table)

A 4

NT
(Node Table)

A 4

NT
(Node Table)

Figure 8




Giobal Bus and Signal Timing Table

destination

exception
rrrrrrrrrrrr

bbbbbb

X

X

Figure 9




The E-SAVE and E-REPAIR Signals

10 RAT
—» (Instruction Unit) (Register Alias Table)
to FPU and
memory
NT - NT NT
(Node Table) (Node Table) (Node Table)

Figure 10



The Exception Status Signal

10

(Instruction Unit)

AbA

A A A

y

NT
(Node Table)

v

v

NT
(Node Table)

NT
(Node Table)

N/
1st ALU

N/
2nd ALU

N7 /
CACHE

* Figure 11




The B-repair and B-verify signals

1U

(Instruction Unit)

RAT

(Register Alias Table)

NT
(Node Table)

Figure 12

NT
(Node Table)

to FPU

NT

(Node Table)




The Branch Pending and Jump Target Pending Signals

10 RAT

' (Instruction Unit) (Register Alias Table)

< 7 to FPU and
memory

NT NT . NT
(Node Table) (Node Table) (Node Table)

1st ALU 2nd ALU CACHE

Figure 13



The Node Table Overflow Signal

1U

(Instruction Unit)

RAT

(Register Alias Table)

NT

(Node Table)

N\ N/ /
1st ALU

Figure 14

NT
(Node Table)

' to FPU and
memory

NT

(Node Table)




The Instruction Unit Stall Signal

IU

(Instruction Unit)

RAT

(Register Alias Table)

NT

(Node Table)

N N
1st ALU

Figure 15

from
memory

NT

(Node Table)

NT

(Node Table)

\—/
\ 2nd ALU /

\J
CACHE



The New Microoperations Signal

NT
(Node Table)

Figure 16

I1U

(Instruction Unit)

(Register Alias Table)

RAT

NT
(Node Table)

Nenrzln,/”

NT
(Node Table)

N\ N’ /
CACHE



Pipeline Timing - 2nd Design

pulse

©,

<4 phase 1 -4 phase 2 —> <4 phase 3 —p4— phase 4 -l
M
next fetch pc generation
% —C
gap

®

@ 1U stall signal

\

I-cache data/tag store access

transmit first part of
the fnstruction on-chip

7

( latch fetch pc )

generation (i-cache tag compare, stall loglc and transmit on- chlp)

®

@

®

@

N

g4

evaluate srcl
shiit NT ﬂrsl part

evaluale src2 compare tag and write
shift NT second part value and ready
/transmll Ins second pa

/// pdate RATtag and rdy
chedule and fetch NT

( latch 1st part of lnslrucllonj

7

ALU evaluation

distrib into RAT
and NT's

7

( latch into NT output stage )

Figure 17



CHAPTER 3

NT : A Smart Instruction Memory Case Study

3.1. Introduction

The Node Table (NT) is a smart instruction memory that buffers microoperations awaiting
data/control operands. It discards the appropriate operations during EXCEPTION and BRANCH repairs
and after firing an entry for execution. Three NT’s are used in the HPSm CPU chip: one for each func-
tion unit as shown in Fig. 1. The NT is a fully associative memory: all access to each entry is regulated
by the contents rather than by the address of the entry. In other words, it is an "addressless” memory.

Figure 2 shows the NT with its fields and its relation to the global busses and signals.

3.2. Memory Architecture

The logical format of the NT is shown in Fig. 3. Each NT entry represents a "RISC-like"
microoperation (e.g. ALU ADD): a 3-bit CONTROL field, a 15-bit OUTPUT RESULT field, a 40-bit
1ST OPERAND field, and a 40-bit 2ND OPERAND field. The fields are in turn broken down as fol-

lows:

3.2.1. CONTROL Field

The CONTROL field has a VALID bit to indicate if the entry is empty, a BRANCH PENDING bit
to indicate if the entry is waiting for a branch prediction to be confirmed, and a CHECKPOINT IDEN-

TIFICATION BIT to indicate what checkpoint the operation belongs to [1].

22
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3.2.1.1. VALID Bit

The VALID bit can be cleared (see Fig. 3) by any of the following conditions:

(1) The BRANCH REPALIR signal is "1" and the BRANCH_PENDING
signal in the same entry is "0",

(2) The EXCEPTION REPAIR signal is "1",

(3) The entry has just been fired, or

(4) The CPU is RESET.

3.2.1.2. BRANCH PENDING Bit

The BRANCH PENDING bit receives its value from the BRANCH_PENDING signal in phase 2
(see Fig. 3).Itis setto "1", if the BRANCH VERIFY signal is "1" and the BRANCH REPAIR signal is
"0", indicating that a correct branch prediction has just been verified. It is not accesséd through any bit
line. The BRANCH PENDING bit participates in the scheduling operation and in clearing the VALID

bit during BRANCH REPAIR.

3.2.2. OUTPUT RESULT Field

The OUTPUT RESULT field has a 5-bit OPCODE field to indicate the operation to be performed
on the entry, a 5-bit OUTPUT REGISTER # field to indicate the destination RAT register for the result,
and a 5-bit OUTPUT TAG field to indicate the tag for the result.

3.23. 1ST OPERAND and 2ND OPERAND Fields

Each operand field has a 7-bit TAG CAM field to indicate the tag of the operand, 1 RDY bit to
indicate if the operand is valid (or if the entry is waiting for this operand to arrive as the result of an FU

evaluation) and a 32-bit VALUE field for the value of the operand.
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Since each entry has 98 bits, it infeasible to implemenf the NT exactly as depicted by the logical
format. Rather, the 2ND OPERAND field is folded undemeath the 1ST OPERAND field as shown in
Fig. 4. The external SCHEDULER control uses the VALID bit and the AGE field (shows "age" of
entry) to determine the oldest firable entry and the entry to be written into. The FIRE ROW DRIVERs
use the control result from the SCHEDULER to drive the appropriate FIRE WL high. The bISTRIBU-
TION ROW DRIVERSs buffer the OPERAND TAG match lines to drive the OPERAND DISTRIBU-

TION WLs during distribution.

3.3. Basic Operations

The timing sequence is illustrated in Fig. 5. All signals are aligned to the 4-phase clocks of the
HPSm CPU chip as shown in the figure. In the sequel, phase i is defined as the time segment from the
rising edge of ¢; to the rising edge of ¢;.. In phase 1 (phase Zj, the ISTkOPER.AND (2ND OPERAND)
is fetched from the RAT and written into the first available entry. Also, in phase 2, the OPCODE, OUT-
PUT RESULT TAG and OUTPUT REGISTER # is fetched from the IU and written into the first avail-
able entry. In the third phase, all entries in the NT awaiting their operands associatively receive values
from the distribution bus if the stored tags match the distributed tags. Finally, in phase 4, the
SCHEDULER FIREs the oldest firable entry. The VALID bit of the fired entry is then set to "0" to

scratch this entry from the NT.

3.4. Priority Encoding Scheme

The NT needs a priority encoding scheme so that it can choose the oldest eligible instruction for
execution in the case where there is more than one executable instruction. Designing an efficient scheme

is the most intractable part of the NT design. The difficulty lies in establishing the oldest firable entry
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and performing garbage collection after the oldest entry has been fired so that the fired entry is not

refired.

No broad classes of priority schemes can be employed. The first one uses "smarter” data cells by
implementing some of the priority control in each cell while the other implements all the control outside
the memory core. The SHIFT-REGISTER priority encoding scheme is an example of a scheme in the
first class. In this case, the entries are ordered by their positions in the NT. The SHIFT operation is used
to shift the latest entry into the first entry, while the other entries are shifted into the empty entry posi-
tions below them. This SHIFT operation not only establishes the oldest entry but also performs garbage
collection. This SHIFT-REGISTER scheme has the typical disadvantage of shift register memories [2] :
the SHIFT signal is highly capacitive since it goes to all the cells. Driving the SHIFT signal would lead
to high dynamic power and peak current. These problems are compounded by the fact that 3 NT’s are
needed in the HPSm CPU chip. The SHIFT—REGIS‘I‘ER approach was rejected in favor of a
POINTER-MECHANISM scheme to be discussed next. The latter scheme is an example of implement-
ing the priority control outside the core. It therefore moves all the complexity from the core to the peri-

phery where it can be easily handled with available CAD tools.

The POINTER-MECHANISM method reverses the process of the SHIFT-REGISTER approach.
It has 2 pointers at any given time : one that points to the entry for insertion of the next instruction in
phases 1 and 2, and another one that points to the entry to be fired. Instead of shifting the entire contents
of the NT, it justs shifts these pointers. Any instruction can be inserted into any entry and any entry can
be fired from any position. Therefore, this scheme maintains an AGE information for each entry that
indicates the order in which the data was written into the NT. (The SHIFT-REGISTER approach, in
contrast, does not need an explicit AGE information since the age of each entry is implied by its physi-

cal location in the memory.)
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3.4.1. The SCHEDULER Finite State Machine

Figure 6 shows all the possible occupation states of the NT. The SCHEDULER is a finite state
machine (FSM) as shown in Figure 7. It uses the AGE information along with the VALID BIT, and
READY BITs of each entry to determine the pointer positions. AGE in Figure 7 is an UP/DOWN
RESETTABLE counter. The VALID BIT indicates what entry is occupied while INSTR_RDY is the
READY bit that informs the SCHEDULER if the instruction is READY (i.e. the READY BITs of the
1st and 2nd operands are SET). The FIRE_WL and INSERT_WL SCHEDULER outputs in Figure 7 are
the pointers. They are qualified by the appropriate clocks to drive the NT FIRE and INSERT word lines.
For each AGE counter, the SCHEDULER generates the UP, DN(DOWN), and RESET signals. The

state transition diagrams that describe the behavior of the SCHEDULER FSM would be discussed next.

3.4.1.1. INSERT State Transition Diagram

In phases 1 and 2 after a néw instruction has been written (inserted) into the NT, the state of the
NT can change in one of several ways. Depending on the initial configuration of the NT, the state makes
a transition to another configuration as shown in Figure 8a. Figure 8b focﬁses on one entry, ENTRY.i.
Since the NT for the HPSm has 4 entries, there are only 5 possible states - 1 "EMPTY" state plus 4 pos-
sible positions for ENTRY .i.

A CPU RESET puts all entries at STATE 0, where they are all empty. If insertion is made into
another ENTRY.j, ENTRY.i is forced to remain at STATE 0 by RESETting the Age_ COUNTER for
ENTRY.i. If an insertion is made into ENTRY.i, the Age_COUNTER of ENTRY.i is counted UP to
increase its AGE and advance its POSITION. If ENTRY.i is at STATEs 1, 2, or 3, when an insertion is
made into another ENTRY j, the Age_COUNTER of ENTRY.i is also counted UP. Therefore, an occu-
pied entry advances in age as long as insertion is taking place in other entries. In STATE 4, an insertion
is not possible since the NODE TABLE OVERFLOW signal (see Chapter 2) generated by the NT

prevents the HPSm IU from fetching any new instructions.
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3.4.1.2. FIRE State Transition Diagram

Figure 9a shows the transitions between the possible NT configurations as entries are fired from
the memory. Figure 9b depicts how the state of a particular entry, ENTRY i, changes as NT entries are
fired. The SCHEDULER uses the VALID BIT of "0" to make sure that ENTRY.i cannot be fired if it is
in STATE 0. Whenever ENTRY.i is fired, it is automaticaily RESET to discard it from the NT. If
another entry, ENTRY ] is fired, ENTRY.i’s AGE is counted DOWN if ENTRY.i was older than

ENTRY.j before it was fired; otherwise ENTRY.i’s AGE is left unchanged.

3.4.1.3. Overall State Transition Diagram

The overall picture that combines both the effects of firing and insertion on a particular entry,
ENTRY i, is shown in Figure 10. For insertion, the main point is that all occupied entries increase in
AGE as entries are inserted into the NT. Therefore, the ordering of the entries by the AGE is updated
correctly after each insertion. All fired entries are reset no matter their AGE. The garbage collection
after any entry is fired is accomplished by simply counting DOWN the AGE of each non-fired entry
whose AGE is higher than that of the fired entry. The non-fired entry whose AGE is lower than that of
the fired entry is left unaltered. In this way, the ordering of the 6ccupied entries in the NT is maintained

after an entry has been fired.

Updating the AGE information after insertion and firing in the way described in the last paragraph
gives a clean way of doing garbage collection after firing the oldest eligible instruction. Resetting the
AGE counter or just counting the AGE counter UP or DOWN avoids the complexity of moving all the

pieces of data in the NT to do compaction as in the case of the SHIFT REGISTER method.
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3.4.2. SCHEDULER Implementation

The shift of the priority scheme complexity from the core to the periphery increases the complex-
ity of the SCHEDULER in a combinatorial manner. This is so because any entry can be a candidate for
insertion or firing. It is clear from Figure 6 that the number of possibilities "explodes” combinatorially
as N, the number of entries, increases. Fortunatel&, N=4 for the HPSm NT. The most recent Berkeley
CAD tools (MISII, WOLFE, VULCAN, and OCTTOCIF) were employed to contain the SCHEDULER
complexity. It is inefficient to implement the SCHEDULER with a PLA because of its combinatorial
nature. (For instance, it is inefficient to implement an ALU with a PLA because flattening an ALU into
Jjust a 2-level logic is inefﬁéient.) Therefore, the SCHEDULER is implemented with multi-level logic
using standard cells. The CAD tools mentioned above allow a lot of flexibility, quick turnaround and
extensive verification of the SCHEDULER implementation. The input description of the SCHEDULER

that is fed into the CAD tools is in Appendix I.

In addition, a personal CAD routine was written to generate the vectors corresponding to all the

possible configurations. These vectors were used to verify the correctness of the SCHEDULER imple-

mentation.
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3.5. Circuits

3.5.1. Cells

3.5.1.1. Tag Cell

The tag cell shown in Figure 11 is a single port write-only (WOM) CAM cell. The SRAM cell at
the top is used to store the data while the 3 comparators below are used for the associative operation.
Tags for the 1st (2nd) operand is written into the cell in phase 1 (phase 2) with the INSERT.WL word
line. In ¢3, the match lines are precharged while the bit lines are discharged. In phase 3, while
INSERT.WL is held low, 3 tags that accompany 3 results from the HPSm FU’s are broadcast to the tag
cell by driving the bit lines. The match line corresponding to the external tag that matches the stored tag
is left high. The XOR comparator discharges any match ]in; associated- with a tag mismatch. Because
the tag is never read out, the highly capacitive (93fF) internal node (1) that connects to all the compara-

tors does not pose a problem.

3.5.1.2. Value Cells

The value cells for the 1st and 2nd operands are shown in Figure 12. The value cell is an SRAM
cell that is written into with INSERT.WL and read from with FIRE.WL. The distribution word lines
(DIST.WL1, DIST.WL2, DIST.WL3) are used to associatively write results from the HPSm FU’s. They
are connected to the match lines of the tag cell in Figure 11 with the DISTRIBUTION ROW DRIVERS
in Figure 4. The difference in the FIRE bit lines is the only difference between the 1st operand and the
2nd operand value cells. This difference is necessary since the two operands must be fetched for execu-
tion (in the ALU for instance) at the same time. BL2 and BL3 are used as FIRE bit lines to reduce the
capacitive load on BL1. The function unit result bus (FU.BUS) is sent through the value cells to avoid

the complexity of routing the bus around the NT.



30

3.5.1.3. RDYBIT Cells

The schematics for the cells for the 1st and 2nd operand READY BITs are in Figure 13. The
RDYBIT cell is similar to the value cell but for two differences. First, since it is not needed for execu-
tion, it is never fired. Second, its value is sent to the SCHEDULER to indicate if the instruction is
READY. To reduce the capacitive loading on the internal node, the buffer, B2, is used to i§olate the
internal node of the cell from the signal (RDYBIT.sigLine) that is sent to the SCHEDULER. B2 is
placed on the "negative" side of the cell since it is an inverter. Another buffer, B1, is used on the "posi-
tive" side to reduce any voltage offset in the cell introduced by B2. The use of the data of the RDYBIT
cell as control signal reflects the fully associative feature of the NT. It can be seen from looking at Fig-
ure 13 that the inclusion of logic in the data cells (by including B1 and B2) make smart memory data

cells larger than conventional data cells.

3.5.1.4. BRANCH PENDING Cell

The BRANCH PENDING cell in Figure 14 is another example of a cell whose data is used as con-
trol information. In phase 2, the BRANCH PENDING bit is written into the cell using INSERT._WL to
indicate if the corresponding instruction is waiting for a BRANCH PREDICTION to be confirmed. This
information is sent to the SCHEDULER using the buffer, B1. When the BRANCH is confirmed, G.e.
BRANCH_VERIFIED is "1" and BRANCH_REPAIR is "0") the P1 PMOS and N1 NMOS transistors
are used to SET the BRANCH PENDING bit.

3.5.1.5. OPCODE Cell

The OPCODE cell, in Figure 15, is a 1-port SRAM cell that is written into with INSERT.WL and
read from with FIRE.WL. The CID, OUTPUT REGISTER #, and OUTPUT TAG fields employ the
OPCODE cell.
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3.5.2. Detailed Operations

The timing chart of the NT signals is in Figure 16. The lumped SPICE model of the NT is shown
in Figs. 17a-17c. All the entries are lumped into one entry while all the columns in a field are lumped

into one column.

3.5.2.1. SCHEDULER and PENDING BIT Column

Figure 17a shows the schematic for the SCHEDULER and PENDING BIT Column. The
SCHEDULER is a finite state machine with the AGE counters and the NT core supplying its inputs as
discussed in section 3.4. In the WL QUALIFIERS, the toFIRE.WLs and toINSERT.WLs are qualified
with the EN_FIRE (ENABLE FIRE), EN_INSERT.1st (ENABLE INSERT 1st) and EN_INSERT.2nd
(ENABLE INSERT 2nd) signals to drive the FIRE.WLs and INSERT.WLs at the appropriate times.
Only one PENDING BIT is needed for each entry; this bit is aligned with the 2nd operand row of the
NT as shown in Figure 17a. Of all the wordvlines only the INSERT.WL_2 is used by the PENDING BIT

column. The other word lines are sent across the column to the other fields.

The buffers for writing the BRANCH PENDING signal (see Chapter 2) is implemented in the
WRITE BUFFERs. The WRITE BUFFERs also contain the logic for combining the BRANCH VER-
IFY and BRANCH REPAIR signals (see Chapter 2). The INSTR.RDY Logic block is implemented in
the empty slot above the PENDING BIT cell. It generates the INSTR.RDY signal by combining the
PENDING BIT and the information about the readiness of the 1st and 2nd operands, to indicate if the
instruction is executable. RDYBIT Logic is implemented besides the PENDING BIT cell. It uses a
NOR gate with the 1st, 2nd, and 3rd match lines (ML1_2, ML2_2, ML3_2) and the 2nd operand RDY-
BIT (RDYBIT .sigLine_2) to determine the readiness of the 2nd operand. Using the match lines rapidly
reflects the most recent change made to the RDYBIT (during result distribution) in the INSTR.RDY

Logic block. (The RDYBIT Logic for the 1st operand is part of INSTR.RDY Logic.)
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3.5.2.2. TAG FIELD and RDYBIT Column

The lumped model of the TAG FIELD, the DISTRIBUTION ROW DRIVERs and the RDYBIT
column is in Figure 17b. The WRITE BUFFERs drive the bit lines during insertion and distribution.
The match lines from the TAG FIELD are qualified in phase 3 with the ML2WL in the row drivers to

drive the distribution word lines (DIST.WL_1 and DIST.WL_2).

35.2.3. VALUE, OPCODE and MISCELLANEOQOUS FIELDs

Figure 17c is the schematic of the VALUE, OPCODE and the MISCELLANEOUS (CID, OUT-
PUT REGISTER #, and OUTPUT RESULT) FIELDs. The WRITE BUFFERS of the fields drive the bit
lines in phases 1, 2 and 3. The WRITE BUFFERs of the VALUE and MISCELLANEOUS fields also
contain dynamic latches for storing the function unit result and for driving the distribution busses. The
VALUE and OPCODE fields have READ BUFFERSs that send the operands and opcode to the function
unit for execution. Since the cells are SRAM cells and the bit line capacitance is not excessive (0.55pF

maximum), no sense amplifiers are used.

3.6. Simulation Results

3.6.1. NT Layout

The NT layout is in Fig. 18. Its size is 1.32mm x 5.54mm, it has 9,527 transistors and it dissipates
0.25W running at 10Mhz.
3.6.2. SPICE Results

The SPICE results for the TAG and VALUE fields of the lumped model discussed above are

shown in Figs. 19a-19d for two scenarios. The first scenario is when there is a tag match during the dis-
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tribution of results while the second scenario is when there is a tag mismatch. The results reflect that the

implemented NT satisfies the timing requirements imposed by the HPSm CPU.

3.7. Conclusions

NT, a smart instruction memory, was described in the above sections. It combines a finite state
machine with data cells for storing instructions (operands, opcode and control information). The above
discussion reflects the fully associative characteristic of the NT. The use of the POINTER-
MECHANISM method for implementing the priority encoding scheme trivializes the garbage collection
function and allows the use of simpler data cells. RAT, a smart data memory, is discussed in the next

chapter.
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APPENDIX I : SCHEDULER Description as CAD Tools Input.
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NAME = SMART.PLA ;

INORDER =BUS_VALID.BIT
AGE_1[3] AGE_1[2] AGE_1[1] INST_RDY_1
AGE_2[3] AGE_2[2] AGE_2[1] INST_RDY_2
AGE_3[3] AGE_3[2] AGE_3[1] INST_RDY_3
AGE_4[3] AGE_4(2] AGE_4[1] INST_RDY _4;

OUTORDER = toINSERT.WL_1 toFIRE.WL_1 toUP_1 toDN_1
toINSERT.WL_2 toFIRE.WL_2 toUP_2 toDN_2
toINSERT.WL_3 toFIRE.WL_3 toUP_3 toDN_3
toINSERT.WL_4 toFIRE.WL_4 toUP_4 toDN_4
QFULL;

POS_1.1= AGE_1[2]& AGE_I[1];

POS_1.2= AGE_1[2])& (!AGE_1[1]);

POS_1.3 = (!AGE_1{2]) & AGE_1[1];

POS_1.4 = ({AGE_1(2]) & (!AGE_1(1]);

POS_1.5= AGE_1[3];

POS_2.1 = AGE_2[2]& AGE_2[1};

POS_2.2 = AGE_2[2]& ({AGE_2[1]);

POS_2.3 = ({AGE_2[2]) & AGE_2[1];

POS_2.4 = ('AGE_2[2)) & ('AGE_2[1));

POS_2.5= AGE_2[3];

POS_3.1= AGE_3[2]& AGE_3[1};

POS_3.2= AGE_3[2]& ({AGE_3[1));

POS_3.3 = (AGE_3[2]) & AGE_3[1];

POS_3.4=('AGE_3(2) & ({AGE_3[1));

POS_3.5 = AGE_3[3];

POS_4.1 = AGE_4[2]& AGE_4[1];

POS_4.2= AGE_4[2)& (!AGE_4[1));

POS_4.3 = ({AGE_4[2]) & AGE_4[1];

POS_4.4=(!AGE_4[2]) & ('AGE_4[1]);

POS_4.5 = AGE_4[3];

EMPTY_1=POS_1.5;

EMPTY_2 =POS_2.5;

EMPTY_3 =POS_3.5;

EMPTY_4 =P0OS_4.5;

QFULL = {(EMPTY_1 + EMPTY_2 + EMPTY_3 + EMPTY_4);
NES.ISENTRY_1 =EMPTY_1;

NES.IS.ENTRY_2 = ({EMPTY_1)&EMPTY_2;
NES.IS.ENTRY_3 = ({EMPTY_1)&(!EMPTY_2)&EMPTY_3;

NES.ISENTRY_4 = ({EMPTY_1)&('EMPTY_2)&('EMPTY_3)&EMPTY _4;

FIRE_1.1st=POS_1.1 & INST_RDY_1;
FIRE_1.2nd =POS_1.2 & INST_RDY_1;
FIRE_1.3rd = POS_1.3 & INST_RDY_1;
FIRE_1.4th=POS_1.4 & INST RDY_1;
OTHER FIRE.1st WL_1 = FIRE_2.1st + FIRE_3.1st + FIRE_4. 1st:

OTHER FIRE.2nd.WL_1 = FIRE_2.2nd + FIRE_3.2nd + FIRE_4.2nd;
OTHER.FIRE.3rd.WL_1 = FIRE_2.3rd + FIRE_3.3rd + FIRE_4.3rd;

FIRE.1st WL_1 = FIRE_1.1st;



FIRE.2nd.WL_1 = FIRE_1.2nd & ({OTHER.FIRE.1st WL _1);
FIRE.3rd.WL_1 =FIRE_1.3rd & ('OTHER FIRE.Ist WL_1) &
('OTHER.FIRE.2nd.WL_1);
FIRE.4th.WL_1 = FIRE_1.4th & ({OTHER FIRE.1st WL_1) &
(!OTHER.FIRE.2nd.WL_1) & ({OTHER.FIRE.3rd.WL_1);
toFIRE.WL _1 = FIRE.1st WL _1 + FIRE.2nd.WL_1 + FIRE.3rd.WL_1
+ FIRE.4th. WL_1;
FIRE_2.1st=POS_2.1 & INST_RDY_2;
FIRE_2.2nd = POS_2.2 & INST_RDY_2;
FIRE 2.3rd =P0OS_2.3 & INST_RDY_2;
FIRE_2.4th =P0OS_2.4 & INST_RDY_2;
OTHER.FIRE.1st WL_2 = FIRE_1.1st + FIRE_3.1st + FIRE_4.1st;
OTHER.FIRE.2nd.WL_2 = FIRE_1.2nd + FIRE_3.2nd + FIRE_4.2nd;
OTHER.FIRE.3rd. WL_2 = FIRE_1.3rd + FIRE_3.3rd + FIRE_4.3rd;
FIRE.1st WL_2 = FIRE_2.1st;
FIRE.2nd.WL_2 = FIRE_2.2nd & (!OTHER.FIRE.1st. WL_2);
FIRE.3rd.WL_2 =FIRE_2.3rd & ({OTHERFIRE.Ist WL_2) &
(!OTHER.FIRE.2nd. WL,_2);
FIRE.4th.WL_2 = FIRE_24th & ({OTHER.FIRE.1st.WL_2) &
(!OTHER.FIRE.2nd.WL_2) & ({OTHER.FIRE.3rd.WL_2);
oFIRE.WL_2 = FIRE.1st. WL_2 + FIRE.2nd.WL_2 + FIRE.3rd.WL_2
+ FIRE.4th. WL_2;
FIRE_3.1st=POS_3.1 & INST_RDY_3;
FIRE_3.2nd = POS_3.2 & INST_RDY_3;
FIRE_3.3rd =POS_3.3 & INST_RDY_3;
FIRE_3.4th = POS_3.4 & INST_RDY_3;
OTHER.FIRE.1st WL_3 = FIRE_1.1st + FIRE_2.1st + FIRE_4.1st;
OTHER.FIRE.2nd.WL_3 = FIRE_1.2nd + FIRE_2.2nd + FIRE_4.2nd;
OTHER.FIRE.3rd.WL_3 = FIRE_1.3rd + FIRE_2.3rd + FIRE_4.3rd;
FIRE.1st.WL. 3 = FIRE_3.1st;
FIRE2nd.WL_3 = FIRE_3.2nd & ({OTHER.FIRE.1st WL_3);
FIRE.3rd.WL_3 =FIRE_3.3rd&(!OTHER.FIRE.1st. WL_3)& ('OTHER.FIRE.2nd. WL _3);
FIRE 4th.WL_3 =FIRE_3.4th & ({OTHER.FIRE.1st.WL_3)
&(!OTHER.FRE.an.WL_Z'»)&(!OTHER.FIRE.3rd.WL_3); .
toFIRE.WL_3 = FIRE.1st. WL_3 + FIRE.2nd.WL_3+FIRE.3rd. WL_3+FIRE.4th. WL_3;
FIRE_4.1st = POS_4.1 & INST_RDY_4;
FIRE_4.2nd = POS_4.2 & INST_RDY _4;
FIRE_4.3rd =POS_4.3 & INST_RDY_4;
FIRE_4.4th=POS_4.4 & INST_RDY_4;
OTHER FIRE.1st WL_4 = FIRE_1.1st + FIRE_2.1st + FIRE_3.1st;
OTHER.FIRE.2nd.WL_4 = FIRE_1.2nd + FIRE_2.2nd + FIRE_3.2nd:
OTHER.FIRE.3rd.WL_4 = FIRE_1.3rd + FIRE_2.3rd + FIRE_3.3rd;
FIRE.1st WL_4 = FIRE_4.1st;
FIRE.2nd.WL_4 = FIRE_4.2nd & ({OTHER.FIRE.1st. WL_4);
FIRE.3rd. WL_4 =FIRE_4.3rd &(!OTHER FIRE.1st WL_4)&(!OTHER FIRE.2nd.WL_4);
FIRE4th.WL_4 = FIRE_4.4th & ({OTHER.FIRE.1st. WL_4)
& ('OTHERFIRE.2nd.WL_4) & (!OTHERFIRE.3rd. WL _4);
toFIRE.WL_4 = FIRE.1st. WL_4 + FIRE.2nd.WL_4+FIRE.3rd. WL_4+FIRE.4th. WL_4;

toINSERT.WL_1 = BUS_VALID.BIT & NES.ISENTRY_1;
toINSERT.WL_2 = BUS_VALID.BIT & NES.IS.ENTRY_2;
toINSERT.WL_3 = BUS_VALID.BIT & NES.IS.ENTRY_3:
toINSERT.WL_4 = BUS_VALID.BIT & NES.IS.ENTRY_4;



INSERT.ANOTHER_1 = BUS_VALID.BIT & (!QFULL);
INSERT.ANOTHER_2 = BUS_VALID.BIT & ('QFULL);
INSERT.ANOTHER_3 = BUS_VALID.BIT & (QFULL);
INSERT.ANOTHER_4 = BUS_VALID.BIT & (!QFULL);
toUP_1 = toINSERT.WL_1 + (INSERT.ANOTHER_1 & (IEMPTY_1));
toUP_2 = toINSERT.WL_2 + (INSERT.ANOTHER_2 & (IEMPTY_2));
toUP_3 = toINSERT.WL_3 + (INSERT.ANOTHER _3 & (!EMPTY_3));
toUP_4 = toINSERT.WL _4 + (INSERT.ANOTHER_4 & ((EMPTY_4));

FIRED_1.AT.20R30R4 = FIRE.2nd.WL_1 + FIRE.3rd.WL_1 + FIRE.4th WL _1;
FIRED_2.AT.20R30R4 = FIRE.2nd.WL_2 + FIRE.3rd.WL_2 + FIRE.4th. WL _2;
FIRED_3.AT.20R30R4 = FIRE.2nd.WL_3 + FIRE.3rd.WL_3 + FIRE.4th.WL_3;
FIRED_4.AT.20R30R4 = FIRE.2nd.WL_4 + FIRE.3rd. WL_4 + FIRE.4th. WL_4;
FIRED_1.AT.30R4 = FIRE.3rd.WL_1 + FIRE.4th.WL_1;

FIRED_2.AT.30R4 = FIRE.3rd.WL_2 + FIRE4th.WL_2;

FIRED_3.AT.30R4 = FIRE.3rd.WL_3 + FIRE4th.WL_3;

FIRED_4.AT.30R4 = FIRE.3rd. WL_4 + FIRE.4th. WL _4;

FIRED_1.AT.4 = FIRE.4th. WL_1;

FIRED_2.AT4 =FIRE.4th. WL, _2;

FIRED_3.AT4 =FIRE.4th. WL _3;

FIRED_4.AT.4 = FIRE.4th. WL _4;

POS1.AND FIRED.LOWER _1 = POS_1.1&(FIRED_2.AT.20R30R4
+ FIRED_3.AT.20R30R4 + FIRED_4.AT.20R30R4);
POS2.AND.FIRED.LOWER _1 = POS_1.2&(FIRED_2.AT.30R4 + FIRED_3.AT.30R4
+ FIRED_4.AT.30R4);
POS3.AND.FIRED.LOWER_1 =POS_1 3&(FIRED_2.AT4+FIRED_3.AT.4+FIRED_4.AT.4);
toDN_1 = (POS1.AND.FIRED.LOWER_1 + POS2.AND.FIRED.LOWER _1
+POS3.AND.FIRED.LOWER_1);
POS1.AND FIRED.LOWER_2 = POS_2.1&(FIRED_1.AT.20R30R4
+ FIRED_3.AT.20R30R4 + FIRED_4.AT.20R30R4);
POS2.AND FIRED.LOWER_2 = POS_2.2&(FIRED_1.AT.30R4 + FIRED_3.AT.30R4
+ FIRED_4.AT.30R4);
POS3.AND.FIRED.LOWER_2 =POS_2.3&(FIRED_1.AT.4+FIRED_3.AT.4+FIRED_4.AT.4);
toDN_2 = (POS1.AND.FIRED.LOWER_2 + POS2. AND.FIRED.LOWER_2
+ POS3.AND.FIRED.LOWER _2);
POS1.AND.FIRED.LOWER_3 = POS_3.1&(FIRED_1.AT.20R30R4
+ FIRED_2.AT.20R30R4 + FIRED_4.AT.20R30R4);
POS2.AND.FIRED.LOWER_3 = POS_3.2&(FIRED_1.AT.30R4 + FIRED_2.AT.30R4
+ FIRED_4.AT.30R4);
POS3.AND.FIRED.LOWER_3 =POS_3.3&(FIRED_1.AT.4+FIRED_2.AT.4+FIRED_4.AT.4);
toDN_3 = (POS1.AND.FIRED.LOWER_3 + POS2. AND.FIRED. LOWER_3
+ POS3.AND.FIRED.LOWER_3);
POS1.ANDFIRED.LOWER_4 = POS_4.1&(FIRED_1.AT.20R30R4
+ FIRED_2.AT.20R30R4 + FIRED_3.AT.20R30R4);
POS2.AND.FIRED.LOWER _4 = POS_4.2&(FIRED_1.AT.30R4 + FIRED_2.AT.30R4
+ FIRED_3.AT.30R4);
POS3.AND.FIRED.LOWER_4 =POS_4.3&(FIRED_1.AT.4+FIRED_2.AT.4+FIRED_3.AT.4);
toDN_4 = (POS1.AND.FIRED.LOWER_4 + POS2.AND.FIRED. LOWER_4
+ POS3.AND.FIRED.LOWER_4);



CHAPTER 4

RAT : A Smart Data Memory Case Study

4.

4.1. Introduction

RAT [1] is the main smart memory on the HPSm CPU chip and plays the major role of manipulat-
ing the data flow graph - the central data structure in a data flow CPU. It is analogous to a register file
in a conventional von Neumann CPU but with extra capabilities for enhanced data manipulation and
support for out-of-order execution control. In Figure 1, RAT communicates with 3 other smart instruc-
tion memories (MEMORY NODE TABLE, ALU NODE TABLE, and CONTROL NODE TABLE) .
through 3 ports. These smart instruction mémories in tum support 3 CPU functional memories
(MEMORY, ALU and CONTROL). RAT has a content-addressable tag field to support associative
operations, and has 2 backup copies per data element to support branch prediction and exception han-

dling. Figure 2 shows the RAT with its fields and its relation to the global busses and signals.

4.2, Memory Architecture

The memory architecture is shown in Figure 3. Information is stored in a 31-word format - 40
bits/word - forming a 1.24K array that is accessible from the external world. The core is partitioned into
3 fields - a 7-bit tag field (a 2-bit non-content addressable tag field and a 5-bit content addressable tag
field ), a ready bit field (1 bit) and a value field (32 bits). Each field is divided into 2 halves by a set of
sense ampliﬁers. Each of the 3 smart instruction memories in Figure 1 logically sees one I/O port look-

ing into the RAT which it uses repeatedly for all its interaction with the RAT. By multiplexing each
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port for 2 READs, 1 WRITE and 2 associative WRITEs per cycle, the RAT provides the function of a
15-port memory while paying the price of a 3-port memory in terms of area and power. However, the

time-sharing of the ports by different operations certainly has an impact on the cycle time.

Six multiplexers and six decoders are used - 3 for conventional READ/WRITE operations and 3
for assisting the associative WRITE operations. The READ_ENABLE circuitry divide the decoders into
an upper half and a lower half for the upper and lower halves of the core respectively. This circuitry is
used to conditionally inhibit some ports during READing. The row drivers buffer and multiplex the tag
word line (for conventional operations) and the tag match line (for content addressable operations) to

drive the ready bit/ value field word lines.

The tag and ready bit fields have 1 backup copy while the value field has 2 backup copies to sup-
port branch prediction and exception handling. So indeed, although only 31 x 40 bits are directly acces-
sible from the external world, the core really stores 3.47K bits. The programmer-visible cells are called
the current cells ( C.cell) while the first and second backup cells are called the transit (T.cell) and set-
tled (S.cell) cells respectively. Conceptually, the RAT can be viewed as a "3-dimensional” memory

where the backup copies (the boxes in dotted lines in Figure 3) represent the depth.

4.3. Basic Operations

The timing sequence is illustrated in Figure 4. The RAT is designed to run at the 10MHz clock
frequency required for the HPSm CPU chip. All signals are aligned to the 4-phase clocks of the data
flow CPU as shown in the figure. In the sequel, phase i is defined as the time segment from the rising
edge of ¢; to the rising edge of ¢;,1. In each of the first two phases, 3 words from 3 (possibly different)
locations are read out into the three different ports. (Actually, O to 3 words are read out depending on

the VALID bits of the ADDRESS busses fed into the READ_ENABLE circuitry.) Then in phase 3,
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computed results from the 3 function units are written into the current and transit cells of the
ready/value fields if the interrogative tags match the stored tags. Phase 4 is used to update the data flow
graph by writing new values into the tag and ready fields (the MERGE operation mentioned in Chapter
2).

The RAT supports branch prediction and exception hhndling by allowing SAVE and REPAIR
operations. These operations are defined as follows. If a conditional branch is encountered in the
instruction stream, the data flow CPU predicts the branch to be taken and informs the RAT to save (the
SAVE operation ) its current values into the transit cells by raising the C2T signal in ¢,. If the CPU
later on discovers that the prediction was incorrect, it informs the RAT to recover ( the REPAIR opera-
tion ) the last saved values by raising the T2C signal in phase 4. This has the effect of copying the tran-
sit values into the current cells. Exception handling needs all the SAVE/REPAIR functions of branch
prediction. It also requires tilat the transit values be copied into the settled cells (in ¢, with T2S) and
that the settled values be copied into the current cells (in phase 4 with S2C). The architecture design is
such that the REPAIR operations from the transit and the settled cells into the current cells in phase 4

do not occur together; therefore the state of the current cells is always well-defined.

4.4. Circuits

4.4.1. Cells

4.4.1.1. Value Triple-Cell

The schematic for the value cell is shown in Figure 5. The layout has an area of 135um x 58um.
The value cell has 3 data storage elements:;

(1) 1 pseudo-static cell for the C.cell,



(2) 1 dynamic cell for the T.cell (for branch-prediction
and exception handling support) and,
(3) 1 dynamic cell for the S.cell (for exception handling

support).

The READ/WRITE operations are:

(1) a 1-port (one of the 3 available ports) conventional WRITE to the
C.cell,

(2) a 3-port conventional READ from the C.cell, and

(3) a 1-port (one of the 3 avéilable ports) associative WRITE to the
C.cell and the T.cell.

The SAVE/REPAIR operations are:
(1) a current-to-transit SAVE,

(2) a transit-to-settled SAVE,

(3) a transit-to-current REPAIR, and

(4) a settled-to-current REPAIR.

The C.cell is implemented as a pseudo-static cell for two reasons. The first reason has to do with
the high bandwidth requirement of the RAT. The high bandwidth requirement can be met by having
several ports (several bit lines and word lines), several phases or a combination of the two. With several

ports, several operations occur in parallel; each operation using its own port. When several phases are
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used to accomplish the task, different operations time-share the use of 1 port. If a combination of the 2

strategies is used, the right balance has to be struck. More bit lines means a shorter cycle but more area

and reduced noise margins while more phases means less area and increased noise margins but more

control complexity and a longer cycle. In the case of the RAT, since 3 FU’s have to be supported, it is
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natural to have 3 bit lines, 3 word lines for the current cells and 3 word lines for the backup cells.

This multiport structure of the RAT is necessary to prevent the cycle from being prohibitively
long from excessive time-sharing of a single port. The multiport structure has certain implications for
the I/O buffer, sense amplifier and data cells. The I/O buffer and sense amplifier have to satisfy more
and more stringent pitch requirements as the number of ports increase. Beyond a certain number of
ports, certain traditional design styles for the data cells have to be abandoned to ensure that the cells are
compact. First, bit lines cannot be dedicated for READ and WRITE as in RISC I [2]. Second, for the
same reason, the traditional "bit line pair" approach shown in Figure 6a cannot be used. This then leaves
us only with the option of employing some single-ended technique with bit lines shared by both READ
and WRITE accesses. Single-ended cell designs are more critical than those of conventional differen-
tially accessed cells. A conventional cell like that in Figure 6a preserves data during a READ disturb
because of the well-known restoring action of differential access. The single-ended cell in Figure 6b by
Stewart and Dingwall [3] is more compact than a differentially accessed cell but it requires boosted
word lines to WRITE a "1" into the cell and half-Vpp bit line precharging along with PMOS or deple-
tion loads to protect the cell data during READs [4] . Providing single-ended access using boosted word

lines was rejected for reasons of complexity and process-dependence.

For the propésed pseudo-static cell in Figure 5, READ and WRITE operations afe performed on
the C.cell by directly controlling the feedback path in the cell. The REFRESH signal is kept high dur-
ing a READ operation while it is taken low for WRITE operations. Keeping the REFRESH signal high
protects cell data during READing while taking it low allows a contention-free WRITE. Therefore, the
C.cell behaves like a static RAM cell for READing and like a dynamic RAM cell for WRITing. Since
the bit lines are shared by the C.cell and the T.cell to save area, there is a grave danger of a sneak path
between nodes (1) and (2). The sneak path is blocked by ensuring that the word lines of the T.cell are

low throughout the READ operation. In conclusion, the pseudo-static technique permits the implemen-
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tation of the RAT as a 3-port memory with 3 single bit lines rather than with 3 bit line pairs with sub-

stantial savings in area while avoiding the price of using boosted word lines.

The second reason for using the pseudo-static cell has to do with the REPAIR operation. If a static
C.cell is used, there would be a lot of contention during a REPAIR operation from the T..cell or from the
S.cell. Firstly, this contention means that the T.cell, the S.cell and the REPAIR pass transistors (M1 and
M2) have to be large for the REPAIR operation to be successful. Secondly, the contention leads to high
power dissipation and high peak currents with the attendant inductive noise problems. The need to carry
out the REPAIR operation on all the cells of the core (992 cells) at once, compounds the above 2
contention-related problems. In the RAT value cell, the REPAIR operation is carried out by keeping the
REFRESH signal low while T2C or S2C is raised high. In this way, the contention between the current

and backup parts of the cell is avoided.

Only one of the backup cells (the T.cell) interacts with the external world. Dynamic cells are used
in the backup section for area and simplicity reasons. (A pseudo-static version had to be used in the
current part to avoid the complexity of providing REFRESH.) The use of dynamic cells for the backup
section also prevents contention during the SAVE operations. The dynamic S.cell does not need
REFRESH since it is guaranteed by the CPU design that its value is used within 1ms. The REFRESH for
the T.cell is initiated by software. |

4.4.1.2. Tag Double-CAM-Cell

The schematic for the tag cell is shown in Figure 7. The layout has an area of 135um x 88um. The
tag cell has 2 data storage elements:
(1) 1 pseudo-static cell with 3 tag comparators for the C.cell,
and
(2) 1 dynamic cell with 3 comparators for the T.cell

(for branch-prediction support).
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The READ/WRITE operations are:

(1) a 1-port (one of the 3 available ports) conventional WRITE
to the C.cell, and

(3) a 3-port conventional READ from the C.cell.

The associative operations are:
(1) a 3-port tag comparison with the C.cell

and the T.cell.

The SAVE/REPAIR operations are:
(1) a current-to-transit SAVE, and

(2) a transit-to-current REPAIR.

The pseudo-static cell was used to implement the tag C.cell for the same reasons that justified its
use for the value C.cell. The tag cell has to be implemented with bit line pairs to allow a complete logic
comparison with an external tag. Fortunately, the total area cost is bearable since only 5 CAM tags are
needed. The tag CAM cell needs 6 tag comparators so that both the C.cell and the T.cell can be com-

pared with 3 external interrogative tags at once.

This need for 6 comparators requires a careful choice of the tag comparator to minimize the size of
the tag cell and the capacitance of the bit lines. The 3 CAM cell comparators in Figure 8 were con-
sidered. The most serious flaw of the Mundy [5] CAM cell comparator is the extra capacitive loading on
the BL due to the intemnal node (1). The extra capacitive loading is non-deterministic, being dependent
on the stored data. BL "sees" node (1) only when M1 is ON while BL.bar is loaded by node (1) if M2 is
ON. The worst case for BL is when all the M1’s in all the comparators in the tag column are ON. This
pattern-dependent extra capacitive loading on the BL, which is worse when there is a backup CAM cell,

slows down all the operations. Another flaw with the Mundy comparator is the area consumed by the
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diode in each comparator.

The Kadota [6] comparator in Figure 8b does not have the area and capacitance problems of the
Mundy comparator. In addition, its use of the gate (rather than the drain of the Mundy comparator) for
broadcasting the external tag to the cell gives the bit line in Figure 8b less capacitance than the one in
Figure 8a. However, the charge-sharing between the match line and the intemal nodes (2) and (3) in
Figure 8b during a tag match, is the reason for rejecting the Kadota comparator. The CAM cell com-
parator in Figure 8c is the one used for implementing the tag CAM cell. It does not have the problems

of the Mundy and the Kadota comparators

4.4.2. Peripheral Circuits

Figure 9 shows the peripheral circuits.

4.4.2.1. Decoders and MUX’s

The MUX’s sample the ADDRESS busses and drive the decoder inputs with the address and its
complement. The deceders for the READ/WRITE and CAM functions use 2 3-input NAND gates that
feed a 2-input NOR gate. Compactness (due to the NAND) is the main reason for choosing this decoder
since 186-word (2 X 3 X 31) decoders are needed. The fact that only one control signal is needed is
another advantage. This signal also leads to the discharge of the word line whenever the decoder is
being precharged. The READ/WRITE decoder is clocked with the signal (SEL.MUX bar) that is used to
sample the ADDRESS bus in the MUX’s. Because of the complexity of the CAM timing, the signal

(EVAL.CAM.DEC) for evaluating the CAM decoder is different from that (SEL.DIST) for sampling the
CAM ADDRESS bus.

The decoder is slower than other more complex versions because of the 4 NMOS transistors in

series followed by a pull-up that uses 2 PMOS transistors in series. However, in the case of the
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READ/WRITE decoder, the decoder only drives the tag word line and not the entire word line. In the
case of the CAM decoder, the decoder output is not highly capacitive since all it does is to precharge the
match lines. Consequently, the speed penalty of using this decoder is not severe while the decoder is

compact enough to fit 186 decoders to the RAT pitch.

By a very careful layout, the internal node capacitances are made small enough compared to the

precharge node capacitance so that the charge-sharing problem is not serious [7].

4.4.2.2. READ-ENABLE Circuitry

The READ-ENABLE circuitry lies between the upper and lower halves of the decoder array.
There is one for each port. It is used to qualify the READ signal (READ.signal in the figure). The
qualified READ signal is sent to the I/O buffers to conditionally inhibit certain ports during the READ
operations. This inhibition may be necessary if an HPSm instruction, for instance, needs to use a literal
rather an kAT register entry as an operand (see Chapter 2). The HPSm Instrucﬁon Unit uses the VALID
bit of the register address to inform the RAT that the READ operation should not take place. A VALID
bit of "0" sent into the READ-ENABLE logic ensures that the port does not drive the external bus,
while the "0" VALID bit sent into the READ/WRITE decoder ensures that the word line does not rise
for the inhibited port.

4.4.2.3. I/0Q Buffers

Since high bandwidth communication in the HPSm means a lot of busses, it is desirable to make
the busses as short as possible to minimize the bus areas and delays. Having each smart memory interact
with the busses from only one side is one way to keep the busses short. Therefore, the RAT I/O buffers
are designed to interact with the busses in a bidirectional manner while minimizing the pitch-matching
problems of fitting 120 (3 X 40) buffers to the RAT pitch. In Figure 9, the VALUE FIELD I/O drives

only the upper bit line while the TAG FIELD I/O drives both the tag bit line and its compliment. The
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SA ( Sense Amplifier Evaluation) signal is used to dis-enable the output buffer during bit line equaliza-

tion to prevent penetration current from flowing.

4.4.2.4. Sense Amplifier

The need to support multiport access, branch prediction and exception handling, makes the bit
lines very long and therefore highly capacitive (at least 2.62pF/bit line), since they have to traverse the
backup cells and 6 word lines/register. A sense amplifier is therefore essential for fast access. The sense
amplifier must be compact since 120 ports have to be supported. The conventional split-bit line, half-
Vbp cross-coupled latch sense amplifier in Figure 9 satisfies the sensing requirements. A charge-sharing
sense amplifier was considered but rejected. (It is a sense amplifier that has been successfully used in
EPROMs and PLAs. This is possible because EPROMs and PLAs only READ and never WRITE.) It

was rejected for the RAT because of the inefficiency of doing reset after writing a "1".

The proposed sense amplifier has the following features:

i) a complimentary sense amplifier consisting of NMOS and PMOS cross-coupled devices,

ii) it is placed in the middle of the RAT and divides the memory array into 2 halves: an upper half that
is of the same polarity as that of that data from the busses and a lower half that has the opposite polarity,

and
iii) a shorting transistor to equalize the precharge potential of the bit lines.

The operation of the sense amplifier is as follows. At the end of the previous cycle, one bit-line half is at
Vpp and the other half is at GND. The bit line precharge before sensing is initiated by taking the equal-
izing signal, EQ, high to tum ON the equalizing transistor which shorts the 2 bit line halves together.
The charge sharing between the 2 bit line halves results in a precharge that is nearly half Vpp. (The

extra capacitance on the upper bit line half due to the I/O buffer prevents the precharge potential from
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being exactly equal to half Vpp. More registers are placed under the sense amplifiers than above as a

first order minimization of this capacitance difference.)

The sensing starts by establishing a difference in voltage between the 2 bit line halves. In the case
of a READ, this difference is established by raising one of the word lines connected to either the upper
half or the lower half. The cell connected to the bit line and the raised word line pulls the bit line low or
high depending on the stored data. In the case of a WRITE, the difference is established by the WRITE
buffer that drives the upper half bit line either low or high. (The WRITE buffer of the TAG FIELD also
drives the complimentary bit line.) After establishing enough difference to account for any noise and

voltage offset, the sense amplifier is activated by strobing the SA and SA.bar clocks. .

The folded bit line version of this sensing scheme has the advantage of locally canceling the cou-
pled noises due to bit line and word line swings. This version could not be used to implement the RAT
sense amplifier because of the backup word lines. SPICE simulations predict and experimental measure-

ments confirm that the noise problem of the open bit line sense amplifier is not severe.

4.42.5. SKEW Logic

The SKEW logic in Figure 9 is used to prevent any skew-related hazards by qualifying the
EQUALIZATION signal for the TAG and VALUE fields. The signals that clear the TAG and VALUE
word lines are inputs to the logic so that no word line is high while the equalization is taking place. The

skew-related hazards are discussed in detail in a subsection below.

4.4.3. Clock Generation

The increased functionality of the RAT implies that many signals are needed for its control. At
the same time, these signals must be generated reliably, and with minimum skew. Fortunately, most of

the signals are non-state dependent signals since most of the events in any cycle are predictable. Hence,
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most of the signals have a well-defined pattern each cycle. A 12-stage version of the PLL-based clock
generator used by D.K. Jeong [8] is used to generate all the signals for the RAT Test chip. The clock
generator block diagram is in Figure 10a. The timing chart showing all the RAT signals are in Figure
10b.

4.4.4. Detailed Operations

For the sake of clarity, a 1-port version of the main circuits are shown in Figure 11. Please refer to
the memory architecture in Figure 3, the peripheral circuits in Figure 9, the timing chart in Fig. 10b, and

the circuits in Figure 11 for the following discussion.

4.44.1. READ Operation

The conventional READ operation is as follows. In ¢, for example, the word lines are discharged
while the REFRESH (REF. in the figure) signal is kept high, and the bit lines are equalized. After ¢,
goes low, the READ/WRITE decoder conditionally keeps the tag_C.WL1 (tag current word line 1) low
or raises it high. The row driver transfers the state of tag_ C.WL1 to val_CWL1. The information in the
cells are read out to the bit lines, if the word lines are high. The sense amplifiers amplify the bit line sig-

nals and the I/O circuitry drives the busses.

4.4.4.2. WRITE Operation

Conventional WRITE is done in the fourth phase. The feedback paths in the C.cells are broken by
taking REF. low for the WRITE. After the WRITE, the feedback path is closed again and regeneration

through the first and clocked inverters keeps the internal and output nodes cdnsistent.
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4.4.4.3. CAM Operation

The CAM decoder in Figure 9 is used to avoid severe power and inductance problems by permit-
ting the precharging of a maximum of 6 instead of 186 match lines. In ¢, the tag bit lines (BL1 and
BL1.bar) and current word lines (tag_C.WL1) are discharged while the CAM decoders selectively
precharge the current and backup match lines (C.ML1 and B.ML1) of the tag field. After ¢ goes low,
the interrogative tag is broadcast to the RAT by writing it on the bit lines. The match lines are condi-
tionally pulled low or left high depending on whether the stored tag mismatches or matches the distri-
buted tag. After enough time has elapsed for the match line to be completely discharged if there is a
mismatch, the TAG.ML.to.VAL.WL and TAG.BML.to.VAL.BWL bar signals (Figure 10b) are raised

to transfer the result of the CAM operation to the value field word lines (val_C.WL1 and val_B.WL1).

4.4.4.4. SAVE/REPAIR Operations

Communication between the C.cells and the T.cells of the tag double-CAM-cell and the value
triple-cell is done by raising the C2T signal ( for SAVE ) while the REF. signal is kept high or by rais-
ing the T2C signal ( for REPAIR ) after the REF. signal has been lowered. In the value triple-cell, the
T.cell data is saved into the S.cell with the T2S signal and the S.cell data is restored into the C.cell with
the S2C signal. By completely overlapping the normal operations, the SAVE/REPAIR functions do not

cause any loss of cycles.

4.4.5. SKEW-related Hazards

The RAT needs many signals to control its many functions. Using many signals increases the
potential of having skew-related hazards. Only the hazards that cannot be avoided by stretching the
clock will be discussed. In Table 1, 5 hazards caused by skews are listed. The first and third hazards

where the EQ (equalization) signal arriving too early causes data corruption, are the most severe.
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One solution to the skew problem is to use the Mead and Conway [9] épproach of putting non-
overlapping time between any two signals whose skew can cause a hazard. This approach is the safest
but the costliest in terms of speed. In the case of the RAT, it will make the cycle longer by at least 16ns
(16% increase). An alternative way is to use the SKEW logic discussed above. The logic does not per-
mit the equalization to take place until all the word lines are low, and the sense amplifier and I/O buffers
are turned OFF. Using this approach, the skew problem was adequately solved without an appreciable

increase in the cycle time.

4.5. Experimental Results

4.5.1. RAT Test Chip

The microphotograph of the RAT Test Chip is in Figure 12. The RAT memory is in the left while
the clock generator is in the right. The chip size is 7.45mm x 7.61mm with 42,068 transistors. It dissi-
pates 1.5W running at 10MHz compared to the estimated power dissipation of at least 0.97W for the
chip plus 0.5W for the pads. The detailed RAT microphotograph is in Figure 13. It has a size of 5.37mm
x 3.97mm with 38,468 transistors. Its estimated power is 0.51W. The clock generator has a size of
4.78mm x 1.89mm with 1,463 transistors. Its estimated power is 0.46W. The estimated power of .the
RAT and the clock generator are within the measured power dissipation of the entire chip. The process

summary is shown in Table 2.

The chip is mounted in a 108-pin PGA package and has the following pads:
(1) pads for all the RAT addresses,
(2) pads for all the tag ports,
(3) pads for the 3 ports of the READY BIT,

(4) pads for the last bit of the VALUE FIELD, and
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(5) pads for the REGISTER 30 Tag.Current. WL,
Tag.Current ML, Value.Current. WL,

and Value Backup. WL,

The Clock Generator pads are:
(1) pads for the clock generator PLL and filter,
(2) pads for all the generated clocks, and

(3) pads for the SAVE/REPAIR control signals.

The internal probe pads are:
(1) probe pads for viewing the bit lines of the last VALUE FIELD bit,
(2) probe pads for viewing the internal nodes of all the

clock signals.

4.5.2. Clock Signals

The clock signals generated by the clock generator as seen at the external pads are shown in Fig-
ure 14. The waveforms in Figure 14 correspond to those in the timing chart of Figure 11. The observed
signals agree with the SPICE simulations and satisfy all the timing requirements for the required 100ns

clock cycle.

4.5.3. Basic Operations

Figure 15a depicts the basic operations discussed in section 4.3 for a single port. It shows the
experimental results for a 1-port READ-1st-operand (1), READ-2nd--operand (1), Associative-WRITE
(1), and WRITE (1) operations as seen at the external pads. The corresponding basic sense amplifier

operations with the sense amplifier signals are shown in Figure 15b.
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4.5.4. Access Time

The delay from the address input to the last bit by accessing the last register is shown in Figs. 16.

The experimental and simulated results agree.

4.5.5. CAM Operation for Current Cells

The detailed CAM operation for the current part of the RAT from the CAM address input to the
VALUE CURRENT_WORD_LINE (val_C.WL) of the last register are depicted in Figs. 17. These
measurements were made at the external pads. The experimental results agree with the simulated

results.

Figure 17a shows the general impact of the SELECT_CAM_ADDRESS (SEL.DIST.MUX) and
the DISCHARGE_MATCH_LINE (DISCH.ML) signals on the TAG CURRENT MATCH_LINE
(C.ML). Figure 17b is Figure 17a in detail and shows the delay from the CAM decoder input through
the CAM decoder to the C.ML. |

Figure 17c shows the general impact of the EVALUATE_CAM_DECODER (EVAL.CAM.DEC)
and the DISCH.ML signals on the C.ML. Figure 17d is Figure 17¢ in detail and depicts the delay from
the EVAL.CAM.DEC signal to the C.ML.

Figure 17e shows the delay from the DISCH.ML signal to the C.ML.

Figure 17¢ shows the general impact of the
TAG_CURRENT_MATCH_LINE_to_VALUE_CURRENT_WORD_LINE (TAG.ML.to.VAL.WL)
signal on the val_C.WL for a tag MATCH scenario. Figure 17g shows Figure 17f in detail. It depicts the
delay from the TAG.ML.to.VAL.WL signal to the val_C.WL.

Figure 17h and Figure 17i portray the impact of the interrogative tag for MATCH and

MISMATCH scenarios respectively. The stored tag contains a "1". In both cases, the match line is
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precharged but discharged only in the case of Figure 17i when the tag bit line goes to "0" - a mismatch
since "1" is the stored tag. (The observed dip in the tag bit line waveform is due to the equalization

operation as seen at the external pad.) Finally, the detail of Figure 17i is shown in Figure 17j.

4.5.6. CAM Operation for Backup Cells

The detailed CAM operation for the backup part of the RAT from the CAM DECODER output
(PRECH.ML) to the VALUE_BACKUP_WORD_LINE (val_B.WL) of the last register are depicted in
Figs. 18. Since the CAM operations of the current and backup sections of the RAT are similar, the simi-
larities are not duplicated in Figs. 18. All measurements were made at the external pads. The experi-

mental results agree closely with the simulated results.

Figure 18a shows - the general impact of the
TAG_BACKUP_MATCH_LINE_to_VALUE_BACKUP_WORD_LINE.bar
(TAG.BML.to.VAL.BWL.bar) signal on the val_B.WL. It is clear from the figure that the val_B.WL
goes high only during phase 3 when the CAM operation takes place, as it should. The val_B.WL must
be kept low at all other times to prevent any corruption of the data in the T.cells of the VALUE FIELD
through the sneak path in Figure 5 mentioned in subsection 4.4.1.1. above. Figure 18b and Figure 18¢c

show the rise and fall delays of the val_B.WL relative to the TAG.BML.to.VAL BWL.bar signal.

4.5.7. SAVE/REPAIR Interaction with CAM Operation

The SAVE/REPAIR operations for the VALUE FIELD are difficult to demonstrate on an oscillo-
scope screen. The TEKTRONIX DAS equipment was used 'to verify these operations. The
SAVE/REPAIR operations for the TAG FIELD are depicted by showing an interesting interaction of

these operations with the associative operation.
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45.7.1. SAVE: C2T

Figs. 19 show the impact of the current_to_transit (C2T) SAVE on the backup MATCH opera-
tion. The tag BL is toggled cycle by cycle so that the data written into the current tag cell in one cycle is
MATCHed by the distributed tag during that cycle. Therefore, the experiment is such that the current

tag always MATCHes the interrogative tag as shown in Figure 19a and Figure 19b.

In Figure 19a, the backup tag always MATCHes the external tag because the C2T signal goes high
in every cycle to transfer the updated state of the current tag into the backup cell. On the other hand,
Figure 19b shows the case where the backup tag MATCHes the external tag in one cycle but
misMATCHes it in the next cycle. The MATCH only takes place when the C2T signal goes high in that

cycle.

In the context of the HPSm microarchitecture (see Chapter 2), this scenario arises when a different
tag is written in phase 4 just after a branch prediction (that leads to the C2T SAVE) has been made.
Then, in the next cycle a CAM operation is performed where the distributed tag MATCHes the current
tag but misMATCHes the backup tag because no C2T SAVE is done in the cycle. The tag alteration in
phase 4 has the effect of making the state of the machine before the BRANCH point different from that
after the BRANCH point. This interaction between the SAVE and CAM functions illustrates a very
interesting feature of the RAT : it maintains 2 independent states of the machine in the TAG FIELD and

distribution of results can be made to update the 2 states of the machine in parallel.

4.5.7.2. REPAIR: T2C

Figs. 20 show the opposite of the above subsection. The narrower pulse of the
CURRENT_MATCH_LINE (CML) show a tag misSMATCH (since the CML is high for just a while
before being discharged by the CAM operation). The CWL never rises if there is a tag misMATCH. The

data in the backup cell is left undisturbed throughout the experiment and it always MATCHes the exter-
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nal tag. The tag BL is toggled every cycle so that the data written into the current tag cell in a given
cycle does not MATCH the distributed tag during the next cycle unless the transit_to_current (T2C)

signal goes high before the CAM operation.

Figure 20a shows the case where the T2C REPAIR takes place in every cycle; both the current
and backup tags always MATCH the distributed tag. The backup tag MATCHes the external tag
because they both contain "0", while the current tag MATCHes because a REPAIR is done every cycle.

In Figure 20b, the current tag only MATCHes after a REPAIR operation has taken place.

In the context of the HPSm microarchitecture (see Chapter 2), this scenario arises when the distri-
buted tag MATCHes the backup tag because it belongs to the state of the machine before the BRANCH
point. The current tag would not MATCH the interrogative tag because it belongs to a different state;
therefore, it would only MATCH after the REPAIR operation (that restores the former state of the

machine) is performed.

4.5.8. GROUND Bounce

The RAT design requires 6 signals (REFRESH and REFRESH.bar, C2T, T2C, T2S, and S2C) that
£0 to every data cell. These signals are therefore highly capacitive because their capacitance increases in
proportion to N2 where N is the dimension of the memory as compared to the usual peripheral signals
whose capacitances follow a linear law. The capacitances of these signals and their associated peak

currents are shown in Table 3.

The fact that the capacitances follow a square law is one of the unusual features of the RAT and
illustrates one of the costs of smart memories. Because driving these signals would need high peak

currents, it is important to know the impact of the high capacitances on the stability of the chip ground.

A 3.5Q resistor was connected between the chip ground and the oscilloscope ground for the exper-

iment in Figure 21a. Figure 21a shows that.the chip ground potential varies over a 1.18V range. It also
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shows that the greatest swing occurs when 4 of these high-capacitance signals (S2C, T2C, REFRESH,
and REFRESH.bar) are switching at the same time. (However, any skew between the signals will
reduce the peak current problems since the total peak current won’t be the sum of all the peak currents
caused by driving the various signals.) It must be pointed out that Figure 21a is the worst case scenario
since the HPSm microarchitecture does not allow 2 REPAIRS (T2C and S2C) at once. Yet, it is shock-
ing to observe that the GROUND bounces over about a 1.2V range compared to about 0.5V that will be
considered desirable. The peak current of 232mA in Figure 21 agrees closely with the calculated values
in Table 3.

459. Skew-Related Hazards

Figs. 22a and 22b illustrate one of the hazards discussed in an earlier section. They show that the
unqualified EQ signal partially overlaps the VALUE FiELD and the TAG FIELD WORD LINEs
A(VAL.WL and TAG.WL). This skew would have caused a hazard (the equalized bit line corrupting the
stored data while the WLs are high) without the correction mentioned above. To show that the correc-
tion is successful, consider the case in Figure 22c. Here, the qualified EQ signal rises only after the
VAL.WL has gone low because the unqualified EQ signal that is used to CLEAR the VAL.WL is also
fed into the logic that produces the qualified EQ signal.

4.6. Conclusions

RAT, a smart data memory that is intended for aiding the HPSm data flow CPU in controlling its
out-of-order execution was described in the foregoing paragraphs. The circuit design problems that
result from its "smartness" were clearly identified and solutions were developed. Experimental results

from a test chip confirm that the employed circuit design techniques were adequate.
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Fig. 5: Value "Triple-Cell" Schematic
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Fig. 7: Tag "Double-CAM" Cell Schematic
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Table 1 : Skew-Related Hazards

Skew Scenario Hazard
1 SEL.MUX.bar falls too late. Not enough time for driving
EQ rises too early. the word lines low.
Data is corrupted.
2 REFRESH rises too early. BL and BL.bar equalized
SEL.MUX bar falls too late. -away from half-VDD.
EQ rises 100 early. Read noise margin reduced.
3 EQ rises 100 early. Not enough time for driving
DISCH.ML rises too late. the backup word lines low.
TAG.BML.o.VAL.BWL.bar | VALUE FIELD backup data corrupted.
-rises 100 late.
4 WRITE falls too late. BL and BL.bar equalized
EQ rises 100 early. away from half-VDD.
Read noise margin reduced.
5 EQ rises 100 early. BL and BL.bar equalized
SA falls 100 late. away from half-VDD.
SA bar rises too early. Read noise margin reduced.




hotograph

icrop

M

1p

RAT Test Chi

L]
°

Fig. 12

7.45mm x 7.61mm
8.

Size

RAT Size
Clock Generator Size = 4

Chip

37mm x 3.97mm

78mm x 1.89mm

; 1 %cﬁv.@lﬂ;_ _m I " " _.
B ]
H b | g

-:-—- CRERESELE T L sl

g e e R P

1

!

LTI T T

W%ﬁﬁai mm‘ﬂi’i E :
. r 2] d i L

S S R PR

R a

T

CEERRICIIE T

EESRRERtT

ERTREEET I

1

T .._




Fig. 13 : RAT Microphotograph
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Table 2 : Process Summary

Parameter ____CMOS __NMOS moi_‘

Technology Scalable CMOS, N-Well,

Double Metal, Single Polysilicon

Lambda 0.8um
Gate Length(Drawn) 1.6um 1.6um 1.6um
Gate Length(Effective) - 1.154um  1.513um
Gate Oxide Thickness 24.1nm 24.1nm
VT 0774V -0.873V




Fig. 14 : Generated Clock Signals

REFERENCE_CLOCK

WRITE
READ

SEL.MUX

EQ

REFRESH
SA

DISCH.ML




Fig. 14 : Generated Clock Signals
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Fig. 15b: Basic Sense Amplifier Operations
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Path SEL.MUX to LAST.WL | LAST.WL to LAST.BL.bar | SEL.MUX to LAST.BL.bar
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Measured 4.5ns 4.0ns 8.5ns

Fig. 16a: ADDRESS to LAST.BL Delay (READ "1")
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Fig. 16b: ADDRESS_to_LAST.BL Delay (READ "0")
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Fig. 17a: CAM ADDRESS to CURRENT MATCH LINE Delay (MATCH)
(Basic Operation @ 10.4Mhz)
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Fig. 17b: CAM ADDRESS to CURRENT MATCH LINE Delay (MATCH)
(Detailed Operation @ 10.4Mhz)
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(Basic Operation)
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Fig. 17d: EVALUATE CAM DECODER_to_ CURRENT MATCH LINE
Delay (MATCH)

(Detailed Operation)
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Simulated 0.5ns
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Fig. 17e: DISCHARGE MATCH LINE to CURRENT MATCH LINE
Delay (MATCH)

(Detailed Operation)



C.ML(external pad)
TAG.ML.to.VAL.WL!
val C.WL

(5V/Vert. Div.)
(20ns/Hor. Div.)

Fig. 17f: CURRENT MATCH LINE to VAL.CURRENT WORD LINE
Delay (MATCH)

(Basic Operation)
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Fig. 17g: CURRENT MATCH LINE to VAL.CURRENT WORD LINE
Delay (MATCH)

(Detailed Operation)
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Fig. 17h: TAG BIT LINE to CURRENT MATCH LINE Delay (MATCH)
(Basic Operation)
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Fig. 17j: TAG BIT LINE to CURRENT MATCH LINE Delay
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(Detailed Operation)
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Fig. 18a: BACKUP MATCH LINE_to BACKUP WORD LINE Delay
(MATCH)

(Basic Operation)



TAG.BML.to.VAL.BWL.bar.

val B.WL(external pad)

(1V/Vert. Div.) !
(2ns/Hor. Div.)

Fig. 18b: TAG.BML.to.VAL.BWL.bar_to BACKUP WORD LINE Delay
(MATCH)

(Detailed Operation)



TAG.BML.to.VAL.BWL.bar,
val_B.WL(external pad)

(1V/Vert. Div.)
(2ns/Hor. Div.) ;

Fig. 18c: TAG.BML.to.VAL.BWL.bar_to_ BACKUP WORD LINE Delay
(WL DISCHARGE)

(Detailed Operation)



C.ML(external pad) l
!

val_C.WL(external pad)

C2T

!
i
i
|
|

val BWL(external pad) 1
i

(5V/Vert. Div.)
(20ns/Hor. Div.)

CYCLE 1st Cycle Next Cycle
Observation || Currrent and Backup MATCH | Currrent and Backup MATCH
Because of SAVE Because of SAVE

Fig. 19a: SAVE (C2T) INTERACTION WITH CAM OPNs.
(SAVE EVERY CYCLE)

(Basic Operation)
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Fig. 19b:SAVE (C2T) INTERACTION WITH CAM OPNs.
(SAVE EVERY OTHER CYCLE)

(Basic Operation)
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Fig. 20a: REPAIR (T2C) INTERACTION WITH CAM OPN:s.
(REPAIR EVERY CYCLE)

(Basic Operation)
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Fig. 20b: REPAIR (T2C) INTERACTION WITH CAM OPN:s.
(REPAIR EVERY OTHER CYCLE)

(Basic Operation)
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Fig. 21a: GROUND BOUNCE
(Basic Operation)



Table 3 : Peak Currents of Highly Capacitive Signals

Signal Calculated Capacitance | Calculated Peak Current
(pF) (mA) _

REFRESH 112.92 245.1 .
REFRESH.bar 110.73 223.6
C2T 100.74 216.3
T2C 100.74 216.3
T2S 87.45 186.6
§2C 79.20 181.7




tag C.WL(external pad)
TAG WL CLEAR (SEL.MUX)
EQ

Path SEL.MUX to tag_C.WL
Simulated 2.0ns
Measured 3.75ns

Fig. 22a: HAZARD 1 - Early EQ Corrupts TAG Data
(Detailed Operation)



val_C.WL(external pad)
VAL WL CLEAR (EQ)

Path EQ to val_C.WL
Simulated 1.0ns
Measured 2.8ns

Fig. 22b: HAZARD 1 - Early EQ Corrupts VAL Data
(Detailed Operation)
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Path val C.WL 10 VAL.EQ
Simulated 3.5ns
Measured 4.1ns

Fig. 22c: HAZARD 1 CORRECTION
(Early EQ Does Not Corrupt VAL Data)

(Detailed Operation)



CHAPTER 5

Smart Memory Design Issues

S.

5.1. Introduction

Two smart memories (one for instructions, and one for data) were described in the previous two
chapters. Hopefully, their treatment has shed some light on the main characteristics of smart memories
for data flow CPU’s. This chapter discusses smart memories in a more abstract way than the last two
chapters. First, broad issues and solutions will be dealt with one by one in the following paragraphs.
Next, a cost/functionality study will be made on the RAT to show the cost of the RAT’s extra func- .

tionality.

5.2. Issues and Proposed Solutions

5.2.1. Issue : High Bandwidth

In order to fully exploit the benefits of out-of-order execution, several function units that run in
parallel have to be used. This implies that multiple busses and multiport memories must be used to
achieve high bandwidth accesses of operands and distribution of results. Each function unit should be

able to fetch 2 input operands and distribute 1 output result every cycle. This translates to 3n data

accesses per cycle for n function units.

56
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5.2.1.1. Sub-issue : Multiple Busses

To make the busses as short as possible to minimize the bus areas and delays, each smart memory
interacts with the busses from only one side. This one-sided approach is employed in the RAT and the
NT. In the case of the NT, the FU.BUS (the output of the function units) is made to pass through the

NT core to accomplish this.

§.2.1.2. Sub-issue : Multi-Port Memories

Direct control of the feedback path in each data cell is the technique used to achieve single-ended
access without excessive area penalty in the case where multi-port memories are needed. For instance,
for the RAT, a REFRESH signal is used to control the feedback path. The RAT value cell is shown in
Fig. 1. The feedback path is broken for the WRITE operation by taking the REFRESH signal low. The
REFRESH signal is kept high fof the READ operation to prevent a destructive READ. The chosen
single-ended technique also gives a clean way for allowing coMMcaﬁon between the current and
backup sections of the cell for memories that have backup copies to support branch prediction and
exception handling. By breaking the feedback path, save or repair can take place unhindered by any

contention.

This approach has certain shortcomings. Firstly, it has to be controlled very carefully since it is
what determines if a WRITE or a READ is taking place. Secondly, it shifts complexity to the clock gen-
erator which generates the feedback control signal (called REFRESH). REFRESH is a highly capacitive

(113pF!) signal since it goes to all the cells in the memory!

5.2.2. Issue : Longer Cycle

A longer cycle is a consequence of the high bandwidth communication mentioned above. The

word lines are longer and therefore more capacitive with more bit lines. When branch prediction and
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exception handling are supported, the bit lines are made longer still since the bit lines have to traverse
the backup copies in addition to the current ones. Again, the cycle is made longer still by the many
operations that have to be performed per cycle. For example, the RAT has provision in each cycle for 4

SAVE/REPAIR, 2 READ and 2 WRITE phases.

For. memories that must do SAVE/REPAIR operations, the impact on the cycle is minimized by
overlapping these operations with the normal READ/WRITE operations. The use of sense amplifiers is
a solution suggested for shortening the cycle for the big memories like the RAT. The single-sidedness
and stringent pitch requirements imposed by the need for high bandwidth communication, automatically
limits the possible number of sense amplifier techniques that can be considered. The first sense amp that
was considered is the charge-sharing sense amp. This type of sense amp has been successfully used in
EPROMs and PLAs. This is possible because EPROMs and PLAs only READ and never WRITE. The

need to WRITE a "1" in the HPSm memories makes the use of such a sense amp inefficient.

The proposed sense amplifier is the split-bit line, half-Vpp sense amplifier used for the RAT. The
main advantage of this sense amplifier is: it-is one of the fastest way to sense a signal in a small area
because it uses positive feedback. In the case of the RAT, the need to have 120 sense amplifiers for 120

ports makes this advantage very important.

5.2.3. Issue: Multiport Associative Operations

The distribution of results into the memories is done only when the interrogative tags accompany-
ing the results match the stored tags. For memories like the RAT which have backup copies, the tag

comparison must be made with the backup tags as well. The 2 choices considered are:

i) Fetch tags and compare in the periphery before distributing. This option was rejected since one extra

phase is needed for fetching the tags.
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ii) Use a multiport CAM cell in the tag field. This CAM cell has to contain a backup copy if the
memory supports branch prediction. Hence, the worst case task is to design a multiport CAM cell that
has 2 back-to-back parts wﬁch is more efficient than coupling several single CAM cells. A more com-
pact cell is achieved by sharing bit lines and data storage nodes and using a compact tag comparator as
shown in Fig. 2 for the RAT tag cell. Only the upper part of Fig. 2 is needed in the memories that don’t
need to support branch prediction like the NT tag cell shown in Fig. 3. Because the number of com-
parators is proportional to the number of ports (2 are needed per port in the dual-cell case), most of the
efficiency of the cell depends on the efficiency of the comparator used. A modified Kadota [1] tag com-
parator is the proposed comparator. It neither has the capacitive-loading and area problems of the

Mundy tag comparator [2] nor the charge-sharing problem of the Kadota tag comparator.

5.24. Issue : Dynamic Power Consumption and High Peak Currents.

The multiport nature of the memories implies a multiplicity of bit lines, match lines, word lines
and busses. To prevent excessive dynamic power dissipation and high peak currents (with associated
inductance effects), precharging the many match lines, bit lines and busses is avoided. In the case where
match lines have to be precharged, a hashing scheme is employed by using some information about the
memory (e.g. the REGISTER # or the READY BIT) to select just a few match lines for precharging. In
the case of the RAT, the REGISTER # is used to select only 6 out of a total of 186 match lines for
precharging. In the case of the NT, the READY BIT is used to selectively precharge the match lines.
By avoiding precharging, the electromigration problem, IR drop, voltage bouncing noise due to wiring
inductance and ac power for charging and discharging are considerably reduced. The chip reliability is
also increased.

The half-Vpp sensing scheme mentioned above has the following advantages as regards the

present issue:
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i) Due to the half-Vpp swing, it cuts down by almost a factor of 2 the peak currents both during sensing

and bit line precharge.

ii) It reduces the dl /dt by a factor of 2 during bit line precharge and discharge if the time is fixed, which
decreases the inductance-induced voltage noise. If the voltage bumping noise is not the limit, the

precharge and discharge times can be reduced by about a factor of 2.

5.2.5. Issue: Low Bit Density

The smart memories suffer from low bit density because of the extra functionality. For instance, to
support exception handling and branch prediction, 2 backup copies are required for every programmer-
visible cell. To minimize the area cost, single bit lines rather than bit line pairs are used as described

- above. The CAM field that needs complimentary bit lines to achieve complete logic comparison, is the
only field that uses bit line pairs. But since the CAM field columns are few, the area penalty of using bit

line pairs for the CAM field is minimal.

Dynamic and static latches are judiciously combined to give compact but robust data cells.
Dynamic latches rather than static latches are used when compact cells are needed and the REFRESH
problem can be adequately handled. These cells are used in the backup sections of the RAT as shown in
Fig. 1. Static latches are used in the NT since only single-port access is needed in the NT. A dynamic-
static "hybrid" latch (pseudo-static) is used to exploit the advantages of both dynamic and static cells in
one cell. Pseudo-static latches are used to avoid providing REFRESH., They are also used to allow
contention-free communication between backup and current cells like in the case of the RAT. To
represent 3 states in the HPSm RAT, a pseudo-static cell is used as the current (programmer-visible)

cell while dynamic latches are used in the transit and settled cells as shown in Fig. 1.
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Because the density is inversely proportional to the "smartness” of the cell, the issue of low bit
density is related to the issue of how much "smartness" or logic to embed in the data cells. Pushing the
logic to the periphery is the alternative to embedding the logic in the cell. The decision of where to put
the logic (the periphery or the memory core) was made depending on the cost of the implementation in
terms of the area, speed, power and noise. In the case of the RAT, the decision was made to implement
the associative operation by using "smart" CAM cells. The alternative of implementing the same opera-
tion by fetching and comparing the tags in the periphery was rejected because of the impact on the cycle
time as mentioned above. At the same time, the cost of using the CAM was bearable since the tag field
is only 5 bits wide. On the other hand, in the case of the NT, the SHIFT-REGISTER priority encoding
scheme that embeds the scheduling logic in the data cells was rejected in favor of the POINTER-
MECHANISM because of the increased memory core area and the higher dynamic power and peak

currents.

5.2.6. Issue: Branch Prediction and Exception Handling Support

5.2.6.1. Sub-issue: Branch Prediction Support

To achieve much higher performance, an out-of-order execution machine may take the out-of-
order execution model one step further by performing branch predictions. That is, instead of just execut-
ing out-of-order the instructions within a block, two blocks can be executed out-of-order. HPSm per-
forms branch predictions on the instruction stream. Therefore the capability of recovering cleanly from

an incorrect prediction is very essential.

To support branch prediction, a subset of the machine state has to be saved when a conditional
branch instruction is encountered in the instruction stream. Only a subset of the entire machine state is

saved since it will be too costly to save the entire state. Also, it will be too costly to support the branch
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prediction in a context switch manner of writing and reading all the smart memory contents to main
memory. Therefore, some of the on-chip smart memories must have the capability of storing the subset

of the machine state that must be saved.

The smart memories that must store the essential subset must contain at least 2 back-to-back parts
+ current entry and branch prediction backup entry. The contents in the backup must be restored back to
the current entry when it is later on discovered that the branch prediction was incorrect. The backup
entry must be accessible by the distribution bus since operations are executed out-of-order and therefore
one cannot be sure that all instructions before the branch have been executed. It is therefore necessary
to be able to write both into the current and backup entries. In addition, the save into and repair from the
backup cell must be efficient and doable in 1 cycle since branch instructions occur quite frequently (1
branch instruction per 5 instructions is typical). The memories that are not in the essential subset that
save contents, must have a means to invalidate the necessary entries. Finally, to avoid undue perfor-
mance degradation, the save/repair and invalidation operations must be overlapped with the normal
operations. In the case of HPSm, the RAT is in the essential subset while the three NT’s are not. Both

kinds of memories have the desirable features, listed above, for supporting branch prediction.

5.2.6.2. Sub-issue: Exception Handling Support

The out-of-order nature of execution makes exception handling for out-of-order execution
machines very difficult. Some form of hardware support for exception handling is needed. An excep-
tion repair (E-repair) involves cleanly suspending the process to a point preceding the violating instruc-
tion, switching context, handling the exception, and resuming execution from that point. HPSm uses the
concept of checkpoints [3] to handle exceptions. At every checkpoint, the current contents are saved
into "transit" cells so that repair can be made using these saved contents. After a given number of
instructions, the "transit" information is saved into "settled” cells. Three cells are used for correctness

reasons (see Chapter 4 of Reference [3].
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5.2.6.3. Sub-issue: Proposed Solution

The triple-cell shown in Fig. 1. is used to efficiently support branch prediction and exception han-
dling. It uses 1 pseudo-static latch for the "current” cell, and 2 dynamic latches for the "transit" and "set-
tled” cells. Using dynamic latches in the backup section gives a compact cell and makes it possible to
do save and repair without any contention. (The contention reflects a disturbing feature of smart
memories - the cells not only behave like logic elements but sometimes have to behave like peripheral
circuits. The REPAIR operation is essentially a WRITE operation. But a WRITE operation is easier to
do with a large peripheral WRITE buffer that is shared by the cells in each column rather than with cell

circuitry if the cell area must not be excessively large.)

Four SAVE/REPAIR signals are used for communication between the states. The timing of the
SAVE/REPAIR signals ensures that the save/repair operations are overlapped with the normal opera-

tions.

5.2.7. Issue: REFRESH

If dynamic cells have to be used to minimize the area, the issue of REFRESH has to be addressed.
The information stored on the dynamic nodes must have leaked away after about 2ms. Hence,
REFRESH is necessary to ensure the integrity of the stored information. REFRESH cannot be provided
in a CPU the way it is done for conventional DRAMs : the constraints are much more stringent in the
former case. Since, REFRESH is needed only once every 2ms, speed will be degraded if a phase is allo-
cated in every cycle just for REFRESH. On the other hand, a more complex control will be needed to do
REFRESH if REFRESH is done in time slots allocated 2ms apart. The challenge, therefore, is to find a
way to overlap the REFRESH operation with the normal CPU operations with minimum control com-

plexity.
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The proposed solutions are:
i) Ignore REFRESH if the cell does not need to retain the information for up to 2ms.

ii) If (i) cannot be done, avoid REFRESH by using static or pSeudo-static cells if possible. This

approach is used for the current cell of the RAT triple-cell in Fig. 1 and for the NT cells.

iii) If (i) and (ii) cannot be done, push the complexity to the software level by having software-
generated REFRESH. This approach is used for the backup cells in Fig. 1. The REFRESH is initiated
by software with no hardware cost. Normally, aﬁ’ter an average of every 5 instructions, a branch predic-
tion is made and the transit cell is written into from the current cell. If a branch prediction has not taken
place in a reasonable time (2ms, say), the compiler inserts an artificial branch in the code to force a
current-to-transit save. Because, as was discussed in a section above, the save/repair operations are
overlapped with the normal operations, the software-generated REFRESH does not need a special tim-

ing provision.

5.3. Cost/Functionality Study

In this section, a comparison is made between the register files of a conventional von Neumann
CPU and that of an out-of-order execution CPU that have been implemented in silicon. The HPSm and
SPUR (UC Berkeley’s Symbolic Processing Using RISCs) [4] register files are compared. Since both
the HPSm and the SPUR register files were implemented with the same technology, this comparison
factors out the impact of technology. Strictly speaking, comparing with the SPUR register file (SPUR-
RF) is not ideal since the latter is not a conventional register file. The SPUR register file also has some
additional functionality like handling register windows, and aiding the pipeline implementation.

Nevertheless, it is safe to say that the SPUR register file belongs to an earlier generation of CPU register
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files for the following reason : it is meant for a sequential von Neumann machine. The most important
consideration is that a comparison can be made to highlight the impact of the "smartness" of the HPSm

RAT on its area and complexity.

Fig. 4a and Fig. 4b show a comparison of the }IPSm RAT and SPUR-RF functions while Fig. 5a
and Fig. 5b show a comparison of their costs. While their speeds are comparable, the RAT performs ter-
ribly as regards area and power. The low bit density of the RAT can clearly be seen by looking at the
following ratios : number of transistors per micron? and number of stored bits per micron2. The power
penalty would have been worse if the half-Vpp sense amp discussed above was not employed. The
speed performance of the RAT is due mainly to the shorter word line the decoder has to drive (just the
tag word line), and the sense amplifiers. The SPUR-RF will certainly be faster than the RAT if it is
designed for 31 registers and with sense amps. The ﬁfst shocking revelation is that the RAT (which has
31 programmer-visible registers) is bigger than the SPUR register file (which has 138 programmer-
visible registers)! Now, if one argues that the RAT’s effective number of registers is really 93 and not
31 (due to the 3 states represented in the RAT), one observes that with 33% less registers, the RAT is
76% bigger! This imbalance can only be explained by the extra functionality the RAT has over the
SPUR-RF as revealed in Figs. 4.

5.4. Conclusions

In this chapter, the smart memories were discussed from the viewpoint of the pertinent design
issues. Hopefully, looking at the smart memories from the concrete standpoint of individual designs (in
Chapters 3 &4) and from the abstract perspective of the issues have highlighted the circuit challenges

one must face in designing smart memories.
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Fig. 1: RAT Value Cell



Fig. 2: RAT Tag "Double-CAM" Cell
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Fig. 3: NT Tag "Single-CAM" Cell



FUNCTIONALITY MEASURE _| HPSmRAT | SPUR-RF
# ASSOCIATIVE WRITES/CYCLE 6 0

# ACCESSES/CYCLE 15 3

# FUNCTIONAL UNITS SUPPORTED/CYCLE | 3 1

# WRITES/CYCLE 3 1

# STATES REPRESENTED 3 1
#READS/CYCLE 6 2

# PROGRAMMER-VISIBLE REGISTERS 31 138

# TOTAL REGISTERS 3x31=93 138

Fig. 4a : HPSm RAT vs SPUR REGISTER FILE (SPUR-RF)
Functionality Comparison
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COST MEASURE | HPSm RAT | SPUR-RF

# CLOCKS 34 8

# WORD LINES/REGISTER | 6 2

POWER 0.51W 0.15W

# BIT LINES 120 80

AREA 5.37mmx3.97mm | 3.27mmx3.70mm
SPEED 10Mhz 10Mhz

# TRANSISTORS 38,468 39,800

# TRANSISTORS/micron™2 1.8x10°-3 3.29x10"-3

# STORED BITS 3224 5520

# BITS/micron"2 -| 0.15x10"-3 0.46x10°-3

Fig. 5a : HPSm RAT vs SPUR REGISTER FILE (SPUR-RF)
COST COMPARISON



Fig. Sb: HPSm RAT vs SPUR-RF Cost Comparison
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CHAPTER 6

Conclusions

6.1. Future Work

Reliability is an unresolved research issue. The use of dynamic latches was proposed to minimize
the real estate requirement. But, this automatically raises efficiency and reliability questions. Having
Vop - Vr at the gate of any dynamic latch may lead to static power dissipation due to the uncorrelation
of the V7’s of the PMOS and NMOS devices. Soft errors due to alpha particle events are a reliability
issue that plagues Qynamic memories. The need for backup word lines prevents c.me from using a folded
bit line sense amplifier scheme. The open bit line scheme that is employed does not enjoy the noise
immunity that folded bit line schemes have due to local cancellation. Future research has to grapple

with these issues.

The impact of technological trends on the design implications of smart memories is another
research issue. In particular, the effect of employing BICMOS technology and scaling the device sizes

and the power supply needs to be studied.

6.2. Final Conclusions

This dissertation has discussed the circuit challenges one must address in designing Smart
Memories for Out-of-Order Execution VLSI Architectures. Certain alternatives were compared for
each design issue. The proposed solutions were used to implement a design of a smart instruction

memory (the NT) on paper and a design of a smart data memory on silicon (the RAT). The NT and the
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HPSm CPU design could not be advanced to the silicon stage because of lack of time. The proposed

solutions for the RAT were demonstrated to be adequate by the successful testing of the RAT test chip.

However, it must be pointed out that the test chip is an artificial environment since the RAT was
not meant to be a stand-alone smart memory. Therefore, it will never be known if the RAT satisfies the
requirements for a smart data memory for an out-of-order execution machine until it is fabricated along
with the other smart memories (the NT"s) in a single-chip CPU. It is also interesting to know how the
ideas presented in this thesis can be extended to other smart memories especially smart memories for
other data flow CPUs, HPS Prolog CPU, and HPSm's FPU (Floating Point Unit), MMU (Memory

Management Unit) and CC (Cache Controller).

It is clear from the discussion in this dissertation that the smart memory circuits designer needs a
solid background in logic design since the memory-logic boundary is: blurred in smart memories as dis-
cussed in Chapter 1. The discussion in Chapter 3 bears this out where the recognition that the priority
encodiﬁg scheme can be implemented as a finite state machine outside the NT core trivialized the gar-
bage collection function and allowed the use of simpler data cells. It is also clear that, for him to design
efficient memories, the designer needs a fair understanding of the system into which his memories will
fit since the designs are application-specific. Above all, since these memories are costly, a lot of interac-
tion between the circuit design and computer architecture research efforts is imperative to reduce the
costs. In the case of the HPSm microarchitecture design, the feedback to the architecture research from
the circuit design research led to a reduction of the types of needed smart memories from 5 to 2 and the

number from 7 to 4.

It is obvious from the comparison of the HPSm and SPUR register files in Chapter 5, that the
increased functionality of smart memories carries a heavy price tag. It is also obvious that by expending
more design effort, employing the appropriate circuit techniques and by shifting some complexity to the

software level (e.g. software-generated REFRESH), this price tag can be made less threatening,
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Nevertheless, the main feedback to the computer architects. is Lﬁat these memories are very costly.
Therefore, they must be employed with few entries and only if the advantages outweigh the disadvan-
tages. It does not make more sense, for instance, to have an 8-entry NT instead of a 4-entry NT since the
former reflects a machine where there are a lot of data dependencies and one may be better off imple-

menting the architecture as a sequential execution machine at a lower cost.
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