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1. OPTIMIZATION IN ENGINEERING DESIGN

1.1. EVOLUTION OF OPTIMIZATION-BASED ENGINEERING DESIGN

Over the years, engineering design has been increasing in complexity. This constant growth in

complexity is due to several factors, such as, (i) progressively increasing expectations in product perfor

mance, (ii) progressively more restrictive constraints imposed by environmental and resource cost con

siderations, and (iii) progressively more and more ambitious projects being launched.

For example, in structural engineering, the increase in design complexity is due to the need to

ensure the earthquake survivability of sky scrapers and nuclear reactors at reasonable cost; in control

engineering and electronics to the need for reliable, high performance, worst case designs; in the auto

motive world, to me need to conserve energy while eliminating pollution; and in the area of space

exploration, to attempts to design complex shaped, highly flexible, large space structures and their con

trol systems simultaneously, to unprecedented performance standards.

Fortunately, over the last decade, while material and labor costs have grown rapidly, computing

costs have decreased dramatically and hence, not surprisingly, engineers have been turning more and

more frequently to the computer for assistance in design. As a result, a new, interdisciplinary engineer

ing specialty has emerged which is commonly referred to as computer-aided design (CAD). Most of the

existing CAD methodology is based on computer-aided analysis, with the design parameter selection

carried out by the designer on a trial and error basis. Since decision making in a multiparameter space

is very difficult, the trial and error approach is not very effective. Therefore, there is growing hope that

considerable benefits in engineering design might be obtained from the use of sophisticated optimization

tools. However, the effective use of optimization algorithms in engineering design is predicated on the

supposition that engineering design problems are transcribable into a suitable canonical optimization
problem.

Now, as we shall shortly illustrate by example, engineering design specifications can frequently

be expressed as inequalities in terms of a finite dimensional design vector x e R". These inequalities
are either of the form

*(*)* 0 (1.1.1)

where g:R" -> R is continuously differentiable, or of the form

tfx.y) SO, V y e Y . (1.1.2a)

or, equivalently

max<K*.y)<;0, (1! 2b)

where $:R" xR'->R is locally Lipschitz continuous and /"c Rp is compact Constraints of the
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form (1.1.1) often express simple bounds on the design variable or a "static" design condition. Con

straints of the form (1.1.2b) can be used to express bounds on time and frequency responses of a

dynamical system as well as tolerancing or uncertainty conditions in worst case design. Consequently,

a rather large number of engineering design problems are transcribable into the following canonical

optimization problem:

minl/fr) I«V) * 0. i e fc </(x,yy) £ 0, yt e Yj. j e m) (1.13)

where we use the notation & = (1,2, ♦ • • Jt)t for any positive integer it At a minimum, the functions

/;R" -» R, £*;R" -> R, i € fc and ^:R" x HPj -> R, j e m» must be assumed to be locally Lipschitz
continuous, while the sets Yj c Rp> must be assumed to be compact

Occasionally one encounters equality constraints as well, in engineering design. These can be

removed by means of exact penalty function techniques.

Problems of the form (1.1.1) are often referred to as semi-infinite optimization problems, or SIP

for short,because the design vector x is finite dimensional, while the numberof constraints is infinite.

A number of optimal control problems with state space constraints also have the formal form of

(1.13), except that the design vector x is a control (in Z£[0,1], say) rather than a finite dimensional vec
tor. Although the theory that we will present will be entirely in terms of problems in which the design

vector x is finite dimensional, it is very easy to extend the algorithms that we will be presenting, both

formally and analytically, to the case wherex is a control.

1.2. DESIGN EXAMPLES

We shall now illustrate by means of a few simple examples how SIP problems of the form

(1.13) arise in a variety of engineering design situations.

1.2.1. Design of Earthquake Resistant Structures

One of the simplest examples of a problem of the form (1.1.3) is found in the design of braced
frame buildings which are expected to withstand small earthquakes with no damage and large ones with
repairable damage. A simple three story braced frame is shown in Fig 1.2.1.1. The components of the
design vector x are the stiffnesses of the frame members, as indicated in Fig. 1.2.1.1. Under the
hypotheses of a lumped parameter model, the horizontal floors and roof are assumed to be rigid and to
concentrate the mass of the structure. The relative displacements of the three floors and roof form the

components of the displacement vector y. The lumped parameter model of the braced frame obeys a
second order vector differential equation of the form:

MfM +D(y jjc) j*i,r) +K(yj jc) y(M) =F(t). (1.2.1.1)

where F(t) represents the seismic forces. When F is small, Le., when the earthquake is small D and K
can be taken to be constant so that (1.2.1.1) is a linear differential equation, but when F is large, the

bending of steel introduces gross nonlinearities due to its hysteretic behavior. It is common to consider
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awhole family of earthquakes [Fk)k « jc. bow large and smal,» m carrying out adesign. When an earth
quake is small, a building is expected to remain elastic and no structural damage is allowed. When an
earthquake is large, survival of occupants becomes a major consideration and large, energy absorbing,
non eleastic deformations are accepted, short of outright failure of the structure. A simple optimal

design problem consists of minimizing the weight of the structure subject to bounds on therelative floor
displacements over the entire duration of the family of earthquakes considered aswell as simple bounds

on the stiffness of the structural members. This leads to a SIP of the form

min/(x)IO < a € x* £ 0, Viea;

b^OAfi) - y(^^*)l £ 4. {12.12)

V te [0.7], V*e *. ; = 0,1.2}.

1.2.2. Design of a MIMO Control System

We shall now consider a simple design of a multi-input multi-output (MIMO) control system,

with specifications both in time and frequency domains. Consider the feedback configuration in Fig.

12.2.1, where C(x,s) is a compensator transfer function matrix that needs to be designed. The equa

tions governing the behavior of this system in the time domain are of the form

ip=Aft +Bptip (1.2.2.1a)

yp = CpZp (122.1b)

ie = Ae(x)ze+ Be(x)ue (122.2a)

ye = Ce(x)ze (1.2.2.2b)

up = ye (1.2.2.3a)

«c = r-y (1.2.2.3b)

y = yp+ d (1.2.23c)

where (1.2.2.1a,b) represents the plant (122.2a,b) represents the compensator to be designed and

(1.2.2.3a-c) are the interconnection relations. We assume that r, up, uc, yp, ycarc all m-dimensional vec
tors and that the matrices Ac, Bc% Cc are continuously differentiable in the design vector x which, most

likely, consists of the "free" elements of these matrices.

The most elementary requirement is that of closed loop stability. With

Gpis) =CpisI-AJ-%. (1.2.2.4a)

Ce(x.s) = Ce(x)(i/-Ae(x))-1Be(x), (1.2.2.4b)

it can be shown that the eigenvalues of the closed loop system are the zeros of the polynomial in s
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X(x,s) £ da(sI'Ap)dtl(sI-Ac(x))de\(/+Gp(s)Ce(x.s)) . (1.2.2.5)

To ensure that the zeros of %(x,s) are all in the open left half plane, we make use of the modified

Nyquist stability test For this purpose, let d(s) be a monic polynomial of the same degree as xfa). such

that all zeros of d(s) are in the open left half plane. Let T(x,s) = xC**')^*)* Th* closed loop system

is stable if the locus of T(xJ©), traced out in the complex plane for o> 6 (-»,<»), does not pass through

or encircle the origin. A sufficient condition for ensuring this consists of keeping the locus of T(xJ(o)

out of a parabolic region containing the origin (see Fig. 122.1) by imposing the semi-infinite inequal

ity:

-dRe\T(xJ<i))]2 +Im\T(xJa>)] +c£0Vu)*0. (1.22.6)

where c4 > 0.

Next for a set of specified inputs (r*(*)}t6 *, ue designer may require that the zero initial condi

tions responseerror be limited as follows (see Fig. 1.22.2):

W) £ yp(t;x,rd - rft) <: &/) (1.22.7)

for all k € K and x= 1.2. • • • ,m,with the &, Fk piecewise continuous functions.

Finally, for the purpose of expressing insensitivity to the disturbance d, we set r = 0, which leads

to the Laplace transform equation

y(5) = [/+/,(^)C0c.5)r1^)
(12.2.8a)

£ Q(x.s)2(s)

Upis) =-CMQM%s) {i22sb)
£ R(x,s)2(s) .

where tys), 3(j), y(s) denote the Laplace transforms of «p(/), </(/). y(/). respectively.

Let cW denote the largest singular value of a complex mxm matrix H. Since the largest singular
value of a matrix is its induced La norm, to make the response y of the system small for a large class of

disturbances d, without unduly saturating the system as a result of u becoming too large, control system
designers strive to keep V[Q(xJ<£>)} small and XS[R(sJa>)] bounded over the frequency range [a/. ©"] in
which the energy of the disturbances is known tobe concentrated. This leads to the following formula

tion of the MIMO control system design problem:

minimize /(x),

where

fix) & max{?i[(2(xj(0)]la)€ [©',©]} (1.2.2.9)

subject to (1.2.2.6), (122.7) and

oWxJ©)] £ &(©). V o) e [(o'.cd"], (122.10)
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xtztZx4. 022.11)

where b{(Si) is a continuous, real valued function.

In addition, there could be constraints expressing decoupling i.e., the requirement that when only

a single component of the input vector is a nonzero function, only the corresponding component of the
output vector is nonzero, as well as stability robustness requirements, all of which are semi-infinite in

form. We note that from an algorithmic point of view, since singular values are non-differentiable, the

optimization problem corresponding to MTMO control system design is considerably more difficult than

the one corresponding to structural design.

123. Design of a Wide Band Amplifier

The design of a wide band amplifier usually involves three transfer functions: the input

impedance 2^(x,j), the output impedance, Z0j(x,s) and the gain, A(x,s)t which are all proper rational

functions in the complex variable s. The design vector ieR" determines certain critical component

values (e.g., resistor, capacitor values) in the circuit which affect the impedances and the gain. Thus,

the coefficients of the rational functions Zu, Z0Ht and A are functions of the design vector x.

The simplest formulation of a wide band amplifier design has the form

max {ay I&, £ \ZJxj©)l2 £ b*, V ©e [©q.©/] ;

kca * IZ^xj©)!2 Zbo*. V©e [©o,©/] ; 3
A&\A(sJa>)\2 &A, v ©€ [©o,©/3;

x/£xi£2\ i=l,2, ••• ,n) .

As stated, this problem is not quite of the form (1.123). To bring it in line with the canonical

form (1.123), we augment the design variable by one component x°, to x = (x°,x) e R"*"1. Problem
(123.1a) can then seen to be equivalent to the problem:

min {-x° Iku Z VJLxJiQo +yr0))!2 i^Vye [0,1];

k^ * IZ^xjXwq +yx°))l2 <; b^ V y e [0.1];
(12.3.1b)

A* ^(xjXwo+yx0))!2 £ A,V y e [0,1];

x!***?, i = 1.2 n) .

12.4. Robot Arm Path Planning

In designing a sequence of moves to be carried out by a robot manipulator in a manufacturing

situation, it is necessary to find a number of paths which take the robot arm from one location to

another without collision with the workpiece. We shall describe a simple problem involving a two link

robot manipulator and a circular workpiece obstacle in R2. Our transcription of this problem into
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optimization form is rather simplistic, we refer the reader to for a more sophisticated formulation. Let

8!(0. 92(0 be the angles at time t between reference rays and the robot links (see Fig. 1.2.4.1), and let
8(0 d (8*(0. d2^)). Then the dynamics of the robot have the form

"(NOP® = x(0 - C(9(0.e(0)8(0 + G(6(0) (12.4.1)

where M() and C(v) are 2x2 continuously difterentiable matrices, and G;R2-» R2 is continuously
difTerentiable and t(0 € R2 is a torque vector, with x\t) the torque applied at the first joint and x2(t)
the torque applied at the second joint The circular workpiece is described by an inequality of the form

A(x)£0 . (12.4.2)

where/;R2 -> R is defined by

h(x) = 1- (x1 - a)2 - (x2 - b)2 . (12.4.3)

for some a.b e R.

Now suppose that we are given that at t~=~0, the angles are 8^0)=8J, 62(0)=6o, and that we are
supposed to find a torque vectorx(0, t e [0,1], whichresults in a collision free path that takes the robot

manipulator from these initial angles to the angles 8^1) =8j, 82(1) =Q} at time r="l, with hV(0l £ c,
j =1,2, for r€ [0,1]. We assume that x(-) isan I?.[0,1] function.

Let us denote the solution of (12.4.1), which satisfies the initial condition 8(0) = 80, and which

corresponds to the torque x(-)by 8T(')> We can now express our problem in the form

min(/(t) I*>(T) £ 0 ,; = 1.2; $k(x.y) £ 0, k= 1.2, V y e Y] (12.4.4a)

where/:!2[0.1] -> R is defined by

fix) £ l8T(l)-8yl2; (12.4.4b)

theg?:Ll[0,1] -> R,; = 1,2are defined by

g\x) £ max hl(0l - c ; (12.4.4c)

?{x) £ max rc^OI - c ; (12.4.4d)
• ic [0.1J

Y= [0.1] x [0,1] c R2and, for k= 1,2, and y & (s,t), 4>*:L2[0,l]xR2 -♦ R are defined, by

tf(x,y) £ Kshcos 8lT(0^iSin 8^(0) (12.4.4e)

^.y) 4 Kihcos 8,T(0 +j/2cos(8lx(0 +* - 8*(0).
(12.4.4f)

/jsin 8K(0 +J/2sin(elT(0 +n - 8*(0)

where /j is the length of the first link and /2 is the length of the second link. The function 4>!(v) is
used to ensure that the entire first link will avoid collision with the workpiece, while the functon 4>2(v)
is used to insure that the entire second link will avoid collision with the workpiece. As stated, the

design vector x(-) is a function. The problem can be made finite dimensional by representing x(-) in
terms of splines, say, over a fixed set of nodes.
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2. MATHEMATICAL PRELIMINARIES

2X NORMS AND SETS IN R"

Definition 2.1.1: A norm in R" is a function II:R" -> R+such that

(i) lrl =0 <s> x=0; (2.1.1a)

(w) IXxl =DUW, V X€ R. x e R"; (11.1b)

(i«) lx+yl£lxl +lyl.Vx,y€ R". (2.1.1c)

Exercise 2.L1: Show that the following three functions are all norms:

w2 £ £ C#
U-i J

(2.1.2a)

IxL = maxlx»l (2.1.2b)
«'« a

Ixli = 2 W' (2*L2C)
i»l

where we used the notation

Zt A [1.2 n }. <2.1.2d)

Exercise 2.1.2 : Show that there are finite constants KmtltK2,-* ^-.i.^i.-.*2.i»*i.2» such that

lxL^Ar-.2W2. W2^^2.-W- ^2L3a>

IxL^^.ilxl!. IdiZKijM., (2.1.3b)

Lrf^^lrl,, 1x1^^.21x12. (21.3c)

•

Definition 2.12 : For any x e R" and p > 0, we denote by

B(x.p) 4 (x* e R" 1Ir* -xl <p). (2L4a)

the openball of radius p about x, and we denote by

B(x,p) £ (x'eR'llx'-xlSp}, (2.1.4b)
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the closedball of radius p about x. •

Definition 2.1.3 : AsetXcR"issaidtobe open, if for every x e X, there exists a p> 0 such that

B(x,p) c X. A set X c R" is said tobeclosed if Xet its complement in R", isopen. •
o

Exercise 2.1J : Letx e R" and p >0 be given. Show that B (x.p) is open and that B(x,p) is

closed. m

Exercise 2.1.4 : Show that X c R" is closed o for every x € R", if B(x.p) n X * p for all

p>0, thenxe X. •

Definition 2.1.4 : A set Xc R" is said to be compact if X is closed and bounded, Le., there exists

an M<» such that Ixl £ M for all x e X. •

22. SEQUENCES

Let the set of nonnegative integers be denoted by N, i.e.,

N £ {0,1.2.....}. (2-21>

Definition 2.2.1 : A sequence in R" is a function from N into R". We denote a sequence by the
set of its values, i.e.. fo}« or fo},« N. A subsequence of fo)is * is a sequence of the form
foL« k* wnere ^ is an infinite subset of N. •

Definition 222 : A sequence fo), e N in R" is said to converge to a point x & -> x as i -> «)

if Um Ixi - xl =0. The point x is called a limit point of fo},.*. Apoint x* is said to be an accu-

mutation point of a sequence fo},€ N ™ R". tf *« exists « mfinite subsel A:cN ""* thal
K

lim lxi-x*l = 0 (x,->x*).
i-» — •

Exercise 22.1: Suppose that xt -> x as i-»~, show that for every p> 0 there exists an ip € N

such that Xi e B(x,p) for all i £ ip. m

Exercise 222 : Suppose that x,? are limit points of a sequence folic n- Show that x=x'
must hold.

Exercise 223 :

(a) Show that aset Xc R" is open <f> for any xe Xand any sequence fo)i€ Nc R", such that
xk -> x as i -»», there exists aqe N such that x, e X for all i £ ?.

(b) Show that a set Xc R" is closed o for all fo}ic N c X. if * -> x as i -> - . then
xe X.

Theorem 22.1 (Bolzano-Weierstrass): Suppose Xc R" is compact and fo)j«ncX. Then
foli« w must ^ve **lcasl one accumulation poinL •
(For a proof of this result see a book on analysis.)
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In proving convergence of algorithms we shall need the following special property of monotone
sequences.

Proposition 22.1: Suppose that fo),« N is asequence in R such that xo * *i * *2 * ••• 0-c. it
is monotone decreasing). If foh€mhas an accumulation point x*. then x* -* x* as i -• », i.e., x* is
a limit point

Proof : For the sake of contradiction, suppose that fo)i€ M does not converge to x*. Then, for
some p>0. there exists a subsequence fol.cK such that Xi«B(x*,p) for all ieK, i.e.,
ix,— x*l >p for all i € K. Since x* is an accumulation point, there exists a subsequence fo}, 6K.

such that x, ->x* as i -• «. Hence there is an ^ e K* such that Ix, - x*l £ p/2, for all
j 2 ii, i e IT*.

Let i2 e K be such that i2 > i\. Then we must have that x^ x,^ and Ix^ - x*l £ p, which
leads to the conclusion that x^ <x* and x^ - x^ £ p/2. Now let i3 e K* be such that i3 >i2. Then
we must have that x^ <x^ <x* and hence that fcj, - x*l >p. But this contradicts the fact that
\x: - x*l £ p/2 by construction, and hence we conclude that x% -> x* as i -* °°. •

Corollary 22.1 : Suppose that fo}j €N is a monotone decreasing sequence in R. If there exists a
b e R such that x* £ 6 for all i e N, then foh . Mconverges to some x* e R. •

Exercise 2.2.4 : Prove corollary 2.2.1. •

23. CONTINUITY

We now summarize the most essential properties of continuous functions.

Definition 23.1 : A function /:R" -> Rm is said to be continuous at a point x e R", if for every

6*>0 there exists a p >0 such that

ITOO -/(*) I<8V jfe B(x.p). P3.1)

A function/;R" -> R" is said to be continuous if it is continuous at all x e R". •

Exercise 23.1 : Show that/:R" -* Rm is continuous at x <=> for any sequence fo)l6 Min R" such

that xi -»x as i -> » , /fo) -*f$) as i -> <». •

Definition 2.3.2 : A function /;R" -> Rm is said to be uniformly continuous on a subset X c R" if

forany 6 > 0 there exists a p > 0 such that for any x*. x" e Xsatisfying lx' - x"l < p,

WO -TIOI <5. (2.32)

•

Proposition 23.1 : Suppose that/; R" -• Rm is continuous and thatX c R" is compact Then /(•) is

uniformly continuous on X.

Proof : For the sake of contradiction, suppose that/O is not uniformly continuous on X. Then, for

some 5 > 0, there exist sequences {x/,},€ N, (x",-},-, m in X such that
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lx/l-xwil<-T ,V ie N, (2.3.3a)

but

I fix'd -JVd I > 8. V i e N . (2.3.3b)

K

Since X is compact, there must exist a subsequence {x',},€ Ksuch that x*i -> x* € X as i -> «». Furth-
K

ermore, because of (23.3a), x", -> x* as i ->«> also holds. Hence, since /(•) is continuous, we must
K K

have fix*-) -+fix*) and ./(*"») ->A**) as i ->». Therefore, there exists a i0 € Jf such that for all

i 6 K% i £ to-

lyrXi) -ao i <; i^o -.fc*) i + «/:**)-/(^ i < 0V2. (2.3.4)

contradicting (23.3b). This completes our proof. •

Proposition 232 : Suppose that XcR'is compact and that /;R" -> Rm is continuous. Then the

set

/(X) k {ye R"ly=Xx).xe X} (2.3.5)

is compact

Proof: (a) First we show thatXX) is closed. Thus, let (/&)}«-c n* with xk e X, be any sequence in

f(X) such that /fo) -* y as i -> «>. Since fo), 6 N is in a compact set X, there exists a subsequence
K K

folic k such that x,—♦ x* e X as i -» «>. Since/[•) is continuous,/fo) ->/(x*) as i -> «. But y is

the limit point of {/fo)}l€ M and hence it is the limit point of any subsequence of (/fo)},6 w. We

conclude that y =fix*) and hence that y e fiX)t U.,/(X) is closed.

(b) Next, we prove that/(X) is bounded. Suppose/(X) is not bounded. Then there exists a sequence

folic w such that iyr>i> 11 i for all i e N. Now, since fo}i6 K is in a compact set, there exists a

subsequence fo)i6 K such that x, -• x*. as i -* «, with x* € X, and yfo) ->/(x*), as i -> «, by
continuity of fi-). Hence there exists an to such that for anyj > i > k ,j, i e Kt

tfx;) -/fo)l Z\fix# -Ax*)l +WO -/(x*)l <1/2. (23.6)

Let i £ io be given. By hypothesis there exists a/ € KJZ i such that \f(xj)l Zj2 l/fo)l + 1. Hence

Wx}-fixdl±\\fixfl-\fixdl\*l. (2.3.7)

which contradicts (23.6). Thus/(X) must be bounded. This completes our proof. •

Proposition 233 : Suppose that/:R" -♦ R is continuous and that X c R" is compact Then there

exists an x € X such that

/Tx)= inf fix). (2-3-8)
it!

i. e., min fix) is well defined.
ilX
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Proof : Since Xis compact. *X) is bounded. Hence jrf/fr)=a is finite. Let fo),. „be a
sequence in Xsuch that/fo) Aaas I- ~. Since Xhcompact, there exists aconverging subsequence
folic ksuch thatx^x EX. Bycontinuity,/(x^A/©asi->«o. It now follows from Proposition
22.1 that fixd ->/G> as i-> -. Since {/fo)l,. whas aunique limit point, we conclude matJ® =a.B
Exercise 2.32 : Prove Proposition 2.33 by making use of the fact that/(X) is compact. •

2.4. DERIVATIVES

We shall now present afew results involving derivatives that we will need in our study of optimi
zation.

Definition 2.4.1 : Let /:R" -> F". We say that D/.R-xR" -» Rm is a differential for fi) at

xe R*if

a) QfGc;) is linear.

7 IM-»o l«l

When/:R" -> R"has adifferential at all xe R*. we say that A') * differentiable. •

Since DJ(xr) is a linear map from R" into Rm, there exists an mxn matrix 3flx)/3x such that
Df$;h) =df&loxh for all Ae R"; bfiftldx is called aJacobian matrix.

When /:R" -> R is difTerentiable, we use the notation Vfix) =hfixfldx, and call Vfi-) the gra
dient of fi-).

Proposition 2.4.1 : Suppose that the function /;R" -> Rm has adifferential Df$;h) at x. TTien the
jy-th component of the Jacobian dffo/ax is the partial derivative df&/dx*.

Proof : Set h=fe> where e, is the /-th unit vector in R". Then df(x)/dxej =[^x)/9xj t the y-th
column of d/(x)/2bc, and hence, from (2.4.1), for; = 1.2, • • • ,n,

I

lim —-
i-»o f

3®.
dx .

I

J (2.42)

Ia. \df&/dx]i =df&)ldx!. •
Definition 2.42 : We say that /:R" -• Rm is locally Lipschitz continuous at x if there exist

L € [0.o°), p>0 such that

tfx) -AxOI £Ux - x% Vx.x- € B(x.p). (2A3a)
•

Exercise 2.4.1 : Suppose that/:R" -»R" has acontinuous differential Dfi,) in aneighborhood of

-11-
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x. Show that/is locally Lipschitz continuous at x. •

It should be noted that the existence of partial derivatives does not ensure the existence of a

differential (see e.g. Apostol p. 103 ). Thus consider the function

fix.y) = x + y ifx =0ory =0. (2.4.3b)

fix,y) - 1 otherwise . (2.4.3c)

In this case

MML =un, ft-°> -A°-°) =i. (2.4.4a)
dx •->« (

MM =to A0-')-A00) =l. (2.4.4b)
dy i-*o t

but the function is not even continuous at (0,0). In view of this, the following result is of interest (see

Apostol p. 118).

Proposition 2.42 : Consider a function /:R" -> R" such that the partial derivatives df(x)/dx> exist in

a neighborhood of x, for i =1,2, • • • ,n, j = 1,2, ••• ,m. If these partial derivatives are continuous at

x, then the differential Df$;h) exists. •

The following chain rule holds.

Proposition 2.43 : Suppose that /:R" -* Fm is defined by fix) =h(g(x)) with both A;R' -> Rw and
g:R" -» R; differentiable. Then

df(x) = dh(g(x)) 8g(x) (2.4.5)
dx dx dx ' •

We make frequent use of Taylor's formula with remainder up to order 2. It comes in two forms:
the first is in terms of an intermediate point, while the second one is in integral form (see Apostol1 p.
124 and Dieudonne2 p. 186. Also, refer to Apostol p. 124 for exposition on higher order differentials).
We denote by &fi-;•) thedifferential of order k of fi).

Proposition 2.4.4 : Consider a function/jR" -> R. Suppose that/Q has continuous partial deriva
tives of order p ateach point x of R". Then for any x,y e R"

fiy) "fix) =S-jr Dftx;y -x) +̂ fiz;y -x), (2.4.6a)
for some z=x +i(y-x), f € [0.1]. •

When p=1, we recognize (2.4.6a) as being simply the mean value theorem. For p=2,
tffixy - x) =(y - x.32/(x)/ax2(y - x)\ where ffixydx2 is a matrix of second partial derivatives, i.e.,

[a2Xx)/ax2]^=a2/(x)/ax'ay.
1T. M. Apostd, Mathematical Analysis, Addisioo-Wetley, 1960
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For functions fihV -> R"\ with m> 1, formula (2.4.6a) is not valid since there is no z of the form
stated that works for all the components of fi'). Instead we use the following result (see Dieudonne p.

186).

Proposition 2.4.5 : Consider a function/:R" -> R". Suppose that/;) has continuous partial deriva
tives of order p at each pointx of R". Then for any x,y e R",

fb)-fix)=%j?Dfo;y~x) +'j^^ (2.4.6b)
Proof : We shall prove (2.4.6b) only for p £ 2. For p = 1, consider the function

g(s) =fix + siy - x)). Then *(1) =fiy). *(0) =fix) and

i

*(d-*(0)=j*'(*)*

i

- fDfix + s(y - x);y - x)ds, (2.4.7a)

which completes the proof for p = 1.

Next, let p = 2. Then we have

*"(*)(1 - s) =̂ fe'fcXl -*) +*C)] • (2.4.7b)
Integrating (2.4.7b) from 0 to 1 we get

l

«d> - 8(0) - g'(0) = f (1 - s)g"(s)ds. (2.4.7c)

which, on rearranging, we recognize as being

l

fiy) -fix) ={Vfix),y - x>+ f(l - s)Ififix +siy- x);(y - x))ds, (2.4.7d)

after substitution for g(s). U

Finally, we define directional derivatives which may exist even when a function fails to have a

differential.

Definition 2.43 : Let/:R" -> Rm. We define the directional derivative of fi) at a point x e R" in

the direction h e R" {h * 0) by

if this limit exists. Note that t > 0 is required. •

2J. Dieodonne, Foundations of Modern Analysis, Academic Prat, 1960.
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Exercise 2.4.2 : Suppose that/:R" -> RM has a differential at x. Show that for any ht the directional

derivative df$;h) exists and is given by

aXx;h)=ltfx;h) =&®-h.

As we shall see later, directional derivatives play a very important part in the theory of optimiza

tion.

23. CONVEX SETS AND CONVEX FUNCTIONS

Convexity is an enormous subject (e.g. see Rockafellar3). We collect here only a few essential
results that we will need in our study of optimization (For further details see Rockafellar). We begin

with convex sets.

Definition 2.5.1 : A set S c R" is said to be convex if for any x',x"e S and Xe [0.1],

[Xx' + (l-JC)x"]€ S. •

Exercise 23.1: Suppose S c R" is convex. Let [xjU be points in S and let {jt'Jti be scalars such
k

that U-'iO for i = 1,2, • .* and £ u\' = 1. Show that

(H € S . (2.5.1)

Definition 232 : Let S be a subset of R". We say that coS is the convex hull of S if it is the smal

lest convex set containing S. •

Theorem 2S.1 (Caratheodory) : Let S be a subset of R". If x e co#S, then there exists at most
•fl cfl

in + 1) distinct points, (x.Jgi1, inS such that x =£ M^» M-* >°» Z M-1 =1.

Proof: Consider the set

Cs ^ {xlx =2;n^.xl€S.ji,^0.2:n,= l,x3leN}. 05.2)
M ml

First, it is clear that S c Cs. Next, since for any x1', x" e Cs, Xx' +(1 - Xx") e Cs. for Xe [0,1], it
follows that Cs is convex. Hence we must have that coS c Cs. However, because Cs consists of all
the convex combinations of poins in S, we must also have that Cs c coS. Hence Cs=coS.

Now suppose that

with pfeO, i =1.2, • •• ,JEi J Jff = 1. Then the following system of equations is satisfied
•i

-14-
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M£*\l\-\lY (23.4)

with fX* £ 0. Suppose that k> n+ 1. Then there exist coefficients of, j = 1,2, • • • X not all zero,

such that

grf|j]-0. c*>
Adding (2.53) multiplied by 0 to (23.4) we get

£<F +ecoM= f • (2-56)
*»i L J L J

Suppose (wJ.o.g.) that at least one a1 <0. Then there exists a 0 > 0 such that \B+ Got' = 0 for some j

while P* + 6a* ^ 0 for all other i. Thus we have succeeded in expressing x as a convex combination of

F- 1 vectors in S. Clearly, these reductions can go on as long as x is expressed in terms of more than
(n + 1) vectors in S. This completes our proof. •

Definition 233 : Let Si,S2 be any two sets in R". We say that the hyperplane

H={xe R"l(x.v)=o} (2.5.7)

separates St and S2 if

(x.vtea V xe Si (23.8a)

<y.v)£a V y e S2 (23.8b)

The separation is said to be strong if there exists an e > 0 such that

(x.v) ia + e VxeS, (23.8c)

(y,v)^a-e Vye S2 (23.8JJ

Theorem 2.5.2 (Separation of Convex Sets) : Let Si,S2 be two convex sets in R" such that

SinS2 = 0 Then there exists a hyperplane which separates Si and S2. Furthermore, if S} and S2 are

closed and either Si or S2 is compact, then the separation can be made strict •

Theorem 2.5.3 : Suppose that S c R" is closed and convex and 0 £ S. Let

x^argminflxr^lxe S) . (2.5.9)

Then

//={xl<x,x)=lxl2} (23.10)

separates S from 0, Le., (x\x)£ Ixl2 for all x € S.

5R. T. Rockafellar, Convex Analysis, Princeton Univenity Press, 1970.
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Proof : Let x € S be arbitrary. Then, since S is convex, [x+ X(x- x)3 e S for all X e [0.1]. By

definition of x, we must have

0<Gl2£lx+X(x-x)l2

« d2 + 2X<x,x-x>+ X2lx -xl2 . (2.5.11a)

Hence, for all X € (0,1],

0S2G.X-XVXIX-XI2. (23.11b)

Letting X -> 0 we get the desired result. •

Theorem 2.5.3 can be used to prove the following special case of Theorem 23.2:

Corollary 23.1 : Let S1(S2 be two compact convex sets in R" such that 51052= P- Then there

exists a hyperplane which separates Si and S2.

Proof : Let C = Si - S2 = {x e R" Ix = xi -x2, xi e Si. x2 6 S2 ). Then C is convex and com

pact and 0 £C. Let x =61 -Si) =argmin{ Irl2 Ix € C ), where Xi € Sj and x2 e S2. Then, by
Theorem 23.3,

<x-x5)^0,Vx€ C. (2.5.12a)

Let x = Xi - xi, with xi e Sx. Then (2.5.12a) leads to

(Xi-x^lxr'.VxjGCi. (2.5.12b)

and, for x = Xi - x2, with x2 e S2,

Gi-jc2S>*Gi2. (2-5-12c)

which implies that

ie., that

(xj-^^O. (2-5-12e)

which completes our proof. •

Definition 2^.6 : Suppose S c R" is convex. We say that H = {x I(x - x.v)= 0} is a support hyper
plane to S through x with inward (outward) normal v if x e S (the closure of S) and

U- x,v)2> 0 (SO) V x 6 S . (2.5.1^

Theorem 23.4 : A closed convex set is equal to the intersection of the halfspaces which contain it

Proof : Let C be a closed convex set and A the intersection of half spaces containing C. Then
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clearly CcA. Now suppose TtC. Then there exists a support hyperplane H which separates strictly
x and C, i.e., x does not belong to one subspace containing C, i.e.,x £ A. Hence CcAc which leads

to the conclusion that AcC. •

Next we turn to convex functions. For an example see Fig. 2.5.1.

Definition 23.7 : A function/.R" -> R is said to be convex if for anyx'.x" e R* and Xe [0,1],

/(Xx- + (1 - X)x") £ IfixT) + (1 - XV(x") (23.13)

A function/:R" -» R is said to be concave if -fi) is convex. •

Exercise 2.53 : The epigraph of a function/.-R" -> R is defined by

Epi(f) & {(x ,y) e R"xR Iy Zfix)) . (23.13a)

Show that/;Rn -» R is convex if and only if its epigraph is convex. •

Theorem 233 : Suppose/:R" -* R is convex. Then/(-) is continuous. (For a proof, see Berge p.

193). •

The following property can be deduced from Fig. 2.5.1.

Theorem 23.6 : Suppose/.R" -> R is differentiable. Then fi-) is convex if and only if

fiy) -fix) Z (V/(x).y- x) V x.y e R" . (23.14)

Proof: ^ Suppose/(•) is convex. Then for any x.y e R", X e [0,1],

fix + My - x)) £ (1 - X)fix) + VW • (2-5.15)

Rearranging (2.5.15) we get

fix +My-^x))-fix) £jty -m v Xe [0,1]. (23.16)

Taking the limit as X -> 0 we get (23.14).

<= Suppose (23.14) holds. Then for any X € [0,1], x,y e R"

fiy) -fix + My- x)) Z {Vfix + My - x)),y - x)(l - X), (23.17a)

fix) -fix + X(y - x)) ;> <V/(x + My - x)),y - x)( - X). (23.17b)

Multiplying (2.5.17a) by X, (2.5.17b) by (1 - X) and adding, we get (2.5.15), i.e.,/(0 is convex. •

Theorem 23.7 : Suppose that/:R,> -» R is twice continuously differentiable. Then/() is convex if

and only if the Hessian (second derivative) matrix d2y(x)/dx2 is positive semi-definite for all x e R",
Le.. ^.d2Ax)/dx2y)^ 0 for all x, y e R".

Proof: => Suppose//) is convex. Then for any x,y e R", because of Theorem 2.5.6 and Proposition

2.4.5
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OZfiy)-fix)-{Vfix),y-x)

=f(1 _s)(y - x§2B£+Jb^SL<y - X))ds. (2.5.18)

Hence, dividing by l|y - xll2 and letting y -> x,we obtain that d2/(x)/3x2 is positive semi-definite.

<= Suppose that iPfixydx2 is positive semi-definite for all x e R. Then it follows directly from the
equality in (23.18) and Theorem 2.5.6 that//) is convex. •

Exercise 23.2 : Suppose that /: R" -> R is twice continuously differentiable and that for some
«> >M£ m>0. Aflyl2 * <y. dPf/dx2^ )* mlyl2 for all x,y e R". Show that the level sets of fi-) are
convex and compact and that/) attains its infinimum. •

Exercise 233 : Suppose /:R" -> R, i=1,2, • ,m are convex and that m £ { 1,2. ••• ,m }.
Show that

w>(x) £ max/(x). (2.5.19a)

V^x) £ 2/(x), (23.19b)

areboth convex. m
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Fall 1988

3. UNCONSTRAINED OPTIMIZATION

In this Lecture, we shall be concerned with the geometry and characterization of solutions of

optimization problems of the form

min fix) (3.1.1)

with/;R* -> R at least once continuously differentiable.

3.1. GEOMETRY OF THE PROBLEM

Definition 3.1.1 : Given a function /;R" -4 R and an a e R, we shall say that the set LacR",

defined by

1^ £ [x\fix)Za), (3.1-2)

is a level set (parametrized by a). •

The level sets have the following properties:

(a) If oti >a2, then L^ c Laj, i.e., the level sets are nested;

(b) If a = min fix), then the solution set to (3.1.1) is the set L^;
s«R"

(c) An algorithm for solving (3.1.1) is called a descent method if it constructs sequences (x,}£o such

tR&tJfc+i) <fixd for all i € N, i.e., if it constructs points which descend into ever lower level sets.

The boundary dLa, of a level set La (see Fig. 3.1.1) can be visualized as a constant altitude line

on a topological map. Points on the boundary of L* satisfy the equation

/*x) = a. (3.1.3a)

Definition 3.1.2 : The set of tangents to the boundary 3La, at a point x e dLa is defined by

T(x.dLa) £ {ye R" I0y= lim(xl-x)/IxJ-xl.xie 3La, P>0} . (3 x3b)

The set ofnormals to the boundary dL0, at a point x 6 dLa is defined by

N(x,aLa) ^ (veR'l <v.y>= 0.V y e T(r,3La) } . (3.1.3c)

We shall say that v is an outward normal to 3La at x if fix + Xv) >f(x) for all sufficientiy small X>OH

Proposition 3.1.1 : Suppose that x e R" is such that fix) = a. If the vector Vfix) * 0, then Vfix) is

an outward normal to the boundary of the level set La at x.

Proof:
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(i) Consider any sequence of points { Ax, }~o such that x + Ax< e 9La for all i € N (i.e.,

fix + Axi) = a) and A*j -• 0 as i -* ». Hence, by the mean value theorem, we get that for some

* e(0.1)

fix + AxJ =yU) + Wfix + JiAx^Ax,) = o. (3.1.4)

Bui fix) - o and hence

•j^j- Wfix +mM*$= WU +*,Ax^-j£j>= 0. (3.1.5)
Since the unit ball is compact, without loss of generality, we can assume that Ax/llAxJ -> y e R" as

i -» oo. Hence, from (3.1.5), we get that {Vfix),y)= 0. Clearly, y e T(x,3Lo), i.e., it is tangent to the

boundary of the level set L^. Since, by definition, all unit vectors which are tangent to the boundary of

Lq at x are limit points of sequences { Ax, }£o, as above, it follows that Vfix) e N(x,dLa), i.e., that it

is normal to the boundary of La at x.

(ii) To show that Vfix) is an outward normal, let X > 0 and consider

fix + XVfix)) =/(x) + X{Vfix + sXVfix)),Vfix)), (3.1.6)

where 5 € (0.1), by the mean value theorem. Letting X -> 0, we conclude, because of the continuity of

Vfi-), that there exists a X>0 such that for all X€ [0,X ]

fix* XVfix) Zfix) + XlVfix)l2/2, (3.1.7)

which completes our proof. •

Corollary 3.1.1 : If x € R" is such that Vfix) * 0, then any vector AeR" such that <&fix).h)< 0 is a

descent direction (orfi) atx, Le., there exists a X> 0 such that^x + XA) -fix) < 0.

Proof: Recall that the directional derivative at x, in the direction h is given by

afix;h) = {Vfix),h)< 0 . (3.1.8a)

Now, by definition of the directional derivative.

Urn r/fr+^-fo? -#£*) ]=0. (3.1.8b)

Hence there exists a X> 0 such that

/fr +fy-ZW.^.Q
t

*-{Vfix),h)/2, (3.1.8c)

and therefore

fix +th) -fix) £%Vfix).h)a <0. (318d>

which shows that A is a descent direction at x. •
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3.2. FIRST AND SECOND ORDER OPTIMALITY CONDITIONS

We return to the problem (3.1.1).

Definition 3.2.1 : We shall say thatx is a global minimizer for problem (3.1.1) if

f&Zfix). V xe R". (3.2.1a)

We shall say thatx is a local minimizer for problem (3.1.1) if there exists a p > 0 such that

fib* fix) V xeB(x.p). 02.1b)

Theorem 3.2.1: Suppose that/O in (3.1.1) is continuously differentiable and that x is a local minim

izer for (3.1.1), with associated radius p >0. Then Vfib =0.

Proof: To obtain a contradiction, suppose that Vfib * 0. Then, letting h = -Vfib* we obtain

ayCt;h)=(Vfib. -v/(b)< o. (3.2.2a)

But, by definition of the directional derivative,

to[/(x+x/>)-/S)_^ =0 {322b)
xio X

Hence there exists a X e (O.p] such that

/e+U-tto tf.h)
t

and therefore

f(x +th) -f(x) Ztdf&;h)/2 <0 . (3.2.3b)

which contradicts the optimality of x. •

Theorem 322 : Suppose that fi) is twice continuously differentiable, that x is a global minimizer

for problem (3.1.1), with associated radius p >0, and that H(x) = (Pfixydx2. Then

<htf$)h)Z 0 V h € R" . (32.4)

Proof : Since by Theorem 3.2.1, Vfib =0, it follows from the optimality of x that for any

h € R", X > 0. such that XI/il £ p,

>rjc +Xh) - fib =X2£ (1 - s) {h tf$ +sXh)h)ds

*0. (3.2.5)

Letting X -> 0, we obtain the desired result

&-<y6;h)l2, (3.2.3a)
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Theorem 3.23 : Suppose that fi-) is twice continuously differentiable and that x € R" is such that

Vfib - 0, and H(b > 0, where H(x) =(Pfixydx2, as before. Then x is a local minimizer for problem

(3.U).

Proof: Suppose the theorem is false. Then there exists a sequence {xJ£o such that xt -> x as i -»«>

andfixd < fib for all i e N. Now. by (2.4.7d),

fixd-fib = <yfibx-%

+£(1 - *X(*. -*)."<* +5(x, - x))(x, - x))<fc (3.2.6)
By assumption //(•) is continuous and H(b >0. Hence, (a) there exists an m>0 such that

<JiJi<bh)Z mlhl2, V h e R", (3-2.7)

and (b) the function <fi,H(x)h\ of (A.x), is uniformly continuous on the compact set 5(0,1) x B(x,l).

Hence there exists an i0 such that for all i £ <o and 5 € (0,1),

KiXi-xWCc +siXi-b^Xi-b^^Xi-bHbiXi-^^^i'Xl2. (3.2.8a)

which, because of (3.2.7), leads to the conclusion that

«x, - bM (x +s (x< - x)) (xi - x»* y lXi - xi2 . (3.2.8b)

Therefore, from (32.6)

.fo) -/rjc) * -^Ix, - xl2 >0. (3.2.9)
4

which contradicts our assumption tiaifixD -fib < 0. Thus, the theorem must be true. •

For convex functions we get some additional results.

Theorem 32.4 : Suppose that /:R" -> R is continuously differentiable and convex. If x e R" is

such that Vfib = 0, then x is a global minimizer of fi-).

Proof: By Proposition 2.5.5, sincefi-) is convex, for all x € R", we must have

fix) -fib * Wfib.x - xV= 0 . (3-2.10)

Since Vfib = 0, we conclude that x is a global minimizer. •

Theorem 323 : Suppose thai/(0 is strictly convex, then it can have at most one global minimizer.

Proof : Suppose that x*. x** are two global minimizers of fi'). Then fix*) =fix**) must hold, and
hence, since fi-) is strictly convex, for any X e [0,1],
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fi?a** +(1 - X)x*)) <Xfix**) +(1 - X)fix*) =fix*), (3.2.1D
which contradicts the fact that x* is aglobal minimizer. •
Corollary 3.2.1: Suppose that/:R" -• R is twice continuously differentiable and that there exists an
m>0 such that forallx € R", h e R\ OiJl(x)h)Z m\hl\ Then A) has aunique global minimizer.

Proof : We know from Proposition 2.5.7 that A) must be strictly convex. Hence, if it has a global
minimizer, that minimizer is unique. Thus, we only need to prove that a gtobal minimizer exists. We
do this by showing that for any Xo e R\ the level set L £ (x \fix) ZfM) is compact.
(a) Let [Xi)Zo c L be any converging sequence with limit point x, i.e., x, -*x as i -> ». Then
fixd Zfixd for all i € N. It follows by continuity of fi) that fib *fixo) »• e., that L is closed.

(b) For any x e L, we have

0^x)-y(xo) =<V/(xo)^-XoV| (l-5)((x-xo),//(xo +J(x-X6))(x-xo)to

* (Vfix^jc-x^+^lx-xol2

*-IVfixJllx - xol +ylx - Xbl2 . (3^12)

Hence we must have that Ix - xq\ £ , for all x e L.
m

(c) The existence of a global minimizer now follows from the fact that

inf fix) = inf fix) = min fix), (32.13)

because L is compact (see Proposition 2.32). •

33. GRADIENT METHODS

We shall now see how optimality conditions lead to computational methods. Consider again the

problem

nan fix), (33.1)
icR'

with /:R* -* R continuously differentiable. We have seen in the proof of Theorem 32.1 that when
ever Vfix) * 0, the direction h=-Vfix), results in the directional derivative afix;h) ={Vfix)Ji)< 0, i.e.,
-Vfix) is a descent direction for the cost function. The easiest way to transform this observation into an
algorithm for solving (3.3.1) is as follows.

Steepest Descent Algorithm 33.1:

Data : xb e R".

Step 0 : Set i = 0.

Step 1 : Compute the search direction
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Annijo Gradient Algorithm 332 :

Parameters : a, p € (0,1).

Data: X6 6 R".

StepO : set i = 0.

Stepl: Compute the search direction

hi = h(xd 4 -Vfo).

Stop if Yflfo) = 0.

Step 2: Compute the step size

(3.3.4a)

X, =P* £argrnax | p* \fix>+pkhd -fixd*-p*alVy(x,)l2 | (3.3.4b)
Step 3 : Update

jfeiojq + AA. (33.4c)

replace i by / + 1 and go to step 1. •

To develop a geometric understanding of the Armijo stepsize rule, we define the function

$;R -> R by

<KX) =fiXi - XVfixd) -fixd . (3.3.5)

Then 0(0) = 0 and $'(X) lx=© =-IVflx,)!2, by the chain rule. Hence the graphical interpretation of the

Armijo step size rule is as shown in Fig. 3.3.1.

The following theorem holds under the assumption that fi) is only once continuously

differentiable. However, to obtain a simpler proof, we will assume that fi-) is twice continuously

differentiable and that its second derivative is bounded in a region of interest, i.e., we shall assume that

there exists anAf<», such that

tf/(x)l £ max{ l//(x)yl I llyll = 1 }£ MV x e R" . (33.6)

where Hix) £ d2/(x)/ax2.

Theorem 332 : Suppose that (33.6) holds. Then,

(a) The Armijo step size rule is well defined.

(b) If [x,}~o is an infinite sequence constructed by Algorithm 33.2, then every accumulation point x

of {xj^o satisfies Vfib = 0.

(c) If the set (x e R" I Vfix) = 0} contains only &finite number of points, then any bounded sequence

{xJ£o constructed by Algorithm 3.32 must converge to a point x such that Vfib =0.

(d) If x* * x** are two accumulation points of a sequence {xJ£o constructed by Algorithm 3.3.2,

then fix*) =fix**).
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Proof:

(a) We must show that when Vfixd * 0, X, >0, i.e., that the solution Jfe, of (3.3.4b) is finite. First, from

(3.3.4b) we see that the stepsize X,- must satisfy the inequality

fiXi - XVfixd) -fixd +XolV/ta)!2 £ 0. (3.3.7)

for X- Xii =p\ Expanding the left hand side of (3.3.7) to second order, we get

fixi - XVfixd) -fixd + XalVflx,).2

=- X(l - a)lVfixd? +X2JJ (1 -5) WfixdMxi - sXVfixd)Vfixd)ds

£- X(l - cOIVfa)!2 +̂ -IVfixdf

=Xy IVfo)l2( '1{X^a) +X}. (3.3.8)
Clearly, there exists a Fe N such that

-2<1Ja? +tf*0. (3.3.9)

Consequently, X,- = P' £ p*. and hence we see that the step size is well defined.

(b) To obtain a contradiction, suppose that xj -» x and that Vfib * 0. First we recall that by (a)

above, X, satisfies X, £ p* for all i € IN. Next, since x, -» x, and y/(-) is continuous, there exists an

io e A\ such that for all i c JT, j12 Jq, IV/(Xi)l2 £ IVflx)l2/2. Consequently, for all i € AT, i £ j*

fe)-^ £-X,<xlVto)l2

S - p* a IVflx)l2/2 £ - o<0. (33.10)

Because /(•) is continuous and Xj -* x, we must have that fixd ->fib and hence, because {fixd)Zo is

monotonically decreasing (see Proposition 2.2.1), that fixd-* fib* which contradicts (33.10). There

fore we must have that Vfib - 0.

(c) Suppose, without loss of generality, that the solution set

A £ {xe R" IVfix) =0} (33.11)

contains only two points, x*. x**. By assumption, the sequence {xJ£o, constructed by Algorithm 3.32

is bounded and hence it must have accumulation points. By part (b) of this theorem, all the accumula

tion points of (x,}£o must be in the set A Hence we must have that min {Ix, - x*l,lx, - x**l) -> 0 as

i -> oo (because otherwise it would be possible to show that there exists a third distinct accumulation

point x***). Let p > 0 be such that p < Ix* - x**l/4. Then there exists an to such that for all i £ i0,

min{lx,-x*l,lxi-x**l} £ p, Le., x> e B(x*,p) or x, e fl(x**.p), for all iZio, (see Fig. 3.32).
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Next, since Vfi) is continuous, Vfixd -> 0, and X, £ 1 for all i e N, by construction. Therefore

lx»i - x,l = XjVfixdH -> 0 as i -* ». Hence there exists an ii £ to such that for all i £ ilt

Ixj-x^l^p. Consequently, for all i^fi , if xt e B(x*,p) (fl(x**,p)) , then x^, € fi(x*,p)

(B(x**,p)) and thus the entire sequence converges to x* (x**).

jr

(d) Since the sequence [fixd)Zo is monotone decreasing, it follows that if Xj -> x*, then/fa) ->fix*)

as i -»» and hence if x** is also an accumulation point of (x,-)£o* then we must have that

fix**) = fix*), m

Comment 33.1 : The computation of X, = p' need not be performed by trying k = 0,1,2...., until

(33.6) is satisfied. A much more efficient method is to start with X= p and, if (3.3.6) is satisfied,

try xw - 1 , xm - 2 , . . . until it fails, and then back up one step. If (3.3.6) is not satisfied with

X=P*w , then try ^ +1, xM +2,. .. until (3.3.6) is satisfied. Also, one may set X, =P*£, with
B > 0 selected on the basis of experience. •

Comment 332 : The fact that an algorithm constructs descent directions along which it then minim

izes is not sufficient to guarantee that it has useful convergence properties. For example, consider the

recursion

x*i=Xi + X,A. «= 1.2 (3.3.12a)

where

X,€ XQcd & argmmfiXi + Xhd , (3.3.12b)
xato

and ^ is such that

<Vfixd.hi)= —i^|Vy(OII*l. (3.3.12c)

Since cosO = II
4B2 1

1 ^-r^r , SO that COSTE/3 = — = II(2i+l)Vj 2 m
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that when applied to the minimization of Ixl2, from an Xq such that IxqI = 1, the recursion (3.3.12a) con

structs a sequence which converges to a point x such that Ixl =Vl/2. •

Exercise 33.1 : Consider the function fix) 4 e""2, with x € R". Show that for this function the
Armijo Gradient Method constructs a sequence folio such that lx,1 -> «» and fixd ->0 as i -> ». •

Exercise 332 : Consider the function fix) =xV* - x, with x e R. Determine the behaviour of the

ArmijoGradient Method on this function when xo = 0.5 and when xq = 2. •

Exercise 333 : Show that whenever the Armijo method constructs a bounded sequence {x,}£o, we

must have Vfixd -+ 0, as i -* ••. •

Exercise 33.4 : The geometry of the behavior of the Armijo method is best seen in terms of level
sets and trajectories. Show that the speed of the Armijo method is affected by the "narrowness" of the
level sets: the closer the level sets are to the spheres, the better the behavior of the Armijo method. •

, it is easy to see
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Exercise 333 : Suppose that {x^ is a sequence constructed by the Armijo Gradient Algorithm
332 in solving problem (33.1). with/.R" -* R twice continuously differentiable. and that {*}*> has
an accumulation point x such that tffibfix2 is positive definite. Show that the sequence [*)& con-

verges to x.

The proofs ofconvergence both for the method of steepest descent and for the Armijo method
followed the same pattern which we will also use in the proof of convergence of a number of other
algorithms. This pattern is best studied in an abstract setting, as follows. First we observe that the X,
computed by the steepest descent algorithm in (332) need not be unique and hence the successor point
of x,- is not unique. We therefore see that the algorithm is defined by an iteration map which is set
valued, i.e., which is a multifunction, so that a relationship of the form xw € aixd holds, rather than
xM - aixd- Multifunctions play an important role in optimization. An example we have seen earlier is
that of the level set of a continuous function /:R" -> R, i.e., Ux) £ [x* e R" \fiX) Zfix)). In the
literature we find concepts of upper and lower continuity, continuity and differentiablity of multifunc

tions.

Abstract Problem 33.1: Let D c R" be the set of desirable points in R". Find a pointx in D. •

Let c:R" -» R be a surrogate cost function and let a:T -» RR" be a set valued iteration map.
We propose the following algorithm for solving the Abstract Problem 3.3.1:

Model Algorithm 33.1:

Data: Xo e R".

Step 0 : set i = 0.

Step 1: Compute a candidate successor

y e a(xd . (3.3.13a)

Step 2: If

c(y) < c(xd, (33.13b)

set

;•»,=>. (3.3.13c)

replace i by i + 1 and go to step 1.

Else stop. •

Theorem 333 : Suppose that c() is continuous and that for every x £D there exist an p(x) >0 and
a Six) > 0 such that

c(x") - c(x0 £ -6(x) <0. V x* e B(x,p(x)). V x" e a{xT). (33.14)

Then either the sequence {x,}, constructed by the Model Algorithm is finite and its last element is in D
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or it is infinite and every accumulation point of (x,) is in D.

Proof: First, we conclude from (33.14) that for all x e D, we must have da(x)) £ dx). Hence if the

sequence {xj is finite, its last element must be in D. Next, suppose that x is an accumulation point of

fa)2o* i*e*t Xi -> x as i -» «». Then, because the sequence [c(xd)Zo is monotone decreasing and c(-) is

continuous, we must have that cixd -* db as i -* «>. Now suppose that x €D. Then there exist S > 0,

p > 0 such that

dx") - c(x0 £ -S < 0, V x* e B(x.p). Vx" 6 c(xO. (3.3.15a)

Therefore there must exist an i0 such that for all 11 i0, i e K, x, € £(x.p) and hence

c(xw) - c(xj £ -S <0, (3.3.15b)

which contradicts the convergence of dxd K> db- This completes ourproof. •
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4. RATE OF CONVERGENCE AND EFFICIENCY

The most reliable way of evaluating the relative merits of two algorithms is to apply both of them

to a set of problems of interest and to compare the cpu times needed to solve these problems. Such an
exhaustive comparison is not always possible. Hence it is useful to have some mathematical measures

of algorithm performance, which can be used to make qualitative distinctions between algorithms. We

shall now discuss two of these performance measures.

4.1. RATE OF CONVERGENCE OF SEQUENCES

Definition 4.1.1 : We say that a sequence {x,}£o , in R\ converges to a point x at least with root

rate r £ 1 if there exist M e (0,<»), 6 e (0,1) and i'0 e N such that for all i £ to.

IXi-xlSAfff'. ifral. (4.1.1a)

bi -xlZMS'', ifr>l. (4.1.1b)

When r = 1, we say that the convergence is linear. When r > 1, we say that the convergence is super-

linear, m

When plotted on a semilog scale, a linearly converging sequence produces a graph as shown in

Fig. 4.1.1a, while a superlinearly converging sequence produces a graph as shown in Fig. 4.1.1b.

Remark 4.1.1 : It is possible for a sequence ta}~o to converge to a point x slower then linearly,

e.g., when Ix, - xi = kli. •

The following result is basic to the study of rate of convergence of algorithms.

Theorem 4.1.1 : Let {x,)~o be a sequence in R*.

(a) If there exists a 5 € (0,1) and an i0 e N such that

Ixw-xjSSIXi-XMl. V i*io+l. (4.1.2a)

then there exists an x € R" such that x,- -> x as i -* <», at least linearly.

(b) If there exists an M € (0,«), an r > 1, and an to e N such that

wM^Jlx^-xi^l.

and

l**i ~ x,J £ Aflx, - Xi-iV, V i ^ i'o+I ,

then there exists an x e R* such that x^ -> x as i -* » superlinearly, with root rate at least r.
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Proof:

(a) Fori = 0, 1, 2..., let ek & Ix*j - x,1. Then (4.1.2a) becomes

eM £ o«{ V j• £ to .

Hence, by induction,

*i0+i ScV^,

^2 * &fy.i * 82V

and, since 6 e (0,1), it follows that et -> 0 as t -» ». Hence, for any; > k £ i0,we get that

IXj-Xtl = liXj-XH) +(X^i -X^) + ...+ (XW -X*)l

>-l

E. Polak

(4.13)

(4.1.4)

(4.1.5)

i.e., kf - xj -> 0 for ;' > k as it -> «, uniformly in;. This shows that {x,}£o »s Cauchy and hence that

it must converge to a point x.

Next, letting j -*—t wecan repbce x, byx in (4.13) to obtain that

«x-x*i<; ^-o~*
1-6

6*.

which proves that x* -» x as x -> «»linearly.

(b) Next, again with e% - \xM - Xjl, we get from (4.1.2c) that

eM £ Me\, V t i to .

wHence, multiplying both sides of (4.1.7a) by Ml J we get

\A \AeM<>M{r~X) Mffi^iM^1* edr. V ii^,.

Wi=0.1.2..., let ^ £ JI#lMJ«,-.For i = 0.1.2..., let p* § MK J ev Then, from (4.1.7b) we get that

^l^Mf. V i*to.

Letting Wi = In Hi, we get from (4.1.8a) that
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wM £ rwit V j £ to .

Hence

Wi&r^w^, V iito,

which leads to the conclusion that

lii^V^ . V i*to.

Now (4.1.9b) can be rewritten as

Substituting for the p,- in (4.1.9c), we get that

e, £ (1/Af)W[(«-«](1/r)1

* eh**, V i*io,

E. Polak

(4.1.8b)

(4.1.9a)

(4.1.9b)

(4.1.9c)

(4.1.10)

with 8=Vi^** • Next we note that because of (4.1.2b), 8 e (0,1). Therefore, since r >1, there exists

an ir £ to such that 8(r<' ^ ^ 5(' ~4) for all i £ i„ and hence, by arguments analogous to the ones used in
obtaining (4.1.5), we get that for some c' < «> and all j > k £ io.

lx> - **l £ E e,- £ c Z ff £ ch* fV-^ +ja^ £ erf, (4.1.11a)

which proves that [xk] is Cauchy, so that it must have a limit point x. Letting j -* », it now follows

from (4.1.11a) that

G-XtlSc'S'*. V ktio.

which shows that x* -* x, as t -> », with rate at least r.

(4.1.11b)

42. EFFICIENCY

Next we turn to the task of estimating the work needed to solve an optimization problem to

prescribed precision.

Thus suppose that in solving a particular problem, an optimization algorithm produces a sequence

ta)~o which converges to a solution x linearly. To reduce the error from an initial value of Uq - xl to

abo - xi, for a given a e (0,1), requires a number of iterations. This number can be estimated if we

know constants 8 e (0,1) and M € (0,») such that I x, - xl £ A/6', for all i e N (i.e., we are setting

to = 0). Clearly, in this case we must have that Ixq - xl £ Af and a bound on the number of iterations
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needed to reduce the initial error by the factor a is given by the smallest solution, i* e N, of the ine

quality

8« £ a. (42.2a)

Taking logarithms of both sides, (4.2.2a) yields (since both 8 , a e (0,1)) that i* is the smallest integer

such that

i* * •£§• . (42.2b)
InS

Assuming that it takes w units of work (say cpu seconds) to construct x|t and that Ina/In5 is much
greater than 1, so that i* = Ina/lnS, an estimate for the total work performed in reducing the error by

the factor a is given by

w s JSLina . (42.3)
ln8

The factor

T,A_M>0 (42.4)
w

is called the efficiency of the process thatconstructed the sequence MZo-

When Xi-*x superlinearly (with root rate r > 1 ), the efficiency of the process which constructed

the sequence {x,}£o is sometimes defined by

n Ai£L . (42.5)
w

The expression (4.23) expresses the work required to reduce the error I x, - x I by a specificed factor
for processes with the same M, 8. It does not take into account the fact that both Mand 8 can depend

on Ixo - xl, as is the case in (4.1.10). Hence it mustbe used with caution.

Exercise 42.1: (a) Obtain a formula which estimates the work needed by an algorithm satisfying a

relation of the form (4.1.1b), with r > 1, to reduce an initial error Ix© - xl by a factor a e (0.1).

(b) Justify the definition (42.5). •

43. RATE OF CONVERGENCE OF ARMIJO GRADIENT METHOD

To conclude this section, we shall establish the rate of convergence of the Armijo Gradient Algo

rithm 332.

Theorem 43.1 : Suppose that f:W -* R is twice continuously differentiable and thai there exist
0 < m £ M < » such that

mlvl2£(v,^-v>£Aflvl2 (43.1)
dx*

holds for all x.v e R". If {x*}£© is a sequence constructed by the Armijo Gradient Algorithm 3.32, in
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solving min fix), then
zcR"

(a) Xi -* x as i -> ». with x the unique minimizer offi), and

(b) xi -• x as t -» » linearly, with convergence constant 8£ 1- 4mPa(l - a)/M.

Proof:

(a) From Exercise 2.43, the level sets of fi) are compact Hence a solution x to min fix) must
x c F"

exist Because /(•) is strictly convex, x is a unique solution. Since every accumulation point x* of
{x,}2o. constructed by the Armijo Gradient Algorithm 3.32, must satisfy Vfix*) =0, it follows that

x*= x is the only accumulation point of this sequence.

(b) To establish the rate of convergence we need three results:

(i) For any x,-, by the second order expansion formula (2.4.7d),

fixd -fib=£U-sKiXi -bMCx+sixi -b)ixi -b* • (4-3-2a>
Because of (43.1), (4.32a) leads to

m\xrx? £ 2\fixd-fib\ * Mb-xl2 . (4-3-2°)

(ii) Making use of the first order expansion formula (2.4.7a) and the fact that Vfib =0,we obtain

Vfixd ^^HCc +siXi- x))(x, -bds . (4.33a)
It now follows from (4.3.1) and the Schwartz inequality that

mix, - x? £ (Vfixd* - *>£ IV/Wlb, - xl. (4-33b)

(iii) Expanding to second order the formula used in the Armijo step size calculation (3.3.4b), we

obtain

fiXi - XVfixd) -fixd +XolV/fc)!2

=-x[(l-a)IV/(xi)l2

- X£(1 - sXVfixdJKxi - sVfixd) Vfixdas]

£ - UVfixdlHil-a) - XAf/2]. (43.4a)

The right hand side of (43.4a) is negative for all Xe [0,2(l-a)/Afl. Hence we must have that

B** *^.(1-a). To see this, observe that Jfc; £%\ with t such that p* £ 2(^7^ and pVl *2(l-a)/M.
M M

Consequently we get that
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hi=h(xd * -Vfixd. (3.32a)

Stop if Vfixd = 0.

Step 2 : Compute the step size

Xt € Mxd & argmin/(xi +Xhd . (33.2b)

Step 3 : Update

XM^Xi + Xik. (33.2c)

Replace t by t + 1 and go to Step 1. •

All of our convergence theorems will be stated in terms of subsequences constructed by an algo

rithm. Hence we shall be using the following notation.
K ^

Notation 33.1 : Given a sequence {Xj}£o and an infinite subset JTcN we shall denote by x, ->x (as

t -» oo) the fact that the subsequence (xj,-e Kconverges to x. •

Without making additional assumptions on the function fi), it is not possible to be sure that a
sequence {x^Zth constructed by the steepest descent Algorithm 3.3.1, is bounded or that it converges.
Hence, we must content ourselves with the following, quite typical, milder convergence result.

Theorem 33.1: If {x,}So is an infinite sequence constructed by Algorithm 3.3.1, then every accumu

lation point x of (x,}£o satisfies Vfix) =0.

Proof: Suppose that x* -» x as i -» « and that Vfib * 0. Then

df&ihib) =-ivy&i2 <0 . (333a>

Hence any Xe Mb satisfies^ 0and there exists a'o> 0 such that

fix +tJi<b) -fib =-o <0. (3-33b)

Since hi) =-Vfi) is continuous by assumption, the function fix +5a(x)) -fix) is continuous in x and
hence there exists an to such that for all f e K, i £ to,

fixM)-fixd ZfiXi +$h(xd)-fixd £-| • (333c)
K

Now, by construction, {fixd)Zo &monotone decreasing and fixd -*fib as t -> «» by continuity offi).

Therefore, by Proposition 22.1, we must have thai fixd ->fb as t -> ». But this contradicts (333c).

Hence Vfib =0 must hold. •

The main objection to the method of steepest descent is that it contains a non-implementable step
size rule. To get around this difficulty, several alternatives have been proposed. We find the following
one particularly efficient.
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/fed -Axd*-&^tVM>l2. <"-4b)
for all t e N. Now,

1

fib -fixd - WfixdS - xi>+ f (1 -s) <(x - x,.//(Xi + j(x - Xi))(x - xd)ds

Z{Vfixd*-xd+^G-xf

* min <Vfixd.h)+ %lh\2

=-^IVy(xi)l2. (4.3.5)

Substituting for IVflx,)!2 in (4.3.4b) from (4.33), we get that

fixM) -fixd * po(l-a)-jj-lflx) -fixd]. (4.3.6a)

Subtracting fib from both sides of (4.3.6a) and rearranging terms, we get that for all i e N,

fixM) -fibril- HtaO-tt}]^ -fib] • (43.6b)

Since [1 - 4mpa(l-a)/M] € (0,1), we find from Theorem 4.1 that for all i £ 0,

0 <fixd -fib * 5'[/(xo) -fibh (4-3.?a)

with 5=1- 4mpa(l-a)/Af. Hence, making use of (4.32b) we obtain that

OW* V J2 0, (4.3.7b)lxi-xl£ ^xo)-y(x)]

which completes our proof. •

Remark 43.1: It is possible to obtain a much less conservative result than (4.3.7a, b) for the Armijo
m M—mGradient Algorithm 332, with 1- — in (43.6) replaced by the tighter bound (——)2 (c.f. Luen-
m M+m

berger, Introduction to Linear and Nonlinear Programming, pp. 148-154). •

Exercise 43.1:

(a) Prove that setting a = 1/2, in the Armijo step size rule, is a good idea.

(b) What is the trade off in making P small or large in the Armijo step size rule? •

Exercise 432 : Consider the Steepest Descent Algorithm 3.3.1 and suppose that it is applied to the

solution of the problem min fix), with.ft) satisfying the assumptions of Theorem 43.1.
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(a) Prove that if it constructs a sequence (xJ£o, then Xj -> x, as i -> «> the unique minimization of

fi), linearly.

(b) Compare the speed of convergence of Algorithm. 33.1 with that of Algorithm 3.3.2 and estimate

their relative efficiences. •

Exercise 433 : Suppose that MZo is a sequence constructed by the Armijo Gradient Algorithm

33.2 in solving problem (33.1), with/:R" -> R twice continuously differentiable, and that MZo has

an accumulation point x such that d2/(x)/dx2 is positive definite. Show that the sequence [x^Zo con

verges linearly to x. •
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5. NEWTON'S METHOD

Newton's method is one of the very oldest and best methods for solving many root finding and
optimization problems. However, in its simplest form it converges only if the, hW guess •
Tficientiy cZ to asolution, as will soon become apparent We will examine both the simplest
(heal) version as well as stabilized versions which have global convergence properties.

5.1 THE LOCAL NEWTON METHOD

We return to the problem

mm fix) .
jfF"

Assumption 5.1.1 :
(a) The function /:R" -> * is twice continuously locally Lipschitz differentiable, Le.. given any
bounded set ScR» there exists an L<~ such that

(5.1.2a)
\Hi>D-H<x)\ZL\x-x'\.

for all x. x- e S, with J/(x) k ffixydx2, as before.
The norm in (5.12a) will be assumed to be the induced Z* norm which is defined by

(5.12b)
U/l 4 max {IHxl I Ixl = 1 ) .

Clhe use of the I* norm is convenient, but not essential. Other mduced matrix norms can also be used.)
(b) We will assume that (5.1.1) has alocal minimizer xsatisfying the second order sufficiency condi-
tion 02.7). and hence that there exist constants 0<m£Af <~ such that

(5.1.3)
m\yPz<yM<by)ZM\yl2, V ye R" . •

Exercise 5.1.1: Suppose that His an rtxn real symmetric matrix and that there exist 0<m£Af <~
such that for all y e R",

. (5.1.4)
miyl2£<y.tfy>£Aflyl2.

Show that
(5.1.5a)

l//l£M.

1 (5.1.5b)
i/rli £ —.

m

u

The basic idea behind the local Newton method is as follows. Given acurrent estimate x, of the
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local minimizer x, we expand fi), approximately, to second order terms about x,, toobtain

fix) -fixd +((Vfixd.ix - xd)+ ^((x - xdMxd ix - xd). (5.1-6)
If we minimize the right hand side of (5.1.6) wj.L x, we find that we can compute the minimizer x*! of
the right hand side, by making use of the first order optimality condition, Theorem 3.1., viz.,

Vfixd +**ixd ixM - xd =0 . (5.1-7)

Since Hixd must benonsingular for x, close enough tox, (5.1.7) defines the iterative process

xM =Xi-Hixd"1 Vfixd, i =0. 1. 2,... (5.18)

We can restate (5.1.8) in the form of an algorithm, as follows:

Local Newton Algorithm 5.1.1 :

Data : xo e R".

Step 0 : Set i - 0.

Step 1: Compute the search direction

hi = -H(xd-lVfixd. (5.L9a)

Step 2: Update

*«-* +*. (5.1.9b)

replace i by i + 1and go to step 1. •

Theorem 5.L1 : Suppose that Assumption 5.1.1 is satisfied. Then there exists a p>0 such that if

xo e B(5,p), then the sequence {x, )£o, constructed by the Local Newton Algorithm 5.1.1, converges

to x quadratically (with rootrate 2).

Proof : Since //(•) is continuous, and Assumption 5.1 holds, there exist ap>0andanl<«> such

that

-Ylyl2£^^/(x)y)£2Aflyl2. V xe B(x.p) andV y€R\ (5.1.10a)

I//(x0 - H(x)l £Llx - xl. V x*. x€ B(x,p) . (5.1.10b)

Suppose that x, e B(x.p), then, from (5.1.7), we obtain that

H(xdixM -xd =-Vfixd +V/Tjc) =- jW - s(Xi -b)ds(Xi -b . (511 la)
Hence

lxw - xl £lH(xd'll £W(xd - H(Xi - siXi - x))Wslxr-xl
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sihril2. (5.1.11b)
m

Therefore, if iUm)lXi-x\< 1, we must have that lxM - xl < ki - xl and hence that xM e B(x,p).

Therefore, if for any o € (0,1), we define

p A min{p,ma/L}. C5112>

we obtain, by induction, that if xo e B(x,p), then the entire sequence { x, }£o, constructed by the Local

Newton Algorithm, is well defined and contained in B(x,p) and satisfies the relation (5.1.11b).

For 1=0.1.2, ...let

Hi =£lxl-xi. (5.1.13)
m

Then, from (5.1.11b), we get that

Ji*i£u,?. fori =0,1,2 (5.1.14a)

so that

Jii£M?. for i =0.1,2 (5.1.14b)

which proves that the sequence {x, }£> converges to x quadratically. •

Remark 5.1.1 : An examination of (5.1.8) shows that Newton's method is in reality a method for

finding a solution to Vfix) =0, Le., it is a method for solving a system of n equations in n variables.!

Exercise 5.12 : Let g;R" -> R" be locally Lipschitz continuously differentiable. Suppose that

x e R" is such that g(x) =0 and gjb = dgfolax is nonsingular. Show that if xo is sufficiently close to

x, then the sequence { x, }~o, constructed according to the Newtonian recursion

**i =Xi -gjxd'1 gixd. i =0,1.2,... (5.1.15)

converges to x quadratically. •

Exercise 5.13 : Let g.'R" -> R" be Lipschitz continuously differentiable, with global Lipschitz con

stant L. Suppose that &(x) is nonsingular for all x € R" and that there exists an Af <«» such that

ItfxOO"1! £ Af for all x e R". Show that if xo is such that

•^Wxor^x^Kl. (5.1.16a)
then the sequence {x, )Zo constructed according to the Newtonian recursion (5.1.15) converges qua

dratically to a point x e R" such that g(x) = 0.

Hinr. First show that

g*ixdixM -xd = -gixd + fo(xw)(x, - Xi.{) +g^) . (5.1.16b)

Then use a first order expansion of g(xd about xM to obtain that
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Ix^-xJS^tUi-*.,!2. (5.1.16c)
Finally, make use of Theorem 5.1.1 (b). •

Remark 5.12 : The convergence and divergence properties of the local Newton method are demon
strated in Fig. 5.1.1 for the case where x e R (with g(x) &f (x) ) Thus the lack of global conver
gence is a fact that is demonstratable empirically. •

Exercise 5.L4 : Use Newton's method to prove the Implicit Function Theorem.

Hint : Given (x, y) such that g(x,y) =0, show that Newton's method (5.1.15) constructs a solution

x(y + By) of the equation fix.y +By) =0 for all By such that I

where p is an appropriate constant.

3g(x,y + By)
dx

g{x,y + oy)l < p

52 GLOBAL NEWTON METHOD FOR CONVEX FUNCTIONS

We will now show that the local Newton method can be "globalized" for the case where the func

tion/:R"-> R in (5.1.1) is strictly convex, by adding an Armijo type step size rule to the local method.
Furthermore, we will see that the global method converges with quadratic rate.

Assumption 52.1:

(a) The function /;R" -• R is twice continuously locally Lipschitz differentiable, Le., given any
bounded set ScR" there exists an Ls < « such that

IW(xO - H(x)l £ Ljlx - xl . (5.22a)

for all x, x' e S.

(b) There exists an m > 0, such that

mlyf£ <yjiix)y). V x, y e R" . {522b)
u

Proposition 522 : Suppose that Assumption 52.1 is satisfied. Then (a) the level sets of fi) are
compact and, (b) problem (5.1.1) has a unique minimizer.

Proof: (a) Suppose that x© e R" is arbitrary and that xe Lo £ {xe R" Ifix) £/(xo) }. Then we
must have that

0Zfix) -fix*) =(V/(xo).x - xq)+ | (1 - sMx - xo).tf(xb +six - xo))(x - Jto))ds

-IVrtxo)l+-jU-Xol Ix-xol. (5.2.3a)

which leads to the conclusion that Ix - xbl £ 2IV/(xo)l/m must hold, Le. that Lq is bounded. The fact
that Lq is closed follows from the continuity offi).
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(b) Since the level sets of fi) are compacu (5.1.1) must have at least one global minimizer. Suppose
that x*. x** are two minimizers. TTien. because of (5.22b), the fact that Vfix*) =0 and (2.4.7d). we
must have that

fix**) -fix*) =£0- sYix** - x*)J1{x* +s(x* - x**))(x* - x**))ds

zE-lx**-x*l2. (52.3b)

Since Ax*) =./(x**), we conclude from (52.3b) that x* =x**, Le.. that there is only one global minim
izer, which completes our proof.

Armijo-Newton Algorithm 52.1:

Parameters : a e (0,1/2), p e (0,1).

Data : Xo e R".

Step 0 : Set i = 0.

Step 1: Compute the Newton search direction

hi 4 -^xd"1 Vfixd. (5-2-4a)

Stop if hi = 0.

Step 2 : Compute the Armijo step size

X, =max { pk \fiXi +tfhd -fixd* a$%.Vfixd) ) . (52.4b)
Ac N

Step 3 : Update

XM^Xi + Xihi, (52.4c)

replace i by i +1and go to Step 1. •

Theorem 52.1 : Suppose that Assumption 52.1 is satisfied. If {x, }£o is a sequence constructed by

the Armijo-Newton Algorithm, then x, -• xas i -+ ». quadratically, where x is the unique ininimizer of

fi')-

Proof : The proof is in two parts. Fust we prove that x,—* x as i -• «, with Vfib =0 , then we
show that this convergence is quadratic.

(a) By Proposition 52.1. the level sets of fi;) are compact Let Lo £ (x e R" \fix) £/(*>) )• Let
k : R" -> R bedefined by h{x) & -H{x)'lVfix) and let

•y § max{ fix +Xh{x)) Ixe Lo, Xe [0,1] ). (5-23)

Then (i) since //(•) is continuous by assumption, there exists an Af e [m.«), such that

(yMxWi £ Aflyl2 V ye R" . xe {x\fix)£y) ; (5-2-6)

and, (ii) { x, )So must have accumulation points, all of which are in the level set Lo.
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Suppose that x is an accumulation point of {x, }£o such that Vfib * 0. Then for any x e L0
such that Vfix) * 0, expanding fi) to second order and making use of (5.2.2b) and (52.6), we get that

l

{l-a){Vfix),Kx))+ X[ (1 - sMx)M{x +sXh{x))h{x))dsfix + Ui{x)) -fix) - oX{Vfix).h(x))= X

-<1 - O) Wx),//(x)-,V/(x))+ ^YlH{x)'lVfix)\2£X

£ XlVflx)!2
Af 2m2

(52.7)

Hence (just as for the Armijo method) there exists a X= P* >2P(1 - cfl/rrW >0 such that for all
x e R" satisfying Vfix) * 0,

fix +%i{x)) -fix) - akVfix).h{x)) <0. (5-28)

It follows from (52.8) that for all i e N, X, *1 Now, by assumption. Vfib *0 and hence h& * 0.
It now follows from the continuity of h{) and Vfi) that if x, -* x as i -> ~, then there exists an i0

such that for aU i^io. ieK, {VfixdMd* \ {VfibMb) <0,so that
fixM) -fixd * aX,<Vfixd.hi)

*^{Vfib%)<0. Vie^.i^io.
mat

(52.9)

Since [fixd }£o. is monotone decreasing by construction, (5.2.9) shows that/to) -* -«». However,

Xf i ximplies that fixd -*fib* and thus w« nave acontradiction. Consequently, we must have that
Vfib =0. Since by Proposition (52.1), there is only one point xsuch that Vfib =0, we must have that
x,- -> x as i -• ».

(b) To show that ^ -> x quadratically, it is necessary to repeal the calculation in (5.2.7) with greater
care and to make use of the fact that a e (0,03).

First we observe that because //(•) is locally Lipschitz continuous, there exists an L e (0,«») such

that

W(xO - Hix)l £Llx - x% (5-210)
for all x, x* e {x \fix) £ 7 ). Next, setting X=1 in the expression for the Armijo step size rule (see
(52.4b)), we obtain, upon expanding to second order terms, and adding and subtracting the term
(v*/(Xi).f/(Xi)-1V/(Xi)).that

fiXi + hd -fixd - cAVfixdM
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=(1 - a) {VfixdA) +£0- s) {hiMXi+shdhdds

=- (1 - | - a) {Vfixd,H{xd"lVfixd)

£(1 - s) <H{xd'1 Vfixd. [fit +sXkd- H{xd\H{xd~lVfixd)ds

£ lVfixdl: -<1-2a)^ +̂ ,V^' (52.11)

Since a e (0.03) and Vfixd -> 0 as i" ->», it follows that there must exist an to such that for all

fixi + hd-fixd - akVfixd.h,)* 0. (52.12)

which shows that X,- = 1 for all (^ to- Since this shows that the global method degenerates to the local

method as the solution x is approached, the rate of convergence result follows. •

Exercise 52.1 : (a) Prove that if an algorithm for minimizing a function /:R" -> R follows a

recursion of the form

Xm e A{xd (52.13)

with A: R"-> 2F" such that for each x* satisfying Vfix*) * 0, there exist p* > 0, 8* > 0 such that

fix") -fix*) £ - B*. V x" e A(xO . x* e B{x*,p*), (52.14)

K

then Xii -» x as i -> »implies that V/(x) = 0 .

(b) Show that this principle was used in proving the convergence both of the Armijo Gradient and the

Armijo-Newton Algorithms. •

Exercise 522 : Use the above result to combine the Armijo gradient and Newton Algorithms into

an algorithm that works for convex as well as nonconvex functions. •

53 AN AID FOR GLOBAL STABILIZATION OF LOCAL ALGORITHMS

The observation outlined in Exercise 5.2.1 is certainly very helpful in the-construction of new

algorithms. However, its use can be made considerably easier if we specialize it to particular cases. We
shall now present such a specialization to be used in unconstrained optimization.

Theorem 53.1: (Polak-Sargent-Sebastian).

Let/;RM->R be twice continuously' differentiable. Consider an algorithm for the minimization of
fi) which uses a search direction map A;R"-+R" and the Annijo step size rule: viz., with
a, p e (0.1), given x„ the algorithm constructs xM according to the recursion

*It italso possible to prove this theorem under the weaker assumption that/(') is only once continuously differentiable.
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*« =* +Mtt). (5J'la)
where

Xis o max { P* l/fo + ph{xd) -fixd * -P* a{Vfixd,h{xd) . (5.3.1b)

Suppose that there exist two continuous functions fy.-R" -* R. Afe.'R" -* R sucn ^nai for aU * satisfy
ingVflx) * 0, 0) tfit*) >0. W) > and, (ii) for all x e R"

{Vfix),h{x))Z-*/i{x). (53.2a)

IA(x)I^N2(x). (5.3.2b)

If { Xi )So is a sequence constructed by this algorithm, then any accumulation point x of this sequence

satisfies Vfib = 0.

Proof: Suppose that x*->x as i-*oo and Vfib*0. Then l/»(x)l £N2<b and
(V/(x),/i(x))£ -A^i(S) <0. Clearly, this implies that Wi(x)l >0. Consider the computation of the step size

Xi, for x, €B(x,p). where p>0is such that N,(x) *-^(x) >0 and Nfc) <. -|iV2(x) hold. Note that
because fi) is twice continuously differentiable and N2(x) £ -rN2(x) holds for all x e B(x.p), the bound

Af £ sup{ \H{xJ\ Ix* =x+ui»(x)? u. e [0,1], x e B(x,p) }<~ , (5.3.3a)
K

where H{x) & tffixydx2. Since x,—> x, as i -• «, there exists an i0 such that for all i £ io, i e K,

Xi e £(x,p) and therefore

fin + XA(Xi)) -Ax;) - XcLiVfixdMxd)

=XC1 —aXV/(xl).'fo)>+ tf (I - ') Wfc +sXh{Xi))h{xd.h{xd)ds

ZX -l(l-a)A^l(x)+-|xMN2(x)2 (5.3.3b)

It follows form (53.3b) that there exists at e N.l >0 such that for all x, e £<x,p), the step length X,

must satisfy A, * P* £ min{ l,2p(l - a)Ni<x)/9AfN2(*)2 )• Consequently, for all i 6 if, i 2 i0 (so that

xt e B(x,p)),

fix»i) -fixd * Xfli {VfixdMxd)

s-pW)<o. (533c)
Since {/&)}« is monotone decreasing, (5.33c) implies that fixd -» -~ as i -> ~. However,/(•) is

continuous and x, -> x as i -> ». which implies thai fixd ->fib as i -• «». Thus we have a contradic
tion, which completes our proof.
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Remark 53.1: Note that the above proof did notrequire h{x) to be continuous! •

An alternative result, to be used with an exact minimization stepsize is given in the following

Theorem 53.2 : Let/:R* -* R be twice continuously differentiable. Consider an algorithm for
the minimization offi) which uses a search direction map «:R" -»R" and an exact minimization step
size rule: viz., the algorithm constructs xM according to therecursion

*n«* +MW>. <53'4a>

where

Xi = argmin/fo + Xh{xd) -fixd . (5.3.4b)
x>o

Suppose that 0) h{x) * 0 for all x e R" such that Vfix) * 0, and (ii) there exists ape (0,1] such that

for all i € N

{VfixdMxd)* -plVfixdllKxdl. (53.4c)

If { Xi )Zo is a sequence constructed by this algorithm, then any accumulation point x of this sequence

satisfies Vfib =0. •

Exercise 53.1: Prove Theorem 5.3.2. •

Exercise 53.2 : Show that the following stabilized version of the local Newton method satisfies the

hypotheses of Theorem 5.3.1 for functions /;RN -> R that are twice locally Lischitz differentiable and

that it will converge quadratically under suitable assumptions.

Stabilized Armijo Newton Algorithm 53.1 :

Parameters : a e (0.1/2), p e (0,1).

Data: XqG R".

Step 0: Set i = 0.

Step 1: Compute the Hessian matrix H{xd and its largest and smallest eigenvalues, Kux(^d> Xminfo)-

If XnJxd Z 1CT8 and XBUX(xi)/XlniB(xi) £ 107, set the search direction tobe

hi & -H{xd~lVfixd . (5.3.5a)

Else, set the search direction to be

hi & -Vfixd • (53.5b)

Step 2 : Compute the Armijo step size

Xi = max { p* \fixi +p'/tf-fixd £ 00* K.Vfixd) ) . (53.5c)

Step 3 : Update:
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*««* +**. (5*3'5d)

replace i by i + 1 and go to Step 1. •
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6. METHODS OF CONJUGATE DIRECTIONS

6.0. INTRODUCTION

As we shall shortly see, when applied to convex problems of the form minx6 ^nfix), with

/;R" -> R twice continuously differentiable, methods of conjugate directions accomplish in n iterations
what Newton's method accomplishes in one. However, for large problems, because they do not require

the computation of the hessian matrix, their efficiency is considerably better than that of Newton's

method. Methods of conjugate gradients emanate from an iterative formula, for constructing, simultane

ously, both an orthogonal and a conjugate basis, by using a positive definite matrix. A conjugate gra

dient method was first proposed by Hestenes and Stiefel as a method for solving equations of the form

Hh = g, when the matrix H is positive definite. The formula makes use of the fact that the two prob

lems Pi." find an he R"such that Hh =g and P2: minAe R» IHh - g\2 have the same solution.

6.1. METHODS OF CONJUGATE DIRECTIONS : QUADRATIC FUNCTIONS

We begin with definitions and a few preliminary results.

Definition 6.1.1 : A basis { u, }^i. for R" is said to be orthogonal if <Ui,up= 0 for all i *j. •

Definition 6.13 : Given a symmetric, positive definite matrix H, a basis { u, )%\ for R* is said to be

H-conjugate { or simply conjugate) if iut,Hu)-0 for all i *j. •

Exercise 6.1.1 : Suppose that { i*t- }£,i is a basis for R\ Show that the following process constructs

an orthogonal basis { v, }^i for R":

v, = ui, (6.1.4a)

*-i

ViH + IV/- (6.1.4b)

with Xij determined from the equation

0 = {vk,vj)= {vJtuk)+ fyty.vj>. (6.1.4c)

•

Exercise 6.13 : Let H be a symmetric, positive definite n x n matrix and suppose that g0 e R\ not

an eigenvector of H, is given. Show that if the following process does not stop because gt = 0, then it

constructs simultaneously both an orthogonal basis { & }£,i and an //-conjugate basis { hi )^\ basis for

R":
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go given,

gM = *• + Vfc.

X, =-l«,l2/<gl,//^
•, i = 0,l,...,n- 1;

fk> = go>

*t+l = gM + fi ni •. i = 0.1....,n- 1

E. Polak

(6.1.2a)

(6.1.2b)

The next two results complete our presentation of the basic facts which make conjugate gradient

methods work.

Theorem 6.L1 : Let/;R" -> R be continuously differentiable. Suppose that x minimizes.ft-) on the

subspace spanned by the vectors y1§ y^.... y* then Wfib.yi>= 0 for i = 1,2,..., k .

Proof: The subspace in question is

{ xlx=ycc ). (6.13)

where Y is an n x k matrix with columns y,-. i = 1, 2 k. Hence x =Ya, with a e R*. solves the
problem

min fiYa) , (6.1.4)
etc F*

i.e., a solves the problem mino €R» g(a), with g(a) £ fiYa). Hence we must have that

0 = Vg{a) = YTVfiY&)

= YTVfib. (6-1-5)

The desired result now follows immediately.

The following result is known as the Expanding Subspace Theorem.

Theorem 6.13 : Let H be a symmetric, positive definite, nxn matrix, and let d e R" be arbitrary.

Let

fix) & U<x.Hx)+{d.x\ (6.L6)

and let { hi }£> be an //-conjugate basis for R". If { x, }£o is a sequence constructed according to the

recursion

Xo.given,

Xm -Xi- Xthh

Xi = argmin fixi -Xhd ,

, i = 0,l n,

then Xi minimizes fi) on the subspace spanned by ho, h\,....hi-i.
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Proof : For i =0,1,,...,/!, let & £ Vfixd - Hxt +d. Then, because of of the rule for X, in (6.1.7),
for i = 0,1.2 n-1,

oA p.« \

= -^1.^=0. (6.1.8)

Also,

X; = Xi_i - Ai_ifcj_i

= Xo-X0h0-Xlhl- -Xm/im • (6.1.9a)

Similarly, making use of (6.1.9a),

gi = Hxi + d

—Hxq + d —X(flhQ —X£ih\ — —Xi-\Hhj-\

= go - Xtfho - XiHhx - - Wfc-i . (6.1.9b)

Since the h} are //-conjugate, it follows that for any 0 ^ x < i,

igM= <go,hd - X&ttfhd . (6.1.10)

Because of (6.1.8), we get from (6.1.10) that

0 = <gM .**>= <goA)- Xk<Jik,Hhk\ (6.1.1 la)

and hence, from (6.1.10), that

{gM" 0 . for k = 0. 1 i - 1 . (6.1.11b)

Thus Xj satisfies the necessary conditions of optimality stated in Theorem 6.1.1. Since, fi) is

strictly convex, this condition is not only necessary, but also sufficient, i.e., x, minimizes fi) on the sub-

space spanned by ho, hx, h^\. •

Corollary : The vector x„, constructed as above, minimizes the quadratic function

>(x) = V*U,//x>+tf,x) (6.1.12)

onR". •

It is possible to construct several algorithms which produce //-conjugate directions while minim

izing a quadratic function fix) = Vi (x.//x)+ <4j) . The different conjugate gradient algorithms use

different formulae for computing the parameter v, for (6.1.13), below. The search directions produced

by these algorithms are identical when minimizing a quadratic cost and hence they construct identical
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sequences of points x,. However, when fi) is not quadratic, their behavior can be quite different. We

state these algorithms in the form of a master algorithm which does not use a specific formula for com

puting the parameter yit and which is applicable only to quadratic functions of the form

fix) = Wx,H x)+ <djft with H > 0 and symmetric. Extensions to more general functions will be

described in the next section.

Master Conjugate Gradient Algorithm 6.1.1:

(Solves min Wx#x)+ <4>x\ H > 0, n x n symmetric.)
tcK"

Data : xo € R".

Step 0 : Set i = 0, ho = go = #*o + d.

Step 1: Compute the step length

Step 2 : Update: set

with

so that

Xi = arg min .fix, - Xhd

Xf+i = Xj —Xihi,

gM £ HxM +d,
**i - gM + YA.

Y« =
Wk.gM)
(hiJih>) '

ViM,Hh>)=0

(6.1.13a)

(6.1.13b)

(6.1.13c)

(6.1.13d)

Step 3 : Replace i by i + 1 and go to Step 1. •

Theorem 6.13 : Suppose that H is an n x n symmetric matrix and d e R". Then The Master Conju

gate Gradient Algorithm solves the problem

min { 14U.//xHW.x) }
xcR.

(6.1.14)

in at most n iterations.

Proof : In view of Theorem 6.1.2, we only need to show that <JihHhj)= 0 for all i *j, with hit gi con

structed by the algorithm. In the process we will also show that <gi,gp= 0, for all i *j.

Our proof proceeds by induction. Since ho = go,

{gM={gi.go)=0. (6.1.15a)

by construction of Xq. Next, by construction of Yo>
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<M«W-0. (6X15b)
Hence, suppose that

{gi,gP =0l ... (6116)

Fust,by construction of Xi, {gM*hi> = 0 for all i. Next,

gM =/fa*i +<* =//(x, - XA) +rf » &- *M. ^ i=0,1 n. (6.1.17)

Consequently,

{gMA> =0=vW- *toW for'» 0,1 n, (6.1.18)

so that

Thus, from (6.1.17) and (6.1.19), weget that for all i = 0,1 n-1,

(£• *• ,)= (£• *•> - ^'ite*"9* . (6.1.20a)

Now

vV&> =<Si +T&-i*-i.*i> =<ft.*A (6-L20b)

<MW =<fc +Yi-i^i W= &.W- (6.1.20c)

Substituting into (6.1.20a), we get

{gi,gM)=0, fori =0,1 n. G.1.21)

soihai{gM,gk) =0.

Next for.all i * 0. i < x, since<&.&) = 0 and ^.//A*) = 0,

= -X4tf//.k.^

=- J^r/A*.*, - YwW=0 . (6.1-22)

Finally, since g0 = *o.

{gM'gd=-Whk.g0)

=-X*V//ik./io)=0. (61-23)

which completes our proof that the vectors in the set {ft )£j are orthogonal.

Next, for i = k, vWfc*>= 0, by construction of yk. For0£i<*.
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{hM,Hh>>= {gM + Y*A*.///0

^{gM.Hhd

=<gM.-j-igM-gd)

= 0. (6.1.24)

•

which showsthat the { ^ }£} are //-conjugate. This completes our proof.

Thus we see that a conjugate gradient algorithm takes at most n iterations in minimizing a qua

dratic function on R". Newton's method requires only one iteration on this problem. Hence, we may

hope that on general problems, properly constructed versions of conjugate gradient algorithms may turn

out to be it-step quadratically convergent This is in fact true.

63. METHODS OF CONJUGATE DIRECTIONS : GENERAL FUNCTIONS

As we have seen in the preceding section, even for the quadratic problem

minx€RJI lA<xMx) +<dj?L with H symmetrical and positive definite, the Master Conjugate Gradient
method requires n iterations to produce the same result as Newton's method does in one iteration.

Furthermore, it consumesa lot of computing time in finding the step size. Hence the use of a conjugate

gradient method can be justified only if the Hessian matrix calculation can be avoided. If we were to

extend formally the Master Conjugate Gradient Algorithm 6.1.1 to the solution of

min fix). (6.2.1)

with /:R" -* R continuously differentiable, then, referring to (6.1.13c), we would have to set

y. = -<Ji{xdhi,VfixM))/ {HixdhiMd, which involves the Hessian matrix. We shall now develop alterna

tive formulas for yit which are equivalent to (6.123c) for the quadratic case, but which enable us to

apply conjugate gradient algorithms to the problem {62.1) without computing Hessians.

First, for the quadratic case, where fix) = ViU.//x)+ (d*), with // > 0, symmetrical, we obtain

from (6.1.13c) that

{ffhi,gM)
Yr = :— . {62.2)

Since by construction

XiHhi = gM-gi. (6.2.3)

we obtain from (6.2.2) and (6.2.3) that
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<gM ~ ghgM^
Yi"" {gM-gM

_ {gM ~ ghgM^ (£2 4)
{gM '

because {gM>hi> =0. by construction of X,. Now. by (6.1.13b), A, =ft +TU Aw, and (ft.Aw)= 0, by
construction of Vi- Hence, from (62.4), we obtain that

(gi+i-gi,gi+i> (6>2>5)
PR Yl" Igil2

Formula {62.5) is known as the Polak-Ribiere formula. When used in the Master Conjugate gra
dient algorithm, with ft £ Vfixd, il defines the Polak-Ribiere method ofconjugate gradients for solv
ing (6.Z1).

Now, again for the quadratic case, <ft.ft+i>= 0 for all i, and hence (6.2.5) becomes

FR *=̂ £. <"-6)
which is the Fletcher-Reeves formula. It defines the Fletcher-Reeves method of conjugate gradients for

solving {62.1).

We can summarize the two conjugate gradient methods for solving problem (6.2.1) in the follow

ing shorthand manner

Polak-Ribiere Conjugate Gradient Algorithm 6.2.1

Data : xb e R", Aq = Vfixo).

Xi = argmin fix, - Xhd, (62.7a)

„ (yflxM)-yfo),v/fr..l» ,627c)

Fletcher-Reeves Conjugate Gradient Algorithm 62.2.

Data : x© e R", Ao = Vflxo).

X, =argmin fix* - Xhd, (6.2.8a)

*w = Xi - X,Ai. (6.2.8b)
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-fi* =lVfixM)l2/lVfixdl2 . (6*2'8C)

h+^Vfix^ +Wi. (°-2M)

•

Remark 6.2.1 : When applied to quadratic functions the Polak-Ribiere and Fletcher-Reeves methods
produce identical sequences {x, )%& However, when solving the general case of problem (62.1), the
two methods produce different sequences. There is empirical evidence indicating that the Polak-Ribiere
method is superior to the Fletcher-Reeves method. The reason for this appears to be the fact that the
Polak-Ribiere method satisfies the assumptions of the Polak-Sargent-Sebastian theorem, while the

Fletcher-Reeves method does not At present we find more complex conjugate gradient methods, such
as the one due to Nazareth, which build on the Polak-Ribiere method, and which are less sensitive to

step length errors. •

Theorem 62.1 : Suppose that /:R" -> R is twice continuously differentiable and that there exist

0 < m £ M < oo , such that for all x, y e R",

mlyl2 £ (yM{x)y) ZMlyl2 . (62.9)

If thePolak-Ribiere Algorithm is applied to min fix), producing a sequence { x, }£o , then

(a) There exists ape (0.1) such that

{VfixdA) * piVfiXiWil; (62.10)

(b) The sequence { Xj }£o converges to x, the unique minimizer of fi). •

Proof: (a) Letting g{x) = Vfix) , ft = Vfixd, we obtain that

gM = g{x*i)= gixi - Xihd

=gi - **( Nix* - sXihd dshi. (62.11)
Since {gM ,hd- 0, by construction of A*, we get that

n _ ^'Si* _ Igi'ti (6.2.12)
*"" {Hi.Hihd~ <MW

where

Hi^^Hbi-sXihdds. (62.13)
Hence

ojj_ {gM - ghgi+l)

. <w. h.gM)
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(6.2.14)

Therefore

ryf*l£ SAflft^l/mlA,-!. (6.2.15)

Hence,

lAwlSW + ryf'llAJ

£ lg*i!(l + —) • (62.16)
m

Finally,

{gM'hM)= {gM>gM +*Vf*W

= lg*,l2. (62.17)

Consequently, making use of (62.16), we get

<ft+i.ft*i> _ Hm\ ^ 1 a
Ig^HA^il " IAWI j+Af =P>

m

(62.18)

which completes the proof of part (a).

(b) The fact that the sequence {x, )Zo converges to the unique minimizer of fi) follows from the

modified Polak-Sargent-Sebastian Theorem (6.32). •

The propertiesof the Fletcher-Reeves method can be summarized follows:

Theorem 62.1 : Suppose that /;R* -* R is twice continuously differentiable and that there exist

0 <m £ M< oo , such that (6.2.9) holds. If the Fletcher-Reeves Algorithm is applied to minz 6 R./(x),

producing a sequence { x,- }~q, then

(a) There exists no sequence {/, }£<>, such that

(i) /,• > 0. for allied (62.19a)

{ii) f,-*0asi->». (6.2.19b)

k

{Hi) £r?->«as*->~, (6.2.19c)

and

(iv) {Vfixd.hd* tilVfixdllhil for all i e N . (62.19d)

(b) The sequence {x, )~o converges to x, the unique minimizer offi) . •

Remark 622 : It is clear from the above theorem that there is a distinct possibility that in the

Fletcher-Reeves method, the angle between the gradient ft at x, and the search direction A, may
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approach 90° as i -» » , while in the Polak-Ribiere method this angle is well bounded away from 90°.

As we have already mentioned, tfiis fact makes the Polak-Ribiere method somewhat less sensitive to

numerical errors. •

63. PARTIAL CONJUGATE GRADIENT METHODS

We note that even in the quadratic case, the finite convergence of the conjugate gradient methods

depends on setting Ao = go- Now, near a minimizer x which satisfies the second order sufficiency condi

tion, stated in Theorem 3.2.3, a function fi) does have a reasonably good quadratic approximation and

it may be conjectured that, near the minimizer x, if we reinitialize a conjugate gradient method by set

ting hi = ft, from time to time, we might gel better performance then by constructing A, by one of the

standard formulae all the time. There are two interesting results dealing with this case (For a simplified

exposition see Luenberger1

Theorem 6.3.1 : Suppose that 0) /.*R" -> R is twice continuously Lipschitz differentiable and that

there exist 0 < m £ M < » such that

mlyl2 £ <y#{x)y)Z Mlyl2 V x. y e R* .

and (ii) that the Polak-Ribiere (Fletcher-Rieves) conjugate gradient method is modified so that for a

given k e -N, k £ 1, whenever (i + 1) / k is an integer, hM is constructed according to

*M - gM

(rather than not according to (6.2.7c), (62.7d)), and

*m = gM + yT*A*

otherwise.

(a) If k = n, then

7-1—^ 5" -> 0 as !->«>,
«« ~ ^Oi-ir

where x is the global minimizer offi) i.e., x, -» x n-step quotient quadratically.

(b) If k < «, then

f. V

ifixd-f^)}.fix*i) -fib *
b-a

b + a

bi-xlS
2_

m
. j

(/l*o)- b-a

b + a

(6.3.1)

(6.3.2)

(6.3.3)

(6.3.4)

(6.3.5)

where m = a<o<Afare such that (n - k)eigenvalues of H(x) are contained in the interval [a.b] and
the remaining k eigenvalues are larger than b. (Thus the effect of the k worst eigenvalues has been

1D. G. Luenberger, Introduction to Linear andNnlinear Programming , AddUon-Wesley, 1973.
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removed.)
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7. ONE DIMENSIONAL OPTIMIZATION

We saw that conjugate gradient methods require the solution of one dimensional minimization

problems of the form

min/Cx + XA). (7.1a)

where/.R" -> R is continuously differentiable. We can write (7.1a) as

min^X.). (7.1b)

Note that 4>'(X) is given by

V(X) = {Vfix + Xh),h) (7.1c)

and that it can be quite expensive to compute if the formula (7.1c) is used. When high precision is not

important, it is much cheaper to evaluate $'(X) by finite differences, i.e., by making use of a formula

such as

e

or

f(X)s.*X +e)-^-e) aie)

We shall discuss two commonly used methods for solving (7.1a).

7.1. THE GOLDEN SECTION SEARCH

The golden section search method is to be used when the function $;R ->R is differentiable and

unimodal, Le., there is a unique point Xsuch that 4KA) = 0, which is also the unique global minimizer of

$(•)• The golden section search is based on two observations.

(a) First, see Fig. 7.1.1, suppose that we have an interval [a,b] such that A, the global minimizer of

$(•)* satisfies Xe [a,b] and that we have two additional points a, b' such that a<a' <b' <b and

either ${a) £ min{ <Ka).<K&) }. or <KJO £ min{ tya)Mb) ).

First suppose that <K^0 £ min{ <fta).4>0) }.

Case 1: Suppose that $(a0 £ W). Then it follows from the mean value theorem that there is a

Xj e [a'.b'] such that $'(Xi) £ 0. Since <K<0 £ $(a), by assumption, it follows again from the mean

value theorem that there is a Xi e [a.a*] such that $'(^2) £ 0. Hence, since $'(•) is continuous, the

interval [X2.XJ c [a,V\ must contain a zero of $'(). and hence X€ [ajb\ must hold. Thus, we have

succeded in reducing the initial bracket [a.b], containing the global minimizer X, to the smaller bracket,
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[a,b*] which also contains X.

Case 2: Suppose that $(a*) >W). Then it follows from the mean value theorem that there is a
Xi € [a,,bf] such that ^(fo) <0. Since fta*) £ «6), byassumption, it follows that W) £ #&). It fol
lows again from the mean value theorem that there is a Xi e [b',b] such that $'(Xs) £ 0. Hence, since

$'(•) is continuous, the interval [lambdauXd c [a',b] must contain a zero of$'(). and tent**€ [fl'.W.
must hold. Thus, we have again succeded in reducing the initial bracket [a,b], containing the global

minimizer X, to the smaller bracket, [a',b] which also contains A.

The situation when #</) £ min{ «a), $(b) } holds, leads to similar conclusions.

At

(b) Second, the process of reducing the bracket [a,b], containing the global minimizer X, can be
made more efficient by making use of the following observation. Suppose that we wish to construct a

sequence of nested intervals [aM c [a,b], i =0,1,2.3..., such that either ${aM) £ min{ ${adMbd }.

or$(bM) £ min{ tfadMbd }. sothat each of these intervals also contains the global minimizer X.

In keeping with the proceeding discussion, we assume that at each stage we construct two points

a'i<b'i e {aM and hence that either [aM,bM] = [aifb'd or [aM,bM] = [a'M holds.

If the points a'itb\ are placed symmetrically, we can ensure that either b\ = a'M or a\ = b'M
holds by requiring that for some F e (0,1),

Im-FU, (7.1.1)

lM-{l-F)h = il-FyM (7.12)

is satisfied at each stage. Eliminating lL and lM from (7.1.1), (7.1.2) we get

F2 + F-1=0. (7.1.3)

Hence

F = V4(5* - 1)= 0.61804 . (7.1.4)

Because of the symmetry of placement of the points a\, b\ and the choice of F, either a't or b',

can be reused in the construction of [a^b^]* whereas any other scheme would involve the placement

of two fresh points a'M, b'M. If we associate with each placement of an a'% or b\ an evaluation of the

function <K), we can obtain a comparison of the efficiency of the golden section search with any other

"two point" scheme. It should be clear that no matter how we place two additional points in the inter

val [ai,bd, of length lh the next interval will have length lM > Wk. Hence, a limit on the efficiency of

a two point scheme, using two function evaluations, per iteration is -14 In V£ = 0.3466, whereas the

efficiency of the golden section search, which uses only one function evaluation per iteration, is

-In 0.61804 = 0.4812, which is better. We now state the golden section search formally.

Golden Section Algorithm 7.1.1 :
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Step 0 : Compute abracket [ao.&o]. containing X, the miniminizer of#X), and set i =0.

Step 1: Set /, = h - ait and compute

*>*+«!-*). (71-5a)

b'i^bi-W-F)- <715b)

Step 2 : If <K&'«) * min Ma'dMbd)* set aM =a\, bM =h Else set a*! =ak, bM =b\.

Step 3 : Set i = i + 1 and go to Step 1.

•

Note that because of (7.1.1), the bracket lengths shrink linearly, with constant 0.61804, i.e.,

/. =F/0= (0.61804)%. (7.1-6)

Hence the precision of identification of Xincreases very rapidly with i, e. g .,

/is =0.00073 l0, C7.1.7)

so that if /o =1, then, $. ={al5 +bl5) I2±0.000365.

A technique for obtaining an initial bracket [flo.&ol containing the minimizer X, is to start with a
Xo such that <fr'(Xo) <0 and to evaluate <t>(Xi) for X, =Xo +iA, with i =0.1,2..., until a "triangle- of

values is obtained, such that tfXi-j) >4>(Xi_,) and <K**-i) <<frfa). s° $** we ^ve X^2 £ X£ X*.

72. SUCCESIVE QUADRATIC INTERPOLATION

Again we consider the problem

min <KX). (7.2.1)
Xe R

where $:R -»R.

Assumption 72.1 : We shall assume that (i) $() is continuously differentiable and unimodal, with

unique local minimizer X, and (ii) $'(X) * 0 for all X* X. •
Given three distinct points zl <z2<r3inR,wecan construct a unique quadratic polynomial

q(k;z), in X, parametrized by the vector z=(z'.r2,!3), such that ^r*;x) =$(**). i=1, 2, 3.
The Lagrange interpolation formula defining this quadratic polynomial is as follows:

^ x ..uCX-AiX-z*) . .,* (X-z^q-z3)

The polynomical ?(X;z) iscalled an interpolating polynomial.
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Given two distinct points z1 < z\ we can construct a quadratic interpolating polynomial q(X;z) for
$(♦), such that qiJ.z) = #?), i = 1, 3 and q'(xi;z) = $'(z0 for i = 1 or 3.For the case where z2 = z1, the
Lagrange interpolation formula for this polynomial is

1\2

2<**-#>&$+«*$$

z'-z3 {zl-z>)2
&-zi)a-z>).

For the case where z2 = z3, the Lagrange interpolation formula for this polynomial is

«*-#>$$+«»&$
k'/„3\<fr'(z3) 2»(zJ)

z3-^ ' (z3-^)2
q-z^q-z3)

(72.2b)

02.2c)

Our application of the above interpolation formulae will beconfined to the setof vectors z e R3

which define an interval [z1,^] that contains the minimizer X, viz. to the set T c R3 defined by

T £ [ze R3lz1<z2<z3 and tfz^£min{tfz1),4(z3)}Kj

{z € R3 Iz1 = z2 < z3, 4>V) * 0. #z3) ;> (Kz^Ju

(z e R3 Iz1 < z2 = z3. f (z3) a 0. tf*1) * tf^JU

{zeR3lz,=z2 = z3 =X) (72.3)

Proposition 72.1 : (a) For every z€ T, z1 £^£ z3 holds, (b) The set T defined by (7.2.3) is
closed.

Proof: (a) This part follows directly from the mean value theorem.

(b) Suppose that {z,}£ocT is such that z; -> z as i -> ». Since z- £ zf £ zf holds for all i, we must
*l ~2 A3

have that z <-z £ z . We now consider the various possibilities.
1 2 3

(i) Suppose that z < z < z . Then there must exist an to such that z] < z2 < zf for all i £ i'o, and hence
#zf) £ min {<Kz]),<Kz?)) for all i £ i0. It now follows from the continuity of 4>C) that

^z2) £ min {(^z1).^3)) and hence that z e T.

(ii) Next suppose that z1 < z2 = z3. Then weneed to consider two subcases:

(a) There is an infinite subsequence {z,}, c Ksuch that z\ < zf= zf. In this case, we have that
$'(zf) £ 0 and $(z]) £ #zf) for all i € K, and hence it follows from the continuity of $(•), $'(•) that

$'(?) * 0 and ^Kz1) * $<z3). so that z € T.
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(b) There exists an io such that z] <zf <zf holds for all i £ to. Hence, for all / £ to. we must have

that tfzf) £ #z]) and MKzf) - 4Kzf)]/[z,3-zfl £ 0. Hence, in the limit, since zf -• z3 and zf -• z3 as

j _> oo, we get that $(?) 5 ^J1) and $'(?) * 0, i.e., z e T.

(iii) The case where z1 -z2<V follows by symmetry from (ii).

(iv) Finally consider the case where z1 ^z2^. Since we must have for all i € N that z) £ X£ zf, it

is clear that r' = X for; = 1, 2, 3 and hence that z e T.

We therefore conclude that T is closed. •

Theorem 72.1 : For any z € T, consider the polynominal q(X;z), defined by (7.2.2a) when

z1 <z2 <z3, by (722b) when z1 =z2 <z3 or z1 <z2 =z3 and by ?q,-z) £ 4$) when z1 =z2 =z3.
Then

(a) The coefficients of q(X;z) are continuous in z on T,

(b) The miniminizer X*(z), of $q,*z), is continuous in z on T.

(c) The minimizer X*(z), of q(X;z), satisfies X*(z) e [z1,?].

Proof: (a) Let the coefficients a{), b{), c{) of q(K;z) be defined (as functions of z) by

tfX.z) = a(z)X2 +Kz)X + c{z). (72.4a)

First suppose that z e R3 is such that z1 kz2 <z*. Then the coeficients of q(X;z) are determined by the
equation

1 I* (I1)2 c «*!)
1 I2 (l2)2 6 s= <Kd
1 Is (I3)2 . a. 4K*3)

(7.2.4b)

The matrix in (7.2.4b) isa Van der Monde matrix and hence nonsingular, because z1 kz2 < z3.

Now suppose that z e R3 is such that z1 <z2-z3. Then the coeficients of q(K;z) are determined
by the equation

1 z1 (z1)2 c <K<)
1 z3 (z3)2 b = ♦(z3)
0 1 2Z3 . o. ♦V)

(72.4c)

The matrix in (72.4b) is nonsingular because zl <z*. An expression similar to (72.4b) holds for the

case where z e R3 is such that zx -z2 < z3.

Now suppose that {z,)So is such that z,- -» z as i -> «>, with z* <? <?. Then there has to be an
io such that z1 <z2 <z3 for all i £ i0 and hence the coefficients afo), fcfo), (fo) are determined by
(92.4b). Since the matrix in (72.4b) is nonsingular and continuous, and since the right hand side in

(72.4b) is continuous, it follows that a{zd -» a(z), b{zd -» &(z) and c{zd -* c(z) as i -> «».
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Next, suppose that (x.JSo is such that z< -> z as i -• ~. with z1 <z2 =V. Clearly, the last equa
tion in (7.2.4b) can be replaced by the result of subtracting the last equation from the second one, i.e.,

by

(z2-z3)6 +(z2-z3Kr2 +z3)fl =<K^)-^. <7.2.5a)

which, when z2 * z3 can be rewritten as

Hence, when z2 ^ z3, (7.2.4b) can be replaced by

i «* frX c

1 r2 (z¥ b =

0 1 Z^Z3 . a.

(J2.5b)

(72.6)

It now follows from the continuity and nonsingularity of the matrix and right hand side in (72.6) and

from the continuity and nonsingularity of the matrix and right hand side in (7.2.4b) that a(z-) -• a(z),

b(zj) -* bO) and c(zD -> c(z) as i -> ». Since all other cases follow in a similar manner, we conclude
that the coefficients a(), bi), c() of q(k;z) are continuous.

(b) The minimizer X*(z), of q(k;z\ is given by

S(z) =-d(z)/2a(z). (7-2-7)

and hence is continuous as long as a(z)* 0, because a(), 60 are continuous.

(c) Since qifiz)£ min{ q(zl;z),q{z3;z) ), and q(;z) is convex, it follows that X*(z) e [^.z3]. •

In order to define an algorithm we need two more quantities. First we define the candidate tri

plets that might replace a z € T and define a smaller interval containing Xthan z, by

«1(z) =(z1.X<z).z2)r. (72.8a)

«2(*) = (z2Mz).z3ft (7.2.8b)

«3(z) =<W)JJf. fr2.8c)

K4(z) = (z,.z2.X(z))r. (7.2.8d)

We now define the set of admissible replacement triplets by

A(z) £ Tn{Ml(z),«2(z).ii3(z).tt4(z)} . (72.8e)

Finally, we define the surrogate cost function c:R3 -> R by

c(z) & tfz1)+(Kr2) + <K*3) • C7-2J0

Algorithm 7.2 : (One dimensional minimization via SQI)
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Data : zq e T.

Step 0 : Set i = 0.

Step 1: Compute the quadratic interpolating polynomial q(k;z^).

Step 2 : Compute X(z*) = arg min tfX/z,). If X(z,) = z/ or X(zJ = z3, stop.

Note : Uzde [zj.z3].

Step 3 : Construct the vectors in R3:

«,(zi) = (z!.X(zi).z2)T, (72.9a)

«2fe) = (*2A(z.).z3)r. (7.2.9b)

u3(zd = Q*zd.z}.zl)T. (72.9c)

U4*d = tiJMzd)T. (7-2.9d)

and set

A(Zi) = Tn{u1(zi).tf2(zi).u3(zi),u4(zi)} . (7-2.9e)

Step 4: Compute

zM e argmin [c(z) Iz e A(z^} . (72.10)

Step 5 ; Set i = i +1 and go to Step 1. •

The following concept is helpful in showing that the above algorithm will find the minimizer A.

Definition 72.1: Let A:R" -* 2F* be a set valued map. We say that A is closed if for every pair of
sequences {x,}, {ys} such that x< -> jc*. yt e A(xJ and y, -• y* as i -• ~. y* e A(x*) holds. •

Proposition 72.2 : (a) For every z e T, the set A(z), defined by (72.8e), is nonempty, (b) The

set valued map A(-) is closed.

Proof : (a) Suppose X*(z) e [r1.*2]. Then A{z) is empty if and only if

4KX*(z))>min{^1).«(z2)}=4<z2). and also tfz2) >min{ #X*(z)),<Kz3) }= 4>(X*(z)) (because
$£2) £ tfz3)). which is clearly impossible. The case where X*(z) e [z2^3] can be disposed of similarly.

(b) Suppose that ta}£o c T is such that z, -* z* and z*! -> z** as i -♦ », with z^ e A(z^ for all
i € N. Then there must exists a k e {12.3.4} and an infinite subset JTcN such that zM = u^z,) for

all i e K. Since «k() is continuous, u^zj -> «ft(z*) as i ->», and since T is closed, uk(z*) e T. Hence
z** = u*(z*) e A(z*), which shows that A() is closed. •

Theorem 722 : Let the solution set be defined by

A£ {zeTI«'(z,) = 0.or<»/(z2) = 0.or<t>'(z3) = 0}. (72.11)

(a) For every z e T which is not in A, and any y e A(z), c(y) < c(z) holds.
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(b) Let [zi)Zo be a sequence constructed by Algorithm 72.1 for $:R -> R continuously

differentiable and unimodaL Then every accumulation pointz of { z% }£o is in the solution set A.

Proof: (a) Suppose that z £T<~>A. Then X*(z) * z1 and X*(z) * z1.

(i) If X*(z) e tf.z2]. then we must have that ftz2) <«z3). Furthermore, in this case, only ux(z) and
«j(z) can be inT, and by Proposition 7.2.2(a), at least one of them must bein T. If «j(z) e T, then, by
definition, $(X*(z)) £ min{ tfz^.tfz2)) and hence

c(u,(z)) =ft*1) +<KX*(z)) +tfz2) * 4K*1) +^ +♦(A

<tfz1) +tfz2) +4K*3) = c(z) . (72.12)

Next, suppose that U&) e T. We will show that #X*(z)) <tfz1). For the sake of contradiction, sup
pose that <KX*(z)) ^ #*»). Then, since tfz2) £ ftz1), and X*(z) € tf.z2], it follows that <K) has alocal
maximum in ^.z2], which contradicts the unimodality of $(•). Hence c(u3(z)) < c(z) in this case.

(ii) If X*(z) e (z2^3), then we must have that ^(z2) <$(zl). Furthermore, in this case, only «2(z) and
«4(z) can be inT. The rest of the proof follows from (i), by symmetry.

(b) By construction, zj.zf.z3 e [z0.zo], for all i e N, so that {z,}« is bounded and hence must have
accumulation points. Since {c(zj)}£o is monotone decreasing by construction, and c() is continuous, it

follows that if z is an accumulation point of {ziJSo. we must have that c(zd -* c(z)y as «-* ». Sup-

pose that K c N is such that z, -> z as i -> «» and that z t A. Then for any z' e A(z) we must have
r

that c^*) <cQ). Clearly, there exist an infinite subset K c K and a z* € T, such that z*! -» z*. Then

since z^ -> z also holds, and since A() is closed, z* € A(z) and therefore c(z*) - c(z) - - 8<0.
Hence, by continuity of c(), there must exist an to such that c(zM) - dzd £ - 6 / 2 for all

1e JT, 1£ fe, which contradicts the fact that <fc) -» c(z) as i -♦ ». Hence the theorem must be true. •
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Fall 1988

8. QUASI-NEWTON METHODS

Quasi-Newton methods were invented as a second-derivative-free approximation to Newton's

method. As such, they are related to secant methods, from which they differ by the formulae used to

construct approximations to hessian matrices. Just like conjugate gradient methods, quasi-Newton

methods must be explained in two steps. First as methods for minimizing quadratic functions and then

as methods for general unconstrained optimization.

8.1. THE VARIABLE METRIC CONCEPT

Consider the problem

min ./W. (8.1.1a)

where

/(x) £ Wx.Hx)+Ui*)t (8.1.1b)

with H an n x n positive definite, symmetric matrix. Hence

Vf{x) = Hx + d. (8.1.1c)

Given a positive definite, symmetric nxn matrix Q, the steepest descent direction with respect to

the Q norm is defined by

h(x) £ arg min (VUAg +dfe'M. (8.1.2)

where \Mq &(Ji.Qh) and 4Rx;k) denotes the directional derivative of/(•). Hence the steepest descent
direction with respect to the Euclidean norm is given by

A(x) = arg min {V4IAI2 + aj{x;h)}

= arg min (V4I/J2 + <Hx + d,h)) . /g i 3a)
*«R" \ • • /

Applying the first order optimality condition, Theorem 3.1, to problem (8.1.3a), we get that

h(x) + Hx+d = 0, (8.1.3b)

which implies that

Kx) o - [Qx + d] = -V/(x). (8.1.3c)

Le., that h(x) is the steepest descent direction that we saw in Section 4.

The steepest descent direction with respect to the H norm is given by
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h(x) = srg min VA\hVH + df{x;h))
A«R"

= arg min {lMh,Hh)+ Uix+ d,h)) . (8 i 4a)

Applying the first order optimality condition, Theorem 3.1, to problem (8.1.4a), we get that

Hh(x) + Hx + d=0, (8.1.4b)

from which we conclude that

*(x)=-[x +/T1rf] =-
dx2

i.e., that A(x) is the Newton direction.

If we update the matrix Q, defining the norm, at each iteration, we get a variable metric method.

The idea behind the variable metric methods, for minimizing quadratic functions, as in (8.1.1b), is to

keep updating the matrix Q in such a way that the matrix H~l is eventually constructed. For the case of
quadratic functions on R", this process requires n iterations. The following observation is a key to this

construction.

Let Xqjcx jc2,... *H be a set of distinct vectors and let B&H~K Then, setting

ft & Yfo).
Ax.^xw-x,-. (8.1.5)

Aft = gM - ft.

we find that

BAgi = Ax„ i = 0,12....«-1 . (8.1.6)

Hence, if we define the n x n matrices AG. AX, by AG = [Ago Afr-iL AX = [Axo Ax„_i], we obtain

that

BAG = AY . (8.1.7a)

Assuming that the matrices AX, AG are of rank n, we find that

/T1=B = AXAG-1 . (8.1.7b)

In solving problem (8.1.1a), with /(•) as in (8.1.1b), by means of a quasi-Newton method, one

starts with an initial guess at a solution, xq, and a symmetric, positive definite matrix Bq, which is an

initial guess at H~l, and one uses an update formula of the form

XM^Xi-Xfiigi, i = 0.1.2 (8.1.8a)

with

X,- = arg min/& - TAgd . (8.1.8b)

The matrix BM is chosen so that the following the quasi-Newton property (c.f. (8.1.6)) is satisfied:
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BMAgk = Axk, for* = 0,1 i. (8.1.9)

Note that if the difference vectors {Axk}£| turn out to be linearly independent, then the fact that

B„AG = AX (8.1.10)

holds, implies that

Bm = (AX)AG"] . (8.1.11)

Comparing with (8.1.7b), we conclude that Bn-H"1. Since

x^^x^-Xf^, (8.1.12)

and since B„ = /T1, if X* = 1, then x„ is the minimizer of the quadratic function /(•). Hence, we must,

in fact, have that X„ = 1 = arg min.ftx,, - XB^J.

We see from this that, just like a conjugate gradient method, a quasi-Newton method may take up

to n iterations to solve an unconstrained optimization problem with a quadratic cost function, as com

pared to the one iteration required by the Newton method.

There are several methods for generating the matrices B„ required by a quasi-Newton method,

and we shall discuss these in the following two sections.

82. A RANK-ONE METHOD FOR GENERATING MATRICES B,

Both rank-one and rank-two methods for generating matrices for quasi-Newton methods stem

from the following technique for inverting perturbed matrices.

Proposition 82.1: Suppose that H is an n x n nonsingular matrix, and letB = /T1, and let

H* = H + abT. (8.2.1a)

for some a, b e R". If B* £ Z/*"1 exists, then it is given by

B* =B- l (Bo)(bTB). (82.1b)
1 + b'Ba

Proof: Suppose that B* exists. Then we can write B* = B + AB. Hence we must have that

/ = B*H* =BH +Bab7 + AB(H + ab7) . (8.2. lc)

Since BH = /, we conclude that

0 = (Ba)bT + AB//* . (82. Id)

which shows that AB = -(Ba)bTB*, i.e., that AB is of the form

AB = (fia)cT. (82.1e)

for some c c R". Substituting for AB into (8.2.Id), we now obtain that

0 = (Ba)bT + {Ba)c\H + ab1), (82.1Q

which yields that
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cT=-(l + cTa)bTB. (82.1g)

Hence

cTa = - (1 + t^a^Ba . (82.1h)

Solving (8.2. lh) for cTa and substituting into (8.2. lg), leads to (82.1b), which completes our proof. •

Exercise 8.2.1: Let H = [h\ ,A2.—*J be an n x n nonsingular matrix, with inverse B, and suppose that

H* - [hx,h2,... Jij-i,h*j.hj+i....hH), is an n x n nonsingular matrix which differs from H only in that it

has a different J-th column. Use Proposition 82.1 to show that it inverse B* is given by

*' "B ' l*^Bk>jm"J" *')(e?B) ' *">
where e} is the j-th column of the n x n identity matrix.

Hence show that it may be possible to invert an n x n nonsingular matrix H by means of n rank

one corrections. •

Exercise 8.22: Let H be an n x n, symmetric, nonsingular matrix, with inverse B, and suppose thai

//*=// + aaT + bbT is also nonsingular, with inverse B*. Show that B* mustbe of the form

B* = B + c*Ba)(Ba)T + $(Bb + a(Ba)(Ba)Tb)(Bb +a(Ba)(Ba)Tb)T. (8.2.3)

i.e., that the inverse B* is given by a rank two correction of B. •

Returning to problem (8.1.1a), (8.1.1b), and the iterative process defined by (8.1.8a), (8.1.8b),

since the n x n matrix H in (8.1.1b) is symmetric, we can attempt to compute B = /T1 in n steps, by

setting B0 = /, and using the update

Bm =Bi + OjZizJ. for i =0.1.2.... (8.2.4a)

(i.e., by using a symmetric rank one update formula) with BM required to satisfy (8.1.6) (and, hope

fully, as a result also the quasi-Newton requirement (8.1.9)), i.e.:

**iAft = Ax,, for i = 0,1,2 (82.4b)

where x,-, Ax,, A& are constructed according to (8.1.8a,b) and (8.1.S).

We shall now show that (822) and (82.3) define BM uniquely. Let B, be an nx/j, symmetric

positive definite matrix. Then, because of (8.2.4b) we have that

Ax,* = BMAgi = B£gi + OA- <zhAg,) . (82.5a)

Hence

"* = TTTTn [AXi" B'^] • (82.5b)

Next, from (82.5a)
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<Agi.Axt) = (AgiMAg.)* aJAgirf, (82.5c)

so that

a^Agi.z,)2 =(Aft.Ax;)- (Aft.B.Ag.)

^(Agi,Axi-BAgt) . (8.2.5d)

Substituting from (82.5b), (8.2.5d) into (82.4), we get

BM =Bi + *A y[Axf -B.A&] [Ax, -B^f

=*' +/A. a/ BA.N [AXi "BA8i] [AXi "^^ ' (8-Z6)tAft.Ax, - BiAgj)

Theorem 82.1 : The matrices Bi% constructed according to (8.2.6), (8.2.4), (8.13), and (8.1.8a, b),

satisfy the quasi-Newton property (8.1.9) for i = 0,1,...,n-1.

Proof : Clearly, for i = 0, we get BjAgo = Axq, by construction of Bx. Next, proceeding by induc

tion, we assume that (8.1.9) holds for i = 0.1,2 A-l, k £ n-1. Then for i € £ - 1,

BMAgi = BAgi + y4(Axt - B4gk*gt\ (82.7)

with yk defined by

vAftt,Ax4 - B^Ag*)

Since B*A& = Ax,-, by hypothesis, and Bk is symmetric, we obtain from (82.7) that

<AxA - B*Aftk.Aft>= <Ax*.Aft)-(Ag^^)

= <Axk,HAXi)~ WAxk.Ax>)= 0 . (8.2.9)

Consequently,

B^Afc = Ari( for i = 0.1 k-l . (8.2.10)

Since B^Ag* = Ax* by construction of BMt the theorem is proved. •

Thus, the construction of BM defined in (8.2.6) has one desirable property. Unfortunately, it is

possible for (Aft.AXj - B£gt) to be zero, at which point the construction breaks down. This fact has
led to the development of rank-two update formulae which are more complex, but also more robust.
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8.3. RANK-TWO METHODS FOR GENERATING B,

Next we turn to rank-two update methods which overcome the shortcomings of the rank-one

methods. The rank-two methods are derived from the rank-one methods as follows. If we expand

(82.6). we gel an expression of the form

BM =Bi +P,Ax,- Axf+y&Agd (PAgf +« Ax, (fiAgf +VAid Axf ], (8.3.1)

where p„ Yi. 8, are coefficients determined from (82.6). If we suppress the nonsymmetrical terms

Ax,- {BiAgi)7 in (8.3.1), we get the following candidate, symmetric rank-two update formula which was
invented by Davidon and popularized by Fletcher and Powell:

BM =Bi + ftAxi Axf+ytfAgd (fiAgf • (832)

Since we need BM&gi= Axi to hold, we require that

AXi = BAgi + frAx,- (Axi(A&>+ y&Agi) <BA8iMi>. (8-3.3)

If we set Pi = 1 / (AxifAg,) and Y, = -lftBAgiAgtl we find that BMA& = Ax, holds. With these values

of pj, Yi. (8.3.2) becomes the Davidon-Fletcher-Powell update fonnula:

*- =B<+ <Z^ *> **""5^5(B^ (B^T • <8-3-4>
Formula (8.3.4) is by no means the only valid rank-two update formula1 To exhibit the

nonuniqueness of (8.3.4), we observe that we can always write

Bm = Bi + AB„ i = 0. 1 (8.3.5a)

and require that the relationship BMAgi = Ax, be satisfied. Hence we require that

BAgi + AB.A& = Ax, (8.3.5b)

hold. Rearranging (8.3.5b) we obtain that

ABiA$, = Ar.-£iA*i (8.3.5c)

must hold. For any f £ 0, we get from (8.3.5c) that

ABAgi o rAx, + [(i - ,)Axi - BAgi). (8.3.5d)

Clearly, (8.3.5d) will hold if we set

"'-•CTJ****^** (8-36a)
with

Pi & (1 - l)Axi - BiAgi. (8.3.6b)

We note that setting t = 0 reduces (8.3.5a), (83.6a, b) to (82.6), while setting t - 1 produces (8.3.4).

1 For • niceexposition of variable metric methods seeD. F-Shanno, "Conditioning of Quasi-Newton Methods for Function
Minimization", Mathematics of Computation, VoL 24, No. Ill pp. 647-656, 1970; and J. E Dennis Jr. and J. J. More', "Quasi-
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At present it is felt that a quasi-Newton method, much superior to the ones indicated above, is
obtained by using the rank-two Broyden-Fletcher-Goldfarb-Shanno (BFGS) update formula which
updates estimates ofHrather than ofits inverse B, as follows:

with H0 a symmetric, nx positive definite matrix. Note that the BFGS formula can be obtained from
the DFP formula by interchanging Bwith //. and AXi with A&. The matrices B„ for use in a variable
metric algorithm, such as the one below, can be obtained from the BFGS matrices //, by means of for
mula (8.3). As we shall see at the end of this section, the variable metric algorithm, based on the
BFGS formula, differs from the DFP variable metric algorithm, below, only in the manner in which B,
is computed. We will present proofs for the DFP method and leave the corresponding proofs for the
BFGS methodas an easy exercise for the reader.

Before exploring the properties of the Davidon-Fletcher-Powell rank-two update formula, we find
it convenient to state the variable metric algorithm which is based on this formula. The algorithm, as
stated below, can be used to solve the problem minje F,/(x), where/.F" -* R, is twice continuously
differentiable. We continue to use the notation & = V/fa), etc.

DFP Variable Metric Algorithm 83.1

Data : xo e R\ B0, a symmetric n x positive definite matrix.

Step 0 : Set i = 0.

Step 1: If ft = 0 stop. Else, compute

X,- = arg min /(*, - ^Bigd • (83.8a)

Step 2: Compute

x*i = x,- - \fiigi,

AXi = XM~ xit Agi = gM - gh

(8.3.8b)

(8.3.8c)

*»i - *•+ TtVn ** **" iA.l*A.\ {BA8d (BiA*i)T' (838d)(A&.AXi) {Agi,BAgO

Step 3 : Set i =i + 1 and go to Step 1. •
Theorem 8.3.1 : Suppose that A*) = V4(x.J/x)+ Us\ with H a symmetric, positive definite nxn
matrix and that for any i e N that Bk isa symmetric, positive definite nx matrix. Then BM, defined
by (8.3.8d), is also positive definite.

Proof : First we note that <A*i.AXi>=(J/Axi.AXi)>0. whenever Ax,*0. and, similarly, that
lAgiftAg,)> 0, whenever A& *0, since // and Bi are both positive definite by assumption. Hence, BM
is well defined by (8.3.8d). Next, for any y e F\ y * 0,
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<y*My)= <yAy> + (y.^O2 / (Agi,Ax>)- WAgf I<Agi*Agi>. (8.3.9)

Let a =Bft, b =Bj*Ag„ then (8.3.9) becomes

, 0 . igi2idiMfl.^2 . <y.Axj)2W^- j^ +-^-^ • (8-3.10)

By the Schwartz inequality

lfll2lM2-<a,W2*0. (83.11)

and hence (yJUiy) ^0. Now suppose that ^y,BJ+1y)=0 for some y*0. Then both terms in the

RHS of (8.3.10) must be zero. But \a\2ib\2 -ia,b)2 = 0 implies that a = ab for some a e R; i.e.,

thaty = aAg,-. But then

<y,AXi)2=a2(A€i.Axi)2

= o2WAxl,Axi)2>0. (8.3.12)

which contradicts our assumption that (yftn-iy) = 0. Hence the theorem must be true. •

Thus, unlike the rank-one formula, the DFP rank-two formula does not break down as the computation

proceeds.

Theorem 83.2 : Suppose that/(x) = xh(x,//x)+ <d,x\ with H a symmetric, positive definite nxn

matrix. Then for x,-, Bit constructed by Algorithm 8.3.1.

(a) the quasi-Newton property holds. Le..

BM*gk= Axk. V i*k* 0; (8.3.13)

(b) the Ax,- are H conjugate, i.e.,

<AXitfAxp= 0. V i *j; (8.3.14)

(c) x,*! is the minimizer of /(•) over R".

Proof: We shall prove (8.3.13) and (8.3.14) together, by induction. (Recall that Agi - //Ax, because

of the form of A) and because BMAgi = Ax; by construction.)

First,

CAxof//Ax,)=<//Axq.- MjJi)

= -X,(//Axo^igi)

= - X.J (B^o^l)

= -Xl(Axo.^)=0. (83.15)

because of the manner of computing Xq and Bx.
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Next,

B1A^0 = Axo. (8.3.16a)

and

BzAg^Axi, (8.3.16b)

by construction. Proceeding further (with Ag0 = //Axo),

B2Ag0 =BiAgo + ^ Ax! (AxltHAxo)

+ia \^s V&d(BiAgxAgo)- (8.3.16c)
{AglJfl&gll

Now, by (8.3.15). (Ax0.//Ax1)= 0, and

{BiAgi,Ag0)^ <AgiM\Ag0)

= (//Ax1.Ax0)=0. (83.16d)

Hence

B2A$0 = Axq . (8.3.16e)

Thus we have initialized the induction process in (8.3.13), (83.14), with i = 1. Consequently, suppose

that (8.3.13) holds for all 0£i£/<n, and (8.3.14) holds for all 0£ij£l<n. For any

i € (0,1 ,/}, (by adding and subtracting terms), we get that

gM - gM + #(AXi+1 + Axi+ + ... + Ax,). (83.17)

Since {Axi,gi+i)= 0 by construction of X,-, we gel that for any i £ /,

<AXi.gw)= <A*.&f!>+ (Ax,. 1//Ax>)= 0 . (8.3.18)
>*-l

(We conclude from (83.18) that xM minimizesfix) on the (/ + 1) dimensional subspace spanned by

Axo. Ax1#. .. ,Ax/.) Hence, for any i e {0,1. /},

(Ax,-^/Axw)= -XM {AXi,HBMgM)

= - \M(J}MHAXi,gM)

= - XM(BMAgi,gM)

= - A.n.i(AXi,£W)

= 0. (8.3.19)

i.e„ the vectors {Ax,)£J are //-conjugate for 0 € i € h-1.
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Next, for 0 £ i £ /.

Bi*Agi = BujHAXi

=BMMAXi + * Axw (Axw,//AXi)
vaX|fi.A^n.i)

(Agjtl^fflAgM)

=**« + /a» p a, x<Pi»iAft»i) (WAxw^wA«i)

= Ax,. (8.3.20)

i.e., (83.13) holds for i = / + 1. This completes our proof of (83.13) and (8.3.14). Part (c) of the

theorem follows from (8.3.18). Hence our proof is completed. •

This concludes our exposition of the behavior of the DFP variable metric method on quadratic

functions.

The BFGS variable metric method has the following form:

BFGS Variable Metric Algorithm 83.2

Data : xq e R\ //0, a symmetric n x positive definite matrix.

Step 0 : Set i = 0.

Step 1: If gi = 0 stop. Else, compute

X, =arg mjn^x, - 7JiJlgd . (8.3.21a)

Step 2: Compute

^^-Wft, (8.3.21b)

Ax, = x*.,-xi, Agi = gM~gi. (8.3.21c)

(8.3.21d)H«-H'+jd&™*-Tidz$v'MV'**'
Step 3 : Set i = i + 1 and go to Step 1. •

Exercise 83.1: Suppose that f(x)= %(x,//x)+Crf.x\ with H a symmetric, positive definite nx

matrix and that for any ieN that //, is a symmetric, positive definite n x matrix. Show that HM,

defined by (83.7), is also positive definite. •

Exercise 83.2 : Prove the following result:

Newton Methods. Motivation and Theory", SIAMReview, Vol 19, pp.46-89, Jan. 1977.

•75-



EECS 227A Lecture 83 E. Polak

Theorem 833 : Suppose that fix) = V6 (xflx)+ (d,x\ with H a symmetric, positive definite n x

matrix. Then for x<, //,, constructed by Algorithm 8.3.2,

(a) the quasi-Newton property holds, le.,

«Si Agk = Ax,, V i * * S 0; (8.3.22a)

(b) the Ax, are // conjugate, Le.,

iteiJIAxp = 0. Vi *; e {0,1 ,...n }; (8.3.22b)

(c) x.h.1 is the minimizer of/(•) over R\ •

Exercise 833 : Show that the parametrized formula (8.3.6a) yields results similar to Theorem 8.3.3.

for a range of 0 < f< 1. Hint: look up Shannons paper. •

It was shown by Geraldine Meyer2 that when the cost function is quadratic and the DFP method
is initialized with B0 = /, then the DFP method, the Polak-Ribiere method and the Fletcher-Reeves

method all produce identical trajectories. A similar result for the BFGS method was shown by Larry

Nazareth3

For the nonquadratic cost function case, it was shown by MJD. Powell4 that the variable metric
method using the DFP update formula converges globally, under the assumption that /(•) is twice con
tinuously differentiable and convex. Current experience indicates that the BFGS variable metric method
is far less sensitive to the precision of step size calculation than the DFP method and that it is much
faster than the DFP method. In fact, it is not uncommon to use the BFGS method with the Wolfe step

size formula, which is similar to the Armijo step size formula.

In practice, variable metric methods are often found to be considerably more efficient than
Newton's method. They share with Newton's method the disadvantage of requiring the storage of the

matrices Bit which may be large.

2G. E. Meyer, "Properties of the Conjugate Gradient and Davidon Methods", Analytical Mechanics Associates, Inc. Wes-
bmy, N.Y„ 1957, mimeo.

*J. L.Nazareth, "A Relationship between the BPGS and Conjugate Gradient Algorithms and its Implications for New Algo
rithms". SIAM J. Numer. Analysis., Vol. 16,No. 5, pp.794-800, October 1979.

4 See E. Polak, Computational Methods in Optimization, Academic Press, New York, 1971.
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Fall 1988

9. MINIMIZATION OF MAX FUNCTIONS

9.0. INTRODUCTION

Eventually, we want to be able to solve problems of the form

min{ f(x) l/(x) £ 0,/ 6 o; g*(x) =0, k € L}. (9.0.1a)

with the/, g*;R" -> R continuously differentiable. In engineering design, the following special form of
(9.0.1b) is frequently encountered:

min{f(x) l/(x) Z 0. j 6 o }. (9.0.1b)

Since the inequalities /(x) £ 0 represent design requirements, the first thing we may try to do is to find

a feasible design, i.e., a vector x such that /(x) £ 0 for all j e m- Note that a feasible vector must

satisfy

max/(x) SO. (9.0.2)

It follows from (9.0.2) that a feasible vector can be obtained by solving the unconstrained optimi

zation problem

min V(x) (9>03a)
icRa v '

with

V(x) A max/(x) . (9 03b)

We shall therefore devote this lecture to the solution of (9.0.3a). We shall later see that a lot of what

we learn in the process carries over to the solution of problem (9.0.1b).

Exercise 9.0.1 : Consider the problem (9.0.3a) and suppose that there is an x such that vj/(x) < 0.

Show that if (9.0.3) is solved by a descent algorithm which produces a sequence [xt)~o, then there is a

finite io e N such that y0%) £ 0, i.e., that the computation of a feasible design is a finite process. •

Before proceeding further, let us examine the geometry of minima* problems. First, Fig. 9.0.1

shows that the graph of y(-) has comers and hence it is not differentiable everywhere. However, its

directional derivatives appear to exist and should be given by the formula dy(x,h) = maxyc /w df(x;h),
where I(x) A [je m Ifix) =>jr(x). Next, we note that the level sets, LJJ, of v(), which, for any
a e R are defined by

LJ A { x e R" Iv(x) <a )={ x € R" l/(x) £ a.; e m }. (9.0.4a)

are the intersection of the level sets, l£, of the functions/(•),;*= 1,2 ,m, i.e., that
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LJJ =n Lj. (9.0.4b)
>• a

Hence, referring to Fig. 9.0.2, we see that the boundary of LJ has comers.

Next, we will show that the geometry of the level sets of \f(0 suggests a natural extension of the

method of steepest descent, discussed in Lecture 4. We begin with a geometric interpretation of the

Steepest Descent Algorithm 3.3.1. Given a point x„ this algorithm approximates the differentiable func

tion^) by the quadratic function qX((-) defined by

ox.(x) A f(xd +<V/U),(x - *))+ V4lx - x.12 . (9.0.5a))

Note that qxfxD =f{xj) and Vqxfxj) =V^xJ, so that qx.(-) isa first order quadratic approximation to/0

at x,-. Its smallest level set containing x,-,

L^p A{x e R" Iqxfx) Zfixd ) (9-OSa)
is a ball which is tangent at X; to

14) A{x e R" IAx) Zfad ). (9.0.5c)

which is the smallest level set offt) containing the point xit see Fig.9.0.3.

We can think of any minimizer x of/(•) as defining a "center" of L^x.). The point & - V/fo)),

which minimizes qx.(x)t is the center of the ball L^. Since (x, - Vftx;)) is a poor approximation to x,

the Steepest Descent Algorithm performs a line search along the line passing through x, and

(x,- - Vflxj)), i.e., along the direction ht= -gradf{x^% to obtain a somewhat better approximation to x,

**i-

We now return to the function y() in (9.0.3b). Proceeding geometrically to obtain an extension

of the Steepest Descent Algorithm for solving (9.03a), given x, € R", we approximate each function

/(•). j e el by the first order quadratic approximation

qifx) A f(xd +WftxdXx - xd)+ Vilx - x,l2 . (9.0.6a)

and we approximate y(>) by the first order convex approximation to it:

y,.(x) A max qi(x) . (9.0.6b)
' /e a

Note that VaXx;) =vfo)1- Next, we approximate the level set L}^ by the corresponding level set of

V(-;*i):

Cfo A{xeR"l^i(x)^v(xi).yem]

1 In the next section we shall show that the directional derivatives of y0 and v*( ) exist. It should then become obvious
that for any A e F", dyMfrj;h) ° d^ixith).
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=n 4. (9-°-6c)

The last relationship shows that L^p, is the intersection ofthe balls Lyj^.

To obtain an extension of the Steepest Descent Algorithm, we will think of any x which minim-

izes y(-) as a"center" of LJ^, and we will approximate itby the "center" (x,- +h(xd) ofL^> which,
by analogy with the above geometric interpretation of the Steepest Descent Algorithm, is defined as the

solution of the search direction finding problem

""" "•* «»£> • (9.0.7)

Since, again, the point (x, + /i(x,)) is a poor approximation to x, we will add a line search for step size

calculations.

We now have to establish a a theoretical framework which will enable us to transform the above

observations into a well justified algorithm.

9.1 CONTINUITY AND DIRECTIONAL DIFFERENTIABILITY OF MAX FUNCTIONS

We begin by establishing the continuity and directional differentiability of functions of the form

y(x) A max/(x) (9>u)

Where/;R" -> R are continuously differentiable and

m A { 1.2 m) . (9.12)

First, we recall the following facts. Let (ctj, mv be a bounded sequence of real numbers and let

S be the set of all accumulation points of {a,}4€ N. Then S is compact and

Urn a, = max {a Ia € S), (9.1.3a)

Mm a, = min {a I a e 5} . (9.1.3b)

Furthermore, the sequence {a,}, c w converges to an a if and only if a =Urn a, = ]irn oc, holds.

We are now ready to establish the continuity of the function y().

Theorem 9.1.1: Suppose that for; e m, the functions/.-R" -» R are continuous. Then the function

y(x) A maxjm B/(x) is continuous.

Proof : Let x e R" be arbitrary and let {xji, w be any sequence in R" which converges to x. To

show that y() is continuous, we must show that y(xj -> y(x) as / -• «>.

First, y(x) =/(x), for some k e m- Since k e m, we must have
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y(Xi) = max/(Xi) * f(xd. V i e N . (9.1.4a)
>« a

Therefore, since /(•) is continuous,

lim Vfad * timfixd =Km /w =A*) =V® . (9.1.4b)

Next we need to show that Hmy(Xj) £ y(x). To obtain a contradiction, suppose that

ton y(xf) >/<x)= y(x). (9.1.5a)

(lim y(Xi) must be finite since all the sequences (f(xj)l€ m are bounded.) Now, for each i e N,

Vfo) =/'(**)» for some ;, € a. Since Hm y(xj = lim, c ^ y(x.) for some infinite subset Kc N, and m

is a ^m'/e set, there exists an infinite subset IC czK and an index 7 e m such thatjt =; for all i G #*•
Hence we must have that

Urn y(xi)= lim y(x^)
ic X

= .lim /(x^ =/(?) >/(***) = y(x). (9.1.5b)
ic X"

But this contradicts the definition of k and hence (9.1.5a) cannot hold. Thus we must have

y(x) £ UmyCxi) £ Bin y(xj £ y(x), (9.1.5c)

and we conclude that y(x^ -> y(xAaf) as i -» », which completes our proof. •

Exercise 9.1.1 : Suppose that for j € a, the functions /.'R" -» R are locally Lipschitz continuous.

Show that the function y(x) A max^c B/(x) is locally Lipshitz continuous. •

Next, we establish an important property of the maximizing set

/(x) A {/efflly(x) =/(x) } . (9.1.6)

Proposition 9.1.1: Suppose that fory e m, the functions /.R" -»Rare continuous. Let x e R" be

arbitrary. Then there exists a p > 0 such that /(x) c /(x) for all x e B(x,p).

Proof: Suppose that j 6/(x). Then y(x) -/(x) = o7 > 0 and, since y() and/() are both continuous,

there exists a p* > 0 such that

Y(*) -/(x) 2> 572 > 0, V x e B(x.pO . (9.1.7)

Let p A min {p* ly £/(x)}. Then (9.1.7) implies that /*(£) c 7*(x) for all x e B(x,p), where 7* denotes

the complement of / in a, ConsequenUy, /(x) c /(x) for all x e B(x,p). •

We shall now establish the directional differentiability of functions of the form (9.1.1). for the

case where the functions /:R" -> R are continuously differentiable.
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Theorem 9.1.2: Consider the function y(x) =max,c a/(x), with /:R" -* R continuously
difTerentiable. Then the directional derivative dy(x;h) exists for all x, h e R" and is given by

<*y(x,7i) = max Wf(x),h) . (9.1.8)

Proof: First, since by Exercise 9.1.1, y(») is locally Lipshitz continuous, we must have that for any

x.he R",

-MM*fa ?(* +'*>-?<*) gE V(* +'*)-VW glftl, (9.L9)

Since/(x) £ y(x) for all j e m, and because of Proposition 9.1.1, we must have, for sufficiently small /,

that

y(x +th) - y(x) _ mjx fix +th) - y(x)
t "i«a *

= max /(x^^)-y(x)
y c /(» + A) f

s mitt A»+*>-/») . (9.1.10a)
y«/w /

Now the functions ^(i) £ (f(x+ fft) -/(x)]/r are continuous, provided we define ^(0) =af(x;h), and
hence the max in (9.1.10a) is also continuous. Consequently,

M ¥(* +'*)-VW s ^ ^(x;A). (9.1.10b)
fiO I / c /(x)

Next,

y(x +//»)-y(x) _m3x/'(x-*-^)-V(x)
/ >ca '

* max fa**)-ft) (9.1.11a)

because y(x) =/(x) for all j e 7(x) and 7(x) c m. Hence we must have (by same arguments as before)

that

lim ¥(*+*>-¥(*> * nu* 4*x;A). (9.1.11b)

We conclude that

dy(x;A) =Urn V(x +th) "^ =max dfix;h) =max <V/(x),*>. (9.1.11c)
«io I y c i(x) j c /(x)

which completes our proof. •

9.2. AN OPTIMALITY FUNCTION

We shall now develop two equivalent first order optimality conditions for the problem
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n»in VW (9.2.1a)
if R*

with

y(x) = max/(x). (9.2.1b)
>« a

and the functions /:R" -+ R continuously differentiable. We shall see that the simpler one of these

two conditions does not lead to continuous descent directions for the function y(x), while the more

complicated one does.

Theorem 9.2.1 (Danskin): Suppose that the functions /;R* -> R in (9.2.1b) are continuously

differentiable and that x is a local minimizer of y(). Then

dy&h) * 0, VAeRV (9.2.2)

Proof: Suppose that there exists an h e R" such that

dy(x;A)<0. (923a)

Then, by definition of the directional derivative, there must exist a A. such that for all Xe (0A),

y(x + X% - y£) £ KXdyGc-h) <0. (9-2-3b)

which contradicts the optimality of x. •

Corollary 9.2.1 : Suppose that the functions /:R" -» R in (9.2.1b) are convex and continuously

differentiable. Then x is a global minimizer of y() if and only if (9.22) holds. •

Exercise 9.2.1: Prove Corollary 9.2.1. •

Proposition 92.1: Suppose that the functions /.R" -> R in (92.1b) are continuously

differentiable. Then (922) holds at x if and only if

0 e dy(x). (9.2.4a)

where

dy(x) A co (V/(x)}, (9^4b)
7€/<x)

with

/<x) A {yeml/(x) = vG)}. (9.2.4c)

Proof: We introduce the notation

Jvr[dy(x)j A arg min{ IcJ I\ e dy(x) ). (9.2.5)

( =*• ) Suppose that (922) holds, but (9.2.4a) is not true. Let h = -A/r[dy(x)]. Then we must have

that h*0 and hence, by Theorem 2.5.3, that
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<ry<x.*) = max {$%Z-*Ga2 <0, (9.2.6a)

which contradicts (9.22).

(<=) Next suppose that (9.2.4a) holds, but that there is an he R" such that

<fy(x,A) = max (&,h) < 0 . (9.2.6b)

Then we see that the origin is strictly separated from dy(x) and we have a contradiction. •

Definition: For any x e R", the set valued map dy(x) A co;c Al){ V/(x) }, where
/(x) A[j e m1/00 = V(*) ). is called the generalized gradient ofy() atx. •

Corollary 92.2: Suppose that the functions /;R" -* R in (92.1b) are continuously differentiable

and that x is a local minimizer of y(*). Then there exists a multiplier vector [leE, where the unit sim

plex

ZA{jieR'-lM'̂ O Vyeza. £^=1). (92.7a)
>=i

such that

l^/'(x) =0, (92.7b)

and

£tfy<x)-/<x)] =0. (9.2.7c)

Exercise 922: Prove corollary 9.22. •

Remark 92.1: We shall refer to the multipliers \t! in (9.2.7a), (9.2.7b) asDanskin multipliers. •

We can simplify the remainder of our presentation considerably by making use of minima*

theorems. The following results are among the best known2.

Theorem 922 (von Neumann): Let $:RN x Rm -» R be such that $(x,y) is convex in x and con

cave in y and let X c R", Y c Rm be compact convex sets. Then

min max 6(x.y) = max min Mx.y). (q y «o^xmXymY ycYxcX \*u..oaj

Furthermore, x e X.Je Y satisfy

#x,y) = min max tfx.y) (92.8b)
x« X y c Y

if and only if

25ec p. 204, C Bergc, Topological Spaces, The MacMilltn Co.. New York, 1963.

-83-



EECS 227A Lecture 92 E. Polak

$<5.y) = max min tfx.y) . (9.2.8c)
yc Y xc X

It is easy to obtain the following extension of the von Neumann Theorem for the case where

either X or Y is unbounded, but <ftv) satisfies a growth condition, as follows.

Corollary 923i Let $;R" x R" -> R be such that $(x,y) is convex in x and concave in y and let Y

be a compact, convex set in R". Suppose that$(x,y) -» » as Ixl -» «», for all y e Y. Then

min max $(x,y) = max min $(x,y) . (9.2 9a)
*cR*>«Y >«YxcR*

Furthermore, x e X, y e Y satisfy

4Kx.y) = min max #x,y) (9.2.9b)
xc X >c Y

if and only if

flx.y) = max min tyx.y). (92.9c)
;e Yis X aa,

A result similar to Corollary 112.3, for the case where X compact and Y = Rm is obtained by

assuming that $(x,y) -» -oo as llyll -> », for all x 6 X.

Exercise 9.23 : Consider problem (9.2.1a) with the assumptions stated.

(a) Suppose that x e R" is such that 0 £9y(x). Show that h(x) = -A/r[dy(x)] is a descent direction

for y() atx.

(b) Show that for any / c m> x, h e R",

max (V/(x).A) = max J ^ Wx),to. (9.2.10a)

where

Z; A [\ie Rml^^0.Vy€ za.M/ =0Vy*/,fy=l ). (9.2.10b)

(c) Use Corollary (923) and (9.2.10a) to show that

min { fcl/il2 +dy(x;h) )=-V4IWr[3y(x)]B2, (9.2.10c)

and that

*(x) =arg min { tetol2 +dy(x;h) ) =-AMdy(x)], (92.10d)
*cR*

and hence that A(x) is unique. •
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Although h(x), defined by (9.2.lOd), is a descent direction, it is not continuous, because the active

function index set /(x), used in the definition of dy(x), can change abruptly. Hence, when used in a

steepest descent type algorithm for solving (9.2.1a), it can cause the algorithm to converge to points

which go not even satisfy our first order optimality conditions. Examples of such undesirable behavior

have been published3.

We shall therefore develop an alternative optimality condition which does yield continuous des

cent directions. However, first we must establish an extension of Theorem 9.1.1.

Lemma 9.2.1: Suppose that $;R* x Rm -> R is continuous and YcRmis compact Then the func

tion t;RN -> R, defined by

C(x) A maxtfx.y) (92.11)

is continuous.

Proof: Let x e R" be arbitrary and let {xj,« n be any sequence converging to x. Suppose that the

V; € Y are such that £(Xi) = $(Xj,y,) for all j e M. Then, because 4>(v) is continuous and Y is compact,
K

there exists a^cN and a y* e Y such that yt -> y* asi -» » and

Urn £(*»)= lim C(x.)
i -♦ ••

= lim tfxi.yd =<Kx,y*) £ C(x) • (9.2.12a)

Next, let y e Y be such that £(x) = $(x,y). Then we must have that

C(Xi) * to.?) V i e IS. (92.12b)

and hence, because because $(v) is continuous that

]imCft)2t£>. <92.i2c)

Combining (9.2.12a) and (92.12b), we conclude that £(x;) -> £(x) as i -> «>, i.e., that £,(•) is continuous

at x. Since x was arbitrary, our proof is complete. •

We now return to problem (9.2.1a), (9.2.1b), with the assumptions stated. Normalizing the search

direction finding problem (9.0.7) so that its value is always nonpositive, we define for this problem the

optimalityfunction 6:R" -> R and the associated search direction function A:R" -> R* by

6(x) A min max {f(x) - y(x) +(V/(x).W+ V4IAI2 }. (9 2 13a)

3 Philip Wolfe, "On theConvergence of Gradient Methods under Constraint", IBM J. Res. Develp., July, 1972, pp 407-411.
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h(x) A arg min max {/(x)-y(x)+ (V/(x),/i)+V4l/tl2 ). (92.13b)
Ac R"/«0

Theorem 9.2J: Consider the functions 8() and h() defined by (9.2.13a) and (9.2.13b). Then,

(a) For all x e R\

8(x)£0; (9.2.14a)

(b) For all x e R",

dy(x;h(x))ZB(x); (92.14b)

(c) Alternative expressions for 8(x) and h(x) are given by4

8(x) =-min {£ p/(f'(x) - y(x)] +Vilfyv/(x)l2 ), (9.2.14c)

where £ was defined in (11.2.7a); and

*(x) =-f;n£V/(x), (92.14d)

where the p., is any solution of (9.2.14c).

Equivalently, 8(x) and h(x) can be expressed in the form

6(x) =- mta ( 5° +ttlQ3 }. (92.14e)
%« Girfx)

h(xMh0(x),h(x)) =-*&mjn (^°+V4l|l2). (9.2.141)

where Gy(x) c R"*1 has elements denoted by£ =(£°,£), with £° e R, £ e R* and is defined by

G^} =i?.U V/(x) .
(d) For any x e R", 0 e 9y(x) «*> 9(x) = 0.

(e) Both 6(-) and h(-) are continuous.

Proof:

(a) Since setting h = 0 in the max partof (92.13a) makes this part zero, the result follows.

(b) From (9.2.13b) we have that

8(x) =max [fix) - y(x) +(V/(x)./i(x))+ VilA(x)l2 }. (92.15a)
jam

Hence, since for every j e /(x), /(x) - y(x) = 0, we have that

<fy(x;/i(x)) = max (Vf(x),h(x)) * 8(x) - V&IA(x).2 <I 8(x). (92.15b)
y«/(x)

(c) Next, making use of (9.2.10a), we obtain that

4 The form (9.2.14c) is also suggested by (9.2.7b), (9.2.7c).
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8(x) = min max {£ ^\f(x) - y(x)] +£ ^ (V/(x),AH V4l/il2 }. (9.2.15c)
»iR"Ml j-i ^l

Applying Corollary 923 to (9.2.15c), we get that

8(x) =max min {£ ^(r) - y(x)] +fy (V/(x),A>+ fcttl2}. (92.15d)

Solving the unconstrained min for h in terms of n, we obtain that

h=-£ ^/(x) . (9.2.15e)
/•i

Substituting back into (92.15d), we now obtain (92.14c).

The expression (92.14e) follows fiom (92.14c) by inspection, while (9.2.14d) follows from

(92.15e) and Corollary 9.2.2.

(d) Since\ =(£°,$) e Cy(x) implies that £°£0, it follows that 0 e dy(x) oOe Cy(x) and also,
from (92.14e), that 8(x) = 0 <*> 0 e Gy(x). Hence (d) is proved.

(e) The continuity of 6(0 follows from Lemma 92.1 and the form (92.14c). To establish the con

tinuity of h(-) we make use of the form (92.13a), which we rewrite as

8(x)= min tfx,h), (92.150
Ac R"

with

d/x./O A max {f(x)- y(x) +(V/(x).W+ fcl/tl2 ) . (92.15g)
J C B

Next, it follows from Theorem 9.1.1 that <Kv) is continuous. Now suppose that x e R" is arbitrary and

dial Mi c m is any sequence converging to x. Then Q(xd = WiMxd) holds for all i e N. Further

more, because the V/(0 are continuous, and because of (9.2.14d), it follows that the sequence

[h(xD)i€ f< is bounded, and hence that it must have at least one accumulation point h. Thus, suppose

that JfcN is such that Afo) -> h as i -» ». Then, because 8(0 and 0(v) are continuous, it follows that
k ^

8(Xj) = ♦(Xj.Mxi) -+ #x,/i) = 8(x) = $(x,A(x)). Since there is only one vector *(x) such that

0(x) = <Kx,/i<jc)), it follows that h= h(x), Le., that the sequence {Afa)}ie n has only one accumulation

point, A(x) and hence that it converges to it. ConsequenUy, since x was arbitrary, we coonclude that

h(-) is continuous, which completes our proof. •

93. UNCONSTRAINED MINIMAX ALGORITHMS

Next we shall describe two algorithms for solving the unconstrained minimax problem

min y(x) (9.3.1a)

with
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y(x) = max/(x). (9.3.1b)

and the functions/.-R" -» R continuously differentiable. In the form stated, these algorithms were first

proposed by Pshenichnyi5, as his method of linearizations. They can also be traced to the Pironneau-

Polak6 method of feasible directions, which, in turn, is evolved from the Huard7 method of centers.

The form of these algorithms is based on those of the steepest descent algorithm and the Armijo gra

dient algorithm.

Algorithm 93.1 : (Exact Line Search).

Data : x© e R"

Step 0 : Set i = 0.

Step 1: Compute the search direction

tn =h(xi) A arg min max [f(xd - y(x.) +&/(*)*)+ V4I/.I2 }. (9 3^
AcR"/«a v^.->.~v

Step 2 : Compute the step size

Xi e arg min y(x,+Xhd . (9.3.2b)

Step 3 : Update: set

Zm =* + *&. (93.2c)

replace i by i + 1 and go to Step 1. •

In view of the continuity of the search direction h(-), established in the proceeding section, the

following result is hardly surprising since it can be established by mimicking the proof of convergence

of the steepest descent algorithm for differentiable unconstrained optimization.

Theorem 93.1: Consider problem (93.1a) with the assumptions stated. If in solving problem

(93.1a), Algorithm 93.1 constructs a sequence {x,}~o, then every accumulation point x of MZo

satisfies the first order optimality condition 6(x) = 0. •

Exercise 93.1: Prove Theorem 93.1. •

It is also possible to propose a minima* algorithm which uses an Armijo type step size rule, as

follows.

Algorithm 932: (Armijo Line Search).

Parameters : a, p e (0,1).

*B. N. Pshenichnyi andYu. M. Danflin Numerical Methods in Extremal Problems, Moscow, MirPublishers, 1978.
*0. Pironneau and E. Polak, "On the Rate of Convergence of Certain Methods of Centers", Mathematical Programming,

VoL 2, No. 2. pp. 230-2S8. 1972.

*P. Huard, "Progranunation Mathematique Convex", Rev. Franc. Inform. Recher. Operationelte, VoL 7, pp. 43-59, 1968.
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Data : xo e R"

Step 0 : Set i = 0.

Step 1: Compute the search direction

hi« h(x) A arg min max {f(x) - xjfo) +<V/(x,).M+ V4IAI2 }. ,033aN

Step 2 : Compute the step size

X, =arg max { p* Iy(x, +$% - y(x^ - P*a6(xi) SO). Q33b)
Ac N x '

Step 3 : Update: set

jfe,B4 + XA. (93.3c)

replace i by i + 1 and go to Step 1. •

The convergence properties of Algorithm 9.3.2 can be established by making use of the fact that

h(-) is continuous and mimicking the proof of convergence for the Armijo gradient method. The result

of such an exercise is the following:

Theorem 932 : Consider problem (93.1a) with the assumptions stated. Suppose that Algorithm

9.3.2 constructs a sequence fa) So* Then every accumulation point x of [xt)Zo satisfies the first order

optimality condition 6(x) = 0. •

Exercise 932: Prove Theorem 9.32. •

To conclude this lecture, we must discuss methods for computing the search direction h(x) and

evaluating the optimality function 8(x). First, observe that (9.2.14c) is a standard quadratic program

and hence our first instinct would be to try to solve it by commercially available code and then obtain

the search direction from (9.2.14d). Unfortunately, the matrix Q, defined by

Q A ZV/(x)V/(x)r, (93.4)
>i

which apppears implicidy in (92.14c), is often only positive semidefinite. As a result, standard qua

dratic programming codes fail to solve (9.2.14c) from time to time. Because of this, it is preferable to

use a "child" (such as theWolfe8 or van Hohenbalken9 algorithms) of the Gilbert algorithm10 which we
will now describe. This algorithm solves problem (92.14e). The geometry of this algorithm is illus

trated in Fig. 9.2.1. The data for this algorithm consists of the vectors ^ = (%j&j) G R^1,; € m, with
5° =Vfa) -/fa) and \j =V/(xj). In the form stated, the algorithm solves the problem

'Wolfe, Ph., "Finding the Nearest Point m a Polytops", Math Programmmg, VoL 11, pp 128-149, 1976.

*B. von-Hohenbalken, "A Finite Algorithm to Maximize Certain Pseudoconcave Functions on Porytopes", Mathematical
Programming, VoL 9, pp. 189-206, 1975.

10 E.G. Gilbert, "An iterative Procedure for Computing the Minimum of aQuadratic Form on aConvex Set", SAMJ. Con-
trot, VoL 4, No. 1,1966. pp 61-79.
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min{*$l?6 co{^}). (933a)
/€ n

where f.-R*4"1 -» F is defined by

qig) A $°+V4l$l2. (9.3.5b)

Search Direction Algorithm 933 ^E. Gilbert):

Data : {^icR"41.

Step0 : Set i =0, setT0 =%x.

Step 1: Compute aj, e m such that

WqXsdZj) =min (VtfS-),^ • (9.3.6a)

Step 2: Set

5(X) A XS +U-Xjc^ (9.3.6b)

and compute

X, =arg xminij {$°(X) +V4I$(X)I2 ). (9.3.6c)

Step 3 : Set sM =5(Xj), replace 1by i+l and go to Step 1. •

Remark 93.1: Note that the computation of X,- in (9.3.6c) is very simple because either X, e (0,1),

in which case its value is obtained from

^(^(X) +̂(X)l2) =0, (9.3.7)
or Xj e (0,1 ). Thus X* can be computed in at most three evaluations of a simple function. •

Remark 933 : In practice, the construction in Algorithm 9.3.3 must be stopped at some point.

Since (see Fig. 9.3.2) we always have an over-estimate of -8 A min{ £° + l£l2 I^ e co {£) } in
/« at

-8,- £ j? + Vtls,l2 and an easily computable under-estimate in -& =
min{ ^°+V4I^I2 l(V^(5i),5-^)=0 ), we propose to stop computation in Algorithm 9.3.3 when
[8j - fii] / fii £ 8, where 5 > 0 is a preassigned tolerance. Since £ must approach zero as a solution of

problem (9.3.1a) is approached, we see that this test automatically increases the precision of our evalua

tion of 6(xj) as X,- approaches a solution x.

A proof of convergence for Algorithm 9.3.1 using approximate evaluations of the search direction

can be produced, but it is beyond the scope of this course. •

Theorem 933: The Sequence [s{\Zo> constructed by Algorithm 9.3.3, converges to the unique solu

tion s* of the problem (9.3.5). •

Exercise 933: Prove Theorem 9.33.
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[Hint: write Algorithm 933 in the form JM e A(5) and show that A() is a closed map.] •

Corollary 93.1: When the vectors {^)>»i are such that Xj = Q$,ty e R**1, with $ = yfa) -fed
and %j =Vfed, then the solution point J* of (9.3.5) satisfies 8fo) = -(s*° + Vib*!2), and h(xd =-5*. •

9.4. RATE OF CONVERGENCE OF MINIMAX ALGORITHM 9.4.1

we will now show that the rate of convergence of the Minimax Algorithm 9.3.1 is similar to that

of the of the Steepest Descent Algorithm 3.3.1. We will need an assumption which generalizes (4.3.1)

that was used in establishing the rate of convergence of the Steepest Descent Algorithm 33.1, i.e..

Assumption 9.4.1 : In problem (9.03a), each/ : R" -» R is twice continuously differentiable, and

there exist 0<c£l£C<<», such that

clyl2 <; <y,^2&y)Z Clyf . VJ€m, x.y e R" . (9.4.1)

We note that under Assumption 9.4.1, the function y(x) A max/6 a/(x) is strictly convex and
hence it has a unique minimizer x. For any x € R\ Assumption 9.4.1 enables us to get a useful esti

mate of the quantity y(x) - y(x), as we shall now see.

m

Lemma 9.4.1: For any X.X* e R" and any p. e L A{\i e Rm I£ p>=l, p! £ 0 Vj e m ).

y(x0 - y(*) * Z ^ [fix) - y(x) +Gfe)J - x) +-i-clr' - xl2 ) . (9.4.2)
/CO

Proof: First, note that

y(x0 - y(x)=max{/(xO - y(x) )
j* a

=max{ £ p>/V) "¥(*)}• (9A3)

Next, making use of the second order Taylor expansion (2.4.6b) and (9.4.1), we obtain that for any

ye za.

f(x>f(x) +(v/(x).(x- - x)> +1' (1 -sW -x),^f(x +ff'xhxf - x)Ms

I .' ,22>/(x) +<V/(x).(x' - x)) +-jclx- - xlz . (9.4.4)

Hence, from (9.4.3) and (9.4.4) we obtain that

1 . . ,2y(x0-y(x)^max{ £ ^y(x)-y(x) +(V/(x)y-x) + ^clx--xl2).
*«* /«a
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* Z >i>(/(x)-y(x) +(V/(x).x'-x) +4wtx'-xl2) , (9.4.5)

for any |ie£, which completes our proof. •

Theorem 9.4.1 (Linear Convergence) : Suppose that Assumption 9.4.1 is satisfied. If the Minimax

Algorithm 9.3.1 constructs a sequence fa}£o, then,

(a) x,—>x as i -* », and

(b)

[Vfa+i) " V&l * StVfc) - V(x)l . V i € N+ . (9.4.6a)

where

8 A1- -^ <1. (9.4.6b)

(c) There exists a constant K<*> such that

Ix, - xl £ tftf*)' V i e M,. (°.4.6c)

Proof:

(a) Because y(0 is stricdy convex under Assumption 9.4.1, the level set L i

{ x € R" I y(x) £ y(xo) ) is compact. Hence the sequnce fa)£o musl have accumulation points x, all

of which satisfy 0 € dy(x). Since y(-) is stricdy convex, it follows that x=argminx< RB y(x) and is

unique. Therefore x, -» x as 2 -> <» .

(b) (i) First we obtain a bound on the decrease in y(x) at iteration i. For all X6 [0,1],

y(x, + Hid - yfa)=max /fa + X/tf - yfa)
/« a

£ max/to + <y/fo), X/tf-y(xi) + fcCX2!*,!2
/«a

£ X[ maxfed +<V/(xi).^- y(x^) + V4CXI/!,!2] . (9.4.7)

because Xe [0,1] and fed £ y?(xd. Therefore, if X£ 1/C,

yfa + Xhd - y(Xi) £ X[max/(Xi) + <V/(xM>- Vfa) + Vil/i,!2]

= X8(xJ < 0 . (9.4.8)

Thus
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V(xw)-y(xi)S-ie(xi). (9-4.9)

(ii) Next we relate 6(x^, defined in (2.8a), to y(x) - y(x^). For any ll. e ji(Xi),

Q(xd = min £ \i\f(xd +Wfed.h)- V(*d +VWd2] • (9.4.10)
*«**/« B

Replacing /i by c(x - Xj) in (9.4.10), we obtain that

8(x,)£ £ MiV(xi) +(V/(x^c(x-xi))-y(xi)] +V4lc(x-xl)l2
>c a

^ c{ 2 p^fa) +(V/fa),(x - xj)- y(Xi)] +-i-cKx - xjl2) . (9.4.11)

Making use of Lemma 9.4.1, we obtain that

8(xi)^c[y(Jc)-y(xi)]. (9.4.12)

Combining (9.4.12) with (9.4.9) yields

V(xw) - Wd *j: Mx) - V(Xi)]. (9.4.13)

Relation (9.4.6a) now follows directly,

(c) First, it follows from (9.4.6a) that

Y(Xi) - y(x) £ [y(xo) - y<x)]8'. (9-4.14)

Setting x*=xi% x=x, and LL=f e E, an optimal multiplier atx, weobtain from (9.4.2) that

Ix, - xl £ [-[y(xd - y(?)]}* • (9.4.15)
c

The relation (9.4.6c) now follows directly from (9.4.14). •

We are now ready to consider inequality constrained optimization problems.
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Fall 1988

10. CONSTRAINED OPTIMIZATION : INEQUALITY CONSTRAINTS

We now turn to constrained optimization problems with inequality constraints only. We shall

develop first order optimality conditions both in classical multiplier form and in optimality function

form; then we shall present an algorithm. Second order conditions will be dealt with separately later.

10.1. FIRST ORDER OPTIMALITY CONDITIONS

Consider the inequality constrained optimization problem

Pt min{ Ax) l/(x) ZQ.jem). 00.1.1)

where the functions/.R" -> F are continuously differentiable.

Definition 10.1.1 : We say that x is a local minimizer of Ph if there exists a p > 0 such that

Ax) *Ax) for all x € B(r.p)<~>{ x l/(x) S 0.; e m h •

Theorem 10.1.1 (F. John) : Suppose that x is a local miniminizer for Pt (with associated radius

p 10). Then there exist multipliers ji° £ 0, y} £ 0„ \im £ 0, not all zero (alternatively, such that
m

2^=1), such that

Z^/(x) =0, (10.1.2a)

and

\ilfe) =0 V j e m. (10.1.2b)

Proof: Consider the function

FM A max{ Ax) -f$);fe)J em). (10.1.3)

Then Fjx) =0 and, for all x e B(x,p), F„(x) * 0, either because Ax) -Ax) * 0,or because/(x) £ 0
X *

for some j e m. Hence x is also a local miniminizer of FJ;). Consequendy, by Proposition 103.1, we

must have that

OeBFJx). (10.1.4)
X

Since

9F^)= co {V/(x)). (10.1.5a)
* j*Jto

where
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Ax) A [0)vUem\fe) =0), (10.1.5b)

it follows from Corollary 1033, that there exists a mutiplier vector fie £, where

ZA (OiV)e WF^ivttOtoj-OA. - ,m, £^=1). (10.1.6)

such that

jtvrff$) =0. (10.1.7a)

f, »>[F& -?'(x)] =0. (10.1.7b)

where ?°(x) A f(x) -f&) and ?'(x) A fe) for all ; € m. Since FA(x) =0 and since 7'(x) £ 0 for

j = 0,1, • • • ,m, we see that (10.1.7a), (10.1.7b) are equivalent to (10.1.2a), (10.1.2b). •

Remark 10.1.1: We shall refer to the multipliers u/ in (10.1.2a), (10.1.2b) as F. John multipliers. •

Originally, both the F. John theorem and the following very important special case were obtained

in a very different manner from the one that we have employed. At this point, we reintroduce the nota

tion which we used in Lecture 10, viz., for all x e R", we define the max function y;R" -* R by

y(x) A max/(x). (10.1.8a)

and, as before, we denote its generalized gradient by

dy(x) A . co {V/(x)}. (10.1.8b)

where

I(x) A [jeml/(x) = y(x)}. (10.1.8c)

Corollary 10.1.1 (Kuhn-Tucker) : Suppose that x is a local miniminizer for Pj (with associated

radius p £ 0) and that 0 £dy(x). Then there exist multipliers j!1 ^ 0„.....^m £ 0, such that

VAJ) +2 ^V/(x) =0. (10.1.9a)

and

•

Exercise 10.1.2: Prove Corollary 10.1.1. •

Theorem 10.1.2 : Suppose that the functions /(•), j - 0,l,...,m, in (10.1.1), are convex and continu

ously differentiable and that x € R* satisfies y(x) £ 0, as well as (10.1.9a), (10.1.9b). Then x is a glo

bal minimizer for P/.
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Proof : Let the ylt j e n. be as in (10.1.9a), (10.1.9b), and consider the Lagrangian L;R" -* R,
defined by

Lix) AAx) +£ V?fe) • (10.1.10a)

Then LQ is convex and, by (10.1.9a), VL(x) = 0. Hence x is a global minimizer of Li;). Since

(10.1.9b) holds, we have that

Ax) = L$) * Ux) V x e R" . (10.1.10b)

Since for all x € R" such that y(x) £ 0, Ux) £ Ax), it now follows that

A*) *Ax) V x € {x 6 R" Iy(x) £ 0 }, (10.1.10c)

which completes our proof. •

Remark 10.1.2 : We shall refer to the multipliers \t/ in (10.1.9b), (10.1.9c) as Kuhn-Tucker multi

pliers. •

Exercise 10.1.2 : Supppose that the functions /(•) ;'= 0,1, • • • ,m are convex and continuously

differentiable and thatx e R* is such that y(x) £ 0 and 0 e BFjx), where FA() is as in (10.1.3). Show
X X

by example that x need not be a minimizer for (10.1.1). •

10.2. AN OPTIMALITY FUNCTION

Constrained minimax algorithms can be obtained as implementations of the following phase I -

phase n1 conceptual method of centers which has a simple geometric interpretation, see Fig. 10.2.1a,

102.1b. Themethod below is a straightforward generalization of the Huard method of centers2.

Conceptual Method of Centers 102.1:

Step 0 : Select xo e R" and set i = 0.

Step 1 : Compute

x*i =arg min max{y°(x) - y°(Xi) - y+(xd,V(x);j e m} . (10.2.1)

Step 2 : Set i = j + 1 and go to Step 1. •

fBTheorem 102.1 : Suppose that

(a) Fbr every x* € R", the level sets { x e R" IF*<x) £ F^x*) } are compact, where F/,c) was defined

in (9.1.3);

The reason for calling this method phase I • phase II u that if combines the operation of finding a feasible point (phase I)
with that of minimizing the cost while maintaining feasibility (phase IT).

*P. Huard, Tiognunmauon Mathematic Convex", Rev. Fr. Inform. Rech. Operation., VoL7, pp. 43-59, 1968.
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(b) For every x*e R" which is not a local minimizer of (10.1.1b),

A(x0 A min F^x) - F^x*) <0 . (10.2.2a)

If {Xi )r.o is an infinite sequence constructed by the Conceptual Method of Centers 10.2.1, then every

accumulation point x of {x,)~o is a local minimizer for (10.1.1).

Proof : First we note that if x e R* is such that y(x) > 0, then F^x) = y(x) = y+(x). If x € R* is

such that y(x) £ 0, then Fz(x) = 0. Since for any xj e R", y(x) £ F^x), we see that if yfo) <, 0,

then y(xM) £ F^ix^i) £ Fz.(Xi). This leads to the conclusion that if the Conceptual Method of Centers

102.1 constructs a sequence {x,-}£o* such that for some iq, y(xio) £ 0, then y(Xj) £ 0 for all / £ Zq.

Next we note that because of assumption (a), and Lemma 10.2.1, A(-) is continuous. Now sup

pose that {x,}£o is an infinite sequence constructed by the Conceptual Method of Centers 10.2.1, such
K

that Xi -> x, with 0 £ dFJfc). Then we must have that A(x) =-6 <0, by assumption (b), and hence, by
X

continuity of A(-)» there must exist an i\ such that

FxjLxM) - FJ.(xi)=A(xi) £ -V45 (102.2b)

for all / € AT such that i ^ ix. Now suppose that y(Xj) > 0 for all i. Then [y(xd)Zo is a monotone

decreasing sequence with accumulation point y(x). Hence we must have that y(xi) -> y(x) as i -» «>.

However, it follows from (10.2.2b) that

V(x*i) - V(x«) =F^x*,) - F^ £ -V46 (102.2c)

for all i € A" such that i £ i'i, which leads to a contradiction.

Next suppose that there is an i0 such that y(xi|)) £ 0 for all i >iq. Then

V°C**i) - V°C*i) * F,^) - FX{(xd £ -V48 (102.2d)

for all i e K such that 11 i2- max{j0.«i}, ic. the sequence {y°(x,))£»2 is monotone decreasing to -«°.

However, {VW)^ musl converge to the accumulation point y°(J), and hence again we obtain acon
tradiction. This completes our proof. •

The simplest implementation of the Conceptual Method of Centers consists of replacing the

update formula (102.1) by one iteration of the Minimax Algorithm 9.4.1. This leads us to the follow

ing optimality function and associated search direction function for the problem Pj defined in (10.1.1).

Since there is litde likelihood of confusion, we shall reuse the symbols 0 and h which were first used in

Lecture 9.2. We need to introduce one more function:

y+(x) A max{0,y(x)). (102.3a)

where y(-) was defined in (10.1.8a), and an arbitrary constant y > 0. We now define for problem P{ the

optimality function 0:R" -» R and the associated search direction function A.-R" -> R" by
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0(x) A min max { - Yy+(x) +<V/°(x),/»)+ VMM2;
A«R"

fe) - y+(x) +(Vfe),h) + KM2, jem). (10.2.3b)

h(x) A arg min max { - ?y+(x) +<V/°(x),A)+ VMM2;
A«R"

fe) - y+(x) +<V/(x),*)+ VMM2,; e m } • (102.3c)

We shall see in the next section that the constant y can be used to control the trade-off involved

between finding some feasible solution as rapidly as possible and finding a low-cost feasible solution.

To simplify the process of deducing the properties of the optimality function ©(•) and associated
search direction function h() for Pt from those defined in (92.13a), (92.13b), we define

7°(x)*0.

f'(x)*fe). Wjem.

m A {0,1 m },

and, finally, we define Y° =7, i - 1 for all j e m>

Making useof these definitions, (10.22), (102.3) can be rewritten as

0(x) A min max[yf[fKx)-^(x)] + (Vfe),h)+Vilhi2).
h c R* j « "»

(102.4a)

(102.4b)

(102.4c)

(102.5a)

h(x) A arg min max{ i\fji?) - y*(x)] +(Vfe),h)+ YAM2 } .
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(10.2.5b)

Theorem 102.1 : Consider the functions 0() and h() defined by (102.3a) and (10.2.3b). Then,

(a) For all x e R",

8(x) £ 0; (102.6a)

(b) For all x € R*.

<fy(x;A(x)) <: 8(x) - [y(x) - y+(x)]; (102.6b)

(c) For all x € R",

4f°(x;A(x))^8(x) +A+(x); (102.6c)

(d) Alternative expressions for 8(x) and h(x) are given by

6(x) =-min {£ nY[y+(x) -?(x)] +Vm£ \ftfe)\2 }. (102.6d)
*«5 >o >*>
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h(x) =-Z ^V/(x) . (102.6e)

where the u,x is any solution of (102.6d).

Equivalently, let (^°,¥(x) c R**"1 be a set with elements denoted by £ =(£°,£), with fc° e R,
4 € R\ and defined by

«o A \y[^ix)-f(x))}\

Then,

9(x) =- mj IkUVAt?).
I* 0»(x)

A(x)= -£(x). (102.6h)

where

S(x) =60(x).c,(x)) =arg min {^° +V^lc^l2 }. na26n

(e) For any x e R* such that y(x) £ 0,0 € dy(x) => 0(x) = 0.

(0 For any x e R" such that y(x) > 0, 0(x) = 0 => 0 € dy(x).

(g) Both 0(>) and h(-) are continuous. •

Exercise 102.1: Follow the proof of Theorem 10.23, to construct a proof for Theorem 102.1. •

10.3. PHASE I - PHASE U METHODS OF FEASIBLE DIRECTIONS

To conclude this lecture, we shall describe two phase I - phase II algorithms for solving the prob

lem Pi (102.1), which we rewrite in the more compact form

Pj min{/)(x)lv(x)^0). (10.3.1a)

with

y(x)=max/(x). (10.3.1b)

To simplify the proofs of convergence to follow, we will assume in this section that the functions

/:R" -• R are twice continuously differentiable3.

As we have already pointed out in the proceeding section, an algorithm for solving (10.1.1) which

combines the operation of finding a feasible point (phase 1) with that of minimizing the cost while

maintaining feasibility (phase II), is usually referred to as a phase I - phase II algorithm. Phase II

3 Referring to E Polak, R. Trahan and D. Q. Mayne, "Combined Phase I • Phase TJ Methods of Feasible Directions",
Mathematical Programming, Vol. 17, No. 1, pp. 32-61, 1979. we see that convergence can be proved also under the assumption
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versions of the algorithms below, were first proposed by Pironneau and Polak4 as an implementation of

the Huard method of centers5. In the form given below, these algorithms were first described Polak,

Trahan, and Mayne6, and were obtained as reasonably straightforward generalizations of Algorithms

93.1 and 9.32, via the Conceptual Method of Centers 10.1.1.

We continue using the notation introduced in (102.4a) - (10.2.5c).

Algorithm 10.3.1 (Pironneau-Polak) : (Exact Line Search).

Parameters : 7° >0, V = IJ 6 m.

Data : Xq e R".

Step 0 : Set i = 0.

Step 1: Compute the search direction

hi =hixd A arg min max {i\f*ixd - yto+] +Wfed,h)+ VMM2 ) . (103.2a)

Step 2 : Compute the step size:

ify(Xi)>0,

K e arg min yfo + Xhd. (10.3.2b)

ify(xi)<0,

Xi e arg min {f(Xi +%Jtd Iy(x, +W £ 0 }, (10.3.2c)

Step 3 : Update: set

x^Xi + Mi. (10.3.2d)

replace i by i + 1 and go to Step 1. •

The interesting features of Algorithm 103.1 are: (i) it does not have to be initialized with a

feasible point (Le., it is notnecessary to have y(xa) £ 0), and (ii) once a feasible point x^ has been con

structed, the following points x,, with i > to, are also all feasible.

Theorem 103.1 : Consider problem (10.3.1a) with the assumptions stated and,' in addition, assume

that 0 £dy(x) for all x e R" such that y(x) > 0. Then every accumulation point x, of a sequence

MZo constructed by Algorithm 103.1, satisfies y(x).£0 and the first order optimality condition

6<*) = 0, with 0(0 defined by (10.23a).

thatthe functions/(•) are only oncecontinuously differentiable.

4 O. Pironneau and E Polak, "On the Rate of Convergence of Certain Methods of Centers", Mathematical Programming,
VoL 2, No. 2, pp. 230-258. 1972.

*P. Huard, "Programmattan Mathematic Convex", Rev. Fr. Inform. Rech. Operation., VoL7, pp.43-S9. 1968.

* E Polak, R. Trahan and D. Q. Mayne, "Combined Phase I - Phase II Methods of Feasible Directions", Mathematical Pro
gramming. VoL 17. No. 1, pp. 32-61. 1979.

•100-



EECS 227A Lecture 103 E. Polak

Proof : Suppose that Algorithm 10.3.1 has constructed a sequence (x,)£o which has an accumulation

point x suchthat0(x) <0.

Case I: Suppose that y(xj >0 for all i e N. Then [y(xd)Zo »s a monotone decreasing sequence,

and hence, since y() is continuous and x; -• x as i -• », for some KclS, y(xj -> y(x) as i -» ~.

Clearly, since y(») is continuous, we must have that y(x) £ 0.

Since y(x) £ 0 and 0(x) <0,by assumption, we have, by (10.2.6b), that

<*y(x;A<$)) £ 0<x) £ -25 <0. <10-3-4a)

Hence there exists a X> 0 such that

v<?+H/>G))-v(S)s4s. °°-3-4b)
Hence, because both y(-) and h(') are continuous, there exists an to e N such that for all j e AT, i £ io.

V(x*i) - V(Xi) * V(Xi +^(xj) - V(Xi) £-3S/2. (103'4c)
which leads to the conclusion that y(Xi) -> -», as i -> », and we have a contradiction. Consequendy,

0$) =0 must be true. Since, by assumption, 0 t:9y(x) whenever y(x) >0, it follows from the fact that

0(x) = 0 that y(x) = 0 also.

Case 2: Suppose there is an i0 e N such that y(x;) £ 0 for all i £ io. Then, because y() is continu

ous, we must have that y(x) £ 0. Since 00 and *(•) are continuous, there exists a p>0 such that

0(x) £ 0(x)/2 <0 and IA(x)l £ 2IA(x)l for all x € B(x,p). Hence, since all the functions /(•) are twice
continuously differentiable. there exists an 1£M<» , such that (with If() A dPfWdx2) for all
x € B(J.p) and X€ [0.1], UF(x +X/r(x))l £ Af. Therefore, for all x e B(x.p) and Xe [0.1/Afl,

y(x + XA(x)) - y(x)+ = max/(x + XA(x)) - y(x)+

=max{ /(x) - y(x)+ +X(V/(x)./»(x)) +X2 f (1 - s) tff(x+sXh(x))h(x)Mx))ds )

£ max{ yfr(x) - y(x)+] +XtV/(x).A(x)> +X2 J(1 - j) (W(x +s7Ji(x))h(x)MxTds
/cm

£max{ Vfftx) - y(x)+] +X(V/(x).*(x)> +-^Wi(x)l2 )

£ X0(x) £ X0(x)/2 <0 . (10.3.4d)

Next, it follows from (102.6c) that
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afCx;h&) £ 0<J) A -25 <0 . (103M)

Hence there exists a Xe (0,1/A/] such that

fCt+%$))-f$) £45 . (103.40

Since x< -> x as i -* *», for some K c IS, there exists an i\ e N such that for all i e AT, i L> ilt

x, € B(x,p), and hence it follows from (103.4d) that for all i e K,iZ iu

y(x, + XA(x^)^0. (10.3.4g)

Next, since bothA) and h(-) are continuous, it follows from (10.3.40 that there exists an i2£ i\ such

that for all i e AT, i «> j2,

/W+**w)-/w*-to«. (I03-4h)

Clearly, (10.3.4g) and (10.3.4h) imply that for all i e AT, i i i2,

/•^-/•WS-to. 00-3.40

Since the sequence [f*(xd)Zc is monotone decreasing, it follows from (103.4i) that f(xd -» -» as
x ^

i -> oo. However, because the sequence [j°(xd)Zo is monotone decreasing and x, -> x and A) is con

tinuous, we must have that /°(x,) ->/°(x) as i ->«, and hence we have a contradiction, which com
pletes our proof. •

It is also possible to propose a phase I - phase II algorithm which uses an Armijo type step size

rule, as follows.

Algorithm 1032 (Pironneau-Polak): (Armijo Line Search).

Parameters : a, p e (0,1).

Data : xn € R"

Step 0 : Set i = 0.

Step 1: Compute the search direction

hi =h(xd A arg min max {-/^(xd - y(xj] +Wfed,h)+ KIM2 ) . (i03.5a)

Step 2 : Compute the step size

ify(x^>0,

ify^so.

X,- =argmax{p* Iy(x, + fPhd - V(xi) - P*oO(xi) SO). (10.3.5b)
* € IN

A, =iirgngx{ p* IAx. +P**i) -Ax,) - P*a0(x<) <; 0. y(x, +phd £0 ). (10.3.5c)
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Step 3 : Update: set

x^Xi + XA. (103.5d)

replace i by i + 1 and go to Step 1. •

Theorem 1032 : Consider problem (10.3.1a) with the assumptions stated and, in addition, assume

that 0 £dy(x) for all x e R" such that y(x) £ 0. Then every accumulation point x of a sequence

to)£o, constructed by Algorithm 10.3.1, satisfies y(x) £ 0 and the first order optimality condition

0(x).= 0, with O(-) defined by (10.23a). •

Exercise 103.1: Prove Theorem 10.3.2. •

Exercise 1032 : For any x; e R". let FX.:W -> R be defined by

Fx.(x) = max{ Ax) - fed - ¥(x,)+ . fe) - V&k. /em). (10.3.6)

Prove that Theorem 10.32 also applies to the following Phase I - Phase LT method which uses a single

surrogate cost function for step length calculations:

Algorithm 1033 : ( Single-Cost Armijo Line Search).

Parameters : a, p € (0.1).

Data : xo e R"

Step 0 : Set / = 0.

Step 1: Compute the search direction

hi = h(xd A arg min max {i\f>(xd - Vf(xd) +Wfed.h)* VilAI2 }. (10.3.7a)

Step 2 : Compute the step size

X, =argmax{ p* IF-jfc +p*/k) - Fx(xd - ?aQ(xd SO). (10.3.7b)

Step 3 : Update: set

x^l=x, + XIA,-. (10.3.7c)

replace j by i+ 1 and go to Step 1. •
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Fall 1988

11. FIRST AND SECOND ORDER OPTIMALITY CONDITIONS : MIXED CONSTRAINTS

We now return to the study of first and second order optimality conditions for the full nonlinear

programming problem

PE : min{ Ax) l/(x) £ 0,j s m; gk(x) = 0. kel). (11.0.1)

11.1. FIRST ORDER OPTIMALITY CONDITIONS : MIXED CONSTRAINTS.

To reduce the amount of mathematical baggage that we need to manipulate at one time, let us

first consider the special case of problem (11.0.1),

PE: min(Ax)l5*(x) =0,xeI), (11.1.1)

where A'R" -* R» g*:F" -* R, k e £ are all continuously differentiable functions.

Definition 11.1.1 : We shall say that x is a local miniminizer of PE if g'(x) =0 for all * e 1 and

there exists a p>0suchthatAx)^/°$) forallxe {xe R" Ilx-xl£ p. **(x) =0, ke I). •

Theorem 11.1.1 (FONC, PE: Suppose that x is a local miniminizer for PE. Then there exist multi

pliers y0/^1,...V' notall zero, such that

V°VfG) +2 V*V«*(x) =0 . (11.1.2)
•VI

Proof: Let p > 0 be the radius associated with x. First, consider the problem

P'E : min{ f(x) + lx-x\2\gf(x) = 0,ke L) . (11.1.3a)

Qearly, x is also a local miniminizer for P'E and, in addition, for all x*x such that

xeB(x.p)n{xlg*(x) =0,*eI),

Ax) +lx-xl2>/°(x). (11.1.3b)

i.e., x is the only local miniminizer of PE' in the ball B(x,p).

Now consider the family of inequality constrained problems

Pj : min [fix) + Ix -xl2 I- e £ g*(x) <I e. k e L l* -xl2 <, p ), <".1.4)

with e £0, and let xt denote the solution of PJ. Then we have

(i) - e £ g*(x) £ e, for all Jfc e i, for all e £ 0, i.e., x is feasible for all the problems Pf.

(ii) Suppose e, -> 0, as i -> «>. Since the sequence { x^ }im Nc B(x,p) is bounded, it must have at

least one accumulation point, say x*. Clearly, gk(x*) =0 for all *€ L and, since Axe,) ^ A?) must
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hold for all i 6 N, we must have that

Ax*)*Ax). <lu-5a>

(iii) Next we show that x* - x. Fbr suppose that x* * x. Then x* cannot be a local miniminizer of

Pf, because x is the only local miniminizer of P'E in B(S,p). Hence we must have that

A?)<Ax*). O1-1-*)

which contradicts (11.13a)

(iv) Since x^ is a local miniminizer of />/, it follows from Corollary 92.2. that there exist multiplier

vectors p^, with components p£, pj^, ji^_ £0, ke Lsuch that1

vipftx*) +2(x£>. - x)] + S <^(xe,) - Z viyfez) =0. (1 LL6a)
ke L lei

MtJ**^ " e«] =°« (11.1.6b)

^-«*^)-e^ =0' (11.1.6c)

<+ZMt+ZMi=l. dU.60

Since all the components of Pe's are in [0,1], they must have accumulation points. Hence there must
K

be an infinite Kc N such that p^. -> \i as i -* *>, with p, =(|i0,pi„...,iii.pi, *'' .1^-) satisfying

|i°VA*) + S (Mt - nW(x) =0. (11.1.8a)
*€i

and

i i

^°+ZMi+ZM^=l. (11.1.8b)

It remains to show that not all the coefficients in (11.1.8a) are zero. Since for all / e K, either

Mt^ or p4j_ are zero, or both, it follows that forallx€i,p£ui =0 and hence that one of these two

coefficients must be zero. Hence it is not possible for all coeficients in (11.1.8a) to be zero, which com

pletes our proof. •

Exercise 11.1.1 : Suppose that the gradients { Vg*(x) }k €Lare linearly independent Show that y°
can be chosen to be 1 in (11.12). •

Exercise 11.12 : Suppose that A) k convex, that the functions gk() are affine (i.e., they are of the

form g\x) =Apt+ bid, and that x is such that (i) g*(x) =0 for all k e L that (11.1.1) is satisfied with

1Note that the multiplier associated with the constraint Ix —xl £ p can be assumed to be zero because this inequality is
alack for all I sufficiently large.
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multipliers which are not all zero and that the gradients { V$*(x) )k €Lare linearly independent Show

that x is a global minimizer for the problem PE. •

We are now in a position to state a first order optimality condition for the problem P^ in

(11.0.1).

Definition 11.12 : We shall say that x is a local miniminizer for Pffi if /(x) £ 0 for all j e m>

gk(x) =0 for all k e I and there exists a p >0 such that Ax) ^ Ax) for all

xe (x€ *RH\lx-xt£f>.fe)£0Jem. fe) = 0.keL). •

Theorem 11.12 (FONC, P^: 0.rConsiderproblem(U.O.l)andsupposethatthefunctionst #'sup j : reals

sup n~->~reals j '="0 , 1 , . . . , m.andg sup k : reals sup n"->" reals, k member I

under,areallcontinuouslydifferentiableJfx batisalocalminimizerfor(\ 1Jd.\)jihenthereexistmultipliersmu

sup j ge Oj "="0 , 1 , . . . , m.andpsi sup k,k member 1
m I

under./wto//zer0.juc/Uto/.EG^ I (11.1.9b) mu
M *»i

sup j f sup j ( x hat )"="0 rT=" 1» 2 ,..., m".

(11.1.8b)

Exercise 11.1.3 : Prove Theorem 11.1.2. •

Exercise 11.1.4 : Consider the problem

min[f(x) IAx - b = 0 ), (11.1.10a)

where /.•R" -> R is twice continuously differentiable, x- (x\jt^ with xi e R;, and A= [A\,A£ an
/ x n matrix such that the / x / matrix A^ is nonsingular.

(a) Show that the problem (11.1.10a) is equivalent to the problem

min/txj), (11.1.10b)
xm R""1

where jfo) A f((-A?A&2 + bx£).

(b) Show that the optimality condition for (11.1.10b)

V/&) =0 (11.1.10c)

is equivalent to the optimality condition for (11.1.10a)

>4x-& =0 (ll.l.lOd)
V/(x) +ATy=0,

for some y e R'.

(c) show that the optimality condition for (11.1.10b) (11.1.10c) together with
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OX2

is equivalent to the optimality condition for (11.1.10a), consisting of (U.l.lOd) together with

(y.-^&y) *0VyeMe®. (11.1.10Q
where M^) ={ ye R" IAy =0 j. •

112. SECOND ORDER OPTIMALITY CONDITIONS : MIXED CONSTRAINTS

We shall now establish second order optimality conditions for the full nonlinear programming

problem (11.0.1), Le., for

Pm: min{ Ax) \fe) ZOJe m; g*(x) =0, k e L) . (11.2.1)

We proceed in two stages: first we assume that there are only equality constraints in (112.1), as

in (11.1.1), and then we consider the full problem. However, we must first digress to recall the Implicit

Function Theorem and some of its consequences.

Implicit Function Theorem 11.2.1 : Suppose that g:R; x R*"* -• R1 is k times continously

differentiable. If xx e R', Xi e R*"' are such that g^jc^ =0 and the matrix Bgfo.x^) I dxx is non-

singular, then there exists a p > 0 and a k times continuously differentiable function

$:B(x2.p) -> B&.p) such that 4^2) =*i.
-1

dsfo-Xj)34>(X2)

3x2

and

g(¥y).y) - 0 V y e B(x2.p) . (112.2b)

•

Corollary 112.1 : Suppose that g:R" -> R; is twice continuously differentiable and that x 6 R" is

such that g(x) = 0, and dg(x)Idx has row rank /. Then, given any h*0 in R" such that

dgCc) I dxh = 0, there exists a tk > 0 and a twice continuously differentiable function s:[0,/J -> R"

such that (i) j(0) = x.(ii) /(0) = A, and Qu) gW)) = 0 for all t e [0,/J.

Proof : Let h e R", h * 0, be given. Without loss of generality we can assume that we can partition

vectors :eR" into two parts, so that x = (x\pfyT, withxx e R7,x2 e R*"*, with the partition such that

dg(x) I dxi is invertible. To simplify notation, we shall write x = (xijcj). Let p >0 be a radius and let

$;B(x2,p) -• B(x! ,p) the corresponding twice differentiable function, as postulated in the Implicit Func

tion Theorem. Next, let th e (O.p/l/tl). Then, using the partition h = (hx .h^}, the function j:[0,/jJ -> RN

dg(x\%d
dx, dxi

(11.2.2a)
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given by

s(t) A (<tKx2+l/»2),x2 + i/i2) (112.2c)

is well defined and twice continuously differentiable. Clearly, s(0) - x, /(0) = (—r—h2.n1) and
ox2

g(s(t)) = 0 for all / e [O.r*].

Now, since •h = 0 by assumption, we must have, in partitioned form, that

(112.2d)

NOW, since - dx " =OD:
f assumj

oxj dx2

i.e., that

/n=-
l>i J dx2

d<Kxi)

dx2
•/i2. (l\2.2e)

Hence we see that /(0) = /i, which completes our proof. •

Lemma 112.1: Suppose that g:R" -> R is continuously differentiable and that for some x e R\ the

matrix dg(x)/dx. has maximum row rank. Let

M£<x) ={ye R- I$&Ly =0). d1-2.3a)
dx

Then

M£<x) =( y e R" Iay = lim (x, -xJ/Kx,-x)i. x, -* 3, as i -• «, g(xd =O.V i e N, a <lR2.Bb)

Proof : Suppose that {xj^o is such that x,- ->3 as i -> «> and ^(x^) =0 for all i e IN. Then, for all

ie N,

0 = g(xi) = gCt) + f — ds (Xi-x). (11.2.3c)

Let y,- = (Xj - x)/l(x, - 3)1. Then it follows from (112.3c) that any accumulation point y of the sequence

(yi)£o must oe in Mf(x). Next, suppose that y e Mf{x) is arbitrary, but nonzero. Without loss of gen

erality, we may assume that lyl = 1. Then, by Corollary 112.1, there exists a ty> 0 and a function

s:[0.ty] -> R" such that (i) g(0) =3, (ii) g(s(t)) s 0, and (iii) s'(0) =y. Let {*,•)£© c [0,r,] be such that

ti -¥ 0 as i -> oo . Then if xj £ 5<rf), x, -»x, as i -> » . Let y, ^ (xj - xyi(x, - 3)1. Then, by the
Mean Value Theorem, y,- = s*Q*td/ls'ifadl* with Xj e [0.1]. It follows that y, -» y, i -> » . Hence we

conclude that (112.3b) holds. •

Theorem 1122 (SONC, PE ): Consider the problem
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PE: min{Ax)l«*(x) =O.XEl). (112.4)

with/°:R" -> R and all the g*;R" -» R twice continuously differentiable.

Suppose that 3 is a local miniminizer for (112.3a) and that the matrix dg$t)/dx has maximum row
rank. Then there exists a multiplier vector y e R1 such that the Lagrangian L;R" -> R defined by

L(x) A Ax) +ty.g(x)) 012.5a)

satisfies

T

y =0, (112.5b)VL(3) = Vf°$) +

and

3£&
dx

<yt¥j&y)7>0 VyEM^. C11-2-6)
where

M£©= {ye R" I-^&y =0). 0^7)
dx

Proof : We only need to establish (112.6) since (11.2.5b) was established in Theorem 11.1.1. Sup

pose that y e Mf(3), is arbitrary, but nonzero. Let (x,-}£o be such that (i) x, -> 3 as i -> », (ii)

g(xd - 0, for all i e N, and (iii) y = lim (x, - 3yi(x, - 3)1. Then, since 3 is a local minimizer, there

exists an io e M such that fed ^ A?), for all i 2 to- Equivalently, since g(xt) = 0 for all i,

f&ZLixd. V/^io- <1L2'8>

Expanding the right hand side of (11.2.9a) about 3 to second order, we obtain that

A3)£L<3)+ (Vi&^-a+jo-*)^ o1-2-9)
Now. L(x) =/(3). and VL(3) =0 by (11.2.5b). Hence, taking limits, (112.9) leads to (112.6), which

completes our proof. •

We are now ready to consider problem (112.1) in full, and develop both necessary and sufficient

second order conditions.

Theorem 11.2J (SONC, PQ ): Consider the problem

Pe; min{Ax)l/(x)^0.;Em.g(x) =0), (112.10)

where the functions f:W* -> Rj =0,1 m and g:R" -♦ R; are twice continuously differentable.

Suppose that 3 is a local optimal solution of (112.10) and that the gradients Vg*'(J), j e I together with

the gradients V/(3),7 e 7(3) A [j e ml/(J) =0 ), are linearly independent Then there exist
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multiplier vectors (i e R"\ |i »> 0, y e R' such that

VA3) +2 \frfe) +-^-V=0. (112.1 la)

M^(3) =0. vyEm (ii.2.iib)

and the lagrangian L:R" -> R defined by

L(x) £ Ax)+ Z m*)+ I M*V(x) (11.2.11c)

satisfies

(y.-^y^O VyeM/£. (112.1 Id)
where

M/£ A[yeR" I-^y=0. (V/(3).y)= 0. Vje7(3) }. (112.11c)

Proof: Qearly, if 3 solves (11.2.10), it must also solve

min{ Ax) l/(x) =0,; e 7$). g(x) =0 ) . (112.1 Id)

The desired result now follows from Theorem 11.22. •

Exercise 112.1 : Use the fact that the problem minx max,CB/(x) is equivalent to the problem

min{ x° \fe) - x° £ 0 ) to prove the following theorem:

Thereom 11.2.4 (SONC for minimax): Consider the problem

min max/(x), (112.12a)

where the functions /;R" -> R are twice continuously difTerentiable. Suppose that 3 is a local minim

izer of y(x) A max;€ B/(x), and that the vectors (l,V/(3), j e 7(3) ={;' e mIf& =V(x)). are

linearly independent Then there exists a multiplier vector jl e £ such that

LS^V/(5)=0, (112.12b)
/»i

SW3) - V<3)) =0. V j e m. (112.12c)
m

and, with the Lagrangian defined by Ux) A £ ffifo).
>-i

1)1,^0, VAeM. (112.12d)
where
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MN A[he R" IV/(3)./r) =0. j e 7$) ). (112.121)
•

Next we develop second order sufficiency conditions. In this case there is no advantage in deal
ing with the equality constrained case first and hence we go directly to problem Pnj.

Theorem 1125 (SOSC, Pns) : Consider Problem (11.2.10) and suppose that the functions

/;R" -> R, j=0,1, ...,m and g:R" -» R; are twice continuously differentable. Suppose that 3is such
that (i) g®=0,/(3) £0 for all je mand (ii) the gradients Vg1*®, jeltogether with the gra
dients V/(3). j e 7(3)A [ e m1/(3) =0 }, are linearly independent Suppose there exist multiplier
vectors p. e R"\ \i £ 0, y e R' such that

V/°(S +ZmW*> +̂ "V=°« (112.13a)

^/(3) =0, V;e m. (112.13b)

and, for some m > 0

where L(x) is defined as in (112.11c) and

He a[ye R" I -^-y=0. <V/(3).y)= 0V;e7(3) such that \if >0). (112.13d)
dx

Then 3 is a local miniminizer for (112.10).

Proof : To obtain a contradiction, suppose that 3 is not a local minimizer for (11.2.10). Then there

exists a sequence {x, }«> such that x, -> 3 as i -»» with g(xd =O.fed £ 0 for all / e o, and
/°(x,) <A*) for all ie IM. We can write xt =3+&&, with W»,l= 1, 5i >0,so that 8,-> 0 as i-• ~ .

Without toss of generality, we assume that hi -> t as i -» « . Then we must have :

/(x<) -/<3) =o\£(V/<3+sBihd.hdds Z0. ViEN. V;e {0}U 7(3). (112.14a)
and

Dividing (112.14a) - (112.14b) by 6j and letting i -> » we obtain that

<V/(x),fo£ 0 V j e {0 )U 7(x) (112.15a)

and
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9g(3)fl =0 (112.15b)
dx

Now, either t e H£ or not If t Elvfe, then there exists aO e 7(3) such that iP >0 and (V/'(3),ft< 0.
ConsequenUy, (112.13a) and (112.13b) yield that

0 =<VA3).fo+ 2 mWG) A <o.
/-.* (11*216)
||f>0

which is clearly impossible. Hence we must assume that t e M/£.

Next we note that because g(xd =0 and \)?fed S 0 for all j e m, L(xd £fed <Ax) =1(3).

Hence expanding L(xd about 3 to second order, we obtain that

L(xd -L& =8t( VLGdMi )+ h2[(\ -M, V ^ *,)* <0V,e N. (11.2.17a)

Since by (11.2.13a) VL(3) =0, it follows from (112.17a) that

£(1 .S)*/^X+Jmhdds<0. V,eN. O^lTb)
Letting i -» «, we conclude from (112.17b) that

tf,ijt&fo<;0. (H.2.18)
8x*

Since this contradicts (112.13c), we see that our proof is complete. •

Exercise 1122 : Mimick the above proof to establish the second order sufficiency conditions stated

below for minimax problems. Note that it does seem to be possible to deduce these conditions direcdy

from Theorem 11.2.5, above.

Thereom 11.2.4 (SOSC for minimax): Consider the problem

min max/(x). (112.19a)

where the functions/.•R" -> R are twice continuously differentiable. Suppose that 3 is such that there

existsa multiplier vector jx e £ satisfying

f;(?V/(3) =0, (112.19b)
>i

P0*<3) - y<3)) =0. v j e m. (H2.i9c)

and, with the Lagrangian defined by L(x) = J) &fe)*
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or

where c>0and

Mj A(AeR-IV/(3).«=0.;e {; e 7® I^ >0 ) ). (H.2.19Q

Then 3 isalocal minimizer of y(x) A max, cafe). •
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Fall

12. EXACT PENALTY FUNCTIONS, SENSITIVITY AND DUALITY
We will now present three results which can be explained using the the same geometric setting:

the"/- g" diagram.

12.1 EXACT PENALTY FUNCTIONS

We begin with exact penalty functions which have many uses in optimization, and, in particular,
in the solution of equality constrained optimization problems. For further details consult Han-
Mangasarian '. Consider the problem

min(Ax)lg(x) =0). (12Ua)
where/:R" -• Rand g:R" -> R\ with /< nare twice locally Lipschitz continuously differentiable.
Definition 12.1.1 : For any c> 0, the function

/^iA^ +cmaxl^x)! d2-Ub)

will be called an exact penalty function for the problem (12.1.1a).
We begin with an heuristic exploration of the properties of exact penalty functions. To this end,

we suppose that /=1and that 3is optimal for (12.1.1a) Then, letting

we can draw F(R"), the image ofR" under F() in R2, as shown in Fig. 12.1.1.

Suppose that the slope of the boundary of F(R"), at tf&.O), is finite. Then the line tangent to
the boundary atthis point has the equation

. (12.1.3a)
/(x) +yg(x)=/(3),

where -y is the slope of the line. Since locally all of F(R") lies to one side of this line we get to first
order terms that for some p > 0,

/3) +(Vflx) +yVg(x),8x) */3). V8x eB(x.p), (12.1.3b)

This leads to the conclusion that

_ ^ (12.1.3c)
vy(x) +yvg(3)=o

must hold, i.e.. that y is the Lagrange multiplier at 3. Next, if c> lyl. then it follows from Fig. 12.1.1
that

lS-P.H««»dO.L.KUng.a.riail. "Exact penalty Funcuow »Noolinear P^ramming". Mathematical Programming, VoL
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min^ f(x) +c\g(x)\ )=.fl3), (12.1.3d)

i.e., that there is an unconstrained, but nondifferentiable optimization problem with the same solution

point 3 and optimal value ffa as (12.1.1a). In formalizing these observations, we shall need the follow
ing result

Lemma 12.1.1 : Let Q be an n x n matrix and let G be an / x n. Then the function y:R+ -> R

defined by

y(E) A min{ <h.Qh)\ Ihl = 1, IG/tl. £ e ) (12.1.4)

is continuous at 0.

Proof : Suppose that £j -» 0 as /*->». Then there exist ht such that 1/j,I = 1, IG/t,L £ £,, and

y(Ej) = (hi.Qhii Without loss of generality, we may assume that hi -» h as i -> <». Then, by continuity,

Ml =1and IGhL =0. Hence y(e) £ $.6% Suppose that

V®<Gt.Q%. 02.1.5a)

Then there exists an h* such that M*l = 1, IGA*L = 0 and y(e) = tf*.G/i*) Now, because IG/i*L £ ej

for all i, we must have that y(e^) < </j*,G/r*)for all i. But from (12.1.5a) we get by continuity, that

Vi*.Qh*) < lim (Jii.Qh) (12.1.5b)

which contradicts the optimality of the ht for i sufficiently large. Hence our proof is complete. •

Theorem 12.1.1 : (a) Suppose that for some c£0, a point xeR" satisfies g(3) =0 and

3 e arg min ^mfjx). Then 3 isoptimal for (12.1.1a).

(b) Suppose that (i)3 e R" is such that g(x) = 0, and (ii) there exists a y e R7 satisfying

Vyr3) +̂ Iv=0. (12.1.6a)
ox

Then there exists a c £ 0 such that for all c £ c, afeCt;h) £ 0 for all h e R".

(c) Suppose that 3 is such that (0 g(x) - 0, (ii) for some y e R' (12.1.6a) is satisfied, and (iii) there
exists an m> 0, such that for L(x) A f(x) +(y.g(x)),

(y.^^y)imlyl2, (12.1.6b)

for all y such that —~-y - 0. Then there exists a c £ 0 such that for all c £ c, 3 is also a local
dx

17, NoJ, pp. 251-270. 1979.
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miniminizer of fe(').

Proof: (a) Sincefcix) -fix) for all x such that g(x) = 0, this part is obvious.

(b) First note that/e(*) can be written alternatively in the form

fe(x) =max{ fix) +cfe)), (12.1.7a)

where we define g^x) = -gf(x) for all j e L Hence, since g(3) =0, for any c St 0, we have

4Te(3;n) =( Vftx)>h)+ cmax I(Vg*$),h)\. (12.1.7b)

Because of (12.1.6a), we have for any lieR"

(V/(3),n) =- £ y> W(3).A). (12.1.7c)

Hence, dfc(x;h) =0 for all h such that &*' h=0. Furthermore, substituting from (12.1.7c) into
ox

(12.1.7b), we get

of£;h) =- £ VW(3),A) +cmax IW(3),A>I

2> - 2ly>l IW(x),A)l +«nax IW(3),WI

£ (c - J lyfy max I(V^$)./i>l. (12.1.7d)

Let c 2» £h/l. Then weobtain that for all c 2s c, dfc(x;h) S» 0 for all he R".

(c) Let p>0 and let Jf e (O.oo) be acommon Lipschitz constant for 7V» f; ,; e i, in B(x,p).
dx2 dx4

then given any Ae R" such that l/:l = 1 and / e (0,p),

/£ +/«) -/(x) =<<v/£x).tt+ 4<*»'̂ ^*>

♦ r^ (l-j)Ut. affi+jdi) a^ix)
dx2 dx2

A)<fc

*/<V/G).»+ 4vS.i£fU- £,» . (12.1.8a)
2 dx2 2

Similarly, taking into account the fact that g(x) = 0,

!^(3+rA)lStlrW(3),A)+4<n,^^/i)l-4'3. vyei. (12.1.8b)
2 <fer 2
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Now let c > £ ryi, and suppose that x =3 +<A, with / e (O.p) and AeR" such that IAI = 1

arbitrary. Then

fcCx +*A) -/c(3)*f(Vfl3).A)+ -| ^••^ *>

+cmax I/<Vg>(3).A)+ •£ <h.^$-h)\ - r*3. (12.1.8c)
7 € I 2 dxr

where A" = JT(1 + c). Adding and subtracting

fZVW(x).*H 4 2 V(A.-^&A) . (12.1.8d)

to the right hand side of (12.1.8c), we obtain that

/c(x +th) -/c<3) */<v/a +XVvy<3).A) +4 ft'^ta-to
>«I ^ dx*

+[c - T 1^1] max I/W(3),A)+ -£ (A.-fr^1 - AT/3 . (12.1.8e)
yTi >€-i 2 dx*

To complete our demonstration that 3 is a local minimizer for/c(x), with c £ c, we must show

that there exists a t e (0,p] such that/e(x + th) tfc(x) for all / e [O.r] and all h e R" such that IAI - 1.

Now, by assumption, there exists an m > 0 such that (h, , h) £ m, for all h e Rn such that
dxr

Ihl = 1 and dg(3)dxA =0. Hence, by Lemma 12.1.1, there exists an e >0 such that (A. _ , A) £ m/2
dx*

for all he R" such that l/il =1and I | AL £ e. Thus, suppose that he R* is such that \h\ - 1and
dx

dx

that/e(x + fA) £/c(3) for all / e [0,f*l and c £ c, as before.

\2&±Ln\_ £ e. Then , since (V/Tx) + 2N^V(x).A)= 0, if we set f =m/4tf, it follows from (12.1.8e)
dx /sl

Next suppose that he R* is such that l/il =1and I y*'AL >e. Then there exists a t" e (0.O
ox

such that rmax; €Lmaxw «! I{hjPgf&l&Phy =rmax; 6AIdV^/ax2! £ e for all re [0,r"]. Hence for
all / e [O.r"].

max I<Vg>(3).A)+ -jr {h.^^-h)\ Z4max IW(3),A)I (12.1.81)
/«! 2 dor 2/ei

and hence, since (Vflx) + 2y'Vg'(£),A)= 0,
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/e(3+/A)-/e(3)^4(A.-^AH^ c- £M maxlW&.A)!-*/3

*4 <*.-^»+ 4[c - Z«V»]e - Kr3. (12.1.8g)
2 djr 2 >€l

Since max (A. f. A) is finite, there exists a'/ e (O.r") such that/e(x +/A) -/c(£) £0 for all re [0?/],
im=i dx2

which completes our proof of that 3 is also a local miniminizer of/.(•). for all c ^ c.

This completes the proof of the theorem. •

Exercise 12.1.1 : Consider the exact penalty function fe(x) defined in (12.1.1b). Show that if x* is

such that g(x*) * 0 and dg(x*) / dx has maximum row rank, then there exists a c* >0 such that

0eo/c(x*) for allege*. •

Exercise 12.1.2 : Consider the problem

min{ f(x) \fe) £ 0,y = 1,2 m. g(x) =0 }, (12.1.9)

where/:R"->R, y=0,1 m, and g:Rn-> R' are twice continuously differentiable, and l<n.
Prove the following theorem:

Theorem 12.1.2 : For any c £ 0, let

fdx) Af(x) +cmax {lg>(x)l ,/(x)+ ). (12.1.10a)
/• st

where/(x)+ A max{/(x) , 0 ).

(a) Suppose that for some c £ 0, a point 3 e R" satisfies g(3) =0, fe) £ 0, for all / e m, and

3 e arg mini€ R./e(x). Then 3 is optimal for (12.1.9).

(b) Suppose that 3 e R" is such that (i) g(x) =0,/(3) £ 0, for all; e a, and (ii) there exist multiplier
vectors y e R1 and p e R"\ with p £ 0, satisfying

V/<J) +Mf-y +3&V=0. (12-l-lOb)
dx ox

where/= iff." f)\ and

l#(3) =0. for; =1.2 m. (12.1.10c)

Then there exists ac^O such that for all c 2; c, 4f*(x;A) £ 0 for all A e R".

(c) Suppose that 3 is such that (i) g(3) =0 and /(3) £ 0 for all j e a (ii) for some multipliers
y e R\ p. e Rm, p. £ 0, (12.1.10b,c) are satisfied, (iii) there exists ab>0 such that
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min max <V/(x),A)£ MAI. (12.1.10d)

where M£ A [ Ae R*l [dg$)/dx]h = 0), and (iv) there exists an m>0, such that for

Ux) Mx) +<V*(x))+ <Hj(x)\

. PlG) .. . .2 (12.1.10d)

for all ysuch that ^^-y=0and (V/(3),y)= 0, for all; e msuch that/(3) =0and \i! >0. Then there
dx

exists ac^O such that for all c £ c, x is also a local miniminizer of/c(). •

Exact penalty functions can be combined with the Minimax Algorithm 9.3.2, to produce an algo

rithm for solving equality constrained optimization problems, of the form (12.1.1a), as follows:

Algorithm 12.1.1: (Armijo Line Search).

Parameters : a, p e (0,1). c_j > 0. 5 > 0.

Data : Xq e R"

Step 0 : Set i = 0.

Step 1: Compute the multiplier vector

y, A -
vi

dgixdT dgixd dgjxd
dx

Vfixd.
dx dx

which solves the multiplier problem

min IV/rxJ +
ds(x,)T

yr.
v « R' dx

Step2: If cm * S»i ly{l, set c, =cw.else set c, =2^ lyjl +5.

Step 3 : Compute the search direction

Ai = A(Xf) A arg min max max{/(xi) +cig'(xi)-/c.(xi)
a«r">«o '

(12.1.11a)

(12.1.11b)

+ <V/to).« + CiWfed.h) + VHAI2,

fixd - ctffo) -/c.(x,)

+ (YrTx^A) - *;Wfed.h) +fclAI2 ). (12.1.11c)

(where fcfxd -fixd+max; 6A\fed^ and the value ofthe optimality function 0c.(Xj):

Gi = ©c,(Xi) A min max maxf/fo) +c^ixd-Uxd
* € R* ^ « a
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+ Wfixd.h) + a Wfed'h) + V4IAI2.

fixd - ctfixd -fefxd

+ Wf(xd.h) - a (Vfed.h) +V4IAI2 ). (12.1.1 Id)

Step 4 : Compute the step size

Xi =arg max { p* l/e.(x, +tfhd -fe{xd - P'aO; <; 0 }. (12.1.1 le)

Step 5 : Update: set

Xjrt=Xi + MM 12.1.110

replace i by i + 1 and go to Step 1. •

The properties of Algorithm 12.1.1 can be summarized as follows2:

Theorem 12.1.3 : Consider problem (12.1.1a). and in addition to the assumptions stated, assume that

dg(x)/dx has full row rank for all x e R" (so that y(x) is well defined by (12.1.11a)).

(a) If Algorithm 12.1.1 constructs and infinite sequence { X; )~o, increasing c,- a finite number of times

only (at iui2 iN\ then any accumulation point 3 of { X; }£n satisfies the first order optimality condi

tion g(3) =0, and Vflx) + [dg^/dxlVCx) =0.

(b) If Algorithm 12.1.1 constructs and infinite sequence (x, )Z& increasing Cj an infinite number of

times, so that c* -* oo as i -4 «>, at i'i ,1*2.13 wen the subsequence { xik J^i, at which Ci was increased,

has no accumulation points. •

Exercise 12.13 : Modify the proofs in Mayne-Polak to construct a proof for Theorem 12.1.3. •

12.2. SENSITIVITY: EQUALITY CONSTRAINED PROBLEMS

We now turn to the second result that we were able to deduce heuristically from the/-g diagram

in Lecture 12.1, viz., that the optimality condition multipliers are related to the sensitivity of the value

function with respect to constraint perturbations.

First we shall consider equality constrained optimization problems with parameters and we shall

show that under certain assumptions, the solutions of these problems are differentiable functions of the

parameters. Furthermore, we shall see that the multipliers associated with the solutions of parametrized

problems are, in fact the derivatives of the value function.

Thus consider the parametrized optimization problem

2These properties can be established by adapting the proofs in: D.Q. Mayne and E. Polak, "Feasible Directions Algorithms
for Optimization Problems with Equalitiy and Inequality Constraints", Mathematical Programming, VoL 11. No.l . pp 67-81,
1976.
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v(b) A mm[f(x)\g(x) = b) (122.1)

where /;R" -* R, g:R" -> R; are twice continuously differentiable and dg(x)ldx has maximum row
rank for all xe R" and be R' is a parameter vector. The function v;R;-» R will be referred to as
the value function.

The solutions of (12.2.1) obviously depend on b. We shall now show that under certain condi

tions the solution x(b) is unique and is a difTerentiable function of the parameter b e R;. We shall see
that this fact depends crucially on the applicability of the implicit function theorem.

Theorem 12.2.1: Suppose that x(0) solves (12.2.1) for b - 0 and that second order sufficiency condi

tions are satisfied by x(0) e R" and the corresponding multiplier y(0) e Rf, viz. for

L(x.y) AAx) + (yf(x)) , (122.2a)

V^(x(0).y(0)) = 0.

V¥L(x(0).y(0)) = g(x(0)) = 0.

and there exists an m > 0 such that

^M2i mly|2 3^ _0
oxr ax

(122.2b)

(12.2.2c)

(122.2d)

Then (x(6),y(b)), the solution and corresponding multiplier of (12.2.1), are difflerentiable functions of

b% in a neighborhood of b = 0.

Proof : By assumption, x(0) is a local solution of problem (122.1) at b = 0 and y(0) is the

corresponding multiplier (it must be unique because of the rank assumption on —§—). Next, the pair
dx

(x(6),y(&)) must satisfy the necessary conditions

V^x.y) =0. (122.3a)

g(x)-b =0. (12.2.3b)

This is a set of equations which has a solution (x(0).y(0),0) at 6 = 0. By the Implicit Function

Theorem, x(b), y(£>) are differentiable functions of b on a neighborhood of b = 0, if the matrix H,

defined below, is nonsingular

H A

3*Z,(x(0),y(0)) a^x(O))
dx2

QgixjO))7
dx

AnrTT,

dx

0

Suppose that z § (x.y) is such that Hz = 0. Then we have that

dx

and

121-

(12.2.4)

(12.2.5a)



EECS 227A Lecture 122 E. Polak

gfc^TtOW^ifigagy.o. 02.2.5b)
dxr ox

Taking the scalar product of (12.2.5b) with x, we get, because of (12.2.5a) that

a>«aSWB.o. (125.5c)
dx2

In view of ( 1222d), we conclude that x=0. Since *\/ is of maximum rank, (122.5b) leads to
dx

the conclusion that y = 0. Since Hz = 0 is possible only for * = 0, H must be nonsingular. To com

plete our proof we must show that x(b) not only satisfies necessary conditions of optimality, for b in a

neighborhood of b = 0, but also sufficient conditions. For this we need the following result

For any x e R", let

N(x) A[y eR" I-^-y=O.lyl =1) . (122.6)
We will show that given 3 =x(0) and any 6 >0, there exists a p >0 such that for all x e B(3,p). if

y 6 N(x), then there exists aye N(3) such that ly - yl <8. For suppose that this is false. Then we

must have a sequence x- -> 3 as i -* <•> and a corresponding sequence y,- e N(xj), i = 0, 1, 2 such

that ly, - yl * 8 for all y 6 N(3).
K

Now, since ly,l = 1, there must be a subsequence {y,)l€ x such that y, ->y*. By continuity of

y*' we get that v* e N(x), which leads to a contradiction.
dx

Hence, since N(x) -> N(3) as x ->3, we obtain from (122.2d), by the continuity of

., •> u^11 merc eris^ a neighborhoodof &= 0 such that
dx2

?iWy» (12A7)
ox*

for all y e N(x(&)), i.e., xtf) solves (12.2). •

Since under the conditions of Theorem 12.2 x(6),y(6) are differentiable functions in a neighbor

hood of b = 0, we find that v(b) -fixib)) is also differentable and

Mb)\ =SfcfrflteflOJ (12 2g)
ob u" dr 3!> ly,"

Now, from (122.3b),

frW)*ff)-/, o (122.9a)
dx d/>

and from (12.2.3a)
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Sfoftfl =- vib)7**^ (122.9b)
dx W; dx

Substituting from (12.2.9a), (12.2.9b) into (122.8), we obtain

i^l =-y(0)r. (12.20)

We have thus proved the following result.

Theorem 1222 : Under the conditions of Theorem 12.2.1, the value function v(b) is differentiable at

*=0and-^l =-y(0)r.
db i^, •

This result could have been anticipated from the diagrams which are drawn for the illustration of

exact penalty functions as shown in Fig. 12.1.1.

Exercise 122.1: Consider the problem

v(b) A min[f(x) Ig(x,b) =0 ) (12.1.21)

where /:R" -> R, g:R" x Wp -> R; are all twice continuously differentiable. Develop conditions for

v(b) to be difTerentiable at b=Sand obtain aformula for \*. B

When inequalities are present, the situation becomes somewhat more complicated.

123. SENSITIVITY: EQUALITY AND INEQUALITY CONSTRAINED PROBLEMS

Next we shall determine the sensitivity of the value functions of a problem with both equality and

inequality constraints:

v(b) = min(/°(x) \f(x) Z bltg(x) = h). (12.3.1)

where /°:R"->R,/;R"-• Rm. g:R"->R; are all twice continuously differentiable;
bx e R1, bi e Wm and b A (bltb^.

For any h^erxR1 . let F(b) A [xe R" \f(x) £&,. g(x) =62} and let
B A [(bub£e WxJR' IF(b) * P). For any b e B, we shall denote by x(b) a solution of (12.3.1)

and we define

1(b) A (; € m I/«&)) = bfx ). (123.2a)

M(x(b)) A [y I frWWy =0. (V/(x(&)).y) =0,; e 1(b)) . (12.3.2b)

For the equalities only case. (122.1), we saw that the solution x(b) of (12.2.1) was differentiable

at b - 0 if *gWW Ytad maximum row rank and second order sufficiency conditions were satisfied at
dx

x(0). In the case of (12.3.1) we need slightly stronger conditions.

Theorem 123.1: Suppose thatx(0) is a local solution of (12.3.1) and that
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(i) The gradients (vV(x(0))}y€ a together with the gradients {V/(x(0))/6 m are linearly indepen
dent

(ii) For L(x,^.y) Af(x) + ^ij(x))+ <y,g(x)\ there exist p(0) € R"\ y(0) e R' and an m>0 such
that

VJtL(x(0).p(0).y(0)) = 0.

^W(x(0)) =0.Vi€za.

M>(0)>0.V;e7(0),

^ y/(x(0)g).y(0))y^ mlyf vy6M(x(0))

(12.3.3a)

(12.3.3b)

(12.3.3c)

(12.3.3d)

Then there exists a differentiable function x(b), together with corresponding differentiable multiplier

functions \i(b), y(6), all defined on a neighborhoodof b = 0, which solves (12.3.1).

Proof : To simplify notation (which can always be obtained simply by renumbering the functions),

suppose that 7(0) =4, with k£m. Lei/JR" -> R* be defined by fe) =fe) for all ;* e £, let p e R*
and let LCx.p.y) A f°(x) +<$Lf(x))+ (y,g(x)). Now consider the system of equations:

V^x.jl.y) = 0, (12.3.4a)

*(X) = *2.

A

(12.3.4b)

(12.3.4c)

Let AfQI) £ diagG?) and let Fix) = diagifix)). Then, by the implicit function theorem, the system

(123.4a - c ) has a differentiable solution x(b), p(6), y(6), in a neighborhood of b - 0, if the matrix

H A

d2LjxiO)).\iiO)MO)) a/WO))7 djKxfl)))7"
dx2 dx dx

MiuXQ))
dfixjO))

dx

3*(*0»
dx

WO)) 0

0 0

(12.3.4d)

is nonsingular. Since /(x(0)) = 0 for all j e 7(0), we see that F(x(0)) = 0. Next, because of (12.32c),

Af(p(0)) is nonsingular. Let z Aiu,v,w) e R"xRS<R* be such that Hz =0. Then we have

dx
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d2L(xi0)).M(0)M0) u+ tfxmf^ **Mfw =o (123.5c)
dx2 dx dx

Taking the scalar product of (12.3.5c) with u, we get because of (12.3.5a, b) that

k^owo).Y(0)),)o0,
dx*

Because of (12.3.3d), (123.5a,b) and (123.6) imply that u = 0. Since, by assumption, the matrix

df(xiO))T ,MxiO))T... has linearly independent columns, it follows from (12.3.5c) that (v.w) = 0.
ox dx

Hence, we see that H is nonsingular, and therefore the differentiable functions x(6),p(6),y(6) exist in a

neighborhood of b =0 and satisfy (12.3.3a - c). Now, since p/(0) >0 for all j e &, by continuity of
PC), there exists a pi > 0 such that J?(6) > 0 for all Ibl £ p!, and ; c &. Hence, from (12.3.4b),

fe(b)) = y, for all je £ and 161 £ pi. Next, since f(x(0)) < 0 for all j eg, there exists a p2 e (0,p0
such that f(x(b)) < b{ for all j €& and Ibl £ p2. Therefore, for all b = (61,62) sucn diat 161 £ p2, there
exists a continuous function x(6) solving (12.3.4a - c) such that

/<&}>** Wjem
*(x(6)) =62 * (12'3-7)}

i.e., x(6) e F(6) for all 161 < p2. Next, because by (123.4a, 4b)

V/(x(6).P(6),y(6)) =0. (12.3.8a)

and hence x(6), p(6), y(6) satisfy first order conditions. Referring to (12.3.2d), it follows by continuity

that there exists ape (O.p^ such that

^msbmsw.^ iy.v,<= um) • (12.3.8b)
But this implies that for 161 £ p, x(6) together with p(6) = (P(6),0) and y(6), satisfy second order

sufficiency conditions and hence x(6) is a local solution of (12.3.1). •

Since x(6) is difTerentiable at 6 = 0, v(6) is differentable at 6 = 0 and

dv(6)| bf(x(b)) dx(b))\
ob U.0- dx d6 U" C123-y)

Now, because of (12.3.8a),

dfjxjO)) _
dx

fw^+^hm.
dx dx

From (12.33c) we have that

(12.3.10)

a^CT?affl)-[0lll. (123.11a)
ox do

and from (12.3.3b) we have that
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Wb)Jix(b)) - 6,)= 0. (123.11b)

so that

P(0)T
dx db

***»> *ff - [7 10] *JbmfSm=o. (12.3.11c)
d6

Substiting into (123.9) we finally get

4^1 =- OKOJVO))7) • (12.3.12)
d6) U.o

We can summarize our findings in the form of a theorem:

Theorem 1232 : Under the conditions of Theorem 12.3.1, the value function v(6) is differentiable at

6=0and -^1 =- 0i(0)rly(0))T).
d6 i^, •

12.4. DUALITY

The final result that we are going to obtaing from/- g type diagrams deals with duals of optimi

zation problems. Thus, consider the parametrized problem:

P; utin[f(x)\fe)*b?.j=l.~-lmjce X }. (12.4.1)

where the set X c R* is convex, and the functions/°:R" -> R, and/:R",y = 0,1, • • • ,m, are convex

(and hence continuous) on X -> Rm. We shall use the notation/=(fi,...,/m)r.

Assumption 12.4.1 : (i) There exists an xo e X such that /(xq) < 0 for all j e m; (ii) for every

6 € Rm such that the set { x \f(x) £ 6, x e X ) is nonempty, the minimum in (12.4.1) is achieved. •

For any 6 e Rm, we define the feasible set

Fb A [x\f(x)Zb.xeX), (12.4.2a)

and we define the set

B A [beWr\Fb*p). (12.4.2b)

Note that by Assumtion 12.4.1 (i), 0 € B.

Finally, we define the value function vF:Rm -> R of the primal problem by

vp(6) = inf sup (fix) +<Mx) - 6)) . (12.4.3a)

and we define the value function vd;Rm -> R of the dual problem by

v^6)= sup inf (fix) +<vlJ(x) - b)). (12.4.3b)
|i20 x« X

We now proceed to show that B is convex, that vp(), restricted to B, is convex, and that for

6e B, vp(6) =min{/)(x)l/(x)£6'.; =0.1. ••• ,m.xe X ). Then we will show that vj(0) =v,(0),
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and that we can solve (12.4.1) by solving the dual problem (12.4.3b).

Lemma 12.4.1: The set B is convex.

Proof : Let b\, 62 e B and let X e [0,1]. By definition of B, there exist xlt x2 e X such that

f(xx) £ 61,y(x2) £ 62. Since the components offi-) are convex by assumption, it follows that

fQxx +(1 - JOxz) £ VW +(1 - Wxj) £ X6{ +(1 - X)bi, V;em. (12.4.4)

Since X is convex by assumption, to + (1 - X)x2 e X, and hence we see that Xbi + (1 - X)62 e B. •

Lemma 12.42 : Suppose that 6 € B, then

v,(6) =min{/(x) \fe) £ V. j =1, ••• ,m. x e X ). (12.4.5)

Proof: Suppose that x e X is such that/(x) > U for some / e m- Then, for this x,

supA 0°(x) +<Mx) - 6)) =* . (12.4.6a)

Hence we conclude that me must have

vp(6)= inf snpn(f(x) +Mx)-b))
r icX 1120

fix)**

= inf{/°l/(x)£6,x€ X }.

Since by Assumption 12.4.1 (ii), the infimum in (12.4.6b) is achieved, our proof is complete.

(12.4.6b)

Lemma 12.43 : The value function vp() is convex on B.

Proof : Let 6i, 62 e B be arbitrary, and let X e [0,1]. Then, making use of Lemma 12.4.2, we

obtain that

Xvp(b{) + (1-X)vp(bj =min{ V°(xi) l/fri) £ bx jc, e X }+ min{ (1-Xf(xd \fix£ < b2jc2 e X )

= min{ VW + (1 - Xjfbi) \M) <; bufix^ £ 62. xx. x2 e X ]

* min{ V°(xi) + (1 - Xtfixd IX/lxi) + (l - X^xj) «S 7Jbx + (1 - X)62. x^ x^e X )

* min{Ax) l/(x) £ X6j + (1 - A)62. x e X }

=vp(X6, + (1 - W . (12.4.7)

which shows that vp() is convex. •

The remainder of our analysis will take place in R""1. We will denote vectors in R"*1 by

F= (z°,z), where z° e R and z e Rm. As before, we define the function F.-R" -> R"**"1 by
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™*M (12.4.8)

Fbr m - 1 the set F(X) and its relation to B are shown in Fig. 12.4.1.

Definition 12.4.1: The graph of vp(-) is the set

r A[Te R"*1 Iz GB. z° =vp(z) }. (12.4.9a)

The epigraph of vp() is the set (see Fig. 12.42))

r0 A[Te R"*1I z€ B, z° * vpiz) }. (12.4.9g

Note that r0 is convex because vp(-) is convex.

Next we observe that the following relation holds:

vj® = sup inf (/°(x) +W(x) - 6»
|l20 X€ X

= sup inf (z° +<*i,z - 6)). (12.4.10)

Next, let

dip.) A inf if°ix) + <VLfix)))
IE X

=_"* <*° +<M). (12.4.11)
re F(X) v '

then we see that v/Q) = supH 2o ^O-O- Th© quantity <f(|i) has an important geometrical interpretation.

Hrst, it is the value of minimizing the linear cost function z°+<p,z)on the convex set F(X). Hence, if

the minimum is achieved at the point z*, then the hyperplane ( Te R""1 Iz°+ <p.,z) = dip) ) is tangent

to F(X) at z*. Furthermore, this hyperplane intercepts the line {Te R"*"11 z = 0 } at the point
(d(p),0), as shown in Hg. 12.42. It follows immediately that dip) £ v,(0). In fact, we will prove the

following result.

Lemma 12.43 : For every 6 e B, v/jb) £ vp(6).

Proof: Let 6 € B be arbitrary. Then for all x' € X and p. £ 0,

jjrf (fix) +<Mx) - 6)) £AxO +<*i^xO - 6), (12.4.12a)

which leads to the conclusion that

v/6) = sup inf (fix) +<pj(x) - 6))
|L20 2(1

£ supft (fix') +<pfixT) -b)). V x'6 X . (133.4.12b)

Hence
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vJib) £ inf supn (fV) +^AxT) - 6))

= vp(6). (12.4.12c)

Definition 12.42 : We define the negative octant Q_ by

Q_ A [ Te R"*1 Ii'< 0.; =0.1.2 m }. (12.4.13)

Lemma 12.4.4 : suppose that z* = (z°*,6) € R"*1 is such that z* € T. Then

[r0-{z*)]nQ-=*. (12.4.14a)
Proof: Suppose not Then there exists a z** e T0 such that

z**° - z*° < 0. (12.4.14b)

z**> - y < 0. j = 1.2 m . (12.4.14c)

By definition of r and r0, z*° =vp(6) and z**° £ vp(z**). Also, since z** <6, we must have that
v,(z**) £ v/6). Hence

z*° =vp(6) >z**° S v„(z**) £ vp(6) . (12.4.14c)

which is a contradiction. •

Theorem 12.4.1: Suppose that Assumption 12.4.1 is satisfied. Then vp(0) = v/0).

Proof : Consider the point z* = (vp(0),0) e T. Then, by Lemma 12.4.4, (T0 - { z* )) ^ Q- = Pand

both Q_ and r0 - { z* } are convex. Therefore T0 - { z* ) and Q_ can be separated, and hence so can

be their closures, Le., there exists a nonzero vectorn e R'"*1 and an a e R such that

<f.j& * a. V Te T0 - { z* }. (12.4.15a)

<f.7D £ a, V Te g., (12.4.15b)

where 21 denotes the closure of Q_. Since 0 e (T0 - { z* }) ^ g_. it follows that a = 0. Since the

R"*1 unit vectors -ej e g_ for> =0,1,2 m, it follows from (12.4.15b) that

(-«-.«) =-jr* £ 0. for; = 0.1.2 m . (12.4.16)

which shows that n'iO for; =0.1.2 m. We shall now show that Jt° >0. Suppose not. Then n° =0
and hence (12.4.15a) yields that

Ew^-O^XTrysO V Te T0. (12.4.17)
/-i >»i

But by Assumption 12.4.1(i), there exists a 6' € B such that 6' <0. Since (v,(6').6') € T©, it follows

from (12.4.17) that
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£itfc**0. (12.4.18)
/•i

Since the nV^O for j= 0.1,2 m, it follows that 1^ =0 for y=0,1,2,... ,m, and hence that 7c = 0,
which is a contradiction. Hence we must have tc° > 0. We now define

P-nW. ; =1.2 m. 024.19)

Then, from (12.4.15a), we obtain that

-k&.T- 7*)=z0-z*°+ <p,z - z*) * 0, VTe T0 . (12.420a)
vr

Since z*° =vp(0) and z* =0, (12.420a) yields

z° + <£.z> * v,(0). V F€ T0 . (12.420b)

Since F(X) c Tq, it follows that

Vd(0)=sup inf (z° +^.z-6»

2 sup inf (z° + <»i,z - 6))
t»i0rcr0

;> inf (z° +<p,z-6))^v;,(0). (12.4.21)
«o r0

In view of Lemma 12.4.3, we must therefore have that vp(0) = v/0). •

Remark 12.4.1 : Note that the above result was established without any differentiability assumptions*

One of the ways in which duality is used is to estimate "cost-to-go" in an optimization and to use

this estimate to stop a computation. Thus, suppose that we have a "primal-dual algorithm" which con

structs a sequence of multipliers { p,} which are dual feasible and a sequence of points { x,) which

are primal feasible for problem (12.4.1). Then dipd ^ vp(0) £ fixd for all i. Hence when duality
applies, f(xd - dipd is a good measure of the cost-to-go, and when it is below a threshold, computation

can be stopped.

Next, suppose that we apply an algorithm to the dual and construct a sequence { p, ) which is

dual feasible. If we use the p,- to construct a sequence { x, } satisfying

dip) = (fixd + <pf(xd)). (12.4.22)

then, quite likely we will have that fed < vp(0). But then the x, cannot be primal feasible. Thus, by
solving the dual, we probably approach primal feasibility in the limit. This can be a real disadvantage

in real-time operations.

Finally, consider the quadratic programming problem
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min{ jix.Qx) +<cx)l<a>.x> SO. ;=1.2 m}. (12.423a)

where Q is a positive definite n x n matrix. LetA be an m x n matrix whose ith row is a7. Then the
dual of (12.423a) is

sup inf {—(x.Qx) + <c.x) + <Mx>). (12.423b)

Since the function in (12.423b) is convex and differentiable in x, given p we can compute the

corresponding mimimizer x^ from the optimality condition

(2xH +c+Arp =0. (12.4.24a)

Hence

Xp. =H2"l(c +AT\i). (12.4.24b)

We now compute that

xjGxH =(c +Arp)Tfi-1(c +Arp)

= c7GTlcT + 2c7Q-lA7\L + \LTAQTlAT\i ; (12.425a)

prAxR =-p7AQTl(c +ATp)

= p^g^c - vFaQtWvl; (12.4.25b)

c\ =-fQ^c - c7^"1^ . (12.425c)

Substituting into (12.423b), we obtain that

vj(0) =supf -\(p,AQrlA7[i) - (c.Q-'A7*) - ±<c,Qrlc) ). (12.4.26)

Note that (12.4.26) is a quadratic program with simple constraints (p £ 0), but we must compute Q~\

Exercise 12.4.1: Consider the search direction finding problem

min max [fe) - y(x) +(Vfe),h) +hhl2 }. (12.427a)

m

Use the Duality Theorem 12.4.1 to show that its solution h* is given by h* =- £ \i**Vfe)* where the

p*7are any solution to the dual problem:

max {f, Mix) - y(x)) - -^L ^V/(x)l }. (12.427b)
* « L >=i 2 >=i

whereZ £ { pe Rmlp/^0.;e a. 2^ =1 ).
>»1 •
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Fall 1988

13. UNCONSTRAINED OPTIMAL CONTROL

We shall now show that the optimality conditions which we have derived for finite dimensional

optimization problems have obvious extensions to optimal control problems.

13.1. FIRST ORDER EXPANSIONS OF SOLUTIONS OF DIFFERENTIAL EQUATIONS

Before we can derive optimality conditions for optimal control problems with nonlinear dynamics,
we need to develop formulae for first order expansions of solutions of ordinary differential equations.
Hence consider the differential equation

4x(0=Kx(t).u(t))t t e [0.7], (13.1.1)
at

where *;R" x R" -» R" is continuously differentiable and u(-) is a piecewise continuous function from
[0,71 into Ut a subset of R"\ We shall denote by U[0,7] the set of piecewise continuous functions
from [0.71 into t/, and we shall denote by x(t,xo.u) the solution of (13.1.1) corresponding to an initial

state xo and a control u e U[0,71.

It takes several applications of the Bellman-Gronwall inequality to show first that x(t,Xo,u) is
Lipschitz continuous and then that it is continuously differentiable in (xo.u), in the L»[0,71 topology.
We omit the laborious proof of these facts, and content ourselves with deriving the formula for the

differential of x(tjco.u) with respect to (6xo,5u).

First we recall that, given a Banach space X, the differential of a function /.X -> R", at x e X,

is defined as the linearfunctional d/(x.-) with the property that

^ l{(x+h)-f(x)-df(x;h)\\=0 (13U)
*-»o IAI

When the differential of f:X -» R" exists, the directional derivative is equal to the differential, i.e.,
ajix:h) =dfix;h), and a formula for both can be obtained from the fact that for any x. he X,
of(x;h) =bf(x +sh)fdst evaluated at s - 0. Hence we proceed to find a formula for the differential of
xitjo.u), as follows.

Proposition 13.1.1: Let PC[0.71 denote the space of piecewise continuous functions from [0.7] into
R"\ Suppose that u.8« e PC[0.71, and xo.&x e R". Let the differential of x(t,xo,u) be denoted by
6x(/Jo,u;&Xo.5u). Then

A dx(/JCa + QXq.U + s&u) ,.- . - ,6x(r,X6.«;oxo,8u) A ^ i[^. <13-L3a>
and6x(r,xo,u;8u) is the solution of the following linear differential equation
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j_ _W*>.*)M<)) +»W*A*ff> faw>,. [071> (i3.Ub)
dt dx du

6x(0) = oxo. 03.1.3c)

Proof: By the definition ofx(tJo,u + shu), we have that for every t e [0.71

x(tJo +j6xo.m +sbu) =xo +sBxq +J A(x(x jco +*&*o." +s6u).u(x) +j8u(x))dx . f€ [0.71 (13.1.4)

Taking the partial derivative ofboth sides ofequation (13.1.4) with respect to j and evaluating ats = 0,
we obtain

Hdh(x(xtXo + QXo.tf + sBu),u(x) + sSu(x)) dx(/,Xo + Sxq.k + s8k)
dx d*

d/»(x(T.Xo +SXo.M +S&U).U(X) +S*U(X)) \ J
+ r OU(X)f tft

du J Uo

-*»♦ jl^ '̂̂ ^^.-Su), ^^'^(t)}*. (13.1.5)
The desired result now follows by inspection. •

Corollary 13.1.1: Let <D(/,t) denote the state transition matrix ofthe linear system (13.1.3a), i.e,

*££ =aWM€ for Mg (13.1.6a)
d/ dx

<&(*,/) =/. for re [0.71. (13.1.6b)

Then for any / e [0,71,

' t Bh(x(xjo,u),u(x)) 9 vj_8x(f^o.«;8xo.8«) =<D(/.0)8xo + f*«.x) ^u 8u(x)<rt . (13.1.6c)

i.e., O(/,0) is the jacobian ofxitjo.u) with respect to xo and d/i(x(T.xo,«),«(x)ydtt is the "jacobian" of
x(tjQ,u) with respect to «. •

Note that the jacobian ofx(tjo,u) with respect to xo is a matrix, since all linear operators on R"
have matrix realizations, while the "jacobian" of x(t jcq.u) with respect to u is a kernel for a linear

operation defined through integration.

132. FIRST ORDER OPTIMALITY CONDITION

Now we consider following optimal control problem

tnin[/°(x(7)) Ix(t) = h(x(t),u(t)). for t e [0.71 . x(0) =Xo . ue U[0.71 ) . (132.1)

where /°:R"-4 R and n.R" xR"-»R"are continuously differentiable, the initial state Xb is given,
and U[0.7] the setof piecewise continuous functions from [0,71 into Ut a subset of Rm.
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Note that U[0,71 c L. is not compact in the L. topology, and hence it is not clear whether

(132.1) has a solution. We now proceed to derive first orderoptimality conditions for problem (132.1)

on the assumption that it does have a solution.

Theorem 132.1 ( First Order Optimality Conditions ) : Suppose that u e U[0.71 is an optimal

control for (132.1) and xQ is the corresponding optimal trajectory. Let p() be the solution of the

adjoint equation

P(0 = -
dx

pCT) =Vf(x(T)) . (132.2b)

Then for any Su such that u + sbu e V[Q,T\ for s e [O.j&J, with su > 0,

f $(T),M|MW A 2 o. (13-2.3)
*o ou

Proof: Let Su be as above. Since «(•) is an optimal control for the problem (13.2.1),

/W,xo.u +sbu)) -f(x(Tx>,u)) Z0.V s e [0.J&J . (132.4)

Dividing both sides of inequality (13.2.4) by s and letting s tend to 0, we obtain

VfCxtT))7 &x(Tjo,u;bu) St 0, (132.5)

where 6x(-,xo,«;8u) is defined by (13.12). Making use of Proposition 13.1.1, we conclude that

&^.xo.2;8«) =[o<t>(T,x)^^bu(x)dz, (13-2.6)
where 4>(v) is the state transition matrix for the linear system (13.1.3a) with u() =£(•), Le.,

d*^ =dft(x(0,S(f))g(,tT)t for € [0T] (132.7a)
dr dx

<K/./) = / . for t e [0,71. (13.2.7b)

Thus, (13.2.3) follows from (13.2.4) and (13.2.6) and the fact that p(t) =0(r./)TY/°(x(7)). •

Corollary 132.1 : Suppose that U = R"\ u e U[0,71 is an optimal control for (132.1) and that xQ

is the corresponding optimal trajectory. Let p() be the solution of the adjoint equation (13.2.2a) and

(1322b). Then for every t e [0,71,

|d/i<^/).ii(:r)?U0=0 (132.8)
Proof: Let

dhCKt).u(t)) p(t), for / e [0.71 , (132.2a)
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5S(/)=-{3^ '̂>|p(0 .<e[0.71. («^.9)
Since U = R", u + sSue 1)10.7] for all j e R. Hence, it follows from Theorem 132.1 that

o^ f(p(t).^-Sw?sa(t))<ft
Jo du

r
'o

Thus

c

=-f I8S(x)l2rfr <: 0. (13^-10)

f I8u(x)l2 A o 0 . (132.11)

Since 8uQ is piecewise continuous, weconclude that Suit) =0 for all t e [0,7]. •

133. GRADIENT METHODS

We shall now consider the special case of problem (13.11)

min{ /W)) Ix(t) = h(x(t),uit)), for / € [0.71 . x(0) =x<,. u e U[0.71 ) . (13.3.1a)

where /°:R" -> R and n:R" x Rm -> R" are continuously differentiable, the initial state xq is given,
and U[0.7] the set of piecewise continuous functions from [0.7] into R"\ As before, we shall denote by

x(ip^,u) the solution of (13.1.1) corresponding to an initial stateXo and a control u e U[0,71.

First we note that problem (13.3.1a) can be rewritten as an unconstrained problem in the space

U[0.71, as follows:

"fen-n^ (13.3.1b)*« c U[0.TJ

where/;U[0,71 -> R is defined by

f(u) A f(x(Tjo.u)) . (13.3.1c)

Since both /(•) and x(7^o,) are differentiable, it follows that the function f() is differentiable,
and that, by the chain rule, its differential is given (via Corollary 13.1.1) by

df(u;Su) = <VfixiTjQtu)),hx(Tx>,u;0,bu))

-jVfW^.W.^^™«<» ax
7{wy^ilWl(r^w A
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)(x).8x) dx.= f <vyw

where

a a^r)>M(T))r^.x)rvAx(r.x0.,))
du

dh(xixpco.u),u(x))7
du

/>(x).

Lecture 133

with p(*) the solution of the adjoint equation

T

/K0 = -
dhixit,Xo.u),uit))

dx
p(t), for / e [0,71 ,

p(7)= V/)(x(7,tt^o)).

If we define the scalar product in U[0,7] by

T

va,v)2 £ f^(0.v(0>*.

E. Polak

(1332)

(13.3.3a)

(13.3.3b)

(13.3.3c)

(13.3.4)

then we see that the function Vftu) is the function space analog of the gradient of a function from RR

into R. Furthermore, it should be clear that it is continuous with respect to the Lm[Q,T\ norm. Hence

we get the following obvious extension of the Armijo Gradient Method 3.32 to the problem (13.3.1b).

Armijo Gradient Algorithm 133.1 :

Parameters: a,pe (0,1).

Data: no e U[0,71.

Step 0 : set i = 0.

Step 1: Compute the search direction

hi = hiud A -VjGO. (13,3.5a)

Stop if V/M = 0.

Step 2 : Compute the step size

Xi =p*' Aargmax jp* \f(Ui+p**) -f(ud *-P*a (VA«O.V>We |
Step 3 : Update

Xn-i - Xi + Xihit

replace i by i + 1 and go to step 1.
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Note again that the evaluation of Vfiud in the algorithm above requires several operations: (i) the

differential equation (13.1.1) has to be solved for u - u„ from the given initial state xq\ (ii) the adjoint

equation (13.3.3b), (13.3.3c) has to be solved, with u= ui% for p(t,ud\ and finally, Vfiud can be com
puted using (13.3.3a), again with u= u, and p(t)= p(t,ud. Similarly, each test in the Armijo step size

rule requires the solution of the differential equation (13.1.1), from the given initial state xo, using the

control u(t) = «,</) - P*V/(")(0.

In view of the continuity of the gradient function Vft-). the following theorem should be obvious.

Theorem 133.1:

(a) The Armijo step size rule is well defined.

(b) If { Ui )Zo is an infinite sequence constructed by Algorithm 13.3.1, then every accumulation point

u (in the 1_[0,71 sense) of {«,)•* satisfies V/(u) = 0. •

Unlike the finite dimensional case, a bounded sequence of controls in U[0,71 need not have accu

mulation points in the L_[0.71 sense. Hence the above theorem seems to be weak. Fortunately, there is

a topology, call the the relaxed controls topology in which such a sequence always hasan accumulation

point, and it can be shown that the above theorem remains valid in the above topology as well.

Exercise 133.1: Construct a formal extension of the Polak-Ribiere conjugate gradient method for solv

ing the optimal control problem (13.3.1b). •

13.4. LINEAR-QUADRATIC REGULATOR PROBLEM

In this section, we shall obtain analytical results for the following linear-quadratic regulator prob

lem with time-invariant dynamics:

T

min{f ( V4(x(/),Gx(0)+ xM*(t) *u(t)))dt Ix(t) =Ax(f) +Bu(t) , forte [0.71 .

x(0)=xo,ue U[0.71) , (13.4.1)

where U- R", xb is given, R is a symmetric, positive definite nxn matrix and Q is a symmetric,

semi-positivem x m definite matrix.

Remark 13.4.1 : It can be shown that problem (13.4.1) always has a solution. •

Assumption 13.4.1 : We shall assume that the pair £4,£) in (13.4.1) is completely controllable, and

that the pair (A,Q*) is completely observable. •

First, by augmenting the state variables of the linear dynamics in (13.4.1), we transform problem

(13.4.1) into a problem in form of (132.1):

min{ y°(x(7)) Ix\t)= (x°(0^(0) .
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x°(t) = V«x<0(fix(i)H WXQJtu®). for t e [0,71.

Hi) = Ax(/) + Buit), for / e [0.71 ,

A0) = 0,x(0) = Xo.ii€U[0,71) ,

where Ax) = teo-xV Xq and e0 = (1.0. • • • ,0)re R^1.

E. Polak

(13.4.2)

Suppose that u e U[0,7] is an optimal control for problem (13.4.1) and that x(-) is the

corresponding optimal trajectory. Then, it follows from Corollary 13.2.1 that for all t e [0.71,

T

u(t)7R
. B .

where pi:) satisfies following adjoint differential equation

*o = o.

dpjt) _
dt

0 YiOQ
10 A .

(13.4.3)

p(t) . for t e [0.71 . (13.4.4a)

fKT) = eo. (13.4.4b)

Let 5(0 = (p°(t).p7(t))7, where p°(0 e R and p(t) e R". Then equations (13.4.4a) and (13.4.4b)
become

p°(0 = 0 . t e [0.71 . p°(T) = 1 .

p(t) = -A7p(t)-Qx(t)p0(t) . te [0.71 . /*7) = 0.

Hence p°(t) = 1 for all r € [0.71. Thus, making useof (13.4.3), weobtain

u(t) = -FTlB7p(t) . for / 6 [0,71 .

(13.4.5a)

(13.4.5b)

(13.4.6)

Making use of (13.4.5b), (13.4.6) and the fact that x() is an optimal trajectory, we conclude that

xX) and p(0 satisfy following linear differential equation:

d\x(t)]_\ A -BR-W
1 \p(t)r[-Q -A7 4

x(0) = xo. /KD = 0

x(0

L/K0J
. for / e [0,71. (13.4.7a)

(13.4.7b)

Proposition 13.4.1 : If u() is the optimal control for (13.4.1) and x() is the corresponding optimal

trajectory, then the following relationship holds between the optimal cost and the adjoint vector p() at

1 = 0:

f ( V6G(0.Gx(0H V4<S(0^«(0»A = V6 U(0)./K0)>.

Proof: Making use of (13.4.7a), we observe that
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-£ W)3ffl =WOAO) +VKO.-^)

=-<fix(OAO> - <A7p(t)%t)) + ^0^x(0) - <p(t),BirlB7p(t))

=-G(0,Gx(0)- <p(t)JR-lBTp(t)). (13.4.8b)

Since u(0= -ITlB7p(t) and p(7)= 0 by (13.4.7b), the desired result follows. •

We now proceed to express pit) in terms of x(t). Let 0(t.x) be the In x In state transition matrix

for the system (13.4.7a) and let the In x In matrix H be defined by:

A -BR-lB7

Then we must have that

-f<&(*,x) = //<&(*.x). for r e [x,71 ; <fr(x.x) =/ ;
dt

-l<D((.x)r =- H7<t>(t.x)7. for xe [/.71 ; O('.0 =/ ;
tfX

fe5(7)1 x(/)^(T./) I^J. for te [0.11.
We partition the 2a x 2a matrix <&(T,t) into four nxn submatrices as follows:

0(7.0 «
[O„(7\0 «i2C.O

L*2i(T,0 •taCT.O. *

Then, because of (13.4.7b), the bottom part of the equation (13.4.9d) can be rewritten as follows:

0 =p(T) = afcOMftr) + <h2<T.0pit) . for t e [0.71. (13.4.10b)

Assuming that Gj^.O is nonsingular, we find that

p(t) = PTit)x(t). (13.4.11a)

where

Pr(0 = -*22(7'.0"1O2i(7,.0 • (13.4.11b)

The matrix P-jit) depends upon the terminal time T, and on the matrices A,B,Q and R, but not on the

initial state xq. In view of Proposition 13.4.1, we get the following result:

Corollary 13.4.1 : If «(•) is the optimal control for (13.4.1) with corresponding optimal trajectory x(-)

and P-rit) is defined by (13.4.11b), then for all nonzero x(0) e R"
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T

( V4<x(0.ex(0H W%t).Xu(t)))dt = V4 <x(0).p(0)) = V4 <x(0),rY0)x(0)> . (13.4.11c)°i

Before proceeding further, we will show that the matrix Q&iT.O is nonsingular.

Lemma 13.4.1 : The matrix ^(T.t) is nonsingular for all t e [0.71.

Proof : Suppose that &zz(Ttt) is singular at ^ e [0.71, and hence so is its transpose. Therefore there

exists a nonzero vector \ e R" such that ^JAf% =0. For / 6 ft,71, let wx(;) = 02\iT.')7% and let
h>2(-) = ^(T,-)7^. Then, making use of (13.4.9c), we obtain that

-r <h'i(0.w2(0)=<h'i(0.w2(0) + <w,(0,w2(0>
at

=- <ATwi(<) - Qw*t),w2it)) - (wtQ.-BR-WwM) - Aw2(0)

= <Qw2(t),w2(t))+ (wAOJR-Wwtt)). (13.4.12a)

Hence, because h>i(7) = K^fa) = 0, we obtain that

0= f -r(w1(0.w2(0)A= f (Qwi(t),w2(t)) + MO.Bir^WOW'. (13.4.12b)

which leads to the conclusion that (Qw2(t),W2(t))=0 and {w^OM'^w^t))- 0 for all t e [tlfT\. Since
R is positive definite, by assumption, we conclude that B7wx(t) = 0 for all t e fa,71. It now follows
from (13.4.9c) that

w2(0 = Aw2(0. ^^0 = 0. (13.4.12c)

and hence that w2(0 = 0 for all / e fa,71. In particular, we must have that w^T) = ^(T.T)^ = 0.
Since tihiJJ) = /, it follows that \ - 0 and hence we have a contradiction, which completes ourproo*

Next, we shall derive a matrix differential equation which Pjif) must satisfy. By differentiating

equation (13.4.11a) and making use of equations (13.4.7a) and (13.4.11a), we obtain

+PM&&/K0 =rM0x(0 +P7<0- dt

IdT.= Pt(0x(0 + PiWm) - BR-lBlpit))

=PjiQxit) +PT(t)(Ajt(t) - BirlBTPT(t$it)) . (13.4.13)

But, substituting (13.4.11a) into (13.4.7a), we find that
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p(0 =-G»0-ArPI<0x(0. (13,4,14)
From equations (13.4.13) and (13.4.14), we conclude that

[PiiO +?1®A +ATpriO - PMBRtWPjW +Q)x(t) =0. (13.4.15)

Since /MO does not depend upon initial state, and since x(t) is a solution of the homogeneous equation

#• =(A -B^B7Pr(t))xit) . <13A16)
dx

we must have that

*XO =*(/.0)xo, (13A17)
where ¥(/.x) is the nx n state transition matrix for the linear system (13.4.16). Substituting (13.4.17)
into (13.4.15), we obtain

[Pr(0 +JWM +A7Pr(t) - P^BirWPjit) +C)^.0)xo =0 , Vre [0.71. (13.4.18)

Making use of the fact that V(t.O) is nonsingular and the fact that equation (13.4.18) holds for any ini
tial state xo , we conclude that Pt() satisfies the Riccati equation

PjiO - -JVOA - A7Pj(t) +P-tfBRrWPTit) -Q. (13.4.19)
with boundary condition (from (13.4.11b)) PrCO =0. Taking the transpose of both sides of equation
(13.4.19), we obtain that both P^t) and /MO7 satisfy the same equation and the same boundary condi
tion. It follows from the uniqueness of the solution of differential equation that PjQ) =P-rit)7. There
fore Pr(0 is symmetric.

Thus, we haveestablished the following result

Theorem 13.4.1: The linear-quadratic regulator problem (13.4.1) has an unique optimal control ui)
defined by

S»-^irWr*»8W. (13A20a)
where Pt<0 is die symmetric, positive definite solution of the Riccati differential equation (13.4.19)
with boundary condition P-rCT) =0, and x() is the corresponding optimal trajectory"satisfying following
linear differential equation

^ =(A - BirWPMfxit) .forte [0.71 , x(0) =xb . (13.420b)
dt

Lemma 13.42 : For any Xq e R" and T>0, let J(xq,T) denote the value of the problem (13.4.1), Le.,
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r

J(xo,T) = min{ f ( Wx(t),Qx(t))+ Wu(t)Jlu(t)))dt Ix(t) =MO +Bu(t) .forte [0.71 .

x(0)=Xo.«eU[0Jl). (13.4.21)

(a) For any xo e R", if T > T\ then J(xqT) t /(xoTO;

(b) There exists an a € (0,<») such that J(xq,T) £ alxol2 for all T e (0,«).

Proof: (a) Let «'(•). «"(') be the optimal controls and £*(•). x"Q be the corresponding optimal trajec
tories for (13.4.1), with T=T,T' respectively. Then

r

Axo.70 = f ( V4#(0,Gx'(0H V&'(t),Ru'(t)))dt

T

£ f (V4 <x"(0.fix"(0H h &'(t)Jlu"(t)))dt

r

Z f ( V4 <x"(0.Gx"(0>+ V4 6"(0./&"(0»<& =/(xo.n . (13.4.22)

(b) Since, by assumption, (A^) is completely controllable, there exists an n x n matrix K such that the

real parts of the eigenvalues of A +BK are all less than -y< 0, so that le******! £ pe1", for some
p<». The corresponding trajectory is given by xit) = et(A'*'BK)x0 and the corresponding control is
given by u(t) = Kx(t) =Kt** +fl*)x0. Since the constant feedback control law, defined by uit) =Kxit)
defines a feasible control for (13.4.1), we must have that

T

J(xi>.T)zt(WJ(A+BK>xo,Qet(A+B*>xd+ WKe^+^xtJUCe^+^xdW

£ lx<,l2|V4(lj2l +\K7RK1) le**+B*>l2dt

Z \x<fWi(lQl +UC7RK1) pV2***/. (13.4.23)

Since the last integral is finite, the desired result follows. •

Theorem 13.4.2 : (a) When T-* », the feedback matrices P-riO), defined by (13.4.11b) converge to

a symmetric, positive definite matrix P which is a solution of the algebraic Riccati equation

-PA- A7? +PBRT^7^ - Q=0 (13.424a)

(b) The matrix K= -R~1BTP defines a stabilizing feedback-control law for the system
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x = Ax + Bu (13.4.24b)

(c) The state feedback control u(t) =%x(t) is the optimal control for the infinite horizon linear-quadratic
regulator problem

min{ f ( Vte(t).Qx(t))+ Wu(t).Ru(t)))dt Ix(t) =Ax(0 +Bu(t) .forte [0,4«») ,

x(0) = xo . u € U[0.-H») ) . (13.4.24c)

Proof : (a) By Lemma 13.42 and (13.4.11c), for any x© e R", {Cc0^7<0)x0)}r>0 is a monotone

increasing sequence which is bounded from above. Hence the sequence { <Xo.Pt(0)x^)t>o converges.

It also follows from Lemma 13.42 and (13.4.11c) that <xo,Pt(0)xo>£ cdxol2 for all T>0 and all
Xq e R". Hence we must have that IPr(0)l £ a for all T > 0. Since the matrices PjiO) e R*°\ it fol

lows that the sequence { PjiO) )t>o must have accumulation points, which must all be symmetric, posi

tive definite matrices. Suppose that P', P" are two accumulation points of this sequence. Then, for any

xb€ R*. because {(x0^»7<0)xb))T>o converges as r->«>, we must have that ^(P* - P")x$ = 0.

Since the matrices P\ P" are symmetric, we conclude that P*'= P" A P, and hence that Pj(0) -• P as
7*->°o.

Since the Riccati equation (13.4.19) is time invariant, we see that for every T > 0, Pj - P(-7\0),

where P(t.O) is the solution of (13.4.19) from the initial condition P(0,0) =0. Since PT ->?, a con-

stant, as T -» », we must have that P(-7*,0) -» 0 as t -* «>. It now follows from (13.4.19) that P must

satisfy (13.424a).

(b) Suppose that Kdoes not stabilize the system. Then there exists a nonzero xq e C" and Xe C with

Re(X) £ 0 such that

(A - BIT^7?)* » JUb. (13.4.25)

Let x(0 be the solution of the linear differential equation

i(0 =(A - AJrl£1rW). ' € [0,-H»). x(0) =xo . (13.4.26)

Because of (13.425), xtO^xo. Let**(') denote the complex conjugate transpose of x(t). Then, mak

ing use of (13.426) and the fact that P satisfies (13.424a), we obtain

-£(x\t)Px(t)) =x(t)Px(t) +x*Px(0

=x\t)(A7 - PBR~lB7iPx(t) +x-(0rfy - BRrlBTF)x(t)
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= - l<2,/2x(0l2 - UTl/2*7Px(0ll2 . (13.4.27)

Substituting x(0 = eVxo into (13.4.27), we find that

2Re<X)e2 '̂xJPx<p- e^^lG^xol2 - e^'UT^'Pxoi2 . (13-4.28)

Since Re(X) *> 0, the left hand side of (13.428) is non-negative. Hence Q1/2xb = 0 and RT^BFPxq - 0.
Therefore, because of (13225), Axo = Xxq, and hence, since Qii2Xq = 0, we have obtained a contradic
tion of the fact that (A,Qin) is completely observable.

(c) Let u() be any feasible control and let xQ be the corresponding trajectory for (13.4.24c). Then, it

follows from Corollary 13.4.1 that for any T *> 0

4- r

f ( V4<x(0.Gx(0)+ Wu(t)M(t)))dt * f ( Wx(t),Qx(t))+ Mu(t)te(t)))dt

*> V4<xo,Pt(0)xo). (13.4.29)

Since Pt<0) -> P as T -> «>, we find that

f ( H<x(t),Qx(t))+ Wu(t)M(t)))dt *> >A <Xo.Pxb>. (13.4.30)

On the other hand, making use of(13.4.24a) and the fact that uit) - RTxB1Pxit\ we obtain that for any
7**0

T T

f ( VKx(0.Gx(0H H&it)Jluit)))dt = f VtdiO.iQ +PBR-lBf?ixit))dt

T

G(0fiA - BRTXBTF) x(0>+ V4 ((A - B/T1*7?) x(t)}x(t))dt. (13.4.31)=i("4
Hence, because a%)ldt = (A - B^B'PJxXO. wefind that

T T

f(V6(x(0.j2x(0)+ V&(t)Jlu(t)))dt =- f('A (-j-xit). Px(t))+ Vi G(t).P-£x(t))) A

= V4 <xo.Pxo>- V4 0(T)> x(7)>. (13.4.32)

Since £ stabilizes the system, x(T) ->0 as T-+ «. Hence, letting T->», we obtain that the cost

corresponding to «(•) and x() equals V4 (xo.Pxo). which was shown to be a lower bound for the optimal

cost of (13.424c). Therefore, u() is the optimal control for (13.424c).
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