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1. OPTIMIZATION IN ENGINEERING DESIGN

1.1. EVOLUTION OF OPTIMIZATION-BASED ENGINEERING DESIGN

Over the years, engineering design has been increasing in complexity. This constant growth in
complexity is due to several factors, such as, (i) progressively increasing expectations in product perfor-
mance, (ii) progressively more restrictive constraints imposed by environmental and resource cost con-
siderations, and (iii) progressively more and more ambitious projects being launched.

For example, in structural engineering, the increase in design complexity is due to the need to
ensure the earthquake survivability of sky scrapers and nuclear reactors at reasonable cost; in control
engineering and electronics to the need for reliable, high performance, worst case designs; in the auto-
motive world, to the need to conserve energy while eliminating pollution; and in the area of space
‘exploration, to attempts to design complex shaped, highly flexible, large space structures and their con-
trol systems simultaneously, to unprecedented performance standards.

Fortunately, over the last decade, while material and labor costs have grown rapidly, computing
costs have decreased dramatically and hence, not surprisingly, engineers have been turning more and
more frequently to the computer for assistance in design. As a result, a new, interdisciplinary engineer-
ing specialty has emerged which is commonly referred to as computer-aided design (CAD). Most of the
existing CAD methodology is based on computer-aided analysis, with the design parameter selection
carried out by the designer on a trial and error basis. Since decision making in a multiparameter space
is very difficult, the trial and error approach is not very effective. Therefore, there is growing hope that
considerable benefits in engineering design might be obtained from the use of sophisticated optimization
tools. However, the effective use of optimization algorithms in engineering design is predicated on the
supposition that engineering design problems are transcribable into a suitable canonical optimization
problem. '

Now, as we shall shortly illustrate by example, engineering design specifications can frequently

be expressed as inequalities in terms of a finite dimensional design vector x € R". These inequalities
are either of the form

gx) S0 . (1.1.1)
where g:R" — R is continuously differentiable, or of the form

&x,y)<0, ¥vyeY, (1.1.2a)
or, equivalently

max ¢xy) <0, (1.1.2b)

where ¢:R" x R” — R is locally Lipschitz continuous and ¥ ¢ R” is compact. Constraints of the

.l.



EECS 227A Lecture 1 E. Polak

form (1.1.1) often express simple bounds on the design variable or a "static” design condition. Con-
straints of the form (1.1.2b) can be used to express bounds on time and frequency responses of a
dynamical system as well as tolerancing or uncertainty conditions in worst case design. Consequently,
a rather large number of engineering design problems are transcribable into the following canonical
optimization problem:

min(fx) | g(x) S0, i€ & ¢(x.y) <0,y € ¥, j€ m) (1.13)

where we use the notation ¢ & (1,2, - - - ,k), for any positive integer k. At a minimum, the functions
FR SR, R SR, ie kand ¢:R*xR” 5 R, j€ m must be assumed to be locally Lipschitz
continuous, while the sets ¥; € R” must be assumed o be compact.

Occasionally one encounters equality constraints as well, in engineering design. These can be
removed by means of exact penalty function techniques.

Problems of the form (1.1.1) are ofien referred to as semi-infinite optimization problems, or SIP
for short, because the design vector x is finite dimensional, while the number of constraints is infinite.

A number of optimal control problems with state space constraints also have the formal form of
(1.1.3), except that the design vector x is a control (in LZ2{0,1], say) rather than a finite dimensional vec-
tor. Although the theory that we will present will be entirely in terms of problems in which the design
vector x is finite dimensional, it is very easy to extend the algorithms that we will be presenting, both
formally and analytically, to the case where x is a control.

12. DESIGN EXAMPLES

We shall now illustrate by means of a few simple examples how SIP problems of the form
(1.1.3) arise in a variety of engineering design situations.

1.2.1. Design of Earthquake Resistant Structures

One of the simplest examples of a problem of the form (1.1.3) is found in the design of braced
frame buildings which are expected to withstand small earthquakes with no damage and large ones with
repairable damage. A simple three story braced frame is shown in Fig 1.2.1.1. The components of the
design vector x are the stiffnesses of the frame members, as indicated in Fig.1.2.1.1. Under the
hypotheses of a lumped parameter model, the horizontal floors and roof are assumed to be rigid and to
concentrate the mass of the structure. The relative displacements of the three floors and roof form the
components of the displacement vector y. The lumped parameter model of the braced frame obeys a
second order vector differential equation of the form:

Myi(t.x) + D(yy.x) ¥1.x) + K(yy.x) ¥t,x) = F(5), (WAR)

where F() represents the seismic forces. When F is small, i.c., when the earthquake is small D and X
can be taken to be constant so that (1.2.1.1) is a linear differential equation, but when F is large, the
bending of steel introduces gross nonlinearities due to its hysteretic behavior. It is common to consider

.2.



EECS 227A Lecture 2 E. Polak

a whole family of earthquakes (F}), ¢ x. both large and small, in carrying out a design. When an earth-
quake is small, a building is expected to remain elastic and no structural damage is allowed. When an
earthquake is large, survival of occupants becomes a major consideration and large, energy absorbing,
non eleastic deformations are accepted, short of outright failure of the structure. A simple optimal
design problem consists of minimizing the weight of the structure subject to bounds on the relative floor
displacements over the entire duration of the family of earthquakes considered as well as simple bounds
on the stiffness of the structural members. This leads to a SIP of the form

min fix)l0<asx¥<P, Vien;
W (s FD - YU F) < . ' (1.2.12)
Vie[0T], Yke K, j=0,12).

1.2.2. Design of a MIMO Control System

We shall now consider a simple design of a multi-input multi-output (MIMO) control system,
with specifications both in time and frequency domains. Consider the feedback configuration in Fig.
1.2.2.1, where C(x,s) is a compensator transfer function matrix that needs to be designed. The equa-
tions governing the behavior of this system in the time domain are of the form

3= Az, + By, (122.19)
Yo =GCpzp | (122.1b)
2. = A(x)z; + B(x)u, (12.2.23)
Ye = Cl2)z, (1.2.2.2b)
Up = Y (122.3a)
u.=r-y (1.2.2.3b)
y=y+d (122.3¢)

where (12.2.1a,b) represents the plant, (1.2.2.2a,b) represents the compensator to be designed and
(1.2.2.3a-c) are the interconnection relations. We assume that r, u,, 4, ¥, Y. are all m-dimensional vec-
tors and that the matrices A,, B,, C, are continuously differentiable in the design vector x which, most
likely, consists of the "free” elements of these matrices.

The most elementary requirement is that of closed loop stability. With
G,(s) = C,(sI-A)'B,, (122.4a)

Ge(x.5) = Cdx)(sl-A(x))'B.(x). (1.2.2.4b)
it can be shown that the eigenvalues of the closed loop system are the zeros of the polynomial in s

.3-
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%(x.5) & det(s/-A)det(s/-A (x))det+G,(s)G(x.5)) . (1.225)

To ensure that the zeros of (x,s) are all in the open left half plane, we make use of the modified
Nyquist stability test. For this purpose, let d(s) be a monic polynomial of the same degree as %(s), such
that all zeros of d(s) are in the open left half plane. Let T(x,s) & x(x.s)/d(s). The closed loop system
is stable if the locus of T(x,jw), traced out in the complex plane for @ € (—eo,%0), does not pass through
or encircle the origin. A sufficient condition for ensuring this consists of keeping the locus of T(xjw)
out of a parabolic region containing the origin (see Fig. 1.2.2.1) by imposing the semi-infinite inequal-
ity:

—dRe[T(x,j0))* + Im[T(xjw)l + c SO0 ¥ ©20. (1.2.2.6)
where ¢d > 0.

Next, for a set of specified inputs {r;(")]; ¢ x, the designer may require that the zero initial condi-
tions response error be limited as follows (see Fig. 1.2.2.2):

B < ¥t x.r) = rin) < Bio) (1.22.7)
forallke Kandi=1,2, - - - ,m, with the b, b} piecewise continuous functions.

Finally, for the purpose of expressing insensitivity to the disturbance d, we set r = 0, which leads
to the Laplace transform equation

M) = U + P(s) Cx. ) A(s)
4 0(x,9) As)

(1.2.2.83)

tiy(s) = =C(x,5) Q(x.5) d(s)
A R(x,s)a(s)

(122.8b)

where i,(s), a(s), 3(s) denote the Laplace transforms of u,(¢), d(1), y(¢), respectively.

Let 3H denote the largest singular value of a complex mxm matrix H. Since the largest singular
value of a matrix is its induced L, norm, to make the response y of the system small for a large class of
disturbances d, without unduly saturating the system as a result of ¥ becoming too large, control system
designers strive to keep 3[Q(x jw)] small and B(R(s,jw)] bounded over the frequency range [, @] in
which the energy of the disturbances is known to be concentrated. This leads to the following formula-
tion of the MIMO contro! system design problem:

minimize f(x),
where

£ 4 max(BQGxjw)lio € [0.0]) (1.229)
subject to (1.2.2.6), (12.2.7) and

BR(xjw)] € bw), ¥V we [0.0], (122.10)
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£<sds?, (1.22.11)

where b(w) is a continuous, real valued function.

In addition, there could be constraints expressing decoupling i.c., the requirement that when only
a single component of the input vector is a nonzero function, only the corresponding component of the
output vector is nonzero, as well as stability robustness requirements, all of which are semi-infinite in
form. We note that from an algorithmic point of view, since singular values are non-differentiable, the
optimization problem corresponding to MIMO control system design is considerably more difficult than
the one corresponding to structural design.

1.2.3. Design of a Wide Band Amplifier

The design of a wide band amplifier usually involves three transfer functions: the input
impedance Z,(x,s), the output impedance, Z,(x,s) and the gain, A(x,s), which are all proper rational
functions in the complex variable s. The design vector x € R" determines certain critical component
values (e.g., resistor, capacitor values) in the circuit, which affect the impedances and the gain. Thus,
the coefficients of the rational functions Z,, Z,, and A are functions of the design vector x.

The simplest formulation of a wide band amplifier design has the form
max{ay | b S Z(x jo)* S by ¥ 0 € [@0.0] ; |

bow S Zoufx jO) S Do, ¥ 0 € [05.0] ;
ASUGJO’SA, ¥ o€ (00
¥sx¥s¥®, i=12,---,n).

(123.1a)

As stated, this problem is not quite of the form (1.1.2.3). To bring it in line with the canonical
form (1.1.2.3), we augment the design variable by one component, x°, to ¥= (x°,x) € R*!. Problem
(1.2.3.1a) can then seen to be equivalent to the problem:

m‘in (=21 biy < 12 (x (o + X")P S By, ¥ y € [0.1];
bows S Zpufx,j(0o + )P < By ¥ y € [0,1];
A SUGRj(®))P < A, ¥ ye [0,1);
¥sr¥<s? i=12,.n).

(12.3.1b)

1.2.4. Robot Arm Path Planning

In designing a sequence of moves to be carried out by a robot manipulator in a manufacturing
situation, it is necessary to find a number of paths which take the robot arm from one location to
another without collision with the workpiece. We shall describe a simple problem involving a two link
robot manipulator and a circular workpiece obstacle in R2 Our transcription of this problem into

.s.
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optimization form is rather simplistic, we refer the reader to for a more sophisticated formulation. Let
0'(1), 6%(¢) be the angles at time t between reference rays and the robot links (see Fig. 1.2.4.1), and let
6(t) & (6'(r), 6%(r)). Then the dynamics of the robot have the form

MO@)8() = 1() — C(6(:).8(1)6(r) + G(B(r)) (1.24.1)

where M(-) and C(-,) are 232 continuously differentiable matrices, and G:R? — R? is continuously
differentiable and (/) € R? is a torque vector, with 7!(s) the torque applied at the first joint and t2(1)
the torque applied at the second joint. The circular workpiece is described by an inequality of the form

h(x) <0 , ‘ (1.24.2)
where f:R? = R is defined by
h(x)=1-(x'-a)?-(2=-b) . (1.243)

for some a.b € R.

Now suppose that we are given that at t”="0, the angles are 6'(0) = 6}, 6;(0)=63, and that we are
supposed to find a torque vector %(r), ¢ € [0,1], which results in a collision free path that takes the robot
manipulator from these initial angles to the angles 8,(1) = 6}, 8%(1) = 67 at time r="1, with lW/()I < ¢,
j=1.2, for t € [0,1). We assume that (") is an L2[0,1] function.

Let us denote the solution of (1.2.4.1), which satisfies the initial condition 6(0) = 0, and which
corresponds to the torque (") by 6%(). We can now express our problem in the form

min{f7) 1 g(x) €0 ,j=12:¢*1y)$0, k=12, ¥V ye ¥} (12.4.42)
where f:L2[0,1] = R is defined by
£ 2187Q) - 042 ; (1.2.4.4b)
the ¢/:L2[0,1] = R, j = 1,2 are defined by
1ty A Yl — o o
g@ 2 max k'@l -c; (12.4.4c)
&0 4 max K -c; (1.2.4.4d)

te [0.1]
Y=[0,1]x[0,1]]c R?and, for k=1,2,and y & (s.0), $*:L2[0,1]1xR? - R are defined, by
o'(t.y) & h(slycos 8'%(r).sl,sin 67%(s)) (12.4.4¢)

¢%(t.y) 2 h{(lcos 8'%(r) + slycos(8'%(e) + = - 8%(1))

(1.2.4.4f)
I;sin 0'%(1) + shsin(0'%(¢) + 1 — 0%(r))

where [, is the length of the first link and J, is the length of the second link. The function ¢!, is
used to ensure that the entire first link will avoid collision with the workpiece, while the functon 6%C.?)
is used to insure that the entire second link will avoid collision with the workpiece. As stated, the
design vector 1(-) is a function. The problem can be made finite dimensional by representing T(") in
terms of splines, say, over a fixed set of nodes.
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2. MATHEMATICAL PRELIMINARIES

2.1. NORMS AND SETS IN R*
Definition 2.1.1 : A norm in R" is a function H:R* = R, such that

@ WIK=0 <> x=0; (2.1.1a)
@ bDA=NdA, vV Le R, xe RY; (2.1.1b)
Gi) k+ylskd+il,vx,ye R". (2.1.1c)

| |

Exercise 2.1.1 :  Show that the following three functions are all norms:

L] . ‘A
id, & [}_;x (x‘)’] (2.1.2a)
b = maxr (2.1.2b)
W = 2'; txl, | (2.1.)

where we used the notation
B é [l,z,...,’l ]' (2-1-2d)

|
Exercise 2.1.2 :  Show that there are finite constants K. 2, K3 u, Ka 1, K} e, K31, K2, such that

Ix.- S K-.zwzl lx'z S Kz.-ld-v (2.1.33)
W <Ko b, b <K bd, (2.1.3b)
b, < Koy, by S Kol (2.1.3¢)

n

Definition 2.1.2 : For any x € R" and p > 0, we denote by

Bxp) & (Ye R I -A<p), (2.1.42)
the open ball of radius p about x, and we denote by
Bxp) & (WeR'IW-d<p ), (2.1.4b)

7=
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the closed ball of radius p about x. |
Definition 2.1.3: A set X c R* is said 10 be open, if for every x € X, there exists a p> 0 such that
B(x.p) € X. A set X © R" is said to be closed if X°, its complement in R", is open. ]
[
Exercise 21.3: Letxe R® and p >0 be given. Show that B (x,p) is open and that B(x,p) is
closed. [ ]
Exercise 2.1.4 : Show that X c R* is closed <> for every x € R", if B(x,p) N X # ¢ for all
>0, thenxe X. [ ]
Definition 214 : A set X R” is said to be compact if X is closed and bounded, ie., there exists
an M<oo such that IxtSM forall x€ X. [ ]

2.2. SEQUENCES
Let the set of nonnegative integers be denoted by N, i.e.,

N 2 (0.1.2....). 22.1)

Definition 2.2.1 : A sequence in R” is a function from N into R". We denote a sequence by the

set of its values, ie.. (x)mo of (x)ien A subsequence of {x)ien is a sequence of the form

{x;)ie x» Where K is an infinite subset of N. |

Definition 222 : A sequence (%);en in R* is said to converge to a point X (x; 2% asi— )

if lim Lx; —% = 0. The point % is called a limit point of (x)ien- A point x*is said to be an accu-
3 =h oo

mulation point of a sequence {x}ie¢n in R", if there exists an infinite subset KCIN such that
K
lim lx;-x*1=0 (x; = x*).

i
iek n

Exercise 22.1 : Suppose that x; > X as i — o, show that for every p> 0 there exists an i, € N

such that x; € B(z,p) for all i 2. .
Exercise 22.2 : Suppose that %, % are limit points of a sequence {x);en. Show that X=X
must hold. [ ]
Exercise 2.2.3 :

(8) Show that a set X c R* is open <> for any X € X and any sequence {x); « n © R*, such that
x,—% as i >, thereexistsage N suchthat 5, € X forall i2gq.

(®) Show that a set X c R"is closed <> for all (x}ien cX, if ;% as i— o, then
e X. [

Theorem 2.2.1 (Bolzano-Weierstrass): Suppose X ¢ R* is compact and {x);¢nC X. Then
{x;)i « v must have at least one accumulation point [ ]
(For a proof of this result see a book on analysis.)
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In proving convergence of algorithms we shall need the following special property of monotone
sequences.

Proposition 22.1 :  Suppose that {x;};¢ N is & sequence in Rsuchthatxg2 52 ;»2... (e, it
is monotone decreasing). If (x;}; ¢ N has an accumulation point x*, then x; > x* as i = oo, ic,, x*is
a limit point.

Proof : For the sake of contradiction, suppose that {x;};e n does not converge to x*. Then, for
some p >0, there exists a subsequence [x);¢x such that x €B(x*,p) for all i€ K, ie,

b;—x*I>p for all i € K. Since x* is an accumulation point, there exists a subsequence (x:)i e o
K
such that x; & x* as i—» o, Hence there is an iy € K* such that ;- x*l £ pr2, for all

i2i, iek*

Let i€ K be such that i, >ij. Then we must have that x;< x; and Ix;, — x* 2 p, which
leads to the conclusion that x;, <x* and x; - x;, 2 p2. Now let iy € K* be such that iy >i;. Then
we must have that x; <x;, <x* and hence that Ix;, — x*I>p. But this contradicts the fact that
I, - x*l < p/2 by construction, and hence we conclude that x; — x* as i — oo, u

Corollary 22.1 : Suppose that {x;}; ¢ n is a2 monotone decreasing sequence in R. If there exists a
be Rsuchthatx; 2 bforalli € N, then (x;); ¢ N converges to some x* € R. [ ]

Exercise 2.2.4 : Prove corollary 2.2.1. ' |

23. CONTINUITY
We now summarize the most essential properties of continuous functions.

Definition 2.3.1 : A function f:R* = R™ is said to be continuous at a point x € R", if for every
8> 0 there existsa p >0 such that

1Ax) - f) 1< 8V ¥ € B(x.p). (23.0)
A function f:R" —» R™ is said to be continuous if it is continuous at all x € R" |
Exercise 2.3.1 : Show that f:R"” — R"™ is continuous at X <> for any sequence (x;);¢ n in R" such
thatx; > Xasi - =, fix) = flx) asi = e, . [
Definition 23.2: A function f:R" = R™ is said t0 be uniformly continuous on a subset X c R" if
for any & > 0 there exists a p > 0 such that for any ', x¥* € X satisfying Ik’ - X1 < p,

) - N < b (232

|

Proposition 2.3.1 : Suppose that f: R* — R"™ is continuous and that X < R" is compact Then f(') is
uniformly continuous on X.

Proof : For the sake of contradiction, suppose that f{*) is not uniformly continuous on X. Then, for
some § > 0, there exist sequences (X’;}; ¢ N, {¥”i}i e n in X such that

-9-
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u,.-r',|<71, VieN, (2.3.3a)
but
VAX) -A)1>8,Vie N. (2.3.3b)

Since X is compact, there must exist a subsequence (x’;}; ¢ x such that x’; —K) x* € X asi— o, Furth-
ermore, because of (2.3.3a), x; :) x* as i -» oo also holds. Hence, since f{*) is continuous, we must
have fix’) :) fx*) and fix") —K) fx*) as i = oo, Therefore, there exists a iy € K such that for all
iek,iz i

1) - f") VS 1AXD - fx*) 1+ 1 fix*) = fX°) 1 < 82, (23.4)
contradicting (2.3.3b). This completes our proof. |

Proposition 23.2 :  Suppose that X € R" is compact and that f:R* — R™ is continuous. Then the
set

£X) & e R"ly=flx). xe X} 2.3.5)
is compact.

Proof : (@) First we show that fX) is closed. Thus, let (f(x;)};e N, With x; € X, be any sequence in

fX) such that f{ix) = y as i = o, Since (x;);e N is in a compact set X, there exists a subsequence
4 K
{x:)i e x such that x; = x* € X as i = o. Since ) is continuous, f{x) — fAx*) as i = c. But y is

the limit point of (f{x;));¢ w and hence it is the limit point of any subsequence of (fix))ie n. We
conclude that y = f{x*) and hence that y € fX), ie., AX) is closed.

(b) Next, we prove that {X) is bounded. Suppose fX) is not bounded. Then there exists a sequence

{x)ie n Such that I Ax) 12 for all i € IN. Now, since {x;);¢ n is in a compact set, there exists a
4 F 4
subsequence [x;}; e x Such that x; = x*, as i = e, with x* € X, and flx;) & fix*), &s i — o, by

continuity of ). Hence there exists an iy such that forany j>i> i . j, i € K,

Kx) = fx) S Wx) - fx*) + Yx) - Ax*N < 172. (23.6)
Let i 2 ip be given. By hypothesis there exists a j € K, j 2 i such that ifix)l 2j 2 Ifix)} + 1. Hence

¥x) -t 2 L Rl =Rl 2 1, , 2.3.7)
which contradicts (2.3.6). Thus f{X) must be bounded. This completes our proof. ]

Proposition 23.3 :  Suppose that f:R" — R is continuous and that X c R" is compact. Then there
exists an X € X such that

f& = inf fx), (238)

i. e., min fx) is well defined.
zxe X

-10-
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Proof : Since X is compact, X) is bounded. Hence inf f (x)=a is finite. Let {x)ien be 8
sequence in X such that fix) o as i — . Since X 1s compact, there exists a converging subsequence
{x:);  x such that x; :) % € X. By continuity, flix) = fO as i = oo, It now follows from Proposmon
22.1 that fix) — f%) as i - =, Since {fix)); ¢ n has a unique limit point, we conclude that fx) = c.B
Exercise 2.3.2: Prove Proposition 2.3.3 by making use of the fact that X) is compact. .

2.4. DERIVATIVES

We shall now present a few results involving derivatives that we will need in our study of optimi-
zation.
Definition 2.4.1 : Let f/R* — R". We say that DfR™XR" = R" is a differential for f') at
Te R if

8) DfG;) is linear.
» | Jlim VG"”’)'I;(;)'D il _g. 4.)
When f:R" — R"™ has a differential at all x € R*, we say that f(°) is differentiable. [ ]

Since Df(;”) is a linear map from R into R™, there exists an mxn matrix of()/0x such that
" DfG:;h) = 9f)/oxh for all h € R" 3fi%)/ox is called a Jacobian matrix.

When f:R* - R is differentiable, we use the notation VAx) = of(x)7/0x, and call Vf(') the gra-
dient of f°).
Proposition 24.1 :  Suppose that the function f:R" — R"™ has a differential Df(x;k) at X. Then the
ij~th component of the Jacobian 3f(x)/ax is the partial derivative F&)ax.
Proof : Set h = te;, where ¢; is the j~th unit vector in R*. Then ofx)/oxe; = [af(i)/ax] j» the j-th
column of 9f(%)/dx, and hence, from (24.1), forj=1,2,-- - ,n

}f& +1e) - f® - ‘[_a_@]
[ 0
ie. [aj(i)/ax] i = F@rax. u

Definition 24.2 : We say that f'R*— R™ is locally Lipschitz continuous at % if there exist
L € [0,%), p>0 such that

(242)

K - OIS Lix - X1,V X € BR.P). (24.3a)

]
Exercise 24.1 :  Suppose that f:R" — R™ has a continuous differential Df(-,") in a neighborhood of
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2. Show that f is locally Lipschitz continuous at %. =

It should be noted that the existence of partial derivatives does not ensure the existence of a
differential (see e.g. Apostol p. 103 ). Thus consider the function

fixy)=x+y ifx=00ry=0, (24.3b)

fx.y) =1 otherwise . (2.4.3¢c)
In this case

gga(:;og - ‘n-‘.no £¢.0) -;EO.Q =1, (2.4.4a)

Qﬁ—-lgy'o = 1im 0000 _, (24.4b)

but the function is not even continuous at (0,0). In view of this, the following result is of interest (see
Apostol p. 118 ).
Proposition 24.2:  Consider a function f:R"* — R" such that the partial derivatives 3f(x)/dx’ exist in

a neighborhood of X, for i=1,2, - ,n, j=1,2, -+ ,m. 1If these pantial derivatives are continuous at
%, then the differential Df(x;h) exists. ]
The following chain rule holds.

Proposition 2.4.3 :  Suppose that f:R" — R" is defined by f{x) = h(g(x)) with both h:R! — R™ and
g:R" = R! differentiable. Then

' |

We make frequent use of Taylor’s formula with remainder up to order 2. It comes in two forms:
the first is in terms of an intermediate point, while the second one is in integral form (see Apostol® p.
124 and Dieudonne? p. 186. Also, refer to Apostol p. 124 for exposition on higher order differentials).
We denote by D*f(-;-) the differential of order k of f(").
Proposition 2.4.4 : Consider a function f:R" — R. Suppose that ) has continuous partial deriva-
tives of order p at each point x of R". Then for any x,y € R*

1
fO) - fx) = 'i-,r},- Diftx;y - 3) + —-Dflz:y - ), (2.4.62)
=) % p:
for some z=x+ Ky - x), t € [0,1]. . [ ]

When p=1, we recognize (2.4.6a) as being simply the mean value theorem. For p=2,
D¥fix;y - x) = {y — x.9%(x)/3x%(y — x)} where 3%(x)/ax’ is a matrix of second partial derivatives, ie.,
[a’f(x)/af] §= 9%f(x)/0x'0x’.

1 T. M. Aponal, Mathematical Analysis, Addision-Wesley, 1960

12
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For functions £IR* — R™, with m > 1, formula (2.4.6a) is not valid since there is no z of the form
stated that works for all the components of f{-). Instead we use the following result (see Dieudonne p.
186 ).

Proposition 24.5 : Consider a function f:R* = R™. Suppose that f{*) has continuous partial deriva-
tives of order p at each point x of R*. Then for any x,y € R",

-r‘l oy - ___1_1 —cy-1 - - 24
o) -fn) = 5,‘, D'fix;y - x) + = {a P ~1D?flx + s(y - x);y — x)ds . (2.4.6b)

Proof : We shall prove (24.6b) only for p<2. For p=1, consider the function
8(s) = flx + s(y — x)). Then g(1) =fy) , §(0) = fix) and

g1) - g(0) = 1 g'(s)ds

1
= !Dj(x + s(y = x);y — x)ds, (24.7a)

which completes the proof for p = 1.
Next, let p = 2. Then we have

£ - 9) = 261 - 5)+ 800N @4.0)
Integrating (2.4.7b) from O 1o 1 we get
8(1) - g(0) - g'0) = :[ (1 - $)g"(s)ds. (24.7¢)
which, on rearranging, we recognize as being
) = fix) = (Vfx),y - x)+ :[(l - 5) Dfix + sy — x);(y - x))ds, 24.79
after substitution for g(s). .

Finally, we define directional derivatives which may exist even when a function fails to have a

Definition 243 : Let f:R" = R™ We define the directional derivative of f{*) at a point x € R" in
the direction h € R" (h # 0) by

da:h) & im -&""t@ (2438)
20
if this limit exists. Note that ¢ > 0 is required. -

2 ). Dieudonne, Foundations of Modern Analysis, Academic P}uz, 1960.
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Exercise 2.4.2: Suppose that f;R* — R™ has a differential at X. Show that for any h, the directional
derivative df(x;h) exists and is given by
dfGiih) = Dy = L2
ox -

As we shall see later, directional derivatives play a very important part in the theory of optimiza-
tion.

2.5. CONVEX SETS AND CONVEX FUNCTIONS

Convexity is an enormous subject (e.g. see Rockafellar®). We collect here only a few essential
results that we will need in our study of optimization (For further details see Rockafellar). We begin
with convex sets.

Definition 251 : A set SCR” is said to be convex if for any x’X'€ § and A€ [0,1],
W+(Q-Ax"]1€S. [ |

Exercise 25.1: Suppose S c R” is convex. Let (x;}%; be points in S and let (i)}, be scalars such
. ko
that p>0 fori=1,2, - - - ,kand }, u'= 1. Show that
=l

k
[ u‘x,-] €S. (25.1)
&=1 |
Definition 2.5.2 : Let S be a subset of R". We say that coS is the convex hull of § if it is the smal-
lest convex set containing S. =

Theorem 2.5.1 (Caratheodory) : Let S be a subset of R". If ¥ € co#S, then there exists at most
wt ) w1

(n + 1) distinct points, {x;)2%}, in S such that ¥= 3, px;, 0’ >0, Y u'=1.
=l =1

Proof : Consider the set
ko . L
Cs 2 x1z=Ypx.x,eS, p20,Yu=1keN}. 252)
=] =]
First, it is clear that S c Cs. Next, since for any ¥, ¥’ € Cs, Ax’ + (1 - Ax™) € Cs, for A € [0,1], it

follows that Cg is convex. Hence we must have that coS c Cs. However, because Cs consists of all
the convex combinations of poins in S, we must also have that Cs < coS. Hence Cg = coS.

Now suppose that
E
f = m‘ I,' » (2'5‘3)
=1

. _E .
with [I’20,i=1,2, - - - .k, 3 ' = 1. Then the following system of equations is satisfied
=1

-14-
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E i |~ X
ZFh)= [‘-] (2.54)

with J' 2 0. Suppose that E>n + 1. Then there exist coefficients &/, j=1,2, - .k, not all zero,
such that

E .
T o [‘l] =0. (25.5)
=l

Adding (2.5.5) multplied by 6 to (2.5.4) we get
E Nx: = ’
5 '+ Ga‘)[?] = H . (25.6)

Suppose (wl.0.g.) that at least one of < 0. Then there exists a @ > 0 such that [F + 8¢ = 0 for some j
while [T’ + 8c¢ 2 0 for all other i. Thus we have succeeded in expressing X as a convex combination of
k- 1 vectors in S. Clearly, these reductions can go on as long as X is expressed in terms of more than
(n + 1) vectors in S. This completes our proof. [ ]

Definition 2.5.5: Let §,,S, be any two sets in R, We say that the hyperplane

H={xe R*"IxW=a) @57
separates S, and S, if

awWza v xe §; . (2.5.8a)

ovsa ¥V ye §,; (2.5.8b)
The separation is said to be strong if there exists an € > 0 such that

Ww2a+e ¥xe§ (2.5.8¢c)

bMVsa-e ¥vyeS, (2.5.8@

Theorem 2.52 (Separation of Convex Sets) : Let §;,S; be two convex sets in R” such that
§,nS, = A Then there exists a hyperplane which separates S; and S,. Furthermore, if S, and S, are
closed and either S, or S, is compact, then the separation can be made strict. . |

Theorem 2.53 : Suppose that S ¢ R” is closed and convex and 0 ¢ S. Let

Z=argmin{kt® Ix € §) . (259)
Then
H= (x| &x)= GI?) (2.5.10)

separates S from 0, ie., &.x)2 &i? for all x € S.

3 R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

.15-
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Proof : Let x€ S be arbitrary. Then, since S is convex, [X+ A(x—%)] € S for all A € [0,1]. By
definition of X, we must have

0<BGR s+ Ax-3P

=+ G x -+ A -2 (2.5.11a)
Hence, for all A € (0,1],

0<2Gx -2+ Mx -3, (2.5.11b)
Letting A — 0 we get the desired result. ]

Theorem 2.5.3 can be used to prove the following special case of Theorem 2.5.2:

Corollary 251 : Let S,,S; be two compact convex sets in R" such that §;nS, = $. Then there
exists a hyperplane which separates S; and S,.

Proof: LetC=8§,-§; 8 (xeR*Ix=x-x3, %€ Sy, x,€ S; }. Then C is convex and com-

pact and 0 ¢C. Let 3=, -3, = argmin{ l?Ixe C ), where %, € S, and X; € S,. Then, by
Theorem 2.5.3,

k-3d20,vxeC. (2.5.122)
Let x = x, — %,, with x; € S;. Then (2.5.12a) leads 10
-0 20 v x e C, (2.5.12b)

and, forx=7%, — xp, with x, € S,,
2!

G - 262, (2.5.1%)
which implies that

(G- +%-nd 26P, (2.5.12d)
i.e., that

n-%3 <0, (2.5.12¢)
which completes our proof. =

Definition 2.5.6 : Suppose S © R* is convex. We say that H = {x | {x - X,v)= 0} is a support hyper-
plane 10 S through X with inward (ourward) normal v if X € S (the closure of S) and

x-TW20(s0) v x€ S. (2.5.129

Theorem 2.54 : A closed convex set is equal to the intersection of the half spaces which contain it.

Proof : Let C be a closed convex set and A the intersection of half spaces containing C. Then

.16-
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clearly C ¢ A. Now suppose ¥ € C. Then there exists a support hyperplane H which separates strictly
¥ and C, i.e., ¥ does not belong 1o one subspace containing C, i.e., X € A. Hence C°  A® which leads
to the conclusion that A € C. .

Next we turn to convex functions. For an example see Fig. 2.5.1.

Definition 2.5.7 : A function f:R" — R is said to be convex if for any X, € R"and A € [0,1],

fX + (1 = Ax") S MX) + (1 - ARx") (2.5.13)
A function f:R" — R is said to be concave if —f{:) is convex. u
Exercise 2.5.3: The epigraph of a function f:R" — R is defined by

Epif) 8 ((x,y)e RXR Iy2f(x). (2.5.13a)
Show that f:IR” — R is convex if and only if its epigraph is convex. |

Theorem 2.5.5: Suppose f:R” — R is convex. Then f{') is continuous. (For a proof, see Berge p.
193). ]

The following property can be deduced from Fig. 2.5.1.
Theorem 2.5.6 : Suppose f:IR* — R is differentiable. Then f{-) is convex if and only if
) -fix) 2{(Vfx)y-x) ¥ xye R". (2.5.14)

Proof : => Suppose f{*) is convex. Then for any x,y € R;', A e [0,1],

fix + My - x)) £ (1 - A)x) + M) . (2.5.15)
Rearranging (2.5.15) we get
it 7‘(’;"» =f® <) -fx) v Ae [0.1]. (2.5.16)

Taking the limit as A — 0 we get (2.5.14).

<= Suppose (2.5.14) holds. Then for any A € [0,1], x,y € R"

SO) = flx+ My - x)) 2 (VAx + l(y.- x)).y=x(1-2), (2.5.17a)
fx) - flx + My - x)) 2(VAx + Ay = x)).y - x)( - }) . (2.5.1b)
Multiplying (2.5.17a) by A, (2.5.17b) by (1 — X) and adding, we get (2.5.15), i.e., ) is convex. [

Theorem 2.5.7 : Suppose that f:IR" — R is twice continuously differentiable. Then f{") is convex if
and only if the Hessian (second derivative) matrix 9%f(x)/dx? is positive semi-definite for all x € R",
ie., y.0%Ax)/ox*»2 0 for all x, y € R".

Proof : => Suppose f{) is convex. Then for any x,y € R", because of Theorem 2.5.6 and Proposition
245

17-



EECS 227A Lecture 2.5 E. Polak

0 S fy) - fx) = (VAx), y = %)

oz
Hence, dividing by lly - xii? and letting y — x, we obtain that 9%(x)/9x* is positive semi-definite.

<= Suppose that P(x)/x? is positive semi-definite for all x € R. Then it follows directly from the
equality in (2.5.18) and Theorem 2.5.6 that () is convex. [

Exercise 2.5.2 : Suppose that f : R® = R is twice continuously differentiable and that for some
w>M2m>0, Miyl? 2 (y, 3%/0x3(x)y )2 mlyP for all x,y € R". Show that the level sets of f{) are
convex and compact and that f{-) attains its infinimum. ]

1
= { -5 ty-nSLEE0 =3 (e (2.5.18)

Exercise 253 : Suppose £*R" > R, i=12, - ,m are convex and that m 2 (1,2, ,m).
Show that

V') & max £(z), (2.5.192)
Vi) 2 Tfm. (2.5.19b)

&=l
are both convex. [ ]

.18-
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3. UNCONSTRAINED OPTIMIZATION
In this Lecture, we shall be concerned with the geometry and characterization of solutions of
optimization problems of the form

min fx) @3.1.1)

with f:R" = R at least once continuously differentiable.

3.1. GEOMETRY OF THE PROBLEM

Definition 3.1.1 : Given a function f'R" 5 R and an a € R, we shall say that the set L,cR"
defined by

L, 4 xifnsa), (3.12)
is a level set (parametrized by o). =
The level sets have the following properties:
(@ If oy > oy, then L, L,l. i.e., the level sets are nested;

() If &= min fx), then the solution set to (3.1.1) is the set Lg;

(c) An algorithm for solving (3.1.1) is called a descent method if it constructs sequences {x;}zo such
that f(x;,)) <fix) for all i € N, i.e,, if it constructs points which descend into ever lower level sets.

The boundary dL,, of a level set L, (see Fig. 3.1.1) can be visualized as a constant altitude line
on a topological map. Points on the boundary of L satisfy the equation

f)=a. (3.1.3a)

Definition 3.12 :  The set of tangents to the boundary dL,, at a point X € 9L, is defined by

TG.IL.) 2 (ye R"IBy=lim(x; - X)/lx; - ¥, x;€ Ly, B> 0) .

(3.1.3b)
H .
The set of normals to the boundary 9L, at a point ¥ € 9L, is defined by
NGILy) & (ve R*I v, »=0,Vye TGy ). (3.1.3)

We shall say that v is an ourward normal to 9L, at X if f{x + Av) > f(X) for all sufficiently small A > Om

Proposition 3.1.1 : Suppose that x € R" is such that f(x) = a. If the vector VA(x) # 0, then VAx) is
an outward normal to the boundary of the level set L, at x.

Proof :

.19.
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(i) Consider any sequence of points { Ax; J=o such that x+ Ax; € oL, for all ie N (e,
fix+Ax)=a) and Ax; = 0 as { — o, Hence, by the mean value theorem, we get that for some
s;€ (0.1

fx + Ax) = fix) + (VAx + 5;Ax),Ax) = «. (3.14)

But f{ix) = a and hence

1 Ax;
m (VAx + s5;Ax),Ax)= (VAx + siAx,-).-lATilh 0. @3.1.5)

Since the unit ball is compact, without loss of generality, we can assume that Ax/liAxd - y € R" as
i - oo, Hence, from (3.1.5), we get that {(Vflx),y)= 0. Clearly, y € T(x,0L,), i.e., it is tangent to the
boundary of the level set L. Since, by definition, all unit vectors which are tangent to the boundary of
L, at x are limit points of sequences { Ax; }2o, as above, it follows that VAx) € N(x,dLg), i.., that it
is normal to the boundary of L at x.

(ii) To show that VAx) is an outward normal, let A > 0 and consider
fix + AVAX) = Rx) + MVAx + sAVAx)).VAx), (3.1.6)

where s € (0,1), by the mean value theorem. Letting A — 0, we conclude, because of the continuity of
VA), that there exists a A > 0 such that forall A € [0,A ]

fix+AVAx) 2flx) + A VA2, (3.1.7)
which completes our proof. B
Corollary 3.1.1 : If x € R" is such that Vfx) # 0, then any vector & € R" such that (VAx),h< 0 is a
descent direction for f{") at x, i.e., there exists a & > 0 such that fix + &) - flx) < 0.

Proof : Recall that the directional derivative at x, in the direction & is given by

df(x;: k) = (VAx).hH< 0. (3.1.8a)
Now, by definition of the directional derivative,

tin (A MR _ g4y 1=0. (3.1.8b)
Hence thereexistsai>0 such that

LM R0 _ giihy | < <o bz G180
2

and therefore

fx + %) - fx) < MVA).M12 <0, (3.1.8d)
which shows that A is a descent direction at X. [ ]

-20-
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3.2. FIRST AND SECOND ORDER OPTIMALITY CONDITIONS
We return to the problem (3.1.1).

Definition 3.2.1 : We shall say that X is a global minimizer for problem (3.1.1) if

fOSfx)., VxeR". (32.1a)
We shall say that % is a local minimizer for problem (3.1.1) if there exists a § > 0 such that

fDSAx) ¥V xe BG.P). (32.1b)
Theorem 3.2.1: Suppose that f°) in (3.1.1) is cominu;msly differentiable and that % is a local minim-
izer for (3.1.1), with associated radius § > 0. Then VAZ) = 0.
Proof : To obtain a contradiction, suppose that VAX) # 0. Then, letting h = ~VA{%), we obtain

dfG;: k) = (VfZ), VD)< 0. (32.22)
But, by definition of the directional derivative,

lim [fa**;) =B _ 4:my1=0. (32.2b)

Hence there exists a A € (0,p] such that

[G+ ﬁ;) =18 _ | <—aGinyz. (2.33)

and therefore
£G+ ) - ) s Rz <0, (3.2.3b)
which contradicts the optimality of . ]

Theorem 3.22 : Suppose that f{*) is twice continuously differentiable, that % is a global minimizer
for problem (3.1.1), with associated radius § > 0, and that H(x) & 9%Rx)ox2. Then

GWHEMNZ0 ¥V he R, (324)

Proof : Since by Theorem 32.1, VAX) =0, it follows from the optimality of X that for any
he R*, A >0, such that Alhl <,

fE+AR-£X) =23 (1-3)hHGE+sAhhds

20. (3.2.9)
Letting A — 0, we obtain the desired result.
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Theorem 3.23 : Suppose that f{*) is twice continuously differentiable and that * € R" is such that

VAx) = 0, and H() > 0, where H(x) = 3*fx)/ox%, as before. Then % is a local minimizer for problem
(G.1.1).

Proof : Suppose the theorem is false. Then there exists a sequence {x;)5o such that x; = X as i — =
and flx) < fix) foralli e N. Now, by (2.4.7d),

Ax) -f(‘) =(vﬂ;)-xi -3

1
+ [ (1= X0 = DHG + 50— D)x; - Dhds (32.6)
By assumption H(") is continuous and H(Z) > 0. Hence, (a) there exists an m > 0 such that
hHEMZ mih, Vv he R, 32.7)

and (b) the function ¢, H(x)A} of (h.x), is uniformly continuous on the compact set B(0,1) x B(,1).
Hence there exists an iy such that for all i 2 iy and s € (0,1),

K = DHG + 5 (- D)~ D= (i~ DH@( - D S T -3, (3:2.89)
which, because of (3.2.7), leads to the conclusion that

EG=-DHG+sx-D) & -2 %k,--'ilz. (3.2.8b)
Therefore, from (3.2.6)

fix)-fA 2 %lx,. 3250, (3.2.9)

which contradicts our assumption that fix) — fX) < 0. Thus, the theorem must be true. |

For convex functions we get some additional results.

Theorem 3.2.4 : Suppose that fR* — R is continuously differentiable and convex. If e R'is
such that V) = 0, then X is a global minimizer of f{").
Proof : By Proposition 2.5.5, since ) is convex, for all x € R", we must have

f) -3 2R .x-D=0. (32.10)

Since VAZ) = 0, we conclude that X is a global minimizer. [
Theorem 3.2.5: Suppose that f{*) is strictly convex, then it can have at most one global minimizer.

Proof :  Suppose that x*, x** are two global minimizers of f("). Then fix*) = fx**) must hold, and
hence, since f{*) is strictly convex, for any A € [0,1]},

«22-
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FOx** + (1 - Ax*) <A flx**) +(1 - A) fix®*) = fix%), (3.2.11)
which contradicts the fact that x* is a global minimizer. |

Corollary 3.2.1 :  Suppose that f:R" — R is twice continuously differentiable and that there exists an
m>0such that forallx € R" h € R (hHX)M2 mihl’. Then £} has a unique global minimizer.

Proof : We know from Proposition 2.5.7 that f{:) must be strictly convex. Hence, if it has a global
minimizer, that minimizer is unique. Thus, we only need to prove that a global minimizer exists. We
do this by showing that for any xo € R the level set L & (x|Ax) < fxy)) is compact.

(@) Let (x)zoc L be any converging sequence with limit point %, ie., x;—>X as i . Then
fx) < fixo) for all i € N. It follows by continuity of f*) that j(;) < fixg) i. ., that L is closed.
() For any x € L, we have

1
0 2 fix) = flze) = (Vfza).x = xo¥ [ (1 = ) (x = 20} H(xo + sz — 2))(x = xo)¥s

2 (Vflxg) x — xo)+ %lx - xol?

2 VAol — xof + %u -x2. (32.12)
yi\Y 1
Hence we must have that Ix - xol < ——”;—xO)—. forallxe L.

(¢) The existence of a global minimizer now follows from the fact that

nf ) = ol fo) = min A, (32.13)
because L is compact (see Proposition 2.3.2). |

33. GRADIENT METHODS
We shall now see how optimality conditions lead to computational methods. Consider again the
problem :

min flz). 33.1)

with f:R"* = R continuously differentiable. We have seen in the proof of Theorem 3.2.1 that when-
ever Vf(x) # 0, the direction h = —-Vf(x), results in the directional derivative dfix;h) = (VAx).M< 0, ie.,
~Vfx) is a descent direction for the cost function. The easiest way to transform this observation into an
algorithm for solving (3.3.1) is as follows.

Steepest Descent Algorithm 3.3.1 :
Data: x € R

Step0: Seti=0.

Step 1: Compute the search direction
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Armijo Gradient Algorithm 3.3.2:
Parameters : «, B € (0,1).

Data: x € R
Step0: seti=0.
Step 1:  Compute the search direction

h;= h(x) & -Vfix). (3.3.42)
Stop if VAx) = 0.
Step 2: Compute the step size.
a=pY @ argmax {B‘ |Ax; + B*h) - flx) < —B‘aIVﬂx.-)l’} (3.3.4b)
Step3: Update
X = X+ A, (3.3.4¢c)
replace i by i + 1 and go to step 1. |

To develop a geometric understanding of the Armijo stepsize rule, we define the function
¢-R - R by

O0) = fix; - AVSfx)) - fx) . (33.5)

Then ¢(0) = 0 and ¢’(A) hoo = —IVRx)%, by the chain rule. Hence the graphical interpretation of the
Armmijo step size rule is as shown in Fig. 3.3.1.

The following theorem holds under the assumption that f{*) is only once continuously
differentiable. However, to obtain a simpler proof, we will assume that f(*) is twice continuously
differentiable and that its second derivative is bounded in a region of interest, i.e., we shall assume that
there exists an M < oo , such that

H) A max{ HE)MIll=1)})<MV e R", (3.3.6)
where H(x) 4 9%Rx)/ox%.
Theorem 3.3.2 : Suppose that (3.3.6) holds. Then,
(a) The Amijo step size rule is well déﬁned.
(®) If {x)= is an infinite sequence constructed by Algorithm 3.3.2, then every accumulation point X
of {x;]2o satisfies VAX) = 0.
(c) If the set {(x € R" | VAx) = 0} contains only a finite number of points, then any bounded sequence
{x;)=o constructed by Algorithm 3.3.2 must converge to a point x such that VAX) = 0.

(d) If x* # x** are two accumulation points of a sequence (x)zo constructed by Algorithm 3.3.2,
then f(x*) = fix**).

.25
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Proof :
(a) We must show that when VRx) # 0, A; > 0, i.c., that the solution k; of (3.3.4b) is finite. First, from
(3.3.4b) we see that the stepsize A; must satisfy the inequality

£xi = AVAx)) - fix) + AdVAxP <0, (337
forA=%;= B"’. Expanding the left hand side of (3.3.7) to second order, we get
fxi = AVAx)) - fix) + AadVAx)P

== M1 - IVAX)IP + A2 j 3 (1 =8) (VAx).H(x; = SAVAx))VAx))ds
< - A1 - VAP + =—— le(x)l’

= 112’- VA :2%,—"—’1 +1). (38)

Clearly, there existsa k€ N such that
__211.5;_02 +BF<0. (339

Consequently, A; = Bk" 2 B’7 and hence we see that the step size is well defined.

(b) To obtain a contradiction, suppose that x; -) x and that VA%) # 0. 'First we recall that by (a)

above, A; satisfies A; 2 B* for all i € N. Next, since x; —» %, and V(") is continuous, there exists an
io € K, such that forall i € K, i 2 iy, IVAx)I> 2 IVAX)I%/2. Consequently, for all i € K, i 2 i,

Rxin) = fix) S -AalVAx)E

< -pfalvi®P2 & -3<0. (3.3.10)

Because f{-) is continuous and x; f) %, we must have that f(x) -‘; fX) and hence, because (fx))Z is
monotonically decreasing (see Proposition 2.2.1), that fix;) = fiX), which contradicts (3.3.10). There-
fore we must have that VAX) = 0.

(c) Suppose, without loss of generality, that the solution set

4 (xe R*I V) =0) (3.3.11)

contains only two points, x*, x**. By assumption, the sequence (x;}=o, constructed by Algorithm 3.3.2
is bounded and hence it must have accumulation points. By part (b) of this theorem, all the accumula-
tion points of {x;)=o must be in the set A. Hence we must have that min (Ix; — x*1,Ig; — x**1} = 0 as
i — oo (because otherwise it would be possible to show that there exists a third distinct accumulation
point x***). Let p > 0 be such that p < Ix* — x**I/4. Then there exists an i, such that for all i 2 iy,
min{lx; - x*1,I x; = x**1} < p, ie, x; € B(x*,p) or x; € B(x**,p), for all i 2>i, (see Fig. 3.3.2).

.“-
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Next, since VA') is continuous, VAx) = 0, and A; <1 for all i € N, by construction. Therefore
Ity ~x1=AAVAx)) 5 0 as i — oo, Hence there exists an i; 2ip such that for all i2i,
Ix; - x, 0 S p. Consequently, for all i2i, , if x;€ B(x*,p) (B(x**,p)) , then x,, € B(x*,p)
(B(x**,p)) and thus the entire sequence converges (o x* (x**).

4
(d) Since the sequence (fix;))=o is monotone decreasing, it follows that if x; — x*, then f{x;) & fx*)
as i = oo and hence if x** is also an accumulation point of (x;}zo, then we must have that
fix**) = fix*). (]
Comment 3.3.1 : The computation of A; = Bk" need not be performed by trying k=0.,1,2,..., until
(3.3.6) is satisfied. A much more efficient method is to start with A = Bk‘“ and, if (3.3.6) is satisfied,
try kiy-1,ky-2,...untl it fais, and then back up one step. If (3.3.6) is not satisfied with
A=p%', theny ky+1, ky +2, ... until (3.3.6) is satisfied. Also, one may set A; = B"B, with
B > 0 selected on the basis of experience. [ ]
Comment 3.3.2: The fact that an algorithm constructs descent directions along which it then minim-

izes is not sufficient to guarantee that it has useful convergence properties. For example, consider the
recursion

Xie1 = X; + kh.'. i= 1.2....- (3.3.1%)
where
he Mx) 8 argmin fix; + Ah) (3.3.12b)
and A; is such that
2
(VAx).h)= - 33+ D) IVAx)IAL . (3.3.1%)
Since cos@ =11 | 1- —2& | so that cosmw3 =L = 11 |1 - ——2—|. it is easy t see
=l 2i + 1) 2 m 9(2i + 1)

that when applied to the minimization of Ixi?, from an x, such that Ixgl = 1, the recursion (3.3.12a) con-
structs a sequence which converges to a point X such that &l = ¥172. [ |
Exercise 33.1 : Consider the function f(x) ) c"”z. with x € R". Show that for this function the
Armijo Gradient Method constructs a sequence {x;}zo such that Ix] — s and fix) > O0asi > . &

Exercise 332 : Consider the function {x) = x’¢™* - x, with x € R. Determine the behaviour of the
Amijo Gradient Method on this function when xo = 0.5 and when xp = 2. ]

Exercise 333 : Show that whenever the Armijo method constructs a bounded sequence {x;)Zo, Wwe
must have VRx) — 0, as i = oo, |

Exercise 334 : The geometry of the behavior of the Armijo method is best seen in terms of level
sets and trajectories. Show that the speed of the Armijo method is affected by the "narrowness” of the
level sets: the closer the level sets are to the spheres, the better the behavior of the Armijo method. =
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Exercise 3.3.5 : Suppose that {x;) is a sequence constructed by the Armijo Gradient Algorithm
3.3.2 in solving problem (3.3.1), with f:R* — R twice continuously differentiable, and that (x;}; has
an accumulation point ¥ such that 3%(x)/0x* is positive definite. Show that the sequence {x;)2o con-
verges 10 X. ]

The proofs of convergence both for the method of steepest descent and for the Amijo method
followed the same patiern which we will also use in the proof of convergence of a number of other
algorithms. This pattern is best studied in an abstract setting, as follows. First we observe that the A;
computed by the steepest descent algorithm in (3.3.2) need not be unique and hence the successor point
of x; is not unique. We therefore see that the algorithm is defined by an iteration map which is set
valued, i.c., which is a multifunction, so that a relationship of the form x;; € a(x) holds, rather than
X;,; = a(x). Muliifunctions play an important role in optimization. An example we have seen earlier is
that of the level set of a continuous function f:R" = R, ie., L(x) A (¥ e R*"IfiX) Sf(x)]. In the

literature we find concepts of upper and lower continuity, continuity and differentiablity of multifunc-
tions.

Abstract Problem 3.3.1: Let D c R" be the set of desirable points in R". Find a point ZinD. ®m

Let c:R* - R be a swrrogate cost function and let a:2* — R® be a set valued iteration map.
We propose the following algorithm for solving the Abstract Problem 3.3.1:

Model Algorithm 33.1 :
Data: X € R
Step0: seti=0.

Step 1: Compute a candidate successor

y € a(x) . (3.3.13a)
Step2: If
c(y) < elxy). ‘ (3.3.13b)
set
Ln=Y, (3.3.13%¢)
replace i by i + 1 and go to step 1.
Else stop. [ ]

Theorem 333 : Suppose that ¢(*) is continuous and that for every x € D there exist an p(x) > 0 and
a 8(x) > 0 such that

c(X) - c(x) S-8(x) <0, VX € Bx,p(x)). ¥ X’ € a(X) . (33.14)
Then either the sequence (x;}, constructed by the Model Algorithm is finite and its last element isinD
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or it is infinite and every accumulation point of {x;} is in D.

Proof : First, we conclude from (3.3.14) that for all x € D, we must have c(a(x)) 2 c(x). Hence if the
sequence {x;} is finite, its last element must be in D. Next, suppose that % is an accumulation point of
{(x) 0. ie.. X; -fr % as i — oo, Then, because the sequence {c(x;))mo is monotone decreasing and c(*) is
continuous, we must have that c(x) — c(%) as i = . Now suppose that X ¢ D. Then there exist 3 > 0,
> 0 such that

c@)-c(xX)s-8<0, ¥ ¥ € Bx.p),V x’ € alx). (3.3.15)
Therefore there must exist an i, such that for all i 2 i,, i € K, x; € B(x,p) and hence
c(xi) - c(x) -8 <0, (3.3.15b)

which contradicts the convergence of ¢(x;) 10 ¢(). This completes our proof. ]
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4. RATE OF CONVERGENCE AND EFFICIENCY

The most reliable way of evaluating the relative merits of two algorithms is to apply both of them
to a set of problems of interest and to compare the cpu times needed to solve these problems. Such an
exhaustive comparison is not always possible. Hence it is useful to have some mathematical measures
of algorithm performance, which can be used to make qualitative distinctions between algorithms. We
shall now discuss two of these performance measures.

4.1. RATE OF CONVERGENCE OF SEQUENCES

Definition 4.1.1 : We say that a sequence {x;)= , in R", converges to a point X at least with root
rate r 2 1 if there exist M € (0,), 8 € (0,1) and ip € N such that forall i 2 i,

I, -XdsME, ifr=1, 4.1.1a)

I, —-H<SMS, ifr>1. ' (4.1.1b)

When r = 1, we say that the convergence is Linear. When r > 1, we say that the convergence is super-
linear. [ |

When plotted on a semilog scale, a linearly converging sequence produces a graph as shown in
Fig. 4.1.1a, while a superlinearly converging sequence produces a graph as shown in Fig. 4.1.1b.

Remark 4.1.1 : It is possible for a sequence {x;}2 to converge to a point X slower then linearly,
¢.g., when Ix; - 2l = k. =
The following result is basic to the study of rate of convergence of algorithms.
Theorem 4.1.1: Let {x;]2¢ be a sequence in R",
(a) If there exists a § € (0,1) and an iy € N such that
Ix;, —x3 S 8lx; = x4l ¥ i2igH, (4.1.2a)
then there exists an x € R” such that x; = X as i — oo, at least linearly.
(b) If there exists an M € (0,), an 7 > 1, and an ip € N such that
s

Lag -5 ) S 1, (4.1.2b)

and

o - 51 S Ml — 30, Vi 2igH, @.120)

then there exists anx € R"such that x; = X as i = e superlinearly, with root rate at least r.
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Proof :
(@ Fori=0,1,2..,1lete; & Ixy,; —x) Then (4.1.2a) becomes

€1 S8e; ¥ i2i. “4.13)
Hence, by induction,

e S e, ,

eig2 S ey < &%,

4.14)

and, since 8 € (0,1), it follows that ¢; = 0 as i = o, Hence, for any j > k 2 iy, we get that

l!j -xl= l(x,- - xj-l) + (Xj.; - x;.z) + e+ (X — xl

= i e,°8/=8h°(
Fiy 1-

€y

3 ), ’ 4.1.5)

ie., l;—xd — O for j > k as k — oo, uniformly in j. This shows that {x;}=o is Cauchy and hence that
it must converge to a point X.
Next, letting j — oo, we can replace x; by % in (4.1.5) to obtain that

€ip

G-xls [ a“"]s‘. (4.1.6)

1-9%

which proves that x; — X as k — o linearly.
() Next, again with ¢; = Ix;,; - x;1, we get from (4.1.2c) that
eaSMe, VvV i2i. . 4.1.7a)

Hence, multiplying both sides of (4.1.7a) by M[’“'] we get
SN
MU e M I Mg =\ ey, voizi. 4.1.75)
]
Fori=0,12..let}; & M"J ¢, Then, from (4.1.7b) we get that
W SHL, V i2i. 4.1.8a)

Letting w; = In y;, we get from (4.1.8a) that
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Wi Srw;, ¥V i2i0p. (4.1.8b)
Hence
w; S rH"w,-o. VY iZ2i (4.1.9a3)

which leads to the conclusion that
mEw v iz, (4.1.9b)

Now (4.1.9b) can be rewritten as

‘o"
TPR [us;"’] . VP2, _ (4.1.5c)

Substituting for the y; in (4.1.9¢), we get that

L] 2 Jame]’
e < T M

8¢t vizi, (4.1.10)

with § = u,-o("")%. Next we note that because of (4.1.2b), 8 € (0,1). Therefore, since r > 1, there exists

an i, 2 ig such that §” =™ < 8¢=® for all i i, and hence, by arguments analogous to the ones used in
obtaining (4.1.5), we get that for some ¢’ < e and all j > k 2 i,
.F-l

lxj-xglsie.-St:iS"s::S" p 8"‘"”-&5:8“-") <8, (4.1.11a)
= =t P =

r

which proves that (x,} is Cauchy, so that it must have a limit point 2. Letting j — o, it now follows
from (4.1.11a) that

B-xlsc®, v k2i, (4.1.11b)
which shows that x, — X, as i — oo, with rate at least r. [
42. EFFICIENCY

Next we turn to the task of estimating the work needed to solve an optimization problem to
prescribed precision.

Thus suppose that in solving a particular problem, an optimization algorithm produces a sequence
{x:)i2 which converges to a solution X linearly. To reduce the error from an initial value of lx, - X to
alxy - X, for a given a € (0,1), requires a number of iterations. This number can be estimated if we
know constants § € (0,1) and M € (0,) such that | x;- X < M, for all i € N (i.c., we are setting
ip = 0). Clearly, in this case we must have that lxy — X1 < M and a bound on the number of iterations
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needed to reduce the initial error by the factor a is given by the smallest solution, i* € NN, of the ine-
quality
§<a. (4.2.22)

Taking logarithms of both sides, (4.2.2a) yields (since both § , @ € (0,1)) that i* is the smallest integer
such that

Ina ‘
i*t2 s (4.2.2b)
Assuming that it takes w units of work (say cpu seconds) to construct x;, and that Ina/Ind is much
greater than 1, so that i* = Ino/Ind, an estimate for the total work performed in reducing the error by
the factor a is given by

W= -l:—slna. 823)
The factor
n 8- 1"-? >0 @4.24)

is called the efficiency of the process that constructed the sequence {x;}zo.

When x; = X superlinearly (with root rate r > 1), the efficiency of the process which constructed
the sequence (x;}5o is sometimes defined by

g lor
né = @42.5)

The expression (4.2.5) expresses the work required to reduce the error | x; - 1 by a specificed factor
for processes with the same M, 8. It does not take into account the fact that both M and & can depend
on lxy — 3, as is the case in (4.1.10). Hence it must be used with caution.

Exercise 42.1: (a) Obtain a formula which estimates the work needed by an algorithm satisfying a
relation of the form (4.1.1b), with r > 1, to reduce an initial error lxp — X by a factor @ € (0.1).

(b) Justify the definition (4.2.5). [ ]

43. RATE OF CONVERGENCE OF ARMLJO GRADIENT METHOD

To conclude this section, we shall establish the rate of convergence of the Armijo Gradient Algo-
rithm 332.

Theorem 43.1 : Suppose that fR* — R is twice continuously differentiable and that there exist
0<m £ M <o such that

SR 2
L5005 M @3.1)

bolds for all x,v € R"™. If {x)z, is a sequence constructed by the Armijo Gradient Algorithm 3.3.2, in

mhvi2 S (v,
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solving min f{x), then
ze R*

(@ x; — Xasi—> oo, with X the unique minimizer of f{"), and
(®) x; — %asi— o linearly, with convergence constant § < 1 - 4mBo(l ~ a¥M.
Proof :

(@) From Exercise 2.4.3, the level sets of f') are compact. Hence a solution % o min fx) must
ze R"

exist. Because f{v) is strictly convex, % is a unique solution. Since every accumulation point x* of
{x;)20, constructed by the Armijo Gradient Algorithm 3.3.2, must satisfy VAx*) =0, it follows that
x° =% is the only accumulation point of this sequence.
(b) To establish the rate of convergence we need three resuits:
@) For any x;, by the second order expansion formula (2.4.7d),
£5d -9 = [ (=s)Gei = DHG + s = DG = s @322)
Because of (4.3.1), (4.3.2a) leads to
mix~28 < 2[fx)~fX)] S Mx-x . (4.3.2b)
(ii) Making use of the first order expansion formula (2.4.7a) and the fact that VAX) = 0, we obtain
VAx) = f HG + s(x; - D)(x; - Dds . (4.3.3a)
It now follows from (4.3.1) and the Schwartz inequality that

mlx; - 32 < (Vfx).x; - DS IVAx)Ix; - 4.3.3b)

(iii) Expanding to second order the formula used in the Armijo step size calculation (3.3.4b), we
obtain

fx; - AVfx)) - Ax) + AadVAx)P

== [(1 - a)IVAx)P

-A f (1 - sXVAlx).H(x; - sVAx)) Vj(x;))is]

< - MVAx)P[(1-a) - AM/2] . 4.3.4a)

The right hand side of (4.3.4a) is negative for all A € [0,2(1—a)/M]. Hence we must have that
BY 2 33—(1-01). To see this, observe that k; < %, with % such that p* < -2%;’31 and B > 2(1-0)/M.
Consequently we get that
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b= h(x) & -VAx). (33.2a)
Swop if VAx) = 0.
Step 2: Compute the step size
e Mx) 8 argmin flx; + VAR (3.3.2b)
Step3: Update
X=X + Ak, B3.2)
Replace i by i + 1 and go to Step 1. [ ]

All of our convergence theorems will be stated in terms of subsequences constructed by an algo-
rithm. Hence we shall be using the following notation.

K
Notation 33.1 : Given a sequence {x;)2 and an infinite subset KcIN we shall denote by x; — X (as
i — o) the fact that the subsequence (x;); ¢ x converges to . [

Without making additional assumptions on the function f{), it is not possible to be sure that a
sequence {x;)5o, constructed by the steepest descent Algorithm 3.3.1, is bounded or that it converges.
Hence, we must content ourselves with the following, quite typical, milder convergence result.

Theorem 33.1: If (x5 is an infinite sequence constructed by Algorithm 3.3.1, then every accumu-
lation point % of {x;}=o satisfies VAX) = 0.

K
Proof : Suppose that x; — % as i — oo and that VAx) # 0. Then

dfG; k() = AR <0 . (33.3a)
Hence any’ie A% satisfies X > 0 and there exists a 3 > 0 such that
fG+ @) -fB=-8<0. (3.3.3b)

Since k(") = —Vf(*) is continuous by assumption, the function fix +ﬁ}|(x)) - fx) is continuous in x and
hence there exists an ip such that forall i € X, i 2 iy,

Rxin) = fix) S flxi + W(x)) - fix) < -% . (33.3)

K

Now, by construction, {f{x)}3o is monotone decreasing and fx;) — fx) as i = o by continuity of f{).
Therefore, by Proposition 2.2.1, we must have that x) — fZ) as i — . But this contradicts (3.3.3c).
Hence VAX) = 0 must hold. ]

The main objection to the method of steepest descent is that it contains a non-implementable step
size rule. To get around this difficulty, several alternatives have been proposed. We find the following
one particularly efficient.

.u.
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fxin) =fix) S -3&3;“1 IVRx)P, (43.4b)

for alli € N. Now,
1

£&) - fix) = VRx).% - x)+ { QA =) (& - . H(x; + sG - x)& - x)ds
2 (VAx).3 - x)+ -'zll?: -xP

2 min (VAx).W+ =Ihi
he R* 2

=-—2:;le(xi)lz. (43.5)
Substituting for IVAx)1 in (4.3.4b) from (4.3.5), we get that
i) = fx) S Bal1-a) 2 IR - el 4.3.62)
Subtracting AX) from both sides of (4.3.6a) and rearranging terms, we get that foralli € N,
ford = f0 s (1 - AmBU=D i iy @36)
Since [1 - 4mBa(1-a)/M] € (0,1), we find from Theorem 4.1 that for all i 2 0,

0 < fix) - f®) < &[flx)) — AX)). (4.3.7a)
with 8 = 1 — 4dmBa(l-a)/M. Hence, making use of (4.3.2b) we obtain that

17
k- < [—%mx.,) - f(f)]] @%, v i20, 4.3.7b)

which completes our proof. |
Remark 4.3.1 : It is possible to obtain a much less conservative result than (4.3.7a, b) for the Armijo

Gradient Algorithm 332, with 1~ 2% in (4.3.6) replaced by the tighter bound I (o, Luen-
berger, Introduction to Linear and Nonlinear Programming, pp. 148-154). |

Exercise 4.3.1 :
(a) Prove that setting a = 1/2, in the Armijo step size rule, is a good idea.
(d) What is the trade off in making B small or large in the Armijo step size rule? ]

Exercise 4.3.2 : Consider the Steepest Descent Algorithm 3.3.1 and suppose that it is applied to the
solution of the problem min fx), with f{*) satisfying the assumptions of Theorem 4.3.1.
zeR"
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(@) Prove that if it constructs a sequence (x;)5q, then x; — %, as i = oo the unique minimization of
fC), linearly.

() Compare the speed of convergence of Algorithm 3.3.1 with that of Algorithm 3.3.2 and estimate
their relative efficiences. n
Exercise 433 : Suppose that (x;}%, is a sequence constructed by the Armijo Gradient Algorithm
3.3.2 in solving problem (3.3.1), with fR* — R twice continuously differentiable, and that (x;)Z, has
an accumulation point X such that 9%(x)/ox? is positive definite. Show that the sequence {x;)z, con-

verges linearly to X. [
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S. NEWTON'S METHOD

Newton's method is one of the very oldest and best methods for solving many root finding and
optimization problems. However, in its simplest form it converges only if the initial guess is
sufficiently close to a solution, as will soon become apparent. We will examine both the simplest
(local) version as well as stabilized versions which have global convergence properties.

§.1 THE LOCAL NEWTON METHOD

We return to the problem

~ min f{x) . (5.1.1)

xeR"
Assumption 5.1.1 :

(a) The function fR* >R is twice continuously locally Lipschitz differentiable, ie., given any
bounded set SCRR* there exists an L < e such that

WHE) - Hol S Lix- X1, (5.1.2a)
for all x, ¥’ € S, with H(x) 4 Pf(x)/ax’, as before.
The norm in (5.1.2a) will be assumed to be the induced L, norm which is defined by
i 2 max (WHdIkI=1). (5.1.2b)
(The use of the L, norm is convenient, but not essential. Other induced matrix norms can also be used.)

(®) We will assume that (5.1.1) has a local minimizer % satisfying the second order sufficiency condi-
tion (3.2.7), and hence that there exist constants 0 < m € M < oo such that

miyP S Q HONSMHP, Vv ye R". (5.1.:3

Exercise 5.1.1 SupposethatH'sanmrealsymmeu-icman'ixandl}natthereexist0<m$M<oo
such that for all y € R*,

miy? < (y,H)S My . ) (5.14)
Show that
H S M, (5.1.52)
whst . (5.1.5)
m
o

The basic idea behind the local Newton method is as follows. Given a current estimate x;, of the
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local minimizer %, we expand f{-), approximately, to second order terms about x;, to obtain
£02) = fix) + Tk x = 5+ 5 - 2. HER) (& = 5. 5.16)

If we minimize the right hand side of (5.1.6) war.t x, we find that we can compute the minimizer x;,, of
the right hand side, by making use of the first order optimality condition, Theorem 3.1., viz.,

VAx) + H(x) (xisy —x)=0. .17
Since H(x,) must be nonsingular for x; close enough o X, (5.1.7) defines the iterative process

Xy =X = Hx)™? VAix), i=0,1,2,. (5.1.8)

We can restate (5.1.8) in the form of an algorithm, as follows:

Local Newton Algorithm 5.1.1 :

Pata : x € R

Step0: Seti=0.

Step 1:  Compute the search direction

i = =H&x) ' Vfx) . (5.1.92)

Step2: Update
X =X+ b, (5.1.9b)
replace i by i + 1 and go to step 1. ]

Theorem S5.1.1 :  Suppose that Assumption 5.1.1 is satisfied. Then there exists a p > 0 such that if
xo € BG.P). then the sequence { x; )Zo. constructed by the Local Newton Algorithm 5.1.1, converges
to X quadratically (with root rate 2).

Proof : Since H() is continuous, and Assumption 5.1 holds, there exist a p > 0 and an L < e such
that '

L;-lylz <SG HEPS 2MHP, ¥ ze BR.p) andV ye R*, (5.1.10a)

W) -HEISLik-X1, V X, x€ BGp). (5.1.10b)
Suppose that x; € B@R.p), then, from (5.1.7), we obtain that

HE i - 20 = ~Vwd + VG = = [ B - stx; = D)o = B (5.1.11)
Hence

tx,; - 3 < WHE)™M f WH(x) — H(x; — s(x; = D)Mdslx~x1
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s

3|~

;- 2. (5.1.11b)

Therefore, if (L/m)lx;— %1 < 1, we must have that bx;,; — %1 < lx; — ¥ and hence that x,,; € B@.p).
Therefore, if for any a € (0.1), we define

p & min( p.maiL ). (5.1.12)

we obtain, by induction, that if xy € B(.p), then the entire sequence { x; )0, constructed by the Local
Newton Algorithm, is well defined and contained in B(Z.p) and satisfies the relation (5.1.11b).
For =0,1,2, .., let ’

=L
m

Then, from (5.1.11b), we get that

" x,-x. (5.1.13)

Moy SH2, fori=0,1,2,..., (5.1.14a)
so that

s, for i=0,1,2,..., (5.1.14b)
which proves that the sequence { x; )=, converges to % quadratically. |

Remark S5.1.1 : An examination of (5.1.8) shows that Newton’s method is in reality a method for
finding a solution to VA(x) = 0, ie., it is a method for solving a system of n equations in n variables.®

Exercise 5.1.2 : Let g:R" = R" be locally Lipschitz continuously differentiable. Suppose that
% € R" is such that g) = 0 and g,(3) 2 9g(R)/ax is nonsingular. Show that if x, is sufficiently close to
%, then the sequence { x; }io, constructed according to the Newtonian recursion

Xy = X —8x)” g(x), i=0,1.2,., (5.1.15)

converges to X quadratically. n

Exercise 5.1.3 : Let g:R" — R" be Lipschitz continuously differentiable, with global Lipschitz con-
stant L. Suppose that g,(x) is nonsingular for all x € R" and that there exists an M < oo such that
Ig,(x)"1 S M for all x € R". Show that if x4 is such that

A g rogtan < 1. (5.1.162

then the sequence { x; }Jop constructed according to the Newtonian recursion (5.1.15) converges qua-
dratically to a point ¥ € R” such that g&x) = 0.
Hinr: First show that

&x(x)(Xisy = X) = —g(x) + Z2(xi1)(xi — Xi) + 8(x-1) - (5.1.16b)
Then use a first order expansion of g(x;) about x;., to obtain that

-39.



EECS 227A Lecture 5.1 E. Polak

T P !*-g’—u; - xyl. (5.1.16¢)

Finally, make use of Theorem 5.1.1 (b). |

Remark 5.1.2 : The convergence and divergence properties of the local Newton method are demon-
strated in Fig. 5.1.1 for the case where x € R (with g(x) & f (x) ) Thus the lack of global conver-
gence is a fact that is demonstratable empirically. =

Exercise 5.1.4 : Use Newton’s method to prove the Implicit Function Theorem.
Hint : Given (%, ) such that g(X.y) = 0, show that Newton’s method (5.1.15) constructs a solution

-1
7+ &) of the equation f(x.j+8y) =0 for all Sy such that 1[9@&&@] gEF+ Sl < P

where p is an appropriate constant. ]

§2 GLOBAL NEWTON METHOD FOR CONVEX FUNCTIONS

We will now show that the local Newton method can be "globalized” for the case where the func-
tion f:R"— R in (5.1.1) is strictly convex, by adding an Armijo type step size rule to the local method.
Furthermore, we will see that the global method converges with quadratic rate.

Assumption §.2.1 :

(@) The function f:R" = R is twice continuously locally Lipschitz differentiable, i.., given any
bounded set SCR* there exists an Lg < oo such that

WHE) - Hol € Lgix - X1, (52.2a)
forall x, x’ € S.
(b) There exists an m > 0, such that

mhyP sy, Hx)Y), ¥ x,y€ R*. (5.2.2b)

Proposition 522 : Suppose that Assumption 52.1 is satisfied. Then (a) the level sets of f{:) are
compact and, (b) problem (5.1.1) has a unique minimizer.

Proof : (a) Suppose that xo € R" is arbitrary and that x € Lo 4 (xe R*"Ifx) Sflxo) ). Then we
must have that

1
0 2 f(3) - fixe) = Vflxe).x = 2+ [ (1 = sKx — x0).Hlxo + 5(x = Xa))(x — Zods
2 [—le(xo)l +ohk- on]Ix ~xd . (52.3a)

which leads 1o the conclusion that Lr — xgl < 2IVf{xp/m must hold, i.e. that Ly is bounded. The fact
that Ly is closed follows from the continuity of f(*).
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(b) Since the level sets of f{*) are compact, (5.1.1) must have at least one global minimizer. Suppose
that x*, x** are two minimizers. Then, because of (5.2.2b), the fact that VAx*) =0 and (24.7d), we
must have that

fx**) - fx*) = f (1 = SH(x** = x*),H(x* + s(x* = x**))(x* - x**)ds

2 %w* -2, (5.2.3b)
Since f{x*) = f(x**), we conclude from (5.2.3b) that x* = x**, i.c., that there is only one global minim-
izer, which completes our proof. ]

Armijo-Newton Algorithm 52.1:
Parameters: a € (0,1/2), B € (0.1).
Data : X € R"

Step0: Seti=0.

Step1: Compute the Newton search direction

b & —HEY' Vi) . (52.42)
Stop if h; = 0.
Step 2: Compute the Ammijo step size
A= max { B 1 fix; + B'h) - fix) < o 0, VA ) . (5.2.4b)
Step 3: Update
Xy = X + Ahi, (5.2.4¢)
replace i by i + 1 and go to Step 1. |

Theorem 5.2.1: Suppose that Assumption 52.1 is satisfied. If { x; }ao is a sequence constructed by
the Armijo-Newton Algorithm, then x; — % as i — oo, quadratically, where % is the unique minimizer of
). .
Proof : The proof is in two parts. First we prove that x; — X as i — oo, with Vf) =0, then we
show that this convergence is quadratic.

(a) By Proposition 5.2.1, the level sets of f{) are compact. Let Lo 4 (xe R"Iflx) Sfixg) ). Let
A : R" = R be defined by h(x) & -H(x)?VAx) and let

v & max{ fix+ M(x) I xe Lo, A€ [0,1]). (5.2.5)
Then (i) since H(:) is continuous by assumption, there exists an M € {m,e=), such that
WHE) sMyP ¥ ye R*, xe {x1flx)sy): (52.6)

and, (i) { x; )0 must have accumulation points, all of which are in the level set Lg.
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Suppose that % is an accumulation point of { x; }& such that Vf(x) # 0. Then for any x € Lo
such that VA(x) # 0, expanding f{-) to second order and making use of (5.2.2b) and (5.2.6), we get that

[ 1
fx + Mi(x)) = fx) = o (VAx),h(x))= A [(1-aXVAX) h(x))+ l{ (1 - sYA(x) H(x + shh(x))h(x)) ds ]
L

X
< A1 - @) (VAx) HE) VN + A—f—war‘ Vf(x)lz}

< MVRR)P { “;1“1 + 2"‘:’2 . (52.7)

Hence (just as for the Armijo method) there exists a A= Bz > 2B(1 - a)m?/M? > 0 such that for all
x € R" satisfying VAx) = 0,

fx + M) - fx) — oAVAR) G < 0. (52.8)

It follows from (5.2.8) that for all i e N, A; >%. Now, by assumption, VAZ) # 0 and hence hZ) = 0.
x .

It now follows from the continuity of h(-) and VA-) that if x; = X as i — oo, then there exists an io

such that for all § 2 i, i € K, (Vf(x).h)< -% Vf®).h@) <0, so that

flxia) - Rx) < ALVAX).h)

a

ar

< —Z-(Vf(b.’i» <0, VieK, i2i. (529

Since { ix;) )0, is monotone decreasing by construction, (5.2.9) shows that fx;) = —o=. However,
K

x; -> % implies that f{x,) —> f%), and thus we have a contradiction. Consequently, we must have that

VAR) = 0. Since by Proposition (5.2.1), there is only one point X such that VAZ) = 0, we must have that

X, >xasi— oo,

(®) To show that x; — % quadratically, it is necessary to repeat the calculation in (5.2.7) with greater
care and to make use of the fact that a € (0,0.5).

First we observe that because H(-) is locally Lipschitz continuous, there exists an L € (0,%) such
that

WH(X) — Ho) s Lix - x71, (5.2.10)

forall x, ¥ € { x1fx) Sy). Next, setting A= 1 in the expression for the Ammijo step size rule (see
(52.4b)), we obtain, upon expanding to second order terms, and adding and subtracting the term
VRx).Hx) ' VAx)), that

£+ b) - flx) — &VAx). k)
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=(1 - a) (VAx).h) + f Q - s) U H(x+sh)h)ds
= (1 - 3 - &) (VRa) HO V)
+ [ 0= 0 a0 Wtad. [ + 5040 — Heed | e Vs

< lVf(xglz[— a- 2“)?17 + ?;;Wj(x,-)l] . (52.11)

Since a € (0,0.5) and VAx) — 0 as i = =, it follows that there must exist an i such that for all
i2iy,

Rx; + b) - fix) — VAx).hAYS 0, (5.2.12)
which shows that A; =1 for all { 2 i;. Since this shows that the global method degenerates to the local
method as the solution X is approached, the rate of convergence result follows. ]

Exercise 52.1 : (a) Prove that if an algorithm for minimizing a function f:R" — R follows a
recursion of the form
%1 € Az) (52.13)
with A: R"— 2® such that for each x* satisfying VA(x*) # 0, there exist p* > 0, &* > 0 such that
fX)-fX) € -8, Vvx'e AX) . X € B(x*.p*), . (52.14)

4
then x; — % as i — oo implies that VAX) =0.
() Show that this principle was used in proving the convergence both of the Armijo Gradient and the
Armijo-Newton Algorithms. ]

Exercise 52.2: Use the above result to combine the Armijo gradient and Newton Algorithms into
an algorithm that works for convex as well as nonconvex functions. |

$.3 AN AID FOR GLOBAL STABILIZATION OF LOCAL ALGORITHMS

The observation outlined in Exercise 5.2.1 is centainly very helpful in the-.construcu'on of new
algorithms. However, its use can be made considerably easier if we specialize it to particular cases. We
shall now present such a specialization to be used in unconstrained optimization.

Theorem §3.1 : (Polak-Sargent-Sebastian).

Let f:R* - R be twice cominuouslyT differentiable. Consider an algorithm for the minimization of
f) which uses a search direction map A:R" — R" and the Ammijo step size mule: viz., with
a, B € (0.1), given x;, the algorithm constructs x;,, according to the recursion

s also possible 1o prove this theorem under the weaker assumption that f{) is culy once continuously differentiable.
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it = X + Mh(x), ' (53.1a)
where
ll' = “ma§ [ Bt 'ﬂxl' + ﬁth(xl)) _ﬂxi) s -Bk a(vﬂx.).h(&)} . (5.3.1‘))

Suppose that there exist two continuous functions Ny :R* = R, No:R"* — R such that for all x satisfy-
ing Vix) 20, ) N,(x) >0, Ny(x) > and, (ii) forall xe R"

(vj(x) ’ h(x» < _Nl (x) ’ (5 3 .23)

Ih(x)l < Nx(x) . (5.3.2b)
If { x; )2 is a sequence constructed by this algorithm, then any accumulation point % of this sequence

satisfies Vf&) = 0.

4

Proof:  Suppose that x;—% as i—e and VA®)#0. Then WEISN,R) and
(VfR).hGENS -N,(&) < 0. Clearly, this implies that Ih(Z)l > 0. Consider the computation of the step size
A, for x; € B(.p), where p > 0 is such that Ny(x) 2 %N,(i) >0 and Ny(x) € %Nz(b hold. Note that

because () is twice continuously differentiable and Ny(x) < %Nz(i) holds for all x € BG.P), the bound

M A sup({IHOM I ¥ =x+ ph(x), p € [0,1], x€ BGP) ) <o, (5.3.3a)
K
where H(x) & 32fx)ax2. Since x; = X, as i — oo, there exists an i such that for all i 2 io, i € K,
x; € B(x,p) and therefore
fx; + Mi(x) = fx) = MdVAx), h(x))

= M1 - GXVfled A+ A (1 - 5) WHCx; + SAACE)ACR). hGxhds
< x[- -%(1 - N, R) + %mnz(i)z] : (5.3.3b)

1t follows form (5.3.3b) that there exists a ® € N, % > 0 such that for all x; € B&.P), the step length A,

must satisfy A; 2 B* 2 min{ 1,2B(1 - )N,RYIMN,(X)* ). Consequenty, for all i € K, i 2 i (so that
x; € BE.P),

Axia) = fx) < Aa (VAx).h(x))

< _B'EGNI(;‘) <0. (5.33C)

Since { fx) )zo is monotone decreasing, (5.3.3c) implies that fix) — —oo as i —» oo, However, f{') is
K
continuous and x; — X as i = oo, which implies that fix) — f(x) as i = oo. Thus we have a contradic-

tion, which completes our proof.
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Remark §3.1: Note that the above proof did not require A(x) to be continuous! |
An alternative result, 1o be used with an exact minimization stepsize is given in the following

Theorem $3.2: Let f:R* - R be twice continuously differentiable. Consider an algorithm for
the minimization of () which uses a search direction map h:R" — R" and an exact minimization step
size rule: viz., the algorithm constructs x;,; according to the recursion

Xy = X + Kh(x), (5.3.42)
where
A; = argmin flx; + Mr(x)) - fix) . (5.3.4b)

Suppose that (i) k(x) # O for all x € R" such that VAx) # 0, and (ii) there exists a p € (0.1] such that
forallie N

(VAx), h(x))S —pIVAXIUAG . (53.4c)
If { x; )2 is a sequence constructed by this algorithm, then any accumulation point % of this sequence
satisfies VAX) = 0. ]
Exercise 5§.3.1: Prove Theorem 5.3.2. [ |

Exercise 5§3.2: Show that the following stabilized version of the local Newton method satisfies the
hypotheses of Theorem 5.3.1 for functions f:R" — R that are twice locally Lischitz differentiable and
that it will converge quadratically under suitable assumptions.

Stabilized Armijo Newton Algorithm 5.3.1 :
Parameters : a € (0,1/2), B € (0.1).
Data: x € R*
Step 0: Seti=0.
Step 1:  Compute the Hessian matrix H(x;) and its largest and smallest eigenvalues, Apyx(XD, Amin(x).
If Apzn(x) 2 1078 and A, (x)/Amin(x) < 107, set the search direction to be
ki & —HEY ') . (5.3.52)
Else, set the search direction 1o be
h; & -VAx) . (5.3.50)
Step2: Compute the Armijo step size
A= max (B*1fx; + B'h) - fix) < o VAN ) - (5.3.5¢)

Step3: Update:
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X1 = X+ Aihy, (53.5d)

replace i by i + 1 and go to Step 1. [ ]
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Fall 1988

6. METHODS OF CONJUGATE DIRECTIONS

6.0. INTRODUCTION

As we shall shortly see, when applied to convex problems of the form min, . fx), with
f'R" = R twice continuously differentiable, methods of conjugate directions accomplish in n iterations
what Newton's method accomplishes in one. However, for large problems, because they do not require
the computation of the hessian matrix, their efficiency is considerably better than that of Newton’s
method. Methods of conjugate gradients emanate from an iterative formula, for constructing, simultane-
ously, both an orthogonal and a conjugate basis, by using a positive definite matrix. A conjugate gra-
dient method was first proposed by Hestenes and Stiefel as a method for solving equations of the form
Hh = g, when the matrix H is positive definite. The formula makes use of the fact that the two prob-
lems Py: find an h € R" such that Hh = g and P,: min, _ .. IHh - gI* have the same solution.

6.1. METHODS OF CONJUGATE DIRECTIONS : QUADRATIC FUNCTIONS
We begin with definitions and a few preliminary results.
Definition 6.1.1 : A basis { y; }Z,, for R" is said to be orthogonal if W;,u)= 0 for all i # j. [ ]

Definition 6.1.2 : Given a symmetric, positive definite matrix H, a basis { u; }%, for R" is said to be
H-conjugate ( or simply conjugate) if W;,Hup= 0 for all i # j. [ |

Exercise 6.1.1 :  Suppose that { u; )%, is a basis for R". Show that the following process constructs
an orthogonal basis { v; }1; for R™

VI = U, (6.1.4a)

-1
vi= 4+ 3 A, (6.1.4b)
=l
with A;; determined from the equation
0 = W)= (jud+ Atv;v). ’ (6.1.4¢)

Exercise 6.1.2 : Let H be a symmeltric, positive definite n X n matrix and suppose that g, € R", not
an eigenvector of H, is given. Show that if the following process does not stop because g; = 0, then it
constructs simultaneously both an orthogonal basis { g; }X; and an H—conjugate basis { A; )3, basis for
R™
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& given,
=8+ whl'r » i= Oolr---ln = ,: (6-1.23)
A = —bgVig; Hh;

ho = go.
hn=8n+Yih; , i=01,...n-1. (6.1.2b)
Y; = = Hh;,. g1} HhbY)

The next two results complete our presentation of the basic facts which make conjugate gradient
methods work.

Theorem 6.1.1 : Let f:R* = R be continuously differentiable. Suppose that X minimizes f{*) on the
subspace spanned by the vectors y;_ ys .... Y then (VAX).y)=0fori=1,2, .. k.
Proof : The subspace in question is

( xlx=Ya ), (6.1.3)

where Y is an n x k matrix with columns y;, i =1,2, .., k. Hence 3=Y &, with G € R", solves the
problem

min fiYa) , (6.14)

i.e., & solves the problem min,, _ .. g(c), with g(a) 4 flYa). Hence we must have that
0 = Vg(&) = Y'VAY®)

= Y'Vf®). (6.1.5)

The desired result now follows immediately.
The following result is known as the Expanding Subspace Theorem.

Theorem 6.1.2 : Let H be a symmetric, positive definite, n x n matrix, and let d € R" be arbitrary.
Let

fx) & B, Ho+(d (6.1.6)

and let { k; }2J be an H—conjugate basis for R*. If { x; }2o is a sequence constructed according to the
recursion

Xo,given,
X = X; = Nh;, , 1=0,1,....n, 6.1.7)
A= arg{ﬂigﬂn -Ah),

then x; minimizes f{*) on the subspace spanned by ko, hy.....h:.
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Proof : Fori=0,1, ,..n let g & VAx)=Hx;+d. Then, because of of the rule for A; in (6.1.7),
for i = ool.20"°ln.li

oflx; - M.‘)' _
TL-; = = (VAlxi1). hd

== (i1, h.): 0. (6.1.8)

Also,
X; = Xy = Aahigy

= X2 = Moghiz = Ay by

=xp-Aoho-A Iy—-..... = Ay By (6.1.9a)
Similarly, making use of (6.1.9a),
gi=Hx;+d
=Hxo+d - AoHhy = AHmy - . . ... - A Hh,
= go— AoHho— MHR - . .. .. = A Hh,y . (6.1.9b)
Since the h; are H~conjugate, it follows that for any 0 S k < i,
@i-ho= Q0. k0 — Mh.Hhy) . (6.1.10)
Because of (6.1.8), we get from (6.1.10) that
0 = @u1 . hp= Qo.hp— Ahy . Hh (6.1.11a)
and hence, from (6.1.10), that
@ih)=0, fork=0,1, .., i-1. (6.1.11b)

Thus x; satisfies the necessary conditions of optimality stated in Theorem 6.1.1. Since, fU) is
strictly convex, this condition is not only necessary, but also sufficient, i.e., x; minimizes f{*) on the sub-

space spanned by hq. Ay,..... Bp;. | |
Corollary : The vector x,, constructed as above, minimizes the quadratic function

Rx) = Y%k, Hx)+ d x) 6.1.12)
on R" ]

It is possible to construct several algorithms which produce H—conjugate directions while minim-
izing a quadratic function f{x) = % &, Hx)+ d.x) . The different conjugate gradient algorithms use
different formulae for computing the parameter ¥; for (6.1.13), below. The search directions produced
by these algorithms are identical when minimizing a quadratic cost and hence they construct identical
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sequences of points x;; However, when f{*) is not quadratic, their behavior can be quite different. We
state these algorithms in the form of a master algorithm which does not use a specific formula for com-
puting the parameter ¥;, and which is applicable only to quadratic functions of the form
Rx) = Yx,H x)+ d.x) with H>0 and symmetric. Exiensions to more general functions will be
described in the next section.

Master Conjugate Gradient Algorithm 6.1.1 :
(Solves min ¥%x.Hx)+ d,xy H >0, nXx a symmetric.)

1e R
Data : x € R".
Step0: Seti=0, hg=go 2 Hxo+d.
Step1: Compute the step length

A =arg ;nzirgﬂx.- - Ah). (6.1.132)

Step2: Update: set

X = X — My,
gim 2 Hxyy+d, (6.1.13b)
hiy = iy + Yihi,

with
Hh;, g1
Yi= G HR) (6.1.13¢c)
so that
U HRY)=0 . (6.1.13d)
Step3: Replace iby i+ 1 and go to Step 1. |

Theorem 6.1.3 : Suppose that H is an n X n symmetric matrix and d € R". Then The Master Conju-
gate Gradient Algorithm solves the problem ’

xl:lig- { Yol ,HX + d x) ) (6.1.14)

in at most n iterations.

Proof : In view of Theorem 6.1.2, we only need to show that (5, Hh)= 0 for all i # j, with h;, g; con-
structed by the algorithm. In the process we will also show that {g;.g)= 0, for all i # j.

Our proof proceeds by induction. Since hy = 8o,
@1.ho)= (81.80= 0, (6.1.152)

by construction of A,. Next, by construction of Yo,
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U Hhg)=0 . (6.1.15b)
Hence, suppose that

@gi.g) =0

Ql.-l;h,)=0 ¥ 0<ijSk<n i), (6.1.16)

First, by construction of A;, (g1,h) = 0 for all i. Next,

& = HX,-.H +d=H(x; - M,) +d=g - wh‘. fori=0,1,..,n. 6.1.17)
Consequently,
{gm ,h,) =0= (h;.g,- - LU!,.Hh,\ fori=0,1....n, (6.1.18)
so that
i 8 .
A= TR fori=0,1,..n. (6.1.19)

Thus, from (6.1.17) and (6.1.19), we get that for all i =0,1.....n-1,
(i, g0 gi. Hh)

(i 8i1)= 8in8 = —OHR (6.1.202)
Now

a8 = & + Y1 b .8 = 8i8) . : (6.1.20b)

i Hh) = (g; + Yrhisy Hh)= Qi HR). (6.1.20c)

Substituting into (6.1.20a), we get
g.8)=0, fori=0,1,..n, 6.1.21)
so that {g1.80 = 0.
Next forall i # 0, i <k, since {g;,g) = 0 and U;,Hhy) =0,

(ere1.8) = &k — Midhy. 8
= — M by, 8)
= = AHhy b = Y= 0. 6.1.22)
Finally, since go = ho,
(8re1.80= —MHhy,. 80

== MNHh )= 0, (6.1.23)
which completes our proof that the vectors in the set { g )= are orthogonal.
Next, for i = k, (. Hh)= 0, by construction of ;. For 0 S i<k,
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G HAY= Qo1 + Ve, HRY)

= (gre1 HAY)

={gsn1 -‘if(&'ﬂ -8&)
=0, (6.1.24)

which shows that the { k; }2J are H—conjugate. This completes our proof.

Thus we see that a conjugate gradient algorithm takes at most » iterations in minimizing a qua-
dratic function on R*. Newton's method requires only one iteration on this problem. Hence, we may
hope that on general problems, properly constructed versions of conjugate gradient algorithms may turn
out 10 be n—step quadratically convergent. This is in fact true.

6.2. METHODS OF CONJUGATE DIRECTIONS : GENERAL FUNCTIONS

As we have seen in the preceding section, even for the quadratic problem
min__ o. % &.Hx) +d.x) with H symmetrical and positive definite, the Master Conjugate Gradient
method requires n iterations to produce the same result as Newton's method does in one iteration.
Furthermore, it consumes a lot of computing time in finding the step size. Hence the use of a conjugate
gradient method can be justified only if the Hessian matrix calculation can be avoided. If we were t0
extend formally the Master Conjugate Gradient Algorithm 6.1.1 to the solution of

min flx), 6.2.1)

with f:R" - R continuously differentiable, then, referring to (6.1.13c), we would have to set
¥ = —H(x)h;, VAx; )Y (H(x)h;, b)), which involves the Hessian matrix. We shall now develop alterna-
tive formulas for ¥, which are equivalent to (6.123c) for the quadratic case, but which enable us to
apply conjugate gradient algorithms to the problem (6.2.1) without computing Hessians.

First, for the quadratic case, where f{x) = YAx Hx)+ (d.x), with H > 0, symmetrical, we obtain
from (6.1.13c) that

__ Whi.gi)
Y= Rk 622)

Since by construction

A Hh; = gy — 8i 6.2.3)
we obtain from (6.2.2) and (6.2.3) that
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@in = 8ir8in)

% T g - gk

&int = 8i-8m1)

= G . 6.24)

because {g;1.h) = 0, by construction of A;. Now, by (6.1.13b), h; = g + Y1 hi-y, and (g,hiy)= 0, by

construction of A,;. Hence, from (6.2.4), we obtain that
(8w = 8 8in)

PR ¥= 5. P

6.2.5)

Formula (6.2.5) is known as the Polak-Ribiere formula. When used in the Master Conjugate gra-
dient algorithm, with g; & Vfx), it defines the Polak-Ribiere method of conjugate gradients for solv-
ing (6.2.1).

Now, again for the quadratic case, (g;.81)=0 for all i, and hence (6.2.5) becomes

lgi-ﬂ'2
FR = — .
% I, P 6.2.6)

which is the Fletcher-Reeves formula. It defines the Fletcher-Reeves method of conjugate gradients for
solving (6.2.1).

We can summarize the two conjugate gradient methods for solving problem (6.2.1) in the follow-
ing shorthand manner:

Polak-Ribiere Conjugate Gradient Algorithm 6.2.1
Data: xo€ R", k= Vfixp).

A= arg{nzira fixi— AR, , (6.2.7a)
X1 = X; = Nhi, (6.2.70)
Vfixi) = VAX), VX))
PR _
' T : (62.7¢)
by = VRx) + Y h; ' (62.7d)
|
Fletcher-Reeves Conjugate Gradient Algorithm 6.2.2.
Data: x,€ R, hy= VAxg).
A= arg{nzit:,ﬁx; - My, (6.2.8a)
Xy = X; = Ahi, (6.2.8b)
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R = WVRx PNV . (6.2.8¢)
iy = VAxim) + Y0, (6.2.8d)
[ ]

Remark 6.2.1 : When applied to quadratic functions the Polak-Ribiere and Fletcher-Reeves methods
produce identical sequences { x; }.o However, when solving the general case of problem (6.2.1), the
two methods produce different sequences. There is empirical evidence indicating that the Polak-Ribiere
method is superior to the Fletcher-Reeves method. The reason for this appears to be the fact that the
Polak-Ribiere method satisfies the assumptions of the Polak-Sargent-Sebastian theorem, while the
Flewcher-Reeves method does not. At present we find more complex conjugate gradient methods, such
as the one due to Nazareth, which build on the Polak-Ribiere method, and which are less sensitive to
step length errors. |
Theorem 6.2.1 : Suppose that f:R" — R is twice continuously differentiable and that there exist
0<m<M<oo,suchthat forall x,ye R",

mh? < (. HE)Y S MiyP . 6.2.9)

If the Polak-Ribiere Algorithm is applied to min f(x), producing a sequence { x; )0 , then
ze R*
(a) There exists a p € (0,1) such that
(VAx).h) 2 pIVAXIBAL, (6.2.10)

() The sequence { x; )i converges to %, the unique minimizer of (") . ]
Proof : (a) Letting g(x) = V) , g = VAx), we obtain that

81 = 8(Xin1) = 8(x; — A:hy)

1
= gi = AJ Hxi = shih) dsh; . (62.11)
Since {(g;,1.h)= 0, by construction of A;, we get that
_ U (gigd
ll' = (hi.Hih;‘) = (h",H"h"). (6.2. 12)
where
1
H;= [ H(x - skh)ds . (62.13)
Hence
&in1 — 8i:8iv1)
'R T e————
‘{ lg;'z
_ H; hi.gin)
- l. lg,"z
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%%,%’} ‘ 6.2.14)
Therefore
WA < < Mg, Vmih . (6.2.15)
Hence,
W0 S 1gigl + WRIIAD
< Ig Il + %) . : (6.2.16)
Finally,
@in1 Bia)= 8iv1:8im1 + YR R)
= Igil?. 62.17)
Consequently, making use of (6.2.16), we get
it ohin) _ 18! > 1 s
lgiallhal — Whl = M (6.2.18)

which completes the proof of part (a).

(b) The fact that the sequence { x; }zo converges to the unique minimizer of f{:) follows from the
modified Polak-Sargent-Sebastian Theorem (6.3.2). n

The properties of the Fleicher-Reeves method can be summarized follows:

Theorem 6.2.1 : Suppose that f:R" — R is twice continuously differentiable and that there exist
0<m< M <o, such that (6.2.9) holds. If the Fletcher-Reeves Algorithm is applied to min__ . fx),

producing a sequence { x; }&o. then

(a) There exists no sequence { f; }io, such that

@ >0 forallie N, (6.2.1923)
@ ¢, >0asi—eo, (6.2.19b)
x
(i) YL@ reoask— e, (6.2.19c)
=0
and
@) VAx).h)2 VAR, forall ie N (6.2.19d)
(b) The sequence ( x; }oo converges to X, the unique minimizer of f() . ]

Remark 6.22 : It is clear from the above theorem that there is a distinct possibility that in the
Fletcher-Reeves method, the angle between the gradient g; at x; and the search direction A; may
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approach 90° as i — oo , while in the Polak-Ribicre method this angle is well bounded away from 90°.
As we have already mentioned, this fact makes the Polak-Ribiere method somewhat less sensitive to
numerical errors. |

63. PARTIAL CONJUGATE GRADIENT METHODS
We note that even in the quadratic case, the finite convergence of the conjugate gradient methods

depends on setting hg = go. Now, near a minimizer X which satisfies the second order sufficiency condi-
tion, stated in Theorem 3.2.3, a function f{) does have a reasonably good quadratic approximation and
it may be conjectured that, near the minimizer X, if we reinitialize a conjugate gradient method by set-
ting k; = g;, from time to time, we might get better performance then by constructing A; by one of the
standard formulae all the time. There are two interesting results dealing with this case (For a simplified

exposition see Luenberger®

Theorem 6.3.1 : Suppose that (i) f:R* = R is twice continuously Lipschitz differentiable and that
there exist 0 < m € M < oo such that

mhyR <y HONSMly> ¥ x,ye R*,

and (ii) that the Polak-Ribiere (Fletcher-Rieves) conjugate gradient method is modified so that for a
given k€ N, k 2 1, whenever (i + 1)/ k is an integer, A, is constructed according to

hivy = 8in _ 6.3.1)
(rather than not according to (6.2.7c), (6.2.7d)), and

by = g + ¥Fh; 6.32)
otherwise.

(@) Ifk=n, then
Ix,-(,...n - x;.l

—0 as i 9 oo, 6.3.3
bx; - 31(.-1)‘2 ( )

where % is the global minimizer of f{°) i.e., x; = X n-step quotient quadratically.
{b) If k < n, then

’ 2
Rxn) - f3) S [: : :] x) - fD). 6.34)
2 " “[(p-al
b, -A < [-;'-] [/(xo) —Ki)] [b::] (6.3.5)

where m=a < b < M are such that (n — k) eigenvalues of H(X) are contained in the interval [a.b] and
the remaining k eigenvalues are larger than b. (Thus the effect of the & worst eigenvalues has been

1 D. G. Luenberger, Introduction to Linear and Nnlinear Programming , Addison-Wesley, 1973.
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7. ONE DIMENSIONAL OPTIMIZATION

We saw that conjugate gradient methods require the solution of one dimensional minimization
problems of the form

min fix + M%), (7.12)
where f:R* — R is continuously differentiable. We can write (7.1a) as

min &(4) . (7.1b)
Note that ¢’(A) is given by

¢'Q) = Vfx + Ah), K (7.1c)

and that it can be quite expensive to compute if the formula (7.1c) is used. When high precision is not
important, it is much cheaper to evaluate ¢’(A) by finite differences, i.e., by making use of a formula
such as

¢ra) = QQE + 682 —_m. (7.1d)
or
Q) = o0+ e);£¢0~ -8 (7.1e)

We shall discuss two commonly used methods for solving (7.1a).

7.1. THE GOLDEN SECTION SEARCH

The golden section search method is to be used when the function ¢:IR —R is differentiable and
unimodal, i.e., there is a unique point % such that tpO:) = 0, which is also the unique global minimizer of
¢(*). The golden section search is based on two observations.
(a) First, see Fig. 7.1.1, suppose that we have an interval [a,b] such that %, the global minimizer of

(), satisfies % € [a.b] and that we have two additional points a’, b’ such that a<a’ <b" < b and
either ¢(a") < min{ ¢(a).$(b) }, or (b)) < min{ ¢(a).(b) }.

First suppose that ¢(a") < min{ &a).¢(d) }.
Case 1: Suppose that ¢(a") < ¢(b"). Then it follows from the mean value theorem that there is a
A, € [2,b] such that ¢'(A;) 2 0. Since ¢(a’) € ¢(a), by assumption, it follows again from the mean
value theorem that there is a A, € [a,4] such that ¢’(A;) £ 0. Hence, since ¢’(*) is continuous, the

interval [A;,A;] < [a,b"] must contain a zero of ¢’(-), and hence e {a.b’], must hold. Thus, we have
succeded in reducing the initial bracker [a,b], containing the global minimizer A, to the smaller bracket,

-58-



EECS 227A Lecture 7.1 E. Polak

[a.b"] which also contains x

Case 2: Suppose that ¢(a) > ¢(b"). Then it follows from the mean value theorem that there is a
A, € [@'.b7] such that ¢’(A;) < 0. Since ¢(a’) < ¢(b), by assumption, it follows that &(b") < &b). It fol-
lows again from the mean value theorem that there is a A, € [b’,b] such that ¢’(A;) S 0. Hence, since

&'(") is continuous, the interval [lambda, ,A;] < [a’,b] must contain a zero of ¢'("), and hence e a’.b],
must hold. Thus, we have again succeded in reducing the initial bracket [a,b], containing the global

minimizer 3. to the smaller bracket, [a’,b] which also contains x
The situation when ¢(a”) < min( ¢(a) ,d() )} holds, leads to similar conclusions.

(b) Second, the process of reducing the bracket [a,b], containing the global minimizer 'i. can be
made more efficient by making use of the following observation. Suppose that we wish to construct a
sequence of nested intervals [a;,b] < [a,b), i = 0,1,2,3..., such that either ¢(a;1) < min{ ¢{a;).¢(b) },
or &(b;,) < min{ ¢(a).¢(b) ), so that each of these intervals also contains the global minimizer x

In keeping with the preceeding discussion, we assume that at each stage we construct two points
a',- < b’,' € (a,-.b;) and hence that either [a;,, WDial = [a,-.b';] or [a;.., Dl = [a',-.b,-] holds.

If the points a’;,b; are placed symmetrically, we can ensure that either b’; = g’y or @i = b’y
holds by requiring that for some F € (0,1),

iy = F, (7.1.1)

in-Q-Pli=Q1-F, (7.12)
is satisfied at each stage. Eliminating /; and /;,, from (7.1.1), (7.1.2) we get

FP+F-1=0. (7.1.3)
Hence

F=%(5%-1)=061804 . (7.14)

Because of the symmetry of placement of the points a’;, b"; and the choice of F, either a’; or b’;
can be reused in the construction of [a;,3,b;2], Whereas any other scheme would involve the placement
of two fresh points a;,;, b';y. If we associate with each placement of an a’; or b’; an evaluation of the
function ¢(), we can obtain a comparison of the efficiency of the golden section search with any other
"two point” scheme. It should be clear that no matter how we place two additional points in the inter-
val [a;,b;], of length [;, the next interval will have length [;,; > %I, Hence, a limit on the efficiency of
a two point scheme, using two function evaluations, per iteration is =% In % = 0.3466, whereas the
efficiency of the golden section search, which uses only one function evaluation per iteration, is
-In 0.61804 = 0.4812, which is better. We now state the golden section search formally.

Golden Section Algorithm 7.1.1 :
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Step 0:  Compute a bracket [ag, bol, containing ‘A\. the miniminizer of ¢(A), and set i = 0.
Step1: Setl;=b; - a;, and compute

a;=ag;+I{1-F), (7.1.52)
b',"—'b"- l,'(l -n . (71.5b)

Step2 : If «b’,) < min {$(@").H(b)), set gy = a’;, by = b;. Else set gy = a,;, by = b';.
Step3: Seti=i+1andgotoStepl. '

=
Note that because of (7.1.1), the bracket lengths shrink linearly, with constant 0.61804, i.e.,
I; = F ly= (0.61804)1, . (7.1.6)
Hence the precision of identification of A increases very rapidly with i,e. g .,
b5 = 0.00073 lo, (7.1.7)

so that if Ip = 1, then, X = (ay5 + bys) / 2 + 0.000365.

A technique for obtaining an initial bracket [d,bo] containing the minimizer % is to start with a
Ao such that ¢'(Ag) <O and to evaluate ¢(A) for A; = Ao +iA, with i = 0.1,2..., until a "triangle” of

values is obtained, such that &(hy3) > 6(h;) and &(hiy) < 6(A), S0 that we have A, SR <A,

7.2. SUCCESIVE QUADRATIC INTERPOLATION

Again we consider the problem

Jmin oQ), (72.1)
where R =5 R,
Assumption 7.2.1 : We shall assume that (i) &() is continuously differentiable and unimodal, with
unique local minimizer &, and (i) ¢'(A) # 0 forall A &, ]

Given three distinct points 2 <2< 2 in R, we can construct a unique quadratic polynomial
q(\;2), in A, parametrized by the vector z = (!,22,2%), such that qZ:)=¢().i=1,2,3.

The Lagrange interpolation formula defining this quadratic polynomial is as follows:

L A-AA-1) O-HA-2)
ai2) = 6y T A ) T G

y O»" Zl)a - 22)
+§2) F-NE-2) (7.2.2a)

The polynomical g(A,z) is called an interpolating polynomial.
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Given two distinct points 2! < 2°, we can construct a quadratic interpolating polynomial g(A.z) for

&), such that ¢(Z;2) = (), i = 1, 3 and ¢’(z';2) = ¢'(z)) for i = 1 or 3. For the case where 2 = 2!, the
Lagrange interpolation formula for this polynomial is
- 22

qthz) = «z‘)-&—z%z- + &) %—_—z,)z;

A} 1
' [3 e R ]0 . -

For the case where 2 = 2°, the Lagrange interpolation formula for this polynomial is

; — 2
a0 = o=k 4 4y S5

¢'(2% _ 20(z%) —_ A -
+[z’-—z‘ (z’-z')zla NHA-2). (7.2.2c)

Our application of the above interpolation formulae will be confined to the set of vectors z € R>
which define an interval [2!,2%] that contains the minimizer A, viz. o the set T < R3 defined by

T2 ze RIZ <2< and &A) < min{$().4()) Y
(ze R =2<2, ¢(E)s0, ) 26U

(ze R <2=2, ¢'(?) 20, ¢z 2 %))

GeRN=2=2=1) (7.2.3)
Proposition 72.1 : (a) Foreveryze T,z SAS 2 holds. (b) The set T defined by (7.2.3) is
closed.
Proof : (a) This part follows directly from the mean value theorem.
(®) Suppose that {z.),.oc’l‘ is such that z; — Z as i — . Since z} < 22 < 2} holds for all i, we must

2
have that 2 z €7 < z We now consider the various possibilities.

2
(i) Suppose that? <z <'i Then there must exist an iy such that z} < 22 < 22 for all i 2 i, and hence
&%) < min {6(}), &(zh) for all i2i,. It now follows from the continuity of ¢(-) that
&) < min {¢(").¢G*) and hence that 2 e T.

(i) Next suppose that 2! <2 =7". Then we need to consider two subcases:

(@) There is an infinite subsequence {z;); ¢ x Such that z} < 2=z In this case, we have that
¢'(z) 20 and ¢z!) 2 &(z?) for all i € K, and hence it follows from the continuity of ¢(-), ¢'(") that

¢'GH20and ¢G) 260G, sothatze T.
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(b) There exists an io such that z} < #7 < 2} holds for all i 2 ip. Hence, for all i 2 iy, we must have
that &(z%) < &@z!) and [&(z}) — &(z)V/[z?-z2] S 0. Hence, in the limit, since # -2 and 2§ -2 as
i = oo, we get that ) € $G") and ¢'@) 20,ie,2€ T.

(iii) The case where 2! =2 <P follows by symmetry from (ii).

(iv) Finally consider the case where 2 =2 =2, Since we must have for all i € N that z} < A< it
is clear that¥ = for j= 1, 2, 3 and hence that 2 € T.

We therefore conclude that T is closed. [ |
Theorem 72.1 : For any ze€ T, consider the polynominal g(A.z), defined by (7.2.2a) when

A <2< by (722b) when 2 =22< 2 or 2! <=2 and by q(;2) & ¢() when 2= 2= 2.
Then

(a) The coefficients of g(A;z) are continuous in zon T,
(b) The miniminizer A*(z), of ¢(A,z2), is continuous in z on T.
(c) The minimizer A*(z), of q(A;2), satisfies A*(z) € [2',7).
Proof : (a) Let the coefficients a(*), b(*), c() of ¢g(A;z) be defined (as functions of z) by
q(A:2) = a@A? + b))\ + ¢(2) . (7.2.42)

First suppose that z € R? is such that z' < 22 < 2. Then the coeficients of g(A;z) are determined by the
equation

1 @2 (z})
1 :2 (:2)2 [f,] = z(:z) . (7.2.4b)
1 2P La o)

The matrix in (7.2.4b) is a Van der Monde matrix and hence nonsingular, because z' < 22 < 2°.

Now suppose that z € R? is such that z' < 2 = 2%, Then the coeficients of g(A;z) are determined
by the equation

1 2 @) ’)
1 i (;3)2 [ ] W (7.2.4c)
0 ¢ (z

The matrix in (7.2.4b) is nonsingular because z! < 2. An expression similar to (7.2.4b) holds for the
case where z € R is such that 2! = 2 < 2%,

Now suppose that {z;)5 is such that z; —> Z as i — o, with 2 <2 <7, Then there has to be an
ip such that 2! < 22 < 2 for all i 2 iy and hence the coefficients a(x;), &(z;), c(z) are determined by
(9.2.4b). Since the matrix in (7.2.4b) is nonsingular and continuous, and since the right hand side in

(7.2.4b) is continuous, it follows that a(z;) — a(), b(z) — b(z) and c(z;) = c(z) as i - eo.
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Next, suppose that (z;)5 is such that z; — % as i = oo, with ¥ <2 =7, Clearly, the last equa-
tion in (7.2.4b) can be replaced by the result of subtracting the last equation from the second one, i..,
by

(2 - Db+ (B - 22+ Dha= D) - ¥D), (72.53)
which, when 22 # 2° can be rewritten as
b+(z=+z’)a=-ﬁ‘—3—_‘_§’-3)-. (7.2.5b)
Hence, when 22 # 2, (7.2.4b) can be replaced by
1 1 122 1)
1 :2 ﬁ%z [ 2] = %t? . (72.6)
0 1 2+2| la (6() - HDWIP-2)

It now follows from the continuity and nonsingularity of the matrix and right hand side in (7.2.6) and
from the continuity and nonsingularity of the matrix and right hand side in (7.2.4b) that a(z) — a(?),

b(z) — bG) and c(z) — () as i — . Since all other cases follow in a similar manner, we conclude
that the coefficients a(-), b(*), ¢(*) of g(A,z) are continuous.

() The minimizer A*(z), of g(A.2), is given by

Nz) = - bz) / 2a(2), (12.7)

and hence is continuous as long as a(z) # 0, because a(-), &(°) are continuous.
(¢) Since g(2;2) S min{ q(z';2),9(z%;2) ), and q(-;2) is convex, it follows that A*(z) € 2.2. ]
In order to define an algorithm we need two more quantities. First we define the candidate tri-

plets that might replace a z € T and define a smaller interval containing 2 than z, by

ul(z) = (zl vuz)vzz)rv (7-283)

u(?) = (Z.M2).2), ‘ (7.2.8b)

us(2) = M2).2.2), (12.8)

w(@) = (.2A@). ' (7.2.8d)
We now define the set of admissible replacement triplets by

AG) 8 TN (1y(2),ux(2) 302 ue()) - (7.2.8¢)
Finally, we define the surrogate cost function c:R*> - R by

@) 2 o) + &) + 9 . (7280

Algorithm 7.2 : (One dimensional minimization via SQI)
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Data : € T.

Step0: Seti=0.

Step 1: Compute the quadratic interpolating polynominal g(A;z).
Step2:  Compute Az) = arg min q@h:z. I A() =3} or M) = 2, swop.
Note : A(z)e [2.2).

Step3: Construct the vectors in R3:

(2 = (M2, 2, (7.2.92)

uy(z) = ()., (7.2.9)

u(z) = )25 (72.5)

uz) = (.. M2))", (7.2.9d)
and set

A2) = TO (2. ux(2)) u5(2) ua(2)) - (72.9¢)

Step4: Compute
z;,1 € argmin {c(2) 1z € A(z)) . » ' (7.2.10)
StepS: Seti=i-+iandgoto Stepl. n

The following concept is helpful in showing that the above algorithm will find the minimizer x

Definition 7.2.1 : Let A:R* — 2®" be a set valued map. We say that A is closed if for every pair of
sequences { x; )}, { y; ) such that x; = x*, y; € A(x) and y;, = y* as i = o, y* € A(x*) holds. | |
Proposition 7.2.2 : (a) For every z € T, the set A(z), defined by (72.8¢), is nonempty. (b) The
set valued map A(-) is closed.

Proof : (a) Suppose A*()e [2',7]. Then A(z) is empty if and only if

¢(\*(2) > min( ¢).0() =%z, and also &) > min ¢A*(2).K) J= $A*()  (because
&(z2) < (%)), which is clearly impossible. The case where A%(z) € [#%,2°] can be disposed of similarly.

() Suppose that {z;)=o c T is such that z; — z* and z;,;, — z** as i — oo, With z;,, € A(z) for all
i € N. Then there must exists a k € {1,2,3,4) and an infinile subset KCIN such that z;,, = uz;) for
all i € K. Since u,(") is continuous, u(z) — u,(z*) as i = oo, and since T is closed, u(z*) € T. Hence
z** = 4,(z*) € A(z*), which shows that A(") is closed. [

Theorem 7.22 : Let the solution set be defined by
Al (zeTI¥E)=0,0r¢'(P)=0,0r¢’C)=0}. (72.11)

(a) For every z € T which is not in A, and any y € A(2), c(y) < ¢(2) holds.
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M) Let (z)20 be a sequence constructed by Algorithm 7.2.1 for ¢:R — R continuously
differentiable and unimodal. Then every accumulation point Z of { z; )Zo is in the solution set A.
Proof : (a) Suppose that z ¢ TNA. Then A%(z) # 2 and A%(z) = 2'.

() If A%@z) € (2'.2%), then we must have that ¢(z*) < &(z*). Furthermore, in this case, only uy(z) and

u3(z) can be in T, and by Proposition 7.2.2(a), at least one of them must be in T. If u;(z) € T, then, by
definition, $(\*(z)) < min{ ¢(z').¢(z*) ) and hence

e @) = ') + GG + () S (") + ¢ + &)

< (") + &) + &) = ¢(2) . (12.12)

Next, suppose that u3(z) € T. We will show that O(A*(2) < &(z"). For the sake of contradiction, sup-
pose that ¢(A*(z)) 2 ¢(z'). Then, since &(7) < ¢(z'), and A*(z) € (z'.23), it follows that ¢(*) has a local
maximum in [z!,2?], which contradicts the unimodality of ¢(). Hence c(u3(z)) < c(2) in this case.

(ii) If A*@z) € (2,2), then we must have that ¢(z?) < ¢(z'). Furthermore, in this case, only ux(z) and
() can be in T. The rest of the proof follows from (i), by symmetry.

(b) By construction, z}.22,7 € [2}.23], for all i € N, so that (3;)Z, is bounded and hence must have
accumulation points. Since {¢(z))5o is monotone decreasing by construction, and ¢(*) is continuous, it

follows that if % is an accumulation point of {25 We must have that c(z) — c@), as i — . Sup-
X
pose that K c N is such that z;, > Z as i — co and that 2 € A. Then for any 2’ € A(?) we must have

I ¢
that ¢(z) < c¢(z). Clearly, there exist an infinite subset X’ © K and a z* € T, such that z;,; — z*. Then

x

since z; =72 also holds, and since A(’) is closed, z* € AG) and therefore c(z*) - ¢()=-8 < 0.
Hence, by continuity of c(-), there must exist an ip such that c¢(z;) —c(z) S - 8/2 for all
i€ K, i 2 iy, which contradicts the fact that c(z) — c() as i — . Hence the theorem must be true. W
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8. QUASI-NEWTON METHODS

Quasi-Newton methods were invented as a second-derivative-free approximation to Newton's
method. As such, they are related to secant methods, from which they differ by the formulae used to
construct approximations 10 hessian matrices. Just like conjugate gradient methods, quasi-Newton
methods must be explained in two steps. First as methods for minimizing quadratic functions and then
as methods for general unconstrained optimization.

8.1. THE VARIABLE METRIC CONCEPT

Consider the problem
min f(x),
ze R'ﬂ ) (8.1.1a)
where
) 8 Y% HO)+Wdx), (8.1.1b)

with H an n X n positive definite, symmetric matrix. Hence

VAx)=Hx+d. (8.1.1¢)

Given a positive definite, symmetric a X n matrix Q, the steepest descent direction with respect to
the Q norm is defined by

h(x) 4 arg min, (4IRS + dfix;R)), 8.12)
where W3 2 (h,0h) and df(x;h) denotes the directional derivative of f{). Hence the steepest descent
direction with respect to the Euclidean norm is given by

h(x) = arg min (WA + dfix;h))

he R
=arg min (A1 + Hx + d.h) . (8.1.3a)
AcR"
Applying the first order optimality condition, Theorem 3.1, to problem (8.1.3a), we get that

h(x) + Hx+d =0, (8.1.3b)
which implies that

h(x) = - [Qx + d] = -VRx), (8.1.3¢c)
ie., that h(x) is the steepest descent direction that we saw in Section 4.

The steepest descent direction with respect to the H norm is given by
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h(x) = arg ‘nﬁ:_ (A1h1E + dix;h))

= in (YhHR+ Hx + d.BY) .
arg min (Yt Hh)+ (Hx + d.h) (8.1.42)

Applying the first order optimality condition, Theorem 3.1, to problem (8.1.4a), we get that

Hh(x)+ Hx+d=0, (8.1.4b)
from which we conclude that
-1
R e S @140

i.e., that h(x) is the Newton direction.

If we update the matrix Q, defining the norm, at each iteration, we get a variable metric method.
The idea behind the variable metric methods, for minimizing quadratic functions, as in (8.1.1b), is to
keep updating the matrix Q in such a way that the matrix ' is eventually constructed. For the case of
- quadratic functions on R", this process requires » iterations. The following observation is a key to this
construction.

Let Xo.X; X3.....Xx be a set of distinct vectors and let B & H'. Then, setting

8 & VAx),
Ax; 4 Xivt = X» 8.1.5)
Agi 2 gy - 80
we find that
BAgi = AI,'. i= 0.1.2...."—1 . (8~l-6)

Hence, if we define the n X a matrices AG, AX, by AG = [Agq.....A8a-1], AX = [AXy,...,AX, 1], We obtain
that

BAG = AX . (8.1.73)
Assuming that the matrices AX, AG are of rank a, we find that

H'=B=AXAG". (8.1.7b)

In solving problem (8.1.1a), with f{*) as in (8.1.1b), by means of a quasi-Newton method, one

starts with an initial guess at a solution, xo, and a symmetric, positive definite matrix By, which is an
initial guess at H™!, and one uses an update formula of the form

Xyl =X — migiv i= onlozn-u (8.1-83)
with
A; = arg mgn flx; - AB;g) . (8.1.8b)

The matrix B,,, is chosen so that the following the quasi-Newton property (c.f. (8.1.6)) is sausfied:
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B“IAgg = Alg. fork=0,1,...i. (8.19)
Note that if the difference vectors {Ax;)2 turn out 1o be linearly independent, then the fact that

BAG = AX (8.1.10)
holds, implies that
B, = (AX)AG™ . (8.1.11)

Comparing with (8.1.7b), we conclude that B, = H. Since

Xt = Xp = AnBaga, 8.1.12)
and since B, = H™, if A, = 1, then x, is the minimizer of the quadratic function ) . Hence, we must,
in fact, have that A, = 1 = arg mgnf(x,,—LB,.g,.).

We see from this that, just like a conjugate gradient method, a quasi-Newton method may take up
10 n iterations to solve an unconstrained optimization problem with a quadratic cost function, as com-
pared to the one iteration required by the Newton method.

There are several methods for generaling the matrices B;, required by a quasi-Newton method,
and we shall discuss these in the following two sections.

82. A RANK-ONE METHOD FOR GENERATING MATRICES B;

Both rank-one and rank-two methods for generating matrices for quasi-Newton methods stem
from the following technique for inverting perturbed matrices.

Proposition 8.2.1: Suppose that H is an n x n nonsingular matrix, and let B & H™', and let
H*=H+ab", (8.2.1a)
for some a, b € R* If B* & H*! exists, then it is given by

1

B*=B - —L —
1+ b'Ba

(Ba)(b"B) . (8.2.1b)

Proof: Suppose that B* exists. Then we can write B* = B + AB. Hence we must have that

I=B*H* = BH + Bab” + AB(H + ab") . (8:2.1c)
Since BH = I, we conclude that

0 = (Ba)b” + ABH* , (8:2.1d)
which shows that AB = —«(Ba)b"B*, i.e., that AB is of the form

AB = (Ba)c", (8.2.1¢)
for some ¢ € R". Substituting for AB into (8.2.1d), we now obtain that

0 = (Ba)b” + (Ba)cT(H + ab"), 8.2.19)
which yields that
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cT==(1+cTa)b'B. (8.2.1g)
Hence
cfa=- (1 +cTa)b"Ba . (8.2.1h)

Solving (8.2.1h) for c’a and substituting into (8.2.1g), leads to (8.2.1b), which completes our proof. =

Exercise 8.2.1: Let H = [h},h;,...h,] be an n x n nonsingular matrix, with inverse B, and suppose that
H* = [hy,hy, . . . Ji1,h%.Ri... by, is an n X n nonsingular matrix which differs from X only in that it
has a different j~th column. Use Proposition 8.2.1 to show that it inverse B* is given by

1

B*=B - ————
l+¢f8h‘j

(B(h*; - h)(e]B) (822)

where ¢; is the j~th column of the n X n identity matrix.

Hence show that it may be possible to invert an n X n nonsingular matrix H by means of n rank
one corrections. =

Exercise 8.22: Let H be an n X a, symmetric, nonsingular matrix, with inversg B, and suppose that
H* = H + aa” + bb7 is also nonsingular, with inverse B*. Show that B* must be of the form

B* = B + o(Ba)Ba)" + B(Bb + a(Ba)(Ba)"b)Bb + a(Ba)(Ba)"b)” . (8.23)

i.e., that the inverse B* is given by a rank two correction of B. n

Returning to problem (8.1.1a), (8.1.1b), and the iterative process defined by (8.1.8a), (8.1.8b),
since the n x n matrix H in (8.1.1b) is symmetric, we can atempt to compute B = H! in n steps, by
setting By = I, and using the update

Biy=Bi+azz, fori=0,12,. .. (8.2.4a)

(i.e., by using a symmetric rank one update formula) with B,,; required to satisfy (8.1.6) (and, hope-
fully, as a result also the quasi-Newton requirement (8.1.9)), i.e.:

BmAg,- = Ax;, fori=0,12,.., i (8.2.4‘))
where x;, Ax;, Ag; are constructed according to (8.1.8a,b) and (8.1.5).

We shall now show that (8.2.2) and (8.2.3) define B,,, uniquely. Let B; be an nxn, symmetric
positive definite matrix. Then, because of (8.2.4b) we have that

Ax; = B, Ag; = BAg; + oz; (2,.Ag) . (8.2.53)
Hence
H—3 1 '+ - D .
oz = i) [Ax; - BiAg;) . (82.5b)
Next, from (8.2.5a)
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(Agi.Ax) = (Ag;, BAg)+ alAg;z)2, (8.2.5¢)
50 that |
aAg;.z)? = (Ag; Ax)~ (Ag;.B;Ag)

= (Ag;,Ax; — BAg) . (8:2.5d)
Substituting from (8.2.5b), (8.2.5d) into (8.2.4), we get

=B 4+ =3 [Ax. - BAg] [Ax; — BAg]T
B&I_Bu+ 03(2.'-A8.'72 [AX, BuA&] [Ax; Bng‘]

1
=Bi* Gabr— Bag)

(Ax; - BAg,) [Ax; - BAg)T . (8.2.6)

Theorem 82.1 : The matrices B,;, constructed according to (8.2.6), (8.2.4), (8.1.5), and (8.1.8a, b),
satisfy the quasi-Newton property (8.1.9) for i = 0,1,...,n-1.

Proof : Clearly, for i = 0, we get B;Ag, = Axg, by construction of B,. Next, proceeding by induc-
tion, we assume that (8.1.9) holds for i=0,1,2,...k-1, k<n-1. Thenfori<k-1,

Bi1Ag; = ByAg; + ylAx, — BiAg,. Ag), 827
with y, defined by

1
= (Agi.Ax, — BiAgy)

Since B,Ag; = Ax;, by hypothesis, and B, is symmetric, we obtain from (8.2.7) that
(Ax; - BiAg.Ag) = (Axy, Ag) — (Agy. BiAg))

[Ax, - BiAgy - (82.8)

= (Ax, HAx) - (HAx,, Ax)=0 . (®829)
Consequently,
ByAgi=Ax;, fori=0,1,....k-1. (8.2.10)
Since B,,1Ag, = Ax; by construction of By, the theorem is proved. [ ]

Thus, the construction of B;,, defined in (8.2.6) has one desirable property. Unfortunately, it is
possible for (Ag;,Ax; — B;Ag) to be zero, at which point the construction breaks down. This fact has
led to the development of rank-two update formulae which are more complex, but also more robust.
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8.3. RANK-TWO METHODS FOR GENERATING B;

Next we twrn to rank-two update methods which overcome the shoricomings of the rank-one
methods. The rank-two methods are derived from the rank-one methods as follows. If we expand
(8.2.6), we get an expression of the form

B;,, = B; + BAx; Ax] + 7{B:Ag) (B:Ag)T + 8 Ax; (BiAg) + (B:iAg) Ax] 1, 8.3.1)

where B;, ¥;, §; are coefficients determined from (8.2.6). If we suppress the nonsymmetrical terms
Ax; (B;Ag) in (8.3.1), we get the following candidate, symmetric rank-two update formula which was
invented by Davidon and popularized by Fletcher and Powell:

By = B; + BiAx; Ax] + Y{(B:Ag) (Bidg)) . 8.32)
Since we need B;,;Ag; = Ax; to hold, we require that
Ax; = BAg; + B,Ax; (Ax; Ag)+ Y{B:Ag;) (B:Ag:.Ag). (8.3.3)

If we set B,' =1 /(Ax.-.Ag,-)and Y, = —l/(,B,-Ag.-.Ag,-\ we find that B;1Ag; = Ax; holds. With these values
" of Bi, ¥ (8.3.2) becomes the Davidon-Fletcher-Powell update formula:

1

Ax; Ax] - (BiAg) (B:iag) . (8.3.4)

(B.Ag. A8
Formula (8.3.4) is by no means the only valid rank-two update formula' To exhibit the
nonuniqueness of (8.3.4), we observe that we can always write '
Biw=B;+AB;, i= 01,..., (8.3.53)
and require that the relationship B;,1Ag; = Ax; be satisfied. Hence we require that

BAg; + ABAg; = Ax; (8.3.5b)
hold. Rearranging (8.3.5b) we obtain that
ABAg; = Ax; — BiAg; (8.3.5¢)

must hold. For any ¢ 2 0, we get from (8.3.5¢c) that
AB;Ag; = tAx; + [(1 — )Ax; — BAg;] . (8.3.5d)
Clearly, (8.3.5d) will hold if we set

AB,"'

1 _ 7
(Ax" )AX.Ax, Y Pipi. (8.3.6a)

with
8 (1 - 0Ax; - BAg; . (8.3.6b)
We note that setting ¢ =0 reduces (8.3.5a), (8.3.63, b) to (8.2.6), while setting =1 produces (8.3.4).

! For s nice exposition of variable metric methods see D. F.Shanno, "Conditioning of Quasi-Newtan Methods for Function
Minimization", Mathematics of Compwsation, Vol. 24, No. 111 pp. 647656, 1970; and J. E. Dennis Jr. and J. J. More®, "Quasi-

T1-



EECS 227A Lecture 83 E. Polak

At present it is felt that a quasi-Newton method, much superior to the ones indicated above, is
obtained by using the rank-two Broyden-Fleicher-Goldfarb-Shanno (BFGS) update formula which
updates estimates of H rather than of its inverse B, as follows:

1

Hy = H;+ HAxAx)

Ag; Agl - (HiAx) (HAX)T . (8.3.7)

1
‘Agi'Axl.)
with H, a symmetric, n X positive definite matrix. Note that the BFGS formula can be obtained from
the DFP formula by interchanging B with H, and Ax; with Ag;. The matrices B;, for use in a variable
metric algorithm, such as the onc below, can be obtained from the BFGS matrices H; by means of for-
mula (8.3). As we shall see at the end of this section, the variable metric algorithm, based on the
BFGS formula, differs from the DFP variable metric algorithm, below, only in the manner in which B;
is computed. We will present proofs for the DFP method and leave the corresponding proofs for the
BFGS method as an easy exercise for the reader.

Before exploring the properties of the Davidon-Fletcher-Powell rank-two update formula, we find
it convenient to state the variable metric algorithm which is based on this formula. The algorithm, as
stated below, can be used to solve the problem min__ .. flx), where f:R"* 5 R, is twice continuously

differentiable. We continue to use the notation g; = Vf(x), etc.
DFP Variable Metric Algorithm 8.3.1

Data : x9€ R" By, a symmetric n x positive definite matrix.
Step0: Set i=0.

Step1: If g =0 swop. Else, compute

A = arg ;nzit;,f(xs - ABg) . : (8.3.8a)

Step2: Compute

X = X; — NBigi, (8.3.8b)

Ax; = X — Xi, A8 = 8in1 — 8iv (8.3.8¢c)
B Ay AT —L  (BA) (BiAg)T

Biny = B+ s A% A = (e (Bide) Bided (8:3.8)

Step3: Set i=i+1 andgotoSepl. ]

Theorem 83.1 : Suppose that fx) = %{r,Hx)+ (d.x} with H a symmetric, positive definite n X n
matrix and that for any i € N that B; is a symmetric, positive definite n x matrix. Then B,,,, defined
by (8.3.8d), is also positive definite.

Proof : First we note that (Ag,.Ax)=(HAx;,Ax)>0, whenever Ax;#0, and, similarly, that
(Ag;,.B:Ag) > 0, whenever Ag; # 0, since H and B; are both positive definite by assumption. Hence, Bin
is well defined by (8.3.8d). Next, forany y € R* y#0,
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0B = 0.8 + (.Ax)2 1 (Ag; . Ax) - (1.B:iAg)? / Ag;.BiAg). (8.3.9)
Let a =By, b=BlAg, then (8.3.9) becomes
1al2Ib1? <a,b)? . (.Ax)2

O.Biy)= BF Ax A (8.3.10)
By the Schwartz inequality
LB - @,b)2 20, (8.3.11)

and hence (y.Bi.;) 20. Now suppose that (y,Bi,;)=0 for some y# 0. Then both terms in the
RHS of (8.3.10) must be zero. But lalPIbl? - (a,b)2 = 0 implies that a = ab for some a € R; ie.,
that y = aAg;. But then

(7.Ax)2 = o? (Ag; Ax)?

= a? (HAx;, Ax)? > 0, 83.12)

which contradicts our assumption that {y,B;,;y) = 0. Hence the thecorem must be true. ]

Thus, unlike the rank-one formula, the DFP rank-two formula does not break down as the computation
proceeds.

Theorem 83.2 :  Suppose that fix) = ¥ (x,Hx)+ (d.x} with H a symmetric, positive definite n X n
matrix. Then for x;, B;, constructed by Algorithm 8.3.1,

(a) the quasi-Newton property holds, ie.,

B Agy=Ax;, Vi2k20; (8.3.13)
(b) the Ax; are H conjugate, i.e.,

Ur; HAx)=0, Vi#j; (83.14)
(¢) x,. is the minimizer of ") over R".

Proof : We shall prove (8.3.13) and (8.3.14) together, by induction. (Recall that Ag; = HAx; because
of the form of ) and because B;,,Ag; = Ax; by construction.) )

First,
(Axg, HAxy) = (HAx,~ A1By 8))
== A (HAx.By 8))

== A (B,480.8))

= =, Ax,8))= 0, (83.15)
because of the manner of computing A, and B;.
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Next,
B,Ago = Axg, (8.3.16a)
and
BoAg, = Ax;, (8.3.16b)
by construction. Proceeding further (with Ago = HAxy),
Bago = Bibgo + (5= A (A, HA)

1
4+ ———— (B,A Ago).
@a -31481)( 1Ag81) (B1Ag,,A80 (8.3.16¢c)

Now, by (8.3.15), (Axy, HAx,)= 0, and
(B1Ag1,Ag0)= {Ag; .B1Ago)

= (HAx; ,Axg)=0 . (8.3.16d)
Hence
BzAgo = AXo . (8.3.168)

Thus we have initialized the induction process in (8.3.13), (8.3.14), with i = 1. Consequently, suppose
that (8.3.13) holds for all 0<i<!<n, and (8.3.14) holds for all 0<ij<l<n. For any
ie (0,1,,... .1}, (by adding and subtracting terms), we get that

8 = 8in + H(Axy + Ax; +. . . + AX) . (8.3.17)

Since (Ax;,g;,;)= 0 by construction of A;, we get that forany i </,
i
(Ax;.gu1)= (Ax;, i)+ (AX;, 3 HAX)=0. (8.3.18)
Jeit]

(We conclude from (8.3.18) that x,, minimizes f{x) on the (I + 1) dimensional subspace spanned by
Ax,, Ax,,. .. ,Ax,) Hence, forany i € {0.1,.... .1},

(Ax; HAX, )= =Dy \AX; HBuig11)
= = M1 B HAX;, 8141)
= = A1lBinAgii8i)
= = AuilAx;, 1)

=0, (8.3.19)

i.e., the vectors {Ax;)%) are H-conjugate for 0 S i < I+1.
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Next, for0<i <,

By248; = ByHAx;
= By HAx; + m Az Az HAZ)
+ m (Br1)Agw1 Bi1Ag HAL)
= 8%+ g BuAgi) (AT B dg)
- ax, (83.20)

i.e., (8.3.13) holds for i=1+ 1. This completes our proof of (8.3.13) and (8.3.14). Part (c) of the
theorem follows from (8.3.18). Hence our proof is completed. n

This concludes our exposition of the behavior of the DFP variable metric method on quadratic
functions.

The BFGS variable metric method has the following form:

BFGS Variable Metric Algorithm 8.3.2

Data : xo€ R" Hj, a symmetric n x positive definite matrix,
Step0: Set i=0.

Stepl1: If g =0 stop. Else, compute

A; = arg min flx; - AH'g) . (8.3.21a)

Step2: Compute

X = X; = NH; g, (8:3.21b)

Ax; = Xy — X, A8 = &1 — 8is ) (8.3.21c)
) 1 YAoT - — L (M AZY) (HACT

HH-! = Hn + (Ag,-.Ax,-) Agl)Agl (H,-Ax.-.Ax.-) (H,AI,) (HxAxL) . (83.2ld)

Step3: Set i=i+1 andgoto Step 1. =

Exercise 8.3.1: Suppose that fix) = & Hx)+ d.x), with H a symmetric, positive definite n x
matrix and that for any i € N that H; is a symmetric, positive definite n X matrix. Show that H,,,
defined by (8.3.7), is also positive definite. [ ]

Exercise 8.3.2 : Prove the following result:

Newton Methods, Motivation and Theory”, SIAM Review, Vol. 19, pp.46-89, Jan. 1977.
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Theorem 833 : Suppose that f{x) = % (x,Hx)+ {d.x} with H a symmetric, positive definite n x
matrix. Then for x;, H;, constructed by Algorithm 8.3.2,

(a) the quasi-Newton property holds, i.e.,

H\ Agy=48x, Vi2k20; (8.3.22a)
(b) the Ax; are H conjugate, ie.,

(Ax; HAx) =0, vizje (01,..n); (8.3.22b)
(¢) x,. is the minimizer of f{*) over R". [ |

Exercise 83.3 : Show that the parametrized formula (8.3.63) yields results similar to Theorem 8.3.3.
for a range of 0 < ¢ < 1. Hint: look up Shanno’s paper. ]

It was shown by Geraldine Meyer® that when the cost function is quadratic and the DFP method
is initialized with Bg =1/, then the DFP method, the Polak-Ribiere method and the Fleicher-Reeves
method all produce identical trajectories. A similar result for the BFGS method was shown by Larry
Nazareth®

For the nonquadratic cost function case, it was shown by MJ.D. Powell* that the variable metric
method using the DFP update formula converges globally, under the assumption that f(’) is twice con-
tinuously differentiable and convex. Current experience indicates that the BFGS variable metric method
is far less sensitive to the precision of step size calculation than the DFP method and that it is much
faster than the DFP method. In fact, it is not uncommon to use the BFGS method with the Wolfe step
size formula, which is similar to the Armijo step size formula.

In practice, variable metric methods are ofien found to be considerably more efficient than
Newton's method. They share with Newton's method the disadvantage of requiring the storage of the
matrices B;, which may be large.

2 G. E. Meyer, "Propenties of the Conjugate Gradient and Davidon Methods”, Analytical Mechanics Associstes, Inc., Wes-
bury, N.Y., 1967, mimeo.

3 J. L Nazarcth, "A Relationship between the BRGS and Conjugate Gradient Algorithms and its Implications for New Algo-
rithms", SIAM J. Numer. Analysis., Val. 16, No. 5, pp. 794-800, October 1979.

4 See E. Polak, Compuwtational Methods in Optimization, Academic Press, New York, 1971.
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9. MINIMIZATION OF MAX FUNCTIONS

9.0. INTRODUCTION
Eventually, we want to be able to solve problems of the form
min{ f°(x) 1 f(x) S0, j € m; g'(x) =0, ke L), (9.0.1a)

with the £, ¢8:R"* = R continuously differentiable. In engineering design, the following special form of
(9.0.1b) is frequently encountered:

min{ f°x) 1 fx) <0, je m ). (9.0.1b)

Since the inequalities f(x) < O represent design requirements, the first thing we may try to do is to find

a feasible design, i.e., a vector X such that () < 0 for all j € m. Note that a feasible vector must
satisfy

max f(x) S0 (9.02)
FAN.

It follows from (9.0.2) that a feasible vector can be obtained by solving the unconstrained optimi-
zation problem '

[min_ () (9.0.3a)
with
@) 8 max fz) . (9.0.3b)

We shall therefore devote this lecture to the solution of (9.0.3a). We shall later see that a lot of what
we learn in the process carries over to the solution of problem (9.0.1b).

Exercise 9.0.1 : Consider the problem (9.0.3a) and suppose that there is an X such that y() < 0.
Show that if (9.0.3) is solved by a descent algorithm which produces a sequence {x;)Z,, then there is a
finite i € N such that y(x,) <0, i.e., that the computation of a feasible design is a finite process. s

Before proceeding further, let us examine the geometry of minimax problems. First, Fig. 9.0.1
shows that the graph of w(-) has comers and hence it is not differentiable everywhere. However, its
directional derivatives appear to exist and should be given by the formula dy(x,h) = max; ¢ s, df(x;h),
where I(x) 8 (je m!f(x) = y(x). Next, we note that the level sets, L¥, of y(-), which, for any
a € R are defined by

L A{xe Ry <al={xe R IfD<a jem), (9.0.4a)

are the intersection of the level sets, LY, of the functions £(), j = 1,2,.....m, i.c., that
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Ly=n, LL. (9.0.4b)

«n
Hence, referring to Fig. 9.0.2, we see that the boundary of L§ has corners.

Next, we will show that the geometry of the level sets of y(-) suggests a natural extension of the
method of steepest descent, discussed in Lecture 4. We begin with a geometric interpretation of the
Steepest Descent Algorithm 3.3.1. Given a point x;, this algorithm approximates the differentiable func-
tion f{) by the quadratic function ¢, (") defined by

a:(x) & flx) + VRx),(x - )+ Yilx — x . (9.0.52))
Note that ¢, (x) = flx)) and Vg, (x) = Vfx), so that ¢,(") is a first order quadratic approximation to ")
at x;. Its smallest level set containing x;,
9,
L) 8{xe R Ig()sfix)) (9.0.5b)
is a ball which is tangent at x; to
L) 8 {xe R Ifix) SAx) ). (9.0.5¢)
which is the smallest level set of f{*) containing the point x;, see Fig.9.0.3.

We can think of any minimizer X of f{*) as defining a "center” of L‘,fe(,.,). The point (x; - VAx)),

ql- ~

which minimizes ¢,(x), is the center of the ball Lg,). Since (x; - Vf(x)) is a poor approximation to x,

the Steepest Descent Algorithm performs a line search along the line passing through x; and

(x; - VAx)), i.e., along the direction h; = —gradf(x;), to obtain a somewhat better approximation to 2,
Xiel

We now return to the function y(-) in (9.0.3b). Proceeding geometrically to obtain an extension

of the Steepest Descent Algorithm for solving (9.0.3a), given x; € R", we approximate each function
F(). j € m. by the first order quadratic approximation

g 2 F&x) + V). (x - x+ lx - x2, (9.0.62)
and we approximate y(-) by the first order convex approximation to it:

Vi) &8 max ¢.(s) . (9.0.6b)
Note that v, (x) = y(x)'. Next, we approximate the level set LYy by the comresponding level set of
v(ix):

LY & (xe R Ig@WS V). jem)

! In the next section we shall show that the directional derivatives of w{() and \;,(-) exist It should then become obvious
that for any A€ R", @V, ,‘(x,-,'h) a dy(x;h).
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‘
- " (9.0.6¢c)
h,-. .], o -

v, v
The last relationship shows that Ly, is the intersection of the balls Ly,.

To obtain an extension of the Steepest Descent Algorithm, we will think of any ¥ which minim-

v,
izes y(*) as a "center” of LYy, and we will approximate it by the "center” (x; + h(x)) of L) which,
by analogy with the above geometric interpretation of the Steepest Descent Algorithm, is defined as the
solution of the search direction finding problem

min max ¢}(x) . ©.0.7)

seRrjem

Since, again, the point (x; + k(x) is a poor approximation to %, we will add a line search for step size
calculations.

We now have to establish a a theoretical framework which will enable us to transform the above
observations into a well justified algorithm.

9.1 CONTINUITY AND DIRECTIONAL DIFFERENTIABILITY OF MAX FUNCTIONS

We begin by establishing the continuity and directional differentiability of functions of the form

Vi) 4 ;naxf'(x) ©.L.1)

Where f:R" = R are continuously differentiable and

4 (1,2..m). 9.1.2)

First, we recall the following facts. Let {(a;); ¢ n be 8 bounded sequence of real numbers and let
S be the set of all accumulation points of {a;};¢ n. Then S is compact and

lim q;=max {(ala e §), (9.1.3a)

lim ;= min (ala€ S} . (9.1.3b)

Furthermore, the sequence {a;); ¢ i converges to an & if and only if & = lim o; = lim o; holds.
We are now ready to establish the continuity of the function ().

Theorem 9.1.1: Suppose that for j € m, the functions f:R"* — R are continuous. Then the function
v(x) 2 max;, ,7(x) is continuous.

Proof : Let X € R" be arbitrary and let {x;); ¢ i be any sequence in R” which converges to . To
show that y(*) is continuous, we must show that y(x) — Y(x) as i = oo,

First, ¥&) = £@), for some % € m. Since’® € m, we must have
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V) = max fx) 2 f(x). Vie N. (9.1.42)
Therefore, since ﬁ(-) is continuous,

lim (=) 2 lim £6) = lim £x) = 6 = v@ . ©9.145)
Next we need to show that limy(x)) < y(x). To obtain a contradiction, suppose that

im v(x) > £6) = v6) . (9.1.52)

(lim y(x) must be finite since all the sequences {f(x)); ¢ v are bounded) Now, for each i € N,
W(x) = fi(x), for some j; € m. Since im y(x) = lim; ¢ ¢ W(x;) for some infinite subset X c N, and m

is a finite set, there exists an infinite subset X’ € K and an indexj € m such that j;=7 for all i € K.
Hence we must have that

Em w(x) = lim w(x)

= lim fx)=7G) > Axhat) = y@) . (9.1.5b)

But this contradicts the definition of % and hence (9.1.5a) cannot hold. Thus we must have

V0 < limy(x) < Tm y(x) S v&). (9.1.50)
and we conclude that y(x) — y(xhat) as i —» oo, which completes our proof. |

Exercise 9.1.1 :  Suppose that for j € m, the functions f:R" — R are locally Lipschitz continuous.
Show that the function y(x) 4 max; ¢ » f(x) is locally Lipshitz continuous. ]

Next, we establish an important property of the maximizing set
Ix) 8 (jemy@®)=F,)). ©.1.6)

Proposition 9.1.1:  Suppose that for j € m, the functions f:R” — R are continuous. Let 2 € R" be
arbitrary. Then there exists a p > 0 such that J(x) < /(%) for all x € B®&.p).

Proof:  Suppose that j ¢J(x). Then y(3) - f(X) = & > 0 and, since y(-) and £(-) are both continuous,
there exists a p/ > 0 such that

v@) -fx282>0, vV xe BG.p). ©.1.7)

Let p 24 min (p/ 1j €1()). Then (9.1.7) implies that I'G) c I(x) for all x € B(z,P), where I* denotes
the complement of / in m. Consequently, I(x) ¢ I(X) for all x € B(%,p). ]

We shall now establish the directional differentiability of functions of the form (9.1.1), for the
case where the functions £:R" — R are continuously differentiable.
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Theorem 9.1.2: Consider the function W(x) = max;e »f(x), with f:R"— R continuously
differentiable. Then the directional derivative dy(x, k) exists for all x, h € R" and is given by

ay(x;h) = jT%) (VFR).B . (9.1.8)

Proof:  First, since by Exercise 9.1.1, y(*) is locally Lipshitz continuous, we must have that for any
x,he R",

w(x + lh) y(x) <Tm W(x + th) = y(x)
=lIal € li LL'O‘ l:{;\ r <. ©.19)

Since f(x) < y(x) for all j € m, and because of Proposition 9.1.1, we must have, for sufficiently small ¢,
that

ya+th) -yx) _ o fa e th) - yi)
‘ jem t

- C fx+th) —y()
je l(x-m) t

< max LEXW-FD) (9.1.10a)

ic 1) !

Now the functions g’(x) (F(x + th) - F(x)}/t are continuous, provided we define g/(0) = df(x;k), and
hence the max in (9.1.10a) is also continuous. Consequently,

m \V(X + ‘h) - ‘V(E) < max ”(x h)

o t je i@ (9.1.10b)
Next,
V(x + th) - y(x) _ max Flx+th) - y(x)
t jem t
> max L&) —F&) ©.1.11a)
je ) t

because y(x) = f(x) for all j € I(x) and /(x) € m. Hence we must have (by same arguments as before)
that

w(x + lh) W(x)
lim 2 max df(eih) . (.1.11b)
We conclude that
dy(z:h) = lim Y&+ "? y(x) = max dfeih) = max (VFG).0). ©.1.11¢)
which completes our proof. |

9.2. AN OPTIMALITY FUNCTION
We shall now develop two equivalent first order optimality conditions for the problem
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’Ti:. () (9.2.1a)
with
V(ix) = jn;a:'f(x). 9.2.1b)

and the functions £:R" — R continuously differentiable. We shall see that the simpler one of these
two conditions does not lead to continuous descent directions for the function y(x), while the more
complicated one does.

Theorem 9.2.1 (Danskin): Suppose that the functions f:R" — R in (9.2.1b) are continuously
differentiable and that % is a local minimizer of y(-). Then

dyG:h) 20, ¥ he R*. 9.22)
Proof: Suppose that there exists an i € R" such that
dyGh) <0. (9.2.3a)

Then, by definition of the directional derivative, there must exist a A such that for all A € (0.3),

vG + \B) - v s %AdyGH) <0, (9:2.30)
which contradicts the optimality of X. ]
Corollary 92.1 :  Suppose that the functions f:R" — R in (9.2.1b) are convex and coniinuously
differentiable. Then X is a global minimizer of y(*) if and only if (9.2.2) holds. a
Exercise 9.2.1: Prove Corollary 9.2.1. n

Proposition 9.2.1: Suppose that the functions f:R"— R in (92.1b) are continuously
differentiable. Then (9.2.2) holds at % if and only if

0 e 3y, (9.2.43)
where

R 4 oo (V®). (9.2.4b)

jiel®

with

I®) 8 (jem f®=v® ). (9.2.4¢)
Proof: We introduce the notation

Nr{dy(x)] 4 arg min{ Bl & € oy(x) ). (9.2.5)

(=>) Suppose that (9.2.2) holds, but (9.2.4a) is not true. Let h= ~Nr[9y(x)). Then we must have
that % = 0 and hence, by Theorem 2.5.3, that
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dyGh) = : m:@ Ehs Ak <0, (9.2.62)

which contradicts (9.2.2).

(=) Next suppose that (9.2.4a) holds, but that there is an % € R" such that

dyGh)= max &R <0. (9.2.6b)

§e vid)
Then we see that the origin is strictly separated from dy(x) and we have a contradiction. [
Definition: For any xe R®, the set valued map oy(x) A €0j ¢ Kl VF(x) ), where
1) 8 (je mf(x) = wy(x) ), is called the generalized gradient of y(*) at x. ]

Corollary 92.2: Suppose that the functions f:R” — R in (9.2.1b) are continuously differentiable

and that X is a local minimizer of y(-). Then there exists a multiplier vector i € E, where the unit sim-
plex

LA (HeR™ W20 vjem,guiﬂ), (9.2.73)
such that

z W@ =0, 92.7)
and

g, Hy@®@) -F@1=0. 9.2.7¢)
Exercise 9.2.2:  Prove corollary 9.2.2. =

Remark 9.2.1: We shall refer to the multipliers W' in (9.2.7a), (9.2.7b) as Danskin multpliers. ]

We can simplify the remainder of our presentation considerably by making use of minimax
theorems. The following results are among the best known?.

Theorem 9.2.2 (von Neumann): Let ¢:R" x R™ = R be such that ¢(x,y) is convex in x and con-
cave in y and let X ¢ R", Y < R”™ be compact convex sets. Then

Inip max d(x.y) = max mig &(x.y) . (9.2.8a)
Furthermore, X € X, ¥ € Y satisfy
G:.5) = min max ¢(x.)) (9.2.8b)

if and only if

2Sec p. 204, C. Berge, Topological Spaces, The MacMillen Co., New York, 1963.
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¢y = ;n‘a)‘tr ’tl"l!il’l‘ o(x.y) . (9.2.8¢c)

It is easy to obiain the following extension of the von Neumann Theorem for the case where
either X or Y is unbounded, but ¢(-,") satisfies a growth condition, as follows.

Corollary 92.3: Let ¢:R* x R™ = R be such that ¢(xy) is convex in x and concave in y and let Y
be a compact, convex set in R™. Suppose that ¢(x,y) — o as lxl — oo, for all y € Y. Then

.Ti:- ;13% o(x,y) = ;n‘a:‘zf .r:li:. ¢(x.y) . (9.2.9a)

Furthermore, 2 € X, § € Y satisfy

oGy = min ;l:w‘c! &x.y) (9.2.9b)
if and only if
oG5 = max min §(x.y) . (92-90-)

A result similar to Corollary 11.2.3, for the case where X compact and Y = R™ is obtained by
assuming that ¢(x,y) = —oo as liyll = oo, for all x € X.

Exercise 9.23 : Consider problem (9.2.1a) with the assumptions stated.

(a) Suppose that x € R" is such that 0 € dy(x). Show that h(x) = -Nr{dy(x)] is a descent direction
for y(-) at x.

() Show that forany/c m, x, h € R",

max (VF(x).h = max j?l W (VP (). hY, (9.2.10a)
where
L8 (e R™ IW20,Vjemw=0v el T =1). (9.2.10b)
F=
(¢) Use Corollary (9.2.3) and (9.2.10a) to show that
min { %IAR + dy(x;h) ) = —%INr[BW(x))E?, (9.2.10c)
e R*
and that
h(x) = arg hmi:. ( Kl + dy(x;h) ) = =Nr{oy(x)], (9.2.10d)
and hence that A(x) is unique. ]
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Although h(x), defined by (9.2.10d), is a descent direction, it is not continuous, because the active
function index set I(x), used in the definition of dy(x), can change abruptly. Hence, when used in a
steepest descent type algorithm for solving (9.2.1a), it can cause the algorithm to converge to points
which go not even satisfy our first order optimality conditions. Examples of such undesirable behavior

have been published®.

We shall therefore develop an alternative optimality condition which does yield continuous des-
cent directions. However, first we must establish an extension of Theorem 9.1.1.

Lemma 9.2.1:  Suppose that $:R" X R™ — R is continuous and Y < R™ is compact. Then the func-
tion {:R" — R, defined by ’

L) 4 max ¢(x.y) (9.2.11)
is continuous.

Proof: Letx € R" be arbitrary and let (x;); ¢ n be any sequence converging to X. Suppose that the
y; € Y are such that {(x,) = ¢(x;,y;) for all i € IN. Then, because ¢(:,") is continuous and Y is compact,

[ 4
there exists a K < N and a y* € Y such that y; = y* as i — « and
.'iﬁ. Cex) = h}“ Cex)
= 1“"" ¢ y) = $EY*) S R . (9.2.12a)

i = o

Next, let € Y be such that {(X) = ¢(.)). Then we must have that

{x)2dx.y) vieN, (9.2.12b)
and hence, because because ¢X°,") is continuous that
lim{(x) 2 (&) . 9.2.12)

Combining (9.2.12a) and (9.2.12b), we conclude that {(x) — {(X) as i — oo, i.e., that {(*) is continuous
atx. Since X was arbitrary, our proof is complete. (]

We now return to problem (9.2.1a), (9.2.1b), with the assumptions stated. Normalizing the search
direction finding problem (9.0.7) so that its value is always nonpositive, we define for this problem the
optimality function 6:R" — R and the associated search direction function h:R* — R" by

8(x) & min max { f(x) - y(x) + (VF(x).A)+ YalAl? }, (9.2.13a)
AR/ D

3 Philip Wolfe, "On the Convergence of Gradient Methods under Constraint”, IBM J. Res. Develp., July, 1972, pp 407-411.
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h(x) & arg *mi:- max {F®) = w(x) + (VA A+ %I ). (9.2.13b)

Theorem 9.23: Consider the functions 6(-) and h() defined by (9.2.13a) and (9.2.13b). Then,
(@) Forallxe R",

0(x) < 0; (9.2.14a)
®) Forallxe R",
dy(x;h(x)) < 6(x); ' (9.2.14b)

(c) Alternative expressions for 8(x) and h(x) are given by*
6(x) = ~min { 3 WiFGx) - weo)] + KITWVFR ), 9.2.140)
hel m =]
where Z was defined in (11.2.7a); and
hx) = -3 WVF ), 9.2.14d)
=

where the y, is any solution of (9.2.14c).
Equivalently, 8(x) and h(x) can be expressed in the form

8() = min &0+ WAIER ), (9.2.14¢)

R(x)=(h%(x),h(x)) = —arg N &0+ Il ), (9.2.141)
where Gy(x) € R™! has elements denoted by E = (£%,8), with £° € R, £ € R" and is defined by

= A w(x) 7)"@)]} 9.2.14

Gy(x) 2 iiou{[ Vi) . ) ( g)

(d) Foranyxe R* 0e dy(x) <> 6(x)=0.
(e) Both 6(-) and A(-) are continuous.

Proof:
(a) Since setting A = 0 in the max part of (9.2.13a) makes this part zero, the result follows.

() From (9.2.13b) we have that

0(x) = max (F&x) = w(x) + (T ), AN+ Yalh()P ). (9.2.15a)
Hence, since for every j € I(x), f(x) — y(x) = 0, we have that

dy(x;h(x)) = [max, (VF(2).h(x)) S 0(x) = YA < B(x) . (9.2.15b)

(c) Next, making use of (9.2.10a), we obtain that

4 The form (9.2.14c) is also suggested by (9.2.7b), (9.2.7c¢).
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6(x) = min max ( f: W) - w(x)] + i W (VA(x), 1)+ Ylat? ). 9.2.15¢)
AR REL =
Applying Corollary 9.2.3 to (9.2.15c), we get that

6(x) = max min (Zu’[t’(x) V()] + Zu’ (VF(x). i)+ Valhl? ). (9.2.15d)

Lae R =l

Solving the unconstrained min for A in terms of j, we obtain that

h= —i;' W) . ' (9.2.15¢)
F

Substituting back into (9.2.15d), we now obtain (9.2.14c).

The expression (9.2.14¢) follows from (9.2.14c) by inspection, while (9.2.14d) follows from
(9.2.15¢) and Corollary 9.2.2.

(d) Since E = (%) € Gy(x) implies that E® 2 0, it follows that 0 € dy(x) <> 0 € Gy(x) and also,
from (9.2.14e), that 8(x) =0 <> 0 € av(x). Hence (d) is proved.

(e) The continuity of 6(-) follows from Lemma 9.2.1 and the form (9.2.14c). To establish the con-
tinuity of i(-) we make use of the form (9.2.13a), which we rewrite as

6:) = min 6(x.h). (9.2.150)
with
o(x.h) 8 max (f(x) = W) +(VF@).+ Klkl ) (92.15g)

Next, it follows from Theorem 9.1.1 that ¢,-) is continuous. Now suppose that X € R" is arbitrary and

that (x;); e i iS any sequence converging to X. Then 8(x) = ¢(x;,h(x)) holds for all i € IN. Further-
more, because the VF(-) are continuous, and because of (9.2.14d), it follows that the sequence

{h(x)); ¢ n is bounded, and hence that it must have at least one accumulation point * Thus, suppose
that KN is such that k(x;) —hasi— oo, Then, because 6(-) and ¢(-,-) are continuous, it follows that
6(x) = ¢(x;. h(x) 5) oG} = 6() = 6(.h(). Since there is only one vector k() such that
8() = 6@G.h()), it follows that &= h(R), ie., that the sequence {h(x)};< n has only one accumulation

point, A(X) and hence that it converges to it Consequently, since x was arbitrary, we coonclude that
h(*) is continuous, which completes our proof. |

93. UNCONSTRAINED MINIMAX ALGORITHMS
Next we shall describe two algorithms for solving the unconstrained minimax problem

min y(x) (9.3.1a)

with
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v = max ), ' (93.1b)

and the functions £:R" — R continuously differentiable. In the form stated, these algorithms were first
proposed by Pshenichnyi®, as his method of linearizations. They can also be traced to the Pironneau-
Polak® method of feasible directions, which, in turn, is evolved from the Huard” method of centers.

The form of these algorithms is based on those of the steepest descent algorithm and the Armijo gra-
dient algorithm.

Algorithm 9.3.1 : (Exact Line Search).
Data : xp€ R”
Step0: Seti=0.

Step 1:  Compute the search direction

.= 3 é i i(x) — A VFA(x), 1 2 .
hi=hix) 2 arg min max (f(x) - w(x) + (). )+ Yalhi? ) 9.3.22)

Step 2: Compute the step size

A € arg min y(x + M) (9.3.2b)

Step 3: Update: set
Xy =X + )‘ihil (9’3'k)
replace i by i + 1 and go to Step 1. u

In view of the continuity of the search direction h(-), established in the preceeding section, the
following result is hardly surprising since it can be established by mimicking the proof of convergence
of the steepest descent algorithm for differentiable unconstrained optimization.

Theorem 9.3.1: Consider problem (9.3.1a) with the assumptions stated. If in solving problem
(9.3.1a), Algorithm 9.3.1 constructs a sequence (x;}=,. then every accumulation point X of (x;])2,
satisfies the first order optimality condition 8(x) = 0. [
Exercise 9.3.1: Prove Theorem 9.3.1. ' =

It is also possible to propose a minimax algorithm which uses an Armijo type step size rule, as
follows.

Algorithm 9.3.2: (Armijo Line Search).

Parameters: a, B e (0.1).

SB. N. Pshenichnyi and Yu. M. Danilin Numerical Methods in Extremal Problems, Moscow, Mir Publishers, 1978.

€0. Pironneau and E. Polak, "On the Rate of Convergence of Cenain Methods of Centers”, Mathematical Programming,
Vol 2, No. 2, pp. 230-258, 1972.

7P. Huard, "Programmation Mathematique Convex”, Rev. Franc. Inform. Recher. Operationelle, Vol. 7, pp. 43-59, 1968.
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Data : x € R"
Step0: Seti=0.

Step 1:  Compute the search direction

hi=h(x) & arg :::i:_ max (F(x) = wix) + (VA(x). )+ a2 ), (9.3.32)

Step2: Compute the step size

A= arg max { B* I y(z; + B*h) - w(x) - B'ab(x) S0 ). (9.3.3b)

Step3:  Update: set

Xy = X+ hhi, 9.3.3¢)
replace i by i + 1 and go to Step 1. ||
The convergence properties of Algorithm 9.3.2 can be established by making use of the fact that
h(-) is continuous and mimicking the proof of convergence for the Armijo gradient method. The result

of such an exercise is the following:
Theorem 932 : Consider problem (9.3.1a) with the assumptions stated. Suppose that Algorithm
9.3.2 constructs a sequence (x;)io. Then every accumulation point X of (x;}2, satisfies the first order
optimality condition 6(%) = 0. m
Exercise 9.3.2: Prove Theorem 9.3.2. ]
To conclude this lecture, we must discuss methods for computing the search direction h(x) and
evaluating the optimality function 6(x). First, observe that (9.2.14c) is a standard quadratic program

and hence our first instinct would be to try to solve it by commercially available code and then obtain
the search direction from (9.2.14d). Unfortunately, the matrix Q, defined by

o4 gvf(x) V), (9.34)

which apppears implicitly in (9.2.14¢), is often only positive semidefinite. As a result, standard qua-
dratic programming codes fail to solve (9.2.14c) from time to time. Because of this, it is preferable to
use a "child® (such as the Wolfe® or van Hohenbalken® algorithms) of the Gilbert algorithm!® which we
will now describe. ‘This algorithm solves problem (9.2.14¢). The geometry of this algorithm is illus-
trated in Fig. 9.2.1. The data for this algorithm consists of the vectors §; = (0.E) € R™!, j € m, with
E? = w(x) - £(x) and §; = VF(x). In the form stated, the algorithm solves the problem

SWalfe, Ph., "Finding the Nearent Point in a Polytope”, Math. Programming, Vol. 11, pp 128-149, 1976.

%B. von-Hohenbalken, "A Finite Algorithm to Maximize Cenain Pseudoconcave Functions on Polytopes”, Mathematical
Programming, Vol. 9, pp. 189-206, 1975.

10 E G. Gilbent, "An iterative Procedure for Computing the Minimum of a Quadratic Form on a Convex Set”, SIAM J. Con-
trol, Vol 4, No. 1, 1966, pp 61-79.
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min( ¢®) !5 e co (§) ), | (93.52)
where ¢:R™! — R is defined by

q® 2 B0+ i, (9.3.5b)
Search Direction Algorithm 9.33 (E. Gilbert) :
Data :  (§)mcR™.
Step0: Seti=0,setFH=E,.

Step1: Compute a j; € m such that

VgG).Ej) = min (Vg@).E) . 9.3.62)
Step2: Set '
En 4 a5+ -0, (9.3.6b)
and compute
h=arg min { E°Q) + KEMWE ). (9.3.6c)
Step 3:  Set 5,; = E(A), replace i by i+1 and go to Step 1. =

Remark 9.3.1: Note that the computation of A; in (9.3.6¢) is very simple because either A; € (0,1),
in which case its value is obtained from

4 (0 + e ] =o. (93.7)

ord; € {0,1). Thus A; can be computed in at most three evaluations of a simple function. |
Remark 9.3.2 : In practice, the construction in Algorithm 9.3.3 must be stopped at some point.
Since (see Fig. 9.3.2) we always have an over-estimate of -8 4 min{ £°+ P 1T e co (E;) ) in
iem

04 L+%Is®  and an easily  computable  under-estimate in -¢; 8

min{ &° + KIER 1{Vg(D.E -E;)=0], we propose to siop computation in Algorithm 9.3.3 when
[6; - 6,]/8; <8, where 8 > 0 is a preassigned tolerance. Since @ must approach zero as a solution of
problem (9.3.1a) is approached, we see that this test automatically increases the precision of our evalua-

tion of 6(x)) as x; approaches a solution X.

A proof of convergence for Algorithm 9.3.1 using approximate evaluations of the search direction
can be produced, but it is beyond the scope of this course. |

Theorem 9.3.2: The Sequence {3}, constructed by Algorithm 9.3.3, converges to the unique solu-
tion 5 of the problem (9.3.5). |

Exercise 93.3: Prove Theorem 9.3.2.
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[Hint: write Algorithm 9.3.3 in the form 5,; € A(3) and show that A(") is a closed map.} [ |

Corollary 9.3.1: When the vectors {E,):, are such that E;= (€.8) € R™!, with &) = w(x) - f(x)
and &; = VF(x), then the solution point 5* of (9.3.5) satisfies 6(x;) = —(s*° + %1s*1%), and h(x) = -s*. B

9.4. RATE OF CONVERGENCE OF MINIMAX ALGORITHM 9.4.1

we will now show that the rate of convergence of the Minimax Algorithm 9.3.1 is similar to that
of the of the Steepest Descent Algorithm 3.3.1. We will need an assumption which generalizes (4.3.1)
that was used in establishing the rate of convergence of the Steepest Descent Algorithm 3.3.1, ie.,

Assumption 9.4.1 : In problem (9.0.3a), each f : R® = R is twice continuously differentiable, and
there exist 0 < ¢ £ 1 S C < oo, such that

ch? s @.%’Qy)s Chy?, Vjemzxye R*. 94.1)
|

We note that under Assumption 9.4.1, the function y(x) 4 max; ¢ » f(x) is strictly convex and
hence it has a unique minimizer X. For any x € R", Assumption 9.4.1 enables us to get a useful esti-

mate of the quantity W(x) — W(x), as we shall now see.
Lemma 9.4.1: ForanyxxX € R*andanype £ 8 {pne R"‘li;ﬁ:l. wW20vje ziz )
=
v -v@ 2 T W (&) - vi) + V@) -2 + -%clx' -2}, 942)
jiem
Proof : First, note that
V(&) - y(=max( F&) -y )

=max( 3 W) -v® ). (94.3)

jem

Next, making use of the second order Taylor expansion (2.4.6b) and (9.4.1), we obtain that for any
Jem

. . . 1 / ’_
Frf) + O, -0 + [ sk -, LELL =D ¢y

2 £ + (UF0).0¢ = 2 + okt = 2. ©44)
Hence, from (9.4.3) and (9.4.4) we obtain that
VOO - ¥@ 2 max( 3 ¥ () - W) + (FF - A + gebd o).

jem
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2 T W @) - V) + OF@.X -2+ gl =P ) ©945)
emn
for any u € X, which completes our proof. ]

Theorem 9.4.1 (Linear Convergence) : Suppose that Assumption 9.4.1 is satisfied. If the Minimax
Algorithm 9.3.1 constructs a sequence (x;}=q, then,

@ x; > Xasi— o, and

(b)
W(x) - YOI S Slyx) -y(®)) . Yie N, , (9.4.63)
where
A_ Lt
§21-c<1. (9.4.6b)

(¢) There exists a constant K < ¢ such that

I, - <K@®% vieN,. (9.4.6c)
Proof:
(@) Because w() is stricly convex under Assumption 94.1, the level set L 4
(x € R*Iy(x) < y(xo) ) is compact. Hence the sequnce (x;)Z, must have accumulation points X, all
of which satisfy 0 € dy(%). Since y() is strictly convex, it follows that T=argmin_, .. ¥(x) and is
unique. Therefore x; — X as i = o .

() (i) First we obtain a bound on the decrease in y(x) at iteration i. For all A € [0,1],

Wi + Ak) - Wx)=max Fxi+ M) = w(x)
< max Fx) + VA(xD, Ah)- w(x) + BCAUAN?
€Em

<h[max Fx) + (VF(x). Y- wix) + BCMRP (9.4.7)
because A € [0,1] and f(x) S y(x). Therefore, if A < 1/C,
Wix + M) - y(x) S A [max Fx) + VF(x).h)- w(x) + Yelh?)

=A6(x) <0. (9.4.8)
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Wlts) = WiaD € 00x)

(ii) Next we relate 6(x), defined in (2.8a), o Y(2) - y(x). For any y; € p(x),
6(x)= min ¥ Wif(x) + (VF(x). - w(x) + Al .

heR jem
Replacing h by c(x - x)) in (9.4.10), we obtain that

8(x) S Y W)+ VFx).ck - x))- wx)] + %le@ - x)I?

jen

S el T MIFe) + FG).G - 51 wied] + 5 elG - 5P) .

jem

Making use of Lemma 9.4.1, we obtain that

8(x) < cly(®) - w(x)] .
Combining (9.4.12) with (9.4.9) yields

Vix) = W(x) S & W) - v

Relation (9.4.6a) now follows directy.
(c) First, it follows from (9.4.6a) that

v(x) - ¥ S [wxg) - y@I5 .

Setting x’=x;, x=%, and p={l € E, an optimal multiplier at %, we obtain from (9.4.2) that

- 3 < (Z1yes) - v

The relation (9.4.6¢) now follows directly from (9.4.14).

We are now ready to consider inequality constrained optimization problems.
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10. CONSTRAINED OPTIMIZATION : INEQUALITY CONSTRAINTS

We now turn to constrained optimization problems with inequality constraints only. We shall
develop first order optimality conditions both in classical multiplier form and in optimality function
form; then we shall present an algorithm. Second order conditions will be dealt with separately later.

10.1. FIRST ORDER OPTIMALITY CONDITIONS
Consider the inequality constrained optimization problem
P min{f@)Ifx)<0,jem) (10.1.1)
where the functions f:IR" — R are continuously differentiable.

Definition 10.1.1 : We say that X is a local minimizer of P,, if there exists a p >0 such that
F°&) sf(x) forall x € BEP)N{x1£(x)<0,je m). =

Theorem 10.1.1 (F. John) : Suppose that X is a local miniminizer for P, (with associated radius
p 2 0). Then there exist multipliers p° 2 0, p' 20,,...u" 20, not all zero (alternatively, such that
“ .

3 W = 1), such that

=0

g;o WVFG) =0, (10.1.2a)

and

W@ =0 vVjem. (10.1.2b)
Proof : Consider the function

F @) & max{f0) - f®): f).j e m). (10.13)

Then F.() =0 and, for all x € B&,p), F.(x) 2 0, either because f°(x) - f°) 2 0, or because f(x) 2 0
X x

for some j € m. Hence X is also a local miniminizer of F_(-). Consequently, by Proposition 10.2.1, we
x
must have that

Oe aF;(Jb . (10.1.4)
Since
F ()= co (VR ). (10.1.5a)
x je I®
where

94-



EECS 227A Lecture 10.1 E. Polak

J® & 0y ljenlf@®=0), (10.1.5b)

it follows from Corollary 10.2.2, that there exists a mutiplier vector [l € I, where
IO (@weR™IW20forj=01,---.m, §w= 1), (10.16)
such that |
g WVFiR) =0, (10.1.72)
gn"(F;@ - =0, (10.1.70)

where () 2 £°x) - f°G) and fi(x) & F(x) for all je m. Since F,(%) =0 and since fi(%) < 0 for
x

j=0.1, -+ ,m, we see that (10.1.7a), (10.1.7b) are equivalent to (10.1.2a), (10.1.2b). )

Remark 10.1.1 : We shall refer to the multipliers ¥ in (10.1.2a), (10.1.2b) as F. John multipliers. ®

Originally, both the F. John theorem and the following very important special case were obtained
in a very different manner from the one that we have employed. At this point, we reintroduce the nota-
tion which we used in Lecture 10, viz., for all x € R", we define the max function y:R"* = R by

vix) 4 max F@), (10.1.82)
and, as before, we denote its generalized gradient by

v 4 , 8 (@), (10.1.8b)
where

Ix) & (jemf@=vy®). (10.1.8¢)

Corollary 10.1.1 (Kuhn-Tucker) : Suppose that % is a local miniminizer.for P; (with associated
radius § 2 0) and that 0 ¢ dy(3). Then there exist multipliers p' 2 0,,.....u™ 2 0, such that

VPR + 3 WYFG) =0, . (10.1.9a)
=
and
WG =0Vjem. (10.1.9b)
»
Exercise 10.1.2 : Prove Corollary 10.1.1. |

Theorem 10.1.2 :  Suppose that the functions (), j = 0,1,...,m, in (10.1.1), are convex and continu-

ously differentiable and that X € R”" satisfies y() < 0, as well as (10.1.9a), (10.1.9b). Then X is a glo-
bal minimizer for P,
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Proof : Let the i/, j € m, be as in (10.1.9a), (10.1.9b), and consider the Lagrangian L:R" — R,
defined by

L) 8 P+ g W) . (10.1.10a)

Then L() is convex and, by (10.1.93), VL&) =0. Hence X is a global minimizer of L("). Since
(10.1.9b) holds, we have that

PE®=LE®SLx) YxeR". ‘ (10.1.10b)
Since for all x € R" such that y(x) £ 0, L(x) S £°(x), it now follows that

LOSL® Vxe (xe R Iy <0}, (10.1.10c)
which completes our proof. u

Remark 10.1.2 : We shall refer to the multipliers i/ in (10.1.9b), (10.1.9c) as Kuhn-Tucker multi-
pliers. ]

Exercise 10.1.2 : Supppose that the functions f(-) j=0,1, - - ,m are convex and continuously
differentiable and that ¥ € R* is such that y(X) < 0 and 0 € oF, (%), where F. () is as in (10.1.3). Show
x x

by example that % need not be a minimizer for (10.1.1). ]

102. AN OPTIMALITY FUNCTION

Constrained minimax algorithms can be obtained as implementations of the following phase I -
phase II' conceptual method of centers which has a simple geometric interpretation, see Fig. 10.2.1a,
10.2.1b. The method below is a straightforward generalization of the Huard method of centers?.

Conceptual Method of Centers 10.2.1 :
Step0: Selectxpe R*and seti=0.
Step1: Compfne

Xiny = arg min_ max (y°(x) — ¥°(x) - v.(x).¥(x).j € m} . (10.2.1)

Step2: Seti=i+1andgotoStepl. [ ]

fBTheorem 10.2.1 : Suppose that

(a) For every ¥ € R", the level sets ( x € R* | F{(x) < Fy{(x") ) are compact, where FAc) was defined
in (9.1.3);

The reason for calling this method phase I - phase Il is that it cambines the operation of finding a feasible point (phase I)
with that of minimizing the cost while maintaining feasibility (phase II).
2p. Huard, "Programmation Mathematic Convex”, Rev. Fr. Inform. Rech. Operation., Vol 7, pp. 43-59, 1968.
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() For every ¥ € R* which is not a local minimizer of (10.1.1b),
A(x) & mx: Fx) - FAx) <0. (10.2.22)
ze R*

If { x; }7=o is an infinite sequence constructed by the Conceptual Method of Centers 10.2.1, then every

accumulation point ¥ of {x;)5 is a local minimizer for (10.1.1).

Proof : First we note that if x € R" is such that y(x) > 0, then Fy(x) = y(x) = y(x). If x€ R" is
such that y(x) € 0, then F,(x) =0. Since for any x.x’ € R", y(x) € Fy(x), we see that if y(x;) <0,
then W(x;y) S Fyr(x;1) S Fy(x). This leads to the conclusion that if the Conceptual Method of Centers

10.2.1 constructs a sequence {x;}zo, such that for some ip, Y(x;) < 0, then y(x) S O for all i 2 i.

Next we note that because of assumption (a), and Lemma 10.2.1, A() is continuous. Now sup-
pose that {x;}i=o is an infinite sequence constructed by the Conceptual Method of Centers 10.2.1, such

4
that x; — %, with 0 ¢ 9F.(x). Then we must have that A(X) = -8 < 0, by assumption (b), and hence, by
x
continuity of A(-), there must exist an i; such that
F,(x;) — Fo(x)=0(x) < %25 (10.2.2b)

for all i € K such that i 2 i;,. Now suppose that y(x) > 0 for all i. Then {w(x))=o is a monotone

decreasing sequence with accumulation point y(x). Hence we must have that y(x) — y() as i — o,
However, it follows from (10.2.2b) that

V(i) = V() = Fy (%) - Fox) S -¥%5 (102.2)
for all i € K such that i 2 i, which leads to a contradiction.

Next suppose that there is an iq such that y(x, ) < 0 for all i > i, Then
V1) = Vo) S Fy(tin) - Fo(x) S -8 (102.2d)
for all i € K such that i 2 i; = max(io.i;}, i.c., the sequence (qﬂ(x..)}gz is monotone decreasing to —eo.

However, (w"(::i)};.-z must converge to the accumulation point y(%), and hence again we obtain a con-
tradiction. This completes our proof. |

The simplest implementation of the Conceptual Method of Centers consists of replacing the
update formula (10.2.1) by one iteration of the Minimax Algorithm 9.4.1. This leads us to the follow-
ing optimality function and associated search direction function for the problem P, defined in (10.1.1).

Since there is little likelihood of confusion, we shall reuse the symbols 8 and A which were first used in
Lecture 9.2. We need to introduce one more function:

V. 24 max{ 0,y(») ), | (10.2.3a)

where y(-) was defined in (10.1.8a), and an arbitrary constant ¥ > 0. We now define for problem P, the
optimality function 6:R* — R and the associated search direction function h:R" — R" by
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min max { - 7W.(x) + (V°x). M)+ KIAl;
A R*

>

0(x)

F@) = v ) + (V@M + YlhP, je m ), (10.2.3b)

>

h(x) & arg ‘mi: max { = W.(x) + (V%)M + %IA;
e L]

£ = v x) + (V@) R+ BIRR, je m ) . (10.2.3¢c)

We shall see in the next section that the constant y can be used to control the trade-off involved
between finding some feasible solution as rapidly as possible and finding a low-cost feasible solution.

To simplify the process of deducing the properties of the optimality function 6(°) and associated
search direction function k(*) for P; from those defined in (9.2.13a), (9.2.13b), we define

=0, (10.2.42)
f@ef®@, vjem, (10.2.4b)
m4(01,..m), (102.4¢)

and, finally, we define ¥* =7, ¥ =1 for all j € m.
Making use of these definitions, (10.2.2), (10.2.3) can be rewritten as

6:) & min max( Vi) - W] + (V@) B+ Wl ), (102.52)
h(x) 2 arg ‘mi:. max { YIFix) - w.o(0)) + (VF). )+ Yalal? ) . (10.2.5b)

Theorem 10.2.1 : Consider the functions 6(-) and A(-) defined by (10.2.3a) and (10.2.3b). Then,
(8) Forallxe R",

8(x) <0; (10.2.62)
() Forallxe R",

dy(x; h(x)) < 8(x) - [w(x) — w.(x)]; (10.2.6b)
(¢) Forallxe R",

df°(x;h(x)) S 6(x) + Yy, (x); , (102.6c)

(d) Aliernative expressions for 8(x) and h(x) are given by

8(x) = —min | 3% Wyl () - F] + BIZ WA ), (102.60)
rel o =0
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h(x) = —g WVFG) . (10.2.6¢)

where the ), is any solution of (10.2.6d).

Equivalently, let &@¥(x) € R™ be a set with elements denoted by E = (8°,E), with £® € R,
& € R", and defined by

Yiv.) - Fi0)
7 8 oo o )}
Then, »
6(x) = -g:;ig.lvm( §° + Vzl§l2 ) (10.2.6g)
h(x) = -E(x), (10.2.6h)
where
E0=C"®.E(x)=arg min (& + K1) (10.2.6i)

Te V)
(e) For any x € R" such that y(x) 2 0, 0 € oy(x) = 6(x) = 0.

(N For any x € R" such that y(x) > 0, 6(x) = 0 => 0 € Jy(x).

(g) Both 6(") and A(-) are continuous.

Exercise 10.2.1: Follow the proof of Theorem 10.2.3, to construct a proof for Theorem 102.1. =

103. PHASE I - PHASE I METHODS OF FEASIBLE DIRECTIONS

To conclude this lecture, we shall describe two phase I - phase II algorithms for solving the prob-
lem P; (10.2.1), which we rewrite in the more compact form

P; min{ f°&x) 1y(x) <0}, (103.1a)
with
vy(x) = j‘ma;f(x) . (10.3.1b)

To simplify the proofs of convergence to follow, we will assume in this section that the functions
F:R"* = R are twice continuously differentiable®.

As we have already pointed out in the preceeding section, an algorithm for solving (10.1.1) which
combines the operation of finding a feasible point (phase I) with that of minimizing the cost while
maintaining feasibility (phase ), is usually referred to as a phase I - phase II algorithm. Phase I

3 Referring 10 E. Palak, R. Trahan and D. Q. Mayne, "Combined Phase I - Phase Il Methods of Feasible Directions”,
Mathematical Programming, Val. 17, No. 1, pp. 32-61, 1979, we see that convergence can be proved also under the assumption

99



EECS 227A Lecture 103 E. Polak

versions of the algorithms below, were first proposed by Pironneau and Polak® as an implementation of
the Huard method of centers®. In the form given below, these algorithms were first described Polak,

Trahan, and Mayne®, and were obtained as reasonably straightforward generalizations of Algorithms
9.3.1 and 9.3.2, via the Conceptual Method of Centers 10.1.1.

We continue using the notation introduced in (10.2.4a) - (10.2.5¢).
Algorithm 103.1 (Pironneau-Polak) : (Exact Line Search).
Parameters: ¥ >0,¥=1,je m.

Data : xp€ R"
Step0: Seti=0.
Step1: Compute the search direction

h; = h(x;) 4 arg ::li:. ﬂaé ( Y[?’ x) = w(x).] + (VF(x). b+ %lIn? ) . (10.3.22)

Step 2:. Compute the step size:

if y(x) >0,
A; € arg min y(x; + Ah), (10.3.2b)
if y(x) <0,
A; € arg min { f%x; + Mh) L y(x; + Mh) <0 ), (10.3.2¢)
Step 3:  Update: set
X = X + A, (10.3.2d)
replace i by i + 1 and go to Step 1. [ |

The interesting features of Algorithm 10.3.1 are: (i) it does not have to be initialized with a

feasible point (ie., it is not necessary to have y(xq) < 0), and (ii) once a feasible point x;  has been con-
structed, the following points x;, with { > i, are also all feasible.
Theorem 10.3.1 : Consider problem (10.3.1a) with the assumptions stated and, in addition, assume
that 0 édy(x) for all x € R" such that y(x) >0. Then every accumulation point X, of a sequence
{x;)mo constructed by Algorithm 10.3.1, satisfies W(X).< 0 and the first order optimality condition
8() = 0, with 6(") defined by (10.2.3a).

that the functions #(-) are anly once coatinuously differcatiable.

4 0. Pironnesu and E. Polak, "On the Rate of Convergence of Cerain Methods of Centers”, Mathematical Programming,
Vol 2, No. 2, pp. 230-258, 1972

5P. Huard, "Programmation Mathematic Convex”, Rev. Fr. Inform. Rech. Operation., Vol 7, pp. 43-59, 1968.

6 E. Polak, R. Trahan and D. Q. Mayne, "Combined Phase I - Phase I Methods of Feasible Directions”, Mathematical Pro-
gremming, Vol. 17, No. 1, pp. 3261, 1979.
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Proof : Suppose that Algorithm 10.3.1 has constructed a sequence (x;):=0 which has an accumulation
point X such that () < 0.

Case 1: Suppose that y(x) >0 for all i € N. Then (y(x))Z, is a monotone decreasing sequence,
x
and hence, since W(°) is continuous and x; = % as i — w, for some X c N, y(x) - V() as i — oo,

Clearly, since W(*) is continuous, we must have that y(z) 2 0.
Since ¥(3) 2 0 and 6(%) < 0, by assumption, we have, by (10.2.6b), that

ay(:h(@) < 6R) & -25<0. (10.3.42)
Hence there exists a A> 0 such that

VG +MB) - v <35 (10.3.4b)
Hence, because both () and h(-) are continuous, there exists an ip € IN such that for all i € K, iz2i,

Wxr) — W) S Wiz + M(z)) - wix) S 2812, (103.40)
which leads to the conclusion that y(x;) — —o, as i = «, and we have a contradiction. Consequently,

8(2) = 0 must be true. Since, by assumption, 0 € dy(x) whenever y(x) > 0, it follows from the fact that
6(®) = 0 that y(z) = 0 also.

Case 2: Suppose there is an ip € N such that y(x) < 0 for all i 2 ;. Then, because y(-) is continu-
ous, we must have that y(x) 0. Since 6(-) and h() are continuous, there exists a P>0 such that

8(x) < 6(3)/2 < 0 and Ih(x)1 < 21h(Z)! for all x € B(x.p). Hence, since all the functions F() are twice
continuously differentiable, there exists an 1< M < , such that (with H() & &F()/ax) for all

x€ BGD) and A € [0,1], WHF(x + M(x)) S M. Therefore, for all x € B(z.p) and A € [0,1/M],
Yi(x + Ah(x)) - W(x), = "ma:f(x + Mhi(x)) = y(x),

= max{ £(x) - W0 + A TP + N f(l — 5) UF(x + SRh()h(x).h(x)ds )

< max{ ¥{fi(x) - w(x).] + A (VF@).hG) + A2 j;'(l = 5) W(x + sAh(x)h(x).h(x): ds )
jem

< max{ ¥ - v + A @b + 22 bicor

jem

< A8(x) SAB(R)/2<0. (10.3.4d)

Next, it follows from (10.2.6c) that
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df°G:h@®) s 8() & -256<0. (103.4e)
Hence there exists a'ie (0.1/M] such that
LPE+ME)-fD) s . (10.3.40

Since x;-f)'i as i — oo, for some K c N, there exists an i; € N such that for all i€ X, i 2,
x; € B(x.p), and hence it follows from (10.3.4d) that for all i € K, i 2 i,

y(x; + A(x)) 0. . (10.3.4g)
Next, since both f°(-) and h(-) are continuous, it follows from (10.3.4f) that there exists an i, 2 i, such
that foralli e K,i 2 iy,

L + Wz - L) < 2802 . (103.4h)
Clearly, (10.3.4g) and (10.3.4h) imply that for all i € K, i 2 i,

L) - &) <512 . (10.3.4i)
Since the sequence (f%(x)}zo is monotone decreasing, it follows from (10.3.4i) that flx) = —o as

x
i — oo, However, because the sequence {f°(x)}=o is monotone decreasing and x; — X and f°() is con-

tinuous, we must have that f°(x;) = f%(x) as i = oo, and hence we have a contradiction, which com-
pletes our proof. ' u

It is also possible to propose a phase I - phase II algorithm which uses an Armijo type step size
rule, as follows.

Algorithm 103.2 (Pironneau-Polak) : (Armijo Line Search).
Parameters: «, B e (0,1).

Data : x € R"

Step0: Seti=0.

Step 1:  Compute the search direction

hi=h(c) & arg min max { Y{Fi(x) - w(x)) + (VF(x). B+ Klhl } . (10.3.52)

AcR jem

Step 2: Compute the step size

if w(x) >0,
A; = argmax{ B* | y(x; + Bh) - w(x) - B'ab(x) < 0 . (10.3.5b)

if w(x) <0,
& = argmax( B* 1/%; + B'h) - °0x) - Btad(x) <0, y(x; + B*h) <0}, (10.3.5¢)
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Step3: Update: set
Xy = X + Ak, (10.3.5d)
replace i by i + 1 and go to Step 1. |
Theorem 10.32 : Consider problem (10.3.1a) with the assumptions stated and, in addition, assume
that 0 ¢dy(x) for all x € R" such that y(x) 20. Then every accumulation point % of a sequence
{x)Z0, constructed by Algorithm 10.3.1, satisfies y(x) SO and the first order optimality condition
6Q() = 0, with 6(-) defined by (10.2.3a). [ ]
Exercise 103.1 : Prove Theorem 10.3.2. ]
Exercise 103.2: Forany x; € R", let F,‘.:R“ — R be defined by

F,(x) = max{ £z) = L(x) - (@), . () - W@)v. jE€ m ). (10.3.6)

Prove that Theorem 10.3.2 also applies to the following Phase I - Phase II method which uses a single
surrogate cost function for step length calculations:

Algorithm 1033 : ( Single-Cost Armijo Line Search).
Parameters: a, B € (0.1).

Data : x e R"

Step0: Seti=0.

Step 1: Compute the search direction

hi=h(x) & arg min max ( Y{Fix) - w(z)] + (VF(x). B+ Wlhl? ) . 10.3.7a
heR' jem ( )

Step2: Compute the step size
A = argmax( B* | Fyfx; + B'h) - Fy(x) - 'ab(x) < 0] . (10.3.70)
Step3: Update: set

X = X + Ak, (10.3.7¢)

replace i by i + 1 and go to Step 1. ‘ ) [ ]
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11. FIRST AND SECOND ORDER OPTIMALITY CONDITIONS : MIXED CONSTRAINTS

We now return to the study of first and second order optimality conditions for the full nonlinear
programming problem

Pe: min{f’®)!1fx)<0,jemgx)=0.kel). (11.0.1)

11.1. FIRST ORDER OPTIMALITY CONDITIONS : MIXED CONSTRAINTS.

To reduce the amount of mathematical baggage that we need to manipulate at one time, let us
first consider the special case of problem (11.0.1),

Pg: min (') 12(x)=0,kel), (11.1.1)
where f°:R* - R, gt:R" = R, & € J, are all continuously differentiable functions.

Definition 11.1.1 : We shall say that % is a local miniminizer of Pg if g() =0 for all k € [ and
there exists a p > 0 such that f%(x) 2f°R) forallx e (x€ R* I k- <P, gx)=0,ke 1). ]

Theorem 11.1.1 (FONC, Pg: Suppose that X is a local miniminizer for Pg. Then there exist multi-
pliers y°,y,...,y’, not all zero, such that

VOVRR) + gwmw. 11.12)

Proof : Let p > 0 be the radius associated with . First, consider the problem

Pg: min{f@+k-31gx)=0kel]. (11.1.3a)
Clearly, % is also a local miniminizer for Pz and, in addition, for all x#X such that
xe BRPN(x1g(x)=0,ke L},

0 + x -2 > %), (11.1.3b)
ie. T is the only local miniminizer of Pg’ in the ball BX.p).

Now consider the family of inequality constrained problems

P : min { ')+ k- l-esg()se ke k-2<p}, (11.1.4)
with € 2 0, and let x, denote the solution of Pf. Then we have
G -esg®<e forallke ] foralle20,ie., X is feasible for all the problems Pj.
(i) Suppose €; = 0, as i — . Since the sequence { x;, J;¢ v © B@&.p) is bounded, it must have at
least one accumulation point, say x*. Clearly, g*(x*) =0 for all k € L and, since f°(x;) < f°&) must
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hold for all i € N, we must have that

/=) s°G) . (11.1.53)

(i) Next we show that x* = X. For suppose that x* #%. Then x* cannot be a local miniminizer of
P’g, because % is the only local miniminizer of P’g in B(z,§). Hence we must have that

L@ <), (11.1.5b)
which contradicts (11.1.5a)

(iv) Since Xe, is a local miniminizer of Pf". it follows i'rom Corollary 9.2.2. that there exist multiplier
vectors e, with components ug, Me,. Mg, 20,k € L such that!

BV + 2z, - D) + kZL ue, Vehix,) - kZL%Vg"(xc,) =0, (11.1.6a)

me,[g'(x) - €1=0, (11.1.6b)

pe [~ gx) ~e)=0, (11.1.6c)
0 k k =1.

He, + x%"‘" + ;Ze";""” (11.1.6d)

Since all the components of p.'s are in [0,1], they must have accumulation points. Hence there must

K
be an infinite X < IN such that ye — p as i — oo, with p = (,p1,..... 1L, - - - ) satisfying

rovrOR) + k}:L W@ - phHvei® =0, (11.1.8a)
and
! [}
R+ +Tut=1. (11.1.8b)
b=l kal

It remains to show that not all the coefficients in (11.1.8a) are zero. Since for all i € K, either
Mi, or Wi are zero, or both, it follows that for all k € L pt it = 0 and hence that one of these two

coefficients must be zero. Hence it is not possible for all coeficients in (11.1.8a) to be zero, which com-
pletes our proof. |

Exercise 11.1.1 :  Suppose that the gradients { Vg!(x) )4 ; are linearly independent. Show that y°
can be chosen to be 1 in (11.1.2). ]

Exercise 11.1.2 :  Suppose that f%() is convex, that the functions g*(-) are affine (i.e., they are of the
form gh(x) = A;x + by), and that X is such that (i) g*G) = 0 for all k € , that (11.1.1) is satisfied with

‘Nmethnlhcmulﬁplienuodawdwilhlhecmmhtlx—ilzs6mbeumedtobembeamthis inequality is
slack for all { sufficiently large.
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multipliers which are not all zero and that the gradients { Vg*®) ),  ; are linearly independent. Show
that X is a global minimizer for the problem Pg. =
We are now in a position to state a first order optimality condition for the problem Py in
(11.0.1).
Definition 11.1.2 : We shall say that X is a local miniminizer for Py if £(X) <0 for all j € m,
g3 =0 for all ke] and there exists a Pp>0 such that fx)2/°%) for all
x€ (xe RIl-A<p, f(x)<0,jem &(x)=0,ke ). ]
Theorem 1L12 (FONC, Pig: 0.rConsiderproblem(11.0.1)andsupposethatthefunctionst #°sup j : reals
sup n"->7reals,j ~="0 , 1, ... , mandg sup k : reals sup n"->"reals,k member I
under,areallcontinuouslydifferentiable Ifx  hatisalocalminimizerfor(11.0.1) thenthereexistmultipliersmu
sup j g O0j =0 , 1 , . . . , mandpsi sup kk member |

m {
under,notallzero suchthat EQI(11.1.9a)p°VR®) + 3, WVFG) + T w*Ve"G)=0 . EQ I (11.19b) mu
= =

supjfsupj(xhat)=0,"§="1,2,...,m".

(11.1.8b)

Exercise 11.1.3: Prove Theorem 11.1.2, [ |
Exercise 11.1.4 :  Consider the problem

min{ Ax) |l Ax~b=0]}, (11.1.102)

where f:R" — R is twice continuously differentiable, x = (x; x;), with x, € R/, and A = [4,,4,] an
! x n matrix such that the ! x / matrix A, is nonsingular.

(a) Show that the problem (11.1.10a) is equivalent to the problem

mianIXQ. (11.1.10b)

zeé R
where fix) & R(=AT'Ax; + b.xy).
(b) Show that the optimality condition for (11.1.10b)

ViG) =0 (11.1.10c)
is equivalent to the optimality condition for (11.1.10a)
Ax-b=0 (11.1.10d)
V) + ATy = 0,

for some y € R..

(c) show that the optimality condition for (11.1.10b) (11.1.10c) together with
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Gy

———N 20V R™, (11.1.10e)

v P » ye€

is equivalent to the optimality condition for (11.1.10a), consisting of (11.1.10d) together with
(y.za@y) 20 Vye M3, (11.1.100)

where Ms(x) ={ y € R'1Ay=0). =

11.2, SECOND ORDER OPTIMALITY CONDITIONS : MIXED CONSTRAINTS
We shall now establish second order optimality conditions for the full nonlinear programming
problem (11.0.1), ie., for
Pr: min{ffx)1f(x)<0,je m; g*x)=0,kel}. (11.2.1)

We proceed in two stages: first we assume that there are only equality constraints in (11.2.1), as

in (11.1.1), and then we consider the full problem. However, we must first digress to recall the Implicit
Function Theorem and some of its consequences.
Implicit Function Theorem 11.2.1 : Suppose that g:R'xR*™ — R' is k times continously
differentiable. If %; € R/, %, € R™ are such that g(%,.3,) = 0 and the matrix 9g(%,.3,) / 9x; is non-
singular, then there exists a p>0 and a k times continuously differentiable function
¢:B(22.p) = B(x,.9) such that ¢(x) =%,

-1

NGy _ _|%Gi2) 3ng37)’ (112.22)
0x; ox, ox;
and
260).y)=0 Vye B®.p). (11.2.2b)
=

Corollary 11.2.1 :  Suppose that g:R" = R/ is twice continuously differentiable and that x € R" is
such that g(x)=0, and 9g(x)/ ax has row rank /. Then, given any h#0 in R"* such that
dg(x) / 0xh =0, there exists a ¢, >0 and a twice continuously differentiable function s:[0.1,] - R*
such that (i) s(0) =X, (ii) s°(0) = A, and Gii) g(s(r)) = O for all z € [0,z,).

Proof : Let he R h=»0, be given. Without loss of generality we can assume that we can partition
vectors x € R” into two parts, so that x = (x],x])”, with x; € R/, x, € R™, with the partition such that

9g(¥) / 3x, is invertible. To simplify notation, we shall write x = (x;,x2). Let § > 0 be a radius and let
¢:B(x,.p) = B(@x,.p) the corresponding twice differentiable function, as postulated in the Implicit Func-
tion Theorem. Next, let ¢, € (0,p/14l). Then, using the partition & = (hy,h;), the function s:[0,5,] - R"
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given by
s@) & G, + th) X, + thy) (11.2.2)

is well defined and twice continuously differentiable. Clearly, s(0) =%, 5°(0) = (-ég—f-?)-hz.hz) and
2

8(s()) = 0 for all ¢ € [0.4,].
£3)

Now, since -g%f-h = 0 by assumption, we must have, in partitioned form, that

2 og(x -
'&—ax, By + -Eanz hy=0, (112.2d)
ie., that
-1
__|22® | 2B, _ 3G 1122
h= [axl ax; hy= ax; hy . ( )

Hence we see that 5°(0) = A, which completes our proof. |

Lemma 11.2.1: Suppose that g:R" = R is continuously differentiable and that for some % € R", the
matrix dg(x)/ox. has maximum row rank. Let

M) =(ye R"lgggly=0}, (11.2.3a)
Then
MO =(ye R"lay= Jlim (5 =X)M(x -, x; > %, asi >, g(x)=0¥ i e N, a gIIR2.3b)

Proof :  Suppose that {x;}2, is such that x; — X as i = « and g(x) = 0 for all i € N. Then, for all
ie N,

t 298G + s(x; - %))
0=s(x.-)=gG)+! >

ds (x; - %) . (11.2.3¢c)

Let y; = (x; = X)/I(x; = ¥1. ‘Then it follows from (11.2.3c) that any accumulation point y of the sequence

{(:)=0 must be in Mg(x). Next, suppose that y € Mg(X) is arbitrary, but nonzero. Without loss of gen-
erality, we may assume that Iyl = 1. Then, by Corollary 11.2.1, there exists a , >0 and a function

$:[0,¢,] = R" such that (i) g(0) = %, (ii) g(s()) = 0, and (iii) s'(0) = y. Let {1;)m0 € [0.1,] be such that

;>0asi—oo. Thenifx; & s(t). x, 2% asi >, Lety; & (x; - 3)/M(x; - DI Then, by the
Mean Value Theorem, y; = (A;1)/ls" (AN, with A; € [0,1). It follows that y; & y, i — . Hence we
conclude that (11.2.3b) holds. ]

Theorem 11.2.2 (SONC, Pg ) : Consider the problem
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Pg: min{ f2x)1g*x)=0,ke ), (11.24)
with /% R* = R and all the g*:R" — R twice continuously differentiable.

Suppose that % is a local miniminizer for (11.2.3a) and that the matrix 9g(x)/0x has maximum row
rank. Then there exists a multiplier vector ¥ € R’ such that the Lagrangian L:R" — R defined by

Lkx) 8 £°&) + y.8() (112.52)
satisfies

VLG) = V%) + [ﬁgg‘l]rw =0, (11.2.5b)
and

(v.gza%z@y) 20 ¥ ye M%), (11.2.6)
where

Ms(i)={yeR'l—a-g-f—)y=0). (11.2.7)

Proof : We only need to establish (11.2.6) since (11.2.5b) was established in Theorem 11.1.1. Sup-
pose that y € M%), is arbitrary, but nonzero. Let (x)}20 be such that (i) x; - as i o o, (ii)

g(x) =0, for all i € N, and (iii) y = Lim (x; — X¥i(x; - DI Then, since % is a local minimizer, there
i

exists an ip € N such that f°(x)) 2 f°x), for all i 2 i;. Equivalently, since g(x;) = O for all i,

POSLE). Vizi. (112.8)
Expanding the right hand side of (11.2.9a) about % to second order, we obtain that
1 4
POSLE+ TLO&-D+[A-9 -3, FLE ;ff' 2 i 2nas (1129)

Now, LR®) =), and VL) = 0 by (11.2.5b). Hence, taking limits, (11.2.9) leads to (11.2.6), which
completes our proof. ) =

We are now ready to consider problem (11.2.1) in full, and develop both necessary and sufficient
second order conditions.

Theorem 11.2.3 (SONC, Pg; ) : Consider the problem

Pr: min{f°x)1f(x)<0,je m gkx)=0}, (112.10)
where the functions f:R* - R,j=0,1, ..,m and g:R" — R’ are twice continuously differentable.
Suppose that X is a local optimal solution of (11.2.10) and that the gradients Vg'), j € 1 together with
the gradients VF(),je I®)2 (je m!|f@ =0), are linearly independent Then there exist

-109-



EECS 227A Lecture 112 E. Polak

multiplier vectors p € R™, §t 20, y € R’ such that

V@) + 2Wf&)+ 0 v=0, (11.2.11a)
jem

W@ =0, ¥je (11.2.11b)
and the lagrangian L:R" — R defined by

Lx) 8 () +iz WPG) + z vie' () a12.110)

«m

satisfies
where

Mz 2 (ye R* 255:—))@ 0, (VF®.N=0,vVje I® ). (11.2.11¢)

Proof : Clearly, if % solves (11.2.10), it must also solve

min{ £°x) 1 f(x) =0, j € IR), gx) =0} . (112.11d)
The desired result now follows from Theorem 11.2.2. =
Exercise 112.1 : Use the fact that the problem min, max;¢ » f(x) is equivalent to the problem
R.
min{ 2° | f(x) - 2 £ 0 } to prove the following theorem:
Thereom 11.2.4 (SONC for minimax): Consider the problem

min max f, (11.2.12a)

zeR*jen

where the functions f:R"® — R are twice continuously differentiable. Suppose that % is a local minim-
izer of y(x) & max; »f(x), and that the vectors (1,VFQ), je I®) =(je m!|f®) =vyR) ). are
linearly independent. Then there exists a multiplier vector {i € E such that

i pVF®) =0, (112.12b)
=
FrE® - v@)=0,v je m, (11.2.12)

and, with the Lagrangian defined by L(x) & 2 YA (x),

2%

b2

20, Vhe M, (11.2.124d)

where

-110-



EECS 227A Lecture 11.2 E. Polak

My 8 (he RIVAD.D =0,je IR) ). (112.12f)

]
Next we develop second order sufficiency conditions. In this case there is no advantage in deal-

ing with the equality constrained case first and hence we go directly to problem Pr.
Theorem 1125 (SOSC, Py) : Consider Problem (11.2.10) and suppose that the functions
FR*" 5 R,j=0,1,..mand g:R" > R' are twice continuously differentable. Suppose that % is such
that (i) gB)=0,f®) SO for all je mand (i) the gradients Vg'), j € I together with the gra-

dients VAQR), je I® 2 ( € m!fG)=0), are linearly independent. Suppose there exist multiplier
vectors L € R™, 1 20, y € R’ such that

VPG + I WVFR) + —gﬂw 0, (11.2.13a)
jem
WP =0, ¥ je m. (11.2.13b)
and, forsome m>0
V) aza"x? L2 w2 my, ¥V ye Mg, (11.2.1%)

where L(x) is defined as in (11.2.11c) and

Ve & (ye Rt SRy 0,9/ =0 v j € IG) such that >0 ). (112.134)

Then % is a local miniminizer for (11.2.10).

Proof : To obtain a contradiction, suppose that X is not a local minimizer for (11.2.10). Then there
exists a sequence (x; Jio such that x; » % as i e with gx) =0, f(x) <0 for all j& m, and
£20) <f°G) for all i € N. We can write x; =% + §;, with lhi=1, ;> 050 that §; > 0 as i — .
Without loss of generality, we assume that k; — fiasi — o . Then we must have :

fx) -f(‘x)=8.-f<Vf"(i+sSih;).h.-)dsso. vieN,vje (0JUIR). (11.2.14a)
and

8x) =&, LMh ds=0, VieN. (11.2.14b)

Dividing (11.2.14a) - (11.2.14b) by &, and letting i — « we obtain that

VF®MHsO0 vje (0)VIR) (11.2.152)
and
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%®s_ o (11.2.15b)
ox )

Now, either & € Mz or not. If & € Mz, then there exists aj € /(%) such that ¥ > 0 and (Vf7G).B< 0.
Consequently, (11.2.13a) and (11.2.13b) yield that

0 ={V°%).h+ (VFG).h <0,
°® -}3 HAVFG) 11216
je K»
;J>o
which is clearly impossible. Hence we must assume that % € ﬁlg.

Next, we note that because g(x) =0 and pf(x) <O for all j € m, L(x) < f%x) <S°() = LR).
Hence expanding L(x) about X o second order, we obtain that

1 27, .
L(x) - L() = 8 VLR).h )+ S?L a- s)%;.a—%izﬂhi)ds <0vVie N. (11.2.17a)
Since by (11.2.13a) VLR) = 0, it follows from (11.2.17a) that
f(l - sﬁ;.@hﬁds <0, vieN. (11.2.17b)

Letting i — oo, we conclude from (11.2.17b) that

PLB)

, <0. (11.2.18)
@ ax®

Since this contradicts (11.2.13c), we see that our proof is complete. |

Exercise 1122 :  Mimick the above proof to establish the second order sufficiency conditions stated
below for minimax problems. Note that it does seem to be possible to deduce these conditions directly
from Theorem 11.2.5, above.

Thereom 11.2.4 (SOSC for minimax): Consider the problem

min max f(x), (11.2.19a)

ze R jem

where the functions £:R" — R are twice continuously differentiable. Suppose that % is such that there
exists a multiplier vector {1 € I satisfying

}':.{ FVF@ =0, (11.2.19b)
F
WFG) - w@)=0.v je m, (11.2.1%)

and, with the Lagrangian defined by L() & 3 B(2),
=
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*, agf) B2 chi?, ¥ he M;,

where ¢ > 0 and

M; & (he RRIVF®.MN=0,je (jel®DIfF>0)).

Then % is a local minimizer of w(x) 4 max; ¢ » f(x).
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12. EXACT PENALTY FUNCTIONS, SENSITIVITY AND DUALITY

We will now present three results which can be explained using the the same geometric setting:
the "f — g" diagram.
12.1 EXACT PENALTY FUNCTIONS

We begin with exact penalty functions which have rﬁany uses in optimization, and, in particular,
in the solution of equality constrained optimization problems. For further details consult Han-
Mangasarian !, Consider the problem

min{ flix) | gx)=0], (12.1.1a)

where f:R" = R and g:R" > R, with I < n are twice locally Lipschitz continuously differentiable.

Definition 12.1.1 : For any ¢ > 0, the function

£42) & fix) + ¢ max 1g/Go)! (12.1.15)
will be called an exact penalty function for the problem (12.1.1a). |

We begin with an heuristic exploration of the properties of exact penalty functions. To this end,
we suppose that [ = 1 and that % is optimal for (12.1.1a) Then, letting

Fo) 2 (’j‘))] (12.12)
we can draw F(R"), the image of R” under F(?) in R?, as shown in Fig. 12.1.1.

Suppose that the slope of the boundary of F(R") , at (f3).0), is finite. Then the line tangent to
the boundary at this point has the equation

) +ye@ =) . (12.1.3a)

where -y is the slope of the line. Since locally all of F(R") lies to one side of this line we get, to first
order terms that for some p >0,

FG) + VAR + V()80 2 fG). ¥ xe BR.p), (12.1.3b)
This leads to the conclusion that
VAR) + yVg® =0 (12.1.3¢)

must hold, i.e., that v is the Lagrange multiplier at X . Next, if ¢ > hyl, then it follows from Fig. 12.1.1
that

1 S.P. Han and O. L. Mangasarian, "Exact penalty Functions in Nonlinear Programming”, Mathematical Programming, Vol
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x::ui:'{ Rx) + clg) ) = fZ), (12.1.3d)

i.e., that there is an unconstrained, but nondifferentiable optimization problem with the same solution

point X and optimal value f{%) as (12.1.1a). In formalizing these observations, we shall need the follow-
ing result.

Lemma 12.1.1 : Let O be an nx n matrix and let G be an I X n. Then the function y'R, - R
defined by

v(E) 2 min{ G,OMIIM=1,IGh. <S¢ ) (12.14)

is continuous at 0.

Proof : Suppose that €, — 0 as i — «. Then there exist h; such that lhd =1, IGhI. <¢; and
w(e) = &;,0h) Without loss of generality, we may assume that k; —>hasi— oo, Then, by continuity,
{H = 1 and IGRL. = 0. Hence N OFS G.Q’ix} Suppose that

v® < k.. ' (12.1.53)

Then there exists an A* such that 1h*l = 1, IGA*L, = 0 and y(€) = (:*.Qh*") Now, because IGh*L, < &
for all i, we must have that y(e,) < ¢*,Qh* for all i. But, from (12.1.5a) we get, by continuity, that

Gh*.0h% < ‘_hl:l_ ;. Qh) (12.1.5b)
which contradicts the optimality of the h; for i sufficiently large. Hence our proof is complete. |

Theorem 12.1.1 : (a) Suppose that for some ¢ 20, a point X € R" satisfies gX)=0 and

X e argmin__ . f.(x). Then % is optimal for (12.1.1a).
(b) Suppose that (i) x € R" is such that g(x) = 0, and (ii) there exists a ¥ € R/ satisfying
T
V) + Qsa(f)—v -0. (12.1.62)

Then there exists a ¢ 2 0 such that for all ¢ 2 ¢, df.(x;h) 2 0 for all h € R™.

(c) Suppose that X is such that (i) g(%) = 0, (ii) for some y € R’ (12.1.6a) is satisfied, and (jii) there
exists an m > 0, such that for L(x) 2 f(x) + (v.8(®)),

(y.%’;,@» 2 miyi?, (12.1.6b)

forallysmhmatggx@y=0. Then there exists a ¢ 2 0 such that for all ¢ 2 ¢, % is also a local

17, No.3, pp. 251-270, 1979.
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miniminizer of f.(-).
Proof : (@) Since f.(x) = f{x) for all x such that g(x) = 0, this part is obvious.
(b) First note that f,(*) can be written altematively in the form

Jx)= l_n;a;{ £ +cgdx) ), (12.1.7a)

where we define g/*i(x) = -g/(x) for all j € [, Hence, since g(%) = 0, for any ¢ 2 0, we have
df.G:h) = { VRx). b+ cmax | (Vg@).mi. (12.1.7v)
Because of (12.1.6a), we have for any h € R"

VfR).H == T ¥ (VZR).A. (12.1.7c)
jel
| 6 - .
Hence, df.G:h)=0 for all h such that . h=0. Furthermore, substituting from (12.1.7c) into
(12.1.7b), we get

d.G:h) = - T WVg@).h + cmax 1VZ®).

jel

2 - T 1 1VER), h>|+cmax 1{VZR). M1

jel
2@c- Y WD max 1(VgQ®).h . (12.1.7d)

jel

Let 22 Y 1. Then we obtain that for all ¢ 22, df.(x;h) 20 forall h € R
iel

(©) Letp>0andletKe(Oeo)beacommonl.xpschuzcmstamfor%@ -3—285:% j € Lin BQ&.p).

Then given any A € R" such that lal = 1 and 1 € (0,p),

fG + th) - &) = 1 (VfR). W)+ —(h mh)

+t’£ Q1 -5, m'”J Chi63] R)ds

o
2 1 (VR + = '2 Qﬁm (12.1.8a)
Similarly, taking into account the fact that g(%) = 0,
IgG + th) 21 1 (VR )+ = (h —@hﬂ - -’5‘-:3, Vjel. (12.1.8b)
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Now let ©> Y hl, and suppose that x =% + th, with 1 € (0,9) and h € R" such that lhl =1

isl
arbitrary. Then
2 i
fG+ k) - £B) 2 1 LVfR.A+ Fealy
+ cmax 1t (VR). D+ — 2 (h iz%‘lh)l -K?, (12.1.8¢)
where X’ = K(1 + ¢). Adding and subtracting
tY W (VEQR) .+ — —i@m i (12.1.8d)

jiel Je}.

to the right hand side of (12.1.8¢c), we obtain that

16+ ) =) 2 1D + TyvEG b + & 0. TD

i€l

+lc- T maxmvyc) e £ ZED o (12.1.80)

fel 7 %32

To complete our demonstration that % is a local minimizer for fx), with ¢ 2 ¢, we must show

that there exists ate (0,P] such that f.(x + th) 2 f,X) for all t € [0'.}] and all A € R" such that lal = 1.

LR
o

Ikl = 1 and dg(x)oxk = 0. Hence, by Lemma 12.1.1, there exists an € > 0 such that (}z,if'ax—z@h) 2m?2

forall he R"suchthatlhl:landlggg)-hLSE.Thus.mpposemathe R" is such that Ihl = 1 and

Now, by assumption, there exists an m > 0 such that { k, h) 2 m, for all h € R" such that

I—%th_ <e. Then , since (V/(X) + ZWg’G) W= 0, if we set £ = m/4K, it follows from (12.1.8¢)
iel

that f.(x + th) 2 f.(x) for all ¢ € [0,7] and ¢ 2 T, as before.

Next, suppose that k € R* is such that Il = 1 and lggglhl- > &. Then there exists a t” € (0,7)

such that fmax; ¢ ; maxy 1 | (4,02’ = tmax; ¢ ; B?gGVox*1 < € for all ¢ € [0,r"]). Hence for
all t € [0.77],

max | (V¢ 1+ £ G, —F—'@;m > —max LVR).A! (12.180)

and hence, since (VAX) + Y ¢'Vg().h=0,

jel
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LG+ -f.G 2 L w TLA,, L [c - zw‘:] max | (Vg/G). A - K

27 o N -
L hILB p. Lo 5 e -
25 &, P W+ < le l_ahw]s _ (12.1.8g)

Since max Uz.ﬁa—l'xg‘lh) is finite, there exists a'f € (0,) such that £,& + th) — £,&) 2 0 for all ¢ € [071),

which completes our proof of that % is also a local miniminizer of f,(), for all ¢ 2 ¢.
This completes the proof of the theorem. |

Exercise 12.1.1 : Consider the exact penalty function f.(x) defined in (12.1.1b). Show that if x* is
such that g(x*) # 0 and dg(x*) / dx has maximum row rank, then there exists a ¢* >0 such that

0 € of.(x*) for all ¢ 2 c*. |
Exercise 12.1.2 : Consider the problem
min{ 2x) 1f(x) <0, j=12,..m, gx)=0), (12.19)

where f:R* > R, j=0,1,..,m, and g:R" - R’ are twice continuously differentiable, and I < n.
Prove the following theorem:

Theorem 12.1.2: Foranyc 20, let
fD8L D+ max { IgeN, Fx) )
jem

where f(x), 4 max({ f(x),0).

(12.1.10a)

(8) Suppose that for some ¢ 20, a point X € R* satisfies g&) = 0, F(x) <0, for all je m, and
% e arg min__ .. f(x). Then % is optimal for (12.1.9).

() Suppose that % € R" is such that (i) g®) =0, f(%) < 0, for all j € m, and (ii) there exist multiplier
vectors y € R’ and p € R™, with i 2 0, satisfying

VP& + %%T-w + Qa@zu =0, : (12.1.10b)

>4

where f= (f 2. - -+ /™7, and
WFR) =0, forj=12,..m. (12.1.10c)

Then there exists a ¢ 2 0 such that for all ¢ 2 ¢, df.(x;k) 20 for all h € R".

(¢) Suppose that X is such that (i) g&) =0 and 7(x) SO for all j€ m. (i) for some multipliers
ye R, pe R" 20, (12.1.10b,c) are satisfied, (iii) there exists a b > 0 such that
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min max (VFQR).h2 blAl, (12.1.104)
At Msj. ’G)

where Mg & (he R*1[9g(x)/ax}h=0), and (iv) there exists an m>0, such that for
Lix) & fi) + (w.g) + @

PLR)

=z N2 miyi?, (12.1.10d)
for all y such thatég.:@y=0and(Vf(i).y)=0, for all j € m such that £(X) = 0 and | > 0. Then there
exists a ¢ 2 0 such that for all ¢ 2 ¢, X is also a local miniminizer of f,(-). =

Exact penalty functions can be combined with the Minimax Algorithm 9.3.2, to produce an algo-
rithm for solving equality constrained optimization problems, of the form (12.1.1a), as follows:

Algorithm 12.1.1:  (Armijo Line Search).
Parameters: a,Be (0.1),¢,>0,8>0.
Data: x € R"

Step0: Seti=0.

Step1: Compute the multiplier vector

o [2s 2 | 20
v & - | G

Viix). (12.1.11a)

which solves the multiplier problem

. 1. ’
min IVAx) + -a—g(fiw . (12.1.11b)
ve R’ ax

Step2: Ifciy 2L, W setci=cpy.elsesetc=3), hll+8.
Step 3: Compute the search direction

hi=h(x) & arg min max max(fx) + cg'x) - £, (=)
AcRr/EM
+ (VAX).A) + ¢;{Vgi(x).h) + %A,
Rx) = cdx) - f.(x)

+ (VAx).A = ¢;{Vg(x).h) + W%lAl ), (12.1.11¢)

(where f, (x) = flx;) + max; ¢ ; Ig/(x)N), and the value of the optimality function 6 (x):

8;=6,(x) & min max max( fix) + cigx) - £.(x)

AeRjcm
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+ (Vx).B + ¢; (Vg(x).h) + Wlhl?,

fx) - eg@) - 1o (x)

+ (Vx).h = ¢ (Vglxd).h) + Yalhl? ). (12.1.11d)
Step4: Compute the step size
A= arg max ( B* I f.(x: + B*h) - £,(x) - B'o8; < 0 ). (12.1.11¢)
Step §:  Update: set
Xig1 = X; + A.'h,'. 12.1.11f)
replace i by i + 1 and go to Step 1. |

The properties of Algorithm 12.1.1 can be summarized as follows%

Theorem 12.13 : Consider problem (12.1.1a), and in addition to the assumptions stated, assume that
dg(x)/0x has full row rank for all x € R" (so that y(x) is well defined by (12.1.11a)).

() If Algorithm 12.1.1 constructs and infinite sequence { x; )3, increasing c; a finite number of times
only (at iy.i,....iy), then any accumulation point X of { x; }2o satisfies the first order optimality condi-
tion g@®) = 0, and VAR) + [9g(®)/3x)"y () = 0.

() If Algorithm 12.1.1 constructs and infinite sequence { x; }zo. increasing c; an infinite number of
times, so that ¢; — oo 85 i = oo, al iy i3,i3,..., then the subsequence { x;, Ji, at which ¢; was increased,
has no accumulation points. [ ]

Exercise 12.1.3: Modify the proofs in Mayne-Polak to construct a proof for Theorem 12.1.3. |

12.2. SENSITIVITY: EQUALITY CONSTRAINED PROBLEMS

We now turn to the second result that we were able to deduce heuristically from the f/~g diagram
in Lecture 12.1, viz., that the optimality condition multipliers are related to the sensitivity of the value
function with respect to constraint perturbations.

First we shall consider equality constrained optimization problems with parameters and we shall
show that under certain assumptions, the solutions of these problems are differentiable functions of the

parameters. Furthermore, we shall see that the multipliers associated with the solutions of parametrized
problems are, in fact the derivatives of the value function.

Thus consider the parametrized optimization problem

2 These properties can be established by adapting the proofs in: D. Q. Mayne and E. Polsk, “Feasible Directions Algorithms
for Optimization Problems with Equalitiy and Inequality Constrainis™, Mathematical Programming, Vol 11, No.l , pp 67-81,
1976.
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wb) & min{ fx) ! g(x) = b) (122.1)

where f:R" - R, g:R" = R/’ are twice continuously differentiable and dg(x)/0x has maximum row
rank for all x € R" and b € R’ is a parameter vector. The function v:R' = R will be referred to as
the value function.

The solutions of (12.2.1) obviously depend on b. We shall now show that under certain condi-
tions the solution x(b) is unique and is a differentiable function of the parameter b € R'. We shall see
that this fact depends crucially on the applicability of the implicit function theorem.

Theorem 122.1: Suppose that x(0) solves (12.2.1) for b = 0 and that second order sufficiency condi-
tions are satisfied by x(0) € R” and the corresponding multiplier w(0) € R/, viz. for

Lix.y) A1)+ wfx) . (122.23)

V.L(x(0),y(0)) = 0, (122.2v)

VL (x(0),w(0)) = g(x(0)) = 0, (12.2.2)
and there exists an m > 0 such that

0. DO 1> iy, v y e (71 2EDy o) (12220

Then (x(b),y(b)), the solution and cormresponding multiplier of (12.2.1), are diffferentiable functions of
b, in a neighborhood of b = 0.

Proof : By assumption, x(0) is a local solution of problem (12.2.1) at b=0 and wy(0) is the
carresponding multiplier (it must be unique because of the rank assumption on gg(:—)). Next, the pair
(x(b), y(b)) must satisfy the necessary conditions

V.l(xy) =0, (12.2.3a)

gx)-b =0. (12.2.3b)

This is a set of equations which has a solution (x(0),y(0),0) at b=0. By the Implicit Function
Theorem, x(b). y(b) are differentiable functions of b on a neighborhood of b =0, if the matrix H,
defined below, is nonsingular:

’L(x(0).y(0)) 9g(x(0))
o ox

1224
2O (224
ox
Suppose that z 4 (%,y) is such that Hz = 0. Then we have that
Qg%gzlf= 0, (12.2.5a)

and
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2 T_
3_4&%!!_(921;,, éa%QILV =0. (12.2.5b)

Taking the scalar product of (12.2.5b) with X, we get, because of (12.2.5a) that
= FLEO).WO) o _ o
x, Py n=0. (12.2.5¢)

T
In view of ( 12.2.24), we conclude that T= 0. Since 2 (;io» is of maximum rank, (12.2.5b) leads to

the conclusion that y = 0. Since Hz =0 is possible only for z = 0, H must be nonsingular. To com-
plete our proof we must show that x(b) not only satisfies necessary conditions of optimality, for b in a
neighborhood of b = 0, but also sufficient conditions. For this we need the following result.

For any x € R", let

N@ 2 [ye R E%%Zy= opl=1). (12.2.6)

We will show that given X 4 x(0) and any & > 0, there exists a p > 0 such that for all x € BR,p), if
y € N(x), then there exists a y € NG) such that ly — 31 < §. For suppose that this is false. Then we
must have a sequence x; — X as i — o and a comesponding sequence y; € N(x), i =0, 1, 2,..., such

that Iy, — yl 2 § for all y € NQ).

x
Now, since lyd =1, there must be a subsequence (y;};¢ x such that y; — y*. By continuity of

—a-ga%l we get that y* € NQ), which leads 1o a contradiction.

Hence, since N(x) > NX) as x— X, we obtain from (122.2d), by the continuity of
azL(x(ai)z' ) that there exists a neighborhood of 5 =0 such that

@-ﬂ’%ﬁﬂmm m2 122.7)
for all y € N(x(b)), i.e., x(b) solves (12.2). n

Since under the conditions of Theorem 12.2 x(b),y(b) are differentiable functions in a neighbor-
hood of b = 0, we find that W(b) = fx(b)) is also differentable and

»E)| _ Axb) b))

e = (12.2.8)
Now, from (12.2.3b),
Sex(d) oxb) _,_ o (12.2.9a)

ox ab
and from (12.2.3a)

-122-



EECS 227A Lecture 12.2 E. Polak

iGN L) (12.2.9b)
ox ox
Substituting from (12.2.9a), (12.2.9b) into (12.2.8), we obtain
{
20| ~-yor. (12.20)
)

We have thus proved the following result.
Theorem 12.2.2 : Under the conditions of Theorem 12.2.1, the value function w(b) is differentiable at

C0ag 2B o
b=0and S Lo- o). .

This result could have been anticipated from the diagrams which are drawn for the illustration of
exact penalty functions as shown in Fig. 12.1.1.

Exercise 122.1: Consider the problem
wb) 4 min{fix) ! g(x.b)=0) (12.1.21)
where f:R" - R, g:R"x R? — R' are all twice continuously differentiable. Develop conditions for
Wb) 10 be differentiable at b = 5 and obtain a formula for 2522, .
When inequalities are present, the situation becomes somewhat more complicated.

123. SENSITIVITY: EQUALITY AND INEQUALITY CONSTRAINED PROBLEMS
Next we shall determine the sensitivity of the value functions of a problem with both equality and
inequality constraints:
wb) = min(°(x) 1 fx) < by,8(x) = b2}, (123.0)

where fOR*5R,fR" 5> R" gR* >R’ are all twice continuously differentiable;
bye R, b,e R*and b & (b,.b).
For any b=(b.b)e R*xR , let Fb) & (xe R*Ifi)<Sb, g@)=b,) and let

B & {(b.5) e RXR'IF(b) # p). For any b € B, we shall denote by x(b) a solution of (12.3.1)
and we define

1) & (jem fb) =4 ), (12.3.23)
MGEe) 2 ) Qﬂg@ly =0, (VF(b).y) =0, j € IB)) . (12.3.2b)

For the equalities only case, (12.2.1), we saw that the solution x(b) of (12.2.1) was differentiable
atb=0if 23%@)_ had maximum row rank and second order sufficiency conditions were satisfied at
x(0). In the case of (12.3.1) we need slightly stronger conditions.

Theorem 12.3.1: Suppose that x(0) is a local solution of (12.3.1) and that
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(i) The gradients (Vg(x(0))) j e m ogether with the gradients {Vf"(x(O)],-,s 10y are linearly indepen-
dent.

(ii) For L(x.u.y) a jo(x) + @ SN+ (y,g(x)) there exist p(0) € R", w(0) € R' and an m > 0 such
that

V,L(x(0),1(0),w(0)) = 0, (12.3.3a)
WO)F(x(0) =0,V j € m. (12.3.3b)
W) >0, Vv j e 10), (12.3.3¢)
v, 32'("(0)'3‘;(20) YO > iy, v y € M(x(O)) . (12334d)

Then there exists a differentiable function x(b), together with comesponding differentiable multiplicr
functions p(b), y(b), all defined on a neighborhood of b = 0, which solves (12.3.1).

Proof : To simplify notation (which can always be obtained simply by renumbering the functions),
suppose that /(0) = k, with k S m. Let fR" — R* be defined by f(x) = fi(x) for all j € k, let fe R*
and let Lx,Ly) 2 ) + @Rx)N+ (w.g(x)). Now consider the system of equations:

V.l my) =0, (12.3.4a)
F@x) -b)=0.vje Lk (12.3.4b)
gx) =b,. (12.3.4¢c)

Let MGD) 4 qigg(ﬁ") and let F(x) = ¢ia§(f(x)). Then, by the implicit function theorem, the system
J Jj€
(12.3.4a - ¢ ) has a differentiable solution x(b), J(b), y(b), in a neighborhood of b = 0, if the matrix

PL(x(0)).50).w(0) fxO)T 3g(x(0)”
ox? ax ox
HA M(F(O))%’D- Fx(0) O . (123.44)
S2(x(O) 0 0
. ax p

is nonsingular. Since f(x(0)) = 0 for all j € /(0), we see that F(x(0)) = 0. Next, because of (12.3.2c),
M(u(0)) is nonsingular. Let z 8 (x,v,w) € RSRXR! be such that Hz = 0. Then we have

g (a"J(‘O)) u=0, (12.3.53)
Maoy LI, - o, (12350
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B’L(x@))afz(o) YO . ﬁ;ég)))’ " ag(s(f))’ w=0. (123.5¢)

Taking the scalar product of (12.3.5¢) with u, we get because of (12.3.5a, b) that

F’L(x(0).1(0).w(O)
(“r a xz u)- 0 *

Because of (12.3.3d), (12.3.5a,b) and (12.3.6) imply that u =0. Since, by assumption, the matrix

(12.3.6)

¥ T T
[ﬂ%"llﬁ%@-] has linearly independent columns, it follows from (12.3.5¢) that (v.w) = 0.

Hence, we see that H is nonsingular, and therefore the differentiable functions x(b),[x(b).y(b) exist in a
neighborhood of b = 0 and satisfy (12.3.3a - ¢). Now, since p(0) > 0 for all j € k, by continuity of
(), there exists a p; >0 such that () >0 for all BI<p,, and j€ k& Hence, from (12.3.4b),
F&®) =¥, for all j € k and 15l < p;. Next, since f(x(0)) < O for all j €k, there exists a p, € (0,p;)
such that F(x(b)) < b} for all j €k and Ibl < p,. Therefore, for all b = (by,b,) such that Ibl < p,, there
exists a continuous function x(b) solving (12.3.4a - ¢) such that

Fa®)<b, Yjem }

8(x(6)) = b, (1230
ie., x(b) € F(b) for all IHl < p,. Next, because by (12.3.4a, 4b)
V.L(x(5) (), w(b)) = O, (12.3.82)

and hence x(b), [i(b), y(b) satisfy first order conditions. Referring to (12.3.2d), it follows by continuity
that there exists a p € (0,p,) such that

. o L(x(b)éggb) (b)) M % ')"2’ vV ye Mxb) . (12.3.8b)

But this implies that for Il < @, x(b) together with p(b) = ((5),0) and y(b), satisfy second order
sufficiency conditions and hence x(b) is a local solution of (12.3.1). =

Since x(b) is differentiable at b = 0, wW(b) is differentable at b = 0 and
b))  _ ) o))

3b ., =~ b iy’ (1239
Now, because of (12.3.8a),
LA [n’(oﬂﬂ-;fcﬂ +y(r SO | 2310
From (12.3.3¢c) we have that
-aﬁ%gglli}gn =[o1n, (12.3.11a)
and from (12.3.3b) we have that
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I(b) fix(b)) - by)= 0, (123.11b)
so that
11(0)’[-9”‘—’5(—"-’1i"‘—ol —u 01] + R0y EQ _ o (123.110)
x aob ab
Substiting into (12.3.9) we finally get
| .
R = GOy (123.12)

We can summarize our findings in the form of a theorem:

Theorem 123.2 : Under the conditions of Theorem 12.3.1, the value function v(b) is differentiable at
avp) ! r
= —_— =- 1 .
b=0and == ! (1(0)1w(0))) -
124. DUALITY
The final result that we are going to obtaing from f - g type diagrams deals with duals of optimi-

zation problems. Thus, consider the parametrized problem:
P: min(fQ@)IfxsV,j=1,---mxeX), (124.1)

where the set X  R" is convex, and the functions f%:R" - R, and f:R*, j=0,1, - - - ,m, are convex
(and hence continuous ) on X — R™. We shall use the notation f = (f,... /™.

Assumption 12.4.1 : (i) There exists an xp € X such that f(xo) <O for all je m; (ii) for every
b € R™ such that the set { x | fx) £ b, x € X } is nonempty, the minimum in (12.4.1) is achieved. B

For any b € R™, we define the feasible set

F, 8 (xIfx)sb,xe X)), (12.4.2a)
and we define the set
B2 (beR"IF,=09) (12.4.2b)

Note that by Assumtion 12.4.1 (i), 0 € B.
Finally, we define the value function v,:R™ — R of the primal problem by

vp(b) = inf sup (@) + @ fx) - b)) , (12.4.3a)
and we define the value function v4-R™ — R of the dual problem by

v4b) = s ’iixfx (°x) + @ Ax) - B) . (12.4.3b)

We now proceed to show that B is convex, that v (), restricted to B, is convex, and that for
be B, v(b)= min{ f°x) 1/x) S ¥, j=0,1,--- ,m x€ X ). Then we will show that v{0) = v,(0),
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and that we can solve (12.4.1) by solving the dual problem (12.4.3b).
Lemma 12.4.1 : The set B is convex,

Proof : Let b, b, € B and let A € [0,1). By definition of B, there exist x;, x; € X such that
fx;) < by, fixy) S b,. Since the components of f{) are convex by assumption, it follows that

FOx+(Q-MNx) SME)+(1-Afx) AW+ (1-0)bh, Vjem. (12.4.4)

Since X is convex by assumption, Ax; + (1 — A)x; € X, and hence we see that Ab; + (1 -A)b, € B. B

Lemma 1242 : Suppose that b € B, then

vo(®) =min{ L) 1 f) S ¥, j=1,--- mxeX]) (124.5)
Proof : Suppose that x € X is such that f(x) > ¥ for some j € m. Then, for this x,

s )+ fx) = b)) =eo. (12.4.6a)
Hence we conclude that me must have

V)= inf sup (00) +Qufln) - )
sy

=inf(LIfx)sb. xe X ). (12.4.6b)

Since by Assumption 12.4.1 (ii), the infimum in (12.4.6b) is achieved, our proof is complete. |

Lemma 1243 : The value function v,(') is convex on B.

Proof : Let b;, b, € B be arbitrary, and let A € [0,1]. Then, making use of Lemma 12.4.2, we
obtain that

Av, (b)) + (1=A)v,(bp) = min{ A°(x;) | fix) < by.xy € X }+ min{ (1-AY°(x) | fix) S bpxy € X )
=min{ M) + (1 = A0 1 Ax;) S by, Ax) S by, %1, x2€ X )
2 min{ A%0x;) + (1 = AY0(x2) | Afxy) + (1 = A)Axp) SADy + (1 = )by, x1, xp.€ X )
2 min{ f%x) 1 fx) SAby + (1 ~ A)by, x€ X )

=v,(Ab, + (1 = A)b) , 124.7)
which shows that v,(-) is convex. ]

The remainder of our analysis will take place in R™!. We will denote vectors in R™! by
7= (2%2), where 2 € R and z € R™. As before, we define the function F:R* - R™! by
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Fx) 8 E((g] ) (12.4.8)

For m = 1 the set F(X) and its relation to B are shown in Fig. 12.4.1.
Definition 12.4.1 : The graph of v,() is the set

Fré4(zreR™zeB,2=v)). (12.4.92)
The epigraph of v,() is the set (see Fig. 12.4.2))
o 4{7e R™1ze B, "2, ). (12499

Note that T is convex because v,(°) is convex.

Next we observe that the following relation holds:

vib) = sup inf () + WA - bY)

p20zxe X
= sup ;f'}ix; EP+uz-b). | (12.4.10)
Next, let
du) 4 Jnf (°) + @)
- 3 0
= “u}fm @ +4.2), (124.11)

then we see that v40) = sup, > o d(t). The quantity d() has an important geometrical interpretation.
First, it is the value of minimizing the linear cost function z° + {1,2)on the convex set F(X). Hence, if
the minimum is achieved at the point 7*, then the hyperplane { 7€ R™" | 2% + (u,2) = d(u) } is tangent
to F(X) at 7*. Furthermore, this hyperplane intercepts the line { 7€ R™!1z=0) at the point
(d@),0), as shown in Fig. 12.4.2. It follows immediately that d() < v,(0). In fact, we will prove the
following result.

Lemma 1243 : For every b € B, v4{b) < v,(b).
Proof : Let b € B be arbitrary. Then forall x’e X and p 20,

Jnf (P + @ fD) - B) <)+ f) - b, (12.4.12a)
which leads to the conclusion that

vab) = sup inf (@) + @ fx) - B)

< sup PO+ ) -b), v xXeX. (133.4.12b)

Hence
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vib) s jnf sup (@) + @AX) - B)

= v(b) . (124129

Definition 1242 : We define the negative octant Q. by

Q 4 {7e R™17<0,j=012,..m}. (12.4.13)
Lemma 12.4.4 : suppose that 7* = (z%,b) € R™! is such that 7* € I". Then

[l‘o- (= }] nQ_= 9. (12.4.14a)
Proof : Suppose not. Then there exists a ** € I’y such that

2%*0 - 22 <0, (12.4.14b)

*¥-b<0, j=12,..m. (12.4.14¢c)

By definition of I' and Iy, %0 = vp(b) and %40 > vp(2**). Also, since z** < b, we must have that
Vp(2**) 2 v(b). Hence

2% = v, (b) > 2** 2 v,(z**) 2 v,(0) . (12.4.14c)

which is a contradiction. |

Theorem 12.4.1 : Suppose that Assumption 12.4.1 is satisfied. Then v,(0) = v£0).

Proof : Consider the point * = (v,(0),0) € I'. Then, by Lemma 124.4, T - {2* }) N Q.= Pand
both Q. and 'y — { z* } are convex. Therefore I’y ~ { Z* } and Q- can be separated, and hence so can
be their closures, i.e., there exists a nonzero vector ¥ € R™ and an o € R such that

Gm2a viel,-(7), (12.4.153)

Gmsa Vvzel , (124.15b)

where O_ denotes the closure of Q_. Since 0 € (To— { # }) N O, it follows that a= 0. Since the
R™! unit vectors —¢; € Q_, for j =0,1,2,....m, it follows from (12.4.15b) that

gD =-n<0, forj=012,...m, (12.4.16)

which shows that o 2 0 for j = 0,1,2,...,m. We shall now show that n° > 0. Suppose not. Then n°= 0
and hence (12.4.15a) yields that '

" . 3 " .
Eﬂ(i—0)=z_; w720 v7eT,. (12407

But by Assumption 12.4.1(i), there exists a b° € B such that b" < 0. Since (v,(b").b") € T, it follows
from (12.4.17) that
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3 wibi20. (12.4.18)
=

Since the » 20 for j=0,1,2,...,m, it follows that ' =0 for j=0,1,2,...,m, and hence that % =0,
which is a contradiction. Hence we must have #° > 0. We now define

V=wm j=12..m. (124.19)

Then, from (12.4.15a), we obtain that
-’-:-6(7:.?- M= §2-2%20, vTeT,. (12.4.20a)
Since 2*° = v,(0) and z* = 0, (12.4.20a) yields
L+ @120, YTeT,. (12.4.20b)

Since F(X) c Iy, it follows that
v0) = sup inf (2+u.z-b)
B207e FX)

2 sup inf 2+ @.z-b)

RZ07eT,
2 inf +{z-B)2v, 0. . : (124.21)
Te ro
In view of Lemma 12.4.3, we must therefore have that v,(0) = v£0). n

Remark 12.4.1 : Note that the above result was established without any differentiability assumptionsit

One of the ways in which duality is used is to estimate "cost-to-go” in an optimization and to use
this estimate to stop a computation. Thus, suppose that we have a "primal-dual algorithm" which con-
structs a sequence of multipliers { y; ) which are dual feasible and a sequence of points { x; } which
are primal feasible for problem (12.4.1). Then d() S v,(0) S f°(x) for all i. Hence when duality
applies, f°(x) - d(i,) is a good measure of the cost-to-go, and when it is below a threshold, computation
can be stopped.

Next, suppose that we apply an algorithm to the dual and construct a sequence { p; } which is
dual feasible. If we use the J; to construct a sequence { x; } satisfying

d@) = (F°(x) + @WSxN), (12.4.22)

then, quite likely we will have that L) < vp(0). But then the x; cannot be primal feasible. Thus, by
solving the dual, we probably approach primal feasibility in the limit. This can be a real disadvantage
in real-time operations.

Finally, consider the quadratic programming problem
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min{ 2.00 + €180 S0, j=12..m ], (12.4.23)

where Q is a positive definite n X n matrix. Let A be an m X n matrix whose ith row is a]. Then the
dual of (12.4.23a) is

sup inf (-;-o:.gxs + e+ WAD). (12.4.23b)

Since the function in (12.4.23b) is convex and differentiable in x, given p we can compute the
corresponding mimimizer x, from the optimality condition

Ox,+c+ATu=0. (12.4.24a)
Hence
x,=-0c+A). (12.4.24b)

We now compute that
xi0%, = (¢ + ATW'Q (e + AT)
=0T + 2707 AT + uTAQ'AT ; (12.4.25a)
nTAx, = uTAQ(c + ATp)
= pTAQ-lc — WTAQ-ATy; (12.4.25b)

xy=—"0lc - cT07'ATn . (12.4.25¢)
Substituting into (12.4.23b), we obtain that

40 = sup —%QJ..AQ-IATI-I) — e gATY - %(C.Q"c) } . (12.4.26)
Note that (12.4.26) is a quadratic program with simple constraints (.1 2 0), but we must compute Q™.
Exercise 12.4.1: Consider the search direction finding problem

min max { £(0) - () + VFG).A + %m’ }. (12.4.27)
AeR*/JEm

m . .
Use the Duality Theorem 12.4.1 to show that its solution A* is given by h* = — 3" u*/Vf(x), where the

£~

K¥ are any solution to the dual problem:
max | $ @) - v - TIZ WVFCN ). 12427
pel Fl 2 =

whereZ A (pe R™I W20, jem T wW=1).
=1
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13. UNCONSTRAINED OPTIMAL CONTROL

We shall now show that the optimality conditions which we have derived for finite dimensional
optimization problems have obvious extensions to optimal control problems.

13.1. FIRST ORDER EXPANSIONS OF SOLUTIONS OF DIFFERENTIAL EQUATIONS

Before we can derive optimality conditions for optimal control problems with nonlinear dynamics,
we need to develop formulae for first order expansions of solutions of ordinary differential equations.
Hence consider the differential equation

%1(1) = h(x()).u()), 1 € [0.T]. (13.L.1)

where h:R" x R™ = R" is continuously differentiable and (") is a piecewise continuous function from
[0,T] into U, a subset of R™. We shall denote by U[0,T] the set of piecewise continuous functions
from [0,7] into U, and we shall denote by x(t,xo,4) the solution of (13.1.1) corresponding to an initial
state x, and a control & € U[0,T].

It takes several applications of the Bellman-Gronwall inequality to show first that x(f.xo.u) is
Lipschitz continuous and then that it is continuously differentiable in (xo,u), in the L.[0,T] topology.
We omit the laborious proof of these facts, and content ourselves with deriving the formula for the
differential of x(t,xo,4) with respect to (8xo,5u).

First we recall that, given a Banach space X, the differential of a function f:X - R", at x € X,
is defined as the linear functional ofx;-) with the property that

lim Kx + k) - fix) — oftx:A)ll _ 0.
A0 7]

(13.1.2)

When the differential of f:X — R” exists, the directional derivative is equal to the differential, i.e.,
dftx;h) = 9fx;h), and a formula for both can be obuained from the fact that for any x. he€ X,
9f(x; k) = f(x + sh)/ds, evaluated at s = 0. Hence we proceed to find a formula for the differential of
x(t xo.u), as follows.

Proposition 13.1.1:  Let PC[0,T] denote the space of piecewise continuous functions from [0,7] into
R™. Suppose that u,5u € PC[0,T], and x,,8x € R". Let the differential of x{t.xo,u) be denoted by
&x(t.xo,u,;8x9,8u). Then
Ax(t .xq + 8xg.u + 55u) :

ds o

and &x(f,xo.u;5u) is the solution of the following linear differential equation

8x(t xg.4;8x0,04) 2

(13.1.3a)

-132-



EECS 227A Lecture 13.1 E. Polak

% 8x(t) = ah(x(r.x;;u).r:(r)) 8x) + ak(x(u;;‘u).u(l)) 8u), t € 0.1, (13.13b)

8x(0) = &x, - (13.1.3¢)
Proof : By the definition of x(t.x.u + s5u), we have that for every ¢ € [0,7]

x(1.x0 + 58%0,4 + $OK) = X + sBxo + j; h(x(t.xo + s8xg,u + s6u),u(t) + sdu(v))dr , t € [0,7] (13.14)

Taking the partial derivative of both sides of equation’ (13.1.4) with respect to s and evaluating at s = 0,
we obtain

St xo.u:8x0,5u) = Bxp + i{ Oh(x(T.xo + 8xq.u + s8u),u(t) + s8u(t)) 9x(t,xo + &xo.u + sdu)

ox os
|
, Ohixtrxo + Brou ; sBu).u(z) + s8u(t)) 5“(1)} L
‘ leo
'
P l!{alx(:r(‘t .xao;u).u(‘c)) St xo.:80) + ah(x(‘r.x;l.‘u).u(t)) 5u(t)} f. (315
The desired result now follows by inspection. .

Corollary 13.1.1 :  Let &(1,7) denote the state transition matrix of the linear system (13.1.3a), i.e,

ad(1.x) _ Oh(x(r.xo.u).u(f))
o ox

&(1,1), fort,t e [0.7], (13.1.6a)

o¢.)=1, forte [0.7]. (13.1.6b)
Then for any ¢ € [0,7],

8x(t ,xq,1;8x0,84) = ®(1,0)8x, + { & 1) ah(z(‘t.x;;u),u(t))

Su(t)dr , (13.1.6c)

i.e., ®(,0) is the jacobian of x(f,xo,u) with respect to xo and Oh(x(t,xg,u),u(t)Vou is the "jacobian” of
x(1.x9.4) with respect to u. ]

Note that the jacobian of x(¢,xo,u) with respect o xo is a matrix, since all linear operators on R"
have matrix realizations, while the "jacobian" of x(f.xo,u) with respect o u is a kernel for a linear
operation defined through integration.

132. FIRST ORDER OPTIMALITY CONDITION

Now we consider following optimal control problem
min (f°((N) | i) = h(x(t)u(0)). for t € [0.7] , x(0) = xo , w € U0.T] } , (321

where f2:R" - R and h:R" x R™ — R" are continuously differentiable, the initial state xo is given,
and U[0,T] the set of piecewise continuous functions from [0,7] into U, a subset of R™.
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Note that U[0,7T] c L. is not compact in the L. topology, and hence it is not clear whether
(13.2.1) has a solution. We now proceed to derive first order optimality conditions for problem (13.2.1)
on the assumption that it does have a solution.

Theorem 13.2.1 ( First Order Optimality Conditions ) : Suppose that & € U[0,T] is an optimal

control for (13.2.1) and %() is the corresponding optimal trajectory. Let p(-) be the solution of the
adjoint equation

T

PO =- [aha(‘.;l"‘ O] ] p(). fort€ [0.T], (13.2.22)

P = V&) . (13.2.2b)
Then for any Su such that % + sdu € U[0,T] for s € [0,55], with s, > 0,

T ~

I, ga(z).ﬂ‘ﬁ‘%i‘msu(t» & 20. (132.3)
Proof : Let Su be as above. Since %(-) is an optimal control for the problem (13.2.1),

PETxoi + Buw) - LT x8) 20,V se [Oss]. (13.2.4)
Dividing both sides of inequality (13.2.4) by s and letting s tend to 0, we obtain

VARMD)T 8x(T x0,4;5u) 2 0, (13.2.5)

where 8x(-,xo.%;5u) is defined by (13.1.2). Making use of Proposition 13.1.1, we conclude that
T a
8a(T x0,3:8) = [ O(T.1) a"(’\‘(g""(‘ ) Sutt)ds. (13.26)

where @(-,) is the state transition matrix for the linear system (13.1.3a) with u(’) = %0), ie.,

3(,1) _ ShGW.EW) g, vy for 1€ (0,17 (132.7a)

ot ox
own=1I,forte (0.T]. (132.7)
Thus, (13.2.3) follows from (13.2.4) and (13.2.6) and the fact that $(5) = OT.0TV°G()). -

Corollary 132.1 :  Suppose that U = R™, & € U[0,T] is an optimal contro} for (13.2.1) and that (")

is the corresponding optimal trajectory. Let p(*) be the solution of the adjoint equation (13.2.2a) and
(132.2b). Then for every 1 € [0.T],

T
{ah alu,ll { }3(‘) =0. (132.8)

Proof : Let
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T
83<:)=-{M;,‘,‘MQ} B0 .1e 0. 1329)

Since U = R™, & + 584 € U[0,T] for all s € R. Hence, it follows from Theorem 13.2.1 that

r "
0s [0, PERED gy,

T
=-[ Vi@ dt < 0. (13.2.10)
Thus
T
J Vs dv=0. (13.2.11)
Since 5%(") is piecewise continuous, we conclude that 5i(s) = 0 for all ¢ € [0,T]. B

133. GRADIENT METHODS
We shall now consider the special case of problem (13.2.1)

min{ f°(x(7)) | %(t) = h(x(r),u(r)), for t € [0.T] , 3(0) =x,u€ U0T]), (13.3.1a)

where f2:R” - R and h:R" x R™ — R" are continuously differentiable, the initial state x, is given,
and U[0,T] the set of piecewise continuous functions from [0,T] into R™. As before, we shall denote by
x(t.x9,u) the solution of (13.1.1) corresponding to an initial state x, and a control u € U[0,7].

First we note that problem (13.3.1a) can be rewrilten as an unconstrained problem in the space
U[0,7], as follows:

e P W . (13.3.1b)
where f:U[0,T] = R is defined by
fw) 8 LATxo0) . (13.3.1¢)

Since both f2(-) and x(T.x,,”) are differentiable, it follows that the function f{*) is differentiable,
and that, by the chain rule, its differential is given (via Corollary 13.1.1) by

fu . 8u) = VO(x(T xo,%)),8x(T . xg,1;0,5u))

T
[ a0 Ihx(x DD suiey e

T T
! ( ah(X(‘t,x;:).u(‘t)) (1. 7) V(T xo.4)),8u(2)) dt
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T
= { (VAu)(z),80) dt,

where

T
VRu@) & "’"““"‘;;j‘""“” &1,V AT x0.4))

oh ), u(0)T
- (x(t,x;:) u(1)) 20,

with p(-) the solution of the adjoint equation

T
5) = - [a"("("‘;:‘)'“('»] p(0), forte [0.7],

(D) = V(T uxg) .

If we define the scalar product in U[0,T] by

T
Wy, 8 IW(r),v(z))dt,

E. Polak

(133.2)

(13.3.3a)

(13.3.3b)

(13.3.3¢c)

(13.34)

then we see that the function Vf{u) is the function space analog of the gradient of a function from R"
into R. Furthermore, it should be clear that it is continuous with respect to the L.[0,T] norm. Hence
we get the following obvious extension of the Armijo Gradient Method 3.3.2 to the problem (13.3.1b).

Armijo Gradient Algorithm 13.3.1:
_ Parameters: a, B € (0,1).

Data: up € U[O,T).
Step0: seti=0.
Step 1: Compute the search direction
hi= k) & -VAu) .
Stop if VAx) = 0.
Step 2: Compute the step size

A=p" & argmax {B" | f; + Bh) - ) < ~Ba (VRw). VA }

Step3: Update
Xipy = X+ Miby,
replace i by i + 1 and go to step 1.

=136-

(13.3.52)

(13.3.5b)

(13.3.5¢)



EECS 227A Lecture 13.3 E. Polak

Note again that the evaluation of VA{u) in the algorithm above requires several operations: (i) the
differential equation (13.1.1) has to be solved for u = u;, from the given initial state x;; (ii) the adjoint
equation (13.3.3b), (13.3.3c) has o be solved, with u = u;, for p(t,u); and finally, VA{u) can be com-
puted using (13.3.3a), again with u = u; and p(1) = p(1,u). Similarly, each test in the Ammijo step size
rule requires the solution of the differential equation (13.1.1), from the given initial state xo, using the
control u(f) = ufr) — BEVA)).

In view of the continuity of the gradient function Vf{('), the following theorem should be obvious.
Theorem 13.3.1:

(a) The Armijo step size rule is well defined.
M) If { u; )2 is an infinite sequence constructed by Algorithm 13.3.1, then every accumulation point
& (in the L_[0,T] sense) of {u;}2, satisfies VAu) = 0. ]

Unlike the finite dimensional case, a bounded sequence of controls in U[0,7] need not have accu-

mulation points in the L.[0,T] sense. Hence the above theorem seems to be weak. Fortunately, there is

a topology, call the the relaxed controls topology in which such a sequence always has an accumulation
point, and it can be shown that the above theorem remains valid in the above topology as well.

Exercise 13.3.1 : Construct a formal extension of the Polak-Ribiere conjugate gradient method for solv-
ing the optimal control problem (13.3.1b). [ ]

13.4. LINEAR-QUADRATIC REGULATOR PROBLEM

In this section, we shall obtain analytical results for the following linear-quadratic regulator prob-
lem with time-invariant dynamics:
T

min({ ( Yalx(2), Ox(ON+ Yolu(r) Ru(1)) )dt | X(1) = Ax(t) + Bu(t) , for t € [0,T] ,

x0)=x ,u€ U0T]}, (134.1)

where U = R™, xo is given, R is a symmeltric, positive definite 2 X n matrix and Q is a symmetric,
semi-positivem X m definite matrix.

Remark 13.4.1 : It can be shown that problem (13.4.1) always has a solution. =

Assumption 134.1 : We shall assume that the pair (A.B) in (13.4.1) is completely controllable, and
that the pair (4,0%) is completely observable. ]

First, by angmenting the state variables of the linear dynamics in (13.4.1), we transform problem
(13.4.1) into a problem in form of (13.2.1):

min{ f°G&T)) | T) = GO .x(1)) .
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20) = Yx(0) Ox()+ %ul(e) Ru(r)) , for ¢ € [0,T],
x(0) = Ax(t) + Bu(s), fort € (0,77,

£0)=0,x0)=x ,s€e U0}, (13.4.2)
where /(%) = {eo.X)= xo and ¢p = (1,0, - - - ,0)" € R™.

Suppose that % € U[0,T) is an optimal control for problem (13.4.1) and that X() is the
carresponding optimal trajectory. Then, it follows from Corollary 13.2.1 that for all 1 € [0,T],

T
%R
[u(; ] R)=0. (134.3)

where fX°) satisfies following adjoint differential equation

T
0 ~
#‘P;ﬂ = -[0 ‘Tﬁ)g] P, forte [0.7], (134.42)
D =ep. (13.4.4b)

Let 5(1) = (p°00).p7()))", where p°() € R and p(t) € R*. Then equations (13.4.42) and (13.4.4b)
become

P’0=0,te (071, pP(D=1, (134.52)

B =-ATp()) - Qx()p°)) . 1€ [0.T], p(N=0. (13.4.5b)
Hence p°() = 1 for all ¢ € [0,7]. Thus, making use of (13.4.3), we obtain

u()=-R'B7p() . for 1€ [0,T] . (134.6)

Making use of (13.4.5b), (13.4.6) and the fac{ that X(-) is an optimal trajectory, we conclude that
() and p(-) satisfy following linear differential equation:

x A -BRBT||%
£bal %25 g) ereon
X0 =x., p(D=0. (13.4.7b)

Proposition 13.4.1 : If u() is the optimal control for (13.4.1) and 2(-) is the corresponding optimal
trajectory, then the following relationship holds between the optimal cost and the adjoint vector p(-) at
t=0

T

1[ ( B&(0). G+ YG() REEN)dr = ¥ (x(0),p(0)). (13.4.8a)

Proof : Making use of (13.4.7a), we observe that
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-dit PN = B3I + W)-%Q)
= = (@GOI - WO + PO.AXN - p(0).BRBTp()

= - &(0).Gx() - ©(0).BRBp(1)). (13.4.8b)

Since 4(f) = ~R~'B"p(1) and p(T) = 0 by (13.4.7b), the desired result follows. ]

We now proceed to express p(f) in terms of x(f). Let ®(¢,7) be the 2n X 2n state transition matrix
for the system (13.4.7a) and let the 2n X 2n matrix H be defined by:

A -BRBT
4 A [_ o ot ] (13.4.92)
Then we must have that
fo(z.r) = HO(x), fort € [0T]; o) =1; (13.4.9b)
2"?4»(:.1)7 =— HO@), forte [0.T]; O =1; (13.4.9¢)
t((g]db(r.x) tfg] forte [0.T]. (13.4.94)

We partition the 2n x 2n matrix &(7,¢) into four 7 X n submatrices as follows:

®,,(T.1) @::(T.r)]
BT = | @, (T.) Ou(T.0))"

Then, because of (13.4.7b), the bottom part of the equation (13.4.9d) can be rewritten as follows:

(13.4.10a)

0 = p(T) = O (T.HX(1) + ST.0p(r) , fort e [0,7]. (13.4.10b)
Assuming that ®,(7,f) is nonsingular, we find that

p(t) = Pr0)x() , ; (134.11a)
where

Pr(t) = —Oxn(T.1) @ (T.0) . (13.4.11b)

The matrix Py(r) depends upon the terminal time T, and on the matrices A, B, Q and R, but noi on the
initial state x,. In view of Proposition 13.4.1, we get the following result:

Corollary 13.4.1 : If (") is the optimal control for (13.4.1) with corresponding optimal trajectory %)
and P(r) is defined by (13.4.11b), then for all nonzero x(0) € R*
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T

0< £ ( Y8 (0), QXN + YeBi(0) RE(N )dt = ¥ &x(0),p(0)) = % &x(0).P1{0)x(0)) . (13.4.11c)

]
Before proceeding further, we will show that the matrix ®x(T¢) is nonsingular.
Lemma 13.4.1 : The matrix ®x(T,¢) is nonsingular for all 1 € [0.7].

Proof : Suppose that ®(T,) is singular at 1; € [0,7], and hence so is its transpose. Therefore there
exists a nonzero vector & € R" such that ®(T.4)E = 0. For ¢ € [1;,T], let wy(-) = On(T )E and let
wal") = ®x(T,)E. Then, making use of (13.4.9c), we obtain that

2 Qo= Gin (.o + 91 (D)

== ATw, (1) - Owx().wa(1)) = wy(1),~BR™'BTw\ (1) - Awo(r))

= @wy(0), Wy (1)) + wy(0) BR™'BTw (). © (134.12a)

Hence, because w(T) = wa(f;) = 0, we obtain that
T T
0= j T;‘i wi () W)t = j QwA0).wa()) + wy(1).BR'BTw\(t)dt , (13.4.12b)
4 h

which leads to the conclusion that {Owy(f),wx{()=0 and (w,(1),.BRBTw;(1))= 0 for all t € [1;,T). Since
R is positive definite, by assumption, we conclude that B™wy(9) = 0 for all ¢ € [1;,T]. It now follows
from (13.4.9c) that

wat) = Aw(t), wo() =0, (13.4.12)

and hence that wy(f) = O for all ¢ € [1;,T]. In particular, we must have that wx(T) = ®L(T.T)E = 0.
Since ®1(T,T) =1, it follows that & = 0 and hence we have a contradiction, which completes our prool

Next, we shall derive a matrix differential equation which Py(f) must satisfy. By differentiating
equation (13.4.11a) and making use of equations (13.4.7a) and (13.4.11a), we obtain

) = PrORO + er)é}?
= PH)3(r) + PHONA%(r) - BR'B"p(0))

= PO + PH)AX() - BRTBTPL(1)X(1)) . (134.13)

But, substituting (13.4.11a) into (13.4.7a), we find that
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() = —Q&(1) - ATPAOX() . (13.4.14)
From equations (13.4.13) and (13.4.14), we conclude that
[ﬁ,(:) + PH)A + ATP) - P,(t)BR“BTP,(:) + Q01X =0. (134.15)

Since Px(f) does not depend upon initial state, and since X(1) is a solution of the homogeneous equation

%Q = (A = BR'BTPH0)X(1) . (13.4.16)
we must have that

(1) = W(.0)xo » (134.17)

where W(1,7) is the a X a state transition matrix for the linear system (13.4.16). Substituting (13.4.17)
into (13.4.15), we obtain

[P(r) + PHO)A + ATP(0) - P{(NBRBTP() + Q1¥(1.0x,=0, Vte [0.7]. (13.4.18)

Making use of the fact that \¥(¢,0) is nonsingular and the fact that equation (13.4.18) holds for any ini-
tial state x, , we conclude that Py(’) satisfies the Riccati equation

Pr) = —Pr(DA — ATP{(1) + P)BRBTP{) - Q . (13.4.19)

with boundary condition (from (13.4.11b)) P(T) = 0. Taking the transpose of both sides of equation
(13.4.19), we obtain that both Py(¢) and P(¢)7 satisfy the same equation and the same boundary condi-
tion. It follows from the uniqueness of the solution of differential equation that Py(f) = P(1)". There-
fore P(t) is symmetric.

Thus, we have established the following result.

Theorem 13.4.1: The linear-quadratic regulator problem (13.4.1) has an unique optimal control ue)
defined by

() = -RBTPL(DX(1) . . (13.4.202)

where Py(f) is the symmetric, positive definite solution of the Riccati differential equation (13.4.19)
with boundary condition PKT) = 0, and %() is the corresponding optimal trajectory satisfying following

linear differential equation
BO - (4~ BRBTPHRO . for 1€ 0T, KO =% (13.4.200)

Lemma 13.42 : For any xo € R"and T > 0, let J(x,,7) denote the value of the problem (134.1), i.e.,
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T
J(xoT) = min{{ ( ¥ale(0), Qx(N+ Vou(O) Ru())dt 1 2(1) = Ax(e) + Bu(t) , for 1 € [0.T] ,

x0)=x,8€ U[0T] ). (134.21)
() For any xo € R* if T" > T”, then J(xo,T") 2 J(x,T");
(b) There exists an a € (0,c¢) such that J(xo.T) S alxol? for all T € (0,%).
Proof : (a) Let &'(*), 4”(") be the optimal controls and ¥'(*), ¥’(-) be the corresponding optimal trajec-
tories for (13.4.1), with T = T, T” respectively. Then

r
J(xo.T) = { (&), OX (N+ Y%E'())RE () d
T
< 1[ (% @(0).0%°()+ % @() RE"())dt
™

< 1 (% &7(0).0% (N + % @) Ru"(N)dt = J(x0.T") . (13.4.22)

(b) Since, by assumption, (A,B) is completely controllable, there exists an n x # matrix K such that the
real parts of the eigenvalues of A + BK are all less than —y < 0, so that le™ * 25 < Be™™, for some
B <. The comesponding trajectory is given by x(r) = e *88x, and the comesponding control is
given by u(f) = Kx(1) = K¢ *2Px, Since the constant feedback control law, defined by u(f) = Kx(r)
defines a feasible control for (13.4.1), we must have that

T
J(x.T) < 1 ( %M +BK)x°'QeKA +Bl)xo)+ ‘/ziKe‘“ *ano.RKe’“ ‘an&)dt

S Lo [%»101 + IKTRKT) 16 + 30324,

< P !%(IQI + IKTRKT) B2e2rds . (134.23)

Since the last integral is finite, the desired result follows. n
Theorem 134.2: (a) When T — oo, the feedback matrices P1(0), defined by (13.4.11b) converge to

a symmetric, positive definite matrix P which is a solution of the algebraic Riccati equation
~PA-ATP+PBRB™P-Q=0 (13.4.242)

(b) The matrix & = -R'B"P defines a stabilizing feedback-control law for the system
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x=Ax+Bu (13.4.24b)

(c) The state feedback control %(f) = ﬁ(t) is the optimal control for the infinite horizon linear-quadratic
regulator problem

don

min( I ( Yole (), Ox(N+ Yalu(r) Ru(r)) )dt | x(1) = Ax(t) + Bu(t) , for t € [0,40) ,

x0)=x,u€ Ull4e) } . (13.4.24c)

Proof : (a) By Lemma 13.4.2 and (13.4.11c), for any xo € R*, ( (&0 KH{0)xp) )75 is @ monotone
increasing sequence which is bounded from above. Hence the sequence { (xo,P7(0)xo) )7> 0 converges.
It also follows from Lemma 13.4.2 and (13.4.11c) that (x,Pr{0)xp< alxol? for all T>0 and all
xo € R". Hence we must have that IPH{0)I < « for all T > 0. Since the matrices P{0) € R™, it fol-
lows that the sequence { P{(0) }r» o must have accumulation points, which must all be symmetric, posi-
tive definite matrices. Suppose that P’, P”* are two accumulation points of this sequence. Then, for any
x0 € R*, because ( (. Pr{0)xp) }7>0 converges as T — oo, we must have that (xo.(P’ = P")xp) = 0.

Since the matrices P/, P” are symmetric, we conclude that P’ = P” & P, and hence that Py0) » P as
T — oo,

Since the Riccati equation (13.4.19) is time invariant, we see that for every T > 0, Pr= P(-T,0),
where P(1,0) is the solution of (13.4.19) from the initial condition P(0,0) = 0. Since Pr — ?’, a con-

stant, as T — o, we must have that P(-T,0) — 0 as ¢ — oo, It now follows from (13.4.19) that P must
satisfy (13.4.24a). '

(b) Suppose that K does not stabilize the system. Then there exists a nonzeroxo € €*and A € € with
Re(A) 2 0 such that

(A - BR'B™P)xo = Axo . (13.4.25)
Let x(r) be the solution of the linear differential equation

) = (A - BR'BPIx(r). te [04w), x(0)=x. (13.4.26)
Because of (13.4.25), x(t)=e*x,. Let x"(r) denote the complex conjugate transpose of x(z). Then, mak-
ing use of (13.4.26) and the fact that P satisfies (13.4.24a), we obtain

L OPx) = £ OPx0) + £P()

= x"()(AT - PBR'BTPx(r) + x"()P(A - BRBTP)x(s)
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== 10"2x()12 - IRZBTPx(t)Ii2 . (13.4.27)
Substituting x() = e*xq into (13.4.27), we find that
2Re(h) MNPy = MG I2y 2 _ JRAOAKR-12GTPr 2 (13.4.28)

Since Re(A) 2 0, the left hand side of (13.4.28) is non-negative. Hence 0"2xy=0 and R"'287Px, = 0.
Therefore, because of (13.2.25), Axg = Axo, and hence, since QV2x, = 0, we have obtained a contradic-
tion of the fact that (4,0'?) is completely observable.

(c¢) Let u(-) be any feasible control and let x(") be the corresponding trajectory for (13.4.24c). Then, it
follows from Corollary 13.4.1 that forany T2 0

o T

{ ( Yalx(s), Ox(+ Yolu(r) Ru(i))dr 2 !( Yatu(s), Ox())+ Ylu(e) Ru())ds

2 % (o P7(0)x). (13.4.29)

SinceP,(O)—»?as T — oo, we find that

doo

1[ ( (), Ox(O)+ Yolu(e) Ru(M)dt 2 ¥ (o, Pxo). (13.4.30)

On the other hand, making use of (13.4.24a) and the fact that 4(f) = RBTP3(s), we obtain that for any
T20

T T

! (HR(). 00N+ %A RUEN)d = { %G().(Q + PBRTBTPR(1) di

T
= - £ ( % G().P(A — BRBTP) 2(0)+ % (A - BR™'B™P) 2().P x(t)dr . (13.431)

Hence, because di()/dt = (A — BR™BTP)A(s), we find that
T

!( KG() RN+ %A@ REW))d!

T
- { (% (242(:). B+ % GG .?Zd‘i(t))) di
T d
= - { v G Prunde

= Y (o, Pxo) - % GD.P XT). (13.4.32)

Since R stabilizes the system, 3(T) —» 0 as T — . Hence, letting T — oo, we obtain that the cost

corresponding to &(-) and %(-) equals % (xo.Px), which was shown 10 be a lower bound for the optimal
cost of (13.4.24c). Therefore, (') is the optimal control for (13.4.24c).
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