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ABSTRACT

This report isa self-contained discussion ofthe application ofdifferential geometric non
linear control theory to the design ofan automatic flight control system for the YAV-8B
Hairier V/STOL aircraft The report and the work it represents are the results of a con
tinuing joint effort on the part of the Flight Dynamics and Control Branch at
NASA/Ames Research Center, Moffett Field, and the control systems research group at
the University of California - Berkeley. We consider a formal presentation of the model
follower control system used at NASA/Ames as it is applied specifically to the Harrier
aircraft We discuss the application ofsophisticated nonlinear curve fitting techniques,
namely, tensor product spline interpolation, to the multidimensional force and moment
generation process of the Harrier. We present the application ofa hybrid algorithm for
solving a system ofnonlinear equations to the crucial aircraft trim operation of the model
follower control system. Finally, we offer some preliminary results regarding the perfor
mance ofthe control system design and discuss the state ofcontinuing work.
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Chapter 1 — Introduction

This report is a self-contained discussion of the application of differential geometric nonlinear control

theory to the design ofan automatic flight control system for the YAV-8B Harrier V/STOL aircraft. The

report contains detailed presentations of the techniques and methodologies used as well as some prelim

inary results regarding the control system performance. The report and the work it represents are the

results of a continuing joint effort on the part of the Flight Dyiiaimcs and Control Branch at NASA/Ames

Research Center, Moffett Field, and the control systems research group at the University of California -

Berkeley. The goal of this joint effort is the formalization of applications of differential geometric control

theory to specific classes of nonlinear systems particularly those defined by high performance aircraft such

as the Harrier. The main contributions ofthis report to our goal are presented in Chapters 2,3, and 4.

In Chapter 2, we consider a formal presentation of the model follower control system used at Ames

by Meyer, et aL, [MSH82], [MSH83G] as it is applied specifically to the Harrier aircraft. This involves

the representation ofthe Harrier natural model state equation by asixteen-dimensional first order nonlinear

vector differential equation. Further, it includes the specification of the Harrier Brunovsky canonical

model as well as the calculation ofthe nonlinear transfonnations maps T, which takes the natural model to

the linear Brunovsky canonical model, and W, which takes the corneal back tothe natural.

In Chapter 3, we discuss the application of sophisticated nonlinear curve fitting techniques, namely,

tensor product spline interpolation, to the multidimensional force and moment generation process of the

Harrier. Data generated from the complete simulation model ofthe Harrier aircraft is used as the basis for

determining the tensor product spline model. Such apowerful modeling technique is used to accurately

represent - in the force and moment model - the cross-coupling between the aircraft controls over the full

range of control values. It is through such a technique that ahighly accurate representation ofthe Harrier

natural model is achieved and itis with such an accurate model that the calculation of the maps Tand W

are made more precise.

In Chapter 4, we present the application of a hybrid algorithm for solving a system of nonlinear

equations to the crucial aircraft trim operation ofthe model follower control system. The method is aclev

erly crafted blend of the standard Newton method for solving a system of nonlinear equations and the



method ofsteepest descent from engineering optimization theory. Use ofthe hybrid algorithm preserves

the convergence properties ofthe Newton method and results in amore accurate and robust trim operation

and, consequently, a more accurate W map.

In Chapter 5, we offer some preliminary results and conclusions regarding the performance of the

control system design. We discuss the state ofcontinuing work and offer suggestions regarding possible

future work.



CHAPTER 2 — Model Follower Control Scheme

5 2.1 Introduction

In this chapter, the model follower control system used in the application of the nonlinear control transfor

mation theory at the NASA-Ames Research Center by Meyer, eL al., to multi-input aerodynamic systems is

presented [MSH82], [HSMmi], [MSH83G], TMSH83q. The general block diagram of this automatic

flight control system is given in Figure 2.1.1. The goal ofthe model follower control system is the genera

tion of the true aircraft command inputs u which cause the aircraft response r to follow commanded r*.

The control system of Fig. 2.1.1 consists of four main sections: the natural model representation of

the aircraft; the Brunovsky canonical model representation of the aircraft; the transformation maps, T and

W; and the linear regulator. The transformation map T takes the natural model state x and control u to the

Brunovsky canonical model state y and control w. The commanded state yc is then subtracted from the

transformed state y producing the plant-to-model error ey (i.e., e,=y- ye). The linear regulator is driven

by the error e, and produces acontrol correction 8w which drives e, to zero. The adjusted control w is

transformed by map W from the Brunovsky canonical form to the natural model form, yielding the control

input u which will cause r to follow r*.

i>0: y« y X
r v;

MODEL

LAW

Vv*
T h() "

; r

r*j I

*t

"V.

w u

I
*c J «y J
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\

^ K(«, y)
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w. f( V )*TC
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Brunovsky Canonical Model Regulator TWMaps Natural Model

Figure 2.1.1 : Model Follower Control Scheme

Generation of Harrier input commands u which cause Harrier response r to follow commanded r•. Note that the regulator
never sees thenonlinear natural model All regulation is done on theBrunovsky canonical form.



In the subsequent sections ofthis chapter, the four components ofthe model follower control system

as applied to the automatic control of the YAV-8B Harrier V/STOL aircraft are discussed indetail. Where

appropriate, the general theoretical results of the Brunovsky canonical form and of the transformation of

nonlinear systems toBrunovsky canonical form are presented.

§ 12 Plant: YAV-ZB Harrier Natural Model

The YAV-8B Harrier V/STOL aircraft is represented as arigid body moving in three dimensional

space in response togravity, aerodynamics, and propulsion. The state xand control u arc defined as

with:

x.*= (2.2.1)

.m

u:= (2.Z2)

r := runway coordinates of bodycenter of mass position;

v := runway coordinates of body center of mass velocity;

C:= direction cosine matrix ofbody-fixed axes relative to runway-fixed axes;

co := body coordinates ofangular velocity relative to runway-fixed axes;

p1 := throttle position (p } )and nozzle angle (pi )("power" positions);

p := throttle rate (p f ) and nozzle rate (pf ) ("power" rates);

u := three axes moment control as issued by the pilot for deflection of the ailerons, elevator,

and rudder,

u := power control as issued by the pilot for adjustment of the nozzle angle and the throttle

position;

Notethatre R3,ve R3,©e R3,C6 SO(3),p1 e R2,p2s R2, uMe R3,andupe R2.In(2.11),there
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is an abuse ofnotation in viewing matrix Cas asub-vector ofthe complete state vector x. Note C, which

moves on the sphere SO(3), defines aircraft attitude and one possible representation for C isinterms of the

standard Euler angles ofroll (<J>), pitch (6), and yaw (y). The reader is directed to Appendix 1for a for

mal definition ofthe Euler angles. Note that Cis CBR ofAppendix 1(see equation (A.1.8)). Note also that

in Appendix 1, the coordinate frames utilized in the control design for the Harrier are given along with

explicit expressions for the transfoimation matrices which relate the coordinate frames to one another. As

a familiarity with this material is essential to the balance of this report, it isassumed that the reader will

study Appendix 1at this point

All coordinate frames used in the control design problem at hand are right-hand-rule systems with

the mutually orthogonal axes labeled as the 1-axis, 2-axis, and 3-axis. The inertial coordinate frame is

taken as the runway-fixed axes which are the conventional 1-axis as north, 2-axis as east, and 3-axis as

down (Le., the N-E-D coordinate frame). The body coordinate frame isdefined at the center ofmass ofthe

Harrier with the 1-axis directed along the line segment from cm to out the nose ofthe aircraft, the 2-axis

directed from cm to out the right wing, and the 3-axis ctoectedasmecaossprc4uaof me 1-axis umt vector

with the 2-axis unit vector dictates. By rotating the N-E-D frame through the standard Euler angles

<j>, 6,and y, thetransformation tothebody frame isachieved.

The state equation for the Harrier natural model representation is essentially asixteen-dimensional

first order nonlinear vector differential equation. The equation consists of the translational and rotational

kinematic and dynamic equations for the Harrier with mass and moments ofinertia normalized to 1:

*=• (223)

v=CTf!(x,u) +*e3 (2.2.4)

C=S(a»C (2.2.5)

co =fM(x,u) (2.2.6)

P1 =P2 (2.2.7)

P2 =g(u*) (2.2.8)
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f(x,u) := runway coordinates of the components of force acting on the aircraft as afunction

of state x and control u;

^(x.u) := body coordinates of the moments acting on the aircraft as afunction of state xand

control u;

g(o*) := asmoothed version ofup(/);

S(») := askew symmetric matrix ofthe angular velocity vector

S«o) =
0 ©(3) -<o(2)

-©(3) 0 (0(1)
.(0(2) -ko(1) 0

(2.2.9)

With the specification of the state equation, the description of the natural model is complete. A

thorough analysis of the form of equations (2.2.4) and (12.6) is given in aMcDonnell Douglas Corporation

simulation and modeling report [McD82]. It is this report which forms the basis for the simulation and

modeling code developed at Ames for the Harrier. The simulation and modeling report shows that (2.2.4)
has the form

v=Cfftv^, to, p1, a")+$e3 (2.110)

and that (12.6) has the form

r,\ — #M/©=fB (V*fl. to, p\ uM) (2.2.11)

where g is gravitational acceleration, e3 is [0,0, if, and v^ is the wind-adjusted body coordinates of air

craft velocity. That is, v^=CviWwithvMir^(v-vl,) where v„ is the runway-fixed coordinates ofwind

velocity. Figure 23.1 isadetailed block diagram ofthe natural model ofthe Harrier.

c

*• r

Figure 2.2.1 Natural Model of Hairier Aircraft
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§ 2.3 Brunovsky Canonical Model

In this section, the Brunovsky canonical representation ofthe Harrier model is presented. First, the

basic concept of the Brunovsky form is introduced and the typical characterization as strings of integrators

is given [Ford83], [DeLuc87]. Then, these concepts are specialized to the Harrier model to provide acom

plete description of the canonical model ofFigure 2.1.1.

The Brunovsky canonical form is arealization ofacontrollable linear system given by

where:

A,=

y = Ay + Bw, yeR\weR"

A =block diagonal [Alt..., AJ

B= block diagonal [Blt..., Bm]

;b,=

0 1 0

0 0 1

• •
. o"
. 0

0 0 0

00 0.

• '
1

0 (***)

i = 1,..., m.

<**i)

(2.3.1)

The integers k, fori=l mare the orders of blocks A,and are called the Kronecker indices ofthe

system (in the literature, the term "controllability indices" is often used as well). Note that £k, =nand
i=l

that we order the k, by the rule Kj £k2£. . .£k^. Note also that

rank [B,AB,..., A^B] = n

as required by controllability.

For the characterization of the Brunovsky canonical form as mdecoupled strings or channels of

integrators, consider the following partition ofthe state vector y:

where st = 2Ky
y-t

y= ly, .. .ySi Iy,i +1.. .ySt \ ... | y^^ . ,,yjT (132)
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Note that for i =1,.... m and for j =1,...,sm.

>7 = Wi j=Si (2.3.3)

Thus, it is apparent from (2.3.2) and (2.3.3) that the Brunovsky canonical form yields mstrings or channels

of integrators decoupled from each other where string i is k, integrators long with w, as input to the first

integrator, y^ as output of the first integrator/input to the second integrator yA ^ as output of the m-th

integrator of the string (see Figure 2.3.1).

s< -i '•<-i«

ithFigure 2.3.1 itn string of i^ integrators where represents an integrator,

The following example illustrates the Brunovsky canonical form (see Figure 23.2).

EXAMPLE (23.1);

y e R6; w e R3

Ki=3,K2=2,andK3=l

note Kj £ k2£ k3and Kj + k2+ k3=6 =n

Si = 3, j2=5, andj3 =6

y=

0 I 00 0 0

0 0 10 00

00 00 0 0

0 0 0010

0 0 0000

0 0 0 0 0 0

b o o"
000

y+
1 00

000

0 1 0

0 0 1

w



Harrier Brunovsky Model

The Brunovsky canonical model for the Harrier is illustrated in Figure 2.3.3. Note that

n=16, m = 5,

K,=K2 = K3 = 4,1C4 = K5 = 2

*i=4,j2 =8,53= 12,j4= 14,

and s5 = 16.

w
1

w
2

w
3

string 1

string 2

string 3

Figure 2.3.2 Brunovsky Canonical form for Example (2.3.1

w,

r12 11 10

14 13

16 15

)

(1) longitudinal channel

(2) lateral channel

(3) vertical channel

(4) yaw channel

(5) pitch/nozzle channel

«?Xgs2^!„te«!^LBrUn°VSky ^"O"""1 «°0«1 "predated as five decoupled

The following are the characterizations of the 5channels of integrators ofthe model:

Channel (1):

Corresponds to the runway-fixed 1-axis component of position (y,), velocity (yj), acceleration (y3),

acceleration rate (y4), and rate ofacceleration rate (w,);

Channel (2):

Corresponds to the runway-fixed 2-axis component ofposition (y5), velocity (y^, acceleration (y7),

acceleration rate (y 8), and rate ofacceleration rate (w£;
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Channel(3):

Corresponds to the runway-fixed 3-axis component of position (y9), velocity (y10), acceleration

(y n), acceleration rate (y 12), and rate of acceleration rate (w3);

Channel (4):

Corresponds to the yaw angle (y 13), the yaw angle rate (y 14), and the yaw angle acceleration (w4);

Channel (5):

Corresponds to the pitch angle or the nozzle angle (y^), the pitch angle rate or nozzle angle rate

(y 16), and the pitch angle acceleration or nozzle angle acceleration (ws). So, this channel is either a

pitch channel or a nozzle channel. Tliis isaconsequence of the convention that for the Harrier that

either pitch is commanded or nozzle is commanded. This will be clarified in the discussion of

transformations T and W.

Model Law Generation

In Fig. 2.1.1, the model law generation system is shown as asubsystem ofthe Brunovsky canonical

form block. The model law block requires an initial condition for the Brunovsky state and control (r° in

Fig. 2.1.1) as well as an endpoint condition on the Brunovsky state and control ( r* in Fig. 2.1.1) along with

initial and final time values and generates polynomial expansions in time t of the time history trajectories

for each of the channels ofthe Brunovsky form. The model law generation algorithm is summarized as

follows. The given data is f.,f/,y(O.w(O.y0y),andw(r/). A function s(t)=yi(t) is defined for

1-1,5,9,13,15. For 1=1,5,9, s(t) =2*%/\ Differentiate s(t) four times and apply the initial and

final conditions to yield asystem of ten linearly independent equations in ten unknowns, a0talt ta9.

The time history ofchannels 1, 2, and 3 is completely specified by solving for a0t alt..., a9 for each
5

channel. Fori =13,15, j(f)= 2>,f'. Differentiate s(t)twice and apply the initial and final conditions to

yield asystem ofsix linearly independent equations in six unknowns, a0t alt..., a5. The time time his

tory ofchannels 4and 5is completely specified by solving for a0, alt..., a5for each channel.
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Thus, out ofthe model law generation pops the canonical control wand the canonical state y for all

values of time in the given time interval (t0t tf).

§2.4 Transformation Maps, T andW

In this section, the transformation of multi-input nonlinear systems of the form

i =f(x,u)+2gi(x)%
•-1

(2.4.1)

to the linear Brunovsky canonical form is considered. The transformation oflinear systems to Brunovsky

canonical form is illustrated by way of an example. The necessary and sufficient conditions for the

existence of atransformation for the general nonlinear case are then considered and ademonstrative exam

ple is given. Lasdy, the transformation ofthe Harrier natural model to its Brunovsky canonical model is

discussed (i.e., the T and W maps ofFig. 2.1.1 are formalized).

Any constant linear controllable system can be transformed to Brunovsky canonical form. That is,

for the linear system

x = Ax + Bu

with (A, B)controllable, there exists a nonsingular transformation matrix T such that

w
= T

X

u
. . . .

y = Ay + Bw

(2.4.2)

(2.43)

(2.4.4)

where (A, B) are in Brunovsky form. Consider the following example ofasystem ofthe form (2.4.2):

EXAMPLE (2.4.1):

rank [B I AB I A2B] = rank

x =

"1.0 2.0 3.0" "0 0 '
-0.5 -1.0 -1.5 x + 1.0 -3.0

. ° ° ° . .° 2-°.
(2.4.5)

0 0 2.0 0 0 0

1.0 -3.0 -1.0 0 0 0

0 2.0 0 0 0 0

= 3 = n therefore, (A, B) in (2.4.5) controllable;
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for T :=block diagonal \JltTJ =

T"1 := block diagonal &{\ Tj1] =

10 0 0 0

12 3 0 0

0 0 10 0

0 0 0 0 5 0

0 0 0 0 0.5

10 0 0 0

-0.5 0.5 -1.5 0 0

0 0 10 0

0 0 0 2.0 0

0 0 0 0 2.0

A =T1AT1-1 =
0 1 0

0 00

0 00

; BsTxBTjs:
0 0

1 0

0 1

and, therefore, yt=xu y2=*i+2r2+3x3, y3=x3, w^O.51*,, w1^Q5u2, andy =Ay+Bw.

Necessary and Sufficient Conditions for Existence ofLinearizing Transformations

The transformation ofanonlinear system described by

x =F(x,u) (2.4.6)

into aBrunovsky form is not, in general, possible. From aheuristic point of view, when the system (2.4.6)

can be linearized (i.e., transformed to the Brunovsky canonical form under amapping T(x, u)), the non-

linearities of (2.4.6) are said to be non-mtrinsic; that is, they are the unfortunate result of amodeling

scheme which tailed to recognize the inherent linear nature ofthe system.

There are four conditions to check for (2.4.6) to be linearizable. First, itis necessary to construct a

one-to-one, invertible function h soas to define a new control variable u such that

u^fou)

u = h(x,u)

(2.4.7)

(2.4.8)
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and

F(x, h(x, u)) =f(x) + 2g,(xM' (2.4.9)
i=l

The interpretation of (2.4.9) is that the new control variable u enters linearly into the field F(x, h(x, u)).

The remaining three conditions, the so-called Hunt-Su renditions, follow ftom results in differential

geometryand are best given in termsof Lie bracketsdefinedas follows.

Iffand gare C" vector fields on R\ the lie bracket offand gis

and the following relationships are defined recursively:

(ort,g) =g

(art, *)-Kg]

(art, g) = [f,rf,g]]

(aa-*f,g) =[f,(arf*-1f^)].

For an application of the Lie bracket, note that the involutivity ofa set ofvector fields is verified

using the Lie bracket AsetofC" vector fields h^hj,..., h,on R" is said to be involutive ifthere exist

C" functions yiJk with

r

IMy] = EYyjfchk, 1£i,y £r,i *j (2.4.11)
*=i

To consider the transformation of (2.4.9) to the Brunovsky canonical form with Kronecker indices

kx £ k2>... £ k„ , define the following sets:
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C«|gi.[f.g,] (^K,_1f.gi),g2,[f.g2],...,(a(/Kk-lf,g2) g^Jf, gj,..., (ad«--\gm)

>j =|*i. ff. ft]. •••. WXr2** ft), g2.tf.gd (ad* "2f, g2),..., gm. [f, gj. .(o^'-^gj k

for

y = l,2,...,m.

Define the set X qKh to consist ofall n-tuples for which fand gare defined. An n-tuple xe X is said to

be admissable. TTien itcan be shown [HSMmi] that the transformation is possible if and only ifat each

admissable x,

1. The set C spans ann-dimensional space;

2. Each Cj isinvolutivefory = 1,2,..., m;

3. The span ofCy equals the span ofCyplC fory =1,2,..., m.

For alinear system ofthe form (2.4.2), the spanning condition (1) on C is exactly the controllability condi

tion and conditions (2) and (3) are satisified immediately.

Consider the following illustrative example [HSMmi]:

EXAMPLE (2.4.2):

*i

*2

*3

i4

*5

sinOcjj)

sin(r3)

r3

xs+xl-x}°

0 b"
0 0

+ 1 "1 + 0

0 i

0 0

"2

thusx =f+g1u1 +g2u2. Malting menecessary computations, itisclear that

[f.ft] =

' 0 cos(x2)cos(x3)' 0
-cosCc^ 0 0

0 , (ort,g,) = 0 . [f,gj = 0

0 0 1

0 0 0

hence, C=jgi,[f,g1],(art,g1),g2, [f.gj y spans a 5-dimensional space on the set
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V"\ (xi.x2.JC3.X4.*5): — <*2.x3<t [• The appropriate Kronecker indices in this case are kx =3

and k2 =2. Note that Ĉ C =\ g„ [',&], g2, [f^J L involutive since

[gi.[f*,]] =

' 0

sm(x3)

0

0

0

and all other lie brackets vanish, and C,nC =jglt g2 lis trivially involutive. Therefore, there exists a
transformation which maps the original nonlinear system to the appropriate Brunovsky canonical form.

General Comments Regarding Linearization

Itcan be shown that the construction ofthe transformation map T is equivalent to the solution of an

over-determined system of partial differential equations [HSMmi]. This system ofpartial differential equa-

tions foils out of the proof for the existence of linearizmg traiisfonnations for systems s

zation conditions. However, the control system designer who hopes to construct the transformation Tby a

precise application of the theory feces one serious limitation: for aircraft with complicated nonlinear

dynamics, the functions fand gof (2.4.9) typically do not have smooth, analytic forms. As is the case with

the Harrier, all that the designer has to work with is ahighly det^ed simulation model based on relation

ships represented by look-up tables generated from three sources of increasing accuracy: (i) computer-

aided aircraft design results; (ii) wind tunnel test results bom on smaU-scale and t

flight test results. It is not possible, then, to check the Hunt-Su linearization conditions and, consequemly,

determine the precise transformation T. Thus, the control system designer needs to be led by sound

engineering judgement in applying and developing an approximation to the true transformation theory. In

[MSH82], [MSH83G], and [MSH83C], such was the approach taken for the design of a heUcopter

automatic pilot This approach isspecialized tothe Harrier inthe remainder ofthis section.
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Note that for systems which can be accurately modeled by smooth, analytic functions, computer pro

grams written in MACSYMA do exist which perform, symbolically, the necessary computations needed to

verify the Hunt-Su conditions [Blank]. Also, at UC-Berkeley, a similar program is under development

[TeelMS] with the hope ofdevising a means for approximately verifying Hunt-Su-like conditions via cal

culations done on asophisticated and highly accurate smooth nonlinear model of the plant dynamics (e.g.,

tensor product spline functions asdiscussed inChapter 3ofthis report).

The approximation method used in the application ofthe transformation theory is based on the fol

lowing premise: given acommanded trajectory (ie., given r* and r* of Fig. 2.1.1 and the resulting trajec

tories generated by the Model Law block of Fig. 2.1.1), and the corresponding normalized forces and

moments acting on the aircraft (vand <o, respectively, ofFig. 2.2.1), we are able to -- under a reasonable

set of assumptions -- invert the force and moment equations thus solving for the time history of the aircraft

natural controls which will generate the commanded state trajectories. In this regard, the selected forces

and moments calculated in the inversion process are interpreted as new independent controls for the sys

tem. Recasting the state equations in terms ofthese new controls yields aset ofequations which are inter

preted as me standard trim equations for aircraft Recalling that we have normalized mass

and the moments ofthe inertia of the aircraft tounity, we define the term trim to mean a balance between

desired accelerations and the actual forces and moments acting on the aircraft and we define those equa

tions used to strike this balance the trim equations. Further, we define the commanded forces and

moments to be the trim conditions and the corresponding controls (solved for in the trim process) the

trimvariables. Approximate T and W maps can then constructed.

Harrier Trim Equations andTW Maps

Consider equations (2.2.10) and (22.11). Six trim conditions (three components offorce and three

moments) can be commanded. Eight quantities are free to be specified in such a way as to achieve the trim

conditions: the five control conditions (taken as the moment controls uM and the power positions p1) and

the aircraft attitude (as specified by the three Euler angles represented by the direction cosine matrix C) are

taken as the trim variables where the values of these variables are to be such that they achieve the
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commanded forces and moments. To achieve a square system (i.e, same number of trim conditions as trim

variables), two additional trim conditions need to be specified. The convention for assigning the additional

trim conditions has resulted in two distinct modes ofoperation for the Harrier: the nozzle free mode called

Mode 1and the nozzle commanded mode called Mode 2. Mode 1leads to an eight degree-of-freedom trim

while Mode 2 results in a seven degree-of-freedom trim. Refering to the Brunovsky canonical model for

the Harrier (see Fig. 2.3.3), Mode 1 corresponds to the fifth channel as a pitch channel while Mode 2

corresponds to the nozzle channel interpretation of channel (5).

Mode 1 operation, the nozzle free mode, is characterized by the specification ofcommanded pitch

angle, 9C(0, and commanded yaw angle, \\tc(t), as well as commanded moments, coc(r), and commanded

forces, \c (t). The nozzle angle p\ is free to be used in the trim process along with uM, C, and p}. Thus,

there are eight trim variables and eight trim conditions for an eight degree-of-freedom trim.

Mode 2 operation, the nozzle commanded mode, ischaracterized by the specification ofcommanded

nozzle angle, T|c(/), and commanded yaw angle, \\re(t) as well as commanded moments, coc(/), and forces,

vc(0- The nozzle angle p\ is commanded and, therefore, is not available as a trim variable. That is*, over

the time interval of interest, p\(t) is known. Thus, the trim operation becomes a seven degree-of-freedom

trim of the moments control, the throttle position, and the attitude. Attention is restricted to Mode 2opera

tion of theHarrier for thebalance of thereport

As motivation for determining a new independent control variable as in (2.4.7), so as to facilitate

the required trim operation, consider two special cases of commanded nozzle angle: (i) T|c(r) =90° for all t

and (ii) t\c(t) = 0° for all t. Define

u =

pi"
"2 CO

U3
•—

v.

*4

(2.4.12)

where v. is vB3 for case (i) and v. is vB>1 for case (ii). In either case, (2.2.11) is invertible with respect to

the pair [(tf,, u2, u3), uM]; that is, for specified normalized moments ci), (2.2.11) can be inverted to solve

for the moment controls uM. Recalling \hatp} is the throttle position, we note that in either case, (2.2.10)
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is invertible with respect to the pair [4\p}}. That is, for case (i), (2.2.10) is invertible with respect to the

pair [vB<3,p j] (where vfl3 is the body 3-axis component of translational acceleration) while for case (ii) it

is invertible with repsect to the pair [vBA,p\) (where vBl is the body 1-axis component of translational

acceleration).

Observe that in both (i) and (ii), v. is in the direction of the nozzle 1-axis. This suggests that in the

general case v. is vNA% the nozzle 1-axis of acceleration. Therefore, in the general case, (2.2.10) expressed

in nozzle coordinates is invertible with respect to the pair [vNtl,p}]. Thus the specification of ii is com

plete with u4 taken to be vNA and a function h1: R3 x R3 x R4 -» R4 can be constructed such that

ir*

Pf
-hi.= h\vAB,co,ii) (2.4.13)

With uas the new vector of independent controls, the state equation (2.2.4), expressed in the nozzle

coordinate frame, becomes

VAU="4 (2.4.14)

Vtf.2

= fN(VA*) + efN(VAB.CM) (2.4.15)

where e=1and #, representing parasitic effects, is such that f&v^ ,0,0) =0. In (2.4.15) we know vNa

and vNj and we also know \j/ and v^. Therefore, a function h2: R3 xR2 xSO (2) -> SO (3) can be con

structed so that theaircraft attitude given by

Cc =h2(v^, E^tUv^, E3*(¥c)) (2.4.16)

results in the commanded acceleration, v(Ar)c. Note that Cc is the aircraft attitude which is used to calculate

yAB from v^; vu, is then used in f,$ of(2.4.15) to yield the commanded nozzle axes accelerations.

Equations (2.4.13) and (2.4.16) are the trim equations for the aircraft without the parasitic effects

(i.e, £=0in (2.3.15)). That is, for a given motion [r(r), \|/(/), T\(t)], t >0and corresponding commanded

moments and forces, the trim andcontrols arecomputed as follows:

re=r(0 (2.4.17)
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vc=r(r)

Cc =h2(V(Ai?)c, E^iUvtAOc, Ef(ve(0))

a>e=*(Ce(OCer(D)

flfc-W1.tf2.tf3]1

Pi1
-hi=n(CeVc«)c.«)c.«)

(14.18)

(2.4.19)

(2.4.20)

(2.421)

(2.422)

where the function q(>) extracts co from S(co) =CCr. The time derivatives required in the above calcula-

tions are computable because of the selection of the Brunovsky canonical model for the Harrier (see Fig

2.3.3) and the model law generation process as described atthe end of section 2.3.

The transformation which changes the natural representation ofthe Harrier to the Brunovsky canoni

cal representation is afollows. The coordinate change T(x) is given by the following equations:

[yi.V5.y9]r =r

b'2.3'6.3'i.o]7, =v

&s. >7. Jii.y^ =\!Aia.f8i ,/^)CBNrCRBr, Ef(V)f

l7_r/ 3bu. y8. y* yuf=K^ctB<WvjirIi./ju /^fcof, cij1

[yi5.>i6]7, =[E2,(e),cb2]7,

The control variable change, a=W(y, w), isgiven in two steps:

Step 1: determine co and vNlby

*>=(•^•CRBCBN(vw,1,/JV0>1 ./^rVi.w2, wj7"

vau =(Cm, Cm [y 3. y7. >nlT)i

Step 2: calculate uM and p } by

.M"

Pi

= hl= h1(viU|fa),fl).

(Z423)

(2.424)

(2.425)

(2.426)

(2.4.27)

(2.428)

(2.4.29)

(2.4.30)
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Note that the effects of the various approximations made in the contraction of these transformations are

relegated to the regulator.

§2.5 linear Regulator, K^e^Wo)

As the details ofthe regulator block ofFig. 2.1.1 for the Harrier control system design are quite simi

lar to those for the heUcopter control system design considered in [MSH82], [HSMmi], [MSH83G], and

[MSH83C] and as these details add little useful background supporting the balance ofthe report, they are

omitted.

The general contraction of the regulator follows that of the decoupled strings of the Brunovsky

canonical form. That is, the error in each channel of the Brunovsky form of the Harrier is regulated

independently. For each channel, the commanded canonical states are compared with the current estimates

as computed from the T-map given by (2.423) through (1427). The sum ofthese state errors, appropri

ately weighted, is taken as the correction term for the Brunovsky control variable for that channel. In this

way, the total regulator output 5w is constructed and added to the open-loop command wc, resulting in the

total canonical control w(see Kg. 2.1.1). TTie control wis then transformed by means ofthe W-map given

by (2.4.28) through (2.4.30) into the natural control uwhich, in turn, drives the actual plant
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CHAFTER 3— Nonlinear Modeling ofForce and Moment Equations

§ 3.1 Introduction

In this chapter, the techniques used todetermine asmooth nonlinear model of the Harrier simulation model

are presented. The force and moment equations (Le., (2.2.10) and (22.11)) are modeled as four dimen

sional tensor product spline functions ofthe roll, pitch, yaw commands, and throttle position, parameter

ized by wind-adjusted body coordinates oftranslational velocity, body coordinates of angular velocity, and

nozzle angle. That is, for nominal values ofv^, co, and/tj, (22.10), expressed inthe nozzle coordinate

frame, is interpolated with a three dimensional vector of tensor product spline functions denoted by

me (u ,pj) and (22.11) is interpolated with athree dimensional vector oftensor spline product functions

denoted by mfOi1*, p}). Each of the six tensor product spline functions is afour dimensional interpolant

of spline order three (i.e., polynomial order two) ineach dimension.

In the subsequent sections ofthis chapter, the theory ofspline representations ofpiecewise polyno

mial functions as well as the application of this theory to the approximation of functions of several vari

ables via tensor products is discussed. The software which implements the tensor product function model

ing is then discussed and the modeling of (22.10) and (22.11) is presented in detail along with acompara

tiveviewof thistensor product spline model to the full simulation model.

§ 3.2 Tensor Product Spline Functions

Before presenting the formal definition of tensor product spline functions, several fundamental

notions need tobe introduced [deBr78],[deBr79].

Spline functions are representations of piecewise polynomial functions by linear combinations of

basis spline functions. For the formal definition of a piecewise polynomial (pp) function, consider the

stricdy increasing finite sequence of points £:= (C,){+1 c R and let ke N. If pltp2,... ,P/ is any

sequence of/ polynomials, each oforder k (i.e., degree £*-l), then apiecewise polynomial (pp) function

/ oforder k isany possibly discontinuous function or efined by

f(x):=Pi(x) if &<*<&+!, x=l,2,...,/. (32.1)
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The &are called breakpoints and often the function / isextended such that

_JPi(x) if x£,i
fix)=\Pi(x)ifC,MSx

EXAMPLE (32.1) - discontinuous pp function

/ =3,* =4,c>(0,1.0,5.0,10.0),p1=x3-hr-^,p2=x2-2,andp3 =3x+l,so

/(*) =

X3+X46 0<x<l

x2-2 l<x<5
3x+l 5<x<10

(3.2.2)

Note that p1(l)^p2(l) and pA5)*P*(S), so f(x) is not continuous at x =l and x =5.

C

EXAMPLE (32.2) - continuous pp function

/=4,A=3,C =(0,1.0,2.0,3.0,4.0),p1=x2+x-6,p2=x2-5x,p3 =-3x,andp4=x2-18,so

/(*) =

x2+x-6 0<x<l

x2-5x l<x<2
-3x 2<x<3

x2-18 3<x<4

Note that p,(l)=p2(l), p2(2)=p3(2), and p3(3)=p4(3), so f(x) is continuous.

Note that the linear space of pp functions of order kwith breakpoint sequence £is denoted by P,^. The

linear subspace of P^ consisting ofthose elements which satisfy continuity conditions specified by the

finite nonnegative integer sequence v is denoted by P,^. Note that the i* element ofthe sequence v is

the required continuity condition at &. For/ e PttC<v, v, =/ means that at breakpoint C,,/^"" is con

tinuous forn - 1,..., j.

For the definition of the k"1 divided difference of app function / at the points x,, xi+1,..., xi+k,

consider the polynomial p oforder k+1which agrees with / at the points xit xi+1,..., xJ+Jk. The word

"agrees" in the above definition has the following interpretation: for the finite sequence of points

x- *i. *i+i. •••. xi+Jt, the polynomial p issaid to agree with function / on these points if there isnti-fold
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agreement at each of the points x, , where m, is the number of times the number x, appears in the finite

sequence x andwhere rn^fold agreement at x, isgiven by thecondition

Pu~l\*i) =/°'-1)(Ti) for j =1,..., mf, (32.3)

The k* divided difference of f at points x^x,-^ xl+t is the leading coefficient of p (i.e., the

coefficient ofx*) and isdenoted by

h.W--.rt.*lf. (32.4)

EXAMPLE (32.3) - divided difference calculation

Consider the piecewise polynomial f(x) from EXAMPLE (3.2.1) and let i =1, k=2, X! =(2.0)172, and

x2 =x3 =6.0 so that/(x1) =0,/(x2)=19, and/(1)(X2) =3. Denote p(x) by p(x) =a2x2+alx+a0. The

second divided difference of/ atthe points xlt x2, x3 isfound by solving

"4 2 12' a2 0'
16 6 1 a\ = 19

12 1 0
a°.

3.

for fl2,fli,a0- Doing so yields a2 =-03684 and, clearly, [1,2,21/=a2.

Consider next a nondecreasing sequence t ofreal numbers. For the following definition, t is said to

be the knot sequence. The Ith (normalized) basis spline or B-spline of order k for knot sequence t is

denoted by BiJtJ (often shortened toBt) and isdefined by the rale

BitAx) := (t^ - ti)[tit..., t^](t -x)*-1

for allxeR. Note that (t - x)+ isthe notation for function truncation. That is,

(/ -x)+ := max(0,t-x).

(3.2.5)

(3.2.6)

Thus, ith order B-splines are viewed as appropriately scaled i* divided differences of the truncated power
function.

EXAMPLE (32.4) - B-spline calculation

Let* =3,i =1, fi=1, f2 =2, f3 =3, f4 =4so that the 1* normalized B-spline for knot sequence t=(tj)f



24

is

*i2.t(x) = (U- fi)fri. t2> *3, tj(t -x)l

For x = 2, we determine

^u.r(2) = (3)[l,2,3,4](r-x)2-

To do so, denote (f-x)2 by /(*) and let p(t) denote p(t) =a3t3+a2t2+a1t+a0. Observe that

/(^i)=/(^2) =0,/(r3)= 1, and/(*4)=4. Evaluatingp(0 at fi,*2»'3.*4 yields the following system of

linear algebraic equations ina3,a2.aua0

1 111" *3 o"
8 4 2 1 a2 0

27 9 3 1 a\
—

1

64 16 4 1 a0 4
L • -

Solving the system of equations yields a3 =0.08U and, therefore, [1,2,3,4](/ -2)2=0.0811. Thus,

*ia»(2)- (3X0.0811) =02342. Making this calculation tor all xe R specifies £1(3tf(x).

Every space P^v has a basis consisting of such B-splines. The Curry-Schoenberg theorem gives

conditions on the knot sequence t in terms of the breakpoint sequence £ and the continuity condition

sequence v which guarantee the existence ofn B-splines oforder k for knot sequence t which form a basis

for the n-dimensional space P^y*

Curry - SchoenbergTheorem:

For a given strictiy increasing sequence £:=(CI)/+1 and a given non-negative integer sequence

v :=(Vi)l with v, £ k for all i, set

n :=* + £(* -v4)=*/- 2V« =^*wPk,c,v
i=2 i=2

and let t := (/,)" +*be any nondecreasing sequence so that

(i)r1^r2^...^rJk^1andCi+,^^+1<:...^rB+Jt;

(ii) fori =2,...,/, the number &occurs exactly k - Vj times int

(3.2.7)
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Then, the sequence B^^B^,... ,BHjCtt ofB-splines oforder k for the knot sequence t isabasis

for P,^ ontheinterval [tkt tH +J.

Comments

•Note that the dimensionality ofP^y isspecified in terms ofit and v.

•Note also that the number ofcontinuity conditions at breakpoint £• plus the number ofknots placed at C,

must equal*, the B-spline order, dearly, then, fewer knots at abreakpoint corresponds to greater smooth

nessthere(i.e., morecontinuity).

•The finite sequence v is extended to include endpoint continuity conditions fy and v/+I) which are identi

cally zero. This is consistent with the fact that the B-spline basis provides avalid representation for ele

ments of P^v only onthe interval [t^^].

Aspline function oforder k with knot sequence t is any linear combination ofB-splines oforder k

for knot sequence t. The collection ofall such functions is denoted by $Afl. In symbols,

$*.» J= *fe <*iBijv Ict,- e Rfor all i e IN k (32.8)

The B-representation for function / e P^^ is aspline function representation for/ which consists of

(i) the integers k and n, respectively giving the order of/ (as apiecewise polynomial function) and
j+i

the number of linear parameters (i.e., n=kl - 2X =dimTkJitV where Vj =v/+1 =0 meaning no
i'=0

continuity conditions at theendpoints);

(ii) the sequence t=(*,),""** containing the knots (possibly partiaUy coincident and constructed from

Cand v as in the Curry-Schoenberg theorem) in increasing order,

(iii) the vector a=(a,)," of coefficients of/ with respect to the B-splines basis (B£)," for P^tV on
knot sequence t.

The B-representation for / (•) is denoted by m(•). Thus, the value of/ at apoint x e [/^n+1] as given by

its B-representation is

A

»(*)=ZMi(*). (32.9)
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The <% are determined from the n linearly independent equations which result from knowledge ofthe value

of/ at n distinct values of x. That is, given a set ofn distinct data points for /, (32.9) generates n

linearly independent equations in the a,- (note that the B-spline functions B-t are known and are determined

inaccordance with theCurry-Schoenberg theorem).

EXAMPLE (32.5) - B-representation for EXAMPLE (322)

Rom EXAMPLE (322), / =4, 4=3, C=(0.1.2,3,4) and v=(0,1,1,1,0). Therefore,
9

«=(4)(3)-(3)=9andm(x)=2ai5Kx).Theknotsequenceisii+i{; =12tong. The knots t^t^h are
j«=i

placed at the endpoint &, knots r3, t4 are placed at £3, knots ts, t6 are placed at £3, knots *7,18 are placed at

U and knots 110, tn,/12 are placed at the endpoint £5. For x=x*, for i =1,2 n,make the following

calculations

*;(*<) =fo*-',)[*!,/2,r3,fjft -Xf)2for; -1,2,... ,9

Evaluating / (x) for x =xf yields the following system ofnine linear algebraic equations in the nine unk

nowns, alt Oj,.... CX9

where

B =

&

= B

v

<*2

f(x9) <*9

*i(*i) B^x,)

B^Xi) B2(Xz)

B9(Xl)

B9(x$

Bi(x9) B2(x9) . . . B9(x9)

Solving for the a, completes the construction of the B-representation for f(x).
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Extension of B-representation to multivariate case

Consider U, a linear space offunctions defined on some set X! into R ,and V, a linear space offunc

tions defined on some set X2 into R. For each weUandveV, define w(v) to be the

tensor product of u with v where

w(x„x2):=tt(x1)v(x2), V(xlfX2)€ X!XX2. (3.2.10)

The tensor product ofUwith V is the set ofall finite linear combiiiations of functions w(v) on XJXX2 for

some u e U and for some ve V.

The extension of the B-representation to scalar-valued functions of several variables is made by con

sidering finite linear combinations of the tensor product of B-spline functions of single variables. For

example, the representation ofatwo-dimensional function f(xux2)isbym(xl,x2) where

islysl

with Ui(-)and V)() one-dimensional B-spline functions on the knot sequences t1 := to-1)"*4*' and

t2 :=(',•2)f,+*^ respectively.

Comments

•Note that (3.2.11) holds for (xj, xj) e x^j where Xj :=[**,, fB|+i] and wherex2 := &,, fB^].

•The dimensionatity and order of the tensor product spline (3.2.11) in xj need not agree with that in x2.

That is,ingeneral, n!#n2and *j*£2.

•In order to completely specify (32.11), the n{xn2 unknowns <fy need to be found. The necessary n1x«2

linearly indepedent equations which yield the a*, are srjecmedbyasetrfn^jdistmctdampointsfor/

where for each of n, distinct xx values, / (xlf-) is evaluated at n2 distinct values ofx2. That is, agrid of

niX/i 2data points of/ is constructed for aset of ordered pairs (x lt xj) for nxdistinct values ofxjby aset

ofn2distinct values ofx2.

• It is instructive to observe that (3.2.11) for fixed xj reduces to (3.2.9) where x=x2 and for fixed x2,

(32.11) reduces to (32.9) where x =x,.
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Extensions of the above to higher dimensions follow mutatis mutandis. Note that four dimensional

tensor product splines are used to model Harrier force and moment equations. That is, functions of the

form

m(*i,x2,x3,X4) =222 X^juUfoOUfedUfojUfod (32.12)
ialjalkallol

are used to build smooth nonlinear models for the Harrier force and moment equations.

Comments

• It should be clear to the reader that the functions #(•). t7/(.), #(), and Ufa are one dimensional B-

splines defined on the knot sequences t1^(^)"^r2?=(^)f*rt,,t3:=(r^)1'l***\andt4:=(r4)*'f*4

respectively.

•The dimensionatity and order ofthe tensor procuia splii» (32.12) mx; need naagree wimth^

i*j fori, / =1,2,3,4. That is, in general, n^njand A* *kj fori, >=1,2,3,4.

• Hie complete specification of (32.12) requires the determination of the nlxn2xn3xn4 B-spline

coefficients, ct^. Agrid of data points for/ iscoiistructedforasetofrt1distmctvaluesofx1by /^dis

tinct values of x2 by n3 distinct values of x3 by n4 distinct values of x4. In this way, nlxn2xn3xn4

linearly independent equations in ct^ are specified and determination of the values of cx,^ follows.

• Note that for fixed xhxjtxkt (32.12) reduces to (32.9) with x =x, where i*j*k*l for

ij*kj =1,2,3,4. That is, freezing three ofthe variables in (32.12) reduces itto aone-dimensional B-

spline representation.

§3.3 Tensor Product Spline Software

FORTRAN subroutines for spline and tensor spline calculations exist and are contained in the

BSPLINE and TENSORBS libraries. The code used to determine multidimensional tensor product spline

interpolant functions and to evaluate these interpolants and/or existing partial derivatives of the interpolants

was written by William Nye [Nye86]. Nye's program is a generalization of the two-dimensional and

three-dimensional versions written by Ronald Boisvert [Bois82] which were, in turn, the result of
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Boisvert's re-vision and extension of code written by Carl deBoor [deBr78]. The code is in the public

domain and is, therefore, readily available.

In this section, the structure and purpose of the subroutines used in multidimensional tensor product

interpolation and evaluation are given as aprelude to discussing the code used to generate the relevant Har

rier models. The routines ofinterest are BNINK, BNFAC, BTPCF, BKNOT, BNSLV, and BNVAE. Note

that in the paragraphs which follow, the symbol "*" is used to indicate scalar multiplication as is the FOR

TRAN convention and FORTRAN-like notation is used when refering to variables and arrays used in the

relevant subroutines. Further, for the sake of illustration, FORTRAN pseudo-code is given; that is, expres

sions which are approximately FORTRAN statements are made so as to better explain the operationof the

subroutines of interest

The subroutine BNINK determines the n-dimensional k-order tensor spline interpolant function for

the given grid ofdata. Note that in the name "BNINK" Bstands for B-representation; N, the dimensional

ity of the function; and INK, for k-th order interpolant. The I/O (Le, mput/output) listing for BNINK is as

follows

BNINK(N, X, NX, FCN, KX, TX, BCOEF, WORK, IFLAG)

wherethe input/output variablesare

N: input integer scalar representing the number ofdimensions;

X: input real one-dimensional array of size NX(l)+NX(2)+...+NX(N) containing adjacent vectors of

x-abcissae;

NX: input integer array of size Nwith each entry greater than or equal to 3and with NX(m) being

thenumber ofabcissae in thexm direction;

FCN: input real one-dimensional array of size NX(1)*NX(2)*...*NX(N) containing adjacent cross-

product row-major-order function values to interpolate; for example, consider the four-dimensional

case where the function values at (r,0'),Xjtf).*3<*).jE4<O> are stored in a four dimensional array

VAL(i, j, k, 1) then the following pseudo-code describes how the one-dimensional array FCN is

loaded:
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M = 0

DOL=l,4
DOK=l,4

DOJ=l,4

DOI=l,4
M = M+1

FCN(M)= VAL(U,KJL)
END DO

END DO

END DO

END DO

KX: input integer array ofsize Nwhere KX(m) is the order ofthe spline pieces in the x„ direction

and where KX(m) mustbeatleast 2and is less than NX(m);

TX: input/output real one-dimensional array ofsize NX(l)+KX(l)+...+NX(m)+KX(m) containing

the knot sequences for each direction, where the NX(m)+KX(m) long knot sequence for direction xm

is loaded inTX starting at TX(l+(NX(l)+KX(l)+...+NX(m-l)+KX(m-l)); note that if IFLAG is set

to 0on input, the knot sequences are chosen by BNINK as given by BKNOT while an input IFLAG

of 1means that the user has supplied as input the knot sequences inTX;

BCOEF: output real one-dimesional array of size NX(1)*NX(2)*...*NX(N) of adjacent cross-

product row-major-order coefficients ofthe B-spline interpolant; this may be the same array as FCN.

Note that WORK in the I/O description for BNINK represents an assortment ofWORK arrays needed by

BNINK for storage and note that the integer IFLAG, on output, provides astatus indication for the just

completed execution of BNINK.

BNINK makes calls to mesubroutines BTPCF and BKNOT. The VO statement for these two rou

tines are

BTPCF(X, N, FCN, LDF, NF, T, K,BCOEF, WORK)

BKNOT(X,N,K,T).

The subroutine BKNOT is used by BNINK to choice the knot sequences to be used in the interpolant

determination process. BKNOT is called Ntimes by BNINK, once for each direction xM. Note that this

subroutine is not called ifthe user supplies the knot sequence to BNINK in array TX. In each direction xm,

BKNOT places K(spline order in the xm direction) knots at each endpoint as is consistent with the require

ment that there be no continuity conditions at the endpoints. The remaining knots are placed at data points
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if N (number ofof data points in the xm direction) iseven and between data points if N isodd. The knots

are stored in the array T. Note that because the routine used to evaluate the spline interpolant does so by

approaching the point from the right, the right-most knot is shifted slightly to the right to insure proper

interpolation at X(N).

The subroutine BTPCF computes B-spline interpolation coefficients for NF sets of data stored inthe

array FCN and stores the coefficients in the array BCOEF. Each interpolation isbased on the N abcissae

stored in thearray Xand the N+K knots stored in the array K. That is, the user ofBTPCF supplies NF sets

ofdata points, each set N elements long, to BTPCF. BTPCF then calculates the B-spline coefficients for

each set of data points; that is, BTPCF fits NF B-spline interpolants as functions of X. This amounts to

solving NF equations of the form

A*i=b. (33.1)

where A is asquare matrix ofdimension Nwith each element ofAthe arjpropriatery evaluated B-spline

tensor product fimtion, xf is an N-long vector ofunknown B-spline interpolant coefficients to be solved for,

and bj isthe right-hand-side N-long vector as given in FCN for i=1,2,..., NF. Note that BTPCF solves

these NF systems ofNequations in acomputationally efficient manor by making use ofthe LU fectoriza-

tion of the matrix Asupplied by the subroutine BNFAC. In the LU factorization, L is alower triangular

matrix with main diagonal entries all 1and with entries lu below the diagonal equal to the multiplier of

row j which is subtracted from row i during the Gaussian elimination process. The matrix U is the

coeffienct matrix which appears after elimination and before back-substitution. For each bit one need only

solve the system given by Lc, =b, for c, by forward-substitution then solve the system Ux, =c, for x, by

backward substitution. This operation requires N2 calculations while starting from the non-factorized A

N3
would require —- calculations.
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Efficientcalculation of B-splinecoefficients

BNINK calls BTPCF Ntimes, each time interchanging the role of the FCN and BCOEF arrays. For

example, the pseudo-code for the determination of the B-spline interpolant coefficients for a four-

dimensional function is

CALL BTPCF(X, NX, FNC, NX(1), NX(2)*NX(3)*NX(4), TX, KX, BCOEF,WORK)
CALL BTPCF(X,NX, BCOEF,NX(2), NX(1)*NX(3)*NX(4), TX, KX, FNC, WORK)
CALL BTPCF(X,NX, FNC, NX(3), NX(2)*NX(1)*NX(4), TX, KX, BCOEF,WORK)
CALL BTPCFQC,NX, BCOEF, NX(4), NX(2)*NX(3)*NX(1), TX, KX, FNC, WORK)
DOJ= 1, NX(1)*NX(2)*NX(3)*NX(4)

BCOEF(J) = FNC(J)
END DO

This is in accordance with de Boor's method for computational efficiency in the manipulation of tensor

products. This is the main result in [deBr79] and the interested reader isdirected to this reference for an

inductive proofofthe generalization ofthe above pseudo-code.

The subroutine BNVAE evaluates the tensor product B-spline interpolant constructed by the routine

BNINK or one of the partial derivatives of the interpolant ataspecified point Note that BNVAE performs

linear extrapolation for points outside the region where the B-spline interpolant is defined. In the name

"BNVAE," the Bstands for B-representation, Nfor dimensionality of the tensor product, VA for interpo

lant value, and Efor the linear extrapolation reature. BNVAE has the I/O statement

BNVAE(N, XVAL, IDX, TX, NX, KX, BCOEF, WORK)

where the integer Nand the arrays TX, NX, KX, and BCOEF must be unchanged from the last call to

BNINK. XVAL isa real one-dimensional array ofsize Nwhere XVAL(m) is the m-th coordinate ofthe

evaluation point IDX is an integer array of size Nwhere IDX(m) is the derivative number of the interpo

lant to evaluate along the direction xm. For example, in the four-dimensional case,

IDX(1)=IDX(2)=IDX(3)=IDX(4)=1 means evaluate the first derivative ofthe interpolant in each direction.

BNVAE constructs the tensor spline function from the information in NX, KX, and BCOEF. In the four

dimensional case, for example, itconstructs equation (32.12).

$3.4 Harrier Force and Moment Tensor Product Spline Model
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The pseudo-code for modeling the Harrier force and moments equations as given by (2.2.10) and

(22.11) is as follows. We make the following comments before presenting the pseudo-code.

Comments

•The roll, pitch, and yaw commands (the pseudo-code variables XI, X2, and X3, respectively) are normal

ized, taking on values in the interval [-1,1]. The throttle position (X4) isnormalized to the interval [0,1].

• Let X# denote either XI, X2, X3, or X4. There are four abcissae in each array X# and they are spaced

evenly oven the appropriate interval This corresponds to asquare four-dimensional grid of256 4-tuples

(•Zl.X^X^X^.

• TTie order of spline in each direction is3(i.e., KX(m)=3 for m=l, 2,3,4). Therefore, there are 7knots in

each direction, 3at each endpoint, meaning one ofthe interior data points has one knot (continuity condi

tion of2) and the other has no knots (continuity condition of3). We are interested in at least acontinuity

condition of2atall interior breakpoints while using as few data points, as possible tominimize the number

of function calls. For thek=S case, this requires that n=4.

• The subroutine SIMOD of the pseudo-code below represents YBNTRU of the true code. It returns in

TEMP the forces (in g's) and the moments (in ^f) for given v^ (VAB), co (OMEGA), pj (NOZ), XI,
s

X2,X3,andX4.

• The integer NMOD isset to 1intially for the generation of the initial tensor spline model and reset to 1

every twenty computer cycles (i.e, every second) soas toobtain a new tensor spline model. For the com

puter cycles between model update, NMOD is setequal to2 and acorrection term Y2 - Yl is added to the

value given by the current tensor spline model, Y. This scheme is justifiable because the velocities, both

angular and translational, and the nozzle position do not change all that much ina 1second interval
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C createdataarrays
C

DO 1=1,4

X1(I) = -1.0+ REAL(I-1)*(2V3.)
X2(I) = X1(I)
X3(I) = X2(I)
X4(I) = 0.0 + REAL(I-l)*(l./3.)

END DO

C determine spline interpolants
C

M = 0

IF (NMOD.NE.1) GOTO 99
DO 1=13

SAVE(I)=VAB(D
SAVEa+3)=OMEGA(I)

END DO

SAVE(7)=NOZ
DOL=l,4

DOK=l,4
DOJ=l,4

DO 1=1,4
M=M+1

CALL SIMOD(TEMP,VAB,OMEGA^OZ,Xl(I),X2(J),X3(K),X4(L))
FCN1(M)=TEMP(1)
FCN2(M)=TEMP(2)
FCN3(M)=TEMP(3)
FCN4(M)=TEMP(4)
FCN5(M)=TEMP(5)
FCN6(M)=TEMP(6)
END DO

END DO

END DO

X(L)=X1(L)
X(L+4)=X2(L)
X(L+8)=X3(L)
X(L+12)=X4(L)
NX(L)=4
KX(L>=3

END DO
N=4

IFLAG=0

CALL BNINK(N^NXJCN1,KX,TX3C0EF,W0RKJFLAG)
CALL BNINK(N^J«JOJ2JKX.TX3COEF.WORKJFLAG)
CALL BNINK(NJCJ«JO«JCX,TX3C0EF,W0RKJELAG)
CALL BNINK(N^C^XJFCN4JCX,TX3COEF,WORKJFLAG)
CALL BNINK(N,X^XJFCN5,KX,TX3COEF,WORKJFLAG)
CALL BNINK(N^CjqX^CN6,KX,TX3COEF,WORK,IFLAG)
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C calculate interpolant value atXVAL (NMODJEQ.l)
Y(1)=BNVAE(N^VALJDX,TXJSTXJCX3C0EF,W0RK)
Y(2)=BNVAE(N^CVALJDX,TXJ«JCX3COEF,WORK)
Y(3)=B1WAE(N,XVALJDX,TX,NX,KX3C0EF,W0RK)
Y(4)=BNVAE(N^CVALJDX,TXJ^XJCX3C0EF,W0RK)
Y(5)=BNVAE(N^CVALJDX,TX^fXJOC3COEF,WORK)
Y(6>BNVAE(N^VALJDX,TXJ«JCX3COEF,WORK)
GOTO 999

Ccalculate interpolant value atXVAL (NMOD.NE.1)
99 CONTINUE

Y(l)=BNVAE(NJCVALJDX,TXjqXJDC3C0EF,W0RK)
Y(2)=BNVAE(N,XVAL,roX,TX,NX,KX3COEF,WORK)
Y(3)=BNVAE(N^VALJDX,TXJ^XJDC3COEF,WORK)
Y(4)=BNVAE(N^VALJDX,TXJ«^X3C0EF,W0RK)
Y(5)=BNVAE(N^VALJDX,TXjajCX3COEF,WORK)
Y(6>BNVAE(N^CVALJDX,TXJ0UOC3C0EF,W0RK)

DO 1=13
TEMPS1(I)=SAVE(I)
TEMPS2(I)=SAVE(I+3)

END DO

TEMPS3=SAVE(7)

CALL SIMOD(Y2,VAB,OMEGA^OZ^CVAL(l)^VAL(2)^VAL(3)^VAL(4))
CALL SIMOIXYl,TEMPSl,TEMPS2,TEMPS3^VAL(l)^VAL(2)^CVAL(3)^CVAL(4))
DO 1=1,6

Y(D=Y(I)+(Y2(D-Y1(D)
END DO

999 CONTINUE

Extensive analysis ofthe tensor spline model has been conducted. The tensor spline interpolants for

many different values ofv^, co, and p\ were tested for many different values of uM and p\. To be

specific,

•body 1-axis component ofv^ was varied from 30 ft/s to 370 ft/s with 10 ft/s increments; the body 2-axis

component, from 30 ft/s to 70 fl/s with 5 ft/s increments; the body 3-axis component, from 0 fl/s to 70 fi/s

with 5 fl/s increments;

• the components of co were varied from 0 rad/s to 1rad/s with 0.025 increments;

•pi was varied over its full range ofvalues [-5°, 120°] with 10° steps.

For each set ofvalues v^, co, and p\, the controls uM and p\ were stepped through their respective inter

vals with increment size 0.1. Data generated included the simulation model values, the tensor spline model

values, the absolute error between the two model values, and the relative errors. Typically, the relative

error between the two model values remained between 1% - 5% with results as good as 025% and as bad
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as 10%. For values too small for arelative error interpretation, the absolute error revealed accuracy up to

the fourth decimal place.
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CHAPTER 4 — Model Inversion Issues

§4.1 Introduction

For given time histories of the nozzle angle and yaw angle, the trim equations (2.4.17) through (2.4.22)

determine the the controls uM and p{ and aircraft attitude C for which the commanded forces and

moments are achieved. The function h1 represents the inversion of the four functions fg1 and/jfj with

respect to the controls tr* and p}. The function h2 represents the inversion of$ and E^ty) with respect

to the attitude C. Performing simultaneously the indicated inversions is equivalent to solving asystem of

seven nonlinear algebraic equations ofthe form Y(x) =0in seven unknowns x. In this chapter, attention is

focused on the method used to solve this system ofequations as specified by their tensor spline interpolant

This method is amodification of the Powell hybrid method. The Powell hybrid method represents a

compromise between the Newton iteration and the method of steepest descent TTius, in the subsequent

sections, the Newton method and the method of steepest descent are discussed separately. Then, the

Powell hybrid method is presented along with adiscussion ofthe modifications made on the method as itis

applied to the problem at hand. Also, an assesment of the method's performance on the Harrier tensor pro

duct splinemodel is given.

§4.2 Newton Method and the Method of Steepest Descent

Consider the system ofnat least C1 nonlinear real-valued functions fi(-),f 2(),.. .,/«(•) inn vari

ables xux2t...txn. Formally, define thevector-valued function

f(x) :=

/i(x)

ffr)

/«(x)

where x=[x,, x2,..., xHf and f: R" -> IR\ We want to solve for the value(s) ofx for which

f(x) = 0

(42.1)

(422)
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holds (i.e., the(tetermination of the zeroes of the function f). When the function f isone-to-one and inver

tible, this isequivalent todetermining h(-) =rl(-) and evaluating itat0.

Newton method

The Newton method isas follows. Given acurrent estimate of the solution, xt, aTaylor expansion

of f about xk truncated to the first order yields

/iW-AW+il^/-^) fori =1.2 n.
y-i °Xj

Adopting thestandard notation J for theJacobian matrix, define

J:=

a/i

a*.
Mi
a*2

if i

a/2

a*.
Mi
a*2

a/2

" ix.

0L Mil
dxi dx2

Ml
dx*

Using the notation Jk to mean the value of the Jacobian at xt, we can rewrite (42.3) as

f(x) - f(xfc) +Jk(x - xk) =: Bk(x).

(423)

(42.4)

(4.2.5)

In R"xIR\ the n-dimensional "surrace" «(x,et(x))lxeR" is the tangent "plane" at (xt, f(xk)) to the

Bkf(x))lxelR" •.n-dimensional "surrace'

Consider xk+1, the next estimate to x* where x* denotes the solution of f(x) =0. Apply this condi

tion to xt+1 (i.e, require f(xt+1) =0) and make the substitution ofxk+l for x in the right-hand-side of(4.2.5).

Solving for (xA+1 - xk) assuming Jk nonsingular gives

5k *• (x*+i - **) =-Hkf(xt) (42.6)

where H* =J*1. Equation (4.2.6) is said to be the Newton step and, with it the next estimate of the
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solution is given by the Newton iteration

xjb+i =xt +64 . (4.2.7)

The sequence (x,)£* constructed according to the Newton step will converge quadratically to x* pro

vided the initial estimate x*, is sufficiently close to x*. Note that quadratic convergence is also known as

•root rate 2convergence. (The sequence (x,)^ issaid to converge with root rate r for r £ 1ifthereexist

Me (0,oo)t ee (0,1), and i0 e IN such that for all i £ iot llx, -x'll £M?'.) Note that the Newton itera

tion rails to converge in many cases. What can be shown is that if^sufficiently close to the rootx\ the

Newton method will generate asequence of iterates which converge to x- [Luen73]. So called "quasi-

Newton" algorithms have been invented to improve convergence to x* when x© is not sufficiendy close to

x*. The Powell hybrid method is one such algorithm.

Method of steepest descent

Considerthe problem

min / (x) for x e R" (4.2.8)

with/ :R"^Rcontmuoslydifferentiable. Denote the gradient off(x) by V/(x). Consider the follow

ing standard result from optimization theory [Polak88]: If xe R" is such that V/(x)*0, then any vector

he R" such that V/(x)rh<0 is adescent direction for/()atx(Le., there exists apositive Xe R such

that /(x +Ah) -/(x) <0). Algorithms invented to solve (4.2.8) typically generate sequences (x^o* with

the descent direction property; that is, /(xt+1) -f(xk) <0. Note that the construction of sequences with

the descent direction property is not sufficient to guarantee that the algorithm will converge toaminimum.

Convergence proofs for optimization algorithms are often subde, rooted in some fairly sophisticated real

analysis. The interested reader is refered to [Luen73] and [Polak88] for a detailed treatment of this and

other issuesin engineering optimization.

Observe that h=-V/ (x) is adescent direction for / (•). This observation leads to the following for

malization ofthe steepest descent method for solving (42.8). Given acurrent estimate xk ofthe solution x

of (42.8), the search direction hk .*=-V/(x4) is computed. If V/(x) =0, the algorithm quits, setting
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x =xk. Otherwise, thesteplength A* =A(xA) := argmin f (xk +Ah*) is calculated and thenextestimate of

the solution to (4.2.8) is computedas

xk+l=xk + Xkhk (42.9)

Note that the main objection to the method ofsteepest descent is that the computation ofthe steplength A*

isalmost as difficult aproblem to solve as (42.8). In practice, as with the Powell hybrid method, an inex

act line search is done to calculate A£ via some implementable steplength rule. The inexact A** is used in

placeof A* in (42.9).

$4.3 Powell Hybrid Method

In the paragraphs which follow, first we present an outline ofthe method, omitting details not needed

for ageneral understanding of how the algorithm works. Second we present the details of the various com

ponents of the algorithm.

Powell hybrid algorithm

Data

(1) the current estimate xk ofthe solution to (422) as well as the corresponding function value t(xk);

(1) an approximation tothe Jacobian matrix atxkt J(xk);

(3) an arjproxiniation to the inverse ofthe Jacobian matrix at xkt H(xk) := J~\xk);

(4) aflxn matrix n ofn directions in the space ofvariables, and an associated vector ofintegers,«;

II and nare used to store the history ofprevious iterations that isneeded to meet out requirements of

linearindependence;

(5) a steplength parameter A*;

(6) a solution tolerance parameter e.

StepO

Setk = 0.

Stepl

Compute the steplength parameter Ak. See subsection "A* calculation" for details.
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Step 2

Compute the correction vector 5k subject to the condition that if II 6kII £Ak then compute 8k by the

Newton correction; else, compute A* by the correction rule defined from the steepest descent algo

rithm as applied to testfunction F (•) where

F(*)-ifi(*f (4.3.D
i»l

See subsection "5k calculation" fordetails.

Step 3

Compute the Powell hybrid iteration given by

x*+i=x* +5k (4.3.2)

where 5k is calculated as in Step 2and 6k also satisfies a "sufficiency of independence" condition

defined below.

Step 4

If//(xk)£efor/ =1 n, the algorithm stops; otherwise, replace kby* +1 andgotoStep 1.

•

General observations

• Note that 5k represents acompromise between the Newton iteration and the method of steepest descent

applied to the function F() where F:R"-»R. The balance between me two methods is governed by the

steplength parameter At. For A* sufficiently large, Sk is the pure Newton step. For A* small, 54isexactly

amultiple ofthe predicted gradient ofF(x) where 5t is such thatF(xk +dk) <F(xk).

•The correction vectors 5* interpolate between the Newton and steepest descent corrections in away that

gives fast ultimate convergence.

•The Powell hybrid method proves to be avery good algorithm for calculations that involve searching in

many variable space. For each iteration, typicaUy one can manage with only one new calculation ofthe

objective functions, ft(x£. As discussed subsequently, this is due to the clever use of the steplength

parameter A*, where, on each iteration, the correction vector 5* ispredicted subject to the condition that
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II5* II £At and the steplength parameter Ak is adjusted automatically, according to the success of 8*.

•Step 3of the algorithm is to update x* by setting xt+1 =xk +5* provided that 8* is sufficiendy indepen

dent ofthe last min(n -ljc-l) 5,- steps, acondition which ischecked by making use ofthe information in n

and n. Note that for a, e R" for / = l,2,...y with j<n and beR\ b is said to be

sufficiently independent or, simply, s-i ofthe set ofa, ifthe least angle between band any vector in the

subspacespamedbythevectoreafisro Ifthe s-i condition is not satisfied, 6* is

adjusted until it is satisfied.

•Because of the s-i condition on the correction vectors 5* the iterations of the algorithm do not include any

search directions along lines in the space ofthe variables, so most iterations require only one function

evaluation.

•With the calculation of 5t, f(x* +5t) is determined and A* is updated to obtain Ak+l. The update of Ak is

such that At+1 is made as large as possible so as to correct by the Newton iteration as often as possible,

hence resulting infast ultimate convergence ofthe algorithm.

6* calculation

To ease the discussion, we define

(1)Newton correction, yk (see(42.6))

Yk:=-JiTlf(xJk) (43.3)

(2) steepest descent direction, &

g* .*= -JtiTx*) =-0.5VF(Xk) (4.3.4)

The steplength parameter Ak is defined as a means of limiting the size of the correction vector 8k in the

sense that II8*II £Ak is required. The determination of5* is by the following three-step algorithm:

(1) if 11 yk 11 £ Ak, then set 8* =yk and the algortihm stops; ifnot, continue to (2);

,„. .. ,, ,, IIgjt II A*e*
(2) ifu.llgtll 2> Ak whereu.=——-r, then set 8* =-^7 and the algorithm stops; ifnot,con-

"Jtgt" "at11
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tinue to (3);

(3) set 8k equal to a point on the straight tine joining the points |igj. and ft; that is, determine the

parameter*^ such that II (1 - x)Mg* +XY*II =Absolving for x reveals

x=__ 4?-ll|iftlla
(Y*-M&.Mg») +[((Y*.Hg*)-At2)2+(llYA||2-A2)(A2- Hug*!!2)]1'2 (4*3#5)

and then set5t =(1 - x)ugA +xyt.

Note thatm detennining me correction v^

bian each need be calculated only once. So, in any one iteration ofthe Powell hybrid method, the cost in

terms of function, Jacobian, and inverse Jacobian calculations isminimal Note that if8t rails to satisfy the

s-i condition, it is adjusted by perturbing its components until the s-i condition is satisfied while still satisfy
ingthecondition II8* II £ A*.

Ak calculation

The adjustment ofthe steplength parameter Ak is done so that At+1 is made as large as possible sub

ject to the condition that each approximation to the Jacobian matrix J(-) provides agood prediction of the

difference of the function difference f(xA +8t) - f(x4). To determine A*+1, it is assumed that both

f(x* +84) and F(xk +5k) are known and that the approximations ft, <{>„) and * of

/ i(x* +8*). ••. ,/»(x* +84) and ^(x* +8A), respectively, have been calculated where

h :=//(**) +2J/y5tj - //(x* +8t), / =1,2 n (4.3.6)
jal

*^I,ti~F(xk +b'k). (4.3.7)
4=1

The revision ofAk is based on just how well (4.3.6) and (4.3.7) approximate the indicated functions. The

measure used to assess the quality of these approximations isgiven bythe condition that if

F(xk+Sk)>F(x)-0.1(F(x)-<l>) (4.3.8)

then A*+1 =max(^At, DSTEP) where DSTEP is adefault steplength which depends on the accuracy of the

computer. Otherwise, At+1 is set equal to A* (no change) or AM is set to avalue greater than A* with the
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motivation being that the larger the A*+1 the fewer iterations are typically needed.

The manner in which the update of Ak results in an increase of the steplength parameter is as fol

lows. The value of p2 which just causes (4.3.8) to fail is determined; that is, setting

2[l//(xJk +8t)l+(p2-l)l//(xk+6t)-(J>ll]2=F(xik)-0.1(F(xft)-<I>) (4.3.9)

and solving for p2 reveals

2„1+ DMULT
SP +(SP2+DMULT - SS)112 (4*3,10)

where

DMULT =F(xk)-0.1(F(x)-4>)-F(xk + Sk);

SP=£Ufa +W/(x* +5t) - fc) I;
/=i

^ =£(f,(xA+5t)-<|>,)2
f=i

A, is increased only after two calculations of phave been made, where pis the positive square root of p2.

This is done to limit how often Af is increased and this step is to be viewed as a conservative fix for

increasing A,. Both calculations of pare made since the last reduction in the value of A,-. The lesser of

the two pis selected and itiscalled p. Then, A*+1 is determined as follows

A*+1 =mia(AAktDMAX) (4.3.11)

where

A=min(2, p, a)where <y=1initially or after A,- has been decieasedand, otherwise, a=—where
A_

p_ and A^ are the previous values ofthe variables pand A,respectively, and

DMAX is agenerous estimate of the distance as measure by the Euclidean norm ofthe solution from

the intial guess.
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Calculation of Jacobian and inverse Jacobian matrices

The modification to the Powell hybrid method as detailed in [MJDP70] is in the calcultion of Jaco

bian matrix. Where applicable, we make use of BNVAE's ability to calculate partial derivatives of the

interpolant function (with respect to the defining variables) to determine entries in the Jacobian matrix.

That is, if the function corresponding to the entry ja ofJk ofthe Jacobian matrix to be approximated is

modeled byatensor spline interpolant, then ju isgiven by

ja ~ BNVAE(N^VAUDX,TXa^X3COEF,WORK)

where TX, KX, NX, BCOEF are unchanged from the last call to BNINK and where KX(m)=0 for all m

except for w=/, where itis set to 1. Tne reader should refer to the discourse in Chapter 3ofthis report

for details on the FORTRAN function BVNAE. Where BNVAE is not applicable, the Jacobian entries are

calculated by aforward-difference approximation. That is, ifwe are interested in the value ofthe (i/)rt

entry ja ofthe Jacobian at xk, Jt, arjproximate ju by

. Mxt + Ahffa)
Ja " (4.3.12)

where Ais apositive real on the order of0.0001. The inverse to Jk is determined initially from Gaussian

elimination; subsequently, it is is updated by rank-one corrections. The details of the rank-one correction

are not given; the interested reader isreferred to pages 193-194 of [Luen73].

§4.4 Powell Hybrid Method Software

The routine HYBRD is aFORTRAN program found in the MINPACK library written at Argonne

National Laboratory by B.S. Garbow, K£. Hillstrom, and JJ. More [GHM80], [Gar80], [MoreSO].

HYBRD finds azero ofasystem ofN nonlinear equations in N variables by the Powell hybrid method.

The user supplies a subroutine which calculates the objective functions. The Jacobian is determined as

describedin section4.3. HYBRD's I/O statementis

HYBRD(FCN^^CJ7VEC,TOLJNFO,WAXWA)

where
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FCN: the name of the user-supplied subroutine which calculates the functions;

N: apositive integer input variable set tothe number of functions and variables;

X: a real array of length N; on input, X must contain an initial estimate of the solution vector; on

output, X contains the final estimate of thesolution vector,

FVEC: an output array oflength Nwhich contains the functions evaluated at the output X;

TOL: a nonnegative real input variable; termination occurs when the algorithm estimates that the

relative error between the error and the solution is at mostTOL in all components;

INFO: an output integer flag used to mdicate me status ofthe recent run of HYBRD; it isset to 0 for

improper input parameters; set to 1 for successful execution; set to 2 for FCN calls exceeding

200*(N+1); set to 3for TOL too small; and set to 4 for iteration not making good progress;

WA: a work array of length LWA;

LWA: apositive integer input variable not less than (N*(N*3+13))/2.

$4.5 Inversion of Harrier Tensor Product Spline Model

Werecast the Harrier trim equations inthe form Y(x) =0.That is,define

Y(uM,pl,C):=-
mJVVi1)' ®c

.

ffloV.Pi1) - VAU •

E|(V) E|(\|0

(4.5.1)

HYBRD is used to solve for uM, p}, and Cforgiven ci, v^.and y. Note that the HYBRD routine per

formed well under extensive testing.
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Chapter 5— Preliminary Results and Concluding Remarks

§5.1 Introduction

In this chapter, we offer some preliminary results regarding the performance of the control system design

ofFig. 2.1.1. Also, we discuss briefly the state ofcontinuing work.

§52 Preliminary results

Using the nonlinear automatic flight control system design presented in this report, we simulate the

commanded short-take-off ofthe Harrier. The Hanrier is initially at rest (Note that the nozzle rest posi

tion is 90°.) The Harrier is commanded to achieve - in 20 seconds time -- arunway-fixed 1-axis velocity

of75 ft/s with an acceleration of5 ft/s, arunway-fixed 3-axis velocity of -25 fl/s with an acceleration of -3

ft/s and anozzle position of75°. Figures 5.2.1 through 5.23 show the actual Harrier response to the com

manded flight condition. In all cases, perfect tracking isattained as the Harrier responds with smooth time

history trajectories.

v/jj in feet per second

0.0 4.0 8.0 12.0 16.0

Figure 5.Z1 Harrier response: runway-fixed 1-axis component ofvelocity as a function of time.

v^ in feet per secondper second
co*

0.0 4.0 8.0 12.0 16.0

Figure 522 Harrier response: runway-fixed 1-axis component ofacceleration as afuntion oftime.

20.0

tin seconds

20.0

tin seconds



Vff^ in feet persecond
o

°-° «-° 8.0 12.0 16.0
Figure 5.2.3 Harrier response: runway-fixed 3-axis component of velocity as afunction of time.

vR j in feet per second persecond

°-° «-° 8.0 12.0 16.0
Figure 5.2.4 Harrier response: runway-fixed 3-axis component ofacceleration as afuntion of time.

Pi in degrees
o

0.0 4.0 8.0 12.0

Figure 5.2.5 Harrier response: nozzle angle as afunction oftime.
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§53 State of continuing work

This report has emphasized the methodologies used in designing the control system ofFig. 2.1.1 for

the Hairier aircraft. We have presented the results of just one simulation as ameans of illustrating the per

formance capabilities of the control design. However, an exhaustive testing ofthe control design is to be

conducted in the near future to thoroughly verify the design performance. We are also working on the

extension ofthe control design to Model operation ofthe Harrier. This requires 5-dimensional tensor pro

duct spline interpolants for modeling the force and moment processes because the nozzle position p\ is

now treated as atrim variable. That is, the spline models must be functions ofp\ and can no longer be

parameterizedby p 2.

§ 5.4 Concluding remarks

In this report, we have considered the design ofanonlinear automatic flight control system for the

YAV/8B Harrier V/STOL aircraft The design theory (Chapter 2) along with the techniques used to handle

the necessary nonlinear modeling (Chapter 3) and nonlinear function inversion (Chapter 4) have been

presented in detail. Preliminary results have been given as well as abrief status report on continuing work.
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APPENDIX1 — Harrier Coordinate Frames

Every good engineer knows the value of properly selected coordinate ftames in problem solving and the

need to be able to readily transform ftom one set ofcoordinates to a more revealing set ofcoordinates. To

this end, in this appendix is presented a complete listmg of the cu^erent rigto

used in the Harrier control system design presented in this report. Also presented are the transformation

matrices which relate the coordinate ftames to one another [SMN861, [Shef83], [McRu73].

There are five coordinate ftames in which the Hairier kinematics and dynamics are described. Each

coordinate frame isdefined by an orthonormal dextral set ofunit vectors. The coordinate ftames are:

(1) North-East-Down or N-E-D coordinate frame (also called the inertial or

runway-fixed axes);

(2) Harrier body coordinate frame or, simply, body axes;

(3) Harrier heading angle coordinate frame or, simply, heading axes;

(4) Harrier nozzle angle coordinate frame or, simply, nozzle axes;

(5) stability axes coordinate frame.

Note that (2) through (5) are attached to the center of mass of the Harrier while (1) has its origin at runway
origination position.

Figure A.1.1 illustrates the relationships between these different coordinate frames. Each directed

arrow represents me transformation from me init^

tion cosine transformation matrix Qn, where Krepresents the final coordinate system and L, the initial.

The notation adopted is Rfor runway-fixed axes, Bfor body axes, Hfor heading axes, Nfor nozzle axes,

and Sfor stability axes. Thus, for example, CRH is the transformation from heading axes to runway-fixed

axes: if h=[h uh2t h3f is a triple defining a point in the heading axes, then r=[rlf r2, r3f where

r = C/uyh is the triple defining this point in the runway axes.

The five coordinate systems are illustrated in Figures A.1.2(a) through A.1.2(e). Descriptions of

each coordinate frame are provided in the following paragraphs.
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The runway-fixed orN-E-D coordinate frame (Fig. A.1.2(a)) has its 1-axis directed north, its 2-axis

directed east, and its 3-axis directed down as given by the cross product ofthe 1-axis unit vector with the

2-axis unit vector.

The body axes system (Fig. A.1.2(b)) has its 1-axis directed out the nose of the aircraft along the line

segment originating at the aircraft center of mass, its 2-axis om me right wmg of me airciaft along the line

segment originating at the cm and perpendicular to the line segment defining the 1-axis, and its 3-axis

directed as given by the cross product of the 1-axis unit vector with the 2-axis unit vector (note that the 3-

axis isdirected parallel to the landing gear ofthe aircraft).

The three Euler angles, roll (<>), pitch (6), and yaw (\j/), are defined as those angles through which

the runway-fixed coordinate frame is rotated to define the attitude of the aircraft (le., to transform the

runway-fixed frame to the body frame). The first rotation is by the angle $about the runway-fixed 1-axis,

defining an intermediate coordinate frame called /,. The second rotation is about the 2-axis of /, by the

angle 0, defining asecond intermediate frame called/2. The third and last rotation is by the angle y about

the 3-axis of/2,making the transformation to the body frame complete.

For the definition ofthe heading axes system, consider the angle Pby

P=tarTl
V£

vN
(A.1.1)

where v£ is the velocity component directed east (i.e., the N-E-D 2-axis component of velocity) and v* is

the velocity component directed north (Le., the N-E-D 1-axis component of velocity). That is, to determine

the angle P, project the aircraft flight path onto the horizontal (Le., the N-E) plane forming path pas shown

in Fig. A.1.2(c). The angle Pis that angle made between North and the projected aircraft velocity vector at

apoint on path p. The heading axes system is formed by rotating the N-E-D frame about its 3-axis by the

angle P. The angle Pis said to be the path angle. Therefore, the heading 2-axis is out the right wing of the

aircraft oriented along aunit vector perpendicular to the 1-axis unit vector, and the 3-axis directed as given

bythecross product of the 1-axis unitvector with the 2-axis unit vector.

The nozzle axes system (Fig. A.1.2(d)) has its 1-axis directed along the vector which is rotated up

from the body 1-axis of the aircraft by the nozzle angle r\. Note that in defining the nozzle axes system it
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is assumed that the nozzle is located at the cm ofthe aircraft. The the nozzle axes system is formed by

rotating the body axes system about the body 2-axis by the angle r\: that is, the nozzle axes system is

obtained from the body axes system byrotating the latter bythe angle r\ about the body 2-axis. The nozzle

2-axis is directed out the right wing on the aircraft and the nozzle 3-axis isdirected as given by the cross

product of the 1-axis unit vector with the 2-axis unit vector.

For the definition ofthe stability axes system, consider the following relations where vBti is the body

1-axis component ofvelocity, vBX is the body 2-axis component ofvelocity, and vB3 is the body 3-axis

component of velocity:

= A, 2 2 \U1v=(v/,i+v/f2 +v/f3) (A.1.2)

a=tan_1
VB,3

v*.i
(A.1.3)

PsshT1 VU.2
(A.1.4)

The angle a is called the angle ofattack. Rotating the body axes system about its 2-axis by a defines the

stability axes system (Fig. A.1.2(e)). The angle piscalled the sideslip angle isthe angle between the velo

city vector ofthe aircraft and the 1-axis of the stability axes system.

Before giving the expressions for the various transformation matrices, the concept ofan elementary

direction cosine matrix needs to be introduced. Arotation by an angle %about the k-axis (where k is either

1,2,or 3) ofacoordinate frame Kinduces the following transformation matrices:

Ef:=

E,*:=

Ef :=

1 0 0

0 cos® sin®
0 -sin© cos®

cos® 0 -sin(%)
0 1 0

sin® 0 cos®

cos® sin® 0
-rin® cos® 0

0 0 1

(A.1.5)

(A.1.6)

(A.1.7)
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Utilizing the elementary direction cosine matrix notation, we specify the following relationships for

the transformations pictured in Fig. A.1.1:

CM-BjWEftOTffo)

Cj?£ = Cbr

C„R^Ei(P)

Crh = CHK

CBN = CNB

CM=E|(a)

Cbs = Csb

(A.1.8)

(A.1.9)

(A.1.10)

(A.1.11)

(A.1.12)

(A.1.13)

(A. 1.14)

(A.1.15)

The above listing of transformations is complete in the sense that starting in any coordinate frame a

transformation to any other frame is available either direcdy from the listing aboveor via combinations of

transformations given above. For example, see Fig. A.1.1 to transform the stability axes into the heading

axes, first transform to body then to N-E-D thento heading.

HR

RUNWAY Z 1 HEADING

RH

BR RB

NB

BODY*- 2 NOZZLE

BN

BS BS

STABILITY

Figure A.1.1 Transformation relationships for die Harrier coordinate frames
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nose

^ NORTH Body 1-axis

EAST

DOWN

Body 3-axis

Rgurc A.1.2(a) Definition ofthe runway-fixed coordinate frame Figure A.1.2 (b) Definition ofbody coordinate frame

NORTH

EAST

projection of aircraft trajectory onto the N-E plane

Figure A.1.2 (c) Definition of the Heading angle coordinate frame.
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Nozzle 1-axis

Body 1-axis

Body 3-axis
Nozzle 3-axis

Figure A.l .2(d) Definition of the nozzle angle coordinate frame

Body 1-axis

» Stability 1 -axis

Body 3-axis

Stability 3-axis

Figure A.1.2 (e) Definition of stabOity axes coorddinate frame
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List of Symbols

1. Vectors and Matrices

x naturalmodel state vector, p.4

u natural model controlvector, p.4

y Brunovsky canonical model state vector, p.4

w Brunovsky canonical model control vector, p.4

ey plant-to-model error vector, p.4

8w Brunovsky canonical model control correction, p.4

r runway coordinates of body center of mass position, p3

v runway coordinates of body center of mass velocity, p.5

C direction cosine matrix ofbody-fixed axes relative to runway-fixed axes, p.5

co body coordinates ofangular velocity relative to runway-fixed axes, p.5

p throttle position and nozzle angle, p.5

p2 throttle rate and nozzle rate, p.5

ir* three axes moment controls, p.5

uf throttle and nozzle controls, p.5

S(co) skew symmetric matrix ofthe angular velocity vector, co, p.9

ef the irt column ofan nxn identity matrix, p.9

J* Jacobian matrix of system fatxt, p.39

Ht Jkl, the inverse ofnonsingular J, p.39

J* approximate J*, p.41

Hk approximate Hk, p.41

xk current estimate of solution to f(x) =0, p.39

8* update to xk to give xk+1 := xk +8*, p.39

E, (s) for i=1,2,3, the elementary direction cosine matrix about axis i of

the K coordinate frame by5 degrees, p.51
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CKl direction cosine matrix ofthe Kcoordinate frame to the Lcoordinate frame where K, L

may be R for runway, B for body, Hfor heading angle, N for nozzle angle

andS for stability axes, p.53-54

2. Realand Integer Scalars

0 roll angle, p.5

0 pitchangle, p.5

V yaw angle, p.5

g gravitational acceleration, 9.8-^-, 312&, 1-g, p.39
s s

7] nozzle angle, p.52

P pathangle,p.52

a angleof attack, p.53

P sideslip angle, p53

Ak steplength parameter of Powell hybrid method, p.41

K- Kronecker index orcontrollability index, p.42

i

si ^S^-.p-s
;=i

n state vector size, p.8

m controlvector size, p.8

3.Functions, Maps, General Analysis

T(-) transformation map from natural model state and control to Brunovsky canonical model

state and control, p.4

W() transformation mapof Brunovsky state and control to natural model

state and control, p.4

!*(•) runway coordinates of the components of force acting on the aircraft, p.8

r'O body coordinates ofthe moments acting on the aircraft, p.8
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Tfi(-) non-parasitic nozzle 2- and 3- axes components of force acting on the aircraft, p.19

fN(0 parasitic nozzle 2- and 3- axes components of force acting on the aircraft, p.19

hJ(-) function which recovers natural model controls from natural model state,

commanded moments and commanded nozzle 1-axis acceleration, p.18

h (•) function which determines aircraft commanded attitdue from position, velocity,

commanded acceleration, andpath angle, p.19

m^Ovector oftensor product spline functions modeling i*

for given state and nozzle control, p.22

n^ (•) vector of tensor product spline functions modeling I*1

for given state and nozzle control, p.22

Bt*jt (•) the i* (normalized) B-spline oforder k for knot sequence t, p.24

Bt (•) short-hand for BiJtJ(•), p.24

(f-x)+ function truncation, p.24

m() B-representation of /Q.p.24

m() B-representation of f(0,p.24

f() system ofat least n Cl functions in n variables, p.38

V/0) gradient of/(-),p.40

F(•) steepest descent cost function in Powell hybrid method, p.41

4. Sequences and Sets

(Wi* breakpoint sequence for piecewise polynomial function, p.5

(*,-)" knot sequence for B-representation ofpiecewise polynomial function, p.24

(v.Oi+ integer sequence ofcontinuity conditions for B-representation, p.25

IN set ofnonnegative integers, namely, {0,1,2,...}

1R field of real numbers

Rn n-dimensional space ofreal valued n-tuples defined over the field

of real numbers
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ff^ linear space ofpiecewise polynomial functions oforder k with breakpoint

sequence£, p.24

^i^v subspace of JPk^ consisting ofelements satisfying the

continuity conditions specified byv, p.23
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