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ABSTRACT

This report is a self-contained discussion of the application of differential geometric non-
linear control theory to the design of an automatic flight control system for the YAV-8B
Harrier V/STOL aircraft. The report and the work it represents are the results of a con-
tinuing joint effort on the part of the Flight Dynamics and Control Branch at
NASA/Ames Research Center, Moffett Field, and the control systems research group at
the University of California - Berkeley. We consider a formal presentation of the model
follower control system used at NASA/Ames as it is applied specifically to the Harrier
aircraft. We discuss the application of sophisticated nonlinear curve fitting techniques,
namely, tensor product spline interpolation, to the multidimensional force and moment
generation process of the Harrier. We present the application of a hybrid algorithm for
solving a system of nonlinear equations to the crucial aircraft trim operation of the model
follower control system. Finally, we offer some preliminary results regarding the perfor-
mance of the control system design and discuss the state of continuing work.
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Chapter 1 — Introduction

This report is a self-contained discussion of the applicatidn of differential geometric nonlinear control
theory to the design of an automatic flight control system for the YAV-8B Harrier V/STOL aircraft. The
report contains detailed presentations of the techniques and methodologies used as well as some prelim-
inaryresultsregardingthecomrolsystemperfommnce. The report and the work it represents are the
results of a continuing joint effort on the part of the Flight Dynamics and' Control Branch at NASA/Ames
Research Center, Moffett Field, and the control systems research group at the University of California -
Berkeley. The goal of this joint effort is the formalization of applications of differential geometric control
theory to specific classes of nonlinear systems particularly those defined by high performance aircraft such

as the Harrier. The main contributions of this report to our goal are presented in Chapters 2, 3, and 4.

In Chapter 2, we consider a formal presentation of the model follower control system used at Ames
by Meyer, et. al., [MSH82], [MSH83G] as it is applied specifically to the Harrier aircraft. This involves
the representation of the Harrier natural model state equation by a sixteen-dimensional first order nonlinear
vector differential equation. Further, it includes the speclﬁeauon of the Harrier Brunovsky canonical
model as well as the calculation of the nonlinear transformations maps T, which takes the natural model to

thelineaernovskycanonimlmodel,andW,whichtakesﬂlemonicalbacktothenannal.

In Chapter 3, we discuss the application of sophisticated nonlinear curve fitting techniques, namely,
tensor product spline interpolation, to the multidimensional force and moment generation process of the
Harrier. Data generated from the complete simulation model of the Harrier aircraft is used as the basis for
determining the tensor product spline model. Such a powerful modeling technique is used to accurately
represent - in the force and moment model ~ the cross-coupling between the aircraft controls over the full
range of control values. It is through such a technique that a highly accurate representation of the Harrier
natural model is achieved and it is with such an accurate model that the calculation of the maps T and W

are made more precise.
In Chapter 4, we present the application of a hybrid algorithm for solving a system of nonlinear
equations to the crucial aircraft trim operation of the model follower control system. The method is a clev-

erly crafted blend of the standard Newton method for solving a system of nonlinear equations and the
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method of steepest descent from engineering optimization theory. Use of the hybrid algorithm preserves
the convergence properties of the Newton method and results in a more accurate and robust trim operation

and, consequently, a more accuratc W map.

In Chapter 5, we offer some preliminary results and conclusions regarding the performance of the
control system design. We discuss the state of continuing work and offer suggestions regarding possible
future work.
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CHAPTER 2 — Model Follower Control Scheme

$ 2.1 Introduction

In this chaptcr, the model follower control system used in the application of the nonlincar control transfor-
mation theory at the NASA-Arncs Research Center by Meyer, et al., to multi-input acrodynamic systems is
presented [MSH82), [HSMmi), [MSH83G]), [MSH83C]. The general block diagram of this automatic
flight control system is given in Figure 2.1.1. The goal of the model follower control system is the gencra-

tion of the true aircraft command inputs u which cause the aircraft responsc r (o follow commanded r° .

The control system of Fig. 2.1.1 consists of four main sections: the natural model representation of
the aircraft; the Brunovsky canonical model representation of the aircraft; the transformation maps, T and
W; and the linear regulator. The transformation map T takes the natural modcl state x and control u to the
Brunovsky canonical model state y and contro! w. The commanded state Y. is then subtracted from the
transformed state y producing the plant-to-model error e, (ie., ey=y~-y.). The linear regulator is driven
by the error e, and produces a control correction Sw which drives e, 10 zcro. The adjusted control w is
transformed by map W from the Brunovsky canonical form to the natural model form, yielding the control

input u which will cause r to follow r°.

= ot - h:)
r MODEL T
LAW ey I
x
K(+ y)
W (e ) ot
ow
W P Nd w w u
NS
Brunovsky Canonical Model Regulator TWMaps Natural Model

Figure 2.1.1 : Model Follower Control Scheme

Generation of Harrier input commands u which cause Harrier response P to follow commanded r*. Note that the regulator

never sees the nonlinear natural model.  All regulation is done on the Brunovsky canonical form.




-4.

In the subsequent sections of this chapter, the four components of the model follower control system
as applied to the automatic control of the YAV-8B Harrier V/STOL aircraft are discussed in detail. Where
appropriate, the general theoretical results of the Brunovsky canonical form and of the transformation of

nonlinear systems to Brunovsky canonical form are presented.

§ 2.2 Plant: YAV-8B Harrier Natural Model
The YAV-8B Harrier V/STOL aircraft is represented as a rigid body moving in three dimensional

spaoeinrespbnsetogxavity.aerodynanﬁm,andproptﬂsion. The state x and control u are defined as

r'r -
v
C
x= 1, .2.1)
pl
p2
Ly
uM
n:= [np] (2'2-2)

with:
r := runway coordinates of body center of mass position;
v := runway coordinates of body center of mass velocity;
C := direction cosine matrix of body-fixed axes relative to runway-fixed axes;
© := body coordinates of angular velocity relative to runway-fixed axes;
p' := throttle position (p{ ) and nozzle angle ( p3 ) ("power” positions);
p? := throttle rate (p ? ) and nozzle rate (p# ) ("power” rates);
u™ := three axes moment control as issued by the pilot for deflection of the ailerons, elevator,
and rudder;
u® := power control as issued by the pilot for adjustment of the nozzle angle and the throttle

position;

Note thatre R% ve R we R Ce SO(3), p'e R p’e R, uMe R® anduP e R2 In (2.2.1), there
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is an abuse of notation in viewing matrix C as a sub-vector of the complete state vector x. Note C, which
moves on the sphere SO(3), defines aircraft attitude and one possible representation for C is in terms of the
standard Euler angles of roll (¢), pitch (0), and yaw (¥). The reader is directed to Appendix 1 for a for-
mal definition of the Euler angles. Note that C is Cp, of Appendix 1 (see equation (A.1.8)). Note also that
in Appendix 1, the coordinate frames utilized in the control design for the Harrier are given along with
explicit expressions for the transformation matrices which relate the coordinate frames to one another. As
a familiarity with this material is essential to the balance of this report, it is assumed that the reader will
study Appendix 1 at this point.

All coordinate frames used in the control design problem at hand are right-hand-rule systems with
the mutually orthogonal axes labeled as the 1-axis, 2-axis, and 3-axis. The inertial coordinate frame is
taken as the runway-fixed axes which are the conventional 1-axis as north, 2-axis as east, and 3-axis as
down (i.e., the N-E-D coordinate frame). The body coordinate frame is defined at the center of mass of the
Harrier with the 1-axis directed along the line segment from cm to out the nose of the aircraft, the 2-axis
directed from cm to out the right wing, and the 3-axis directed as the cross product of the 1-axis unit vector
with the 2-axis unit vector dictates. By rotating the N-E-D frame through the standard Euler angles

¢, 6, and v, the transformation to the body frame is achieved.

The state equation for the Harrier natural model representation is essentially a sixteen-dimensional
first order nonlinear vector differential equation. The equation consists of the translational and rotational

kinematic and dynamic equations for the Harrier with mass and moments of inertia normalized to 1:

r=v (2:23)
v=CTfg(x.u) +ge (224)
€ =S@C 2.2.5)

o =M(xu) (2.2.6)
pl=p? 2.7

P’ =g(u) 22.8)



where:

F(x,u) = runway coordinates of the components of force acting on the aircraft as a function

of state x and control u;

Mx,u) = body coordinates of the moments acting on the aircraft as a function of state x and

control u;

g(®) := a smoothed version of u*(t);

S(w) = a skew symmetric matrix of the angular velocity vector:

0
S(0) = |-o(3)
o(2) -ox1)

0

©(3) -(2)
(1)

0

(2.29)

With the specification of the state equation, the description of the natural model is complete. A

thorough analysis of the form of equations (2.2.4) and (2.2.6) is given in a McDonnell Douglas Corporation

simulation and modeling report [McD82). It is this report which forms the basis for the simulation and

modeling code developed at Ames for the Harrier. The simulation and modeling report shows that (2.2.4)

has the form

and that (2.2.6) has the form

v=CTt§(vss. 0, p%, u¥) + ge,

0= 1}(vs5. ©, p*, uM)

2.2.10)

(2.2.11)

where g is gravitational acceleration, e, is [0, 0, 1], and v, is the wind-adjusted body coordinates of air-

craft velocity. That is, v, = Cvar with v = (v-v,) where v, is the runway-fixed coordinates of wind

velocity. Figure 2.2.1 is a detailed block diagram of the natural model of the Harrier.

M

| -S—

fBM

VAB

i

‘ ] 8e3
CT' \4 v
C O,

[ ° =

Figure 2.2.1 Natral Model of Harrier Aircraft

C



§ 2.3 Brunovsky Canonical Model

In this section, the Brunovsky canonical representation of the Harrier model is presented. First, the
basic concept of the Brunovsky form is introduced and the typical characterization as strings of integrators
is given [Ford83], [DeLuc87). Then, these concepts are specialized to the Harrier model to provide a com-

plete description of the canonical model of Figure 2.1.1.

The Brunovsky canonical form is a realization of a controllable linear system given by
y=Ay+Bw, ye R",we R" . (2.3.1)
where:

A = block diagonal [A,,.. ., A,]

B = block diagonal [B,,...,B,]

010...0] 0]
001...0 0

A;= i By = i=1,...,m
000...1 0
pOO...OJ(n,g) 1]z

The integers x; fori=1,... » m are the orders of blocks A; and are called the Kronecker indices of the
system (in the literature, the term “controllability indices” is often used as well). Note that f';x, =n and
that we order the x; by the rule x; 2%, 2. .. 2 x,,. Note also that

rank [B,AB, ..., A™'B]=n
as required by controllability.

For the characterization of the Brunovsky canonical form as m decoupled strings or channels of

integrators, consider the following partition of the state vector y:

y=bl--'y:. Iys.+l-'-y:g ... ly.r...+1°°-y:.]T (232)

i
where 5; = ¥ x;.
j=l



Note thatfori=1,...,mandforj=1,...,s,,

. yj#l .’ S
YVi=1w j=s (2.3.3)

Thus, it is apparent from (2.3.2) and (2.3.3) that the Brunovsky canonical form yields m strings or channcls
of integrators decoupled from each other where string i is x; integrators long with w; as input to the first
integrator, y,, as output of the first intcgrator/input to the second integrator, ..., y, . as output of the m-th

integrator of the string (see Figure 2.3.1).

Y4 ys1 ysi -1 Y it ys:_ +1
L — -® -
Figure 2.3.1 itP string of X, integrators where @ represents an integrator.

The following example illustrates the Brunovsky canonical form (see Figure 2.3.2).

EXAMPLE (2.3.1):

yeR%;we R?
K1=3,K2=2,Bndl(3=l
note X; 2xX;2xK3and K, + K, + K3=6=n

s,=3.sz=5,ands3=6
010000] Jooo]
001000/ 000
. loooooo 100
Y=looooi1o/*loool[*
000000| [o10
ooooo% 001




Harrier Brunovsky Model
The Bruno{/sky canonical modc! for the Harrier is illustrated in Figure 2.3.3. Note that
n=16,m=35,
K|=K=K3=4,K=Ks=2

Sl=4.32=8,53= 12,84= 14.

ands5=l6.
! Y ¥y Y
—9 9 o— — string 1
Y2 ¥ Yq
- @ —l — string 2
w Y
3 @ sﬁ string 3

Figure 2.3.2 Brunovsky Canonical form for Example (2.3.1)

w, Yy Yy Yy Yy
! 4
—l). —l)- 3 - 2 9 1 — (1) longitudinal channel
w Yy y Yy Yy
2 ———9 ! —° P S (2) lateral channel
w y Yy y Yy
2 - 12 ——— o P § (3) vertical channel
¥ Y14 Y13 (4) yaw channel
- —— _— yaw channe
w
5 Y16 PY Y15 (5) pitch/nozzle channel
-0 — p nozzle channe

Figgre 2.3.3 Harrier Brunovsky Canonical Model represented as five decoupled
strings of ‘integrators.

The following are the characterizations of the S channels of integrators of the model:

Channel (1):
Corresponds to the runway-fixed 1-axis component of position (y,), velocity (y,), acceleration (y,),
acceleration rate (y 4), and rate of acceleration rate (w i

Channel (2):
Corresponds to the runway-fixed 2-axis component of position (ys), velocity (y¢), acceleration o).

acceleration rate (ys), and rate of acceleration rate (w 25



-10-

Channel (3):
Corresponds to the runway-fixed 3-axis component of position (yo), velocity (y,o), acceleration
(r 11), acceleration rate (y 1), and rate of acceleration rate (w 2
Channel (4):
Corresponds to the yaw angle ( 1), the yaw angie rate (714) and the yaw angle acceleration (w ,);
Channel (5):
Corresponds to the pitch angle or the nozzle angle (715), the pitch angle rate or nozzle angle rate
(71¢)» and the pitch angle acceleration or nozzle angle acceleration (w¢). So, this channel is either a
pitch channel or a nozzle channel. This is a consequence of the convention that for the Harrier that
either pitch is commanded or nozzle is commanded. This will be clarified in the discussion of

transformations T and W.

Model Law Generation

In Fig. 2.1.1, the model law generation system is shown as a subsystem of the Brunovsky canonical
form block. The model law block requires an initial condition for the Brunovsky state and control ( r° in
Fig. 2.1.1) as well as an endpoint condition on the Brunovsky state and control ( r' in Fig. 2.1.1) along with
initial and final time values and generates polynomial expansions in time ¢ of the time history trajectories
for each of the channels of the Brunovsky form. The model law generation algorithm is summarized as

follows. The given data is to, by, ¥(8,), W(t,), y(¢; ), and w(t;). A function s(r)=y,(r) is defined for
' 9

i=1,5,9,13,15. Fori=1,5,9,5(t)= Y a;t‘. Differentiate s(t) four times and apply the initial and
. j=0

final conditions to yield a system of ten linearly independent equations in ten unknowns, aga,, ...,a,.

The time history of channels 1, 2, and 3 is completely specified by solving for ag a, ..., a, for each

5.
channel. Fori =13,15,5(t)= 2 a;t'. Differentiate s (¢) twice and apply the initial and final conditions to
Jj=0

yield a system of six linearly independent equations in six unknowns, @q 4@, ...,as. The time time his-

tory of channels 4 and 5 is completely specified by solving for aga ,.'. . .» as for each channel.
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Thus, out of the model law generation pops the canonical control w and the canonical state y for all

values of time in the given time interval . t)-

§ 2.4 Transformation Maps, T and W

In this section, the transformation of multi-input nonlinear systems of the form

k= f(x,0) + 3 giu; @4.1)

to the linear Brunovsky canonical form is considered. The transformation of linear systems to Brunovsky
canonical form is illustrated by way of an example. The necessary and sufficient conditions for the
existence of a transformation for the general nonlinear case are then considered and a demonstrative exam-
ple is given. Lastly, the transformation of the Harrier natural model to its Brunovsky canonical model is
discussed (j.e., the T and W maps of Fig. 2.1.1 are formalized).

Any constant linear controllable system can be transformed to Brunovsky canonical form. That is,

for the linear system
x=Ax+Bu (242)

with (A, B) controllable, there exists a nonsingular transformation matrix T such that

I

y=Ay+Bw 2.4.4)

where (A, B) are in Brunovsky form. Consider the following example of a system of the form (2.4.2):

EXAMPLE (24.1):
10 20 3.0 0 O
x= [-0.5 -1.0 -1.5 |x+ (1.0 3.0 |u (2.4.5)
0 0 o 0 20

0 0 20000
rank [B | AB | A*B) =rank (1.0 -3.0 1.0 0 0 0|=3=n therefore, (A, B) in (2.4.5) controllable;
0 20 0 000
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1000 0O
1230 0
for T := block diagonal [T,,TJ= 001 0 0 |:
00005 0
000 0 05]
[1 0 0 0 0
-0505-15 0 0
T :=block diagonal [TZL,T;=|0 0 1 0 0
0 0 0 200
[0 0 0 0 20

010 00
A=TAT?=[000(; B=TBT,= |1 0
000 01

and, thmfm, yYi=xp yz=x1+2xz+3xg, Y3=Xx3, W1=0.5ul, W2=0.5u2, andi"—“AY‘i'BW.

o

Necessary and Sufficient Conditions for Existence of Linearizing Transformations

The transformation of a nonlinear system described by
x =F(x, u) (2.4.6)

into a Brunovsky form is not, in general, possible. From a heuristic point of view, when the system (2.4.6)
can be linearized (i.e., transformed to the Brunovsky canonical form under a mapping T(x, u)), the non-
linearities of (2.4.6) are said to be non-intrinsic: that is, they are the unfortunate result of a modeling

scheme which failed to recognize the inherent linear nature of the system.

There are four conditions to check for (2.4.6) to be linearizable. First, it is necessary to construct a

one-to-one, invertible function h so as to define a new control variable ii such that
d=h7(x,u) (24.7)

u= h(x,d) (2.4.8)
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and

F(x, h(x, ) = 1) + Tg (x)i* (2.49)

is]
The interpretation of (2.4.9) is that the new control variable @& enters linearly into the field F(x, h(x, i)).

The remaining three conditions, the so-called Hunt-Su conditions, follow from results in differential
geometry and are best given in terms of Lie brackets defined as follows.

IffandgareC"vecmrﬁeldsonR",thel.iebtacketoffandgis
_9g, of
[f, g axf g (2.4.10)

and the following relationships are defined recursively:

(ad%,g)=g
(ad'f,g)=1f,g]
(ad™f, g) = [1,If, g])

(ad*f, g) = [f,(ad*1.g)].

For an application of the Lie bracket, note that the involutivity of a set of vector fields is verified
using the Lie bracket. A set of C* vector fields by, b, ...,h, on R" is said to be involutive if there exist

C* functions Yijk with
r
iyl = Syphy, 14,/ Sr,i %) @.4.11)
k=1

To consider the transformation of (2.4.9) to the Brunovsky canonical form with Kronecker indices

K1 2K; 2. .. 2K, define the following sets:
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= {s:- fogd....@d" " f,g). 8 (0g5),....@d" ', 8),....8n [F.8n) ..., (@d™ "', g,) }

C;= {g,. (f.g.....@d" 1, g)). 82 [f  8o) ... @Y "y g),.... 80 [ &), .. .. (ad™ ", g,) }

for

i=4L2,....m.

Define the set X ¢ R* to consist of all n-tuples for which f and g are defined. An n-tuple x € X is said to
be admissable. Then it can be shown [HSMmi] that the transformation is possible if and only if at each
admissable x,

1. The set C spans an n-dimensional space;

2. Each C; isinvolutive for j = 1,2,...,m;

3. ThespanoijequalsthespanofC,-nCforj=l.2....,m.
For a linear system of the form (2.4.2), the spanning condition (1) on C is exactly the controllability condi-
tion and conditions (2) and (3) are satisified immediately.

Consider the following illustrative example [HSMmi):

EXAMPLE (24.2):
J.E' [ sin(xy) ] 0] 0]
X sin(x3) 0 0
X3 (= x3 + [1|uy+ [0 |u,
%4| |xs+xi-x10| [0 1
o o] o]
X5 L J -

thus X =1 + g,u, + gou,. Making the necessary computations, it is clear that

[ 0 ] cos(x2)cos(x3) ] 0]

—Ccos(x 3) 0 0
fgl=] 0 |, (ad¥g)= 0  [fgd=[0];

0 0 1

0 | 0 0]

hence, C ={g1, (.8, (ad*f.g,), g, [f,gz]} spans a S-dimensional space on the set
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V= {(x,'xzxa.x.,.xs):—l;-<xzx3<§}. The appropriate Kronecker indices in this case are x, =3

and Ky = 2. Note that C lﬁC = {gl’ [fvgl]' 82 [f,gz]}is involutive since

[g.fgll=| O

and all other Lie brackets vanish, and C,\C = {g,. gz}is trivially involutive. Therefore, there exists a

transformation which maps the original nonlinear system to the appropriate Brunovsky canonical form.

a

General Comments Regarding Linearization

It can be shown that the construction of the transformation map T is equivalent to the solution of an
over-determined system of partial differential equations (HSMmi]. This system of partial differential equa-
tions falls out of the proof for the existence of linearizing transformations for systems satisfying the lineari-
zation conditions. However, the control system designer who hopes to construct the transformation T by a
precise application of the theory faces one serious limitation: for aircraft with complicated nonlinear
dynamics, the functions f and g of (2.4.9) typically do not have smooth, analytic forms. As is the case with
the Harrier, all that the designer has to work with is a highly de:ailed simulation model based on relation-
ships represented by look-up tables generated from three sources of increasing accuracy: (i) computer-
aided aircraft design results; (ii) wind tunnel test results both on small-scale and full-scale models; and (iii)
flight test results. It is not possible, then, to check the Hunt-Su linearization conditions and, consequently,
determine the precise transformation T. Thus, the control system designer needs to be led by sound
engineering judgement in applying and developing an approximation to the true transformation theory. In
[MSHS82), [MSH83G], and [MSHS83C], such was the approach taken for the design of a helicopter

automatic pilot. This approach is specialized to the Harrier in the remainder of this section.
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Note that for systems which can be accurately modeled by smooth, analytic functions, computer pro-
grams written in MACSYMA do exist which perform, symbolically, the necessary computations needed to
verify the Hunt-Su conditions [Blank]. Also, at UC-Berkeley, a similar program is under development
[TeelMS] with the hope of devising a means for approximately verifying Hunt-Su-like conditions via cal-
culations done on a sophisticated and highly accurate smooth nonlinear model of the plant dynamics (e.g.,
tensor product spline functions as discussed in Chapter 3 of this report).

The approximation method used in the application of the transformation theory is based on the fol-
lowing premise: given a commanded trajectory (ie., given r° and r* of Fig. 2.1.1 and the resulting trajec-
tories generated by the Model Law block of Fig. 2.1.1), and the corresponding normalized forces and
moments acting on the aircraft (v and o, respectively, of Fig. 2.2.1), we are able to -- under a reasonable
set of assumptions -- invert the force and moment equations thus solving for the time history of the aircraft
natural controls which will generate the commanded state trajectories. In this regard, the selected forces
and moments calculated in the inversion process are interpreted as new independent controls for the sys-
tem. Recasting the state equations in terms of these new controls yields a set of equations which are inter-
preted as the standard trim equations for aircraft state and control. Recalling that we have normalized mass
andthemomemsofthehwﬁaof&eahuaﬂmmﬁw,wedeheﬂkmmtrim to mean a balance between
desired accelerations and the actual forces and moments acting on the aircraft and we define those equa-
tions used to strike this balance the trim equations. Further, we define the commanded forces and
moments to be the trim conditions and the corresponding controls (solved for in the trim process) the

trim variables. Approximate T and W maps can then constructed.

Harrier Trim Equations and TW Maps

Consider equations (2.2.10) and (2.2.11). Six trim conditions (three components of force and three
moments) can be commanded. Eight quantities are free to be specified in such a way as to achieve the trim
conditions: the five control conditions (taken as the moment controls u™ and the power positions p') and
the aircraft attitude (as specified by the three Euler angles represented by the direction cosine matrix C) are

taken as the trim variables where the values of these .variables are to be such that they achieve the
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commanded forces and moments. To achieve a square system (i.e, same number of trim conditions as trim
variables), two additional trim conditions need to be specified. The convention for assigning the additional
trim conditions has resulted in two distinct modes of operation for the Harrier: the nozzle free mode called
Mode 1 and the nozzle commanded mode called Mode 2. Mode 1 leads to an eight degree-of-freedom trim
while Mode 2 results in a seven degree-of-freedom trim. Refering to the Brunovsky canonical model for
the Harrier (see Fig. 2.3.3), Mode 1 corresponds to the fifth channel as a pitch channel while Mode 2

corresponds to the nozzle channel interpretation of channel (5).

Mode 1 operation, the nozzle free mode, is characterized by the specification of commanded pitch
angle, 6,(¢), and commanded yaw angle, \.(t), as well as commanded moments, (;)c (¢), and commanded
forces, V. (¢). The nozzle angle p; is free to be used in the trim process along with uM, C, and p ! Thus,

there are eight trim variables and eight trim conditions for an eight degree-of-freedom trim.

Mode 2 operation, the nozzle commanded mode, is characterized by the specification of commanded
nozzle angle, .(¢), and commanded yaw angle, y,(¢) as well as commanded moments, d)c (¢), and forces,
v.(t). The nozzle angle p4 is commanded and, therefore, is not available as a trim variable. That ig, over
the ime interval of interest, p; (¢) is known. Thus, the trim operation becomes a seven degree-of-freedom
trim of the moments control, the throttle position, and the attitude. Adttention is restricted to Mode 2 opera-

tion of the Harrier for the balance of the report.

As motivation for determining a new independent control variable as in (2.4.7), so as to fascilitate
the required trim operation, consider two special cases of commanded nozzle angle: (i) n.(z) = 90° for all ¢

and (ii) n.(¢) = 0° for all 1. Define

=

2.4.12)

(=13
I
B OR,
w )
I
—
s e
| I |

Uy
where v. is vp 5 for case (i) and v. is vy ; for case (ii). In either case, (2.2.11) is invertible with respect to

the pair [(iy, i 5, i), uM]; that is, for specified normalized moments C;J, (2.2.11) can be inverted to solve

for the moment controls u™. Recalling that p1 is the throttle position, we note that in either case, (2.2.10)
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is invertible with respect to the pair [®, pil. Thatis, for case (i), (2.2.10) is invertible with respect to the
pair [V 3, p 1 ] (where vy 5 is the body 3-axis component of translational acceleration) while for case (ii) it
is invertible with repsect to the pair Vs 1, P11 (Where vy 1 1s the body 1-axis component of translational
acceleration).

Observe that in both (i) and (ii), v. is in the direction of the nozzle 1-axis. This suggests that in the
general case v. is vy, the nozzle 1-axis of acceleration. Therefore, in the general case, (2.2.10) expressed
in nozzle coordinates is invertible with respect to the pair [V, p !]. Thus the specification of @ is com-

plete with i, taken to be vy ; and a function h': R x R* x R* — R* can be constructed such that
L Ry .
pil= h'(vsp, 0, 1) (2.4.13)

With i as the new vector of independent controls, the state equation (2.2.4), expressed in the nozzle

coordinate frame, becomes

Vy =iy (2.4.14)

VN2
= fN(Va) + EfN(Vz, @, ) (2.4.15)

3
where £ =1 and fg, representing parasitic effects, is such that f(v,z, 0, 0)=0. In (2.4.15) we know vy, ,
and vy 3 and we also know y and Vag- Therefore, a function h%: R? x R? x SO (2) — SO (3) can be con-

structed so that the aircraft attitude given by
Ce = W’(vpp, BY M. WV eryeo EF (W) (24.16)

results in the commanded acceleration, Vavye- Note that C, is the aircraft attitude which is used to calculate

Vag from v,z; v,p is then used in fy of (2.4.15) to yield the commanded nozzle axes accelerations.

Equations (2.4.13) and (2.4.16) are the trim equations for the aircraft without the parasitic effects
(ie, €=01in (2.3.15)). That is, for a given motion [r(¢), w(t), n(¢)], ¢t 20 and corresponding commanded

moments and forces, the trim and controls are computed as follows:

r.=r() (24.17)
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v, =¥(t) (2.4.18)
C. = b*(Virse, EX(Me)¥orye, EF (W, (1)) (24.19)
@, =¢(C.()CT1) (2.4.20)
@, = [y, 85, )" 2.421)
T .
[pl‘] =h!(C.Vyuy., 0, B) (24.22)

where the function ¢ (-) extracts © from S(w) = CCT. The time derivatives required in the above calcula-
tions are computable because of the selection of the Brunovsky canonical model for the Harrier (see Fig.

2.3.3) and the model law generation process as described at the end of section 2.3.

The transformation which changes the natural representation of the Harrier to the Brunovsky canoni-

cal representation is a follows. The coordinate change T(x) is given by the following equations:

Duysydl =r (24.23)
D2Yeyid =v (2.424)
D3 Y0 Y1 Y1al = [On 10 F10F82)Con” Cra”» EXy)IT (2.4.25)
B Y3712 71" = (o CanCanliv 0 £ B S 0, ol (24.26)
15, 716" = [E£(8), )" @4.27)

The control variable change, u = W(y, w), is given in two steps:

Step 1: determine ® and vy, by
. 0 . -
0= (ECRBCBN(VN.hf N1 SN2 Wy, wa, walT (2.4.28)
w1 =(CrnaCary3 y7. ¥ 11" (2.4.29)

Step 2: calculate uM and p | by

I.IM
[p 1] =h'(vs3, 0, &). (2.4.30)
1
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Note that the effects of the various approximations made in the contruction of these transformations are

relegated to the regulator.

§ 2.5 Linear Regulator, Ko(ey,wo)

As the details of the regulator block of Fig. 2.1.1 for the Harrier control system design are quite simi-
lar to those for the helicopter control system design considered in [MSHS2), [HSMmi), [MSH83G], and
[MSH83C] and as these details add little useful background supporting the balance of the report, they are
omitted. |

The general contruction of the regulator follows that of the decoupled strings of the Brunovsky
canonical form. That is, the error in each channel of the Brunovsky form of the Harrier is regulated
independently. For each channel, the commanded canonical states are compared with the current estimates
as computed from the T-map given by (2.4.23) through (2.4.27). The sum of these state €ITOrS, appropri-
ately weighted, is taken as the correction term for the Brunovsky control variable for that channel. In this
way, the total regulator output 8w is constructed and added to the open-loop command w,, resulting in the
total canonical control w (see Fig. 2.1.1). The control w is then transformed by means of the W-map given

by (2.4.28) through (2.4.30) into the natural control u which, in turn, drives the actual plant.
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CHAPTER 3 — Nonlinear Modeling of Force and Moment Equations

§ 3.1 Introduction

In this chapter, the techniques used to determine a smooth nonlinear model of the Harrier simulation model
are presented. The force and moment equations (i.e., (2.2.10) and (2.2.11)) are modeled as four dimen-
sional tensor product spline functions of the roll, pitch, yaw commands, and throttle position, parameter-
ized by wind-adjusted body coordinates of translational velocity, body coordinates of angular velocity, and
nozzle angle. That is, for nominal values of v,3, ®, and p3, (2.2.10), expressed in the nozzle coordinate
frame, is interpolated with a three dimensional vector of tensor product spline functions denoted by
m§(u™, p!) and (2.2.11) is interpolated with a three dimensional vector of tensor spline product functions
denoted by mg*(u™, p ). Each of the six tensor product spline functions is a four dimensional interpolant
of spline order three (i.e., polynomial order two) in each dimension.

In the subsequent sections of this chapter, the theory of spline representations of piecewise polyno-
mial functions as well as the application of this theory to the approximation of functions of several vari-
ables via tensor products is discussed. The software which implements the tensor product function model-
ing is then discussed and the modeling of (2.2.10) and (2.2.11) is presented in detail along with a compara-

tive view of this tensor product spline model to the full simulation model.

§ 3.2 Tensor Product Spline Functions

Before presenting the formal definition of tensor product spline functions, several fundamental
notions need to be introduced [deBr78],{deBr79].

Spline functions are representations of piecewise polynomial functions by linear combinations of
basis spline functions. For the formal definition of a piecewise polynomial (pp) function, consider the
strictly increasing finite sequence of points {:=({;){*! cRandletke N. If p,,p,, ... ,pi is any
sequence of / polynomials, each of order k (i.e., degree < k1), then a piecewise polynomial (pp) function

f of order k is any possibly discontinuous function or efined by

f@) =pkx) if G<x <y, i=12,...,1L @32.1)
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The &; are called breakpoints and often the function £ is extended such that

(3.2.2)

pix) if x<;
Fx)= pi(x) if §y<x

EXAMPLE (3.2.1) - discontinuous pp function

I=3,k=4,=(0,10,5.0,10.0), p, =x*+x+6, p, = x>~2, and p5 = 3x+1, 50

x4x46 0<x <1
f&)=4 x%2 1<x<5
3x+1 S<x<10

Note that p,(1)#p,(1) and p,(5)#ps(5), so f(x) is not continious at x=1 and x=5.

m]
EXAMPLE (3.2.2) - continuous pp function
I=4,k=3,0=(0,10,20,3.0,4.0), p, =x*x - 6, p, = x?~5x, p3 =—3x, and p, = x2-18, s0
x%x-6 0<x <1
x%5x 1<x <2
F&®=1 3x 2<x a3
x2-18 3<x<4
Note that pi(1)=py(1), py2)=ps2), and psB)=psB), so f(x) is continuous.
]

Note that the linear space of pp functions of order k with breakpoint sequence { is denoted by IPy ;. The
linear subspace of Py consisting of those elements which satisfy continuity conditions specified by the
finite nonnegative integer sequence v is denoted by IPyr. Note that the i % element of the sequence v is
the required continuity condition at {;. For f € IP,,, V; = j means that at breakpoint {;, f ® is con-
tinwous forn =1, ..., j.

For the definition of the k'™ divided difference of a pp function f at the points t;, T;y, . . . , Tipss
consider the polynomial p of order k + 1 which agrees with f at the points 1; 7;,4,. .., T;4x. The word
"agrees” in the above definition has the following interpretation: for the finite sequence of points

T=Ti» Ti41s - - - » Tip» the polynomial p is said to agree with function f on these points if there is m;—fold
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agreement at each of the points t; , where m; is the number of times the number T; appears in the finite

sequence T and where m;—fold agreement at 1; is given by the condition
p(j-l)(fi) =f0'n(‘t‘-) for j = l. Y (TR (3.2.3)

The k™ divided difference of f at points T;,T;,y,. .., Ty is the leading coefficient of p (i.e., the

coefficient of x* ) and is denoted by
[T," Tisle« - - 1Tiaglf - 32.4)

EXAMPLE (3.2.3) - divided difference calculation
Consider the piecewise polynomial f (x) from EXAMPLE (3.2.1) and let i = 1, k=2, 1,=(2.0)"2, and
T =13=6.0 so that f (7)) =0, f (t)=19, and f“(t,)=3. Denote p(x) by p(x)=ax?a,x+a, The
second divided difference of f at the points 1,, T, T; is found by solving

4 2 12]|a62 0

166 1 ||a,|= |19

121 0 J|g, 3
for a,a,,a,. Doing so  yields a,=-03684 and, clearly, [1,2,2)f =a,.

O

Consider next a nondecreasing sequence t of real numbers. For the following definition, t is said to
be the knot sequence. The i (nmormalized) basis spline or B—spline of order £ for knot sequence t is

denoted by B; ., (often shortened to B;) and is defined by the rule

Big o) = (i = 1), . . 1102) 0t — 2)E (3.2.5)
forall x eR. Note that (f — x), is the notation for function truncation. That is,
(t -x), =max(0,7 -x). . (3.2.6)

Thus, i* order B-splines are viewed as appropriately scaled i divided differences of the truncated power
function.
EXAMPLE (3.2.4) - B-spline calculation

Letk=3,i=1,t;=1,1,=2,¢3=3, t,=4 so that the 1* normalized B-spline for knot sequence t = (f;)}



is
B, (x)=(ta=t))t1, 2 ta, 14)(t — x)?
For x = 2, we determine
B12:2)= ()1, 2,3,41¢ - x)?

To do so, denote (¢ -x)? by f(r) and let p(r) demote p(t)=ast+a,t%a,t+a, Observe that
F@)=f(t)=0,f(ts)=1,and f(t)=4. Evaluating p(¢) at t,, t,, t5, 4 yields the following system of

linear algebraic equations in a5, a,,a,,a,

1 111]|%3 Jo
8 421]|le2] Jo
27 9 31|la;|™ I
64164 1|5, |4

Solving the system of equations yields a;=0.0811 and, therefore, [1,2, 3,4)(t -2)2=0.0811. Thus,
B13,(2)=(3X0.0811)=02342. Making this calculation for all xe R specifies B 3,(x).
' 0

Every space Py, has a basis consisting of such B-splines. The Curry-Schoenberg theorem gives
conditions on the knot sequence t in terms of the breakpoint sequence { and the continuity condition
sequence v which guarantee the existence of n B-splines of order k for knot sequence t which form a basis
for the n~dimensional space Py,

Curry ~- Schoenberg Theorem: '

For a given strictly increasing sequence { :=({;){*! and a given non-negative integer sequence

v = (v;); with v; <k for all , set

! i
n=k+ Sk -v) =kl - TV, = dim Py, (32.7)
i=2 i=2

and let t := (1;)] * * be any nondecreasing sequence so that
(i)IISIZS.. S Sgl andC,...ISt,,.,.lS. o Slyps

@ii) fori =2,..., !, the number {; occurs exactly k —v; timesin t.
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Then, the sequence B, By, . . . , By, Of B-splines of order k for the knot sequence t is a basis

for Py, on the interval [¢, ¢, . ,].

Comments

-Notematmedimensionalityofn’%visspeciﬁedinwmsofk and v.

* Note also that the number of continuity conditions at breakpoint {; plus the number of knots placed at {;
must equal £, the B-spline order. Clearly, then, fewer knots at a breakpoint comresponds to greater smooth-
ness there (i.e., more continuity).

* The finite sequence v is extended to include endpoint continuity conditions (v, and v,,) which are identi-
cally zero. This is consistent with the fact that the B-spline basis provides a valid representation for ele-

ments of IPy ¢, only on the interval (4 4,,,].

A spline function of order k with knot sequence t is any linear combination of B-splines of order k

for knot sequence t. The collection of all such functions is denoted by $;,. In symbols,
$,‘,:={}:;a,B‘*,Ia,-eRforaIlieN}. (3.2.8)

The B-representation for function f € IP, ¢, is a spline function representation for f which consists of

(i) the integers k and n, respectively giving the order of f (as a piecewise polynomial function) and

I+
the number of linear parameters (i.e., n =kl — 2Vi=dimP, r, where v; =v,,; =0 meaning no
i=0

continuity conditions at the end points);
(ii) the sequence t = (1;){** containing the knots (possibly partially coincident and constructed from
€ and v as in the Curry-Schoenberg theorem) in increasing order;
(iii) the vector o= (0;){* of coefficients of f with respect to the B-splines basis (B;); for Py on
knot sequence t.

The B-representation for f (-) is denoted by m (-). Thus, the value of f atapointx € [1,1,,,] as given by

its B-representation is

m(x)= ia.;Bi(x ). (3.2.9)

i=]
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The o; are determined from the n linearly independent equations which result from knowledge of the value
of f at n distinct values of x. That is, given a set of n distinct data points for f, (3.2.9) generates n
linearly independent equations in the o; (note that the B-spline functions B; are known and are determined

in accordance with the Curry-Schoenberg theorem).

EXAMPLE (3.2.5) - B-representation for EXAMPLE (3.2.2)
From EXAMPLE (322), I=4, k=3, {=(0,1,2,3,4) and v=(01,1, 1,0). Therefore,

9
n =4)(3)-3)=9 and m(x)= ¥ a;B;(x). The knot sequence is n + k = 12 long. The knots ¢,, t,, t5 are

i=]
placed at the endpoint {,, knots 1, ¢, are placed at {,, knots ts, t ¢ are placed at {5, knots ¢, ¢ 5 are placed at
G4, and knots g, 21, 1, are placed at the endpoint Cs. Forx =x;,fori =1,2,...,n, make the following
calculations

By(x;) = (b ~ 0) 1, 82, 83, 8}t —x;)2fOr j=1,2,... .9

Evaluating f (x) for x = x; yields the following system of nine linear algebraic equations in the nine unk-

nowns, oy, 0, . .., 0y

D
f&x)] o]
f(x2) o,

f (x9) Oy ]
where

’.Bl(xl) By(xy) . .. Bg(x))
By(x) By(x)) . .. By(xp)

B](Ig) Bz(Xg) P Bg(I9)J

Solving for the o; completes the construcion of the B-representation for f(x).

O
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Extension of B-representation to multivariate case

Consider U, a linear space of functions defined on some set X, into R , and V, a linear space of func-
tions defined on some set X, into IR. For each u € Uandve V, define w(-,;) o be the

tensor product of u with v where
w(x, %) =ux vy, ¥(x;,x)) e X,xX,. (3.2.10)

The tensor product of U with V is the set of all finite linear combinations of functions w(-,’) on X;xX, for

some u € U and for some ve V.

The extension of the B-representation to scalar-valued functions of several variables is made by con-
sidering finite linear combinations of the tensor product of B-spline functions of single variables. For
example, the representation of a two-dimensional function f(x1,x5) isby m(x,, x,) where

mxy, x)= 3 T oy )V () (3:2.11)

i=ljal
with U;() and V;(:) one-dimensional B-spline functions on the knot sequences t':= @H* and

2 := (1P, respectively.

Comments

* Note that (3.2.11) holds for (x, x) € T,xt, where 1, := (#,» t,+1] and where T, =4, #, 1)

* The dimensionality and order of the tensor product spline (3.2.11) in x, need not agree with that in x,.
That is, in general, n, # n,and k, # k,.

* In order to completely specify (3.2.11), the n 1% 2 unknowns o;; need to be found. The necessary nyXn,
linearly indepedent equations which yield the ay; are specified by a set of n,xn , distinct data points for f

where for each of n, distinct x, values, f(x,,") is evaluated at » 2 distinct values of x,. That is, a grid of
nXn  data points of f is constructed for a set of ordered pairs (x1,x5) for n, distinct values of x, by a set
of n, distinct values of x,,

* It is instructive to observe that (3.2.11) for fixed x reduces to (3.2.9) where x =x, and for fixed x,,

(3.2.11) reduces to (3.2.9) where x =x,.
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Extensions of the above to higher dimensions follow mutatis mutandis. Note that four dimensional
tensor product splines are used to model Harrier force and moment equations. That is, functions of the

form

Ry Rz Ry R,

mxx225x0=F ¥ ¥ T amUx)UAxIUR U (x4) (3.2.12)

isljzlk=]ln]

are used to build smooth nonlinear models for the Harrier force and moment equations.

Comments

* It should be clear to the reader that the functions U;!(-), UA), U(), and U;*() are one dimensional B-
splines defined on the knot sequences t':= (ta){™*, € = 1P, £ 1= (2P, and t* = (1) P+,
respectively.

* The dimensionality and order of the tensor product spline (3.2.12) in x; need not agree with that in x; for
i#jfori,j=1,2,3,4. Thatis,in general, n; # n; and k; =k, fori, j = 1,2, 3, 4.

* The complete specification of (3:2.12) requires the determination of the nyXn xXngxn, B-spline
coefficients, o;3;. A grid of data points for f is constructed for a set of n, distinct values of x, by n,dis-
tinct values of x, by n, distinct values of x3 by n, distinct values of x4 In this way, RXR XA XN 4
linearly independent equations in o are specified and determination of the values of oy follows.

* Note that for fixed x;,x;,%,, (3.2.12) reduces to (32.9) with x =x where i#j#k=#! for
i,j,k,1=1,2,3,4, Thatis, freezing three of the variables in (32.12) reduces it to a one-dimensional B-

spline representation.

§ 3.3 Tensor Product Spline Software

FORTRAN subroutines for spline and tensor spline calculations exist and are contained in the
BSPLINE and TENSORBS libraries. The code used to determine multidimensional tensor product spline
interpolant functions and to evaluate these interpolants and/or existing partial derivatives of the interpolants
was written by William Nye [Nye86]. Nye's program is a generalization of the two-dimensional and

three-dimensional versions written by Ronald Boisvert [Bois82] which were, in turn, the result of
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Boisvert’s re-vision and extension of code written by Carl deBoor [deBr78). The code is in the public

domain and is, therefore, readily available.

In this section, the structure and purpose of the subroutines used in multidimensional tensor product
interpolation and evaluation are given as a prelude to discussing the code used to generate the relevant Har-
rier models. The routines of interest are BNINK, BNFAC, BTPCF, BKNOT, BNSLV, and BNVAE. Note
that in the paragraphs which follow, the symbol "*" is used to mdlcate scalar multiplication as is the FOR-
TRAN convention and FORTRAN-like notation is used when refering to variables and arrays used in the
relevant subroutines. Further, for the sake of illustration, FORTRAN pseudo-code is given; that is, expres-
sions which are approximately FORTRAN statements are made so as to better explain the operation- of the

subroutines of interest.

The subroutine BNINK determines the n-dimensional k-order tensor spline interpolant function for
the given grid of data. Note that in the name "BNINK" B stands for B-represeatation; N, the dimensional-
ity of the function; and INK, for k-th order interpolant. The I/O (i.e, input/output) listing for BNINK is as

follows
BNINK(N, X, NX, FCN, KX, TX, BCOEF, WORK, IFLAG)

where the input/output variables are
N: input integer scalar representing the number of dimensions;
X: input real one-dimensional array of size NX(1)+NX(2)+...+NX(N) containing adjacent vectors of
x-abcissae;
NX: input integer array of size N with each entry greater than or equal to 3 and with NX(m) being
the number of abcissae in the x,, direction;
FCN: input real one-dimensional array of size NX(1)*NX(2)*...*NX(N) containing adjacent cross-
product row-major-order function values to interpolate; for example, consider the four-dimensional
case where the function values at (x,(i), x ,(j ), X3(k), x4(1)) are stored in a four dimensional array
VAL, j, k, 1) then the following pseudo-code describes how the one-dimensional array FCN is
loaded:
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M=0
DOL=14
DOK=14
DOJ=14
DOI=14
M=M+1
FCNM) = VALQJK,L)
END DO
END DO
END DO
END DO

KX: input integer array of size N where KX(m) is the order of the spline pieces in the x,, direction

and where KX(m) must be at least 2 and is less than NX(m);

TX: input/output real one-dimensional array of size NX(1)+KX(1)}+..4+NX(m)}+KX(m) containing

the knot sequences for each direction, where the NX(m)+KX(m) long knot sequence for direction x,,

is loaded in TX starting at TX(1-+(NX(1)+KX(1)+...+NX(m-1)+KX(m-1)); note that if IFLAG is set

to 0 on input, the knot sequences are chosen by BNINK as given by BKNOT while an input IFLAG

of 1 means that the user has supplied as input the knot sequences in TX;

BCOEF: output real one-dimesional array of size NX(1)*NX(2)*..*NX(N) of adjacent cross-

produ;:t row-major-order coefficients of the B-spline interpolant; this may be the same array as FCN.
Note that WORK in the I/O description for BNINK represents an assortment of WORK arrays needed by
BNINK for storage and note that the integer IFLAG, on output, provides a status indication for the just

completed execution of BNINK.
BNINK makes calls to the subroutines BTPCF and BKNOT. The J/O statement for these two rou-
tines are
BTPCF(X, N, FCN, LDF, NF, T, K, BCOEF, WORK)

BKNOT(X, N, K, T).

The subroutine BKNOT is used by BNINK to choice the knot sequences to be used in the interpolant
determination process. BKNOT is called N times by BNINK, once for each direction X,,. Note that this
subroutine is not called if the user supplies the knot sequence to BNINK in array TX. In each direction x,,,
BKNOT places K (spline order in the x,, direction) knots at each endpoint as is consistent with the require-

ment that there be no continuity conditions at the endpoints. The remaining knots are placed at data points
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if N (number of of data points in the x,, direction) is even and between data points if N is odd. The knots
are stored in the array T. Note that because the routine used to evaluate the spline interpolant does so by
approaching the point from the right, the right-most knot is shifted slightly to the right to insure proper
interpolation at X(N).

The subroutine BTPCF computes B-spline interpolation coefficients for NF sets of data stored in the
array FCN and stores the coefficients in the array BCOEF. Each interpolation is based on the N abcissae
stored in the array X and the N+K knots stored in the array K. That is, the user of BTPCF supplies NF sets
of data points, each set N elements long, to BTPCF. BTPCF then calculates the B-spline coefficients for
each set of data points; that is, BTPCF fits NF B-spline interpolants as functions of X. This amounts to

solving NF equations of the form
Ax; = b, 3.3.1)

where A is a square matrix of dimension N with each element of A the appropriately evaluated B-spline
tensor product funtion, x; is an N-long vector of unknown B-spline interpolant coefficients to be solved for,
and b; is the right-hand-side N-long vector as given in FCN fori=1,2,. .., NF. Note that BTPCF solves
these NF systems of N equations in a computationally efficient manor by making use of the LU factoriza-
tion of the matrix A supplied by the subroutine BNFAC. In the LU factorization, L is a lower triangular
matrix with main diagonal entries all 1 and with entries l;; below the diagonal equal to the multiplier of
row j which is subtracted from row i during the Gaussian elimination process. The matrix U is the
coeffienct matrix which appears after elimination and before back-substitution. For each b;, one need only
solve the system given by Lc; = b; for ¢; by forward-substitution then solve the system Ux; = ¢; for x; by

backward substitution. This operation requires N2 calculations while starting from the non-factorized A

3
would require NT calculations.
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Efficient calculation of B-spline coefficients

BNINK calls BTPCF N times, each time interchanging the role of the FCN and BCOEF arrays. For
example, the pseudo-code for the determination of the B-spline interpolant coefficients for a four-
dimensional function is

CALL BTPCF(X, NX, FNC, NX(1), NX(2)*NX(3)*NX(4), TX, KX, BCOEF, WORK)

CALL BTPCF(X, NX, BCOEF, NX(2), NX( 1)*NX(3)*NX(4), TX, KX, FNC, WORK)

CALL BTPCF(X, NX, FNC, NX(3), NX(2)*NX(1)*NX@), TX, KX, BCOEF, WORK)

CALL BTPCF(X, NX, BCOEF, NX(4), NX(2)*NX(3)*NX(1), TX, KX, FNC, WORK)

DOJ =1, NX(1)*NX(2)*NX(3)*NX(4)

BCOEF(J) = FNC(J)
END DO

This is in accordance with de Boor’s method for computational efficiency in the manipulation of tensor
products. This is the main result in [deBr79] and the interested reader is directed to this reference for an

inductive proof of the generalization of the above pseudo-code.

The subroutine BNVAE evaluates the tensor product B-spline interpolant constructed by the routine
BNINK or one of the partial derivatives of the interpolant at a specified point. Note that BNVAE performs
linear extrapolation for points outside the region where the B-spline interpolant is defined. In the name
"BNVAE," the B stands for B-representation, N for dimensionality of the tensor product, VA for interpo-

lant value, and E for the linear extrapolation feature. BNVAE has the 1/O statement
BNVAE(N, XVAL, IDX, TX, NX, KX, BCOEF, WORK)

where the integer N and the arrays TX, NX, KX, and BCOEF must be unchanged from the last call to
BNINK. XVAL is a real one-dimensional array of size N where XVAL(m) is the m-th coordinate of the
evaluation point. IDX is an integer array of size N where IDX(m) is the derivative number of the interpo-
lant t evaluate along the direction x,. For example, in the four-dimensional case,
IDX(1)=IDX(2)=IDX(3)=IDX(4)=1 means evaluate the first derivative of the interpolant in each direction.
BNVAE constructs the tensor spline function from the information in NX, KX, and BCOEF. In the four

dimensional case, for example, it constructs equation (3.2.12).

§ 3.4 Harrier Force and Moment Tensor Product Spline Model
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The pseudo-code for modeling the Harrier force and moments equations as given by (2.2.10) and

(2.2.11) is as follows. We make the following comments before presenting the pseudo-code.

Comments

* The roll, pitch, and yaw commands (the pseudo-code variables X1, X2, and X3, respectively) are normal-
ized, taking on values in the interval [~1, 1]. The throttle position (X4) is normalized to the interval [0, 1].

* Let X# denote either X1, X2, X3, or X4. There are four abcissae in each array X# and they are spaced
evenly oven the appropriate interval. This comesponds to a square four-dimensional grid of 256 4-tuples
(1, X2, x3,x4).

* The order of spline in each direction is 3 (i.e., KX(m)=3 for m=1, 2, 3, 4). Therefore, there are 7 knots in
each direction, 3 at each endpoint, meaning one of the interior data points has one knot (continuity condi-
tion of 2) and the other has no knots (continuity condition of 3). We are interested in at least a continuity
condition of 2 at all interior breakpoints while using as few data points, as possible to minimize the number
of function calls. For the k=3 case, this requires that n=4.

* The subroutine SIMOD of the pseudo-code below represents YBNTRU of the true code. It returns in

TEMP the forces (in g’s) and the moments (in -:Lf) for given v,5 (VAB), @ (OMEGA), p; (NOZ), X1,

X2, X3, and X4.

* The integer NMOD is set to 1 intially for the generation of the initial tensor spline model and reset to 1
every twenty computer cycles (i.e, every second) so as to obtain a new tensor spline model. For the com-
puter cycles between model update, NMOD is set equal to 2 and a correction term Y2 - Y1 is added to the
value given by the current tensor spline model, Y. This scheme is justifiable because the velocities, both

angular and translational, and the nozzle position do not change all that much in a 1 second interval.



C create data arrays
C
DOI=14
X1(I) = -1.0 + REAL(I-1)*(2./3.)
X2(D) = X1(0)
X3(M = X201
X4(I) = 0.0 + REAL(I-1)*(1./3.)
END DO
C determine spline interpolants
C

M=0
IF (NMOD.NE.1) GOTO 99
DOI=13
SAVE(D=VAB(I)
SAVE(I+3)=OMEGA(D)
END DO
SAVE(7)=NOZ
DOL=14
DO K=14
DOJ=1,4
DOI=14
M=M+1
CALL SMOD(TEM'P,VAB,OI\EGA,NOZX1(1),X2(J)JB(K),X4(L))
: FCN1(M)=TEMP(1)
FCN2(M)=TEMP(2)
FCN3(M)=TEMP(3)
FCN4(M)=TEMP(4)
FCN5S(M)=TEMP(5)
FCN6(M)=TEMP(6)
END DO
END DO
END DO
X@L)»=X1(L)
X(@AL+4)=X2(L)
X(@L+8)=X3(L)
X(L+12)=X4(L)
NX(L)=4
KX(@L)=3
END DO
N=4
IFLAG=0
CALL BNINK(N,X,NX,FCN 1KX,TX,BCOEF,WORK,IFLAG)
CALL BNINK(N X,NX FCN2 KX, TX , BCOEF,WORK,IFLAG)
CALL BNINK(N X, NX,FCN3,KX,TX BCOEF,WORK_IFLAG)
CALL BNINK(N, »X,NX,FCN4, KX, TX,BCOEF,WORK,IFLAG)
CALL BNINK(N,X,NX,FCN5,KX,TX , BCOEF,WORK,IFLAG)
CALL BNINK(N »X.NX,FCN6,KX, TX,BCOEF,WORK,IFLAG)
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C calculate interpolant value at XVAL (NMOD.EQ.1)

Y(1)=BNVAE(N XVAL IDX,TX,NX KX,BCOEF,WORK)
Y(2)=BNVAE(N,XVAL,IDX,TX NX,KX,BCOEF,WORK)
Y(3)=BNVAE(N,XVAL,IDX,TX ,NX ,KX,BCOEF,WORK)
Y(4)=BNVAE(N,XVAL,IDX,TX,NX, KX, BCOEF,WORK)
Y(5)=BNVAE(N,XVAL,IDX,TX,NX KX BCOEF,WORK)
Y(6)=BNVAE(N,XVAL,IDX,TX ,NX, KX BCOEF,WORK)
GOTO 999

C calculate interpolant value at XVAL (NMOD.NE.1)
99 CONTINUE
Y(1)=BNVAE(N,XVAL,IDX,TX,NX KX, BCOEF,WORK)
Y(2)=BNVAE(N,XVAL,IDX,TX,NX KX BCOEF,WORK)
Y(3)=BNVAE(N XVAL,IDX,TX NX,KX,BCOEF,WORK)
Y(4)=BNVAE(N,XVALIDX,TX,NX,KX BOOEF,WORK)
Y(5)=BNVAE(N XVAL,IDX,TX ,NX, KX BCOEF,WORK)
Y(6)=BNVAE(N,XVAL,IDX,TX,NX,KX, BOOEF,WORK)
DO =13
TEMPS 1(I)=SA VE(T)
TEMPS2(T)=SAVE(1+3)
END DO
TEMPS3=SAVE(7)
CALL SIMOD(Y2,VAB,OMEGA NOZXVAL(1),XVAL(2),XV AL(3),XVAL(4))
CALL SIMOD(Y 1, TEMPS1,TEMPS2, TEMPS3,XVAL(1), XVAL(2),XVAL(3) XVAL(4))
DO I=1,6

YD=YD+Y2(0)-Y1([D)
END DO
999 CONTINUE

Extensive analysis of the tensor spline model has been conducted. The tensor spline interpolants for
many different values of vy, @, and p; were tested for many different values of u™ and p}. To be
specific,

* body 1-axis component of v, was varied from 30 ft/s to 370 ft/s with 10 fi/s increments; the body 2-axis
component, from 30 ft/s to 70 fi/s with 5 fi/s increments; the body 3-axis component, from 0 ft/s to 70 fi/s
with 5 ft/s increments;

* the components of & were varied from 0 rad/s to 1 rad/s with 0.025 increments:

* p3 was varied over its full range of values [-5°, 120°] with 10° steps.

For each set of values v,5, ®,and p 3 , the controls uM and p | were stepped through their respective inter-
vals with increment size 0.1. Data generated included the simulation model values, the tensor spline model
values, the absolute error between the two model values, and the relative errors. Typically, the relative

error between the two model values remained between 1% - 5% with results as good as 0.25% and as bad
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as 10%. For values too small for a relative error interpretation, the absolute error revealed accuracy up to

the fourth decimal place.
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CHAPTER 4 — Model Inversion Issues

§ 4.1 Introduction

For given time histories of the nozzle angle and yaw angle, the trim equations (2.4.17) through (2.4.22)
determine the the controls u™ and p and aircraft attiude C for which the commanded forces and
moments are achieved. The function h' represents the inversion of the four functions £} and £y with
Tespect to the controls u™ and p . The function b? represents the inversion of £$ and EJ'(y) with respect
to the attitude C. Performing simultaneously the indicated inversions is equivalent to solving a system of
seven nonlinear algebraic equations of the form Y(x) =0 in seven unknowns x. In this chapter, attention is

focused on the method used to solve this system of equations as specified by their tensor spline interpolant.

This method is a modification of the Powell hybrid method. The Powell hybrid method represents a
compromise between the Newton iteration and the method of steepest descent. Thus, in the subsequent
sections, the Newton method and the method of steepest descent are discussed separately. Then, the
Powell hybrid method is presented along with a discussibn of the modifications made on the method as it is
applied to the problem at hand. Also, an assesment of the method’s performance on the Harrier tensor pro-

duct spline model is given.

§4.2 Newton Method and the Method of Steepest Descent

Consider the system of n at least C! nonlinear real-valued functions Finf20). .. fa()inn vari-

’

ablesx, x5 ...,x,. Formally, define the vector-valued function

[f 1(x)7
f 2(x)
fx):=| ° @.2.1)
(X
&
where x =[x, x5,...,x,]7 and f: R* — R". We want to solve for the value(s) of x for which

f(x)=0 4.22)
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holds (i.e., the determination of the zeroes of the function f). When the function f is one-to-one and inver-

tible, this is equivalent to determining h(-) = f~}(-) and evaluating it at 0.

Newton method

The Newton method is as follows. Given a current estimate of the solution, Xi, a Taylor expansion

of f about x, truncated to the first order yields
x of; .
fi(x) ~ fi(x:) +Tx;(xj -xy;) fori=1,2,...,n “4.2.3)

Adopting the standard notation J for the Jacobian matrix, define

oy A Ay

EE...S&.
ax; dx;  ox,
J= ' . @d.2.4)

f, ¥
Bxl hz T ax,,

Using the notation J; to mean the value of the Jacobian at Xi, we can rewrite (4.2.3) as

f(x) ~ f(x,) + Jp(x ~ x;) =: 6,(x). @.2.5)

In R*XIR", the n-dimensional "surface" {(x. 6,(x) | xe IR"}is the tangent "plane” at (x,, f(x,)) to the

n-dimensional "surface" {(x, f(x)) I xe R"}.

Consider x,,;, the next estimate to x* where x" denotes the solution of f(x)=0. Apply this condi-
tion 10 X, (i.e, require f(x,,,) = 0) and make the substitution of X, for x in the right-hand-side of (4.2.5).

Solving for (x;,, - x,) assuming J, nonsingular gives
Oy 1= (Xpay — Xe) = —Hyf(x,) 4.2.6)

where H, =J;'. Equation (4.2.6) is said to be the Newton step and, with it, the next estimate of the
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solution is given by the Newton iteration

Xp41 =X + 8,, . N “4.2.7

The sequence (x;);’ constructed according to the Newton step will converge quadratically to x* pro-
vided the initial estimate x, is sufficiently close to x". Note that quadratic convergence is also known as
*Toot rate 2 convergence. (The sequence (x;); is said to converge with root rate r for r > 1 if there exist
M € (0,%0), e € (0,1), and i, € IN such that for all i 2i,, lx,—=x"ll sMe".) Note that the Newton itera-
tion fails to converge in many cases. What can be shown is that if x, is sufficiently close to the root x°, the
Newton method will generate a sequence of iterates which converge to x* [Luen73). So called "quasi-
Newton" algorithms have been invented to improve convergence to x” when x, is not sufficiently close to

x". The Powell hybrid method is one such algorithm,

Method of steepest descent

Consider the problem

min f (x) forxe R* 4.2.8)

with f : R* — R continuosly differentiable. Denote the gtadient of f (x) by Vf (J; ). Consider the follow-
ing standard result from optimization theory [Polak88): If x € R” is such that Vf (x) 20, then any vector
h e R” such that Vf (x)” h < 0 is a descent direction for f () at x (i.e., there exists a positive A € IR such
that f (x + Ah) - f (x) <0 ). Algorithms invented to solve (4.2.8) typically generate sequences (x;)¢* with
the descent direction property; that is, f (%x41) = f (x) <0. Note that the construction of sequences with
the descent direction property is not sufficient to guarantee that the algorithm will converge to a minimum.
Convergence proofs for optimization algorithms are often subtle, rooted in some fairly sophisticated real
analysis. The interested reader is refered to [Luen73] and [Polak88) for a detailed treatment of this and
other issues in engineering optimization.

Observe that h = -V (x) is a descent direction for f (). This observation leads to the following for-
malization of the steepest descent method for solving (4.2.8). Given a current estimate x, of the solution %

of (4.2.8), the search direction b, =-Vf(x,) is computed. If Vf (x)=0, the algorithm quits, setting
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X =x;. Otherwise, the steplength A, =A(x,) := argmin f (x, + Ah,) is calculated and the next estimate of

the solution to (4.2.8) is computed as
Xp41 =X + th,, : 429

Note that the main objection to the method of steepest descent is that the computation of the steplength A,
is almost as difficult a problem to solve as (4.2.8). In practice, as with the Powell hybrid method, an inex-
act line search is done to calculate A, via some implementable steplength rule. The inexact A; is used in
place of A, in 4.2.9).

$ 4.3 Powell Hybrid Method

In the paragraphs which follow, first we present an outline of the method, omitting details not needed
for a general understanding of how the algorithm works. Second we present the details of the various com-

ponents of the algorithm.

Powell hybrid algorithm

Data
(1) the current estimate x; of the solution to (4.2.2) as well as the corresponding function value f(x;);
(2) an approximation to the Jacobian matrix at x,, J(x,);
(3) an approximation to the inverse of the Jacobian matrix at x,, H(x;) = J™(x,):
(4) a nxn matrix IT of n directions in the space of variables, and an associated vector of integers, r;
IT and = are used to store the history of previous iterations that is needed to meet out requirements of
linear independence;
(5) a steplength parameter A, ;
(6) a solution tolerance parameter €.

Step 0
Setk=0.

Step 1

Compute the steplength parameter A,. See subsection "A, calculation” for details.
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Step 2
Compute the correction vector &, subject to the condition that if 1151l < A, then compute §, by the
Newton correction; else, compute A, by the correction rule defined from the steepest descent algo-

rithm as applied to test function F () where

F(x)= ﬁf,-(x)2 4.3.1)

ial
See subsection "8y calculation” for details.
Step 3

Compute the Powell hybrid iteration given by

where 8, is calculated as in Step 2 and §, also satisfies a "sufficiency of independence” condition
defined below.
Step 4

Iff,(xQSeforl=1,...,n,thealgorimmstops;oﬂwrwise,replaeek by k& + 1 and go to Step 1.

General observations

* Note that 8 represents a compromise between the Newton iteration and the method of steepest descent
applied to the function F () where F : R®* — IR. The balance between the two methods is governed by the
steplength parameter A,. For A, sufficiently large, §, is the pure Newton step. For A, small, 3, is exactly
a multiple of the predicted gradient of F (x) where §, is such that F (x; +8;) < F(x.).

* The correction vectors §, interpolate between the Newton and steepest descent corrections in a way that
gives fast ultimate convergence.

* The Powell hybrid method proves to be a very good algorithm for calculations that involve searching in
many variable space. For each iteration, typically one can manage with only one new calculation of the
objective functions, f;(x,). As discussed subsequently, this is due to the clever use of the steplength

parameter A,, where, on each iteration, the correction vector 8, is predicted subject to the condition that
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3, Il <A, and the steplength parameter A, is adjusted automatically, according to the success of §,.

* Step 3 of the algorithm is to update x, by setting x,,, = x, + &, provided that O, is sufficiently indepen-
dent of the last min(n~1,k—1) §; steps, a condition which is checked by making use of the information in IT
and ®. Note that for ;e R* for i=1,2,.../j with j<n and beR”, b is said to be
sufficiently independent or, simply, s~i of the set of a; if the least angle between b and any vector in the
subspace spanned by the vectors a; is not less than thirty degrees. Ifthes-iconditionisnotsiﬁsﬁed,sk is
adjusted until it is satisfied. .

* Because of the s-i condition on the correction vectors , the iterations of the algorithm do not include any
search directions along lines in the space of the variables, so most iterations require only one function
evaluation.

* With the calculation of 8, f(x, + §;) is determined and 4, is updated to obtain Ap4. The update of A, is

such that A,,, is made as large as possible so as to correct by the Newton iteration as often as possible,

hence resulting in fast ultimate convergence of the algorithm.

9, calculation
To ease the discussion, we define
(1) Newton correction, v, (see (4.2.6))
T = =Ji'x,) “433)

(2) steepest descent direction, g,

& =3 f(x,) =-0.5VF (x) 4349

The steplength parameter A, is defined as a means of limiting the size of the correction vector 8y in the
sense that 115, Il <A, is required. The determination of 5, is by the following three-step algorithm:

(1) if 11y, 1l < A, then set 8, =, and the algortihm stops; if not, continue to )

. ' llg, N Mgy . .
(2) if plig, It 2 A, where u=—7, then set 8, =—— and the algorithm stops; if not, con-

NJeg, ! T lge
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tinue to (3);
(3) set &y equal to a point on the straight line joining the points pug, and ¥,; that is, determine the

parameter ¥ 2 0 such that 11(1 - x)pg, + x¥ !l = A,; solving for x reveals

_ AZ- lipg, 112 435
A Gk — P, 12 + (e 1) — A5+ (12— 25— T T2 >

and then set §, = (1 - Yug; + AY;-
Note that in determining the correction vector 5;, the function f(-), its Jacobian, and the inverse of the Jaco-
bian each need be calculated only once. So, in any one iteration of the Pc;well hybrid method, the cost in
terms of function, Jacobian, and inverse Jacobian calculations is minimal. Note that if O, fails to satisfy the
s-i condition, it is adjusted by perturbing its components until the s-i condition is satisfied while still satisfy-

ing the condition 11, Il < A,.

A, calculation

The adjustment of the steplength parameter A, is done so that Ay, is made as large as possible sub-
ject to the condition that each approximation to the Jacobian matrix Jo provides a good prediction of the
difference of the function difference f(x, + 5,) - f(x;). To determine A,,,, it is assumed that both
f(x, +8;) and F(x,+8,) are known and that the approximations (¢y,...,¢,) and & of

F1(Xe +8), . .., fo(x, +8,) and F (x, + 8,), respectively, have been calculated where

& = f1(x) + g-’:jsk.i ~fixe+8),1=1,2,...,n 4.3.6)
IB
® = T 07~ F(xy +5,). @3.7)
k=l

The revision of A, is based on just how well (4.3.6) and (4.3.7) approximate the indicated functions. The

measure used to assess the quality of these approximations is given by the condition that if
F(x; + &) > F (x) - 0.1(F (x) - ®) 4.3.8)

then A, = max(’24, DSTEP) where DSTEP is a default steplength which depends on the accuracy of the

computer. Otherwise, A, is set equal to A, (no change) or Ay, is set to a value greater than A, with the
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motivation being that the larger the A, ,, the fewer iterations are typically needed.

The manner in which the update of A, results in an increase of the steplength parameter is as fol-

lows. The value of p? which just causes (4.3.8) to fail is determined; that is, setting

IZu',[ Lf1Gre + )1+ (0% = DIf1(xe +8,) — 4112 = F (x) - 0.1(F (x,) — ) @43.9)
=l
and solving for p? reveals

p2=1+ DMULT (4.3.10)

SP +(SP2+DMULT - §S)'2

where

DMULT = F (x;) — 0.1(F (x) — ®) — F (x; + 8;);

9=§mm+mmm+w-mu

m=gmm+m-m%

4; is increased only after two calculations of p have been made, where p is the positive square root of p2.
This is done to limit how often A, is increased and this step is to be viewed as a conservative fix for
increasing A;. Both calculations of p are made since the last reduction in the value of A;. The lesser of

the two p is selected and it is called p. Then, A,,, is determined as follows
Ap41 = min(AA,, DMAX ) @4.3.11)
where
A=min(2, p, 6) where 6= 1 initially or after A; has been decreased and, otherwise, =% where

p-and A_are the previous values of the variables p and A, respectively, and
DMAX is a generous estimate of the distance as measure by the Euclidean norm of the solution from

the intial guess.
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Calculation of Jacobian and inverse Jacobian matrices

The modification to the Powell hybrid method as detailed in [MJDP70] is in the calcultion of Jaco-
bian matrix. Where applicable, we make use of BNVAE's ability to calculate partial derivatives of the
interpolant function (with respect to the defining variables) to determine entries in the Jacobian matrix.
That is, if the function corresponding to the entry j; of J; of the Jacobian matrix to be approximated is

modeled by a tensor spline interpolant, then j, is given by

Ja ~ BNVAE(N XVAL,IDX,TX,NX,BCOEF,WORK)

where TX, KX, NX, BCOEF are unchanged from the last call to BNINK and where KX(m)=0 for all m
except for m =1, where it is set to 1. The reader should refer to the discourse in Chapter 3 of this report
for details on the FORTRAN function BVNAE. Where BNVAE is not applicable, the Jacobian entries are
calculated by a forward—difference approximation. That is, if we are interested in the value of the (il)*

entry jy of the Jacobian at x,, J,, approximate Jij by

SiCa + Ay=f:i(xp)
A

4.3.12)

where A is a positive real on the order of 0.0001. The inverse to J, is determined initially from Gaussian
elimination; subsequently, it is is updated by rank-one corrections. The details of the rank-one correction

are not given; the interested reader is referred to pages 193-194 of [Luen73).

§4.4 Powell Hybrid Method Software

The routine HYBRD is a FORTRAN program found in the MINPACK library written at Argonne
National Laboratory by B.S. Garbow, K.E. Hilistrom, and J.J. More [GHMS0)], [Gar80], [More80].
HYBRD finds a zero of a system of N nonlinear equations in N variables by the Powell hybrid method.
The user supplies a subroutine which calculates the objective functions. The Jacobian is determined as

described in section 4.3. HYBRD’s /O statement is

HYBRD(FCN,N,X FVEC,TOL,INFO,WA,LWA)

where
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FCN: the name of the user-supplied subroutine which calculates the functions;

N: a positive integer input variable set to the number of functions and variables;

X: areal array of length N; on input, X must contain an initial estimate of the solution vector; on
output, X contains the final estimate of the solution vector;

FVEC: an output array of length N which contains the functions evaluated at the output X;

TOL: a nonnegative real input variable; termination occurs when the algorithm estimates that the
relative error between the error and the solution is at most TOL in all components;

INFO: an output integer flag used to indicate the status of the recent run of HYBRD; it is set to 0 for
improper input parameters; set to 1 for successful execution; set to 2 for FCN calls exceeding
200*(N+1); set to 3 for TOL too small; and set to 4 for iteration not making good progress;

WA: a work array of length LWA;

LWA: a positive integer input variable not less than (N*(N*3+13))/2.

§4.5 Inversion of Harrier Tensor Product Spline Model

We recast the Harrier trim equations in the form Y(x) = 0. That is, define

m)'uM,p}) o,
YuM, p!,C):=1 |mf@M,p}l) |- We |f @.5.1)
EZ(y) EZ(y.)
)

HYBRD is used to solve for u™, p{, and C for given @, ¥y, and . Note that the HYBRD routine per-

formed well under extensive testing.
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Chapter 5§ — Preliminary Results and Concluding Remarks
§ 5.1 Introduction

In this chapter, we offer some preliminary results regarding the performance of the control system design

of Fig. 2.1.1. Also, we discuss briefly the state of continuing work.

§ 5.2 Preliminary results

Using the nonlinear automatic flight control system design presented in this report, we simulate the
commanded short-take-off of the Harrier. The Harrrier is initially at rest. (Note that the nozzle rest posi-
tion is 90°.) The Harrier is commanded to achieve — in 20 seconds time -- a runway-fixed 1-axis velocity
of 75 fi/s with an acceleration of 5 ft/s, a runway-fixed 3-axis velocity of -25 ft/s with an acceleration of -3
ft/s and a nozzle position of 75°. Figures 5.2.1 through 5.2.5 show the actual Harrier response to the com-
manded flight condition. In all cases, perfect tracking is attained as the Harrier responds with smooth time
history trajectories.

Vg1 in feet per second
(=

2 //
% //

0.0 4.0 8.0 12.0 16.0 20.0
Figure 5.2.1 Harrier response: runway-fixed 1-axis component of velocity as a function of time. t in seconds
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Figure 5.2.2 Harrier response: runway-fixed 1-axis component of acceleration as a funtion of time. tin seconds
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Figure 5.2.3 Harrier response: runway-fixed 3-axis component of velocity as a function of time. tin seconds
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Figure 5.2.4 Harrier response: runway-fixed 3-axis component of acceleration as a funtion of time. tin seconds
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Figure 5.2.5 Harrier response: nozzle angle as a function of time. t in seconds
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§ 5.3 State of continuing work

This report has emphasized the methodologies used in designing the control system of Fig. 2.1.1 for
the Harrier aircraft. We have presented the results of just one simulation as a means of illustrating the per-
formance capabilities of the control design. However, an exhaustive testing of the control design is to be
conducted in the near future to thoroughly verify the design performance. We are also working on the
extension of the control design to Mode 1 operation of the Harrier. This requires 5-dimensional tensor pro-
duct spline interpolants for modeling the force and moment processes because the nozzle position p3is
now treated as a trim variable. That is, the spline models must be functions of P4 and can no longer be

parameterized by pJ .

§ 5.4 Concluding remarks

In this report, we have considered the design of a nonlinear automatic flight control system for the
YAV/8B Harrier V/STOL aircraft. The design theory (Chapter 2) along with the techniques used to handle
the necessary nonlinear modeling (Chapter 3) and nonlinear function inversion (Chapter 4) have been

presented in detail. Preliminary results have been given as well as a brief status report on continuing work.
®
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APPENDIX 1 — Harrier Coordinate Frames

Every good engineer knows the value of properly selected coordinate frames in problem solving and the
need to be able to readily transform from one set of coordinates to a more revealing set of coordinates. To
this end, in this appendix is presented a complete listing of the different right-hand-rule coordinate frames
used in the Harrier control system design presented in this report. Also presented are the transformation
matrices which relate the coordinate frames to one another [SMN86], [Shef83], [McRu73].

There are five coordinate frames in which the Harrier kinematics and dynamics are described. Each
coordinate frame is defined by an orthonormal dextral set of unit vectors. The coordinate frames are:

(1) North-East-Down or N-E-D coordinate frame (also called the inertial or

runway-fixed axes);

(2) Harrier body coordinate frame or, simply, body axes;

(3) Harrier heading angle coordinate frame or, simply, heading axes;

(4) Harrier nozzle angle coordinate frame or, simply, nozzle axes;

(5) stability axes coordinate frame.
Note that (2) through (5) are attached to the center of mass of the Harrier while (1) has its origin at runway
origination position.

Figure A.1.1 illustrates the relationships between these different coordinate frames. Each directed
arrow represents the transformation from the initial coordinates to the final coordinates by way of the direc-
tion cosine transformation matrix Cy; where K represents the final coordinate system and L, the initial.
The notation adopted is R for ranway-fixed axes, B for body axes, H for heading axes, N for nozzle axes,
and S for stability axes. Thus, for example, Cry is the transformation from heading axes to runway-fixed
axes: if h=[h}, hy hy)" is a triple defining a point in the heading axes, then r = (71,72 73)7 where

r = Cpyh is the triple defining this point in the runway axes.

The five coordinate systems are illustrated in Figures A.1.2(a) through A.1.2(¢). Descriptions of
each coordinate frame are provided in the following paragraphs.
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The runway-fixed or N-E-D coordinate frame (Fig. A.1.2(a)) has its 1-axis directed north, its 2-axis
directed east, and its 3-axis directed down as given by the cross product of the 1-axis unit vector with the

2-axis unit vector.

The body axes system (Fig. A.1.2(b)) has its 1-axis directed out the nose of the aircraft along the line
segment originating at the aircraft center of mass, its 2-axis out the right wing of the aircraft along the line
segment criginating at the cm and perpendicular to the line segment defining the 1-axis, and its 3-axis
directed as given by the cross product of the 1-axis unit vector with the 2-axis unit vector (note that the 3-
axis is directed parallel to the landing gear of the aircraft).

The three Euler angles, roll (¢), pitch (6), and yaw (), are defined as those angles through which
the runway-fixed coordinate frame is rotated to define the attitude of the aircraft (ie., to transform the
runway-fixed frame to the body frame). The first rotation is by the angle ¢ about the runway-fixed 1-axis,
defining an intermediate coordinate frame called /,. The second rotation is about the 2-axis of / 1 by the
angle 6, defining a second intermediate frame called / 2. The third and last rotation is by the angle y about

the 3-axis of / ,, making the transformation to the body frame complete.

For the definition of the heading axes system, consider the angie P by

\J
P =tan™ —B] (A.1.1)
VN

where vg is the velocity component directed east (i.e., the N-E-D 2-axis component of velocity) and vy is
the velocity component directed north (i.e., the N-E-D 1-axis component of velocity). That is, to determine
the angle P, project the aircraft flight path onto the horizontal (i.e., the N-E) plane forming path p as shown
inFig. A.1.2(c). The angle P is that angle made between North and the projected aircraft velocity vector at
a point on path p. The heading axes system is formed by rotating the N-E-D frame about its 3-axis by the
angle P. The angle P is said to be the path angle. Therefore, the heading 2-axis is out the right wing of the
aircraft oriented along a unit vector perpendicular to the 1-axis unit vector, and the 3-axis directed as given

by the cross product of the 1-axis unit vector with the 2-axis unit vector.

The nozzle axes system (Fig. A.1.2(d)) has its 1-axis directed along the vector which is rotated up

from the body 1-axis of the aircraft by the nozzle angle 1. Note that in defining the nozzle axes system it
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is assumed that the nozzle is located at the cm of the aircraft. The the nozzle axes system is formed by
rotating the body axes system about the body 2-axis by the angle n: that is, the nozzle axes system is
obtained from the body axes system by rotating the latter by the angle n about the body 2-axis. The nozzle
2-axis is directed out the right wing on the aircraft and the nozzle 3-axis is directed as given by the cross

product of the 1-axis unit vector with the 2-axis unit vector.

For the definition of the stability axes system, consider the following relations where vp , is the body
1-axis component of velocity, vp , is the body 2-axis component of velocity, and v, , is the body 3-axis

component of velocity:
v =iy +via +vis)? (A.12)

-V
o= tan™! iﬁ (A.13)
| "B

B = sin™! 1’;'3 (A.14)
L d

The angle o is called the angle of attack. Rotating the body axes system about its 2-axis by o defines the
stability axes system (Fig. A.1.2(e)). The angle B is called the sideslip angle is the angle between the velo-

city vector of the aircraft and the 1-axis of the stability axes system.

Before giving the expressions for the various transformation matrices, the concept of an elementary
direction cosine matrix needs to be introduced. A rotation by an angle § about the k-axis (where k is either

1, 2, or 3) of a coordinate frame K induces the following transformation matrices:

1 0 0
Ef:= |0 cos(®) sin®) (A.1.5)
|0 =sin(§) cos(§) |

[cos(E) 0 —sin(®) |
Ef: 0 1 0 (A.1.6)

| sin@€) 0 cos(§) |

cos(§) sin@€) 0
—sin (&) cos&) 0 |. (A.L7)
0 0 1

o
W
1]
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Utilizing the elementary dircction cosine matrix notation, we specify the following relationships for

the transformations pictured in Fig. ALl

Csz = ES'(V)E{(B)EF(6) (A.18)
Crs =Ciz (A.1.9)

Cur =Ef(P) (A.1.10)

Cry =Cliz (A.1.11)

Cns =E7(M) (A.1.12)
Con=Cjp (A.1.13)

Cs; =E2(0) (A.1.14)
Cps=C (A.1.15)

The above listing of transformations is complete in the sense that starting in any coordinate frame a
transformation to any other frame is available cither directly from the listing above or via combinations of
transformations given above. For example, see Fig. A.1.1 to transform the stability axes into the heading

axes, first transform to body then to N-E-D then 1o heading.

HR
RUNWAY HEADING
& C
RH
C C
BR RB
| C
2 NB
BODY « — NOZZLE
I C
BN
C C
BS BS
STABILITY

Figure A.1.]1 Transformation relationships for the Harrier coordinate frames
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NORTH Body 1-axis
EAST

Body 3-axi
Body 2-axis ody 3-axis

/4 right wing

Figure A.1.2(a) Definition of the runway-fixed coordinate frame Figure A.1.2 (b) Definition of body coordinate frame

NORTH

Pprojection of aircraft rajectory onto the N-E plane

Figure A.1.2 (¢) Definition of the Heading angle coordinate frame.
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Nozzle 1-axis

[ - -

Body 1-axis

v

Nozzle 3-axis

Body 3-axis

Figure A.1.2 (d) Definition of the nozzle angle coordinate frame

Body 1-axis

» Stability 1 -axis

Body 3-axis

A

Suability 3-axis

Figure A.1.2 (e) Definition of stability axes coorddinate frame
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List of Symbols

1. Vectors and Matrices

X natural model state vector, p.4

u natural model control vector, p.4

y Brunovsky cancnical model state vector, p.4

w  Brunovsky canonical model control vector, p.4

e, plant-to-model error vector, p.4

dw Brunovsky canpnical model control correction, p.4

r runway coordinates of body center of mass position, p.5

v runway coordinates of body center of mass velocity, p.5

C  direction cosine matrix of body-fixed axes relative to runway-fixed axes, p.5
®  body coordinates of angular velocity relative to runway-fixed axes, p.5
p' throttle position and nozzle angle, p.5

p?>  throttle rate and nozzle rate, p.5

u  three axes moment controls, p.5

v”  throttle and nozzle controls, p.5

S(w) skew symmetric matrix of the angular velocity vector, @, p.9

e;  thei™ column of an nxn identity matrix, p.9

J:  Jacobian matrix of system f at x,, p.39

H, Ji', the inverse of nonsingular J, p.39

J:  approximate J,, p.41

H, approximate H,, p.41

X,  current estimate of solution to f(x) =0, p.39

8,  update to x, to give x,,, =x; + 8, p.39

EXE) fori=1,2,3, the elementary direction cosine matrix about axis i of

the K coordinate frame by £ degrees, p.51
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‘ Cr direction cosine matrix of the K coordinate frame to the L coordinate frame where K, L
may be R for runway, B for body, H for heading angle, N for nozzle angle

and S for stability axes, p.53-54

2. Real and Integer Scalars
0] roll angle, p.5

0 pitch angle, p.5

¥ yaw angle, p.5

g  graviuational acceleration, 9.8, 3228 15 p39
S S

n nozzle angle, p.52

P path angle, p.52

o angle of attack, p.53

B sideslip angle, p.53

A, steplength parameter of Powell hybrid method, p.41

X;  Kronecker index or controllability index, p.42

5 =Xx,p8
j=1

n state vector size, p.8

m  control vector size, p.8

3. Functions, Maps, General Analysis

T() transformation map from natural model state and control to Brunovsky canonical model
state and control, p.4

W(:) transformation map of Brunovsky state and control to natural model
state and control, p.4

F() runway coordinates of the components of force acting on the aircraft, p-8

fM(-) body coordinates of the moments acting on the aircraft, p.8
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fR(-) non-parasitic nozzle 2- and 3- axes components of force acting on the aircraft, p.19

fN() parasitic nozzle 2- and 3- axes components of force acting on the aircraft, p.19

h’(-) function which recovers natural model controls from natural model state,
commanded moments and commanded nozzle 1-axis acceleration, p.18

bh*() function which determines aircraft commanded attitdue from position, velocity,
commanded acceleration, and path angle, p.19

mg (-) vector of tensor product spline functions modeling f¥
for given state and nozzle control, p.22

mM() vector of tensor product spline functions modeling f
for given state and nozzle control, p.22

B;z,()  thei® (normalized) B-spline of order k for knot sequence t , p.24

B;() short-hand for B; ; ,(-), p.24

(t-x), function truncation, p.24

m(-) B-representation of f (*), p24

m(") B-representation of f(-), p.24

f() systemofatleastn C' functionsinn variables, p.38

Vf () gradient of f ("), p.40

F () steepest descent cost function in Powell hybrid method, p.41

4. Sequences and Sets

@©)N*  breakpoint sequence for piecewise polynomial function, p.S

(% il knot sequence for B-representation of piecewise polynomial function, p.24
)i+ integer sequence of continuity conditions for B-representation, p.25

IN  set of nonnegative integers, namely, (0, 1,2, .. .

R field of real numbers

R" n-dimensional space of real valued n-tuples defined over the field
of real numbers
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Py linear space of piecewise polynomial functions of order k with breakpoint
sequence {, p.24
IP, ¢ v subspace of IP; ; consisting of elements satisfying the

continuity conditions specified by v, p.23
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