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Abstract

Randomnumber generators are widely used in simulation, testing and communica

tions. Some applications, such as keygeneration, require a secure, that is,unpredictable,

source of random numbers. In this paper we show how to use a chaotic circuit as a se

cure random number generator and give an example using a first order, nonuniformly

sampling, digital phase locked loop operating in a chaotic regime.

1 Introduction

Random and pseudo-random numbers are used for purposes such as: test data generation,

Monte-Carlo simulation techniques, generation of spreading sequences for spread spectrum

communications, and cryptography.

'This work supported in part by Office of Naval Research Contract N00014-84-J-1097 and National

Science Foundation Grant ECS-8517364.



The myriad applications put various constraints on how random numbers are generated.

A main design criterion is whether the sequence needs to be repeatable; e.g., the pseudo

random spreading sequences used in spread spectrum communications must be repeatable,

while for most simulations using random numbers this is not necessary. Repeatable pseudo

random number generators are implemented in digital hardware or software.

The security of a pseudo-random number generator, particularly repeatable generators,

is of paramount importance to the field of cryptography, where it is equivalent to the

problem of finding a secure encryption method [1, 2]. By the security of a pseudo-random

or random number generator we mean, roughly, how difficult it is, based on past values of

the sequence, to predict future values of the sequence. The level of difficulty maybe defined

in computational or probabilistic terms depending upon the type of generator.

For some applications repeatability is not necessary, but security is a major concern.

These include key generation and various aspects ofkey management [1]. A typical applica

tion which uses asecure nonrepeatable pseudo-random number generator and an encryption

algorithm is the Keyed-Access EPROM reported in [3].

Typically such applications sample noise from reversed biased diodes, oscillator phase

noise [4], or other physical phenomena. However, due to the difficulties encountered in

dealing with diode noise sources and other natural sources, alternative deterministic cir

cuits have been developed [5, 3]. Two issues are immediately raised by these deterministic

generators: (1) Is the pseudo-random sequence secure or even sufficiently random? (2) Are
there simpler, i.e., easier to implement and smaller, circuits that can serve this same func

tion? We note that the pseudo-random number generator in [3] uses three ring oscillators,
a 32-bit shift register and associated support circuitry.

The nonlinear phenomenon of chaos poses a promising alternative for psuedo-random
number generation due to its characteristic unpredictable behavior. Theconnection between

random number generation and chaos has been made before. In [6] Tang et. al. noted
the similarity between their map approximating anonlinear forced oscillator and the map
describing a linear congruential psuedo-random number generator, and in [7] Oishi and
Inoue showed how touse chaotic first order difference equations to generate pseudo-random
sequences with a prescribed distribution function. However, the security/predictability
issue was not addressed. In this paper we consider the use of chaotic circuits as secure

non-repeatable pseudo-random number generators.



2 Chaotic Circuits

2.1 Overview

The simplest circuits that exhibit chaotic behavior can be described, with no approxima

tions, by discrete time mappings. Nonlinear switched capacitor circuits have been used to

implement various mappings of an intervalor real line that are known to be chaotic, such

as the logistic map [8], while a first order DPLL circuit gives circle maps with well known

chaotic properties. Forced chaotic circuits include forced relaxation oscillators, such as the

forced multi-vibrator circuit of Tang [6] and the simple forced circuit of Hassler et. al.

[9]. Finally, we have autonomous continuous time circuits that exhibit chaos, such as the

"Double Scroll" circuit of Matsumoto et. al. [10].

The first order DPLL is the simplest synchronization system [11] that exhibits chaos.

The block diagram for a first order, nonuniformly sampling, digital phase locked loop is

shown in Fig. 1. The input signal is defined by s(t) = hfat + 0O), where h(-) is a 2ir
periodic function. The input signal s(t) has angular frequency u>i and initial phase angle

0o. The sampler is assumed to be ideal and is clocked by the square wave output of

the variable frequency oscillator (VFO) at time tn. The output of the sampler block is

sn = h(uitn + 0Q) and may be a voltage, a current, a digital word, etc., depending on the

type of VFO. The VFO consists of a control input which sets the period of the oscillator,

Tn+i = tn+i —tn= g(sn)i and a square wave output.

The equation for the (n + l)th period, Tn+1, is

T„+i = glhfatn + 0O)). (1)

Define <f>n = ujitn + 0Q to be the phase error variable. Then we obtain

<t>n+l =<f>n+ Ul9{h(<j>n)). (2)

Let the input signal be s(t) = Am sm(uit + 90). For an experimental DPLL developed

in [11], the VFO is a voltage controlled oscillator (VCO) whose frequency is linearly related
to its control voltage: Tn+1 = l/(f0ff + bsn)y where foff is theoffset frequency and 6is the

voltage-to-frequency conversion constant ofthe VCO. The circle map defined by this DPLL
is

where k = u>i//,,// and A = -bAm/foJ/.



3 Random Number Generation

Fundamental to most definitions of chaos is the concept of sensitivity to initial conditions,

that is, two trajectories of the system, no matter how closely they start to one another,

will eventually diverge. Furthermore, this divergence is of exponential order. A measure of

the exponential divergence of trajectories in a dynamical system is the Lyapunov exponent,

which measures the average rate of divergence of nearby trajectories. A positive Lyapunov

exponent indicates chaos.

Using the parameter values A = -0.25 and k = 8.5 in equation (3), we find that the

DPLL is chaotic. Its Lyapunov exponent can be calculated from [12]

A=„1liSb^Elog2irf//^(^)i. (4)

Letting n = 100000 in equation (4) yields A= 0.760, a positive Lyapunov exponent, inde

pendent of the initial choice of <f>.

Most chaotic circle maps are ergodic and possess an equilibrium invariant distribution.

This distribution can beobtained from techniques discussed and justified in [13]. Essentially

one iterates the probability distribution for <f>, i.e.,

ti (rh \ _ Pn(4>nl) , Pn(</>n2) , ,_.
Pn+l(*n+l) - wi^uj+wmu+••• (5)

where /() is the function that takes <f>n to <£n+1, and <f>nU <j>n2, ... are the points such

that <t>n+i = f(<t>ni) = f(<f>n2) = .... In Fig. 2 we show the invariant distribution obtained

by starting with a uniform density, 1000 points, and iterating equation (5) twenty times.

Ergodicity implies that time averages equal space averages. Hence, in addition to equation

(4) we can obtain the Lyapunov exponent from

r2ir

X=Jq \og2\dfldd((i>)\pinv(4>)d<f> (6)

where Pinv(<j>) is the equilibrium invariant distribution. Calculated by this method the

Lyapunov exponent is A = 0.759.

To obtain random bits from the DPLL, we look at the output ofthe sampler shown in

Fig. 1 and assign bit values of zero and one based on whether the output of the sampler

is positive or negative. Hence, <j> e [0,*r) corresponds to a "1" and <f> e [tt,2jt) corresponds
to a "0", assuming Am is positive. From the invariant distribution of Fig. 2 we find that



the probability of obtaining a "1" is 0.5136. Although not perfectly symmetrical there exist

techniques to rectify this situation [14], if necessary.

We use information-theoretic notions to discuss the predictability of a random number

generated from the above circuit. At a given instant of time we possess certain information

about the state of our circuit. As time progresses and in the absence of further information,

e.g. more observation, this information decreases in a chaotic circuit. Given anexperiment,

if we assign probabilitiespi to the m possible outcomes, the information associatedwith an

outcome or measurement is defined as

m

& = ~I]j>tlog2pt-. (7)
t=i

Increasing the accuracy of the measurement increases the information obtained in the fol

lowing way. Suppose the outcome of the measurement lies in an interval of the real line, and

we break that interval up into m equally sized pieces, with the probability of the outcome

in any particular piece being 1/m. Then the information associated with the measurement

is:

s = ~ ]C l/™log2(l/m) =log2 m. (8)

So, the finer our measurement resolution, the more information we obtain about our system.

For the DPLL we can express our knowledge of the state of the system in terms of a

probability distribution p(<£), and with that distribution we can calculate the amount of

information we know about the state, relative to the invariant distribution [12, 15]:
Jr2ir

j PWlog2lp(<p)/pinv(<t>)]d<f> (9)
0

The above integral is evaluated over the subset of[0,27r) where Pinv{<t>) ^ 0.

In [12], Shaw shows that the average rate of information loss in a chaotic system is
equal to the Lyapunov exponent. Thus, the number ofiterations nloas for complete loss of
information Hp is

Hp
nioss * ~, (10)

This formula is valid when Ais much less than the initial information; actually, there is
a significant reduction in the rate of loss of information as the information asymptotically
approaches zero.



Iteration Prob(<£<E[0,7r)) Information (H)

0 1.000 0.9612

1 0.5171 0.5132

2 0.4567 0.1807

3 0.4601 0.1227

4 0.5600 0.08184

5 0.5612 0.05517

6 0.4529 0.02937

7 0.5083 0.01627

8 0.5336 0.00803

Table 1: Change in information and probabilities with iterations of a chaotic DPLL. Ob

servation of a "1" bit at iteration 0.

3.1 Continuously Running Circuit

Suppose the chaotic circuit has been running for a long time; also assume that we have

no prior knowledge of initial conditions and we have not been looking at the generated

bit stream. Under these circumstances the equilibrium invariant distribution of Fig. 2 is

the probability density of <j>. If we make an observation or take a bit — for example,

we see a "1"— then this changes the amount of information we have about the system.

The probability distribution corresponding to this information is shown in Fig. 3(a). This
is just the invariant distribution truncated and rescaled corresponding to our knowledge
that <f> € [0,7r), i.e., a "1" bit. The information in this distribution can be computed
using equation (9). If we iterate the system, (run the circuit) without making subsequent

observations, then theinformation decreases, as shown in Table 1. In addition, we also show

how the probability of seeing a "1" changes as we iterate the system. In Figs. 3(b)-(e) we
show how the probability distribution ofFig. 3(a) relaxes towards the invariant distribution

as the circuit is iterated. Note that since Ais relatively close to the value of the initial

information, equation (10) is not applicable; however, from Figs. 3(a)-(e) we can see that
the distribution quickly converges to the invariant distribution ofFig. 2. Hence, to use this

circuit as a secure random number generator it is best towait four to eight iterations before



taking another bit rather than simply the two iterations indicated by equation (10).

3.2 Information at Circuit Startup

Now suppose that when we turn the circuit on we know approximately the initial conditions

(we can never exactly know the initial conditions due to measurement error or noise).

For example, suppose the initial <j> is in the vicinity of zero, i.e., the initial probability

distribution of <f> is

J 100/2* ifW<2x/100
PinitialW = < (11)

I 0 otherwise

From equation (9) the initial information is Hinitial = 7.37 bits. In Table 2 we show how

this initial information is lost as the circuit runs, in the absence of additional observations.

In Fig. 4 we plot how the information (in the absence of any additional observations)

decreases with each iteration. Equation (10) gives n/oaa = 9.71 or approximately 10 iter

ations. From Table 2, we can see that after 10 iterations the information left is roughly

equal to the Lyapunov exponent. From this point, the rate of loss of information decreases

asymptotically towards zero; this can be observed in the plot shown in Fig. 4. By 2 * ni033

(19 or 20) iterations, the initial probability has essentially relaxed to the invariant distri

bution, and hence, we can safely start taking bits. It is interesting to note that although

the initial probability of a "1" is 0.500, we know with complete certainty what the next

eight bits will be. Hence, from a security standpoint it is important to wait for the initial

probability distribution to relax to the invariant distribution.

4 Practical Issues

One aspect ofchaotic circuits not mentioned so far is the sensitive dependence ofthe Lya

punov exponent on the value of system parameters. For our application we are interested

in determining where in parameter space a given circle map has a positive Lyapunov expo

nent. In Fig. 5(a) we plot, with black squares, points in the &, Aplane where the map ofthe

experimental DPLL has a Lyapunov exponent greater than 10"3. We can see boundaries

of regions containing periodic orbits; for example, the region 2tt(1 - A) < k < 2^(1 + A)
contains a fixed point which gives the main white section in the middle ofthe figure. If we

examine closely a region in parameter space containing positive Lyapunov exponents (see



Iteration Prob(<£€[0,7r)) Information (H)

0 0.5000 7.3679

1 1.0000 6.3039

2 1.0000 4.8427

3 0.0000 4.8030

4 0.0000 4.2232

5 1.0000 4.1946

6 1.0000 3.8269

7 1.0000 3.3719

8 0.0000 2.5883

9 0.1601 2.5470

10 0.5641 1.3303

11 0.1602 1.1035

12 0.5130 0.5482

13 0.3637 0.4969

14 0.6748 0.2954

15 0.6056 0.1406

16 0.5076 0.08795

17 0.5055 0.05270

18 0.4970 0.03467

Table 2: Change in initial information and probabilities with iterations of a chaotic DPLL



Fig. 5(b)), we observe thin white regions; these are periodic windows that possess negative

exponents. For our application we must operate in a region having relatively large positive

Lyapunov exponent, far from significant stable periodic orbits. As long as the periodic

windows are thin enough, experimentally we will never notice them due to the fluctuations

in the system parameters.

A schematicof the actual PLL circuit built is shown in Fig. 6. The Lyapunov exponents

determined from experimental data are shown in Fig. 7(a). The parameter k was varied

by changing the frequency of the input signal. The algorithm of Wolf et. al. [16] was used

to estimate the Lyapunov exponent from the measured data series. In Fig. 7(b) we show

the Lyapunov exponents calculated directly from the mapping. The agreement between

simulation and experiment is good except for a mismatch in the parameter values which

give negative Lyapunov exponents. This is due to errors in measuringthe parametervalues

in the experimental circuit.

Additionaly, one needs to be concerned with the changes in the invariant distribution as

circuit parameters change. The Lyapunov exponent isused asarough indicator of this, since

a change in Lyapunov exponent from positive to negative changes an invariant distribution

that is nonzero on at least some interval to an invariant distribution that is a finite sum of

delta functions.

5 Conclusion

We have suggested a class of circuits for generating secure psuedo-random numbers and

estimated the security of these generators from the information loss property of chaotic

systems. For a generator implemented using a chaotic DPLL, we considered two important

cases, (i) Given no prior information concerning the initial conditions of a continuously
running circuit, we established how long one should wait after taking a bit before one can

securely take another bit. (ii) Given knowledge of the initial conditions at startup (up to
measurement and noise uncertainty), we showed how long one should wait before starting
the bit sampling.
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Figure 1. Block diagram of anonuniformly sampling first order digital phase locked loop.
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10.0

Figure 5. (a) Plot of significantly positive Lyapunov exponents for the DPLL. Black

squares indicate regions of parameter space where A > 0.001; 20,000 iterations were

used to calculate A. (b) Expanded plot of significantly positive Lyapunov exponents

for the DPLL.
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Figure 7. (a) Lyapunov exponents estimated from experimental data obtained from the '

circuit of Fig. 6. In this plot 30 data files containing 1000 points each were used to

obtain the above estimates with A= -0.25. (b) Lyapunov exponents obtained from

simulations. In this plot A = -0.25 and 40,000 iterations were used to obtain A.
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