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ABSTRACT

We use the computational stability criterion presented in [Har.l] to design a finite dimensional
stabilizing compensator for a controlled flexible beam with point actuators and sensors. To establish
the applicability of the computational stability criterion presented in [Har.l], we prove that the con
trolled flexible beam with point actuators and sensors to be described fits the plant model given in
[Har.l]. Numerical results are given.

1. INTRODUCTION

There is considerable interest in the design of control systems for various flexible structures, such

as those found in space applications, as well as in robotic manipulators with flexible arms (see e.g.,

[Bal.l]). The plants of such systems tend to be infinite dimensional and can be modeled by partial

differential equations. Robust exponential stability is the most basic requirement of control system

design. In [Har.l], we have presented a necessary and sufficient computational stability criterion which

is compatible with the use of semi-infinite optimization algorithms for a class of infinite dimensional

systems. In this paper, we demonstrate the usefulness of the criterion in [Har.l], by showing that it is

applicable to the design of a control system for a particular controlled flexible beam with point actua

tors and sensors. In Section 2, we will summarize the results in [Har.l]. In Section 3, we will show

that our particular plant satisfies the assumptions in [Har.l], and in Section 4 we will present a numeri

cal example.

2. PRELIMINARY RESULTS

Consider the feedback system S(P,K), with «, inputs and n0 outputs, shown in Fig. 1. We assume

that the plant is described by a linear and time-invariant differential equation in a Hilbert space E:

xp(t) = ApXpQ) + Bpe^t); y2(t) = CpXp(f) + Dpe2(t), (2.1)



where xp(t)eE, e2(t)eJRn{t y2(t)eTRn°t for t £ 0. The operator Ap from E to £, may be an unbounded
A l

operator with domain dense in £, which generates a strongly continuous (C0) semigroup, {<? p}, s 0- The

operators CP:E -» R*° and Dp:1RHi -» R"* are assumed to be bounded, while the operator Bp can be

unbounded, in the sense that it can be a multiplication operator associated with delta functions which do

not belong to the space E. Hence model (2.1) can represent a flexible beam with point actuators and

sensors. To define the operator Bp more exactly, we need to extend the state space. For this purpose,

we first denote the adjoint operator of Ap by A*, the dual space of E by E* and the domain and the

range of Ap by D(Ap) andR(Ap)t respectively. As in [Cur.l], we then let

Z^r^O^cE* (2.2)

endowed with the graph norm of A*. Then Z* is a real, reflexive Banach space and the injection of Z*

into E* is continuous and dense. Defining the extended state space Z to be the dual space of Z*, we

obtain by duality that

EcZ, (2.3)

with a continuous dense injection.

From now on, we will treat the state of the plant, x^ as an element of the extended state space

Z, and we will assume that Bp.-TR*1 -> Z, is bounded. Because Eis dense in Z, Cp can be extended to a

bounded operator from Z to Rn°. Referring to [Cur.l, Sal.l], we see that A* can be regarded as a

bounded operator from Z* into £*. By duality, Ap extends to a bounded operator from E to Z. This

extension, regarded as an unbounded operator on Z, is the infinitesimal generator of the extended semi

group [e p}eL(Z). The exponential growth rate of the semigroup [e p'} is the same on the state spaces

E and Z. Furthermore, the spectrum of Ap on the state space E coincides with the spectrum of Ap on Z.

We define the transfer function of the plant , Gp(s), to be Cp(sl- Ap)~lBp + Dp,\ sep(Ap).

Gp(s) is analytic on p(Ap) [Kat.l, Theorem in 6.7] and limw _» „Gp(s) -» Dp [Jac.l].
Re s>y

A t
Definition 2.1: For any a ^ 0, the semi-group [e p},^0is said to be a-stable if there exist Me (0,°°)

and ocq > a such that



We^Wz^Me"^ , V *2>0 (2.4}

For any a £ 0, we define the stability region £>_<, 4 [se € IRe($) <-a), with compliment, in

C, C/_o = [se €IRe(^)>-a), whose boundary and interior will be denoted by

djy_c = [se C IRe(s) =-a) and Uta = [se C IRefa) >-a). Let a(Ap) denote the spectrum of A, and

let p(Ap) denote the resolvent set of Ap.

We assume that the plant in (2.1) is a-stabilizable and a-detectable, i.e., there exist bounded

linear operators K:Z -» R*1' and F:TRH° -» Z such that Ap - BpK and Ap - FCP are the infinitesimal gen

erators of a-stable Co-semigroups. It can be shown that the plant is a-stabilizable and a-detectable if

and only if there exists a decomposition of Z = Z_+ Z+, with Z+ finite-dimensional, which induces a

decomposition of the plant (2.1), of the form

d Xp-(t) Ap. 0' XpM
+

V
dt XpJit) [0 Ap] Xpjf) w

«('); y(t) = [Cp. c^]
XpJf)
Xp4f)

+ Dpu(t), (2.5)

such that o(Ap+) c £/_„, (A^, Bp+) is controllable, (A^, Cp+) is observable, and A^_ is the infinitesimal

generator of an a-stable Co-semigroup on Z_ [Nef.l, Jac.l].' We recall that a plant is a-stabilizable

and a-detectable if and only if there exists a finite dimensional strictly proper compensator such that

the feedback system is a-stable [Jac.l].

We assume the compensator to be finite dimensional, linear, and time-invariant, with state equa

tions

xc(t) = AjeJ® + B^t); yi(t) = C*tft + D^t) , (2.6)

where xc(t)eJRnet «1(r)€RB*, y^OeR"* and Ac, Be, Ce and Dc are matrices of appropriate dimension. The

compensator transfer function is Gc(s) = Ce(sln - AJ~lBe +De. The compensator is also assumed to be

a-stabilizable and a-detectable. To ensure well-posedness of the feedback system, we assume that

det(/Bf+ /><!>„) *0.

We define the inner product space H =Z x RBc. Since e\=ii\- y2 and e2 = yi + u2, the state

equations for the feedback system are

' In [Nef.l, Jac.1] only O-stability is considered. Our extension to o-stability is trivial.



*r = A
xp

+ B
"l e\

= C *p + r>
«i

Xe Xc
< J

«2 *2 "2

where

A =

B =

C =

Ap-BpDe(In+DpDcrlCp B/f^ADfi^Cc
-BC(I +DpDeTlCp A.-BMn+DficT'DpCc

\-iBjflA.fDpj* Btf^DJDjL-i

,-iiB^+DpDf1 -Btffm*Dpj*Di

-i i-Qu+DfiFC, -iIn+DpDerlDpCt
rh-D^+DpDcf'Cp (I^D^Cc £> =

(f.+DftJ* -(/„+DpDc)-1Dp
,-iD^+DpDJ-1 VH*DJ>J

(2.7)

(2.8a)

(2.8b)

(2.8c)

The domain D(A) =D(Ap) x R*e c //. It follows from [Paz.l, p. 76], that because, with the exception

of Ap, all the operators in the matrix A are bounded, and because Ap generates a C0-semigroup, the

operator A also generates a Co-semigroup, (e*'},^.

Let x =[xp,xe]eH. Then the formula x(t) =e^jtb +f eA(r"x)BM(x)rfr defines a miW soludon of

(2.7) [Paz.l]. We therefore define the exponential stability of the feedback system S(P,K) in terms of

the semigroup {e^J-ao.

Definition 2.2: For any a £ 0, the feedback system S(P , K) is a-stable if the semi-group {eAt},^ 0is

a-stable. •

It was shown in [Jac.1] that , under the above assumptions, the feedback system S(PJC) is also

a-stabilizable and a-detectable. From the decomposition property in (2.5), for a-stabilizable and

a-detectable systems, we can easily deduce the following relationship between a-stability of the feed

back system and the spectrum of A, first established in [Jac.l]:

Proposition 2.1: If the above assumptions hold, the feedback system is a-stable if and only if £/_<, is

contained in p(A). •

We define the characteristic function %: € -> C, of the feedback system S(P,K), by

%(s) &deu>/n+ - A^)det(^„e - AJdeK/^ +Gc(s)Gp(s)) , (2.9)



where Ap+ is defined as in (2.5) and n+ is the dimension of Ap+.

Theorem 2.1:[Har.l] The system S(P,K) is a-stable if and only if Z(x(s)) c D^. •

Theorem 2.2:[Har.l] Let n+ and nc be the dimensions of the matrices Ap+ in (2.5) and Ac in (2.6),

respectively. Z(x(s)) c D^ if and only if there exists an integer Nn > 0, and polynomials d^s) and

«o(s), of degree Nd- Nn + ns and Nnt respectively, with ns = nc+n+, such that

X(s)no(s)
(0 Z(do(s)) c£L« , Z(no(*))c^ ; (ii) Re

do(s)
> 0 V reat/^ . (2.10)

3. A DESIGN EXAMPLE

Consider the planar bending motion of a flexible beam, shown in Fig. 2. One end of the beam is

fixed; a particle with mass M is attached to the other end. The x-axis is the undeformed-beam cen-

troidal line; the y-axis is the cross section principal axis. The associated control system is required to

damp out vibrations. Assuming that the beam is of unit length, its bending motion can be described by

the partial differential equation

,J^l+ai^+El£&£• =£/(f)6Cc-A «i0. 0<xil, (3.1a)

with boundary conditions

w(t,0) =0,^(t,0) =0, (3.1b)

7ia?(U) +di?ttit,l)+EI^?{t,l) =°' (31c)
M-^(M) -cl^it.l) -^-0(M) =0. (3-ld)

where w(t,x) is the vibration along the y-axis, /(/) is a control force and 50c - xt) is the Dirac delta

function; m is the distributed mass per unit length of the beam, c is the material viscous damping

coefficient , E is Young's modulus, M is the end mass, / is the beam sectional moment of inertia with

respect to y-axis, J is the inertia of the end mass in the direction of y-axis, and /i; is the number of

actuators. The output sensors can be assumed to be modeled by



1

y'(r) = fg(v - j)w(t,v)av , t > 0 , 1 £ i < n0

= wit,z), (3.2)

where n0 is the number of the sensors, and 8(v - z*) is the Dirac delta function.

We now proceed to show that the system (3.1a-d), (3.2) can be transcribed into the first order

form (2.1), with the assumptions stated. For simplicity and without loss of generality, we assume that

there is only one actuator and one sensor. First we rewrite (3.1a-d) in the form

mf) + DQw{t) + A0\vXt) =B&t) ,t*0 ,0£x£l , (3.3a)

y(t) = C0w. (3.3b)

where

•{•w m(w(0. wu W2)r6D(Ao) =D(D0) a ^W6/^([0,1]),W(0) =w'(0) a 0, wx =w(l), w2 =w'(l)
[3.3c)

c//0^L2([0,l])xR2,

n — ,Cl rfSvQc) -Cl d*W ,,x Cl j£m>fi\\T ti -5^
D'w =W'¥U(1)'71?(I)) • (33d)
._ ,EIdSv(x) -EId3w,„ EI a*w,1x.r ,, - .

AoW =(^^' ir^(1)- t^-(1)) ' (3-3e)
J?0 = (6(^i), 0, Of , C0iv = wW, (3.3f)

^([0,1]) denotes the set of functions whose fourth derivative belongs to L2([0,1]) and w' denotes the

17

derivative of w with respect to the spatial variable x. Note that D0 = —A0 in the above example. Let
c

" = ("(*)» "i. «2)T and v = (v(-), vlt v^7. We define the inner product in H0 as follows:

M Jto, v >„0 =<v, v)l2([04]) +—mv! +—u2v2 . (3.4)

We have the following nice property for the operator A0.

Proposition 3.1: The linear stiffness operator A0 is a positive definite and self-adjoint operator from



D(A0), which is dense in H0 , onto //0, with compact inverse. In fact , A0 is coercive, i.e., there exists

p > 0 such that

Vl0v, v)„o 2> p2||vll&0 , V v6D(Ao) . (3.5)

Proof: The following proof is similar to that given in [Sch.l]. We first prove that D(Aq) is dense in

H0. Let v~ = [v(-), vi, v^eHo. Define

*»(*) =

0, ;ce[0, 1M]

v(x), xe[l/iif 1-1/n] (3.6)

vi + v2-(x-l), xe [1 - 1M, 1 + 1/n]

Let 4>e(') be a positive function in C~ (the space of infinitely differentiable real valued functions on

(-00,00)) such that

$e(-x) = $z(x) ,

£ Ux)dx =1, (3.7)
<j>e(Jt) = 0 for* e (-e, e).

We define

un(x) &£ zn(x - y)$j_(y)dy =£ zn(y)bjjx-y)dy , 0<> xZ1. (3 8)
4n 4n

Then u„()eC~([0, 1]), uB(0) = «„'«)) = 0, uH(l) = vlt uH'(l) = v2 and u„ converges to v in L2([0.1]).

Therefore [«„(•) ,v1,v2]Tei>(Ao) and it converges to vin H0.

Now we prove that A0is invertible. For any v = [v(-)»v1,V2]Te//0, we define

Then u = [«(•), «(1), M'(l)]TeZ)(Ao) and AoS"= v: Since Aq1 is an integral operator, it is compact, and

therefore bounded.

Next we prove that Aq is self-adjoint Consider u- [u(-),u(l),u'(l)]T and

v = [v0,v<l).v'(l)]rG£>(Ao). Then



<uA0y)H0 -UuMiUXi))TX—^\x),-^v-Xi),^Xi))T)Ho
m m J (3.10)

=—f "(T)v(,v)(x)dx - —«(l)v'"(l) +—k'(1)v"(1).
m * m m

Integrating by parts, we obtain

{uA0v)E =̂ tt"(x)v"(x)rfc =—<u"Q.v"0)LH[Ql]). (3.11a)

Similarly, we have that

(Aou.vT) =̂ < «"(•),v"(-) )L2{l0l]) ={uMv)E . (3.1 lb)

Hence we have shown that Aq is symmetric, and therefore Ao c Aj. To prove that A0 =Aj, we have to

show that Z>(Aj) =D(Aq). Suppose ye/?(Aj) and Ajy=T. From the definition of Aj, we have that

(y^o«> = <*.*) V tteZ>(Ao) . (3.12)

Since veH0 and R(A0) = H0, there exists veZ)(Ao) such that A0v"= zT Hence

<y^ott>=(Aov,u)=(v,Aoa), V SgD(Ao) . (3.13)

Therefore y = veD(A0) because R(A0) = H0. So we haveshown thatA0 is self-adjoint (Therefore, it is

closed.)

Now we prove that A0 is coercive. Consider v = (v(), v(l), v'(l))reD(A0). From (3.11a-b), we

have that

(W^-fllv't^,,,,. (3.14)

Since v(r) = f v'(x)dt, it follows from the Schwartz Inequality that

Iv(jc)I <; £lv'(x)l dx <; £ lv'(x)l rft <; (( Iv^ta) =t|v'|| LH[0l]) , (3.15a)

which implies that

M!*.« - <l" '"W12^*M *wd • ai5b)
Similarly,



Iv^)I<||v"||l2([01]) (3.16a)

and

,,v/»^[o.i])^llv/'ll^[o.iD- (3-16b)

Note that

1*0=m bo*+%*»*+iv'w2• <3-17>
From (3.15a),(3.16a-b), we have that

^vO^Uv'll^,,,. (3.18a)

i*m2*ill""ll l^y (3.18b)
and

lfe«i(1 +f+m)l|V"ll^".>»
(3.19)

and the proof is completed. •

Remark 3.1: Referring to [Katl, p. 187], we find that the spectrum of A0 is an infinitely increasing

sequence of positive real eigenvalues CD2, each of finite multiplicity, and that the corresponding mutually

orthogonal eigenvectors T|n comprise a complete basis in H0. The con'.s and i\n's are, respectively, the

natural frequencies and mode shapes of free, undamped oscillations. •

We define the energy space E = VxH0, where V =D(A*q) is a Hilbert space with inner product

<vi,v2V= <A£vi,AoV2V, vi.vjeV. (3.20)
»0'

The space E has the energy inner product

<(yiM)TXy2M2)T)E^<^\Wv^^hl,h2)Ho , v^v^V , huh2eH0 (3.21)

Remark 3.2: (i) The eigenvectors of Aq are also mutually orthogonal and complete in V, and the

pairs (T|n, 0) and (0, t\J are thus mutually orthogonal and complete in E. (ii) V = D(Al£) is the closure

of £>(Aq) with respect to the norm defined by (3.14). For the above example of the flexible beam, it can



be easily seen from (3.14),(3.15a) and (3.16a) that V= [v = (vQ, vlP vfi7 \ve//2([0,l]),

v(0) =v'(0) =0, Vl =v(l), v2 =v-(l)} and W\\v =V1F,,V''11 tfBUD[SclU]' •
Let xp(t) = (w(r), w(t))7. Then (3.3) can be rewritten in the following first order form:

x'p(t) =
0 1

-A0 -D0 xM) +

y(0 = (Co, 0)xp(0

0
m

(3.22a)

(3.22b)

Proposition 3.2: Cp:E -> R is a bounded operator.

Proof: Consider xp = (v, u)7eE = Vx //0, where v = (vQ, Vi, v2)7eV and iT= («(•), u\t u^eHo.

Then (see (3.3b), (3.30)

VCpXp = (C0, 0)
U

= C0v = v(jc,).

From (3.16b), Iv^l £ ||v"|| l2([(U]) . Note that

Mb =imiv+iisiih0 =V?11*"" ^[o.ii)+ irai* •

Therefore

ll*lls llXpib

Iv^l

i m

»V"» *[0,1]>

+ lisik

V?,,V//|1 *WD +l,SII"o
V EI

Hence we have shown that Cp: E -» R is a bounded operator.

Let

10

(3.23)

(3.24)

(3.25)



D(Ap=tf
-AZlD0 -Aq1

cB.
(3.26)

A_f,where Aq1D0 is the bounded extension of Aq1D0 to V. Then Ap generates the C0-semigroup [e p}t20

and IiA'jIb £ 1, V f>0 [Gib.l]. For the above example,

&(Ap) = [Vp = (v"i,V2)r IVi = Mq + Ml V2 = -Mq + «2« "^^^^(Ao), MqS K£>(Aq)} ,

and

Vp =
0 /

-A0 -£>0

MO+"l

-MO +"2

-Mo+ ^

-AqM! - Dfa

Now we can find A*, the adjoint of Ap. Its domain is given by [Gib.l]

-Ab^oAb-1
D(£)=R([ _j 0])c^=£.

Note thatE* = E because £ is a Hilbert space. For ourexample,

D{Ap) = {v* =(yuvd71 vi =-Mb +«i, v2 =-Sb +m2, Mi<feM2eD(Ao), ufcVD(Aq)}

and

A* *ApVp =
0 -/

A0 -D0

-Mo+M!

-Uq+U2

M0-M2

AoMi - DqU2

(3.27a)

(3.27b)

(3.28)

(3.29a)

(3.29b)

For our example, £>(A*) in (3.29a) is the Z* in (22a) and the Z in (2.2b) is the adjoint space of D(AP).

Now we are ready to present the following result:

Proposition 33: BpeZ.

Proof: Recall that Bp =[Ofljf and BQ =(8(jc -^),0,0)r. To show BpeZ, we have to prove that

g:v -» (v, Bp)E is a linear functional from Z* to R. Clearly, #(•) is linear. Now we will prove that it is

bounded. Consider any v" = (vi,v^)TeZ".

11



g(v) ={ v*ftp)E = (vltO)v+ {v2J3o)H
0 (3.30)

=(v2^0 )h0 >

where v2 = (v2Q, v2(l), v2'(l))Te V. Therefore

8(v) =( v2(x)5(x - xd dx =v2(xd . (3.31)

From (3.16b),

l*(v*)l =lv2ta)l <; ||v2"|| LH[Q§1]). (3.32)

Since Z* is equipped with graph norm, for any veZ*,

llvV»||vTk+||A;v*|k

=life, v/lfe +life, A0vi -Dovrffo (3.33)

= Filly + \m\H0 + WiWv + l|A0vi - DqVzK .

where A0Vi - D0v2 is defined in the sense of (3.29b). Since \\v2\$ =—||v2"|| J^iq »
w

u. 111 uiv ovuov vi \j.*>7\jj. vjiiivu i1"-"-- — — "«- 'I -

~"V2»L2([0.1])
llv*ll_* /"fT ~y EI '&\ JEr»» V£/* (3<34)

Therefore g(-) is bounded and BpeZ.

Remark 3.3:

(i) It can be shown that the use of ideal point moment actuators, instead of (or in addition to) point

force actuators, which result in the replacement of 8(x - xt) by (or the addition of) S'(x - *0 in (3.1a)

is compatible with the assumptions stated for model (2.1).

(ii) The infinitesimal generator Ap of the flexible beam defined in (3.27a-b) generates an analytic semi

group [Hua.l]. Hence it is easy to show that a decomposition of the form (2.5) holds for our example

[Gib.l]. Therefore the computational stability criterion presented in [Har.l] can be applied.

(iii) Generally speaking, the above results can be applied to systems which can be formulated in the

form of (3.3) where \v\t) is in a real Hilbert space H and m(0=("i(0. "2(0. *• *.Wn.W)^^"1'; A0

12



satisfies the assumptions given in Proposition 3.1; Co is a nonnegative, symmetric linear operator with

its domain containing D(A0) and there exists y £ 0 such that \\Cox\\H £ Y^o*!!// ,V xeD(A0) [Gib.l];

Bou(t) = 2 M(t) where each tf% 1^7^ «,-, defines a linear functional g:V -» R, where V= D(A<?),
M

defined by ^0 = ^,Ow. •

4. A NUMERICAL EXAMPLE FOR THE CONTROL SYSTEM DESIGN OF THE FLEXIBLE

BEAM

In practice, the test (2.10) can only be used as a sufficient condition, because one must choose in

advance the degree Nd of the polynomial do(s). We shall now sketch out some of the numerical aspects

of using the test (2.10) in the design of a stabilizing controller. First , the order nc of the controller

(2.3) must be selected and the elements of the matrices in (2.3) must be made continuously

differentiable in the design parameter vector pc. Second, the polynomials do(s) and no(s) must be

parametrized. In [Pol.1] we find a computationally efficientparametrization for a\£s) and no(s) which is

based on the following observation. When a,belRt Z[(s+a) + a)]cD.a if and only if a > 0, and

Z[(s+a)2 + a(s + a) + b]czD.a if and only if a > 0, b > 0. Hence, when the degree of drfjs) is

odd, we set <k{s,qa) k {{s + a) + ao)II((J + °02 + a& + «) + &i)» where qd i

(ao,alta2, • • • tam,b\>h.> ''' ^J^R2"*1 and Nd = 2i?h-1. When Nd is even, the linear term is omit

ted. The polynomial /io(s), which is of degree Nn-Nd-ns can be parametrized similarly, with

corresponding parameter vector qn. As a result, the system of inequalities (2.10) becomes

qi-zZO, fori= 1,2, ••• J*d ; $j,-e£0, for i = 1.2, • • • ,Nn, (4.1a)

Re( — : : ) - e £ 0, V co e [0,~) , (4.1b)
doi-a+jto.qj)

where q^, q*n are the components of qd, qnf and£ is a small positive number.

We shall now describe our numerical experience in designing a fourth order compensator for a

single-input single-output feedback system with the plant described by (3.1a-d), (3.2). We refer the

reader to [Har.l] about the discussion of the numerical implementation of the stability criterion given in

Theorem 2.2.. We assumed that m = 2, cl = 0.01, EI = 1, M = 5, J = 0.5, that the required stability

13



margin a = 0.2, and that the colocated point actuator and sensor are put at x - 1.

To obtain an initial compensator design and to provide a testbed for the study of truncation

effects, we carried out a modal expansion of the plant dynamics to obtain the first eight modes:

-0.0023 ± 0.6716i, -0.0447 ± 2.9890/, -1.3718 ± 16.5069/, -9.7845 ± 43.1411/. In the corresponding

truncated state space plant model, the matrix Ap has the form Ap = diag(An,A22Ays,AM), where

An =
0 1

-0.451053 -0.004511
A^ =

0 1

-8.936154 -0.089362 »

A33 =
0 1

-274.359603 -2.74359

*

6 A44 =
0 1

-1956.894214 -19.568942

(4.2)

Bp =(0,-0^72993,0,-0.112681,0,0.073277,0,-0.047885)r, Cp = (-0.545986.0,-0.225362,0 0.146553

, 0 , -0.095770 , 0) , and Dp =0. We chose to design the compensator in transfer function form:

Gc(pc,s) = Coicis2 + C&+ IXC3J2 +C4S+ lyidis2+ d2s + Wd^s2 + <Us + 1), which results in

4

Pc - (c0,cl,c2tcz,cA,dl,d2.d2,ddT- We setn^s) = 1 and d^s.q^ - \[ ((s + a) + at{s +a) + £>;), so that
p=i

qd £ {ai,a2,a^,aA,b\,b2tbitb^7. We set e =0 in (4.1a,b).

Using pole assignment on the fourth order truncated model, we obtained the initial compensator

transfer function: Ge(pe,s) = n*u*? +*as63*+mB6.u+i5m* which stabilizes the truncated model.
/ + 2.94613j3+ 177.301j2-3333.83*-7930.13

However, it fails to stabilize the truncated plant of order 6 and 8, as well as the full precision model.

Using this compensator as the starting point for our semi-infinite optimization algorithm, we

obtained in two iterations of a semi-infinite minimax algorithm the following transfer function of the

stabilizing compensator for our controlled flexible structure: Gc(pe,s) =

-llSIM* ♦ 20658,8,3 +̂ ^+moLU +mm ^ ^^^ ^ ^^ for me evaIuation of %(p s)
i* + 2.12762J3 +171.79U2 - 326291J - 7774.42

was [0.1 , 200] and the number of sampling points used was 50; 500 points were used to produce the

plots in Figures 3 and 4. The plot corresponding to (4.1b) for the initial value of the compensator is

shown in Fig. 3 and for the final value in Fig. 4.

It is interesting to observe that the closed-loop system poles which result from the use of this sta

bilizing compensator and the truncated plant of order 4 are 0.695414 ± Z9.82352, -1.4397 ± /7.04732,
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-0.128045 ± /4.91775, -0.238414 ± /2.99904. As we can see, there are two unstable poles. However,

when the plant model is truncated to order 6 and 8, respectively, the closed-loop system is stable and

has poles at -0.521081 ± /16.3213, -1.02523 ± /9.92591, -0.459227 ± /7.0698, -0.23843 ± Z4.9936,

-0.238574 ± Z2.99953; and -9.75924 ± /43.1321, -0.51818 ± /16.3271, -1.09369+ Z9.94782,

-0.411156± /7.04619, -0.246175 ± Z4.99733, -0.238581 ± Z2.99956, respectively.

5. CONCLUSION

We have shown that a necessary and sufficient computational stability criterion presented in

[Har.l] can be used in the design of stabilizing controllers for flexible structures with point actuators

and sensors. The stability criterion is suitable for optimization-based computer-aided-design by using

semi-infinite optimization algorithms. Our approach can avoid common "spill-over" effects which result

from modal truncation of partial differential equation models. There remains a certain amount of

numerical analysis type work to be done in developing efficient techniques for the repeated evaluation

of frequency responses of distributed parameter systems, and for the computation of their unstable

poles. Furthermore, because of local minima effects, we remind the reader that the successful use of our

stability criterion in conjunction with semi-infinite optimization algorithms may be predicated on a good

initial design of a stabilizing controller.
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Figure 1: The feedback system S(P,K),
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Figure 2: Planar bending motion of a flexible beam,
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Figure 3: Modified Nyquist diagram (initial design).
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Figure 4: Modified Nyquist diagram for the stabilized system.
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