
 

 

 

 

 

 

 

 

 

Copyright © 1989, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



THE COMPLETE CANONICAL

PIECEWISE-LINEAR REPRESENTATION

by

Claus Kahlert and Leon O. Chua

Memorandum No. UCB/ERL M89/32

23 March 1989



THE COMPLETE CANONICAL

PIECEWISE-LINEAR REPRESENTATION

by

Claus Kahlert and Leon O. Chua

Memorandum No. UCB/ERL M89/32

23 March 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



THE COMPLETE CANONICAL

PIECEWISE-LINEAR REPRESENTATION

by

Claus Kahlert and Leon O. Chua

Memorandum No. UCB/ERL M89/32

23 March 1989

ELECTRONICS RESEARCH LABORATORY

.College of Engineering
University of California, Berkeley

94720



The Complete Canonical Piecewise-Linear Representation

Claus Kahlert and Leon O. Chua^

Abstract

An extension of the well-known canonical representation for continuous
piecewtse-linear functions is introduced. This form is no longer subject
to any restrictions, moreover, it is shown that just one nesting of absolute-
value functions is sufficient to describe the whole class.
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1. Introduction

Piecewise-linear (PWL) models has proven very helpful in analyzing nonlin
ear circuits, not only from a computational point of view but also because
they axe much more amenable to analysis than general nonlinear equations.
Specifically the canonical representation ofcontinuous PWL functions

F(x)=b +Bx +£ci|(ai,x)-/3'| , (i)
t=i

introduced in [1] gains an extra advantage compared to aconventional PWL
description, both with respect to analytical and computational purposes si
multaneously —aremarkable goal, which can be achieved only very rarely.
These superior properties emerge primarily from the compact form, which
takes advantage of the continuity of the described function, making its be
havior in the different regions far from being completely independent. Thus
a canonical representation may be interpreted as the minimal formulation
which makes full use of the "parametric degrees of freedom", i.e., no more
parameters than necessary appear. This makes such arepresentation very
satisfactory from a theoretical point of view. As far as concrete compu
tations are concerned, the relatively small number of terms involved are
moreover highly desirable for acomputer (especially for vector-processors)
since they involve mainly calculating inner products and absolute-values in
Rn.

The above canonical representation for continuous PWL functions de
scribes avery large class of systems. In fact, it can be proved [2] that any
non-degenerate" (where no more than two boundaries have a common in

tersection) linear partition of the domain space gives rise to such arepresen
tation. N̂evertheless, there exist numerous counter-examples, which show
that this representation does not cover the whole class of continuous PWL
functions. Unfortunately, the functions described by it are not even "dense"
in the class, as might be inferred from the adjective "degenerate" At first
glance, one might think that asituation with three or more boundaries pos
sessing a common intersection is not generic and can thus be removed bv
a slight perturbation of the boundaries. However, any such perturbation
produces new regions (reflecting new properties of the circuit or even new



circuit elements) and neither circuit theory nor mathematics offers any in
formation concerning the function's behavior inside the additional regions
thus created. In the general case they do not fit into the present canonical
representation, thus there is no canonical unfolding within the framework
on hand.

In the subsequent sections we are going to show that the following
complete canonical representation overcomes these shortcomings and is ca
pable of representing all kinds of piecewise-linear continuous functions with
arbitrary region boundaries.

F(x) = b+ Bx + ]TV|(a\x) -P{\ +
i=i

Q 6j+2

(2)

i=i fc=3 ^
Km, «°*'*> " Ph)I +<4;2 ((«**, x) - p*)

a$kil((a>*,x) - &*) +KA«a*,x) - /3*)|

Figure 1

^In order to demonstrate the capabilities of this generalized represen
tation, let us look at an example, illustrated in Fig. la: A PWL resistive
three-port (N),-being connected to alinear two-terminal resistor (R'). The
constitutive relation of Nis defined by the following canonical PWL repre
sentation:

Vi = a • ii + b• |i31

v2 = c-i2

V3 = d • f2 - e •i3 -f / • Izj

while R' is characterized by

v*= g-u

(3a)

(36)



As the third port of N is connected across R', we immediately obtain

d-i2 +/• |*i |Vi = a • i! -h 6

V2 = c • 2*2

0-e (4)

for the resulting two-port N'. The behavior of the latter is visualized in
Fig. lb, using the parameter values a,6,c,cf,e,/ = 1; g=2. Equation (4)
with its nested absolute-value functions cannot be described in terms of
(1), since it violates the consistent variation property (i.e., here the change
in the Jacobian of the PWL function is not constant along the bound
aries), which was shown in [2] to be a necessary and sufficient condition
for a function to possess this sort of representation. The example also
demonstrates that degenerate intersections of region boundaries can arise
in generic setups; namely, perturbing the parameters in (3) will not yield
a non-degenerate situation. Since the special parameter values chosen for
Fig. 2 do not describe any exceptional situation, to avoid clutter, we shall
use a, 6, c, d, e, / = 1 further on.

Another property illustrated by the above (and the next) example is
the occurrence of terminating or piecewise-linear boundaries. Such a situ
ation cannot be described in-terms of (1). In contrast, it is an easy task
for our generalized representation to make the function's behavior the same
along both sides of apart of a"boundary", thereby rendering it "invisible",
while the function changes behavior along another portion of the same hy-
perplane.

With the fixed parameters mentioned, Eq. (4) may be processed by the
algorithm described below, which yields for the first line

vi =*i +i2 +- •||n +121 +Ki - i2\ +
(5)||*i +t2| +ti - i2\ - |*! +i2 +|ix - i2\\ J

(the second line of (4) remains unchanged). Although the equivalent rep
resentation (5) appears much longer and less elegant than (4), it has the
form of the completely general canonical representation (2), which covers
all piecewise-linear continuous functions and thus may be analyzed imme
diately by the tools to be presented in the subsequent sections



Since the nested absolute-value of (4) could not be represented in terms
of (1), one might still think that for every nesting appearing in the consti
tutive relation a new canonical representation has to be found. However,
in this paper, we shall show how arbitrarily deep nestings or complicated
boundaries can be formulated in terms of (2). To demonstrate the signifi
cance of our finding and of the algorithm (to be introduced in Sections 4
and 5), let us look at another example, where the third port of the re
sistive three-port N described above, is connected across a two terminal
piecewise-linear resistor R" with the constitutive relation

In the present case, for the resulting two-port N"

vi=ii + r2(i2 + |«i|)-|i2 + |t1||

tion.

3

v2 = i2

Figure 2

(7)

is obtained, containing already two nesting levels of the absolute-value func-

Utilizing again the algorithm to be presented below, the first line of
(7) can be recast into the new canonical form containing just one level of
nesting; namely,

Vl =3(3fl +*2 " I*1' +I*1 +i2l +I*1 ~*a|+
(S)

|Kl +t2| +l"l - 121 - |*1 +*2 +|*1 - 12||} •

This second example again demonstrates how nested absolute-values axe
represented canonically. In fact, it does not matter at all how a function
is represented in a concrete problem. The only information required for
the canonical representation is the exact behavior in one arbitrary region
together with the changes which the Jacobian of F undergoes along most
(see below for details) boundaries between regions. The latter properties
may be extracted from a nested absolute-value function as weU as from a



conventional representation, where for every single region the function is
given separately, e.g., as a table of matrices.

It will also turn out that the complete canonical representation con
tains the minimal number of parameters. All redundancy resulting from
the continuity of the piecewise-linear function to be described is already
absorbed in the functional form of the new canonical representation.

Our approach for handling degenerate intersections will make use ofthe
mutual dependence of boundaries with common intersections; thereby uti
lizing the fact that the changes in the Jacobian which occur when a bound
ary is crossed can either be cancelled or enhanced by the effects ofanother
boundary. (This cannot happen in the non-degenerate case where there
are only two intersecting boundaries. There the change in the function's
behavior which appears as a boundary is crossed has to be compensated
exactly, when the same boundary is crossed again in the other direction.)

2. A Quick Review of the Canonical Representation

Any continuous piecewise-linear function F with non-degenerate intersec
tions of boundaries between regions may be written in the form given by
Eq.(l), with p e R; b,a\c*,x 6 Rn; and B e Rnx*. Here we adopted
the notation and the definitions from [2] with the exception that coordi
nates in Rn are denoted by lower indices while upper indices will be used
for "boundary-, intersection-, and region-labels". The boundaries them
selves are linear manifolds (hyperplanes) defined by (o^x) = j3\ The only
assumption we make is that all regions in domain space have a non-zero
volume in Rn (which may in fact be infinite).

A setup with affine boundaries might appear a rather special situa
tion, however, it represents the most general case, as can be seen immedi
ately from one key result to be used frequently further on. It comes from
Proposition 1 of [3], which says that the difference in the Jacobians of re
gions adjacent to a boundary characterized by the vector a can always be
written as a dyadic product caT, with a uniquely defined vector c. This
may be expressed briefly as "continuity implies a dyad."



Since the latter result is crucial for the understanding of continuous
PWL functions, we present the sketch of a proof, in order to gain some
insight:

Let us assume that the function F is defined in two regions .R(1) and R(2)
with Jacobians J(1> and J(2), respectively. For simplicity, let us further
assume that the boundary between these regions is defined by (c*,x) = 0,
i.e., ft = 0, which can always be achieved by a simple translation (thus it
is sufficent to look at linear boundaries instead of the more general affine
ones). Since F (= J<*>x + w<*>) is continuous, the function values have to
match at the boundary (whose points will be denoted by x'), hence

AJx' := J<2>x' - J^x' = w(1> - w<2> (9a)

has to be fulfilled. Specifically at the origin, which is a point of the bound
ary,

AJ0 =0=w(1)-w(2) (96)
is obtained, which immediately gives us

AJx' = 0 (9c)

for all x' from the boundary. Let AJ; be the i-th row of AJ, then (9c) may
be rewritten as

<AJf,x')

AJ = c*T

(10)
<AJ£,x')

Since this equation holds for every x' on the boundary, the AJ{ can differ
from a only by a real constant a, yielding AJ* = CiaT. Hence we have

(11)

which immediately (upon applying it to an arbitrary vector x, which need
not be from the boundary) gives us

AJx =(caT)x =c(<*,x) . (iia)



Before we proceed, it is instructive to examine some consequences of
the above analysis. Note first that Eq. (9a) is valid for arbitrary (not neces
sarily linear) boundaries. Nevertheless, (9c), which requires only the origin
to be a point of the boundary (an assumption which was introduced above
just for convenience), immediately implies that the boundary is the ker
nel of AJ, i.e., a linear subspace. Thus, although frequently stated as an
extra assumption, linear boundaries are an immediate consequence of con
tinuity. As was mentioned above, the property also holds for general affine
boundaries, which can be achieved by a translation.

^Next take an x 6 R{2) and look at the effect of a switching Jacobian,
which is due to AJ. For this purpose, x is decomposed (which can be done
uniquely) into x™ +xx, where x" is along the boundary and x1 is normal
to it. Now, from (11a) it becomes obvious that

AJx =AJx1 (12)
and thus, upon "walking around" in the domain space, a change in the
Jacobian can only be recognized in the direction normal to the boundary.
In other, words, upon crossing the boundary, only the derivative of F in
the direction of a changes by c, while the derivatives in all the other n - 1
linearly independent directions remain unchanged. This demonstrates that,
in order to preserve continuity, for a given boundary only n degrees of
freedom (the components of c) are present among of the n2 entries of the
Jacobian.

Since only one direction in space, namely the one given by a, is in
volved in the change of the function's behavior as a boundary is crossed,
the latter "process" is essentially a one-dimensional problem. This is a
trademark of the "canonical representation" with a constant jump in the
Jacobian throughout the whole boundary, yielding the consistent variation
property. At a first glance, such a property seems to be a rather severe
restriction; however, as was shown in [2], all continuous PWL functions
without degenerate intersections of boundaries can be described by (1).

In order to visualize the situation, the intersection of two boundaries
wiU be treated next. However, first we are going to introduce a notion,
which will prove very helpful and gain much insight. Let T be an arbitrary
closed path in the domain space, possessing the parametric representation

r:[0,l]-R*; s^T(s) . (13)

8



Along any such path, the Jacobian of F is piecewise-constant. This yields
the motivation to formulate the Jacobian as a function over the unit interval

Jv :[0,1] - Rn*n ; s~ JT(s) =(p.) (14)

with values in the class of all real nxn matrices. Obviously JT is piecewise-
constant with jumps of "height" caT on the boundaries. Moreover, since
F is single-valued, we have

•7r(l) = Jr(0) , (15)

which can be considered as a global continuity condition, in contrast to the
local condition (11), found along the boundaries. Equation (15) further
reduces the number of free parameters available in the continuous PWL
functions. This constraint is a global consequence of the continuity of F
and should not.be confused with the Hmitations in the canonical PWL
representation.

Figure 3

Let us now turn to the case of two intersecting boundaries. Such a
situation can be characterized by two linearly independent a's (say a1 and
a ), which form a basis for the jumps that can occur. In consequence
no change appearing along the boundary defined by a1 can be influenced
by the change in the Jacobian along the other boundary. In other words
for any two non-zero vectors a1 # a2 there exist no vectors c1,^ ± 0
such that cW = c2a2T. This gives a geometrical interpretation of the
consistent variation property for non-degenerate intersections of boundaries.
The situation changes immediately as degenerate intersections (with three
or more boundaries sharing acommon (n-2)-dimensional manifold) appear,
since then the a's are no longer linearly independent.



3. The Complete Canonical Representation

In this section we are going to state our major result and demonstrate some
properties ofthe complete canonical representation. First, however, we need
some definitions, which extend those of [2].

Def. 1 A connected open set ofnon-zero n-dimensional volume in do
main space, where the Jacobian of the PWL function F is constant through
out is called a region R^ of F.

As long as just one function will be considered, these sets will just be
called regions.

Def. 2 Afinite family ofregions is called a (complete) covering of the
domain space if the union of the closures of the regions is the entire space.
Def. 3 Let R& and R^ be regions with Jacobians jW and J<J>, re
spectively, of F. Then the matrix

AJto'> := J<*> - J(i) (16)

is called the difference ofor the jump in the Jacobian of F between regions
R^ and Bin.

This difference can of course be calculated for arbitrary pairs of regions,
for adjacent regions, however, it has the special form given by Eq. (11).
Def. 4 Two regions jR<»> and JJ<i> are called adjacent, if there exists a
point x and an r0 € R+ such that for all 0< r < r0 the open balls Br(x)
centered at x with radius r contain both points of R^ and R^ and are
proper subsets ofthe union ofthe closures ofthe two regions.

This definition rules out situations, when boundaries of regions have
just isolated points in common, as is depicted in Fig. 4a.

Def. 5 Afinite family of (disjoint) regions is called a minimal (com
plete) covering ifit fulfills Definition 2and for any two adjacent regions
RW and RS» the matrix AJ^') does not vanish.

Although all possible coverings of the domain space can be employed
to describe a PWL function, the minimal covering plays aprominent role,

10



since it yields the largest connected regions where the function's Jacobian is
constant. To avoid clutter, we shall treat only minimal complete coverings.
This does not restrict us in any way, since all other coverings can be derived
directly from it.

Def. 6 An (n - l)-dimensional linear manifold (hyperplane)

S*:={x|(a\x) =/3*} (17)

is called a pre-boundary for the continuous PWL function F if there ex
ists an x GS* and an open ball Bro{x) (r0 € R+), such that for every
x' GBro(x) fl S* all open balls &r{x?) (0 <r < r0) in domain space have
non-empty intersection with at least two different regions of the minimal
covering.

Figure 4

Note that this definition allows the possibility that a portion of a
pre-boundary may be "invisible", as was demonstrated in the examples of
Section 1, while other parts are actual region boundaries. Conceptually an
invisible boundary, i.e., amerging of regions in aminimal covering, means
that regions need no longer be convex sets. In what follows, we assume that
a pre-boundaries ofF are present in the domain space. When no confusion
can arise, pre-boundaries will frequently be denoted just as boundaries For
convenience, sometimes the AJ will also be labeled by using the boundary-
index carrying afurther index. For example AJ»* means the jfe-th jump in
the Jacobian appearing at the boundary S\ In these cases we implicitly
assume that the boundary is crossed from aregion where (a\ x) - ft is less
than zero towards aregion where this expression is positive (see for example
Fig. 6a below). *

Next intersecting boundaries will be considered:

Def. 7 An (n- 2)-dimensional linear manifold V is called a direct
boundary intersection ifP = 5fc DSl with k^l.

Now that the notion of direct boundary intersections has been intro
duced of which we assume to have gpresent, and which will frequently be
denoted just as intersections or nodes, we have to characterize them. For
this purpose one more definition is required:

11



Def. 8 ^ The degeneracy 6j of a direct intersection P is the number of
boundaries Sl containing P as subsets, minus two. Thus

6 : [1... q] -• [0 ... o - 2] ; j i-+ 6j (18)

This reflects the fact that an intersection is called degenerate as soon
as it is shared by three or more boundaries, (non-degenerate intersections
have degeneracy zero.) The next step wiU be to introduce the geometry of
the boundaries in domain space into the formalism. To this end an index
function (parametrized by the "node index" j) has to be defined

T:[l...^" + 2]-+[l.:.<7]; (i;j)^l(i;j) , (19)

which connects the intersection P and the boundaries involved there, being
labeled by 1.. .V+2, to the original labeling of the boundaries S\ Note that
Xis not surjective if one or more boundaries have no intersection with others
and the map is not injective if at least one boundary is involved in more
than one node. Further on we shall frequently refer to I(j,i) loosely as j{
(meaning the original label of the i-th boundary involved in the intersection
•* /•

With all these tools on hand, the complete canonical representation
may now be presented in a compact formulation:

Theorem 1 All continuous PWL functions can be represented in the
form

with

and

Q *J+2

i=i fc=3

F(x) =b+Bx +£r(x) +£ £>*(x)
1=1

rto^ciKa^x)-?

(20)

(21)

(22)

12
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where

a;*:=a^.y>+<4.2o> . (23)
(Note that the latter function carries two indices, one from the node and
the other describing the boundary.)

Moreover, (20) contains no redundant parameters.

The complete proof of this theorem will be presented in Section 5
Here we are going to demonstrate the main properties of the functions g«*
in the next section a constructive proof in the form of an algorithm will
be presented for calculating the c's and c's for one degenerate node. And
nnally the case of several intersections will be treated.

To obtain some insight into the structure of the new canonical repre
sentation, let us first look at the structure of Equation (20). While the first
three terms on the right-hand side are identical to (1), the final expression
contains asummation over all nodes and over all boundaries making these
intersections degenerate. Thus, non-degenerate P yield no contribution
and asetup where all V=0gives us back the old canonical representation.

This yields the motivation for astep by step generalization of (1). First
the situation of one degenerate intersection containing the origin i.e., all
j8s vanish, which can be achieved by atranslation) will be investigated.
This>* already a fairly general case, since the "local" contributions from
the different nodes independently sum up in F. In fact, since the different
gs also appear linearly in (20), it is sufficient to investigate the case of
a degeneracy one intersection. (Since only one node will be treated until
Section 5, the node-index on the g's, c's, and a's will be suppressed.)
nnW^S W!.saWfin1the PrecedinS section, upon crossing aboundary, the
Iwtr 10n lreieVanf ^^ °nC n0rmal t0 the boundary> whilTthosedirected along he boundary yield no contribution to AJ. Hence, without
loss of generality, the theory of one intersection can be developed in the
two-dimensional quotient space of the domain space R" and the intersection
(that is the space spanned by the a's of the boundaries contributing to the
ft Sm?Ce 0^hl*SpaC\wiI1 be consi<kred further on, we shall also call
Herf̂ SPa7 T ^ "J™ Symb°ls " in the <*&** description.Here the crucial property of adegenerate intersection becomes clear- All



the linearly dependent a's, together with the jumps in the Jacobian caused
by them, can be expressed as linear combinations of two basis vectors.

For the prototype situation described above, we are left with the two
"bias terms" b, the constant, and Bx, the linear contribution, next come
the f's, describing the constant jumps of the Jacobian along the boundaries
—this may again be interpreted as abias, now for the jump of the Jacobian.
The final contribution is due to g* (in order to keep the formulas general, we
use here ageneric index "j" instead of the special "3", which would appear
in the present case), this function describes the switching of the jumps in the
Jacobians, as the boundary "passes" the intersection. In order to maintain
continuity of F, g-? has to represents the interaction of boundaries rather
than single boundary contributions as it is known from the f\

To see how this works, let us look at the behavior of g>. The basic
structure found is the nested absolute-value functions. Without the "inner"
| •|'s, every single g*(x) would vanish. The first property, which can be
seen immediately, is that g'(x) vanishes if both a^o^x) and a-(a2 x)
have the same sign. Thus g'(x) is equal to zero in two regions. This is
a nice feature, since it shows that g> adds no bias term to F but rather
describes the pure deviation from the consistent variation. Note that g*
vanishes if the deviation is zero and (20) reverts back to the old canonical
representation.

Next, the lines (hyperplanes in R2) where gi(x) changes behavior
have to be determined. A superficial inspection of (21)-(23) suggests that
the boundaries axe defined by (a\x) = 0, (a2,x) = 0, (a'',x> = 0 and
{ajia - aj2a ,x> =0. The latter line is, however, not aregion boundary
of the function F, hence there should be no change in g* along it. This is
guaranteed by the following Lemma:

Lemma 1 The function g* does not change its Jacobian along the
hyperplane defined by ((ajxct1 - aj2a2),x) = 0.
Proof From the definition of the line we find immediately (by taking
squares j:

(ajia\x) •(aj2a2,x) =±((ajla\x)2 +(aj2a2,xf) >0 (24)
thus both (o^.x) and <ai2ar2,x) must have the same sign, i.e., gJ(x)
vanishes along this line. Moreover, since both ajl and aj2 are non-zero,

14



the line in question is from the regions, where gJ(x) vanishes throughout,
hence there can be no change by crossing this hyperplane, i.e., it yields no
additional boundary, which would have voided the whole description. •

Similar arguments can be used to show that g3' changes along the three
other lines. To clarify this, we actually calculate g3 and the jumps along the
boundaries in the six sectors separated by the three boundaries in question
(see Fig.5a). For this purpose let us assume an, aj2 > 0. This can be done
without loss of generality, since -a1 and/or -a2 may equally be used as
basis vectors. In the case of ahigher degeneracy the signs of ajl and aj2 are
no longer free for all but one of the ar>'s. Then the same entries appear in
the table-representation of g^, however permuted. Interchanging the labels
of a1 and a2 and the signs of the a's allows us to build eight tables similar
to the one below.

Figure 5

Table 1 The explicit behavior of the three f« and of g' and their contribu
tionto thejumps oftheJacobian along theregion boundaries, calculated alone
a closed path I around the degenerate intersection, as indicated in Fig. 5a.

Region f1 f2 V EJ AJ(ki)

R(» 1 lT
era1 2 ll"

oror
•T

0

i?<2> 1 i? 2 2^ •T
c3a3 -2aj! c^a1

-2(c1+ajl&)alT

U<3> i i^ 2 iT
trar —c3a3 2aj2 cJa2

2(-c'+c')a'T

#4> -c^ 2 2^
—cror

•T—c3aJ 0

-2(c2 + ai2c^)a2T

RW l 1^c1ai 2 2^
—oror

T
—c3a3 -2ailc^alT

2(c1-ailc>)alT

RW i iT 2 oT •T
c3ct3 2aj2 cJa2

2(c' + c')a'r

- 2(c2-a7-2c>)a2r

This table clearly shows the properties of the functions F and g3
Unlike the F, which represent one boundary each, the g* represents apair-
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interaction ofa3 with both ofthe basis vectors. The other major difference
is found in the symmetry properties, while all F are symmetric with respect
to a change ofsign in x, i.e., F(-x) = F(x); g3 behaves in an antisymmet
ric manner, i.e., gJ(-x) = -g'(x). (Note: These formulas hold only for
an intersection at the origin. For an arbitrary node located at y the two
functions are symmetric or antisymmetric with respect to that point, yield
ing F(y - x) =F(y +x) and gJ(y - x) =-gJ(y +x), respectively.') As a
consequence the contribution to the jump of the Jacobian in one direction
(say from (a%x) < 0 to (a%x) > 0) is constant for all the F while the
contribution coming from g '̂ changes its sign at the intersection. This, of
course, immediately requires that, after half a turn of T around the node,
when the first, second and j-th boundary are crossed, the jumps in the Ja
cobian caused by g3 have to sum up to zero, both in the directions of a1
and a2 separately. By virtue of the symmetry of g3, the same argument
applies to the second half of the path.

Now that we know the symmetry properties of g3, let us look at all
eight setups mentioned above. Four of them can be obtained immediately
by exchanging the indices of a1 and a2. The four others are characterized
by (a) (ajx >0, aj2 >0) (the case treated in Ta&Zel), (b) {ajx >0, aj2 < 0),
(c) (ajx < 0,aj2 > 0), and (d) (ajx < Q,aj2 < 0). Now it is an easy task
to show that the cases (a) and (d) as well as (b) and (c) are mutually
equivalent. Thus only two principal types are left, where a different set of
basis vectors is used (see Fig.5 above). The behavior of g '̂ and its Jacobian
for the two principal setups is demonstrated in the following table:

Table 2 The two principal behaviors of the functions gJ that appear with
different signs of the expansion coefficients ajk (k = 1,2).

cij-i > 0, aj2 > 0 ajx > 0, aj2 < 0
Region Ej MS) gJ 4«)

RW 0 ^a^c'a1^
x '

fl<2> -2a,-! c'alT
-2ailc>alT

0

2ajlc3alT

tf(3> 2aj2 cPa2
2c?q?T

—2aj2 oPo?
2aj2 cJa2

2aj2 c3ct2

-2c3ajT
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This table nicely depicts the symmetry properties of g3. Moreover,
it yields a complete list of the functional behaviors and the jumps of the
Jacobian caused by this function.

4. The Algorithm: A Constructive Proof

Here we are going to use the properties of the new canonical representation
(20) to prove that it describes any intersection of degeneracy one. This will
be presented in the form of an algorithm, which requires only continuity for
the function to possess such a representation.

The idea of the proof is very simple. The jumps in the Jacobian along
each boundary, which, in the general case, differ on both sides of a degen
erate intersection, will be written as the sum of aconstant term (emerging
from F) and one that switches its sign at the intersection (coming from g3')
While every boundary contributes an f-function, the number of g's is given
by the degeneracy 6of the node (being one in the present case); which is
an immediate consequence of the global continuity condition (15). As in the
preceding section, the generic index «j» will be used for the third boundary.
Lemma 2 Any continuous PWL function with an intersection of de
generacy one at the origin can be written in the form

F(x) =b + B + £ c*|(a\x)| + (25)
*€{l,2,j}

&{\\*ji(*\x)\+aj2(a2,x)\ -^(a1,^ +|ai2(a2,x)||}
Proof We are going to present an algorithm which yields the vectors c*
and c'. To avoid clutter, let us assume (without loss of generality) that the
regions and boundaries are set as in Table 1or Fig. 5a, respectively, with
the Jacobian JO (z = 1... 6) given explicitly for every region #•>. The
following steps will yield all parameters that are needed in (25):
Step 1 Check that JW x= J«> xalong the boundaries of adjacent regions
and write AJ<fcZ> as c<fc£)az , with i 6 {l,2,j}.
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Step 2 Use Table1to calculate c3 and c3' from the jumps occurring along
S3, that is

C(3'2)-c3 + c3 = —- (26a)
2

g(6,5)
J _L Z3 —

These 2x2 linear equations can be solved uniquely for each component of
c3 and cJ separately.

Step 3 Again use Table 1 to find the jumps of the Jacobian along one
portion of each 51 and S2 (here the jumps between the regions i?(2> and
i?(1), respectively #<4> and R^3\ were chosen). The two resulting one-
dimensional linear equations

i , -i e(24)c +ajlc3 = — (27a)
and

2 -,• c(4'3)c' + aj2c3 = — (276)

yield the components of c1 and c2 uniquely. Eventually

i -,• c^5'4)c - ajl c3 = -y- (28a)
and

c- - oj2 c3 = —j— (286)

may be used to check that all jumps in the Jacobian along a closed path
T sum up correctly to zero, in accordance with Eq. (15); namely in both
directions of a1 and a2 for every single component of the c-vectors. Hence,
from (28) we have 2n global continuity conditions.

Step 4 Finally b and B, the constant terms in F, have to be determined.
The first one is obtained from

b = F(0) (29a)
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In order to find B, we can pick an arbitrary region, say RW, and solve (25)
for this matrix, yielding

B=J(1) - £ **-** i (296)
«€{l,2tj>

where the functions F and g3 have to be taken from the first region. This
completes the proof that any degeneracy one intersection can be represented
by (25). Since all associated equations have unique solutions, we have not
only shown the completeness of (25) but also that the vectors c (coming
from the AJ) correspond one-to-one with the cl and c3' of the canonical
representation.

As an illustration, let us apply the above algorithm to determine the
coefficients of Example 2 of [2]. With a1 = (1,1)T a2 = (0 2)T and
a* =(-1,1)1'we obtain c> =c2 =c* =c* =-(f, I)T b'='„; and

It is now an easy task to generalize our preceding result to an intersec
tion having an arbitrary degeneracy.

Lemma 3 Any continuous PWL function with an intersection ofanv
order of degeneracy at the origin can be obtained torn (25) by introducing
a summation over the j-indices.

Since the proof is completely similar to Lemma 3, we sketch only the
differences: (1) Steps one and two have to be performed for every j. (2) In
step three the terms ajkc3' (* =1,2) have to be substituted by asunfover
all j. (3) The same applies in the final step to F and g^.

To sum up this section, the g '̂-function represents the switching jump
mthe Jacobian along aboundary, as the latter reaches adegenerate intersec
tion. With it we have obtained the whole hierarchy of structures appearing
in continuous PWL functions. The vector b is the constant contribution
B yields the "average" Jacobian, the F's give the deviations from B, which
arise across the region boundaries, and finally gi contributes a modulation
ofthe jumps in the Jacobian. One might now surmise that even more sub
tle structures like intersections of direct intersections have to be employed
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in order to obtain a complete description of the class of continuous PWL
functions.

This corresponding to possible complication, however, can be ruled out
easily. Since the AJ'fc,s at one boundary are already matrices of rank one,
and moreover, are all constructed from the same a% any difference between
them can arise only from the c-vectors which are described in terms of the
functions g-?, as will be demonstrated in the next section. Thus there is no
need for any further elements in the complete canonical representation.

5. Several Degenerate Intersections

Consider now the most general situation when several different direct in
tersections of boundaries are present in the domain space. The first step
towards this goal is to consider an intersection of boundaries located arbi
trarily in the domain space. This can be achieved by a simple translation in
(25), which will bring back the /3's in the description of the boundaries (to
avoid clutter, we shall use the same symbols for the transformed vectors).

Next, new boundaries have to be introduced. As long as they inter
sect in a non-degenerate manner, they are added in the same fashion as all
boundaries in (1), i.e., by adding a new term F(x). Another set of bound
aries, which form an additional degenerate node can also be introduced
immediately by adding another sum over the g-functions involved in that
intersection. This can be done because aU the g's from other degenerate
intersections axe constant at the "new" intersection.

^The preceding argument already pointed towards the final problem
which has to be solved in order to prove Theorem 1; namely the situation
when a boundary "connects" two degenerate intersections. We are going to
show that this case is also covered by (20) and thus needs no new elements
for its description.

First the linearity of the boundaries rules out that more than one
boundary can participate in the same two nodes, i.e., if Ik c S{ and I1 c S{
(k # 1) then for aU j ^ i either Ik £ S3 or I1 <£ S3 or both are true. This is
an immediate consequence of the fact that the solution of a linear equation
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is a unique linear manifold — in the present case it is S\ Thus deal
ing with connected intersections is essentially a one-dimensional problem
where only one vector a is involved (this, of course, is the dimension in the
domain space and not the dimension of the resulting algebraic problem).

Lemma 4 The function F restricted to the boundary S\ which may
connect m degenerate intersections I31 (1 = 1... m), can be described by

m

F|s<(x) =b+Bx+r(x) +£g*«(x) • (30)
i=i

(Note that the the first index in the g's reappeared.)

This lemma supplements Lemma 3 nicely, since here we see a summa
tion over all the node-indices of one fixed boundary.

Figure 6

At this point one might be concerned whether asituation, like the one
shown in Fig. 66, can be described in terms of (20). As can be seen from
Fig. 6c, the boundary S{ decomposes into four sectors separated by the
two degenerate intersections I3 and Ik. At first glance it appears as if the
jumps AJ*' (/ = 1.. .4) in the Jacobian for the four sectors could be chosen
independently while only three free parameter vectors (c{, c3 and £*) are
available.

In this case again, the technique of closed paths proves very helpful.
Let us look at T and F in Fig. 66, which both go around I3, on different
sides of I . In the present case, the boundaries S*' and Su- have non-
degenerate intersections with S**, S**, and S{> hence the AJ's do not change
as these boundaries intersect, and for both Tand F the same changes in the
Jacobian are found as they cross 5* and S{*. This, however, immediately
implies that the jumps of the Jacobian on S\ as they are seen by the two
closed paths T and F, respectively, can differ by just one constant cV'T
The same argument applies to a "symmetric" situation with closed paths
around I . Thus, due to continuity, the four AJ*' in S{ can be described
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by three parametric degrees of freedom, thus

AJfl =caiT (31a)
AJ^=(c +cVT (316)
AJ*' = (c +c' +c'VT (31c)
AJi2 = (c +c>iT (31d)

is obtained, with c, c' and c/; as free parameters.

Next, we can look at the situation where an intersection of S*1 or ofSi2
with S"3, S14, or S1*, respectively, is degenerate. This setup, however, we
already know from the previous section. The constant added to the jump
in the Jacobian as this degenerate node is passed applies both "below" and
"above" 5% hence the extra terms cancel in the sum taken along a closed
path. The rest of the argument remains the same.

În order to calculate the g3li, Equation (31) allows us, to choose an
arbitrary one-dimensional path in the boundary S\ which crosses all de
generate nodes of this boundary.

Proof of Lemma 4 Let us pick a straight line Ain S\ which meets all
m degenerate intersections of this boundary and assume the intersections
are ordered in such a way that jumps in the Jacobian found on the different
segments of Acan be written as 2cfcaiT (fc = 1... m+1). Moreover, let us
assume that all a)lh and a)xh are positive, which can be done without loss
of generality. Then to the left of the first node we find

m

£c*«+ <•* = <* , (32a)
i=i

after crossing it,
771

-c^ +]Tc^ +c' = c2 , (326)
1=2

appears, etc., until after having crossed the final (m-th) intersection
m

- J2 *j,i +c* =C-+1 , (32C)
i=i
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is obtained. Thus for every component of the vectors c* and cki we have to
solve a linear equation of dimension m + 1, which has the structure

fir
1

1

1 ~1

V-i -l -l

.. 1\

.. 1

.. 1
•

• •

.. i)

C?2> ( ^ \
c2
c3

•

•

{zni+lj
(33)

It is an easy exercise to show that the associated matrix is non-singular (pos
sessing determinant 2m) and thus yields unique solutions for all n equations
of type (33), thereby yielding all the necessary parameters of the represen
tation.

Now we are in the position to prove Theorem 1:

Proof ofTheorem 1 The final statement of the theorem (concerning
the non-redundant parameters) is obvious. For any arbitrary setting of the
c- and c-vectors, the function F is always a continuous function.

To demonstrate the completeness of the description, we only have to
combine Lemma 3 and Lemma 4. Since all summations appearing have to
be taken over a finite range of indices, the terms may be rearranged to fit
Eq. (20).

6. Concluding Remarks

Although the classical canonical representation (1) proved very helpful in
the past, it does not describe the complete class of continuous PWL func
tions. This is due to its restriction by the consistent variation property.
The representation introduced in this paper requires just one new element,
the nested absolute-value functions, to cover the whole class. However, the
appearance of nested absolute-values does not automatically imply that a
representation in the form of (1) is not possible, as can be seen from the
following example:

x -1|=-1 + |* +11-1*1 + 1*-l| (34)
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which can be checked easily. In fact, in one dimension, any arbitrarily deep
nesting of absolute-value functions can be rewritten in terms of unnested
absolute-values. This may not be well known, but is asimple corollary of the
consistent variation property, which automatically applies in one dimension.
Hence any one-dimensional continuous PWL function can be represented
by (1). In fact, explicit formulas for calculating the coefficients of any one-
dimensional PWL function are given in [4].

Here we showed that in higher dimensions, where consistent varia
tion may be violated, a rather simple form containing only one nesting of
absolute-value functions is sufficient to describe any continuous PWL func
tion. As an extra bonus, our generalization (20) also gives an immediate
interpretation of the various terms in this equation in terms of the Jacobian
ofthe function F, which has to be represented, and the boundaries, where
the Jacobian changes.

^ To sum up, any continuous PWL function in Rn is uniquely charac
terized by M0 (c- and c-) vectors in the n-dimensional domain space, where

Q

Af=l +n+cr +£^ . (35)
i=i

These vectors represent the parametric degrees of freedom. Hence the func
tion can be written in the form:

Constant + Linear Map + ^ one term jumps +
(boundaries)

/ > / J pair interactions
{intersections) (dependent directions)
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Captions

Figure 1 As the third port of the PWL three-port resistor N, which is
defined by Eq.{Za), is terminated with alinear resistor R/ (36), the resulting
two-port N' can no longer be described by a canonical representation of
type (1), since it violates the consistent variation property, (a) Schematic
representation of the circuit, (b) The behavior of the voltage vx as a function
of the currents ix and i2. The solid lines represent region boundaries while
the dashed lines are "invisible" since the Jacobian of (v1,v2)T does not
change there.

Figure 2 If the resistor R' in Fig. 1is substituted by a PWL resistor R"
defined by (6), doubly-nested absolute-value functions appear in Vi (2*1,20)
of the resulting two-port N". Nevertheless, this can be recast into the form
of-Eg. (2). (a) Schematic representation of the circuit N". (b) The behavior
of the voltage vx as a function of the currents ix and i2 in N".

Figure 3 A typical non-degenerate intersection of boundaries. Along the
closed path T, the Jacobian is a piecewise-constant function, where the
jumps AJ<*) have to sum up to zero, in order to obtain a single-valued
Jacobian.

Figure 4 (a) Two regions are considered to be adjacent if they share
a whole segment of their boundaries, not just isolated points, (b) Ahy
perplane Sl is a pre-boundary if at least one connected portion of it lies
between different regions. This is fulfilled by S5, where the segment from
I to / is the boundary between R& and R(JK In contrast, S'5 has just
the "points" J'3, I'\ I>\ and J'6 where aU open neighborhoods intersect
different regions. Thus it is obviously not a boundary.

Figure 5 The two principal choices of the a-vectors for a direct bound
ary intersection of degeneracy one. In both cases a3 := a3 xax + a3 ,a2
However, while both coefficients a{j are positive in (a), in the second "case
(b) a3a > 0and a3,2 < 0. The g-functions for these two setups are demon
strated explicitly in Ta6Ze 2.

Figure 6 (a) The two degenerate intersections I3 and Ik are connected by
the boundary S\ The three different jumps in the Jacobian (AJ*>, AJ*'
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and AJ13) can be represented by the parameters c', cji and cki of the
canonical represetation (2). (b) The general case of aboundary, connecting
two degenerate intersections, can be represented in R3. The two closed
paths T and F indicate what constraint applies to the four AJ's of Si
shown in (c).
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