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Abstract

Many algorithms have been proposed in the literature for control ofmulti-fingered
robot hands. This paper compares the performance of several of these algorithms, as well
as some extensions of more conventional manipulator control laws, in the case of planar

grasping. A brief introduction to the subject of robot hands and the notation used in this

paper is included.
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Notation

9 vector of joint positions of the fingers
X0 position and orientation of an object in a grasp
Xc vector of positions of the fingers (contacts) of a hand

fc combined forces of all fingers
/e external forces applied to an object
// internal force applied to an object by the environment
fy internal (null) force applied to an object by the fingers grasping it
F0 force and torque applied to an object by the fingers grasping it
r vector of joint torques applied to the fingers

FC set of forces that make up a friction cone
o

FC interior of friction cone

G grasp map for a hand
Af(G) null space of the grasp matrix

K{ forward kinematic map for the ith finger
Jh combined Jacobian for all the fingers in a hand

M(9) combined inertia matrix for all the fingers in a hand
M0 inertia matrix of an object
N(9,9) friction and gravity forces
C(0,6)9 Coriolis and centrifugal forces

in



Chapter 1

Introduction

Traditionally robot manipulators interact with their workspace by picking up ob

jects in a gripper attached to the end of the manipulator. Fine positioning of the ob

ject is achieved by using the entire manipulator to orient the object held in the gripper.

Multi-fingered robot hands can be used to increase the fine motion capabilities of a robot

manipulator—instead of using the large motors of the robot manipulator for all positioning

tasks, a hand is mounted at the end of the manipulator and the task is divided into the

gross motion of the manipulator and the fine motion of the hand (and the object contained

in its grasp). The multiple degrees-of-freedom of the hand allow grasps to be selected that

are appropriate for the type of task to be performed, and, likea human hand, a robot hand

can accurately perform small manipulations on a wide variety of objects.

A great deal of research has focused on the kinematic analysis of hands and the

generation of stable grasps. Much of theearly work dealt with specific examples ofgrasping

(for example, [Oka82]). Salisbury presented a more generalized approach to grasping which
has been widely accepted for the analysis of grasps in which slipping does not occur. He

described a grasp in terms of the forces that can be exerted on a object by a finger, or

equivalently, the directions of motions constrained by the finger. An important extension

to that work was performed by Kerr [Ker84], who considered grasps in which the fingers

were allowed to roll along the object. The problem of choosing stable grasps given the

object and finger descriptions has also been extensively studied. A good treatment of this

subject is given by Nguyen [Ngu86].

More recently the problem of generating feedback control laws for coordinated

manipulation of an object being grasped by a robot hand has been investigated. Li, Hsu



Figure 1.1: A two-fingered hand grasping a box

and Sastry [LHS88] have derived a generalization of the computed torque control law [Bej74]

for multi-fingered hands with rigid contacts. This has been further extended by Cole, Hauser

and Sastry [CHS88].to consider rolling contact types (as defined by Kerr). A related area

of interest is the control of multiple robots performing a single coordinated task ([ZL85],

[Hay86], [TBY86], [NNY87]). Generalizations of multi-manipulator robot systems which

consider hands as a special case have also been recently formulated ([Hsu88], [MHS89]).

There are several articulated hands that have been developed to study problems in

grasping and manipulation. Many of these hands, such as the Utah/MIT hand [JWBI86],

and the Stanford/JPL hand [Sal82], are quite complex and require sophisticated computer

architectures to controlthem ([VD87], [SNH*86], [CFAB86]). Unfortunately, this combina

tion of complex kinematics and control architecture makes the implementation of proposed

controlalgorithmscorrespondingly complex. Operating environments with multiple proces

sors capableof interprocess communication must be developed. Other robot hands, such as

the NYU hand [DLSS88], use stepper motors as joint actuators which makes some control

schemes more difficult to implement. As a result of these obstacles, few experimental re

sults of the algorithms proposed by researchers can be found in the literature. In particular,

comparisons between different hand control algorithms axe not currently available.

To provide a facility for experimental verification of control algorithms, we have

built a very simple two-fingered planar hand. A diagram of this hand is shown in figure 1.1.

The hand uses direct drive DC motors, which eliminates potential problems with gear



backlash and friction, and is interfaced to an IBM PC/AT, which can be programmed for

real-time control with relatively little overhead. Due to the simplicity of its design, the

implementation of a control algorithm is simplified and the performance of the hand can be

studied more quickly and easily. Additionally, an intuitive understanding of the structure

of a control law can often be reached.

This paper compares the performance of several control schemes implemented on

this planar two-fingered hand. The paper is organized as follows: chapter 2 provides an in

troduction to hand kinematics and derives the dynamic equations which describe the motion

of an object contained in a grasp. Using these dynamics, chapter 3 analyzes several existing

hand control algorithms and presents extensions of some single robot control algorithms.

In order to allow the control laws to be used in more complicated environments, we present

the algorithms for the general case of a many-fingered hand operating in three dimensions

and simplify to the planar case only when necessary. Proofs of stability using Lyapunov

functions are given. Chapter 4 contains experimental comparisons of the algorithms on a

two-fingered hand executing a simple positioning task. The control algorithm sources and

the dynamic and kinematic equations for the hand are contained in the appendices.



Chapter 2

Grasping fundamentals

The following section provides a brief introduction to grasping and the notations

used in this paper. For a more complete discussion of the kinematics of grasping see Kerr

[Ker84]. The dynamics outlined here were developed by Li, Hsu and Sastry [LHS88] and

Cole, Hauser and Sastry [CHS88] and can be found for more general constrained robot

systems in a recent paper by Murray, Hsu and Sastry [MHS89].

2.1 Contact kinematics

A contactbetween a finger and an object is described by a mapping between forces

exerted by the finger at the point of contact and the resultant forces at some reference point

on the object (e.g., the center ofmass). We represent the force exerted by the iih finger as
fa € Rn< where n,- is the dimension of the range of forces that can be applied by the finger.

The contact map is a function G{ : Rn** —• R6,

fo =
/•

= GiUc) (2-1)

A contact can also be described as reducing the number of degrees of freedom of

an object. Normally an object has 3 translational and 3 rotational degrees of freedom. A

contact prevents motion in certain directions and thus reduces the degrees of freedom.

Severalsimple contact models areused to classify common fingertip configurations.

A point contact is obtained when there is no friction between the fingertip and the object.

In this case, forces can only be applied in the direction normal to the surface of the object
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Figure 2.1: Contact types

and hence n; = 1. Point contacts reduce the number of degrees of freedom of the object by

1.

A point contact with friction model assumes that friction exists between the fin

gertip and the object, in which case forces can be exerted in any direction that is within a

cone of forces about the direction of the surface normal. This cone, called the friction cone

is determined by the coefficient of friction (we shall define the friction cone more precisely

in the next section). Figure 2.1b shows a point contact with friction and the resultant

friction cone. This model assumes that rotational forces cannot be applied (i.e., there is

no rotational friction about the surface normal). For planar grasping operations, a point

contact with friction reduces the number of degrees of freedom of the object by 2.

A more realistic contact model is the soft finger contact. Here we assume that we

can not only apply forces in a cone about the surface normal but that we can also apply

torques about that normal (see figure 2.1c). These torques are limited by the torsional

friction coefficient. Soft finger contacts are only useful in three dimensional grasping, where

they reduce the number of degrees of freedom by 4 (one for each direction and rotation

about the surface normal). In a planar grasp we do not allow rotation out of the plane, so

the soft finger contact can be treated as if it were a point contact with friction.

Many other types of contacts are possible. An enumeration of contact types is



given by Salisbury [Sal82], and Kerr'[Ker84] extends this list to include rolling contacts.

If we consider only motions in which the finger always maintains contact with the

object (a condition which we shall enforce in our control laws) then the contact map for

each model can be represented as a simple linear map derived from the contact type and the

location of the object reference point relative to the contact reference point. Thus we can

represent the map as a matrix which is a function of the contact location and its orientation.

If we have several fingers contacting an object then the net force on the object

is the sum of the forces due to each finger. The grasp map, (?, is the map between finger

forces and the resultant object force. Since each contact map is linear and forces can be

superposed, we can compose the individual contact maps to form G:

fo=[G1 ... Gk ]
/*

L Jen J

= <?/«
/o€R6

/c G Rni x Rn2 x ... x Rnfc
(2.2)

The grasp map is a function of the position and orientation of the object as well as that of

the fingertips. When we wish to make this dependence explicit we will write the grasp map

as G(X) where X is a vector consisting of the relevant position variables.

The null space of the grasp map corresponds to finger forces which cause no net

force to be exerted on the object. We call the force on the object resulting from finger forces

which lie in the null space of G, denoted Af(G), internal or null forces. It is these internal

forces which allow us to grip an object.

The velocity of the contact points canbe related to the velocity of the object using

the principle of virtual work. Since the work done by a hand must be independent of the
coordinates in which we measure force and displacement, we can equate the virtual work

done in the object frame of reference with that done in the finger frame. If we apply a force

f0 and torque r0 on the object then the virtual work done due to a virtual displacement

dx0 is simply:

''/. 9x0 = fcdxt (2.3)

where fc and dxc are the finger forces and virtual displacements, respectively. Using the

definition of the grasp matrix we have

F0Tdx0 = (Gfcfdxo = fcTdxt (2.4)



Figure 2.2: Planar two fingered grasp

This holds for arbitrary /c. Therefore we may write

GTdx0 = dxo — v*c (2.5)

and it follows that

xe = GT xa. (2.6)

Example

Consider a simple two-fingered planar hand as shown in figure 2.2. Since we are in

the plane, the grasp matrix maps finger forces into x and y forces, and a torque perpendicular

to the xy plane. If we assume that the contacts are point contacts with friction, then the

grasp map for figure 2.2 is

G =

10 10

0 10 1

—rsin(^) rcos((f>) rsin(<f>) —rcos(<f>)

Gi G2

(2.7)

where all forces are measured with respect to the xy coordinates shown in the figure.

Equation 2.7 shows that x and y forces from the fingers cause the same x and y

forces to be exerted on the object as well as a torque that is dependent on the orientation



of the object. The null space of this map is spanned by the vector

cos<£

sin<£ . .
(2.8)

— cos<f>

—sin^

which corresponds to forces applied along the line connecting the two fingertips. Finger

forces applied along this line will cause no net force on the object.

2.2 Grasp stability

One measure of the stability of a grasp is the range of forces that can be exerted

by the hand on the object. The fingers can only apply unidirectional forces and all forces

must lie within the friction cone for the contact. We say a grasp on an object satisfies force

closure if we can exert, through a set of contacts, arbitrary forces and torques on the object

[Ngu86]. More formally, we define the set FC as

FC ={/CGR": II4.H <My||/;il, *=1,...,*, j=l,..,n,-} (2.9)
where f*.. is the tangent component of the jth element of fCi, /£ is the normal force for

the ith contact and /xy is the coefficient of friction corresponding to fC{j. For soft finger

and rolling contacts, the torques exerted by the fingers also satisfy equation 2.9 with f*..
replaced by the torque (i.e., we do not want to apply a torque which is greater than the

torsional friction coefficient multiplied by the magnitude of the normal force). The force

closure condition can now be stated mathematically as

force closure & G(FC) = R6 (2.10)

which says that the range of the grasp map over forces lying in the friction cone covers R6
(the space of forces and torques applied to the object). One property of a force closure
grasp is that G must have full row rank. If this were not true then there would be some

object force which could not be produced by the fingers (a contradiction).
It is also useful to define the concept of prehensility. A grasp is prehensile if there

exists a force contained in the null space of the grasp map which also lies in the interiorof

the friction cone. More formally,

prehensility & Af(G)n FC? 0 (2.11)



10

where FC is the set of forces lying completely within the friction cone (i.e., ||/cti|| <
Mijll/"!!). We shall require this property in order to insure that our controllers can main
tain a grip on an object while manipulating it. For a more rigorous development of these

concepts see [CHS88].

2.3 Finger Kinematics

Up to this point we have assumed that our fingers are point forces in space. In fact,

we are more interested in considering fingers which are kinematic mechanisms. For each

finger i we associate a forward kinematic map Ki: Rm* —• R6 which takes joint position to

end effector position and orientation. The Jacobian of the forward kinematic map relates

joint velocities to the end effector velocities,

dKid9
Xr.. =
'Ci d9i dt

Since each finger can be controlled individually, we can stack these matrices to get

= Ji(9i)9h 0iGRm«,s;€ »6

the forward kinematic map for the hand,

x'Ci

'Ck J

#i(0i)

. Kk(9k) m

Taking the derivative of this map about a point 0,

'Cl

Xr =

We shall call the Jacobian of the forward kinematic map the hand Jacobian, J/»,

xc = Jh{9)9

a/Tito)

0
dKh(9k)

d$i h

(2.12)

(2.13)

(2.14)

(2.15)

Again we can apply the principle of virtual work to relate the forces at the contact

points, /c, to the individual joint torques, r € Rmi x R"*2 X ... X Rm*

r = JfW/e (2.16)

The force and velocity transformations for the entire hand are summarized in figure 2.3

below.
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Figure 2.3: Grasping transformations

Example

Consider the two-fingered planar hand shown in figure 2.4. The kinematics for

each finger are

'Cl

Vct

'C2

&*

xCi

Va

la sin9ix + li2 sin(0a + 9i2) ± 6/2

/.icos 9n + li2cos(9n + 9i2)

Stacking the kinematic maps and solving for the Jacobian we get

'lien-M12Q12 //2Q12 0 0

-hisn-k2si 12 -I12S112 0 °

0 0 IrlCrl + 'r2Cr12 *r2Cr12

0 0 -/rl^r2 - *r2Srl2 -'r2«rl2

where c/i denotes cos(0/i), cn2 denotes cos(0/i + ^2) and the sine terms axe represented

in the same manner.

011

012

021

022

(2.17)

(2.18)

2.4 Hand Dynamics

The dynamics of a robot manipulator and, in particular, a single finger of a hand

can be represented as a differential equation with respect to the joint angles, 0,-,

Mi(9i)9i +Ci(9iJi)9i +Ni(9i,9i) = n - JjfCi (2.19)

where M,(0,) G RB*xn* is the symmetric moment of inertia matrix for the ith finger,
Ci(9i,9i)9i GRni is a vector of Coriolis and centrifugal terms, iVi(0,-,0,) G Rn' is a vec
tor of gravity and friction forces and r GRn, is the vector of applied joint torques. The
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Figure 2.4: STYX - simple two-fingered hand

final term in equation 2.19 is the torque due to the force applied at the fingertip. It is

the addition of this term that causes coupling between the fingers (due to the object being

grasped). We also note that with proper definition of C{(9i, 9{) the matrix M; —2C, is

skew-symmetric (see [Hsu88] or [OS88]). This property is important in proving stability for

some of the controllers presented in the next section.

Stacking the equations for all the fingers in the hand we can write the hand dy

namics,

MX{9X) 0

0 Mk(9k) _

' ^i(0i,0i)

0i

0*

C,(0i,0i)

'lT(0l)

0i

+

Ck(9kJk) \[9k .

JC\

(2.20)

. tffc(0fc,0fc) . Tk JRh) L JCk J

or more simply

M(0)9 + C(0,9)9 + N(9,9) = r- J%fc

and it follows directly that M —2C is skew-symmetric.

(2.21)
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The dynamics of the object are governed by the Newton-Euler equations. Ex

pressed in the base (inertial) frame, these equations can be written in terms of the object

position, x0, and angular velocity, u0, with respect to the center of mass

m0I 0

0 h

Xo

Wo

0

LJ0 X I&WC To

(2.22)

where m0I G R3x3 is the object mass matrix, and I& G R3x3 is the object inertia matrix.

Note that the inertia matrix is a function of object orientation and can be written as

Jb = RJ[0B^ where R0 is the rotation matrix between the base coordinate frame and a

coordinate frame affixed to the object.

If we parameterize the orientation of the object by a vector <f> G R3 (e.g., roll-pitch-

yaw angles or Euler angles) then there exists a linear transformation P(<t>) such that

u0 = P(<f>)j> (2.23)

(see [CHS88]). We also note that we can represent the cross product operation as

0 —U>3 LJ2

uxy= u3 0 -ui y (2.24)

—U2 LJ\ 0

and hence (wx) can be represented as a 3 x 3 skew-symmetric matrix. We rewrite equa

tion 2.22 as

M0X0 -r C0(X01 X0)X0 = F0 = Gfc + /e (2.25)

where

M0 =

Cn =

Xa =

Fa =

m0I 0

0 PTR0I0RlP

' 0 0

PTR0I0RTp+

PT{P4>x)(RJ0RlP)

Xo

fo

PT1"o
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The vector PTr0 in FQ is the vector of torques expressed in the <f> coordinate frame. The

second equality in equation 2.25 follows from equation 2.2 (assuming the grasp uses the same

parameterization for orientation) and fe is due to external forces applied to the object.
With this definition of Ma and C0 the matrix M0 - 2CQ has the form:

Mo - 2CQ =

0 0

PTR0I0RlP + PTRoIoRlP + PTRoIoR^P
-PTRJ0RT0P - 2PT(P<j>x)(R0I0R'TP)

and if we use the identity R0 = u0 x Ra = (P<f> X R0) we see that

M0 - 2C0 = -PTRJ0RlP + PTRoIoR*P
+PTR0I0RlP - PTR0I0RlP

is skew symmetric.

Equations 2.21 and 2.25 represent the dynamics of a hand grasping an object. The

only additional equation needed is the specification of the contact force, /c. In general this

force depends upon the characteristics of the fingertip and the compliances of the hand and

object. For our purposes, we can assume that all bodies are rigid and that the contacts are

never broken. In this case the fingertips are constrained to move at the same speed as the

contact points on the object. This constraint can be written as

Jh(9)9 = GT(X0,Xc)X0 (2.28)

where Jh9 is the vector of fingertip velocities and GTX0 is the velocity of the contact points

on the object.

To actually solve for the contact force, we differentiate 2.28 to obtain

jh9 + Jh9 = GTX0 + GTX0 (2.29)

We can now use equation 2.29 to eliminate fc from equations 2.21 and 2.25 and derive the

complete hand dynamics. Solving equation 2.25 for fc we have

fe =G+ (M0X0 +C(X0, X0)X0) +/e) +// (2.30)

where G+ = GT(GGT)~l is the least squares generalized right inverse of G and // GAf(G).

Substituting this into equation 2.21 we get

M(0)0 +C(0,0)0 +N(9,0) =r- tfG+ [moX0 +C(X0, X0)X0) +fe) - fitI (2.31)

(2.26)

(2.27)
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Now we can use the constraint relation (2.29) to eliminate 0 and it follows that if the hand

is not in a singular position then

and

0=J*1 (GTX0 -r GTX0 - Shi)

M{9)J^lGT +J^G+M0]xo - M{9)J^1 (Sh9 - GTXQ)
+C(0,9)9 +N(9,9) +JlG+ (C0(X0, X0)X0 +fe) +fifi =

This can be rewritten as

Mh(X0)X0 -r Ch(X0,X0)X0 + Nh(XoyX0) = GJ^r - fe

where

(2.32)

(2.33)

(2.34)

Mh = GJj;TM(9)J^1GT + M0

Ch =Co(Xo,Xo) +GJ,-T(c(0,0K-1GT +M(0)|(jh-1Gr))
Nh = GJ^TN(9,9)

and Mh —2C/, is skew-symmetric (the proof is algebraic and similar to that given for the

object dynamics). This is the description of the hand dynamics in object coordinates. We

have assumed here that the finger coordinates, 0, are derivable from the object position,

X0—this holds for point contactmodels,but can fail for rolling contactsin three dimensions.

See [CHS88] for a more thorough discussion.

In the case of planar grasping, the object dynamics are somewhat simplified since

the object is only allowed to rotate about the axis perpendicular to the plane of motion.

If we represent the position and orientation of the object as (ar, y,<j>) and the inertia of the

object as IQ G R, we have

m0 0 0 X /.

0 m0 0 y
= /»

0 0 h 4> t*

(2.35)

and hence Ca = 0. Furthermore, in three dimensions a parameterization of 50(3) (the

space of rigid body rotations) must be selected and this adds some complexity to the
dynamics. Since there is only one axis of rotation in the planar case, the representation of

the orientation of the object is particularly simple.
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Chapter 3

Control Algorithms for Grasping

3.1 The grasping control problem

The grasping control problem can be broken into two parts

1. Tracking - the centerof mass of the object should follow a specified trajectory.

2. Holding - the finger forces should lie within the friction cone at all times.

Condition 2 is important not only because we do not wish to lose our grip on the object,

but also because we assumed in our derivation of the grasp dynamics that contact was

maintained. Without this constraint we would have to specify the dynamics of contact.

If a grasp is prehensile it can be shown that given an arbitrary set of finger forces,

/c, we can find an internal force, /# G A/"(G), such that the combined force fc + /at is
inside the friction cone (see section 3.6). Thus, given a force generated to solve the tracking

problem, we can always add a force to this such that condition 2 is satisfied. Since internal
forces cause no net motion of the hand or object, this additional force does not affect the

net force exerted by the fingers on the object. We shall assume in the sequel that such an

internal force is available at all times. Section 3.6 discusses the choice of this force in more

detail.

To satisfy the tracking problem, wewill examine several different algorithms. Each

of the algorithms makes different assumptions about the grasp dynamics and all of them
assume that the grasp is prehensile and satisfies force closure.



18

Figure 3.1: Non-unique solutions of the inverse kinematics for a planar two-fingered hand

3.2 Individual joint control

The first algorithm we will study is based on the idea that we can specify the

trajectory of the object by transforming that trajectory into the space of the joint variables

and then controlling the fingers individually. In using this approach we assume that the

dynamics of the object can be neglected and we concern ourselves only with the finger

dynamics. Thus, we model the system as

M (0) + C(0,0)0 + JV(0,0) = r (3.1)

We are given the desired joint trajectory, 0j, and its acceleration, 9j = GTJ~1XC[+

-%(GTJ~x)Xdi which is calculated using the inverse kinematic map between the object
location and the joint positions. In general this map is not unique, but often in practice it

is not hard to choose between solutions. For example, of the four possible solutions shown

for a two-fingered hand in figure 3.1, only one is desirable since the other solutions intersect

the object.

To control each individual joint we use a computed torque control law ([Bej74],

[LWP80]).

r=M(9) (9d +Kve6 +Kpee) +C(0,9)9 +N(9,9) (3.2)
where Kv and Kp are positive definite matrices and e$ —9d —9. Our errordynamics become

M(9)(e9 +Kvee +Kpe9) =0 (3.3)

We can now choose Kv and Kp so that the error dynamics are exponentially stable at the

origin, e$ = 0.
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We must also add a null force term to grip the object. Since the null force term

does not cause any motion in the object, it does not affect the dynamics of the links and

our tracking stability remains unchanged. If we are given a null force term /jy, then we can

apply this force by adding a joint torque of J%fN (the null force applied at the finger tips,

reflected back to the joints). The final control law is then

t =M(0) (§d +Kvee +Kpee) +C(0,0)0 +JV(0,0) +rffa (3.4)

There are several potential advantages to this type of approach. Since the control

law introduces no coupling between the fingers, we can use a separate processor for each

finger. Furthermore, if the mass matrix is diagonal, then the control law in equation 3.4

is also diagonal and we can control each joint with its own controller. While it is rare

that manipulator dynamics are truly diagonal, it is often a good approximation. This

approximation is particularly useful since many commercial motor controllers are capable

of performing PD control laws for a single joint. Even if the control equation has coupling

terms, the amount of calculation required to compute the motor torque can be reduced to

no more than 2 £n? multiplications (assuming the nonlinear terms can be ignored). This

requires precomputing M9d, MKV and MKP (remembering that M, Kv and Kp are block

diagonal).

3.3 Force transformation

If we had only the object dynamics to consider (equation 2.25), we could use a

computed torque control law in object coordinates having the form

F0 =Mo (Xd -r Kves +Kpex) (3.5)

This givesus the desired forces (and torque) to be appliedto the center of mass of the object.

We can find the forces that would have to be applied at the fingertips to get such an object

force by premultiplying by G+ = GT(GGT)~1, a pseudo-inverse of G. This transforms

object forces to finger forces having minimum norm (i.e., zero internal force component).

Similarly, wecan transform the finger forces to joint torques by premultiplying by J/f. Thus

to generate an object force as in equation 3.5 we apply torque

r=tfG+Mo (Xd -r Kvex +Kpex) (3.6)
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This algorithm is an example of coordinated control. The fingers are now coupled by the

control law. In the case of a two-fingered planar hand this means that we controlthe center

and orientation of the line connecting the two fingertips. One consequence of this coupling

is that an easy multiprocessor solution is no longer available. We must now communicate

more information than just the desired joint trajectories.

This algorithm takes more calculation than the joint control algorithm since typi

cally we must calculate the position of the object given the joint angles before we can apply

the control law. This calculation requires sine and cosine calculations (for the fingertip loca

tions) and an arctangent operation (for the orientation of the object). Once the control law

is calculated we must multiply by M(9)J^lGT which requires at most n2 multiplications

(M(9)Jh~1GT is not block diagonal).

To speed up the overall control sample rate we can break the calculation into two

pieces. The update loop calculates M(9)Jh~1GT and J/,/jv while the control loop carries

out the matrix multiplications and additions. If the trajectory that the object is following

is changing slowly, then we find empirically that we can run the update loop more slowly

and speed up the control loop.

3.4 Generalized Computed Torque

Since the hand dynamics in equation 2.34have the same basic form as the dynamics

of a simple manipulator, it is straightforward to extend manipulator control laws into hand

control laws. One common manipulator control algorithm, which we have already seen for

joint control,is the computed torque controllaw. Applying that formulation to 2.34we get:

r=JlG+ [Mh (Xd +Kvex +Kpex) +Ch(X, X)X +Nh(X, X)] (3.7)

This gives an error equation in object coordinates of

Mh (ex +Kvex +Kpex) =0 (3.8)

and away from singularities of J/,, our dynamics are governed by

ex + Kvex + Kpex = 0 (3.9)

The computational resources required to implement this algorithm are considerable. Not

only must we calculate the inertia matrix, but we have to cancel all the nonlinear terms.
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These nonlinear terms contain many trigonometric calculations but they can be minimized

by the use of carefully constructed lookup tables. This algorithm was originally proposed

for multi-fingered hands in [LHS88] and has been extended to the case of rolling contacts

in [CHS88].

3.5 Natural and Stiffness Controllers

Natural control was proposed by Koditschek in 1984 [Kod84] as an alternative to

computed torque which did not rely on exact cancellation of nonlinear dynamics. It relies

on the skew-symmetric property ofthe robot dynamics, aT\M —2Cja=0 for all a GRn.
It is an extension of the simpler PD control law and it can be shown to be asymptotically

stable for the tracking control problem. The natural control law has the form

r=JJfG+ [MhXd +Ch(X, X)Xd +Kvex +Kpex +Nh(X, X)] (3.10)

where Kp and Kv are again positive definite gain matrices.

Stiffness control is a slight extension of natural control that has the additional

propertythat the error can be shown to approach zero exponentially. Forms of this control

law can be found in [Sad87] and [SL87]. The control law presented here is a slight gener

alization of the laws proposed by others, but similar forms can be found in the literature

[WB88]. The generalization leads to a more complicated proof of stability but allows more

control over the resulting stiffness. We use the control law

/ =Mh (xo +Ae) +Ch(X0, X0) (xo +Ae) +Nh(X0, X0) +Kpe +Kve (3.11)

where A> 0 and Kp, Kv are positive definite. The closed loop system becomes

Mh(i +Ae) +Ch(X0, Xo) {xo +Ae) +Kpe +Kve =0 (3.12)

To prove exponential stability of this nonlinear system we use the Lyapunov can

didate

V=i(e +Ae)rM,,(e +Ae) +\eTKpe +\\xeTKve (3.13)
and it is easy to show that

"x IKe, e)|| < ||V(e, e)|| < <r2||(e, e)|| (3.14)
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where 01 and a2 are positive constants related to the singular values of M/»,-K"p and Kv.

With this choice of V we can calculate V as

V = (e + \e)TMh(e + \e) (3.15)

+i(e +Ae)TJlfh(e +Ae) +eTKpe +\eTKve
= (e +Ae)T (-Ch(Xo, Xa)(e +Ae) - Kve - Kpe)

+i(e +Xe)TMh(e +Ae) +eTKpe +Ae^e (3.16)

Using the fact that the matrix Mh —2C/, is skew-symmetric and canceling terms,

V = -eTKve- \xeTKpe (3.17)

Since V is quadratic in e and e, it follows that e->0 exponentially.

The complexity of these algorithms is roughly the same as the computed torque

control law.

3.6 Choosing the grasp force, fN

All of the algorithms have relied on the choice of a grasping force, f^ G A/*(G)

which maintains contact between the fingertips and the object by insuring that the finger

forces lie in the friction cone. There are several possible methods for calculating this term.

Since ideally /jv does not affect the force applied to the center ofmass of the object we should

be free to choose fa without worrying about its effect on the tracking control problem.

First, we prove that if a grasp is prehensile then we can always find a null force,

fa, such that the total finger force, fc + // + fai is inside the friction cone. Since // is an

internal force, it can be included in /# and so we shall assume it is zero. By the definition
o

of a prehensile grasp there exists fa GAf(G)nFC such that

\\fkj\\ <«n/y (3-i8)

where ffo is the tangent component of fa projectedonto the jth force direction of the ith

contact and fa. is the normal component of ffq at the ith contact point. It is important

to note that f^. is nonzero for each i and therefore by increasing fa, we always increase

the normal component of the force exerted at each contact with respect to the tangential
o

forces. Since FC is defined as the cartesian product of the n friction cones in equation 3.18,
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fa G Af(G)n FC implies a fa G jV(G)n FC for all a G R+. Now we can look at the unit

vector in the fc + a fa direction as a —> co:

Dm ^±^=Ar (3.19)

Since /jv G.FC it follows that for sufficiently high a, \\ici!ffl\\ 1S ^so m PC and hence
fc + <* fa is in the interior of the FC. Now from the definition of FC, the individual contact

forces must all lie within their respective friction cones simultaneously.

The simplest fa is a constant fa. It must be large enough so that finger forces

never leave the friction cone over the entire trajectory of the object. Generally this requires

a knowledge of the bounds on the external forces that can be exerted on the object. The

advantage of this approach is that Jfifa can be calculated at the same rate as J/,—saving

computation time.

A more robust fa could be calculated by looking at the finger forces (these can

be derived from the joint torques, r, using fc = (Jh)~lf) and finding a null force which

causes fc + fa to lie in FC. If the grasp map has a simple form, such as the one given in

the example in section 2.1, a basis for the null space can be used to construct the set of

all valid fpj. This calculation takes more time but may be necessary in the case of large

uncertainties.

Other grasp force calculations are discussed in [LHS88] but allof these algorithms

share some fundamental problems. One difficultyis that in a real-world hand the maximum

motor torques that can be generated are finite. Thus, we are not guaranteed that we can

apply an fa which satisfies fc + fa GFC without saturating the motors. Another issue is

the effect of the null force term in the presence of errors. If a large internal force term is used

and, due to sensor or actuator errors, it does not actually lie in the null space of the grasp

matrix, the resulting force can cause positioning errors andin the extreme case, instability.

Chapter 5 discusses some research issues related to the solution of these problems.
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The algorithms presented in the previous chapter have been implemented on a

multi-fingered hand known as Styx. Styx is a planar two-fingered hand built at the Uni

versity of California, Berkeley to test different multi-fingered hand control algorithms. A

labeled diagram of Styx is shown in figure 4.1.

The motors used in Styx are direct drive DC motors mounted at the base of each

joint and are driven with a pulse width modulated 20 kHz square wave. Since the second

motor is mounted at the end of the first joint, the dynamics of the first joint are relatively

independent of the configuration of the robot (i.e., M(9) can be considered to constant).

Eachmotor contains a quadratureencoderwhich is used to sense position. The resolutionof

Left finger Right finger

Figure 4.1: Top view of styx
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Figure 4.2: Styx control hardware

this encoder is 500 lines/revolution, which generates 2000 edges (or counts) per 360 degree

rotation.

Styx is connected to an IBM PC/AT running at 8.0 MHz with an 8087 floating

point coprocessor. The motors and encoders are interfaced to the AT using a set of four

HP HCTL-1000 motion control chips interfaced to the AT bus. The HCTL chips generate

a pulse width modulated signal which is fed to an amplifier. The quadrature signal from

the position encoders is connected directly to the chip inputs. Figure 4.2 shows a block

diagram of the Styx control hardware.

The software to drive Styx is composed of an assembly language scheduler which

controls the sample rate of the inner (control) and outer (update) loops. The algorithms

themselves are written in the C programming language and compiled using the Microsoft

5.1 Optimizing C compiler. Control rates of 120 Hz have been achieved for the more

complicated controllers by careful use of table lookups and coding. More information on

the technical details of Styx is available in Appendix A.

All of the algorithms implemented on Styx made some basic simplifying assump

tions:

1. Motor dynamics can be ignored - for small velocities the torque generated by a motor

is proportional to the input pulse width. Figure 4.3 shows the stall torque versus

pulse width for a single motor on Styx. Additionally, friction terms were left out of

the dynamic model (i.e., N(9,9) = 0).

2. Jacobian and mass matrices change slowly - since the trajectories commanded were
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slow relative to the control rate, the Jacobian and mass matrices did not need to be

recalculated in the control loop. The update loop, which runs at a slower rate, was

used instead. For Styx, the Jacobian requires a much more CPU intensive calculation

than the basic control law (which is similar for all controllers)so that the update rate

is the limiting factor in the speed of an algorithm.

3. Fingers can be modelled as point contacts - the actual finger tips used on Styx were

rubber circles. To avoid the added computational complexity required to model the

rolling contacts, the fingertips were modelled as simpler point contacts. For Styx

this meant that the center of mass of the object shifted slightly as the object moved

through its trajectory. For the trajectories given here, the orientation of the object,

<j>, was near zero so this effect was minimized.

Several different trajectoriesweretraversed with each controllaw. A singlecircular

trajectoryis presented here to conserve space and to allow easy visual interpretation of the

results. The trajectory shownin figure 4.4 is a circle with a diameter of 5 cm and a period

of 0.5 Hz. This circle is too fast for most of the controllers to track accurately but was

chosen to emphasize sources of error in the controllers.

Since we are comparing different control algorithms we must decide on what cri

terion to judge an algorithm. Although the final test of an algorithm should be how well it

satisfies a set of design criteria, other comparisons can be useful to get a feel for the relative

strengths of an algorithm. Three types of comparisons are presented here.
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Figure 4.4: Desired trajectory

4.1 Fixed Gain comparisons

The fixed gain comparison uses a fixed Kp and Kv for each of the algorithms. Kp

and Kv were chosen by selecting the cutoff frequency, un, and the damping factor, £, for the

closed loop system using any of the computed torque based schemes (which give a linear

error equation). Given these two values, we set Kp = u*I and Kv = 2£unI. For all of

the experiments presented in this section, u>„ was chosen as 2.5 Hz, or one tenth of the

(Jacobian) update frequency. This value of un was used so that noise introduced into the

system by the update loop would be attenuated by 40 dB. £ was chosen as 0.5 to provide

fast transient response (using a critical damping factor, £ == 1, gave sluggish response).

The fixed gain comparison is really a measure of how closely the system model matches

the actual system—we would expect that the most complicated model would yield the best

controller.

4.1.1 Joint control

The joint control algorithm proved to be very sensitive to the radius of the object

being grasped. Since the inversekinematic solutionrequiresknowledge of the object radius,

errors in this radius cause the desired joint position to be wrong. If the modeled radius is

too small we get a constant joint error and this joint error results in additional internal force

and object position errors (due to nonlinearity of the hand kinematic map). Likewise, if the

modeled object radius is too large then the internal force term causes a constant error in
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the joint positions. In fact, if the controller gains are large enough the PD control law can

override the constant internal grasping force and cause contact to be broken. The constant

displacement seen in figure 4.5 is due to unintentionally setting the object radius slightly

too large (this same radius was used by all of the algorithms).

Figure 4.5 also shows that the orientation error for the joint control algorithm is

very sensitive. Because a small change in orientation produces a very small change in the

joint position (as compared to an error in object position) the joint control algorithm is

not very effective at controlling the orientation. Increasing the gain in the joints (which

requires an increase in controller rate) can help overcome this problem.
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Figure 4.7: Computed torque algorithm

4.1.2 Force transformation

For Styx, the mass of the fingers is much heavier than the mass of the object

and so we do not expect an algorithm which ignores the finger dynamics to perform well.

Figure 4.6 confirms our intuition. Commanding torques which are sufficient to move only

the object produces large errors due to the mass of the fingers.

4.1.3 Computed torque

The performance of the computed torque algorithm is the best of any of the algo

rithms presented in this section (see figure 4.7). The position error is comparable to that

of the joint control algorithm but the orientation error is much lower. Also the computed

torque algorithm is insensitive to errors in the object size—the controller is effectively con

trolling the position of the line connecting the fingertips and simultaneously pushing in along

that line. For very small objects, the orientation becomes very sensitive to the fingertip

positions and the performance degrades somewhat.

4.1.4 Natural and stiffness control

The natural and stiffness controllers do not give a linear error equation and hence

our design criterion for choosing Kp and Kv does not apply. In fact this is one of the

problems with these algorithms—there is no simple method for choosing the gains. The

proof of stability gives general conditions for convergence (Kp > 0, Kv > 0) but does not
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Figure 4.8: Natural control law - equivalent gains

provide a good indication of the performance to be expected. If we execute the algorithms

with the gains used in this section wefind that the grasped object moves very slightly (much

less than with the force transformation controller shown in figure 4.6).

4.2 Equivalent gain comparisons

In order to compensate for the low gains of the natural and stiffness controllers one

might consider using MhKp and MhKv as gains. This would then give a control law very

similar to computed torque and we might expect equivalent performance. Unfortunately,

the stability analysis for the natural and stiffness controllers requires that the gain matrices

be constant and Mh is a function of finger and object position. Furthermore, Mh > 0 and

Kp > 0 does not imply MhKp > 0. An approximate solution is available. Since Kp and

Kv are diagonal (by choice) we can examine the diagonal entries of Mh at some nominal

position and use these entries to scale Kp and Kv. In the case of a constant diagonal inertia

matrix this would then give us a control law similar to computed torque. We term this type

of comparison an equivalentgain comparison since it attempts to compensate for differences

in the magnitudes of the overall gain matrices.

4.2.1 Natural control

The results of scaling the gain matrices for the natural controller are shown in

figure 4.8. We see that the position error is greatly reduced (before scaling the hand barely
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Figure 4.9: Stiffness control law - equivalent gains

moved), but there appear to be oscillations in the orientation (upper right graph). In fact

the controller was very marginally stable and any slight disturbance would cause the hand

to oscillate. Part of the reason that the controller is so nearly unstable may be the form of

the inertia matrix for the hand. For the experiments performed here, the diagonal entries

of this matrix were quite large but the inertial coupling between the x position and the

orientation was of comparable magnitude.

4.2.2 Stiffness control

The stiffness control law appeared to be slightly more stable (see figure 4.9). The

oscillations in orientation are no longer present although there was little improvement in

trajectory error. Results of other tests indicate that the natural controller was in fact more

stable but still quite underdamped.

4.3 Fixed Hardware comparisons

The final comparison is the fixed hardware comparison. Here we allow the gains

and control rates to be maximized individually. This is the most realistic comparison since

it ranks the controllers in overall effectiveness. It is reasonable to imagine that a simple

controller might be able to perform better because it can run at a much higher servo rate—

thus compensating for uncertainties more quickly. For each controller the following steps

where performed:
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Figure 4.10: Joint control algorithm (update rate = 100 Hz, un = 5 Hz)

1. Maximize controller speed - the update and control rates were chosen as large as

possible such that both loops could still finish their calculations in the allotted time.

2. Maximize controller gain - the same method as previously outlined was used: wn was

chosen as one tenth of the update frequency and ( was set to 0.5.

Since the control law was linked with the frequency of the update loop and the control loop

wasrunning muchfaster than the dynamicsof the system (effectively emulating a continuous

time controller), only the update frequency was varied in the experiments presented here.

Due to the structure of the control software, only integer multiples of the control period

were used for the update period.

4.3.1 Joint control

The simplicity of the joint control algorithm allows a controller with sufficiently

high gain and bandwidth to overcome unmodeled disturbances (see figure 4.10). Due to

other sources of noise in the system the cutofffrequency for this algorithm was placed at 5

Hz instead of 10 Hz. Note the slight shift in the y position due to the aforementioned error

in object radius.

4.3.2 Force transformation

We might expect the force transformation algorithm to experience similar im

provements. Due to its moderate complexity, an update rate of 50 Hz was the maximum
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Figure 4.11: Force transformation algorithm without nonlinear terms (50 Hz)

achievable rate (up from 25 Hz). Figure 4.11 shows that the overall performance was still

very poor. This is to be expected since the formulation completely ignored the finger dy

namics, which were much larger than the object dynamics.

4.3.3 Computed torque

Computing the full set of nonlinear compensating terms allows the computed

torque algorithm to be run with an update rate of only 25 Hz (shown in figure 4.7). This

limits the frequency response of the controller as well as the DC gain (which is determined

by Kp —v%). A considerable savings in computational complexity can be gained by ignor

ing the nonlinear terms. Calculations indicate that these terms are small relative to the

link/motor inertias. The magnitudes of the various terms for a sample trajectory are shown

in figure 4.12. By ignoring these nonlinear terms we can increase wn to 3.3 Hz and we see

that the controller is able to follow the desired trajectory much more closely (figure 4.13).

Notice how small the orientation error is compared to other algorithms.

4.3.4 Natural and stiffness control

The natural and stiffness controllers were of sufficient complexity that it was not

possible to increase the update rate past 25 Hz, even by ignoring the nonlinear terms.

Therefore the equivalent gain comparisons shown in figures 4.8 and 4.9 where the best

results obtained.
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4.4 Conclusions

Based on the experiments performed on Styx, the most effective control laws are

the simple joint control law and the generalized computed torque control law. Although

the joint control law ignores the interaction between the joints (caused by grasping the

object), it can be run at sufficiently high rates (and hence gains) to overcome errors. It

has the additional advantage that it is stable even when contact is broken, since the joint

controllers are individually stable. The computed torque control law, being a coordinated

control law, relies on the fact that contact is not broken. While intermittent breaks don't

usually present a problem, the controller does exhibit strange behavior when the object is

removed from the fingers' grasp—the fingers move in to the center of the line connecting the

fingertips, where the orientation gain becomes very large. Undesirable oscillations result.

The disadvantage of the joint control law is that the error dynamics are not linear

and therefore it is difficult to predict the results. If the object being grasped has a large

inertia relative to the fingers, the joint controller will experience problems like those of the

force transformation controller, resulting in large errors. The performance of the generalized

computed torque algorithm will be basically unchanged, since all dynamics were considered

in deriving the algorithm and the resulting error system is linear. This makes the computed

torque control law an attractive alternative for position control of multi-fingered hands.
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Chapter 5

Extensions and discussion

There are many areas in the analysis and control of multi-fingered hands that are

not fully understood. Although some of the difficulties encountered with the control of

multi-fingered hands can be solved by extending results available for classical robots, there

are many problems for which this is not true. These problems stem from the constraints

imposed by the grasp and the unidirectionality of these constraints due to the condition

that the forces must lie in the friction cone at all times.

One of the areas that needs to be investigated more fully is the choice of the

internal force used to grip an object. A common assumption is that the internal force can

simply be chosen large enough to keep the net finger forces within the friction cone at each

contact. While this is always theoretically possible if the grasp is prehensile, there are

practical limits which discourage this simple solution. For example, the motors which are

driving the fingers usually have a maximum torque that they can generate and hence the

finger forces are limited to somerange (which changes with configuration). This limit must

be taken into account in designing the control law, the desired trajectory, or both.

Another problem that occurs when choosinginternal forces is due to the potential

instability of the grasp when measurement errors are present. If we apply a large internal

force between the fingertips, and due to errors in measurement or system parameterization

these forces do not lie exactly in the null space of the grasp matrix, then these forces cause

motion in the object which induces position errors. If these forces are large enough they

can even overwhelm the position control law and cause the system to go unstable.

Consider as an example the situation shown in figure 5.1. The position of the
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Figure 5.1: A two-fingered grasp with errors in position measurement

fingers as measured by the system is such that internal forces cause no motion of the object

(internal forces in this example are applied along the horizontal line connecting the measured

contact points). If the fingers do not actually lie on this horizontal line, then the internal

force causes a torque to be exerted on the object. This torque will cause the box to rotate

and force errors in the object orientation. If the errors are small the box will probably be

stable with some fixed error. However, if the commanded internal force is large then the

grasp may become unstable.

There are several interesting aspects to this problem. Besides the usual robustness

analysis based on the control gains, one can also look at the effect of using different contact

types. In this particular case, it can be shown that using disks as the fingers instead of point

contacts increases the stability of the grasp. When errors in position measurement occur,

the contacts roll in such a way as to counteract the effects of these errors (by bringing the

contacts in line with each other). The larger the disk, the smaller the final error. A more

thorough and general analysis of this situation would be useful both in the choice of the

control gains as well as the selection of a grasp.

Another area of open research is that of a hand grasping an object which is in

teracting with the environment. The control laws presented here were analyzed as position

control laws. In many robot tasks the hand must control both the position of the object

and the forces it exerts on the environment. A standard example is a hand grasping a peg

which is to be inserted in a hole. One method of performing such an insertion is to control

the stiffness of the peg in some directions while controlling the position of the peg in other

directions [Whi82]. Control laws which are capable of controlling both position and force
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(or stiffness) are available for simple robot manipulators (so-called hybrid control laws).

Extensions to these methods for more general constrained multi-manipulator systems are

needed. Some preliminary work in this area can be found in [MHS89].
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Appendix A

STYX specifications

A.l Kinematics

Figure A.l: Kinematic parameters for Styx
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Forward kinematic map

'Cl

yci

'C2

yc2

ln sm9n + lt2sm(9n + 9l2) - 6/2

U1 cos9ii + //2cos(0/i + 0/2)
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det(Jr) J
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det(7,) U
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-//15/1^/1 -//2<S/12^/12 -k2^ll29ll2 0
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-lnci\9n -//2C/12^12 -^2C/12^/12

0 0 -lrlSrl9rl

0

— {r2Srl2#rl2 —/r25r12^rl2

0 0 -lrlCrl9ri — ^r2Crl2^rl2 —'r2Cr120rl2

det(J/) = -yi h2sn2 + (x/ + 6/2)//2c/i2

det( Jr) = -yr/r25r12 + far + 6/2)/r2Cri2



Figure A.2: Two-fingered grasp of a box

Grasp kinematics

The grasp map for twofingers grasping a box (shown above) is

G =

10 10

0 10 1

-rsin(^) rcos(<f>) rsin(^) -rcos(<f>)

G2
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(A.1)

(all forces are measured with respect to the xy coordinates shown in the figure). The null

space of this map is spanned by the vector

COS(j)

sin</>

—cos<£

—sm<f>

(A.2)
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A.2 Dynamics

(^y)->WvM/

Fingertip

Motor 1

Length Mass/Inertia

Figure A.3: Dynamic parameters

We derive the dynamic equations for Styx using the Lagrangian formulation. Since

the fingers are kinematically identical we will only derive the equations for a single finger.

The kinematic energy for each link is given by

K2 =\m2 (w2 +12) +\m, (i2 +y2) +\j&
where

fa, 3/) = position of the end effector

(x,y) = ' center of mass for link 2

We can calculate the velocity of the end effector from the Jacobian (derived earlier)

x = lisin(9i) + l2sm(92 + 92) + b/2

y = /i cos(0i) + l2 cos(92 + 92)



X = (l1COS(91) +t2COs(9i+92))91 + (/2COS(02 +01))^_
y = -(/isin(0i) +/2sin(0i +02))0i - (h sin(02 +91))9

Now we can square the terms and combine them

x2 +y2 = l2921 +l2(921 +29192 +92) +
2/1/2 cos 9i cos(0i +92)(9\ +9i92) +
2/1/2 sin0i sin(0i +02)(0? +9X92)

= l\9\ +l\ {9\ +29x92 +9\) +2/1/2 cos 92 (0? +9X92)

The calculation for the velocity of the center of mass of link 2 is identical with /2/2 substi

tuted for l2. Substituting these velocities into the kinetic energy equation we get the kinetic

energy of the second link in terms of the joint positions and velocities

K2 = \{m2 +Mf)l292 +±J2922 +
im2(jj (9\ +29j2 +9\) +m2h f|) cos 92 (0? +9X92) +
\MA (*i +201^2 +9\) -r Mfhl2 cos 02 (0? +9X92)

Now we can use Lagrange's equation

where U is a potential energy term, which is zero for Styx. To simplify the equations we

make the following substitutions

Ax =mi (|) +M2l\ +Ji +(m2 +Mf)l2
A2 = J2

Bi =m2i!i) +Mfl*
B2 = 2m2/i (j\ +2Mfhh

which gives a Lagrangian of

L = Kx + K2

= \ax9\ +\a29\ +±Bi (05 +20x02 +9\) +\B2 cos 02 {S{ +9X92)

'2

»2
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Working out all the partial terms:

dL ... .1
—r- = AX9X + Bx9i + Bx92 + B2 cos 020i + -B2 cos 0202
90i 2

~dt idf) = AlSl +Bl§1 +B^2 +B* C°S °2 (f1 +¥2) "*2 Sin °2 fa2 +¥2)
Wx = °

d (dL
n =

<ft

-j- = A20i+5i0i+B102 + -52COS020i
C/c/2 • ^

d /6\L\ •• - -1 -1~dt\d9) = A202 +5i0i+ 5i02 +-52 cos 020i--52 sin020i02

W2 = -5*•**(* +«»)
r2 = A202 + Bi0i + 5i02 + -B2 cos 020*i + -B2 sin0202

Giving us the complete dynamics:

r =

4i + Bx + B2 cos 02 Bx + \B2 cos 02 0i

92
+

B2sm92(-\9l-9x92)
\B2sm9292Bx + \B2 cos 02 A2 + Bi

A.3 Styx parameters

Length

Left finger Right finger
Link length lxx = 15.24 cm /2i = 15.24 cm

/12 = 12.16 cm Z22 = 12.55 cm
Fingertip radius 77 = 1.91 cm

Mass

Inertia

Left finger Right finger
Link mass mn = 53 g 77121 = 53 g

77112 = 20 g 77122 = 17 g
Motor mass Mxx = 328 g Af2i = 328 g
Fingertip mass M/ = 3 g

Motor inertia Jxx = J2i = 18.0 g cm2
JX2 = J22 = 1-74 g cm2
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Appendix B

STYX control algorithm sources



joint.c

* joint.c - resolved acceleration control in joint space
*

* Richard M. Murray

* July 6, 1988
*

*/

finclude <stdio.h>

finclude <ctype.h>
finclude <math.h>

finclude <styx/hctl.h>
finclude <styx/isr.h>
finclude "styx.h"
finclude "joint.h"

/* Function declarations */
int joint__control(), joint_update();

/* Display variables */
int joint_cfreq, joint_tfreq;
struct pid_structure joint_pid[5];
fdefine jpid joint_pid

/* Local variables */

static int thl_2, th2_2;
static double I[4][5], theta[4];
fdefine P0S2RAD 1.7453292e-3 /* convert count to radians: 2*PI / RES11 */

/* Variables for computing the inputs */
double far jpos[1024][4], far jacc[1024][4];
extern struct opdata {double pos[3], ace[3];} far traj[1024];
extern int input_count, input_index;
extern int input, input_char;
static int joint_index;

/* Display tables */
finclude "joint.tbl"

/* Initialize joint control */
joint_setup()
{

register int i;

/* Set up menu links */
menutbl[Watch] - joint_watch;

/* Initialize the inertia matrix */
I[0][0] - Mfll * styx[0] .gain; I[0][1]
I[1][0] - Mfl2 * styx[1] .gain; I[l][l]

I[2][2] - Mf33 * styx[2] .gain; I[2][3]
I[3][2] - Mf34 * styx[3].gain; I[3][3]

Mfl2 * styx[0].gain;
Mf22 * styx[l].gain;

Mf34 * styx[2].gain;
Mf44 * styx[3].gain;

/* calculate desired end effector location */
joint_inverse(theta, pid[0].desired, pid[l].desired, pid[2].desired);
for (i - 0; i < 4; ++i) {

jpid[i].desired - theta[ij;
jpid[i].accel - 0;

}

/* Set up interrrupt routines */
isr_set_cfreq(joint_cfreq);



}

isr_set_tfreq(joint_tfreq) ;
isr_set_croutine(joint_control);
isr_set_troutine(joint_update) ;

/* Joint control law */

joint_control()
{

register i;
flag<0, 'C');

/* Get new position and acceleration */
joint__index - input_index;
input_update(1);
if (control_on && input !- Setpoint) {

for (i - 0; i < 4; ++i) {
jpid[i] .desired - jpos[joint_index] [i];
jpid[i].accel - jacc[joint_index][i];

}
] else

flag(9, 0x47);

/* Read in the angles and convert them */
hctl_readjposition_tbl(HCTL_ACTUAL, hctl_actual);

/* PD controller in joint space */
thl_l - ((hctl_actual[0] - styx[0] .reference) * N0M11) / DEN11;
jpid[0].error - jpid[0].desired - thl_l * P0S2RAD;
jpid[0].output - jpid[0].accel + jpid[0].K *

(jpid[0].error - jpid[0].Kz * jpid[0].last_error);
jpid[0] .last__error - jpid[0] .error;

thl__2 - ((hctl_actual[l] - styx[1] .reference) * NUM12) / DEN12;
jpid[l] .error - jpid[l] .desired - thl__2 * P0S2RAD;
jpid[l].output - jpid[l].accel + jpid[l].K *

(jpid[1].error - jpid[l].Kz * jpid[l].last_error);
jpid[l].last_error = jpid[1].error;

/* Deleted encoder scaling - 10/27/88 */
th2__l = (hctl_actual[2] - styx[2] .reference) ;
jpid[2].error - jpid[2].desired - th2_l * P0S2RAD;
jpid[2].output » jpid[2].accel + jpid[2].K *

(jpid[2].error - jpid[2].Kz * jpid[2].last_error);
jpid[2].last_error - jpid[2].error;

th2_2 - ((hctl_actual[3] - styx[3].reference) * NUM22) / DEN22;
jpid[3].error - jpid[3].desired - th2_2 * P0S2RAD;
jpid[3].output - jpid[3].accel + jpid[3].K *

(jpid[3].error - jpid[3].Kz * jpid[3].last_error);
jpid[3] .last__error • jpid[3] .error;

if (control_on) {
flagd, 0x27);

/* Multiply by the inertia matrix */
ipwm[0] - I[0][0]*jpid[0].output + I[0][1]*jpid[l].output + I[0][4];
ipwm[l] - I[1][0]*jpid[0].output + I[l][1]*jpid[1].output + I[l][4];
ipwm[2] - I[2][2]*jpid[2].output + I[2][3]*jpid[3].output + I[2][4];
ipwm[3] - I[3][2]*jpid[2].output + I[3][3]*jpid[3].output + I[3][4];

/* Store pulse widths in.table */
for (i - 0; i < 4; ++i) {

if (ipwm[i] < 0) {



}

}

ipwm[i] -= styx[i].offset;
hctl_pwm[i] = ipwm[i] < -styx[i].limit ?

-styx[i].limit : ipwm[i];

} else if (ipwm[i] >-0) {
ipwm[i] +- styx[i].offset;
hctl_pwm[i] - ipwm[i] > styx[i].limit ?

styx[i].limit : ipwm[i];

} else

hctl_pwm[i] - 0;

} else {

flagd, 0x47);
for (i - 0; i < 4; ++i)

hctl_pwm[i] - 0;
}

hctl_write_register_tbl(HCTL_PWM, hctl_pwm);
dump_update();

static int joint_update()
{

static double r;

flag(2, 'T');
flag (3, 0x27);

/* Calculate the end effector location */

lll_sl - lll_sin[thl_l + TBLOFF];
lll_cl - lll_cos [thl_l + TBLOFF];
thl_12 - thl_l + thl_2 + TBLOFF;
112_sl2 - 112_sin[thl_12];
112_cl2 - 112_cos[thl_12];

121_sl - 121_sin[th2_l + TBLOFF];
121_cl - 121_cos[th2_l + TBLOFF];
th2_12 - th2_l + th2_2 + TBLOFF;
122_sl2 - 122_sin[th2_12];
122_cl2 - 122_cos[th2_12];

x_l - lll_sl + 112_sl2;
x_2 - 121_sl + 122_sl2;
y_l = lll_cl + 112_cl2;
y_2 - 121_cl + 122_cl2;

dy - y_i - y_2;
dx =• x_l - x_2 + BASELINE;
x - (x_l + x__2)/2;
y - (y_l + y_2)/2; !

f ifdef UNUSED

atan2_87(dy - y_l - y_2, dx - x_l - x_2 + BASELINE, &r); t - r;
d_squared - dx*dx + dy*dy;
sqrt_87(d_squared, &r); d - r;

f endif

gain;



I[3] [4] - (dx*122_cl2 - dy*122_sl2) * jpid[4] .K * styx[3] .gain;

}

/* Inverse kinematics - this causes stack problems !! */
joint_inverse(th, xd, yd, td)
double th[4], xd, yd, td;

{
double alpha, beta, xy2;
double x_ld, y_ld, x_2d, y__2d;
double thl_ld, thl_2d, th2_ld, th2_2d;

f define PI_2 (3.14159265358979/2)

/* Calculate the end effector positions */
alpha - object_radius * cos(td);
beta = object_radius * sin(td);

x_ld - (2*xd + alpha - BASELINE) / 2;
y_ld = (2*yd + beta) / 2;
x_2d = (2*xd - alpha + BASELINE) / 2;
y_2d = (2*yd - beta) / 2;

/* Calculate the desired joint angles */
/* Choose the signs of the angles based on the usual configuration */
xy2 - x_ld*x_ld + y_ld*y_ld;
/*! Finger 1, joint 1 encoder spins backwards => negate angle !*/
th[l] - -acos((xy2 - L11*L11 - L12*L12) / (2*L11*L12));
th[0] - (double) PI_2 - atan2(y_ld, x_ld) +

acos((xy2 + L11*L11 - L12*L12) / (2*Lll*sqrt(xy2)));

xy2 - x_2d*x_2d + y_2d*y_2d;
th[3] - acos((xy2 - L21*L21 - L22*L22) / (2*L21*L22));
th[2] - (double) PI_2 - atan2(y_2d, x_2d) -

acos((xy2 + L21*L21 - L22*L22) / (2*L21*sqrt(xy2)));

}

/* Calculate joint position and accelerations */
joint_input ()
{

register int i, j;
double F;

ddprompt("solving inverse kinematics...");

for (i = 0; i < input_count; ++i) {
(void) joint__inverse(theta, traj[i] .pos[0],

traj[i].pos[l], traj[i].pos[2]);
for (j - 0; j < 4; ++j) jposfi][j] - theta[j];

>

/* Figure out the acceleration */
F = 4 / (double) (isr_cfreq * isr__cfreq) ;
for (i «• 0; i < input_count; ++i) {

int last - (i — 0 ? input__count-l : i-1);
int next - (i < input_count-l ? i+1 : 0);

for (j - 0; j < 4; ++j)
jacc[i][j] - (jpos[last][j] - 2*jpos[i][j] + jpos[next][j]) / F;

}
ddprompt("");



natural.c

/*
* natural.c - natural control law for STYX
*

* Richard M. Murray
* August 4, 1988

*/

finclude <stdio.h>

finclude <ctype.h>
finclude <math.h>

finclude <styx/hctl.h>
finclude <styx/isr.h>
finclude "styx.h"
finclude "dynamics.hM

/* Function declarations */
int natural_control (), natural__update () ;

/* Variables for natural control and update */
static int dynamic_size; /* from torque.c */

/* Display variables */
int natural_cfreq, natural_tfreq;
struct pid__structure natural_pid[4];
char natural_title[] - "natural controller";

static double detjl, detj2;
static double dx_div2, dy_div2;
static double dxi_div_d2, dyi_div_d2;
static double mdiv2, size_ratio;
static double JiO, Jil;
static double Jvl, Jv2, Jv3, Jv4, Tl, T2;
static double thdot[4], thdotl2, thdot34, pos2rad;

static double M[4][4], I[4][4], J[4][4];

fdefine TWOPI 6.2831852

/* Display tables */
finclude "natural.tbl"

/* Initialize natural control */

natural_setup()
{

/* Set up menu links */
menutbl[Watch] - natural_watch;

/* Initialize constants */

mdiv2 - Mo/2;

pos2rad - (TWOPI / TBLOFF) * tfreq;

/* Mass matrix */
M[0][0] - Mfll; M[0][1] - Mfl2;

M[l][0] - Mf21; M[l][1] - Mf22;
M[2][2] - Mf33; M[2][3] - Mf34;
M[3][2] - Mf43; M[3][3] - Mf44;

/* Set up interrrupt routines */
isr_set__cfreq(natural_cfreq);
isr_set_tfreq(natural_tfreq);
isr__set_croutine (natural_control);
isr_set_troutine (natural_update);



}

fdefine MUL(i,j) I[i][j]*pid[j].accel + J[i][j]*pid[j].output

/* natural control law */

natural^control()
{

register i;
static .double r;

/* Get new position and acceleration */
flag(0, 'C');
input^update(1);

/* Read in the angles and convert them */
hctl_read_position_tbl(HCTL_ACTUAL, hctl_actual);

/* Look up trigonemtric data in tables */
thl_l - TBLOFF + ((hctl_actual[0] - styx[0].reference) * NUM11) / DEN11;
lll_sl - lll_sin[thl_l];
lll_cl = lll_cos[thl_l];

thl_12 - thl_l + ((hctl_actual[l] - styx[1] .reference) * NUM12) / DEN12;
112_sl2 =» 112_sin[thl_12];
112_cl2 - 112_cos[thl_12];

th2_l - TBLOFF + ((hctl_actual[2] - styx[2].reference) * NUM21) / DEN21;
121_sl - 121_sin[th2_l];
121_cl = 121_cos[th2_l];

th2_12 - th2_l + ((hctl_actual[3] - styx[3] .reference) * NUM22) / DEN22;
122_sl2 - 122_sin[th2_12];
122_cl2 - 122_cos[th2_12];

/* PD controller in operational space */
x_l - lll_sl + 112_sl2;
x_2 - 121_sl + 122_sl2;
x - (x_l + x_2)/2;
pid[0].error = pid[0].desired - x;
pid[0].output = naturaljpid[0].K *

(pid[0].error - natural_pid[0].Kz * pid[0].last_error);
pid[0] .last_error «• pid[0] .error;

y_l - lll_cl + 112_cl2;
y_2 - 121_cl + 122_cl2;
y - (y_l + y_2)/2;
pid[l] .error •» pid[l] .desired - y;
pid[1].output = naturaljpid[l].K *

(pid[l] .error - natural_pid[l] .Kz * pid[l] .last__error) ;
pid[1].last_error • pid[1].error;

atan2_87(dy - y__l - y_2, dx - x_l - x_2 + BASELINE, &r); t - r;
pid[2].error = pid[2].desired - t;
pid[2].output - natural_j>id[2] .K *

(pid[2].error - natural_pid[2].Kz * pid[2].last_error);
pid[2].last_error - pid[2].error;

if (control_on) {
flag(l, 0x27);

/* Multiply by the inertia matrix */
ipwm[0] - MUL(0, 0) + MUL(0, 1) + MUL(0, 2) + I[0][3];



}

ipwm[l] - MUL(1, 0) + MUL(1, 1) + MUL(1, 2) + I[l][3]
ipwm[2] - MUL(2, 0) + MUL(2, 1) + MUL(2, 2) + I[2][3]
ipwm[3] - MUL(3, 0) + MUL(3, 1) + MUL(3, 2) + I[3][3]

/* Store pulse widths in table */
for (i - 0; i < 4; ++i) {

if (ipwm[i] < 0) {
ipwm[i] -«• styx[i] .offset;
hctl_pwm[i] - ipwm[i] < -styx[i].limit ?

-styx[i].limit : ipwm[i];

} else if (ipwm[i] > 0) {
ipwm[i] +- styx[i].offset;
hctl_pwm[i] - ipwm[i] > styx[i].limit ?

styx[i].limit : ipwm[i];

}

} else

hctl__pwm[i] •» 0;

} else {

flag(l, 0x47);
for (i = 0; i < 4; ++i)

hctl_pwm[i] = 0;
}

hctl_write_register__tbl (HCTLJPWM, hctljpwm)
dump_update ();

static int natural__update ()
{

static double r;

register int k, j, i;

flag (2, 'T');
flag(3, 0x27);

/* Use the joint angles and positions from the latest controller run */
/* Distance between fingertips (no controller) */
/* Calculate distance between fingers; dx, dy from controller */
d__squared = dx*dx + dy*dy;
sqrt_87(d_squared, &r); d - r;

/* Object size */
size_ratio - dynamic_size ? 0.5 : object_radius/d;

detjl - lll_sl*112_cl2 - lll_cl*112_sl2;
detj2 - 121_sl*122_cl2 - 121_cl*122_sl2;

dx_div2 - dx * size_ratio;
dy_div2 =* dy * size_ratio;

M[0][0] - Mfll / detjl; M[0][1] - Mfl2 / detjl; M[l][1] = Mf22 / detjl;
M[2] [2] - Mf33 / detj2; M[2] [3] - Mf34 / detj2; M[3] [3] - Mf44 / detj2;

dxi_div_d2 - dx * Io / d_squared;
dyi_div_d2 - dy * Io / d_squared;

I[0][0] - (J[0][0] - JtOO * styx[0] .gain) +
(M[0][0] * JiOO + M[0][1] * JilO) * styx[0].gain;

I[1][0] - (J[1][0] - JtlO * styx[l].gain) +
(M[0][1] * JiOO + M[l][1] * JilO) * styx[l].gain;



I[2][0]

I[3][0]

I[0][1]

I[l][l]

I[2][l]

I[3][l]

I[0][2]

I[l][2]

I[2][2]

I[3][2]

(J[2
(M[2

(J[3

(M[2

(J[0
(M[0

(J[l
(M[0

(J[2

(M[2

(J[3
(M[2

(J[0
(M[0

(J[l
(M[0

(J[2
(M[2

(J[3

(M[2

[0] - Jt20 * styx[2].gain) +
[2] * Ji20 + M[2][3] * Ji30) * styx[2].gain;
[0] - Jt30 * styx[3].gain) +
[3] * Ji20 + M[3][3] * Ji30) * styx[3].gain;

[1]
[0]

[1]
[1]
[1]
[2]

[1]
[3]

[2]

[0]

[2]

[1]
[2]
[2]
[2]

[3]

JtOl

JiOl

Jtll

JiOl

Jt21

Ji21

Jt31

Ji21

styx[0].gain) +
M[0][1] * Jill)
styx[l].gain) +
M[l] [1] * Jill)
styx[2].gain) +
M[2][3] * Ji31)
styx[3].gain) +
M[3][3] * Ji31)

Jt02 * styx[0].gain) +
(JiO - Ji02) + M[0][1]

Jtl2 * styx[l].gain) +
JiO + M[l][1] * Jil) *
Jt22 * styx[2].gain) +
(JiO - Ji22) + M[2][3]
Jt32 * styx[3].gain) +
JiO + M[3][3] * Jil) *

* styx[0].gain;

* styx[l].gain;

* styx[2].gain;

* styx[3].gain;

* (Jil - Jil2)) * styx[0].gain;

styx[l].gain;

* (Jil - Ji32)) * styx[2].gain;

styx[3].gain;

/* Add finger force here (instead of in ISR) */
I[0][3] - (dy*x_l - dx*y_l) * natural_jpid[3] .K * styx[0] .gain;
I[l][3] " (dy*112_sl2 - dx*112_cl2) * natural_pid[3].K * styx[l].gain;
I [2] [3] - (dx*y_2 - dy*x_2) * natural_j?id[3] .K * styx[2] .gain;
I[3][3] = (dx*122_cl2 - dy*122_sl2) * natural_pid[3].K * styx[3].gain;



stiff.c

/*

* stiff.c - stiff control law for STYX
*

* Richard M. Murray
* August 4, 1988
*

*/

finclude <stdio.h>

finclude <ctype.h>
finclude <math.h>

finclude <styx/hctl.h>
finclude <styx/isr.h>
finclude "styx.h"
finclude "dynamics.h"

/* Function declarations */
int stiff_control (), stiff__update () ;

/* Variables for stiff control and update */
static int dynamic_size; /* from torque.c */

/* Display variables */
int stiff_cfreq, stiff_tfreq;
struct pid_structure stiff_pid[4];
char stiff__title[] - "stiff controller";

static double detjl, detj2;
static double dx_div2, dy_div2;
static double dxi_div_d2, dyi_div_d2;
static double mdiv2, size_ratio;
static double JiO, Jil;
static double Jvl, Jv2, Jv3, Jv4, Tl, T2;
static double thdot[4], thdotl2, thdot34, pos2rad;

static double M[4][4], I[4][4], J[4][4];

fdefine TWOPI 6.2831852

/* Display tables */
finclude "stiff.tbl"

/* Initialize stiff control */
stiff_setup()
{

/* Set up menu links */
menutbl[Watch] - stiff_watch;

/* Initialize constants */

mdiv2 - Mo/2;
pos2rad - (TWOPI / TBLOFF) * tfreq;

)

/* Set up interrrupt routines */
isr_set__cfreq(stiff_cfreq);
isr_set_tfreq(stiff__tfreq) ;
isr_set_croutine(stiff_control);
isr_set_troutine (stiff_update) ;

fdefine MUL(i,j) I[i][j] * (pid[j] .accel + stiff_j>id[j] .Kp * \
(pid[j].error - pid[j].last_error)) + J[i][j] * pid[j].output



/* stiff control law */
stiff_control ()
{

register i;
static double r;

/* Get new position and acceleration */
flag(0, 'C');
input_update(l);

/* Read in the angles and convert them */
hctl_read_position_tbl(HCTL_ACTUAL, hctl_actual) ;

/* Look up trigonemtric data in tables */
thl_l - TBLOFF + ((hctl_actual[0] - styx[0].reference) * NUM11) / DEN11;
lll_sl - lll_sin[thl_l];
lll_cl - lll_cos[thl_l];

thl_12 - thl_l + ((hctl_actual[l] - styx[1] .reference) * NUM12) / DEN12;
112_sl2 - 112_sin[thl_12];
112_cl2 - 112_cos[thl_12];

th2_l » TBLOFF + ((hctl_actual[2] - styx[2].reference) * NUM21) / DEN21;
121_sl - 121_sin[th2_l];
121_cl - 121_cos[th2_l];

th2_12 - th2_l + ((hctl_actual[3]
122_sl2 - 122_sin[th2_12];
122_cl2 - 122_cos[th2_12];

styx[3].reference) * NUM22) / DEN22;

/* PD controller in operational space */
x_l - lll_sl + 112_sl2;
x_2 - 121_sl + 122_sl2;
x - (x_l + x_2)/2;
pid[0].error - pid[0].desired - x;
pid[0].output - stiff_pid[0].K *

(pid[0].error - stiff_pid[0].Kz * pid[0].last_error);

y_l - lll_cl + 112_cl2;
y__2 - 121_cl + 122_cl2;
y - (y_i + y_2)/2;
pid[1].error = pid[l].desired - y;
pid[1].output - stiff_pid[l].K *

(pid[l].error - stiff_pid[l].Kz * pid[l].last_error);

atan2_87(dy - y_l - y_2, dx - x_l - x__2 + BASELINE, &r); t = r;
pid[2].error - pid[2].desired - t;
pid[2].output - stiff_pid[2].K *

(pid[2].error - stiff_pid[2].Kz * pid[2].last_error);

if (control_jon) {
flag(l, 0x27);

/* Multiply by the inertia matrix */
ipwm[0] - MUL(0, 0) + MUL(0, 1) + MUL(0, 2) + I[0][3];
ipwm[l] - MUL(1, 0) + MUL(1, 1) + MUL(1, 2) + I[l][3];
ipwm[2] - MUL(2, 0) + MUL(2, 1) + MUL(2, 2) + I[2][3];
ipwm[3] - MUL(3, 0) + MUL(3, 1) + MUL(3, 2) + I[3][3];

/* Store pulse widths in table */
for (i - 0; i < 4; ++i) {

if (ipwm[i] < 0) {
ipwm[i] — styx[i].offset;



}

}

hctl_pwm[i] •» ipwm[i] < -styx[i] .limit ?
-styx[i].limit : ipwm[i];

} else if (ipwm[i] > 0) {
ipwm[i] +- styx[i].offset;
hctl__pwm[i] = ipwmfi] > styx[i] .limit ?

styx[i].limit : ipwm[i];

} else
hctl_pwm[i] •» 0;

} else {

flagd, 0x47);
for (i - 0; i < 4; ++i)

hctl_pwm[i] - 0;
)

/* Save errors */

pid[0].last__error - pid[0].error;
pid[l].last__error - pid[l].error;
pid[2].last_error - pid[2].error;

hctl_write__register_tbl (HCTL_PWM, hctljpwm) ;
dump_update ();

static int stiff_update()

{
static double r;

register int k, j, i;

flag (2, 'T');
flag(3, 0x27);

/* Use the joint angles and positions from the latest controller run */
/* Distance between fingertips (no controller) */
/* Calculate distance between fingers; dx, dy from controller */
d_squared - dx*dx + dy*dy;
sqrt_87(d_squared, &r); d - r;

/* Object size */
size_ratio - dynamic_size ? 0.5 : object_radius/d;

detjl - lll_sl*112_cl2 - lll_cl*112_sl2;
detj2 - 121_sl*122_cl2 - 121_cl*122_sl2;

dx_div2 = dx * size_ratio;
dy_div2 = dy * size_ratio;

M(0][0] - Mfll / detjl; M[0][1] - Mfl2 / detjl; M[l][1] - Mf22 / detjl;
M[2][2] - Mf33 / detj2; M[2][3] - Mf34 / detj2; M[3][3] - Mf44 / detj2;

dxi_div_d2 - dx * Io / d_squared;
dyi div_d2 - dy * Io / d_squared;

I[0][0] - (J[0] [0] - JtOO * styx[0] .gain) +
(M[0][0] * JiOO + M[0] [1] * JilO) * styx[0].gain;

I[1][0] - (J[l] [0] - JtlO * styx[l] .gain) +
(M[0][1] * JiOO + M[l][1] * JilO) * styx[l].gain;

I[2][0] - (J[2][0] - Jt20 * styx[2].gain) +
(M[2][2] * Ji20 + M[2] [3] * Ji30) * styx[2] .gain;

I[3][0] - (J[3] [0] - Jt30 * styx[3] .gain) +



I[0][1]

I[l][l]

I[2][l]

I[3][l]

I[0][2]

I[l][2]

I[2][2]

I[3][2]

(M[2][3] * Ji20 + M[3][3] * Ji30) * styx[3].gain;

(J[0][1]
(M[0][0]

(J[l][ll
(M[0][1]
(J[2][l]
(M[2][2]
(J[3][l]
(M[2][3]

(J[0][2]
(M[0][0]
(J[l][2]
(M[0][1]
(J[2][2]
(M[2][2]
(J[3][2]
(M[2][3]

JtOl

JiOl

Jtll

JiOl

Jt21

Ji21

Jt31

Ji21

styx[0].gain) +
M[0][1] * Jill)
styx [1]-. gain) +
M[l] [1] * Jill)
styx[2].gain) +
M[2] [3] * Ji31)
styx[3].gain) +
M[3][3] * Ji31)

Jt02 * styx[0].gain) +
(JiO - Ji02) + M[0][1]
Jtl2 * styx[l].gain) +
JiO + M[l][1] * Jil) *
Jt22 * styx[2].gain) +
(JiO - Ji22) + M[2][3]
Jt32 * styx[3].gain) +
JiO + M[3][3] * Jil) *

* styx[0].gain;

* styx[l].gain;

* styx[2].gain;

* styx[3].gain;

* (Jil - Jil2)) * styx[0].gain;

styx[l].gain;

* (Jil » Ji32)) * styx[2].gain;

styx[3].gain;

/* Add finger force here (instead of in ISR) */
I[0][3] = (dy*x_l - dx*y_l) * stiff_pid[3].K * styx[0].gain;
I[l][3] - (dy*112_sl2 - dx*112_cl2) * stiff_pid[3] .K * styx[1].gain;
I [2] [3] - (dx*y_2 - dy*x_2) * stiff_pid[3] .K * styx[2].gain;
I[3][3] - (dx*122_cl2 - dy*122_sl2) * stiff_pid[3].K * styx[3].gain;



torque.c

/*

* torque.c - generalized computed torque algorithm
*

* Richard M. Murray
* March 16, 1988
*

*/

finclude <stdio.h>

finclude <ctype.h>
finclude <math.h>

finclude <styx/ddisp.h>
finclude <styx/dinit.h>
finclude <styx/hctl.h>
finclude <styx/isr.h>
finclude <styx/ddisp.h>
finclude "styx.h"
finclude "torque.h"

/* Function declarations */

int torque_control(), torque_update();

/* Variables for torque control and update */
int torque_cfreq, torque_tfreq;
struct pid_structure torque_pid[4];
int dynamic__size - 1;

/* Define tables now that we have declared all our variables */

finclude "torque.tbl"

/* Local variables */

static double detjl, detj2;
static double mll_div_detjl, ml2_div_detjl, m21_div_detj2, m22_div_detj2;
static double dx_div_2detjl, dy_div_2detjl, dx_div_2detj2, dy_div_2detj2;
static double dxi_div_d2, dyi_div_d2;
static double mdiv2, size__ratio;
static int sign;

/* Initialize torque control */
torque_setup()
{

/* Set up menu links */
/*! deleted to save space !*/

/* Set up interrrupt routines */
isr_set_cfreq(torque_cfreq);
isr_set_tfreq(torque_tfreq);
isr_set_croutine(torque_control);
isr_set_troutine(torque_update);

/* Initialize constants */

mdiv2 » Mo/2;

}

/* Torque control law */
torque control ()

{
register i;
static double r;

flag(0, 'C');
input_update(1);



/* Read in the angles and convert them */
hctl_read_j>osition_tbl(HCTL_ACTUAL, hctl_actual);

/* Look up trigonemtric data in tables */
thl_l = TBLOFF + ((hctl_actual[0] - styx[0].reference) * NUMll) / DENll;
lll_sl - lll_sin[thl_l];
111 cl - 111 cos[thl 1];

thl_12 = thl_l + ((hctl_actual[l]
112_sl2 - 112_sin[thl_12];
112_cl2 - 112_cos[thl_12];

th2_l - TBLOFF + ((hctl_actual[2]
121_sl - 121_sin[th2_l];
121 cl - 121 cos[th2 1];

- styx[1].reference) * NUM12) / DEN12;

- styx[2].reference) * NUM21) / DEN21;

th2_12 - th2_l + ((hctl_actual[3] - styx[3] .reference) * NUM22) / DEN22;
122_sl2 - 122_sin[th2_12];
122_cl2 - 122_cos[th2_12];

/* PD controller in operational space */
x_l - lll_sl + 112_sl2;
x_2 - 121_sl + 122_sl2;
x - x_l + x_2;
pid[0].error - pid[0].desired - x;
pid[0] .output = pid[0] .accel + torque__pid[0] .K *

(pid[0].error - torque_pid[0].Kz * pid[0].last_error);
pid[0].last_error «• pid[0] .error;

y_l - lll__cl + 112_cl2;
y_2 - 121_cl + 122_cl2;
y - y_l + y_2;
pid[1].error - pid[l].desired - y;
pid[1].output - pid[1].accel + torque_pid[l].K *

(pid[l].error - torque_pid[1].Kz * pid[1].last_error);
pid[l].last_error » pid[l].error;

atan2_87(dy - y_l - y_2, dx - x_l - x_2 + BASELINE, &r) ; t - r;
pid[2].error » pid[2].desired - t;
pid[2].output - pid[2].accel + torque_pid[2].K *

(pid[2] .error - torque_jpid[2] .Kz * pid[2] .last_error) ;
pid[2].last_error - pid[2].error;

if (control_on) {
flag(l, 0x27);

/* Convert workspace
ipwm[0] - Jll*pid[0].

J13*pid[2],
ipwm[l] - J21*pid[0],

J23*pid[2].
ipwm[2] = J31*pid[0].

J33*pid[2],
ipwm[3] - J41*pid[0].

J43*pid[2].

torques to joint torques */
output + J12*pid[l].output +
output - J14;
output + J22*pid[l].output +
output - J24;

output + J32*pid[l].output +
output - J34;
output + J42*pid[l].output +
output - J44;

/* Store pulse widths in table */
for (i - 0; i < 4; ++i) {

if (ipwm[i] < 0) {
ipwm[i] — styx[i].offset;
hctl_pwm[i] - ipwm[i] < -styx[i].limit ?

-styx[i].limit : ipwm[i];
} else if (ipwm[i] > 0) {



>

}

ipwm[i] += styx[i].offset;
hctl_pwm[i] - ipwm[i] > styx[i].limit ?

styx[i].limit : ipwm[i];
} else

hctl_pwm[i] *» 0; •

} else {

flagd, 0x47);
for (i - 0; i < 4; ++i)

hctl_pwm[i] - 0;
}

hctl_write_register__tbl (HCTL_PWM, hctl_pwm);
dump_update ();

static int mass_update()
{

static double r;

flag (2, 'T');
flag(3, 0x27);

/* Use the joint angles and positions from the latest controller run
/* Distance between fingertips (no controller) */
/* Calculate distance between fingers; dx, dy from controller */
d_squared - dx*dx + dy*dy;
sqrt__87 (d__squared, &r) ; d - r;

/* Object size */
size_ratio - dynamic_size ? 0.5 : object_radius/d;

/* Common terms */
detjl = lll_sl*112_cl2 - lll_cl*112_sl2;
detj2 = 121_sl*122_cl2 - 121_cl*122_sl2;

mll_div_detjl - Mil / detjl;
ml2_div_detjl - Ml2 / detjl;
m21_div_detj2 - M21 / detj2;
m22_div_detj2 - M22 / detj2;

dxi_div_d2 - dx * Io / d_squared;
dyi_diy_d2 =» dy * Io / d_squared;

dx_div_2detjl - dx * size_ratio / detjl;
dy_div_2detjl - dy * size_ratio / detjl;
dx_div_2detj2 - dx * size_ratio / detj2;
dy__div_2detj2 - dy * size_ratio / detj2;

/* Reduced equations */
Jil - (mdiv2 * y_l - mll_div_detjl * 112_sl2) * styx[0].gain;
J21 - (mdiv2 * 112_cl2 + ml2~div_detjl * x_l) * styx[1].gain;
J31 - (mdiv2 * y_2 - m21_div_detj2 * 122_sl2) * styx[2].gain;
J41 - (mdiv2 * 122_cl2 + m22_div_detj2 * x_2) * styx[3] .gain;

J12 - (- mll_div_detjl * 112_cl2 - mdiv2 * x_l) * styx[0].gain;
J22 - (ml2_div_detjl * y_l - mdiv2 * 112_sl2) * styx[l].gain;
J32 - (- m21_div_detj2 * 122_cl2 - mdiv2 * x_2) * styx[2] .gain;
J42 - (m22_div_detj2 * y_2 - mdiv2 * 122_sl2) * styx[3].gain;

J13 - (Mil * (dy_div_2detjl * 112_sl2 - dx_div_2detjl * 112_cl2) -
dyi_div__d2 * y_l - dxi__div_d2 * x__l) * styx[0] .gain;



)

J23

J33

J43

(Ml2 * (dx_div_2detjl * y_l - dy_div_2detjl * x_l) -
dxi_div_d2 * 112_sl2 - dyi_div_d2 *~112_cl2) * styx[l] .gain;
(M21 * (dx_div_2detj2 * 122_cl2 - dy_div_2detj2 * 122_sl2) +
dyi_div_d2 * y_2 + dxi_div_d2 * x_2) * styx[2] .gain;
(M22 * (dy_div_2detj2 * x_2 -. dx_div_2detj2 * y_2) +
dxi_div_d2 * 122_sl2 + dyi_div_d2 * 122_cl2) * styx[3] .gain;

/* Add finger force here (instead of in ISR) */
J14 -» (dx*y_l - dy*x_l) * torquejpid[3] .K * styx[0] .gain;
J24 - (dx*112_cl2 - dy*112_sl2) * torque_pid[3] .K * styx[l] .gain;
J34 - (dy*x_2 - dx*y_2) * torquejpid[3] .K * styx[2] .gain;
J44 - (dy*122_sl2 - dx*122_cl2) * torque__pid[3] .K * styx[3] .gain;

/* Torque update law */
torque_update()

mass_update();



dynamics.h

* dynamics.h - reduced dynamic equations
*

* Richard M. Murray
* August 4, 1988

*/

fdefine JiOO -112_sl2
fdefine JilO x_l
fdefine Ji20 -122_sl2
fdefine Ji30 x_2

fdefine JiOl -112_cl2
fdefine Jill y_l
fdefine Ji21 -122_cl2
fdefine Ji31 y_2

fdefine Ji02 (dy__div2 * 112_sl2 - dx_div2 * 112_cl2)
fdefine Jil2 (dx_div2 * y_l - dy_div2 * x_l)
fdefine Ji22 (dx_div2 * 122_cl2 - dy_div2 * 122_sl2)
fdefine Ji32 (dy_div2 * x_2 - dx_div2 * y_2)

fdefine JtOO

fdefine JtlO

fdefine Jt20

fdefine Jt30

fdefine JtOl

fdefine Jtll

fdefine Jt21

fdefine Jt31

mdiv2 * y_l
mdiv2 * 112_cl2
mdiv2 * y_2
mdiv2 * 122 cl2

-mdiv2 * x_l
-mdiv2 * 112_sl2
-mdiv2 * x_2
-mdiv2 * 122 sl2

fdefine Jt02 (-dyi_div_d2 * y_l - dxi_div_d2 * x_l)
fdefine Jtl2 (-dxi_div_d2 * 112_sl2 - dyi_div_d2 * 112_cl2)
fdefine Jt22 (dyi_div_d2 * y_2 + dxi_div_d2 * x_2)
fdefine Jt32 (dxi_div_d2 * 122_sl2 + dyi~div__d2 * 122_cl2)

fdefine Jt03 -(dx*y_l - dy*x_l) * pid[3].K
fdefine Jtl3 -(dx*112_cl2 - dy*112_sl2) * pid[3].K
fdefine Jt23 -(dy*x_2 - dx*y_2) * pid[3].K
fdefine Jt33 -(dy*122_sl2 - dx*122_cl2) * pid[3].K



67

Bibliography

[Bej74] A. K. Bejczy. Robot Arm Dynamics and Control. Technical Report 33-699, Jet

Propulsion Laboratory, 1974.

[CFAB86] B. Chen, R. Fearing, B. Armstrong, and J. Burdick. Nymph: a multiprocessor

for manipulation applications. In IEEE International Conference on Robotics

and Automation, pages 1731-1736,1986.

[CHS88] A. Cole, J. Hauser, and S. Sastry. Kinematics and control of multifingered

hands with rolling contact. In IEEE International Conference on Robotics and

Automation, pages 228-233,1988.

[DLSS88] J. Demmel, G. LafTerrier, J. Schwartz, and M. Sharir. Theortical and experi

mental studies using a multinnger planar manipulator. In IEEE International

Conference on Robotics and Automation, pages 390-395,1988.

[Hay86] S. Hayati. Hybrid postion/force control of multi-arm cooperating robots. In

IEEE International Conference on Robotics and Automation, pages 82-89,1986.

[Hsu88] P. Hsu. Control of Mechanical Manipulators. PhD thesis, Department of Elec

trical Engineering, University of California, Berkeley, California, 1988.

[JWBI86] S. Jacobsen, J. Wood, K. Bigger, and E. Iverson. The Utah/MIT hand: work in

progress. International Journal of Robotics Research, 4(3):221-250,1986.

[Ker84] J. Kerr. An Analysis of Multi-fingered Hands. PhD thesis, Stanford University,

Department of Mechanical Engineering, 1984.

[Kod84] D. Koditschek. Natural motion for robot arms. In Proceedings of the 23rd

Conference on Decision and Control, pages 733-735,1984.



68

[LHS88] Z. Li, P. Hsu, and S. Sastry. On kinematics and control of multifingered hands.

In IEEE International Conference on Robotics and Automation, pages 384-389,

1988.

[LWP80] J. Y. S. Luh, M. W. Walker, and R. P. Paul. Resolved acceleration control

of mechanical manipulators. IEEE Transactions on Automatic Control, AC-25,

1980.

[MHS89] R. Murray, P. Hsu, and S. Sastry. Dynamics and control of constrained robot

systems. In IEEE International Conference on Robotics and Automation, 1989.

(submitted).

[Ngu86] V. Nguyen. The Synthesis of Stable Force-Closure Grasp. Master's thesis, Mas

sachusetts Institute of Technology, 1986.

[NNY87] Y. Nakamura, K. Nagai, and T. Yoshikawa. Mechanics of coordinative manip

ulation of multiple robot mechanisms. In IEEE International Conference on

Robotics and Automation, pages 991-998,1987.

[Oka82] T. Okada. Computer control of multijointed finger system for precis object-

hanling. IEEE Transactions on Systems, Man, and Cybernetics, SMC-

12(3):289-299, May/June 1982.

[OS88] R. Ortega and M. W. Spong. Adaptive Motion Control of Rigid Robots: A

Tutoral Technical Report, Coordinated Sciences Lab., University of Illinois,

Urbana, Illinois, 1988.

[Sad87] N. Sadegh. Adaptive Control of Mechanical Manipulators: Stability and Robust

ness Analysis. PhD thesis, Department of Mechanical Engineering, University

of California, Berkeley, California, 1987.

[Sal82] J. K. Salisbury. Kinematic and Force Analysis of Articulated Hands. PhD thesis,

Stanford University, Department of Mechanical Engineering, 1982.

[SL87] J. E. Slotine and W. Li. On the adaptive control of robot manipulators. The

International Journal of Robotics Research, 6:49-59,1987.



69

[SNH*86] D. M. Siegel, S. Narasimh'an,J. M. Hollerbach, D. Kriegman, and G. Gerpheide.

Computational architecture for the Utah/MIT hand. In IEEE International

Conference on Robotics and Automation, pages 1884-1889, 1986.

[TBY86] T. Tarn, A. Bejczy, and X. Yuan. Control of two coordinated robots. In IEEE

International Conference on Robotics and Automation, pages 1193-1202, 1986.

[VD87] S. T. Venkataraman and Theodore E. Djaferis. Multivariable feedback control

of the JPL/Stanford hand. In IEEE International Conference on Robotics and

Automation, pages 77-82,1987.

[WB88] J. T. Wen and D. S. Bayard. New class of control laws for robot manipulators,

part 1: non-adaptive case. International Journal of Control, 47(5):1361-1385,

1988.

[Whi82] D. E. Whitney. Quasi-static assembly of compliantly supported rigid parts.

ASME Journal of Dynamic Systems, Measurement and Control, 104:65-77,

March 1982.

[ZL85] Y.F. Zheng and J.Y.S. Luh. Control of two coordiantes robots in motion. In

IEEE Conference on Decision and Control, pages 1761-1766, 1985.


	Copyright notice1989
	ERL-89-3

