

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MULTIPLE QUERY OPTIMIZATION THROUGH

STATE TRANSITION AND DECOMPOSITION

by

Wei Hong and Eugene Wong

Memorandum No. UCB/ERL M89/25

6 March 1989

(Revised May 31, 1989)

MULTIPLE QUERY OPTIMIZATION THROUGH

STATE TRANSITION AND DECOMPOSITION

by

Wei Hong and Eugene Wong

Memorandum No. UCB/ERL M89/25

6 March 1989

(Revised May 31, 1989)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

MULTIPLE QUERY OPTIMIZATION THROUGH

STATE TRANSITION AND DECOMPOSITION

by

Wei Hong andEugeneWong

Memorandum No. UCB/ERL M89/25

6 March 1989

(Revised May 31,1989)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Multiple Query Optimization through State
Transition and Decomposition

Wei Hong Eugene Wong
EECS Department, University of California

Berkeley, CA 94720

May 31, 1989

Abstract

There are two common sources of redundancy in multiple-query
optimization algorithms: unnecessary ordering and unnecessary com
bination. In this paper, a new multiple-query optimization algorithm
is proposed that eliminates these redundancies and achieves a near-
linear complexity growth with respect to the number of queries to be
jointly optimized. This algorithm makes use of two basic techniques:
dynamic programming and decomposition. Dynamic programming
is used to avoid repeating previous computation. Decomposition of
multiple-query optimization into independent single-query optimiza
tions linearizes the complexity growth. Both of these two techniques
are based on a new state transition model for query processing. Shar
ing of operations between queries at different levels of abstraction is
also achieved in this algorithm.

1 Introduction

Optimization of single queries has been one of the most successfully solved
problems in database management systems. The solution is quite straight
forward, that is, to do a systematic search over "all" possible plans[SELI79]
[KOOI82]. No heuristic algorithms have proved to be adequate in prac
tice. However, database applications are not always one-query-at-a-time.
The following are some examples involving sets of queries to be optimized
together.

• Union Queries: For example,

(select name from emp where emp.salary < 15000)
union

(select name from emp where emp.name = student.name)

A union query is usually processed as multiple queries by first evalu
ating all the subqueries and then computing the union. In some sys
tems, even a single query with disjunctions in the predicate may result
in multiple query processing, because the system takes a conjunctive
query as the unit of processing.

• Batched Queries: In a distributed environment, we may have one
master copy and several local copies of the same file and we peri
odically update the master copy with the updates to the local copies.
This is a another example of multiple query processing in conventional
databases.

• Triggers: In "active" databases, we have a set of triggers that are in
the general form, condition —• action, which means that as soon as the
condition becomes true, the action is taken. To decide which actions
to perform given a database state is also likely to be a multiple query
processing problem.

• Rules: There is now generalagreement that rules should be supported
inside database systems. In a system supporting rules, such as POST-
GRES[STON86], one simple query might be transformed into several
queries applying different rules. For example, suppose we have the
following rules,

If employee's age is over 35, then his/her salary is 70% of
his/her manager's.

If employee's age is below 35, then his/her salary is 50% of
his/her manager's.

And we have the following query:
list the salary of employees in the toy department in SQL.

select salary
from emp

where emp.dept = 'toy'

This query can be converted into the following two queries to process.

select 0.5*mgr.salary select 0.7*mgr.salary
from emp, emp mgr from emp, emp mgr
where emp.dept = ctoy» where emp.dept = 'toy'
and emp.age < 35 and emp.age > 35
and mgr.name = emp.mgr and mgr.name = emp.mgr

• Procedural Data Type: Procedural data type is an efficient way of
representingcomplex objects in databasesystems. Querying a relation
that contains procedural attributes may also convert a single query
into several queries. The problem here is very similar to the case of
rules.

Given multiple queries, currentsystems simply optimize them one by one
and execute them separately. Let's call a plan to process a set of queries a
complete planand a plan to process a single query a component plan. A com
plete plan is just a combination of component plans. However, the optimal
complete plan is not necessarily a combination of the optimal component
plans. A combination of suboptimal component plans may do better if they
can share some common costly operations (like joins) among the queries.
This is the basic principle of multiple query optimization. An immediate
idea of multiple-query optimization is to do a systematic search over all the
combinations of all the possible component plans of each query. There are
algorithms that simply do this as we shall survey in the next section. How
ever, this is not practical, because the search space with multiple queries
may grow intractable. Suppose the complexity (or size of search space) of
each single-query optimization is C, a systematic-search multiple-query op
timization of n queries will be of complexity Cn. Since each single-query
optimization also does a systematic search, C is already big. A complexity

of Cn is simply unbearable. Fortunately, a complexity of Cn is not really
necessary for multiple-query optimization because it contains redundancies.
The redundancies, as we have discovered, can be classified as the following
two cases:

• Unnecessary Ordering: If two operations in a plan are independent
of each other, performing them in either order incurs the same cost.
Thus they do not need to be considered as two different plans. For
example, in a four-way join, At<BtxC>iD, AxB and C tx D
are completely independent. Doing them in either order will incur the
same cost.

• Unnecessary Combination: If two queries have nothing in com
mon, the optimal complete plan for processing them is simply the
combination of the two optimal component plans. Thus considering
any combination of their component plans is unnecessary. For ex
ample, the following two queries have nothing in common, thus any
extra cost in addition to the sum of the two local optimization cost is
undesirable.

select * select chairman

from emp from dept
where age < 50 where floor = 3

The purpose of this paper is to present a multiple-query optimization
algorithm that eliminates these two forms of redundancies. Our basic ap
proach is dynamic programming and decomposition. Dynamic program
ming technique avoids recomputing previous computation results over and
over again. Decomposition, to be defined in the sequel, is a process that
transforms a multiple-query optimization into a series of single query opti
mizations so as to reduce an exponential complexity growth to a near-linear
complexity growth. Both of these two techniques are made possible by
our state transition model of query processing, which is an extension to the
model proposed in [LAF086]. By parameterizing query processingby states,
we achieve both clarity and efficiency. In multiple-query optimization, there
is a tradeoff between the size of search space and the granularity of shar
ing. Our algorithm solves this problem gracefully by allowing the optimizer
to work on different levels of abstraction, which is also based on our state
transition model. At each state transition, the optimizer can "zoom" in on

lower level operations whenever there is an opportunity of sharing at the
lower level.

This paper is organized as follows. Section 2 surveys relevant previ
ous work and points out the problems in their algorithms. Section 3 de
fines a new state transition model for query processing that contains both
logical and physical operations and specifies an optimization procedure for
single queries that will be called in multiple-query optimization. Section
4 describes our multiple query optimization algorithm which decomposes
multiple-query optimization into a series of single-query optimizations. Sec
tion 5 contains our conclusions.

2 Previous Work

Sharing is the basic principle of multiple-query optimization. This can be
subdivided into two problems: first we want to identify sharable operations
and second we need search strategies to decide which combination of com
ponent plans is optimal. Previous work has been done on both problems.

Sharable Operation Identification

A component plan consists of a sequence of elementary operations, which
can be basic relational algebra operations or physical operations like sort
and scan, depending on the level of abstraction we are working on. Note
that these operations all have fixed input relations. For example, the se
lection, cremp.salary>60K is an operation on relation emp only, not on any
other intermediate relations derived from emp, e.g., it is different from the
selection in <7emp.«a/ary>60K"(C7nP x dept), which is better represented as
<7(emptxidept).3alary>60K •

The goal of multiple-query optimization is to share operations among
queries. Sharable Operations can further be classified into operations that
can be completely shared and operations that can only be partially shared.
Suppose we have two operations p\ and P2. We define pi as being equivalent
to P2, denoted as pi = pi if the effect of p\ is the same as the effect of P2
under any database state. In this case, p\ and pi can be completely shared.
We define the composition of pi and P2, denoted as p\ o p?. as the operation
whose effect is the same as the effect of performing p\ followed by P2. If
Pi £ P2i but P2 = pi o P12 for some P12, and pi2 is of lower cost that P2,
than p2> w© say, p2 subsumes p\. We call P12 the division of P2 by p\. We
denote it as P2/P1. Actually, equivalence is a special case of subsumption
where P2/P1 = J. (I is the identity operation.) If P2 subsumes pi then pi
(part of P2) can be shared. The most common form of subsumption is in
the restriction and projection operations. For example,

<7emp.salary>60K Subsumes O-emp,8aiary>50K

llemp.name,emp.8alary,emp.age SUDSUmeS iiemp.nametemp.age

There are also subsumptions between Sort and Group By and merge-
join. For example, Group By subsumes Sort, Sort on multiple attributes
can subsume Sort on a single attribute, Merge-join subsumes Sort.

To identify sharable operations is to find subsumptions between oper
ations of different queries, since equivalence is a special case of subsump
tion. Most work on subsumption has been done on the relational algebra
level, especially for restrictions and projections. [FINK82] only deals with
equivalence. [CHAK86] identifies equivalence and subsumptions of logical
operations by analyzing query graphs. [ROSE88] proposes a good algorithm
for identifying subsumptions. The algorithm works on different levels of ab
straction, both on logical level and physical level. We do not address the
problem of identifying sharable operations in this paper. We assume that
we have a procedure(e.g., the one proposed in [ROSE88]) for identifying
common operations and concentrate on the search strategy problem.

Search strategies

There are two classes of search strategies: exhaustive search and heuris
tic search. [GRAN80] and [SELL86] propose exhaustive search algorithms.
They basically search through all combinations of component plans with
some complexity-control techniques like ttbranch-and-bound" and A* algo
rithm. These algorithms all have the problem of redundancy in searchspace
as we noted in the previous section. [CHAK86] proposes a heuristic search
algorithm that generates directly a complete plan without searching. It
has very low complexity, but is very likely to generate a suboptimal plan.
[ROSE88] proposes AND-OR graph as the basic data structure for multi
ple query optimization, but it does not have any algorithm to search the
AND-OR graph to find an optimal complete plan.

3 The State Transition Model

Problem Statement

The queries that we treat are of the following general SQL form,

select target-list
from relation-list

where qualification
[group by attribute-list]
[order by attribute-list]

The task of single-query optimization is to break a given query into se
quences of elementary operations and find an optimal processing plan among
them. In the context of multiple-query optimization, this is called sub-
optimization as opposed to complete optimization which finds the optimal
plan for processing a set of queries. A plan to process a single query is a
component plan as opposed to that to process a set of queries, a complete
plan. A complete plan is a combination of component plans. A component
plan of a query is a sequence of operations that produces the result of the
query. The operations that we have in a plan vary according to the level of
abstraction being used. We have the following possible levels:

• SPJ level. In single query optimization, we have the rule that se
lections and projections are performed together with joins, i.e., they
basically work as filters on the operands and/or results of joins. At
this level, the operations in a component plan are SPJ's (selection-
projection- join's). The local optimizer find the optimal sequence of
SPJ's to process the query. Within each SPJ, where and how to per
form selections and projections (e.g., index scan vs. sequential scan,
pre-join vs. after-join, etc.) are decided by another level of subop-
timization. The SPJ level is the most suitable level for single-query
optimization.

• Logical level. On this level, the operations in the plans are basic
relational algebra operations: selection, projection, join, etc.

• Physical level. On this level, the operations in the plans are major
steps in the implementation of relational algebra operations: sequen
tial scan, index scan, sort, nest-loop, merge-sort, etc.

The higher level operations are made up of sequences of lower level oper
ations. In other words, any higher level is an abstraction of a lower level and
any lower level is an implementation of a higher level. For single-query opti
mization, SPJ level is the best because it has the highest level of abstraction
with the smallest search space, and the SPJ details are encapsulated in other
independent suboptimizations. However, for multiple-query optimization, it
is no longer the case, because it has the coarsest granularity of sharing. If
we work at the SPJ level, the finest operations we can share is an SPJ. This
would prohibit some sharable selections, or joins that are not in a common
SPJ. Thus for multiple-query optimization, we may have to go to some lower
levels, because even operations on physical level also have very significant
cost. However, there is a tradeoff between the size of the search space and
the granularity of sharing. At higher levels, the search space is small, but
the granularity of sharing is also coarser, i.e., less opportunity of sharing.
At lower levels, the search space is bigger, but the granularity of sharing is
finer, i.e., greater opportunity for sharing. This is also a tradeoff between
complexity and optimality. The best way to resolve this tradeoff is to allow
the optimizer to workon mixed levels of abstractions. This is the strategy
used in our algorithm. The way it works is that we normally search at the
logical level but "zoom" in on physical level on detecting opportunities of
sharingwith finer granularity. All the existingalgorithms either work at one
specific level, e.g., [CHAK86] at logical level and [SELL86] at physical level,
or workat a fixed but unspecified level, e.g., [ROSE88].

Multiple query optimization is built on top of single-query optimization.
It imposes some special requirements on the single query optimizer. Not all
single query optimizers meet these requirements. The basic requirements
are listed below:

1. The optimizer must be able to generate suboptimal plans. This is be
cause the optimal completeplan might be a combination of suboptimal
component plans.

2. The optimizer must be able to compute and save partial costs. This
is needed for decomposing a multiple-query optimization into a series
of single query optimization.

3. We want a method that is able to work at mixed levels of abstraction.

Given these factors, a state-transition model seems to be the most appro
priate for our purpose because in a state-transition model we are able to

save the information for all transition paths and store the partial processing
costs in the states. We can easily "zoom" in on a lower level by expanding
a transition into finer steps.

State Transition Model

Our state transition model is a modification of the one in [LAF086]
which was proposed for distributed query processing. The major differences
are that we use query graph(as defined momentarily) instead ofa collection
of data to represent the states and allow operations from mixed levels of
abstraction. Our state transition model also provides automatic elimination
of the unnecessary-ordering redundancies.

To represent the states of query processing more easily, we introduce
a graph representation called, query graph. A query graph consists of two
kinds of nodes and edges connecting them. The nodes are relation nodes and
operation nodes. Relation nodes represent relations, both base relations and
relations derived from intermediate operations. Operation nodes represent
relational operations. We depict relation nodes as rectangles and operation
nodes as ovals. Edges connect operations with their operands.

Example 3.1
The query graph of the following relations and query is given in Figure 1.

cust(cno, name, age)
order(cno, date, item)

select *

from cust, order

where cust.age < 40 and
cust.cno = order.cno

order by order.date

If an operation is performed, we combine the operation node together
with its operand node(s) into a new relation node. For example, after the
join in the above query is performed, the resulting query graph becomes
Figure 2, which represents the query that remains to be evaluated.

Now we can think of query processing as shrinking the query graph by
combining nodes. At the final step, the graph will be reduced to one node,
which is the query result.

10

Figure 1: Initial Query Graph of Example 3.1

Figure 2: Resulting Query Graph of Example 3.1 after Join

11

A query graph clearly indicates which parts of the query remain to be
done, what is already done, and what the possible operations are. This is
why we choose query graph to represent the states of query processing.

Our state transition model is defined as follows.

For a single query Q, the state transition representation ST(Q) is defined
as

ST(Q) = (S,P, I>0,3/)

where the different items in the collection are defined as follows:

S is the set of states, each state is represented by a query graph which
defines the query remaining to be evaluated in the state.

P is the set of possible operations in the query processing.
T is the transition function: 5 x P —• 5. For x € S and p 6 P,

T(x,p) = the state result after applying p on x.

We can also write it as x op. Not all operations in P are applicable to a state
x. We define the set of operations which can be applied to x as P(x).

xo, Xf are initial and final states, xq is the state corresponding to the
initial query graph, Xf is the state corresponding to the query graph with a
single node.

In general, we define a plan for each state z as a sequence pi,P2>•• nPn
such that (...((x opi) 0P2)o...)opn = xf. A component planof Q is a plan
of state xq.

For each state we introduce a cost function C : S —» 22(Real Numbers).

For x e S,

C(x) = min{^2 cost(pi) \xopi op2... opk = Xf}

where cost(pi) is the cost of operation pi. Obviously, we have C(xf) = 0.
Now the optimization problem becomes one of computing C{xq).

The following dynamic programming formula can be used to compute
C{x).

C(x) = min {Cost(p) + C(x op)}
p€P(x)

12

This formula contains the first kind of redundancy, i.e., different permu
tations of the same sequence of independent operations may get considered
over and over again. To avoid this problem, we introduce the concept of
active operations and inactive operations for each state. Initially, all the
operations are active. After we consider one operation, we make it inactive
so that it will not be considered again. The new formula can be written as
follows.

C(x, Pinactive) = min(cost(p) + C(xop, Pinactive), C(x, {p} UPinactive)) (3.1)

Where X S S,p£ P(x) - Pinactive-

Pinactive is the set of operations that are excluded from consideration.
Weuse it to avoidunnecessary ordering ofoperationsin plans, thus reducing
the search space. The idea is that if an operation is not needed now, it will
never be needed. This eliminates the first source of redundancies.

The following Theorem ensures the correctness of our formula.

Theorem 1 The recurrence equation (3.1) yields the minimum costfor each
state.

Proof: Let PL = {pi,P2> ••-,P.n} be any plan of state x. If p GPL, suppose
p = pi9 let PL' = {p,pi,.. .,Pi-i,Pi+i,.. .,p„}. Since p 6 P(x),PL' is also
a plan ofx. And Cost(PL) = Cost(PL') > Cost(p) + C(x op,Pinactive). If
P $ PL,C0St{P) > C(X,{P]UPinactive)- Thus, Cost(PL) > C(x,Pinactive)i
and the equation (3.1) is correct.

Q.E.D.

State Transition of Example 3.1

Figure 3 shows the state transition graph of the query in Example 3.1.
Several points are worth noting in this example.

• At state X2, the operation (cafle<40 cust) is a possible operation, but
it has been considered before, thus is inactive (marked by a cross). It
is not considered again. Thus, orders of the independent selection and
sort are not repeatedly considered.

• Figure 3 contains mixed levels of abstraction. We see that most of
the transitions are due to logical operations, but some of the transi
tions (those inside the boxes) are due to physical operations such as

13

sort

States:

X

1 «« I order

*2 *3

Jar'""
«»«" I I ozder

cuetpd, order

cust P<1 order

cust pq order
age < 40

«»rtorl nn rfnta

Figure 3: State Transition Graph of the Query in Example 3.1. The
query in Example 3.1 involves three operations to perform: selectfa) age <
40, joinftx) on cno and sort on date. The states marked as Xi result from
logical operations and states marked as yi result from physical operations.
Physical level transitions are enclosed in boxes. Each box corresponds to a
logical operation. We can "zoom" into a box to physical level transitions
whenever necessary.

14

sequential scan(SEQSCAN). These mixed levels of operations fit very
well in our state transition model. A logical level transition is realized
by several physical level transitions. If in multiple-query optimization
we need to go to the physical level to explore finer granularity of shar
ing, we can simply expand a corresponding logical level transition into
several physical level transitions. In this way, we can achieve a finer
granularity of sharing without expanding the size of the entire graph
excessively.

We have to make more subtle differences between states resulted after

the transitions of physical level operations. For example, state x0
and state yi contains the same collection of data, the only difference
is that in y\, the tuples of relation cust are buffer-resident instead of
disk-resident.

15

4 Multiple Query Optimization

In this section we present our multiquery optimization algorithm. The basic
motivation of our algorithm is to reduce the exponential complexitygrowth
to as nearly linear as possible. Our strategy is to scrutinize the search space
of multiquery optimization to eliminate all redundancies. We expand the
search space from the union of search spaces of single-query optimizations
only when it is absolutely necessary. The crux of our algorithm is the fol
lowing two new ideas:

• Decomposition. Decomposition is our main approach to linearize
the complexity growth. We decompose multiquery optimization into
separate single-query optimizations as soon as we detect the fact that
the queries remaining to be evaluated have nothing sharable.

• Mixed Levels of Abstraction. We do not restrict the algorithm
to work at a specific level, or move from level to level. If we want to
explore sharing at a lower level, we need only to refine the search space
in a local area. In this way, we can encapsulate all the details that
are irrelevant to the complete optimization in the suboptimizations so
that the search space of complete optimization becomes as small as
possible.

Both these techniques are based on the state transition model we proposed
previously.

The state transition model for multiple-query optimization is a straight
forward extension to the one for single-query optimization presented in the
previous section.

Fora set ofqueries, Q = {Qi,Q2,...,Qn}MST(Qi) = (5;,P;,ri,a;,0,xl/).
The state transition representation ST(Q) is defined as

ST(§) = (S,P,T,xZ,xj)

where

J= 5i x52 x ---x 5„
P = UfciP*
r : 5 X P -• 5, (xi,x2,...,xn) op = fa o p,x2 op,...,xn op). (If

P#P(Xi),XiOp=Xi).
Xo = (Xi0,X20,.--,Xno)

16

Xf = (Xlf9X2f, •••»*!»,)

A complete plan of a state x is a sequence of operations Pi,P2j---,Pn
such that (.. .((aJo ° Pi) ° P2) °---)°Pn = xj- We can define the cost of each
state the same way as in single-query optimization, and we get the same
recurrence equation,

C(x, Pinactive) = min(cost(p) + C(x 0 p, Pinactive), C(x, {p} U Pinactive))

where x6 S, p € P(ic) —Pinarfive- Pinactive is a set of operations which are
excluded from consideration.

If we follow this recurrence equation to do the global optimization, we
search through the product space of all the local states. Thus the complex
ity is the product of the complexities of all local optimizations. This is an
upper bound of the optimization complexity, but it is too big to be a use
ful upper bound. In the extreme case, the queries have nothing sharable,
i.e., involving completely different set of relations, then the queries can be
optimized separately and the complexity is only the sum of aU the single-
query optimization complexities. This is the lower bound. The goal of our
new algorithm is to reduce the redundancy in search space such that the
complexity decreases as close to the lowerbound as possible. As we pointed
out previously, there are basically two kinds of redundancies. One of them,
unnecessary ordering is already taken care of by the recurrence relation it
self. Now we need to deal with the unnecessary combinations, which is a
more serious class of redundancy. Our basic strategy is decomposition. As
soon as we find that there is nothing can be shared among the queries in
the remaining steps, we decompose them into separate suboptimizations.
Decomposition is based on the following equivalence relation.

Let CON be a binary relationship between single-query states. For a?,- G
Si,Xj e Sj, Xi CON Xj if P(xi) n P(xj) - Pinactive 7* 0, or exist pi 6
P(xi)tP2 € P(xj) and p\,p2 are both active such that p2 subsumes pi,
or vice versa. Let CON* be the transitive closure of CON. CON* is an
equivalence relation between single-query states. A multiple-query state x
is a set of single-query states, therefore, CON* partitions a multiple-query
state into equivalent classes (smaller multiple-query states). A multiple-
query state is said to be decomposable (partitionable) ifit can be partitioned
by CON* into more than one equivalence classes. Obviously, queries in

17

different equivalence classes are completelyindependent of each other, thus
can be optimized separately.

Decomposition Algorithm

Let CP(x) = {p G P(x) | exist Xi G St,Xj G Sj,s.t. p G P(xt) n
P(xj),or exist p' G P(x),s.t. p' subsumes p}. CP(x) is the set of sharable
operations at state x.

Our decomposition algorithm is described in pseudo-C as follows .

C(a;, Pinactive /
x: a set of queries

{
if (partitionable(aT))

{
partition x into equivalence classes xi,X2,--;Xkl

retum(E?=i Cfc));
}
else

{
pick p € CP(W) - PinochBe! _ _
return(mtn(co«*(p) + C(xo p, P,„ac«»«), C(i, {p} UPi^cUv,))):

}
}

The basic ideas of our algorithm can be summarized as the following:

• We only consider sharable operations as state transitions at multiple
query level. No sharable operations will be considered in separate
single-query optimization.

• Each time a sharable operation is performed or forbidden, the possi
bility of partitioning of the set of query into equivalence classes also
increases. At this time we check if the set of query has become decom
posable. If it has, we immediately decompose them into independent
subsets of queries and optimize them separately. In the end, it will run
out of sharable operations (either performed or forbidden), and each

18

equivalence class will contain only a single query. Thus the multiple-
query optimization problem is transformed into a set of single query
optimization problems.

• The sharable operations can be either logical or physical. Therefore
we are considering operations at mixed levels of abstraction, which
is supported very well by our state transition model. Normally the
state transitions are at the logical level. We go to the physical level
only when a logical transition embodies sharable physical operations,
logical transition.

• The condition when we "zoom* into physical level is very simple. If in
the current state, there are two operations that involve one common
input relation, we "zoom" the transitions corresponding to these two
operations into physical level, because if the operations involve the
same input relation, at least a SEQSCAN can be shared.

Example of Multiple Query Optimization

Consider the following 4 relations and 4 queries described in SQL. The
corresponding initial query graphs are givenin Figure 4.

Relations:

emp(eno, name, age, dept)
dept(name, chairman, floor)
cust(cno, name, age)
order(cno, date, item)

Qi- Q2i
select * select *

from emp, dept from emp, dept
where emp.dept » dept.name where emp.name = dept.chair
and dept.floor = 3 and dept.floor = 3

select *

Q<
select *

from cust from cust' order
where age < 30 ffhere cus*'age < *>
order by name

19

and cust.cno = order.cno

order by cust.name

^noor-3^

<*3

Figure 4: Initial Query Graphs of Ql, Q2, Q3 and Q4

We shall find an optimal processing plan for {Ql, Q2, Q3, Q4}. Ob
viously, at first this set of queries can be decomposed into two equivalence
classes, {Ql, Q2} and {Q3, Q4}, which can be optimized independently as
two separate groups. For {Ql, Q2}, the sharable operations are <7//oor-3,.
SEQSCAN on emp and nestloop join to form the product emp x dept. For
Q3, Q4, the sharable operations are aage<40 and sort on name. The search
process of each group is given in Figure 5 and Figure 6, in which we have
three different types of nodes. The P-nodes are for "Partition". It partitions
the set of query into equivalence classes and optimizes them separately. The
B-nodes stand for "Branch". At a B-node, there are two branches com
ing out: one for the case that a sharable operation is performed and the
other is for the case that the operation is deactivated (indicated by a '-').
The L-nodes stand for "Local optimization". At L-nodes, a multiple-query
optimization has been decomposed into single-query optimizations. The op
timization of Ql and Q2 shows how we can search the state transition graph
on mixed levels of abstraction. The optimization of Q3 and Q4 shows how
we can take advantage of subsumption and share sort operations.

A processing plan for these 4 queries that maximizes sharing can be found
by our algorithm as shown in Figure 7. However, a plan that maximizes the
amount of sharing is not necessarily an optimal one. Sharing may incur cost.

20

Multiple Quay {Ql, Q2)

| emp | j dept | » | emp | | dept |

SingleQueiy Optimizations
H 13

Figure 5: Multiple Query Optimization of {Qi,Q2}. Bold arrows de
note logical level transitions, others denote physical level transitions.

21

Multiple Query {Q3, Q4}

Single Query Optimizations

Figure 6: Multiple Query Optimization of {Qz, Q4}

22

For example, in Ql and Q2 we have to use the inefficient nested-loop to do
the join in order to share. Obviously this need not be optimal.

Complexity and Improvement

The complexity of our algorithm has the following two parts: (a) single-
query optimization for each query separately and remember the cost of each
state in the optimization, (b) for each sharable operation, deciding whether
to share it or deactivate it. This can be expressed as the following:

Q(^ complexities of single query optimization+2number °* aharable operations^

We believe that this estimate of complexity for our algorithm is a lower
bound of the worst-case complexity for multiple-query optimization. How
ever, we can add pruning to reduce the average complexity ofour algorithm.
"Branch and bound" seems to be most suitable for our algorithm. We can
start with a bound of the sum of component plan costs with no sharing.
Then, as we proceed, we reduce the bound whenever we find a better com
plete plan. We use the bound to prune branches of searches to reduce the
complexity.

23

Ql Q2 Q3 Q4

Figure 7: Complete Plan for {Qi, Q2,Qz, Q4} with Maximum Sharing

24

5 Conclusions

Multiple query optimization is a complex combinatorial problem. To avoid
intolerable combinatorial growth, we must eliminate redundancies that ap
pear in almost all proposed algorithms, e.g., unnecessary ordering and un
necessary combination. The latter is more serious, because it increases the
complexity exponentially. We believe that as a minimum requirement, given
a set of independent queries, a good multiple query optimizer should spend
no more than the sum of the time spent in optimizing single queries. In
this paper, we propose a general algorithm that is free of these redundancies
by using two techniques: dynamic programming and query-set decompo
sition. Both techniques are based on our state transition model of query
processing, which allows transitions of mixed levels of abstraction. We be
lieve the decomposition and "zooming" ideas are our major contributions.
The "zooming" idea is tightly coupled to our state transition model, but
decomposition is a general idea that can be applied to any existing algo
rithms to reduce complexity. We believe that the avoidance of unnecessary
combinatorial growth achieved by these techniques is essential for making
multiple-query optimization a practical reality.

25

References.

[CHAK86] Chakravarthy, U.S. and Minker, J., "Multiple Query Processing
in Deductive Databases", University of Maryland, Technical Report TR-
1554, College Park, MD, August 1985 Also in VLDB 86

[FINK82] Finkelstein, S., "Common expressionAnalysis in Database Appli
cations", Proceedings of the 1982 ACM-SIGMOD International conference
on the Management of Data, Orlando, FL, June 1982

[GRAN80] Grant, J. and Minker, J., "Optimization in Deductive and Con
ventional Relational Database Systems," pp. 195-234 in Advances in Database
Theory 1, H. Gallaire, J. Minker and J. M. Nicolas, eds. (Plenum Press,
1980)

[KOOI82] Kooi, R. and Frankforth, D., "Query Optimization in INGRES,"
IEEE Database Engineering, Sept. 1982.

[LAF086] Lafortune, S. and Wong, E.,"A State Transition Model for Dis
tributed Query Processing," ACM TODS, Vol. 11. No. 3, September 1986,
pp 294 - 322.

[ROSE88] Rosenthal, A. and Chakravarthy, U.S., "Anatomy of a Modular
Multiple Query Optimizer", Proc. of 14th VLDB conference, Los Angeles,
California, 1988

[SELI79]Selinger, P.G., et al, "Access Path Selection in a Relational DBMS,"
Proc. of ACM SIGMOD, 1979

[SELL86] Sellis, T.K., "Global Query Optimization," Proc. of ACM SIG
MOD, Washington, D.C.(May 1986).

[STON86]Stonebraker, M.R. and Rowe,L.A., "The Design of POSTGRES,"
Proc. of ACM SIGMOD, June 1986

26

	Copyright notice1989
	ERL-89-25

