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CHAPTER 1

INTRODUCTION

1.1. ANALYSIS OF VERY-LARGE-SCALE-INTEGRATED (VLSI) CIRCUITS

A circuit is a complex maze of signal paths that combine to effect an overall function.
In general, there are two analysis methods to ensure that the circuit design is correct: dynamic
analysis and static analysis, as illustrated in Figure 1.1. Dynamic analysis is the study of a
circuit’s behavior as a function of time. One might, for example, be interested in the voltages

at a set of the output nodes of a circuit some time ¢ after certain voltage sources are applied to
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| ‘ |
DYNAMIC STATIC
|
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SIMULATION RULE CHECK VERIFICATION
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GEOMETRICAL ELECTRICAL FUNCTIONAL TIMING

Figure 1.1 Analysis Methods of Circuit Designs




the input nodes. However, in general, it is not possible to obtain the analytical expressions
that represent the behavior of a circuit. Thus, in dynamic analysis, a circuit’s response to a
particular set of inputs called a test vector is computed. This process is referred to as simula-
tion. While computer simulations are also performed at process [1] and device levels
[2,3,4], they are performed mostly for the development of fabrication process, devices, or
device models. The most accurate simulator that is used by the circuit designers is probably
a circuit simulator such as SPICE [S] or ASTAP [6], which provides a fine-grain detailed ana-
log waveforms at particular nodes in the design. Unfortunately, circuit simulation is a com-
putationally expensive process and is, therefore, impractical for circuits consisting of more
than a few thousand transistors. There are two approaches for simulating VLSI designs of a
few hundred thousand transistors. The first approach is to break the design into a number of
smaller pieces and to simulate each piece at the circuit level. The second is to use higher
(coarser) level simulators such as switch-level simulators [7, 8], logic (or gate) simulators
[9,10], and functional/behavioral simulators [11,12,13]. Switch-levé]/logic simulators
replace the analog wavéforms of circuit simulators with logic levels 0, 1, and X (undefined).
Some simulators are augmented by a larger set of discrete levels in order to obtain more
detailed information. Switch-level simulators model MOS transistors as switches and logic
simulators model circuit elements at the gate level rather than the transistor level.

Functional/behavioral simulators allow the use of data and control representations.

The other type of analysis method, namely static analysis, examines a circuit that is
independent of input data. There are two kinds of static analysis. The first one is based on
rules checking which examines whether a circuit obeys geometric or electrical design rules.
Geometrical design rule checkers [14, 15, 16] ensure a margin of safety among wires and con-

tacts of the layout for process errors so that the circuit will be manufactured correctly. Electr-



ical design rule checkers [17] ﬁetect the violations of electrical rules such as incorrect transis-
tor ratios, short circuits, isolated parts of a circuit, and bad design practice. The second static
analysis method is verification. There are two types of verification: functional and timing. A
functional verifier [18, 19, 20] derives a circuit behavior by combining the behavior of each of
the primitive components. Then, it compares the derived circuit behavior with designer-
specified behavior. On the other hand, timing verification [21,22,23,24] is used for the
management of signal timing in a digital system. For example, in a synchronous system, if a
delay through a piece of combinational logic circuit is either too long (outside the required
clock range) or too short (which could cause a race condition), the system may not function
correctly. This is referred to as a timing error. Timing verifiers detect the possibility of such
timing errors. In addition, the maximum operation speed of a digital system is determined by
the slowest of its all possible signal paths, called the critical path. Timing verifiers are also

used to determine the critical paths to optimize the performance of the system.

1.2. SIMULATION VERSUS TIMING VERIFICATION

Although not impossible, it is computationally impractical to use detailed simulation
for the detection of critical paths or timing errors in a VLSI design, since the number of
necessary simulations would be exponential in the number of circuit nodes. In order to detect
critical paths or timing errors, it is necessary to locate the longest path first. Note that simula-
tion requires an input vector in order to determine a system response. Simulation is not
guaranteed to locate the correct longest delay of a system unless the system is simulated with
all possible input vectors. This is because a particular input vector is necessary to compute a
pathological path delay, hence exhaustive simulation is inevitable. Additionally, even after

finding the input vector causing the longest delay, it may not be easy to locate the



corresponding path, because there may be millions of signal paths between input and output
nodes. On the other hand, as will be described in Chapter 3, timing verifiers carry out only
one analysis (or a few analyses) using fast delay approximation techniques and report much
of the information necessary to improve or correct the design. Therefore, timing verification
is preferred for the management of signal timing in a VLSI sys'tem due to its computational

efficiency and test completeness.

1.3. ORGANIZATION OF THE THESIS

In this dissertation, a complete and consistent study of timing verification techniques is
presented. Then, new approaches for the accurate timing verification of VLSI MOS designs

are described.

The main issue of Chapter 2 is the timing constraints that n-phase clocking synchronous
systems must satisfy in order to function correctly. First, two types of clocked storage ele-
ments (edge-triggered and transparent) that are used for the global synchronization of system
signals are described. For an effective description of timing constraints, the terms and nota-
tion that are not standardized in the literatﬁre are defined. Then, the timing constrafnts that
IC designers have used for the design of synchronous systems including those with
precharged busses and dynamic logic gates are described. Even though some of these timing
constraints can be found in the literature, they are usually presented only for single-phase or
two-phase clocking synchronous system and with only one of two types of clocked storage
elements. In addition, this chapter presents the algorithms that examine the satisfaction of

timing constraints of the combinational logic circuit between clocked storage elements.

In Chapter 3, timing verification techniques are introduced. First, to illustrate the

difference between simulation and timing verification, valuc-dcpendent and valuc-



independent signal propagations are compared. Two path analysis methods, path enumera-
tion and critical-path analysis, are presented. Issues associated with path delays are
described, including delay computations and representations. Since a critical-path analyzer
can be implemented based on modified depth-first search, level-based search, or topological-
order based search, the complexity and loop-handling of different traversal approaches for the
critical-path analysis method are compared. Finally, problems specific to switch-level

critical-path analyzers are described.

The focus of Chapter 4 is the development of an accurate delay modeling technique,
referred to as Electrical-Logic (ELogic) modeling technique. The delay models of existing
switch-level timing verifiers are introduced, along with their respective strengths and limita-
tions. Then, the ELogic delay‘ model is introduced and its accuracy and stability properties
are investigated. Some experimental results that compare the accuracy of the existing

switch-level delay model and the ELogic delay model are included at the end of the chapter.

Chapter S presents the details of the concept and approaches developed for an accurate
timing verifier for MOS digital VLSI systems, referred to as Electrical-logic based Timing
Verifier (E-TV). First, a rule-based algorithm which determines the directions of signal flow
through MOS transistors is presented. The effect of value-dependent and value-independent
events in determining the worst delay predecessor of a path is investigated. Then, the models
of synchronous systems and combinational circuits and algorithms for their verification are
presented. Like other timing verifiers, E-TV breaks feedback loops in a circuit. A novel idea
which reduces the number of forward paths blo_cked by loop-breaking is presented. Follow-
ing a description of a simple but efficient switch-level simulation algorithm which is used to
propagate the effect of nodes that the user sets at logic "1" or "0", the way in which E-TV

views clocked storage elements along with how it actually verifies combinational logic paths



are presented. Algorithms for the extraction of transistor chains and for determini.ng the
worst-case predecessor of an and-or-inverter are presented. In addition, the way E-TV deals
with dynamic circuits using precharging is described.

In Chapter 6, the performance of E-TV is evaluated using two microprocessor designs
as test circuits. First, the performance of the path analysis section of E-TV and the analysis
method (ELogic) used for delay computations are evaluated. Then, the MOS model used in

E-TV is described and its accuracy is compared to the SPICE MOS2 model.

Conclusions and directions for future work are provided in Chapter 7.



CHAPTER 2

TIMING CONSTRAINTS OF SYNCHRONOUS SYSTEMS

Proper management of signal timing in a digital sy.stem is essential for the successful
operation of the system. All signals in the system must arrive at intended places in space,
and in the intended sequence at the times intended by the designer. Otherwise, the system,
while possibly functionally correct, will have timing problems or will fail to achieve its per-
formance objectives. However, as the system size grows larger and the design gets more
complex, the precise prediction of propagation delays of signals through the system becomes
more difﬁcult and the timing management of all signals is extremely complex. Two design
disciplines that alleviate the complex task of managing signals are self-timed systems and
synchronous systems [25,26,27,28). In self-timed systems, all signals are held up until the
slowest one arrives. Sequence and time are connected in the interior of parts called elements
and all system events are assured to occur in proper sequence rather than at particular times.
In synchronous systems, which are most widely used, system-wide clock signals are gen-
erated by a timing device called a clock generator. These clock signals are used for syn-
chronization by holding up all signals periodically to equalize the delays. Sequence and time

are connected through the clock signal.

While designers tend to cope with the complexity of managing signal timing in a sys-
tematic way by employing the clocking methodology of a synchronous syste'm, there are still
strict timing constraints that synchronous systems must satisfy in order to function correctly.
Even though these timing constraints have been described in the literature [25, 26,27, 28], the

description is not sufficiently organized to be used for timing verification. In addition, it is



not complete in the sense that a formulation for general n-phase clocking using both edge-.
triggered and transparent synchronization elements is not available. For example, Glasser
[28] presents only the timing constraints of single-phase or two-phase clocking circuits using
pass transistor registers whose delay can be ignored. In this chapter, the timing constraints of
synchronous systems are reorganized in general forms for timing verification, with a particu-
lar emphasis on MOS circuit design techniques. The algorithms for the timing verification of
synchronous systems are also presented. The timing constraints that are described are used in
the ELogic-based timing verifier (E-TV) for the detection of possible timing errors in syn-

chronous MOS systems.

2.1. CLOCKED STORAGE ELEMENTS

The Mealy finite state machine model of a synchronous system is shown in Figure 2.1

[25]. This synchronous system uses storage elements (usually registers or latches) in con-
junction with clock signals to hold up the movement of signals to the next stages of the com-
binational logic until an intended time is reached. The clock pulses generated by a clock gen-
erator are distributed throughout the system. These clock signals affect the storage elements
in such a way that the elements can latch and store signals only at discrete instants or for the
period of time associated with the clock. Storage elements that are used for the global syn-
chronization of system signals, with clock signals, will be referred to as clocked storage ele-
ments (CSE’s) [25] throughout this dissertation. The topological requirement of synchronous
systems is that all closed paths of the systems pass through one or more clocked storage ele-
ments. The timing constraints for the system depend on the type of clocked storage elements
used in addition to the clocking scheme. One common clocked storage elements used in TTL

are "edge-triggered" flip-flops. Even though edge-triggered types arc sometimes used in
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Figure 2.1 Clocking Scheme of Synchronous Systems

MOS VLSI designs, the "transparent” type is much more common. There are "pulse-width
sensitive" elements such as JK master-slave flip-flop, but they are rarely used due to the so-

called "glitch-catching” problem [29].

The edge-triggered clocked storage element samples and latches input data value during
a short time period (sampling interval) around a rising or falling clock edge (activating clock
edge), and changes its output state on the clock edge. If a rising clock edge causes the ele-
ment to change the output state, the element is positive edge-triggered type. Otherwise, the
element is negative edge-triggered type. Examples of the edge-triggered type are the JK

edge-triggered flip-flop and the D edge-triggered flip-flop [29].
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The clock node of a transparent clocked storage element works as an ENABLE node,
which, when active, makes the element transparent (the output follows the input) [29]. If an
element becomes transparent while the ENABLE signal is high, the element is active-high
transparent type. Otherwise, the element is active-low transparent type. The transparent type
is also an example of the "level-sensitive" type, because the element becomes transparent
when the ENABLE signal level is active. The beginning and the end of ENABLE period will
be referred to as activating and inactivating clock edges respectively. Note that, unlike the
edge-triggered element, the output of the transparent element follows the input data as soon
as it becomes available during ENABLE period. The examples of transparent type are pass
transistor registers and D transparent flip-flops [29]. The most common clocked storage ele-

" tnents used in MOS VLSI circuits are pass transistor registers [28].

2.2. DEFINITIONS AND NOTATION

Possibly because the subject of timing constraints has not been dealt with often in the
literature, terms and notation are not yet standardized. Therefore, in this section terms and
notation are defined so that the timing constraints of synchronous systems can be described

clearly and unambiguously. They will be used throughout this dissertation.

[Notation 2.1] ¢(R) and ¢(F) clock edges

For a given clock, ¢, ¢(R) and ¢(F) clock edges denote the rising (R) and falling (F)

edges of ¢, respectively. o

[Definition 2.1] Clocking by clock phase

Storage elements are said to be clocked by (R ) or §(F), or said to be clocked by ¢ or

o, if the elements are activated by the rising or falling edge of ¢. Clocked storage elements
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having the same activating clock edge are said to be clocked by the same clock phase. o

[Definition 2.2] Clocked path in synchronous systems

A clocked path is a signal path which begins and ends at clocked storage elements,
referred to as preceding clocked storage element (P_CSE) and succeeding clocked storage

element (S_CSE). o

The purpose of timing verification of a system is to examine whether or not a signal,
which begins to propagate from a specific point in space at a specific point in time, arrives at
another specific point in space by a specific point in time. In this dissertation, the start and
end time points for timing verification are referred to as a preceding and succeeding time
references (tpr and tsp). The corresponding space points are referred to as preceding and
succeeding space references (spp and ssg). When a clocked path is subject to timing
verification, P_CSE and S_CSE of the clocked path will be referred to as preceding and
succeeding reference clocked storage elements (PR_CSE and SR_CSE), if necessary, to

avoid confusion.

[Definition 2.3] Synchronous loop of clocked paths

A clocked path forms a synchronous loop if the preceding and the succeeding clocked

storage elements are clocked by the same clock phase. o
Delays through clocked paths with a synchronous loop constrain a cloék period.

[Definition 2.4] Single-stage and multistage clocked paths

A single-stage clocked path is a clocked path which has only two clocked storage cle-
ments in the path: preceding and succeeding elements. A multistage clocked path is a

clocked path which consists of more than one contiguous single-stage clocked path, without
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synchronous loops unless the whole path forms a synchronous loop. An N -stage clocked

path refers to a multistage clocked path consisting of N single-stage clocked paths. o

Single-stage clocked paths are basic units to consider for timing verification. Multis-
tage clocked paths exists only in multiphase clocking systems. No more than one storage ele-
ment in a multistage clocked path is clocked by the same clock phase, except when the whole
path forms a synchronous loop or transparent clocked storage elements are consecutive. The
clocked path of ¢; and 5,- represents a clocked path which begins logic evaluation at ¢; (R)
and finishes it at ¢; (F), when P_CSE and S_CSE are ideal clocked storage elements without
delays. Figures 2.2 and 2.3 illustrate ¢; - ¢; single-stage and multistage clocked paths, where

P_SCE and S_CSE are positive edge-triggered type.

[Definition 2.5] Clocked logic segments (single-stage and multistage)

A ¢; - ¢; single-stage (multistage) clocked logic segment in a digital system is a collec-

tion of all ¢; - ¢; single-stage (multistage) clocked paths in the system. o

[Definition 2.6] Logic evaluation sections

A §;-logic evaluation section in a digital system is a collection of all single-stage logic

segments in the system, whose preceding storage elements are clocked by ¢;. o

There may be as many as N2 single-stage clocked logic segments and N logic evalua-
tion sections in a circuit under analysis, where N is the number of clock edges which are used
for synchronization. Assuming that no single-stage logic segments form a synchronous loop,
there may be N (N —1) single-stage clocked logic segments. Even though there are 2n clock
edges available for synchronization in n-phase clocking systems, system designers usually

use n rising or n falling edges only.
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[Notation 2.2] Propagation delay

For a given logic path A, the propagation delay through A is denoted by D4. o

[Notation 2.3] Activating and inactivating clock edge

For a given clocked storage element, CSE, t4£(CSE) denotes times at which the
activating clock edges of CSE occur. For a given transparent clocked storage element, CSE,

t1ae (CSE) denote the times at which the inactivating clock edges of CSE occur. o

23. CLOCKED PATHS USING EDGE-TRIGGERED CLOCKED STORAGE ELE-
MENTS

When edge-triggered clocked storage elements are used, it is important to keep the
input data unchanged during the sampling interval around an activating clock edge to guaran-
tee that the correct input values are latched. The part of the error-free sampling interval
before the activating clock edge is called a set-up time, and the one after the activating clock
edge is called a hold time [26,29]. If the slowest arriving signals settle at the input nodes of
clocked storage elements the set-up time before an activating clock edge, they will remain
stable until the end of the hold time, unless logic paths are extremely fast. Since the hold
time is usually negligibly smaller than propagation delays through logic paths, many timing
verifiers check only whether or not the input data of clocked storage elements become stable

before the set-up time.

[Notation 2.4] Setup time of clocked storage element

For a given clocked storage element, CSE, Tsgzryp (CSE) denotes the set-up time of

CSE. o
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Consider a single-stage clocked path, illustrated in Figure 2.2. Suppose that P_CSE and
S_CSE are edge-triggered type. Then, the propagation delay of the clocked path, D¢y , must

satisfy following constraints to ensure that input data to S_CSE settles before the set-up time:
D¢ < tsg —tpr = [tae(S_CSE) - Tsgryp(S_CSE) 1 - tag (P_CSE) 2.1

Note that ¢4z (S_CSE), a timepoint at which the activating clock edge of S_CSE occurs, is the
next closest one to t4z(P_CSE) on timing chart. If clock signals shown in Figure 2.4 are
used for synchronization and the two clocked storage elements are positive edge-triggered

type, following constraints must be satisfied:
D¢y < t3-t1-Tsgryp(S_CSE)
A multistage clocked path also must satisfy the timing constraints of Equation (2.1). In

this case, D¢y, represents a propagation delay through the multistage clocked path; D¢ is

the sum of delays through single-stage clocked paths which constitute the multistage clocked

Tp
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Figure 2.4 Clock Signals
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path. However, fortunately, any multistage clocked path using edge-triggered clocked
storage elements, including the one which constrains a clock period, satisfies timing con-
straints automatically if each of its constituent single-stage clocked paths satisfies timing con-
straints. Thus, when verifying a system which uses edge-triggered clocked storage elements,
timing verifiers obtain the maximum propagation delay' through each single-stage logic seg-

ment and apply Equation (2.1) for the timing verification of the system.

24. CLOCKED PATHS USING TRANSPARENT CLOCKED STORAGE ELE-
MENTS

In a system using transparent clocked storage elements, input signals of clocked storage
elements must remain stable during a set-up time for correct values to be latched. The set-up

time of transparent type is a short time interval just before the inactivating clock edge.

Consider a single-stage clocked path, illustrated in Figure 2.2, once more. This time,
clocked storage elements used are assumed to be transparent type. To ensure the correct

input data to be latched, the propagation path delay, D¢, , must satisfy:

DCL < IsR —tpp = [ IEND (S_CSE) - TSETUP (S_CSE) ] — lAE (P_CSE) (2.2)

where
tenp(S_CSE) :  tag(S_CSE), if a clocked path forms a synchronous loop.

LAE (S_CSE ), otherwise.

In the above constraints, tgyp (S_CSE) is the next closest one to 4z (P_CSE) on the timing
chart. If a particular single-stage clocked path forms a synchronous loop (i.e., i = j in Figure
2.2), the path employs a single-phase clocking scheme. In this case, D¢y constrains a clock

period. Otherwise, D¢y, constrains a clock separation, which is a separation between clock



17

edges of different phase. Note that a single-stage clocked path using transparent elements
may use both preceding and succeeding clock phases for logic evaluation, unless it forms a
synchronous loop. In Figure 2.2, if P_CSE and S_CSE are positive-active transparent type
and clock signals illustrated in Figure 2.4 are used for synchronization, Equation (2.2) yields

following constraints:

D¢y < t4-t1-Tsgryp(S_CSE)

[Definition 2.7] Order of clock edges

For a given clocked path, clocked logic segment, or logic evaluation section for timing
verification, the order of clock edges is the one that clock edges occur on a timing chart dur-
ing one clock period, béginning from a preceding activating clock edge. o

Note that an order of clock edges is not an order of clock signals specified by the user.
Suppose that a single-stage clocked path of CSE2-CL2-CSE3 in Figure 2.5 is ;'eriﬁed. If
CSE?2 is positive-active transparent type, a preceding activating clock edge is. $3(R). Thus,
the increasing order of clock edges for the path is $3(R) - $3(F) - ¢p4(R) - ¢4(F) - $1(R) -
O1(F) - 92(R) - 92(F).

[Definition 2.8] Clocking delay of clocked storage elements

When an input signal arrives at a clocked storage element, CSE, before an activating
clock edge does, it can not be latched until an activating clock edge arrives. A clocking delay

(CSE) is defined as a time interval the input signal must wait to be latched as follows:
clocking delay (CSE) = min (t4g(CSE) — trgapy(CSE) , 0) 2.3)

where tpeapy (CSE) is a timepoini at which an input data of CSE is ready. o
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If an input signal arrives at a clocked storage element on or after an activating clock edge, the
clocking delay is zero. The concept of the clocking delay will be used for the description of
the algorithms for the verification of multistage clocked paths which use transparent clocked

storage elements.

The timing constraints of Equation (2.2) can be applied to examine multistage clocked

paths as well as single-stage clocked paths, if the meaning of D¢y, is modified as follows:

Dcy < tsg —tpr = [tenp (SR_CSE) — Tsgryp (SR_CSE) 1 — tag (PR_CSE) 2.4)
where
D¢y, :  Propagation time through a clocked path, excluding clocking

delays of interposed clocked storage elements.

tenp(SR_CSE) : t4g(SR_CSE), if a clocked path forms a synchronous loop.
tjag (SR_CSE), otherwise.

Note that D¢, is a sum of delays through successive single-stage clocked paths and it is not a
sum of the worst-case delays in successive single-stage clocked logic segments. Like a
single-stage clocked path, if a multistage clocked path forms a synchronous loop, it con-
strains a clock period. If not, it constrains a clock separation. However, tgyp (SR_CSE') for a
multistage clocked path may not be the next closest one to zag (PR_CSE) as it is for a single-
stage clocked path. A time difference between tgyp (SR_CSE) and t4g (PR_CSE) in Equa-
tion (2.4) is equal to or larger than a clock period, if clock edges activating storage elements
between PR_CSE and SR_CSE are not in monotonically increasing order. Therefore, when
tag (PR_CSE) is given for a multistage clocked path, tgyp (SR__CSE') must be computed by
considering the evaluation period of each of its constituent single-stage clocked paths on the
timing chart, one by one from the first to the last single-stage clocked paths. As an examplc,

let all the clocked storage elements in Figure 2.5 be positive-active transparcnt type. Assume
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that ¢4 (CSE 1) is ¢t1 on timing chart. Then, the evaluation periods for CL1, CL2, aﬁd CL3
are from ¢1to ¢3, t2 to ¢S5, and ¢4 to ¢6, respectively. Since the path does not form a syn-
chronous loop, the proper tgyp (CSE 4) is t 6, which is Tp + T apart from t4z (CSE 1).

When a system uses transparent clocked storage elements, a multistage clocked path
may not satisfy timing constraints, even when all of its constituent single-stage clocked pathé
satisfy'their timing constraints. Therefore, when a multistage clocked path is examined, all

of its nested clocked paths must be examined and assessed using Equation (2.4). If a multis-
N

tage clocked path has N constituent single-stage clocked paths, it has Z‘ J nested clocked
J=

paths. Since the path of Figixre 2.5 has 3 constituent single-stage paths, the following 6

nested clocked paths must satisfy their timing constraints as follows:

(1) Single-stage nested clocked paths
Dcry € t3-1t1—Tsgryp(CSE?2)
Dcpa £ t5—1t2—Tsgryp (CSE 3)
Dcr3 £ t6—1t4—Tsgryp (CSE 4)

(2) 2-stage nested clocked paths

Depy+Dcpa € t5—-1t1=Tseryp (CSE3)
Dcra2+Dcrs £ t6—1t2—Tseryp (CSE4)

(3) 3-stage nested clocked path

Dep1+Depa+Dcps £ t6—1t1 —Tspryp(CSE4) = Tp +To— Tsgryp (CSE 4)

The algorithm for the verification of N-stage clocked paths are shown in Algorithm 2.1, in a

high-level Pidgin-C description.

As mentioned earlier, when transparent clocked storage elements are used, the fact that
all constituent single-stage clocked paths satisfy their timing constraints does not guarantec

that the corresponding multistage clocked path satisfies its timing constraints. Howcver,
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I* START: Constraint check for a N-stage clocked path, MCP , using transparent type */
foreach (j € {1,...,N}) {
extract all j -stage nested clocked paths from MCP ;

foreach ( Nest_CP; € (set of j-stage nested clocked paths} ) {
check Nest_CP; using Equation (2.4);

)
}

/* END: Constraint check for MCP */

/* Note: D¢y, in Equation (2.4) is the sum of delays through the constituent
single-stage paths of CL, which does not include a clocking delay. */

Algorithm 2.1 Constraint Check For A N-stage Clocked Path Using Transparent Type

there has been an attempt to examine a multistage path on the fly, while verifying constituent
single-stage clocked paths [24,30]. A key idea of this approach is to examine and evaluate a
path from a preceding reference clocked storage element, which changes during verification,
to the end of a constituent single-stage clocked path which is most recently examined and
evaluated. The approach is described in Algorithm 2.2. In the description, the boxed part is
used later in this chapter to describe the algorithm for the verification of clocked paths that
use both types of storage elements. Suppose that a multistage clocked path MCP, which uses
transparent clocked storage elements, is subject to timing verification using Equation (2.2).
Let a preceding reference clocked storage element (PR_CSE) be the preceding clocked
storage element of MCP initially. A signal starts to propagate from PR CSE at
tag (PR_CSE). Algorithm 2.2 examines each single-stage clocked path, one by one from the

first one to the last one. Suppose that SCP; denotes the i th constitucnt single-stage clocked
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1* START: Constraint check for a N-stage clocked path, MCP , using transparent type */

PR_CSE =P_CSE of MCP ;
Propagate a signal at 24z (PR_CSE);

foreach (SCP; = i th constituent single-stage clocked path of MCP,i € (1, ..,N}) {

Check SCP; using Equation (2.2);
if (PR_CSE #P_CSE of SCP; ) {
if (P CSE of MCP to S CSE; forms a synchronous loop) {

1*S_CSE; must be the last single-stage clocked path of MCP */
if ( treapy (S_CSE;) > (tag(S_CSE;) — tsgrup (S_CSE;)))
report a clock period violation,
}

S_CSE; =S_CSE of SCP; ;

if ( treapy (S_CSE;) < tap (S_CSE;) ) {
/* CASE 1: Path from PR_CSE to S_CSE; satisfies constraints */
Delay a signal propagation 1 until S_ CSE becomes active;
PR_CSE =S_CSE; ;

else {

if (treapy (S_CSE;) > (t1ag(S_CSE;) — Tsgrup (S_CSE;)))
1* CASE 2: Path from current PR_CSE to S_CSE; violates constraints */
report a clock separation violation;

else if (SCP; is the last one in MCP) ; /* CASE 3: Constraints satisfied */
else /*CASE 4: %

/* Path from PR_CSE to S_CSE; is still subject to verification */
} .
}

} /* END: Constraint check for MCP */

where
PR _CSE :  Preceding reference clocked storage element
P_CSE (S_CSE) : Preceding (Succeeding) clocked storage element
treapy (S_CSE;) :  Timepoint at which an input of S_CSE; is ready

Algorithm 2.2 Constraint Check For A N-stage Clocked Path Using Transparent Type
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path of MCP and S_CSE; denotes its succeeding clocked storage element. In general, after
examining SCP;, Algorithm 2.2 checks if a path from the preceding clocked storage element
of MCP to S_CSE; forms a synchronous loop. If the path forms a synchronous loop, SCP;
must be the last constituent single-stage clocked path of MCP from the definition. Hence a
signal propagation through the path must finish by zsg (S_CSE;) to satisfy the following ine-
quality:

treaDY (S_CSE;) > tsr(S_CSE;) = tag(S_CSE;) — tserup (S_CSE:)

where trgapy (S_CSE;) is an input signal arrival time at S_CSE;. If the path does not form a
synchronous loop, there are two cases to consider:

(1) Aninput signal arrives before an activating clock edge at S_CSE of SCP;.

(2) Aninput signal arrives after an activating clock edge at S_CSE of SCP;.
If an input signal is ready before an activating clock edge to amive at S_CSE of SCP;, a
pending path from the current PR_CSE to the S_CSE of SCP; satisfies maximum delay con-
straints (CASE 1 in Algorithm 2.2). In this case, a signal propagation is delayed until S_CSE
of SCP; is activated; i.e., a clocking delay is added to the path delay. The signal starts to
propagate through the path again when S_CSE of SCP; becomes active, as it starts t0 pro-
pagate at P_CSE of MCP when it becomes active. Therefore, PR_CSE is updated by the
S_CSE of SCP; for the examination of the remaining path of MCP. On the other hand, when
an input signal arrives after an activating clock edge at S_CSE of SCP;, one of following two
cases happens:

(2.1) An input signal does not arrive by a set-up time before an inactivating clock edge.

(2.2) An input signal arrives by a set-up time before an inactivating clock edge.
If an input signal does not arrive at S_CSE of SCP; by a sct-up time bcfore an inactivating

clock edge, a pending path for timing verification, which is a path from the current PR_CSE
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to S_CSE of SCP;, violates timing constraints (CASE 2 in Algorithm 2.2). When an input
signal arrives by a set-up time before an inactivating clock edge, if SCP; is the last single-
stage clocked path in MCP, the pending path is regarded as satisfying timing constraints
(CASE 3 in Algorithm 2.2). If it is not the last one, the pending path is still subject to timing
verification (CASE 4 in Algorithm 2.2). The algorithm moves to the next constituent single-_

stage clocked path to examine while PR_CSE is kept the same.

Figure 2.6 illustrates CASE 1 to CASE 4 in Algorithm 2.2, assuming that the set-up
times of NMOS pass transistor registers are negligible. In CASE 1, the input of CSE2 settles
before t2 which is 14z (CSE2). Thus, CL1 satisfies timing constraints and d2 represents a
clocking delay through CSE2. In CASE 2, the input of CSE2 settles after ¢3 which is
tiag (CSE2) and CL1 violates timing constraints. In CASE 4, the input of CSE2 settles
between ¢2 and ¢3 and CL1 is pending for verification. CASE 1’ to CASE 4’ in Figure 2.6
also illustrate CASE 1 to CASE 4 in Algorithm 2.2, respectively, involving more than one
single-stage clocked path. In CASE 1, pending paths CL1 and CL2 satisfy timing con-
straints. while they fail in CASE 2. From CASE 2, notice that a multistage path may violate
timing constraints, even though its constituent single-stage paths satisfy timing constraints
individually. In CASE 3, the early part illustrates how a signal propagates after CASE 1 has
occurred. After CL1 is examined, PR_CSE changes from CSEL1 to CSEZ. Because CL3 is
the last single-stage path in this particular example, a 'multistage path of CL2 and CL3
satisfies timing constraints. In CASE 4, a multistage path of CL1 and CL2 is still subject to

verification.

Clock pulse width (ENABLE period) must be wide enough so that the output nodes of
transparent clocked storage elements can settle. However, it is easily satisfied and, therefore,

the designers are not concerned about the clock pulse width unless they use a single-phasc
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clocking scheme which limits the clock pulse width, as will be described later.

25. CLOCKED PATHS USING EDGE-TRIGGERED AND TRANSPARENT
CLOCKED STORAGE ELEMENTS

Circuit designers may use both edge-triggered and transparent clocked storage elements
in one design. Thus, the types of preceding and succeeding clocked storage elements may be
different and so it is helpful to derive timing constraints and algorithms that are applicable
regardless of the element types used. A clocked path takes an activating clock edge as a
preceding time reference (fpg ), whatever the type of a preceding clocked storage element is.
However, a succeeding time reference (fsg) depends on the type of a succeeding clocked
storage element (S_CSE). If S_CSE is edge-triggered type or the path forms a synchronous
loop, an activating clock edge will be zsg. Otherwise an inactivating clock edge will be zgz.
Therefore, the timing constraints and algorithms presented earlier can be modified to reflect

above facts for the timing verification of the clocked paths hsing either type of elements.

From Equation (2.1) and (2.2), timing constraints for a single-stage clocked path illus-

trated in Figure 2.2 are given as follows:

Dcp < tsg —tpr = [tenp(S_CSE) —Tserup (S_CSE) 1 — tag (P_CSE) (2.5)
where
texp(S_CSE) : t4e(S_CSE),if S_CSE is edge-triggered type or the path forms
a synchronous loop.

tiag (S_CSE), otherwise.
and tgnp (S_CSE) is the next closest one to t4g (P_CSE).

As mentioned earlier, edge-triggered clocked storage elements partition a multistage

clocked path into sub-paths whose timing verification can be carried out independently of
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each other. If all the partitioned sub-paths satisfy their timing constraints, the multistage
clocked path is also guaranteed to satisfy its timing constraints. Therefore, the timing
verification of a multistage clocked path using both types of clocked storage elements can be
translated into a task of examining each sub-path separately, provided that they are parti-
tioned by interposed edge-triggered clocked storage elements. If a multistage path has N
interposed edge-triggered clocked storage elements between its preceding and succeeding
clocked storage elements, there are N +1 sub-paths to verify independently. The sub-path is a
single-stage or multistage clocked path. If a sub-path is multistage, all of its interposed
clocked storage elements are transparent type. There are four types of sub-paths as listed in

Table 2.1.

CSE Type
Sub-Path type - -
Preceding CSE Succeeding CSE
Type 1 Edge-triggered Edge-triggered
Type 2 Edge-triggered Transparent
Type 3 Transparent Edge-triggered
Type 4 Transparent Transparent

Table 2.1 Types Of Sub-Paths Which Can Be Verified Individually
After Partitioning A Multistage Clocked Path

Algorithms 2.1 and 2.2 can be modified as follows to check if each sub-path satisfies timing

constraints.

Modified Algorithm MA2.1:

tenp (S_CSE;) for Equation 2.4 is redefined as follows:
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tenp(SR_CSE) :  tag(SR_CSE), if SR_CSE is edge-triggered type or
a clocked path forms a synchronous loop.
tjae (SR_CSE), otherwise.

Modified Algorithm MA2.2:
The boxed part in Algorithm 2.2 is modified to followings:

Check SCP; using Equation (2.5);
if (PR_CSE #P_CSE of SCP; ) {
if (P_CSE of MCP to S_CSE; forms a synchronous loop or
S_CSE; is edge-triggered type) {

2.6. SINGLE-PHASE CLOCKING

The simplest clocking scheme, even though its timing constraints are not simple to
satisfy, is a single-phase scheme which uses only one clock phase [25,28]. Since the same
clock phase is applied to all clocked storage elements, all clocked paths form synchronous
loops. Thus, clocked path delays must be smaller than a clock period. More precisely, from
Equation (2.5), the maximum delay D¥2* of the combinational logic in a single-phase clock-

ing system is constrained as. follows, irrespective of clocked storage element types:
DMax < Tp — Tspryp (S_CSE) (2.6)
where Tp is a clock period and S_CSE is a succeeding clocked storage element.

Suppose a single-phase clocking system uses transparent clocked storage elements.
Since only one clock phase is used, all clocked storage elements in the system are active dur-
ing an ENABLE period. If a combinational logic has path delays that are smaller than the
ENABLE period, the newly generated next states are lat;:hed as inputs during the same
ENABLE period. If such race conditions exist, the system will not function correctly.

Therefore, the minimum path delay of the combinational logic, DMi* | must satisfy following
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constraints:
Tenapre < DMin +Toy(S_CSE) 2.7

where Teyvapre is an ENABLE period for which clocked storage elements in the system
become transparent, and Tpy is a hold time. Equations (2.6) and (2.7) mean that not only the

slowest path but also the fastest path in the system must be observed.

The single-phase clocking is cheap and fast. However, if transparent clocked storage
elements are used for synchronization, it is difficult to implement combinational logic block
which satisfies the two-sided constraints of Equations (2.6) and (2.7) under all conditions of
process variation in manufacture. This clocking scheme was employed in many of the early
TTL systems, but is not popular.in MOS VLSI circuits where transparent pass transistor

registers are commonly used.

2.7. MULTIPHASE CLOCKING

The advantage of using multiphase clocking is that the system can be free of two-sided
constraints and the combinational logic may have single-sided relations which constrain the
maximum path delay, even when transparent clocked storage elements are used. As in
single-phase clocking system, race conditions may occur in multiphase clocking systems
from synchronous-looped paths whose constituent clocked storage elements are all tran-
sparent type. However, race conditions can be avoided by choosing clock signals properly
for a given clocking scheme and, thus, the painful minimum delay constraints can be élim-
inated. One of the most common ways to avoid race conditions is to use nonoverlapping
clock signals so that only one transparent clocked storage element in any synchronous-looped
path can be active at any time. In fact, even if overlapping clock signals are used, race condi-

tions do not occur as long as not all transparent clocked storage elements of the synchronous
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looped-path are active at the same time. One of the examples is the ;:anonical three-phase
overlapping clocking scheme, where only two phases, not three phases, simultaneously over-
lap [28]. If an overlapping clocking scheme presents two-sided constraints due to simultane-
ous overlapping of all clock signals, the precise constraints on the minimum delay to avoid a

race depends on the particular scheme used.

Examination of the maximum delays through the combinational logic of a multiphase

clocking system is partitioned into two tasks:

(1) Identifying all single-stage and multistage clocked paths in a system that make a syn-

chronous loop or terminate prematurely before making a synchronous loop.

(2) Verifying identified clocked paths against timing constraints, using Modified Algo-

rithm MA2.1 or MA2.2.
The above tasks can be performed simultaneously. Figure 2.7 illustrates a system which has
two isolated closed paths: Path 1 and Path 2. If a timing verifier starts a clocked-path search
from only ¢, clock nodes, it detects I;ath 1 but misses Path 2. In general, when a timing
verifier looks for clocked paths in a system, the search must start from all clock nodes in

order to find all clocked paths.

2.8. PRECHARGING

Precharging is a quite useful technique in MOS circuit designs, because it provides the
'advantaggs of faster operation, reduced power consumption, and greater circuit density,
depending on the application [29,28]. However, once the stored charge is lost, it cannot be
recovered until the next precharging time. Thus, circuits become more sensitive to glitches
and timing errors and have tight timing constraints to satisfy. Figure 2.8 illustrates a part of

circuit which uses a precharged bus. In the figure, CSE1 and CSE2 are NMOS transmission
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gates. A precharging element (PE) may be a PMOS or an NMOS transis;tor. During a
precharging period, the precharging element is on and BUS precharges. Then it discharges
through CSE1 depending on the logic signal at A during an evaluation period (¢;). Since
BUS takes its input signal from Node A while ¢; is high, it belongs to ¢; (R ) logic evaluation

section.

If a precharging element is an NMOS transistor, BUS is precharged while ¢; is high,
where ¢; and ¢; are usually nonoverlapping, as illustrated in Figure 2.4. Obviously, a

precharging time through an NMOS precharging element, Tprecrc » must satisfy followings:
TprechG < torr(PE)—ton(PE) = $j(F)—6;R) (2.8.2)
When a precharging element is a PMOS transistor, ¢; is usually ¢;. Thus, the precharging
time through a PMOS precharging element, Tprecuc , must satisfy the following:
-TprecHG < torr(PE)—ton(PE) = ¢;j(R)—=¢;(F) = ¢i(R) —:i(F) (2.8.b)
[Notation 2.5] Rising and falling transition times |

For a given node A, t4 (R) and ¢4 (F) are times at which rising and falling transitions

occur, respectively. o

Note that precharging uses dynamic charge storage. If Node A does not complete its rising
transition before CSEI1 is on, the charge stored on BUS will be lost. Therefore, Node A must

complete its rising transition by the time that CSE1 is clocked on:
taR) < ¢:i(R) (2.9)

Provided that Equation (2.9) is satisfied, a logic "1" signal is available at BUS as soon as the
precharging is done. Hence when a timing verifier needs to propagate the worst-case rising

transition at BUS to the next logic gates, it propagates a rising transition through a precharg-
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ing path, and all other rising transitions are ignored.

Since an output transmission gate CSE2 is also gated by ¢;, the rising and falling transi-

tions at Node B through CSE2 must finish before CSE2 tumns off:

p(F) < 6;i(F) (2.10.2)

ta(R) < ¢i(F) (2.10.b)

Since a logic "0" signal at Node A starts to pass through CSE1 at ¢; (R ), Equation (2.10.a)
means that a falling delay through CSE1 and CSE2, Df;, must not be larger than the pulse

width of ¢; for which ¢; is high:
Dfc < 0i(F)—-0i(R) (2.11.a) .

Similarly, a logic "1" signal at BUS starts to pass through CSE2 at ¢;(R). Thus, Equation
(2.10.b) means that a rising delay through CSE2, Dfc, must not be larger than the pulse

width of ¢;:
DE: < 9i(F)-i(R) . (2.11.b)

One should notice that, while circuits using precharged modules are faster than static
circuits, they have to satisfy tight timing constraints. A circuit example using precharged
modules is illustrated in Figure 2.9. Suppose that CSE3 is an active-high transparent type
with a negligible set-up time. Then Equations (2.4), (2.8), (2.9), (2.11.a) and (2.11.b) yield

the following constraints to satisfy:

t4—-t1

From Equation 2.4): D +Dcrz < ¢;(F) - ¢:(R)
Deu1+D < Gi(Fy—0;R) = t6—13
D +Dcpy+Dcry £ Tp (2.12)

where D is the path delay through CSE 1and CSE2
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Figure 2.9 A Circuit Example Which Uses A Precharged Module

From Equation (2.8): Tprechg < 9j(F) =@y = t4—-13
From Equation (2.9): t4(R) < t1,foran evaluation period of tand ¢ (2.13)
From Equation (2.11.a): Dfc < t2-11

From Equation 2.11.b): Dfc < t2—1t1

As mentioned earlier, the first three constraints, derived from Equation (2.4), apply to succes-
sive clocked paths rather than successive clocked logic segments in the system. As an illus-
tration, (D + D¢ + Dcp2) in Equation (2.12) is a sum of delays through one of precharged

modules, a path in CL2, and a path in CL1, that are successive. It is not the sum of the
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worst-case delay through precharged modules, the worst-case delay in CL2, and the worst-

case delay in CL1.

Two other circuit modules that use precharging and predischarging are illustrated in’
Figure 2.10: N-type and P-type dynamic logic gates [31,32]. The N-type dynamic logic gate
is used in both NMOS and CMOS designs, while the P-type dynamic logic gate is available
only in CMOS designs. In NMOS design, M1 is an NMOS transistor, and ¢; is 6,- or another
clock signal which is nonoverlapping with ¢;. The output node, Output, is precharged when
¢; is high and is conditionally discharged through N-type logic block while ¢; is high. These
N-type dynamic logic gates are used as precharged busses in NMOS design. In CMOS
design, M1 of the N-type dynamic logic gate is a PMOS transistor, and ¢; is ¢;. Output is

precharged when ¢; is low and is conditionally discharged while ¢; is high. N-type dynamic
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Figure 2.10 (a) N-Type Dynamic Logic Gate (b) P-Type Dynamic Logic Gate
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logic gates are used as precharged busses in CMOS design or they are used to construct
CMOS domino logic [31], where each N-type dynamic logic gate is followed by an inverter
to ensure a single transition from logic "0" to logic "1" at the gates of NMOS transistors in
the next N-type dynamic logic gates. Thus, the domino logic precharges the output nodes of
N-type dynamic logic gates and evaluates multiple logic levels during the same clock phase,
where the outputs fall sequentially, like a row of dominos. The domino logic consisting of
the N-type of Figure 2.10(a) will precharge when ¢; is low and evaluates when ¢; is high.
Since an N-type dynamic logic gate utilizes precharging, its timing constraints are similar to
those for precharged modules illustrated in Figure 2.8. If M/ is an NMOS transistor (NMOS

design), a precharging time must satisfy the following:
Terechc < torr(M 1) —ton(M 1) = ¢;(F)—4:(R) (2.14.2)

Similarly, if M1 is a PMOS transistor (CMOS design), the following constraints are given for -

precharging an output node:
Trrechc < torr(M 1) —toy(M 1) = §;(R)—4:i(F) = ¢;(R) - 0;(F) (2.14.b)

The falling output transition of an N-type dynamic logic gate, which starts after ¢; (R ), must

finish by the next ¢; (F) at which M2 turns off.
towpu (F) < ¢;(F) (2.15)

When falling input transitions of an N-type dynamic logic gate do not finish until MI turns
off, Output may lose its charge by charge sharing or discharging through NMOS transistors
of N-type logic block as MI tumns off. Therefore, most circuit designers prefer the falling

input transitions to finish by the time M1 turns off as follows. If M is an NMOS transistor

(NMOS design), -
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tinpurs (F) < torrM 1) = ¢i(F) ' (2.16.2)
Similarly, if M1 is a PMOS transistor (CMOS design),

tvpurs (F) < toprM 1) = 6i(R) = 9;(R) (2.16.b)

Another circuit design technique which uses precharging and predischarging is a NORA
logic [32], which consists of alternating N-type and P-type dynamic logic gates. MI of N-
type dynamic logic gaté is a PMOS transistor and hence ¢; is ;. Output of a P-type dynamic
logic gate of Figure 2.10(b) is predischarged when ¢; is iligh and is evaluated when ¢; is low.
In a NORA logic, no inverters follow N-type or P-type dynamic logic gates. Like a domino
logic, the NORA logic precharge and predischarge the output nodes of N-type and P-type
dynamic logic gates, respectively. Then, it evaluates multiple logic levels during the same
clock phase. The NORA logic consisting of the N-type and P-type logic gates of Figure 2.10
precharges and predischarges when ¢; is low and, then, evaluates when ¢; is high. Notice
that a P-type dynamic logic gate is the dual of an N-type dynamic logic gate. Hence, lhe‘

predischarging time of P-type dynamic logic gate has following timing constraints to satisfy:
TrrepiscHG < torr (M4) —ton(M4) = 0;(F)—0;(R) (2.17)

The rising output transition of a P-type dynamic logic gate, which starts after ¢;(R ), must

finish by the next $j (R) at which M3 turns off.
toupu R) < 9j(R) (2.18)

Similarly to the falling input transitions of an N-type dynamic logic gate, the rising input

transitions of a P-type dynamic logic gate must finish before M4 tums off and M3 turns on:

tveursR) < torr(M4) = toy(M3) = §;(F) (2.19)
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29. CLOCK SKEW

During clock distribution in a synchronous system, there is a variation in the arrival
time of clock signals to different clocked storage elements due to different propagation
delays. This arrival time variance is called clock skew. Clock skew changes the effective
clock period and clock separations and, as a result, generally impacts system performance
adversely. An extreme clock skew turns nonoverlapping clocks into overlapping clocks and
may introduce two-sided timing constraints. Note that clock skew is signal-relative at a logic
and not a function of the absolute delay of signals in the circuit. Since it is difficult to predict
clock skew and clock timing exactly, the control of clock skew is a problem in large systems,
including VLSI systems. Although the clock delay can be reduced by placing re-shaping cir-
cuits at intervals along a long line, the overall delay is still fairly long compared to the propa-

gation delay through a single MOS gate.

One way of looking at the influence of clock skew is to transform the clock skew to
appear in the clocked paths as an absolute delay fror.n a given reference point (usually the out-
put of the clock generator) [28]. Suppose a clocked storage element, CSE, has a clock skew
of dskgw. The clock skew on the clock signal path to CSE can be eliminated by adding a
delay dsgew to the logic path following CSE, while the same delay is subtracted from the

other logic path which precedes CSE. This transformation is shown in Figure 2.11.

Another way of taking the influence of the clock skew into account is to use actual
clock arrival tifnes to clocked storage elements, when attempting to verify clocked paths
against timing constraints. That is, clock skew affects timing constraints by changing the
effective clock separation or clock period. This approach is used in E-7TV, as will bc

described in Chapter 5.
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Figure 2.11 Transformation of Clock Skew into Clocked Paths
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CHAPTER 3

TIMING VERIFICATION TECHNIQUES

During the design process of a digital system, designers examine the signal timings at
various design points. There are two main purposes for the examination of signal timings.
First, designers attempt to detect the possibility of timing errors. Needless to say, if there are
any timing errors, the system will not function correctly. Therefore, detecting and correcting
timing errors are crucial for the successful operation of the design. Second, designers attempt
to optimize the performance of the system. In a system, the actual operating speed is deter-
mined by the slowest of all possible signal paths. The system speed can sometimes be
improved greatly by reducing propagation delays through a few critically slow paths. Thus,
designers are interested in identifying critical paths for the speed improvement of a system.
At the same time, an unnecessarily fast section, compared to the rest of a system, usually con-
sumes extra silicon area and power. Thus, designers are also interested in identifying the

unnecessarily fast paths in the system to save silicon area and power.

To investigate system timings, designers would need to extract appropriate circuit
pieces from the system. However, as the size and complexity of a system increase, it is no
longer a simple task even for skilled designers to extract the right circuit pieces to analyze.
Thus, since the Program Evaluation and Review Technique (PERT) {33, 34] had been applied
to logic design [21], many timing verification tools have been developed in order to help
designers detect timing erTors and optimize system performance
(35,22,36,37,38,23,24,30]. PERT was developed as an aid in estimating end datcs and

critical paths for the scheduling of large projects.
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While it may depend on a detailed implementation, a timing verifier usually needs three
functional sections: the path analyzer, the delay modeler, and the timing-constraint checker.
The operation of the three functional sections can be summarized as follows. A path analyzer
extracts a logic block in a given system, systematically. A delay modeler evaluates a propa-
gation delay through the logic block. Using this delay value, a path analyzer computes a path
delay from starting nodes to the output node of the logic block. Then, a timing-constraint
checker attempts to ascertain whether or not the path violates any timing constraints, or com-
putes proper clock separations using the path delay. A timing verifier without a delay

modeler requires the user to specify propagation delays through logic blocks in a system.

In this chapter, various aspects of timing verification techniques, including signal pro-
pagation; delay computations, and path analysis, are described. The path-analysis approach
used in E-TV is the critical-path analysis method which detects only the critical paths in a
given system. A number of critical-path analysis methods are described in detail, with

emphasis on the switch level.

3.1. SIGNAL PROPAGATION FOR TIMING VERIFICATION

There are two possible approaches in propagating signals in a system for timing
verification: value-dependent and value-independent propagations. Assuming that a signal at
an input node of a logic block changes, the value-dependent approach propagates its effect to
the output node of the logic block only when the other input conditions supporﬁit Conven-
tional simulators [6,5,9, 10, 39,40,41] belong to this approach. On the other hand, the
value-independent approach always propagates the input change of the logic block to the out-
put node without attempting to check whether the signal conditions at other input nodes sup-

port that propagation. Most timing verifiers [21, 35, 22, 37,23, 24, 30] use value-independent
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approach. Figure 3.1 compares two approaches. Suppose that all logic gates in Figure 3.1
have a unit delay for the simplicity of comparison. Also, suppose that the worst (longest)
delay from input nodes A and B to an output node E is sought, when both inputs change at
time z=0. As one of value-dependent approaches, the simulation results are shown in Table
3.1 for four sets of changing input signals. In the table, "Input States" represents whether an

input rises or falls at time z=0. For examples, A(R) or A(F) represents that an input signal at

A —> Buffer

; AND [— I_)__’ OR[>~ E
B .

Figure 3.1 A Circuit Example Illustrating Patten-Independent and
Pattern-Dependent Signal Propagations
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Table 3.1 Simulation Results of Figure 3.1
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Node A rises or falls at time ¢=0. From the simulation results, the worst rising delay at E is 1
unit delay, when "Input States” is {AR), BR)} or {A(F), B(R)}. The corresponding worst
delay path is found to be Path B-(OR gate)-E from Figure 3.1. Similarly, the worst falling
delay at E is 2 unit delay, when "Input States" is {A(F), B(F)}. The worst delay path is Path
B-(AND gate)-D-(OR gate)-E. On the other hand, when value-independent approach is used,
both the rising and the falling worst delays are 3 unit delays through Path A-(Buffer)-C-
(AND gate)-D-(OR gate)-E. Because these delays are the worst among all possible cases,
they are called the worst-case delays. In this example, value-independent worst delays are
pessimistic, compared to value-dependent worst delays compute(_:l by simulation, because
their worst delay path is the one which can not be activated under real operating conditions.
In Figure 3.1, in order for the value-independent worst delay path to be active, following two
conditions must be satisfied at £>0.

(1) Node B must be at logic "1" in order for the signal change at Node C to propagate to

Node D through an AND gate.

(2) Node B must be at logic "0", in order for the signal change at Node D to propagate to

Node E through an OR gate.
Because above two conditions conflict with each other, this value-independent worst delay
path, A-(Buffer)-C-(AND gate)-D-(OR gate)-E, can not be activated. The paths that are
detected by value-independent approach but cannot be activated under real operating condi-
tions are called false paths. When value-independent approach is employed, the user needs
to perform a case analysis [22], which analyzes a number of different cases within a given
circuit, one after another, to exclude false paths from consideration. The false paths can be
identified b‘y checking the consistency of the signal conditions that are necessary for paths to
be activated either manually or automatically by a computer [42,43]. Even though the

value-independent approach may detect false paths, it has an advantage of significantly
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reduced work in finding the critical paths in a system and test completéness, when compared
to value-dependent approach. Note that value-dependent approach may not examine the criti-
cal paths, unless a particular set of input values is fed to the system; e.g., {A(F), B(F)} must
be applied for the detection of the worst falling delay of 2 units at Node E, in this particular
example. Therefore, exhaustive simulation is necessary and the amount of work to locate the
critical path is exponential in the number of input nodes. Even though there are many algo-
rithms that find efficient sets of input vectors which can cover most sensitizable paths in a cir-
cuit [44,45], the use of such input vectors do not guarantee that the value-dependent
approach examines pathological paths. In addition, when simulation is used, it is very
difficult to extract the critical paths in a circuit. As a result, the value-independent approach,
which provides efficiency and test completeness, is favored for timing verification. In this
dissertation, timing verifiers refer to the ones which use value-independer}t signal propaga-

tion.

3.2. PATH ANALYSIS FOR TIMING VERIFICATION

The path analyzers of existing timing verifiers fall into one of two catégories in examin-

ing paths to locate the critical paths: path enumeration and critical-path analysis method.

The path enumeration method [35, 36] extracts, examines and assesses all possible
paths in circuits between preceding and succeeding space references. This method is also
referred to as the path oriented approach. Because there is usually more than one path
between each pair of preceding and succeeding points, the number of paths to examine grows
exponentially with the number of circuit branches. Therefore, this method suffers from long
computer running times for large circuits but is suitable for small combinational logic cir-

cuits. The advantage of having all paths examined is that it is easy to handle false paths. The
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individual false path may be blocked before analysis or it can be simply ignored after
analysis.
To describe the critical-path analysis method [21,22,23,24], it is convenient to define

following terms.

[Definition 3.1] Ancestor, descendant, parent, child, source, and sink nodes in a

directed acyclic graph

In a directed acyclic graph, if v and w are two nodes such that v is on the path from r to
w, v is an ancestor of w and w is a descendant of v. If v and w are adjacent, v is the parent of
w and w is a child of v. A source node is a node which has no ancestor. A sink node is a

node which has no descendant. o

When Node A is the parent of Node B on the critical path, A is called a critical parent.
Unlike path enumeration methods which examine all paths, the critical-path analysis method
locates only the critical paths between preceding and succeeding space references. In con-
trast with the path oriented approach, this method has been referred to as block oriented
approach [37], because it identifies the critical path leading up to each block (or each point).
While this is a perfectly relevant name to be used at the block level, the critical-path analysis
method is a more appropriate name, as the approach can also be used at other levels such as
switch level. During critical-path analysis, each node stores information on its critical path
only and information on other paths is lost during the search. Therefore, it is difficult for the
method to locate the real critical path, when the detected one is a false path. Consider a
directed signal graph of Figure 3.2, where edges represent logic blocks. Suppose Node A is
the critical parent of Node B. Then, the critical-path analysis method takes A-B-C-F and A-

B-C-D as the critical paths for Nodes F and D, respectively. Let Path A-B-C-D, which is the
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------- -3 Critical Path

Figure 3.2 A Signal Graph Illustrating The Difficulty of Critical-Path
Analysis in Blocking An Individual False Path

critical path for D, be a false path. Then, the next critical path (E-B-C-D), must be chosen as
the real critical path for Node D. However, because Node B does not store information on
the second critical parent (Node E), the critical-path analysis method has difficulty finding
the right critical path for Node D (A-B-C-D), Thus, the method must do case analysis, men-
tioned in previous section, to keep from locating false critical paths. If path enumeration
method is used, four paths, A-B-C-D, A-B-C-F, E-B-C-D, and E-B-C-F, will be examined. If
Path A-B-C-D is found to be a false path, it may be ignored and Path E-B-C-D can be taken as
the critical path for D. On the other hand, because the critical-path analysis method examines
paths that contains the critical paths for parent nodes only, it runs much more quickly and

hence is more appropriate for large circuits than the path-enumeration method.

33. DELAYS FOR TIMING VERIFICATION

33.1. DELAY COMPUTATION METHODS

Delays through groups of transistors or logic blocks (hereafter, logic blocks) iﬁ a system

can be computed statically or dynamically for timing verification. The static delay
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computation method [22, 46, 30] computes a propagation delay through each functional logic
block before a verification starts. The propagation delays can be computed using the delay
modeler of a timing verifier or other methods such as simulation tools. These delays are used
when computing total path delays through functional logic blocks during path analysis. For a
multi-input logic block, the worst-case delay among the delays between pairs of input and
output nodes is commonly chosen as a delay for the logic block. Therefore, this method
tends to overestimate path delays. Although some timing verifiers that use static delays allow
a delay for each pair of input and output nodes, factors such as the information about the
input waveform and load condition are not taken into account. On the other hand, the
dynamic delay computation method ([23,24] computes a delay through an actual path
extracted during path analysis. Timing verifiers using this method usually extract a logic
block by tracing back along the path they traversed until a voltage source or ground is
reached. Then, an external input signal is applied to the gate of a driver on the logic block to
compute a path delay. Thus, two paths with the same schematic but different layouts are
evaluated separately using their actual parasitics. Even though dynamic delay computation is
more time consuming than static delay computation, it is preferred because of its superior

accuracy.

33.2. DELAY REPRESENTATIONS

There are three methods for representing path delays or signal arrival times at nodes:

nominal value, min-max, and statistical representations.

In the nominal value representation (23, 24], each node in a circuit has a single nominal
arrival time for each signal. The nominal arrival time at the output of a logic block is the

sum of the nominal input arrival time and a nominal delay through the logic block.
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In the min-max representation [38], signal arrival times at nodes and signal delays
through logic blocks have the upper and lower bounds. For this method to be useful for

designers, the bounds must be tight enough.

In the statistical delay representation [21, 37, 35,47], a standard deviation and a vari-
ance are used to represent the delay distribution. As an example, in the Timing-Analysis pro-
gram [37], the delay through each logic block and the signal arrival time at each node consist
of a mean value (i) and a delay standard deviation (o). The mean arrival time at a node is
the sum of a mean arrival time at the input of a logic block and a mean delay through the
logic block. The arrival time standard deviations are computed by applying standard convo-
lutions. The latest (or earliest) arriving signal path of a node is obtained by comparing the
worst-case arrival time of the node through incoming paths, p. + B o (or p — B 6), where Bis a
confidence level defined by the user. This statistical representation is useful in analyzing sys-
tems built using discrete components from different wafer lots, since the device characteris-
tics from different wafers may vary wjdely. However, timing verifiers based on this
representation are only as accurate as the user-defined parameters such as correlation
coefficients and confidence levels. The selection of these parameters is both technology and
system dependent, and is error-prone. In the case of one-chip VLSI MOS systems, device
characteristics are usually very similar. Therefore, for such one-chip systems, a better
approach is multiple analyses of the system; using different sets of transistor parameters, for

example, one set obtained from typical process and another from the worst case process.

Some approach (e.g., [48] ) allows the user to select one of the three representations for
delays and time in the analysis, or to extend the program by developing new delay models to
meet special needs. Independent of the delay representation, the concept of "slack” is used to

provide a measure of the severity of the timing problem in somc timing verificrs
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[21,37,24,30].

34. TIMING VERIFICATION LEVELS

Like simulation, timing verification can span several levels, such as behavioral, block,
and switch levels. The timing verification level, here, refers to the level of timing primitives
used for path analysis and constraint verification. The timing verification level may be dif-
ferent from the c'ircuit primitive level used for delay computations, because timing verifiers
may compute path delays from the lower level cfrcuit description, especially when they have

a hierarchical design data base [36, 38].

The example of the behavioral timing verifier is SLTV [49], which calls a general
behavioral simulator Helix [50] to perform behavioral analyses. In SLTV, the primitives are
described using one of hardware description languages. It has an advantage that existing
pﬁﬁliﬁves can be easily adapted to a particular technology and new primitives can be easily

added.

The block-level timing verifiers [22,37] provide models for functional logic blocks
such as clocked storage elements (latches and flip-flops) and logic gates. When a block-level
timing verifier verifies a synchronous system, it can obtain all necessary information on
clocked storage elements such as set-up times from a circuit description. However, unlike
bipolar designs, MOS transistors can be used as switches but these MOS transistors are

difficult to model at the block level properly.

In the switch-level timing verification [24,23], the system is described at MOS transis-
tor level. The switch-level timing verifiers usually extract linear chains of transistors rather
than functional logic blocks. Then, delays through the transistor chains are computed using a

simple method, as will be described in Chapter 4. The switch-level timing verifiers have
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some difficulties dealing with synchronous systems: first, a variety of design techniques such
as precharged busses and domino logic impose different timing constraints, as described in
Chapter 2. Second, the identification of clocked storage elements and the computation of
their set-up times are difficult. However, switch-level timing verifiers model MOS transistors
that are used as switches more accurately than block-level timing verifiers. Therefore, they

are more appropriate for MOS VLSI designs.

3.5. CRITICAL-PATH ANALYSIS

Critical-path analyzers examine path delays leading to each node in a circuit, while
pruning non-critical paths. Therefore, they need to visit nodes in a systematic manner. There
are three approaches available for this purpose: modified depth-first search (23], modified
breadth-first search (24], and topological-order based search. Two aspects that deserve a
discussion are complexity and how each approach deals with loops in the circuit. In this sec-
tion, the complexity of the three approaches and their methods of handling feedback loops are

discussed.

3.5.1. COMPLEXITY OF CRITICAL-PATH ANALYSIS

The running time of any critical-path analyzer is O (m), if it computes the critical path
for each node only once, where m is the number of edges in a given directed graph. How-
ever, if a modified depth-first search is employed, it computes the critical path for some nodes
more than once on the average. Consider a directed graph fragment shown in Figure 3.3,
where an edge and an arrow represent a timing primitive and the direction a signal flows
through it. There are two paths to Node / from Node A: A-B-D-F-G-H-I and A-B-E-H-I.

Suppose the slowest path from A to / is sought. The work requircd by a modificd depth-first
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C E

Figure 3.3 A Directed Graph Fragment

search, a modified breadth-first search and topological-order based search, will be compared

next.

As its name implies, a modified depth-first search is a variation of depth-first search.
Depth-first search [51, 52] starts at node v and marks it as having been visited. Next, it visits
any unvisited nodes adjacent to v (forward stepping). If x is the most recently visited node,
the search continues by visiting some unvisited node y adjacent to x. If y has been previously
visited, the depth-first search finds another new node adjacent to x. If y has not been previ-
ously visited, it visits y and begins the search anew, starting at node y. After completing the
search through all nodes a&jacent to y, the search retums to x (back tracing). The process of
selecting unvisited nodes adjacent to x is continued until the list of these nodes is exhausted.

As an example, a depth-first search visits nodes in a graph illustrated in Figure 3.3 as follows:
A-B-D-F-G—-H-I-(H)~(G)~(F)~D)B)E—-(B)H(A)y-C—A) 3.1)

where a node name in a parentheses represents a back tracing. When a critical-path analyzer

based on a modified depth-first search examines Path A—B-D —F -G —H , the other path to H#
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through Node E has not been explored yet. Thus, the analyzer assigns Path
A-B-D-F—-G-H as the slowest path leading to Node H. Similarly, when Node / is visited
next, Path A—B-D-F-G-H-I is assigned as its slowest path. After tracing back to B from
I, the analyzer visits E, and then H again through a new path A-B—E-H. At this time, it
compares the new path delay to the; old critical path delay stored at Node H. If the new path
delay is smaller than the old one, the analyzer traces back and visits Node C. However, if the
new path delay is larger than the old critical path delay, the critical path to H is updated by
the new path, A—-B—E—H . Then, Node /, which is a child of H, is visited again to update the
new critical path. In general, if the critical path of a node is first assigned or is updated by a
new path, the critical-path analyzer visits its children to examine their critical paths. Two
extreme cases can happen when a modified depth-first search visits already visited nodes for
locating the critical path:

(1) Best case: a path analyzer traces back from already visited nodes without updating the

critical path.

(2) Worst case: a path analyzer updates the critical path of an already visited node, when-

ever the one for any of its parent nodes is updated.
The running times for the best and worst cases are linear and exponential with a graph size
respectively. The worst case corresponds to the path enumeration approach which examines
all possible paths. An analyzer using a modified depth-first search on the average computes
the critical path for each node more than once. On the other hand, the other two approaches
(modified breadth-first and topological-order based search) compute the critical path only
once for each node, when they are applied to a given acyclic digraph (if it is not acyclic,
cycles must be broken in advance). The running time of these approaches to compute the
longest path or shortest path in an acyclic digraph is O(m), where m is the number of edges

[53]; the complexity of two approaches for finding critical paths is lincar, or approximately
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linear if edge delays must be computed, with a circuit size.

Breadth-first search [51,52] starts at node v and marks it as having been visited. The
node v is at this time said to be unexplored. A node will be said to have been explored when
all nodes adjacent to it have been visited. All unvisited nodes adjacent to v are visited next.
These are now visited but unexplored nodes and Node v has now been explored. The newly
visited nodes which haven’t been explored are placed on the end of a list of unexplored
nodes. The first node on this list is the next node to be explored. Exploration continues until
no unexplored nodes are left. The list of unexplored nodes operates as a queue. For a

directed graph illustrated in Figure 3.3, a breadth-first search visits nodes as follows:

where nodes in a brace can be visited in any order. Notice that, from Equation (3.2),
breadth-first search visits H before it visits G. When H is visited, no information is available
on the path coming from Node G yet. Thus, when breadth-first search is used for finding the
critical paths, the conditions to visit child nodes are modified; after node v is visited, its child
w is visited only if all of w’s parent nodes have been visited. This modified breadth-first
search is called level-based search, because of the fact that it visits nodes from the lowest to

the highest level, where the level of a node is defined as follows [54]:

[Definition 3.2] Level of a node

For a given acyclic digraph, the level of source nodes is defined as zero. For the other
nodes, the level is defined as follows:

level of Node j = 1+ MAX (level of parents of Node j) o

In other words, the level of Node j is the number of edges on the longest path from source

nodes to.Node j. Leveling can be performed by repeatedly deleting nodes with in-degree
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zero and associated edges, starting from source nodes. All nodes with in-degree zero l{ave
the same level and they must be deleted at a time. The node level increases by one, each time
all nodes with in-degree zero are deleted. Another method of leveling a graph, which breaks
cycles at the same time, is described in the next section. The leveling of a graph illustrated in

Figure 3.3 is as follows:

Level | 0 [ 1 [ 2 [ 3 [ 4 [ s [6
B | D
Al c|E|F|o|H/[I

Table 3.1 Leveling of a Graph in Figure 3.3

Note that a level-based search visits H after G, while the original breadth-first search visits A
before G. If nodes in a graph represent different tasks and edge directions represent pre-
cedence relations between the tasks, then the entire process can be completed without repro-
cessing a particular task by following the node level order. In Télble 3.1, Nodes D and E
have the same level. Note that the tasks corresponding to a given level can be executed in

parallel.

A topological ordering of an acyclic digraph is a total ordering of its nodes such that
ancestor nodes are ordered before descendant nodes [53]. While leveling is one type of topo-
logical ordering, the topological ordering in this dissertation will refer to the one which
assigns different orders to different nodes. Similar t6 leveling, a topological ordering can be
performed by repeatedly deleting a node with in-degree zero with a complexity of O(m),
where m is the number of edges [55]. In this case, each node with in-degree zero must be
deleted individually but can be performed in any order. The node order increases by one as a
node is deleted. An alternative method would be to carry out a depth-first search and order

the nodes in decreasing order as they are postvisited [53]. A topological ordering of a graph
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in Figure 3.3 using the latter method is shown in Equation (3.3) in increasing order, when

nodes are visited as in Equation (3.1):
A-C-B-E-D-F-G-H-I 3.3)

The topological order also indicates the order of work to be done without doing the same
work ag.ain. When the critical-path analysis method is implemented on multi-processors,
breadth-first search is a better choice than topological ordering, because it presents different

tasks that can be done in parallel.

3.5.2. BREAKING FEEDBACK LOOPS IN CRITICAL-PATH ANALYSIS

Suppose that a circuit for timing verification contains signal feedback loops formed by
timing primitives. Unless the circuit is redescribed using a new timing primitive which con-
tains the feedback loop, all timing verifiers seeking the longest delay paths must break the
feedback loop. Otherwise the longest delay path is not well defined, because traversing once

around the loop will increase a path delay by the loop delay.

Among the three approaches available for critical-path analysis, a modified depth-first
approach breaks feedback loops in more natural ways than level or topological-ordered based
approach. A modified depth-first approach selects an edge to cut dynamically depending on
the path taken around the loop during search, while the other two approaches select it stati-
cally. This can be illustrated using a digraph fragment containing a loop with multiple entry
and exit points, which is shown in Figure 3.4. In the digraph, Path B—C-E-G-B forms a
loop. There are four paths passing through the loop without repeated nodes: A-B-C-D,
A-B-C-E-G-H,F-E-G-H,and F-E-G-B-C-D.

Consider a critical-path analyzer using a modified depth-first search. When the

analyzer enters the loop through Edge A-B during path analysis, it traverses Paths
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Figure 3.4 A Digraph Fragment Containing A Loop

A-B—C-D and A-B-C-E-G-H without cutting any edge. When the analyzer visits
Node B again by traversing A—B—-C—-E—-G-B, it traces back after cutting Edge G-B to
break the loop. Next, when the analyzer ehters the loop through Edge F-E, it traverses Paths
F-E-G-H and F-E-G-B-C-D. When it visitt Node E again by traversing
F-E-G-B-C-E, it cuts Edge C-E and traces back. Therefore, a critical-path analyzer
using a modified depth-first search cuts Edge G—B when it visits the loop through Edge
A-B, orit cuts Edge C—E when it visits through Edge F—E. Because of the fact that the
analyzer selects an edge to cut dynamically depending on the traversed path during path

analysis, it can examine all paths passing through the loop.

Level-based search assumes that a given digraph is acyclic. Thus, a critical-path
analyzer using this approach breaks loops made of timing primitives statically before path
analysis, usually during leveling. An algorithm which breaks loops in a graph during level-

ing is shown in Algorithm 3.1 [54]. Because finding an optimal edge which blocks the
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(1]

(2]

(3]

[4]
(5]

Set all node levels = 0.

Mark all source nodes PROCESSED and put them on work stack.

Is work stack empty?
If no, go to step [3].
Else, go to step [5].
Remove a node, j, from work stack.
Update the level of child nodes, &’s, of j, where
new level of node k£ = MAX { (old level), (1 + level of j) }
If all parent nodes of k are PROCESSED,
mark node ¥ PROCESSED and put it on work stack.
If all nodes have been PROCESSED, stop.
Break a loop by removing an edge of the loop.
Find nodes, p’s , whose all parent nodes are PROCESSED.
Mark p’s PROCESSED and put them on work stack.

Go to step [2].

Algorithm 3.1 Algorithm for Leveling and Loop-Breaking

minimum number of paths is very time consuming and impractical, a random edge is usually

cut.
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Like the level-based approach, topological ordering assumes that a given digraph is
acyclic. Thus, a critical-path analyzer using topological ordering also must break loops in a
circuit statically before path analysis. When depth-first search is utilized for topological ord-
ering, the method can detect the last edge completing a loop. Even though such edges may
not be optimal edges to cut, they are better choices than random edges in most cases; they
will cut fewer forward paths. This can be seen using Figure 3.4. Suppose that a depth-first
search visits the loop of B—C-E—-G-B through Edge A-B during topological ordering.
Then, Edge G—B will be cut to break the loop. In this case, only a path F—E -G -B-E-D is
blocked. On the other hand, if the depth-first search visits the loop through Edge F—E, Edge
C-E will be cut and a path A-B-C—-E-G-H is blocked. Thus, in either case, only one
path is blocked. Notice that the removal of other edges B—C or E—G blocks three paths. As
an example, if Edge B-C is removed, Paths A-B~-C-D, A-B-C-E-G-H, and

F—-E—-G-B—C-D are blocked from path analysis.

Signals can flow through MOS transistors in both directions, from source to drain and
from drain to source during operation. Thus, an MOS transistor itself forms a loop between
source and drain terminals. In MOS circuits, however, most MOS transistors are intended to
be unidirectional; their signals are expected to flow only in one direction during normal

.operation. Some switch-level critical-path analyzers utilize the signal flow direction of uni-
directional transistors during path analysis [23,24]. Users are strongly recommended to
specify signal flow directions of all unidirectional MOS transistors in a circuit. If they are not
specified, a critical-path analyzer using a modified depth-first approach may examine many
unnecessary paths. It will not only consume extra CPU time but also may detect 'unrealistic
critical paths in the circuit. On other hand, if a critical-path analyzer uses level or

topological-order based approach, it will determine a signal flow direction of an MOS transis-
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tor arbitrarily to break a loop, if it is not specified by the user. Therefore, such loop-
breakings may exclude important paths from examination by inadvertently choosing wrong
directions. Note that, even for bidirectional MOS transistors where signals-flow in both
directions of source-drain channels, the users are recommended to specify the signal flow
directions so that more important directions from the designers’ viewpoint can be examined.
Directions of signal flow through unidirectional MOS transistors can be specified by circuit
designers during design, or can be determined later automatically by a computer program

[42,43].

3.6. SWITCH-LEVEL CRITICAL-PATH ANALYSIS

A pass-transistor tree is shown in Figure 3.5, where signal flows are represented using
arrows. In the figure, Node p has m input transistors and » output transistors. Suppose that a

path delay from Node (in_I) to Node (out_I) is to be computed. In this situation, it is impor-

| Min_1 I Mout_1
— —

in_1 out_1

1 T 1
in_m ' ' ' ' out_ n
Min_m Mout_n

Figure 3.5 A Pass Transistor Tree
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tant to know how many transistors are "on" during signal propagation through the path. The
"on-transistors” affect the path delay, and hence must be considered for delay computations.
Most switch-level critical-path analyzers perform value-independent analysis and they do not -
keep track of functional relationship among nodes. They do not have the necessary informa-
tion for the determination of transistors that are on during signal propagation. Thus, they
determine which transistors are on, based on assumptions as follows. When signals enter a
node through more than one MOS transistor, the assumption would be that the transistors
must be mutually exclusive in driving the node to avoid signal contention or too optimistic
results, with the exception of "always-on" weak transistors such as NMOS depletion loads.
In Figure 3.5, it is assumed that only one of m input transistors turns on at a time to drive
Node p. Similarly, when a signal leaves a node through more than one MOS transistor, it is
assumed that only one of the transistors, along the path for the delay computation,. ison. Oth-
erwise, the computed delay will be too pessimistic due to loading effect. In Figure 3.5, it is
assumed that only one of n output transistors turns on at a time. To summarize, switch-level
critical-path analyzers assume that .only one MOS transistor tums on at a time between two
nodes on a given signal path. They extract transistor chains rather than transistor trees to
compute path delays. As an illustration, when switch-level critical-path analyzers compute a
path delay from Node (in_I) to (out_I) in Figure 3.5, they extract a transistor chain of M;, ,
and M,, ;. It should be noted that tiining verifiers of other abstraction level use correspond-
ing assumptions, as long as they also use the value-independent approach. For example,
when a falling delay through a 2-input NOR gate is computed for block-level timing verifiers,
it is usually assumed that only one input signal rises and the other remains at logic "0" (only
one driver turns on and the other remains tumed off), even though bo;h input signals may rise

at the same time under rcal operating conditions.
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Another issué that deserves discussion is the selection of -candidate paths by higher
level as well as switch-level critical-path analyzers for the determination of critical path.
Assume that, in Figure 3.5, the worst delay path from input nodes to the middle node p is
(in_j)-p. Now, suppose that a switch-level critical-path analyzer locates the worst delay path
from input nodes to an output node (out_I). If a critical-path analyzer uses a modified
depth-first search, it determines a path it examines first, say Path (in_I)-p, as the worst delay
path for Node p. Next, it determines an extended path (in_I)-p-(out_I) and determines the
path as the worst delay path from input nodes to (out_I). Then, it computes a path delay
from the next input node, in_2, to Node p. In general, suppose that Path (in_i)-p is a new
path whose delay is most recently computed. If the new path delay is larger than an old worst
delay stored at p, the worst delay path for p from input nodes is updated by the new path.
And, the analyzer examines its extended path (in_i)-p-(out_f ) to update the worst delay path
for (out_1). However, if the new path delay of (in_i)-p-(out_1) is smaller than the old worst
delay stored at Node p, the analyzer moves to the next input node. Thus, once-the analyzer
examines (in_j)-p, which is the worst delay path for Node p, no paths from the next input
nodes to (out_I) will be examined. If a critical-path analyzer makes use of level or
topological-order based path analysis, it first examines all paths from input nodes to p and
finds that (in_j)-p is the worst delay path from input nodes to p. Then, the analyzer examines
its extended path (in_j)-p-(out_I) only to find the worst delay path from input nodes to
(out_I). One must notice that a critical-path analyzer, regardless of its approach to visit
nodes, examines only a path extended from the worst delay path for Node p, when searching
for the worst delay path for (out_I). In general, when a critical-path analyzer locates the
worst delay path for a node, it examines a path only if it includes the worst delay path for one
of its parent nodes. All other paths are pruned from the worst delay path search. This search

space pruning greatly reduces the complexity of finding the worst delay path. However, cven
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though it is very rare, the worst delay path may not include the worst delay path for a parent
node. For example, in Figure 3.5, the worst delay path for (ouz_I) may be (in_k)-p-(oﬁt_]),
while the worst delay path for its parent p is (in_j)-p. Similarly, it is possible that two output
nodes (out_q) and (out_r) have different worst delay paths up to their parent node p in Figure
3.5; e.g., the worst delay path for (out_q) may be (in_i)-p-(out_g) while the one for (out_r) is
(in_k)-p-(out_r). Unlike the path enumeration method that examines all paths, the critical-
path analysis method prunes the search space for the worst delay paths. However, it must be
stated that a chance that the real worst delay paths may be excluded from consideration is
very low in practical circuits, typically less than 0.02% [24]. On the other hand, the critical-
path analysis method provid¢s substantial advantage in complexity over the path enumeration
method, depending on the approach used to visit nodes. For a pass transistor chain illustrated
in Figure 3.5, a path enumerator examines O(mxn) paths: all paths between each input-output
node pair. A depth-first based critical-path analyzer examines from O(m+n) to O(mxn) paths.
However, a level or topological-ordér based critical-path analyzer examines only O(m-+n)
paths: m paths from each input node to Node p and » paths from the worst delay parent of p
to each output node. Partly for these reasons, E-TV uses the critical-path analysis method

based on topological-ordering for the timing verification of digital systems.
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CHAPTER 4

DELAY MODELING AND

THE ELECTRICAL-LOGIC ALGORITHM

During switch-level timing verification, a delay modeler evaluates delays through
transistor groups extracted by a path analyzer so that a timing-constraint checker can detect
paths that possibly violate timing constraints. Thus, timing verification re#ults are only as
accurate as the delay model that a timing verifier uses. Any timing errors or critical paths
reported by a timing verifier with an inaccurate delay model are not useful for the correction
or improvement of a design. In this chapter, the advantages and disadvantages of the delay
models used in existing switch-level timing verifiers [23, 56,24, 57] are discussed. Then, a
new form of circuit modeling and analysis technique, referred to as Electrical-Logic (ELogic)
[58,59, 60, 61], is presented. ELogic has been implemented using the Node Analysis method
[62,63]. In this chapter, the Node Analysis based implementation of the ELogic technique is
presented in detail, including the discussion of its accuracy and stability properties. The
implementation has been shown to provide a continuous trade off between efficiency and pre-
cision [61]. Finally,' the use of ELogic for the delay model in timing verification is described.
The model is referred to as the ELogic delay model in this dissertation. As one of motiva-
tions of developing an ELogic-based timing verifier, some experimental results i]lustratiné
that the ELogic delay model has much greater accuracy than the existing switch-level delay

model are also included.



4.1. EXISTING SWITCH-LEVEL DELAY MODELS

The existing switch-level timing verifiers such as Crystal (23], LEADOUT [56), TV [24]
and Pearl[57] extract linear chains of MOS transistors and use the RC delay model to com-
pute delays through the transistor chains; nonlinear MOS transistors are replaced by linear
resistors in series with a sw‘itch, and a variation of the RC time constant is used as a delay.
Consider a linear RC chain of Figure 4.1. Assume that Node in is a driving node with a
strong signal source such as a voltage source. The simplest RC delay model is the lumped
RC delay model which lumps all resistances and capacitances together to compute a time

constant. Therefore, the delay from the driving node in to Node n is given as follows:
delay = 3 Ri 3 Ci
elay = ,§| i ,21 i
= R1+R2+ --- +Rn)(C1+C2+ --- +Cn)
This model is overly pessimistic, because of the fact that each capacitance is multiplied by

total resistance of the chain, including resistors that are not on the charging or discharging

path. The error due to lumping resistances and capacitances can be avoided by using the

Figure 4.1 A Linear RC Chain
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results of Penfield-Rubenstein model [64]). While the Penfield-Rubenstein model computes
upper and lower bounds for signal delay in RC tree networks, their average is used as a "typi-
cal” delay in Crystal [23] and TV [24]. Using this method, the delay value at Node » through

the RC chain is given as follows:
n i

delay = i) Ci

elay ;((;M)Cz)

=R1C1+R1+R2)C2+ --- +(R1+R2+ --- +Rn)Cn

The error of RC delay models also comes from their poor incorporation of input waveform
shape and load conditions into the delay computation. Therefore, some RC delay models use
a ratio approach [65] for improved accuracy, which combines factors such as the input rise
time, the outpilt load, and transistor size into a single ratio, called rise-time ratio. This ratio
is then used to determine the "effective resistance” of a transistor, that provides better delay

estimates.

The RC delay models are very efficient in delay computation and their accuracy has
been improved by using the results of Penfield-Rubenstein and the ratio approach. However,
they still suffer from poor accuracy. It is claimed that, even though the RC delay models
have a poor absolute accuracy, the relative accuracy is good enough for ordering the worst
delay paths and, therefore, they can be used for timing verification successfully [24]. How-
ever, it should be pointed out that the tasks of a timing verifier are not only ordering the worst
delay paths but also detecting problematic paths that may violate timing constraints. Thus,
the absolute. accuracy as well as the relative accuracy is important. If the delay model with a
poor absolute accuracy is used, the timing verifier can not determine correctly if there are any
ﬁminé errors or not. In addition, the clock period of synchronous designs recommended by

such a timing verifier is not meaningful. Furthermore, due to poor relative accuracy, the RC
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delay model has a high chance of choosing the wrong worst delay path, as will be fevealed in
a CMOS example soon. Designers usually evaluate the worst delay paths reported by a tim-
ing verifier using more exact analysis programs such as SPICE2 [S5]. However, the evaluation
of the wrong worst delay paths is not helpful for the correction of timing errors. Another
weakness of the RC delay models is that they assume there is only one direct path from a
- reference node (power supply or ground) to the signal-nodes of the circuit. When more than
one reference node drives a node at the same time, the RC delay models. cannot compute a
delay to the node correctly. As an illustration, consider an NMOS inverter. When the pull-
down delay of the inverter is computed, only the driver of the inverter is considered. Even
though the depletion load in the NMOS inverter is on during the pull-down, it is not taken

into account for a pull-down delay computation.

Timing verifiers examine a large number of paths in a system. Therefore, the delay
model for timing verification must be efficient. On the otﬁer hand, the accuracy of timing
verifiers is detexmined by the accuracy of the delay model they make use of. Thus, the delay
model must be accurate too. Even though RC delay models are efficient, they have a poor
accuracy as described earlier. What is required is a delay model which is not only fast but
also accurate enough to be used for timing verification. As one of such delay models, the

ELogic delay model is presented in the next section.

4.2. THE ELECTRICAL-LOGIC MODELING TECHNIQUE

In a conventional circuit modeling and simulation approach, a timestep is selected and
the voltages (and currents) corresponding to the new time are computed. A key idea of
Electrical-Logic (ELogic) is to model a technology in terms of a set of discrete, possibly

non-uniformly spaced states of network variables (such as voltages and currents) and to solve
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for the time required to make a transition between adjacent states. The idea of using addi-
tional states (beyond 0 and 1) to provide a more precise model of the behavior of a digital cir-
cuit, in both the time-dbmain and for static (clocked, settled) analysis, has evolved over the
past decade (e.g. [7,22,66,8] ). In addition, the notion of providing a less-precise circuit
simulation to improve the performance of circuit simulators for digital MOS circuits was
introduced in [67] and has been pursued since by many researchers (e.g. [68,69,70,71]). A
generalization of logic simulation to the electrical domain, both in signal value and strength,
was introduced in [72] and has been implemented and extended in a number of systems (e.g.

[73,74,75,76] ).

ELogic is a generalization of many of these earlier efforts, from both the logic and the

electrical points of view, and is defined as follows:

[Deﬁnitioﬁ 4.1] Electrical-logic modeling technique
1. A set of discrete states of network variables {S¢ | i=1,...,N; } is defined. The network
variables can be charges, fluxes, voltages, and currents.
2. Network variables are only allowed to make a transition from one state to an adjacent
state:
St o §i, j=itl
3. The first time t,41 at which the next state of the variables (S¢+! or Si-1) is achieved is
computed, rather than solving for network variables x at a given time point:
taer=min (¢ | x(¢t)=8J,j =ixl, t >t,, where x(t,)=S"}
4, The number and values of the state_s. of the variables can be varied between analyses and

between portions of a circuit in the same analysis.

When the behavior of a network variable x is described in the form of x = f (¢), there may be
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more than one ¢; that satisfies f (¢;) =SVEXT, where SNEXT is the next discrete state. The
ELogic technique computes the first one among the possibly many timepoints after the

current timepoint, as has been defined in (3).

43. NODAL ANALYSIS BASED ELOGIC ALGORITHM

The ELogic modeling technique can be implemented using any circuit analysis method
[62,63]: Nodal Analysis, Mesh Analysis, Loop Analysis, Cut-set Analysis, and Hybrid
Analysis. The analysis method determines network variables and circuit elements for

analysis.

In this dissertation, an ELogic algorithm which implements the Nodal Analysis method
is presented. Unless otherwise specified, ELogic denotes the ﬁodal Analysis based ELogic
algorithm in this dissertation. ELogic supports following circuit elements: linear resistors
and capacitors, voltage-controlled resistive elements, voltage-controlled capacitors, voltage-
controlled current sources, and independent current sources. In addition, ELogic supports
independent voltage sources, as is described soon. Since ELogic is based on Nodal Analysis,
node voltages are chosen as network variables and ELogic solves for the amount of time
required for a node to make a transition between adjacent discrete node-voltage states. An
example of the ELogic output voltage waveforms at two neighboring nodes, j and k, are illus-
trated in Figure 4.2. In the figure, the voltages V0 through V5 represent the discrete set of
voltage states, {V¢ | i=0,...,5}. As an example, the node voltage at j is VI at time ¢tI. At¢l,
ELogic finds the next voltage state for Node j, which is V2 in this example. Then, ELogic
computes the time for Node j to achieve V2. If a node voltage is computed to lie betwcen
two adjacent states at some steady-state value, its value must be rounded off to the nearest

voltage state. Therefore the precision of an ELogic waveform is determined by the number
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Figure 42 An Example of ELogic Output Waveforms

and values of the voltage states defined. As more voltage states are used, the waveform frag-
ments (set of voltage state changes and corresponding times) that represent activity at a node
will contain more time points and, as a result, solving for the waveform will take longer.
Hence ELogic provides a continuous precision-efficiency trade off between the circuit and
logic/switch-level simulation. The experimental results on its trade-off between precision

and efficiency were presented in [61].

ELogic is used as a basis of the "Fast Timing simulation mode" in MOTIS3 [71] and
Lsim’s circuit simulator, Smile [77]. The idea of solving for a time rather than solving for
node voltages is also used in the program SPECS (75], developed independently, to obtain

reasonable timing results by appropriately handling the unknown state (X) during transitions.
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In SPECS, transistor subnetworks are described utilizing capacitive nodes and macro-
switches, such as pull-up, pull-down, and pass transistors. Then, the macro-switch is
modeled using a current source to find the nearest time point at which any of the subnetwork
nodes reaches its next voltage. This method is efficient but suffers from accuracy problems.
On the other hand, the ELogic algorithm analyzes a circuit using more detailed transistor-
level models, so its accuracy is comparable to that of circuit-level analysis in the extreme

case.

43.1. TRANSITION TIME COMPUTATION OF THE ELOGIC ALGORITHM

ELogic assumes that each node, except voltage source nodes and ground, has grounded
capacitance to guarantee a finite slope of the voltage waveform. There are a wide variety of
discretization techniques in time for the purpose of solving a system of differential equations
numerically. There are three issues to consider for the selection of a discretization method:
accuracy, stability and efficiency. ELogic uses the explicit Euler (Forward Euler) integration
method [78,79,63] for discretization, which is a convergent first-order integration method.
While higher order methods provide more accurate solutions, they are computationally more
expensive than a first-order method. ELogic shares the notion used in timing simulators
which sacrifice accuracy in favor of efficiency [67, 68, 69, 70, 71]. It is known that an impli-
cit integration method has better stability property than the explicit integration method.
However, when the implicit integration method is used to solve for node voltage at j, it needs
other node voltages at the same timepoint. When applied to very large systems that contain
nonlinear MOS transistors, an implicit method requires a large matrix ;solution at each
timepoint, hence it is more time consuming. By making use of the explicit integration

method, ELogic can compute the timepoints of nodes independently of one another, and as a
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result can exploit the multirate behavior of waveforms [80] efficiently. While the region of
stability of the explicit Euler integration method is not as large as that of the implicit methods
for a test equation of y =— Ay, it is possible to keep the ELogic algorithm inside the stable
region for a test circuit. This is described shortly. There is also another class of integration
methods, called semi-implicit methods (81, 82, 83]. As the name implies, the semi-implicit
method is a mixture of explicit and implicit integration methods. It is formulated to be as
implicit as possible to obtain better stability properties than using explicit methods, without
making it necessary to perform a standard matrix solution at each timepoint. The semi-
implicit methods include one iteration of the Jacobi-relaxation method or the Seidel-
relaxation method at the nonlinear equation level after applying the implicit Euler (Backward '
Euler) method to the given nonlinear differential equations. Thus, they are referred to as the
Jacobi semi-implicit and Seidel semi-implicit method, respectively [83]. These semi-implicit
integration methods have been used widely for timing analysis, because of their efficiency
and better stability than the explicit integration methods for a certain class of circuits (e.g., if
the matrix A is diagonally dominant with negative diagonal entries, when a system of equa-
tions is formulated in the form of x (t) = Ax (t) [67, 68, 84]). However, a drawback with the
use of these methods is that tightly coupled feedback loops, or bidirectional circuit elements,
can cause severe inaccuracies. One element that can cause such a problem is the floating
capacitor [82). A floating capacitor is a capacitor whose terminals are connected neither to a
fixed voltage source nor to ground node. To describe the way semi-implicit methods deal

with floating capacitors, the following definitions are necessary.

[Definition 4.2] Fanin variables (inputs) and fanout variables

Suppose that the behavior of a circuit is described in following system of nonlinear dif-

ferential equations:
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Fx,x,u)=0

where x is a variable vector and u is an input vector to the circuit. A fanin variable (inpgt) of
x; is defined as any variable x; (any input ug), k#j, which, if its value changes, may result
directly (not involving other variables) in a change of the value of the variable x;. A fanout
variable of x; is a variable x;, {#j, whose value can be influenced directly by a change in the

valueofx;. o

When the Nodal Analysis method analyzes a circuit, the variables computed are node-to-
datum voltages. Thus, the fanin and fanout variables are the voltage at the fanin and fanout

nodes that are defined as follows:

[Definition 4.3] Fanin and fanout nodes

A fanin node FI; of node i is defined as any node which, if its state changes, may result
directly (not involving other nodes) in a change in state at node i. A fanout node FO; of

Node i is a node whose voltage state can be influenced directly by a voltage change ati. o

When Jacobi and Seidel semi-implicit methods are used to solve for Node j at #,.1, they
apply an implicit Euler integration method to model the grounded capacitance at j. How-
ever, because they perform only one iteration at the nonlinear equation level, it is equivalent
to applying a fixed voltage source at FI ;3 Jacobi semi-implicit method applies a fixed voltage
source whose value equals the node voltage at FI; at ¢, and Seidel semi-implicit method
applies a fixed voltage source whose value equals the node voltage at F/ ;i at 2,4 (if it has
been already computed) or #, (otherwise). Therefore, unlike the explicit Euler integration

method, these methods tum all floating capacitors into grounded capacitors equivalently.
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The equations for the computation of transition times are derived as follows. By apply-
ing Kirchoff Current Law (KCL) [62] at each node, a system of equations can be formulated

in following form:
F(vyu)=0 @4.1)

where v is a vector of node-to-datum voltages and u is an input vector (current sources) to the
circuit. By moving all terms that are not associated with capacitive elements to the right

handside, Equation (4.1) yields

Q)=-f(v,u) 4.2)

where Q(v) is a matrix of node charges and f(v,u) is a vector of current leaving nodes through

all elements other than capacitive ones. Therefore, Equation (4.2) can be written as follows:
C)¥ = -f(v.u), where C(v) = 23 @.3)

Since each node has a grounded capacitor, the capacitance matrix C(v) is strictly diagonally

dominant. i.e.,

ICql > 3 IC;1, forall i | (4.4)

J=ly#

From Equation (4.4), the Gershgorin Circle theorem [85] indicates that zero is not an eigen-
value of C(v). Hence C(v) is nonsingular and C-!(v) exists. By moving C(v) of Equation

(4.3) to right handside,

v==C)!f(v,u) @4.5)
The application of the explicit Euler method to above equation yields

Vast—Va = —h C7(vy) f (vq,up) (4.6)

where v, is a node-to-datum voltage vector at time ¢, and 4 is a timestep. Equation (4.6)
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can be decoupled for each Node j as follows (in this section, Node j represents the jth node

when circuit equations are written in the form of (4.5)):
Vi)ar1 =V(ia = —h Cil(vp) £ (Va,ln) @.7

where v ;). is a voltage at Node j at #, and C j“l(v,,) is the jth row of C~(v,). The transi-
tion time for a node to make a given voltage change is discussed separately for circuits

without and with floating capacitors.

When there are no floating capacitors in the circuit, a capacitance matrix C (v, ) and its

inverse, C~1(v,), are diagonal matrices. Therefore, Equation (4.7) tums out to be:

Vi)r+l = V(ln = -h Cj"}(vn) fj(v,,,u,.) (4.8)
where

V(j)a- voltage at Node j at z,.
C; i(Vy): grounded capacigance atNode j at i,

fj(vn,up): current leaving Node j at ¢, through all elements other than capacitive ones

Let v()n+1 and vy, in above equation be the next and present voltage states, Syex and
Snow. ELogic computes a time for Node j to make a transition from Sy, tO Syex , as fol-

lows:

C;i(Vn) (SNext = SNow)

Transition time, h = SRS

4.9)

Suppose that ELogic computes the transition time of Node j in Figure 4.3. From the

figure, the denominator of Equation (4.9) is given as follows:
N
=fj(Va,up) = ;1 1 (ta)

where N is the number of j’s fanin nodes from which there is a DC path to j, and /;; (¢, ) is a
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Figure 4.3 A Circuit Fragment without Floating Capacitors

current entering Node j from i att,. Notice that ELogic can substitute a grounded capacitor
at the fanin node i of j by a constant voltage source whose value is equal to v;(¢,), because it

applies the explicit Euler integration method to a circuit without floating capacitors.

Next, consider a circuit which has floating capacitors. From Equation (4.7), when there
are floating capacitors in the circuit, the time 4 for Node j to make a transition from Sy,,, t0

SNext » is given as follows:

SNm _SNow . (4 10)

Transition time,h =
- Cj_l(Vn) f (Va,un)

In above equation, C;!(vy) is the jth row of C~!(v,) which is no longer a diagonal matrix.
It is well known that the complexity to obtain the inverse of a matrix is O (n3), where n is the

dimension of the matrix [63]. Therefore, it is important for ELogic to kecp the dimension of
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matrix for inverse computation as small as possible. Note that, if the user includes floating
capacitors that are intentionally added or functionally important only, C (V, ) will be sparse.
In fact, many designers have approximated the gate capacitance of MOS transistor by attach-
ing the same amount of capacitance from a gate to ground when analyzing a large MOS
design. i.e., they ha\;e modeled the gate capacitance as grounded capacitance rather than
floating capacitance). Therefore, ELogic computes C-1(v,) by exploiting the fact that the
inverse of a block diagonal matrix is a collection of the inverse of individual submatrix on the

diagonal, as follows:

R

n-l

Because each submatrix is much smaller than C (V,) in dimension, C~1(v,) can be com-
puted very efficiently. Furthermore, Equation (4.10) is only interested in the jth row of
C-Y(vy). Thus, ELogic computes only the inverse of one submatrix which contains Node j,
npt the other submatrices. Note that the nonzero elemt':nts of C(v,) represent the connec-
tivity between nodes through floating capacitors: if C;; is nonzero, C;; is nonzero, and
Nodes i and j are connected through floating capacitance. Therefore, ELogic constructs a
submatrix that contains Node j for inverse computation by tracing nodes that are reachable

from Node j through floating capacitors.

When Node j has no floating capacitors, the associated submatrix is a one-element
matrix with C; ;j(Vq), a grounded capacitance at j. Thus, C ,-“(v,.) can be reconstructed as fol-

lows:

Ci'(va) = [00--- 00C;/(Va)00-+- 00] (4.11)
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The substitution of Equation (4.11) into Equation (4.10) yields Equation (4.9). Thus, for
those nodes without floating capacitors, ELogic uses Equation (4.9) whether or not the circuit

contains floating capacitors.

When Node j has floating capacitors connected to its fanin nodes, the fanin nodes can
not be replaced by constant voltage sources. The substitutions will tumn floating capacitors
into grounded capacitors equivalently, as described with semi-implicit integration methods.
Let a set of nodes, {p,---.j, - .q}, are reachable each other through floating capacitors,
and the corresponding diagonal submatrix of C(v,) be E. E-! is computed by applying the

Gaussian Elimination to an augmented matrix, [E | I], as follows [63] :

Gaussian Elimination
[E I I] _— X I1E
Let [ej, --- ej; - - ej;] be a row vector of E~1, which corresponds to Node j, where the

subscript of each element represents a node name. Then, C;! is constructed as follows:
Cil(vo) = [0---0ejp ---¢jj "~ €j30--- 0] 4.12)

Notice that the above construction needs only one row of E-1. Thus, ELogic places Node j
at the right-bottom comer of E so that the last row of E-! can become the necessary row to
construct C;~!. By doing so, the corresponding row is available as the forward elimination of
the Gaussian Elimination is completed, and hence the back substitution will not be needed.

From Equations (4.10) and (4.12), the voltage change rate at Node J att, is given as follows:

voltage change rate at Node j at t, = — Cj’l(vn) f (Vo)

= ;p leji (= Fi(Vaa))] = gip leje Ti(tn)]

where I, (2, ) is the sum of the currents entering Node & at ¢, through all elements other than
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the capacitive ones. Therefore, the computational work to process Node j with floating capa-
citors increases N times, where N is the number of nodes reachable from j through floating

capacitors, when compared to the work for a node without floating capacitors.

If nonlinear capacitor models are available, the user can describe a circuit more accu-
rately. However, if all capacitors in a circuit are linear, C(v) remains the same at all
timepoints; C~! needs be computed only once before an analysis starts rather than at each
timepoint. Thus, the analysis will require much less CPU time by using linear capacitors
only. A timing verifier is expected to examine numerous paths in a system. While ELogic is
able to handle nonlinear capacitors, only linear capacitors are allowed by the ELogic-based

timing verifier (E-TV) for reasons of efficiency.

Since the ELogic algorithm is based on the Nodal Analysis method, it supports only
current sources as inputs to a circuit (u in Equation (4.1)). Thus, independent voltage sources
with a resistive element in series are transformed to' independent current sources with the
resistive element in parallel (source transformation). If a capacitor connects Node j and a
varying voltage source, the voltage source affects the current that leaves j. On the other
hand, if a capacitor connects Node j and a fixed voltage source, the capacitor is a grounded
capacitor at j, not a floating capacitor. Therefore, a system of equations can be formulated

from a circuit which contains grounded independent voltage sources as follows:

CV)¥ = —£(V, %) ' @.13)

G (V)V +G (V)vip +C(V)Vin
where

v € R": node-to-datum voltages excluding voltage sources.

Vin € RP: voltage sources.
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V € R**P: node voltages consisting of v and vi, .

C (V) e R**; node-to-datum capacitance matrix, except voltage source nodes.
Cii: sum of capacitances connected to Node i
C;j: - (capacitance connected from Node j to Node i)

C (V) e R™¥: voltage-source node capacitance matrix.
C;j: capacitance connected from voltage source j to Node i

G (V) € R**: node-to-datum conductance matrix, except voltage source nodes.
G;;: sum of conductance connected to Node i
G;j: - (conductance connected from Node j to Node i)

G(V)e R: voltage-source node conductance matrix.

G,-j: conductance connected from voltage source j to Node i

Then, the same procedures from Equation (4.5) apply. An example using linear resistors and

capacitors is illustrated in Figure 4.4. From the figure, applying KCL at the three nodes

yields the following:
CO1+C 1+C 12 2 Vi
-C12 coredic 12 | =
[ —¢oT =602 cm+coz] 32

Since v;, and v;, are known, the last equation can be eliminated. By arranging the resulting

equations, following equations in the form of Equation (4.13) are obtained:

COl+
[ CHCIZ C 02+ 2+C12] [vz} -

HG14G12 _—G12 GOl corl s
-[GofglJiG G_ZG+GIZ] [vi] +[ o] +[c02] Vin
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Figure 4.4 An ELogic Circuit Example With A Voltage Source

43.2. IMPLEMENTATION OF THE ELOGIC ALGORITHM

ELogic is implemented using the event-driven algorithm for efficiency, which has been
used successfully for event-driven simulation both at logic level [86,87] and circuit level
(84, 88,39,58,80]. Event-driven simulation is a general transient simulation technique
which views the time-domain response of a dynamic system as a succession of events that
have two attributes of the time (e.) and the nature (e) of the occurrence. The definition of
an event (ey) and the implementation of the event scheduler - the mechanism responsible for
finding the next event (or events) and scheduling new events - are program and analysis-level

dependent. For the ELogic algorithm, they are defined in the following way:

[Definition 4.4] Event and event-driven implementation of the ELogic algorithm
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An event is defined as a change in the voltage state of a node. An event-driven imple-
mentation refers to the fact that Node j is processed at ¢, only if an event has occurred at ¢,

at Node j or at any of its fanin nodes FI;. o

Processing Node j at ¢, involves the following steps:

(1) update the voltage at Node j at ¢,.

(2) obtain the next voltage state Vi, .

(3) determine whether Node j will make a transition to Vi, .

(4) if Node j will make a transition to Vy., compute the transition time (4;), and

schedule Node j again in the time queue at the future time point (Z,+) =?, + A;) at which

the node will be processed again.
If any of FI; changes state while Node j is scheduled in the time queue, the node is removed
from the time queue and rescheduled after the recomputation of the transition time using the
new fanin state (this often happens if the input transition is much faster than the output
response at j). If, after j has been processed, ELogic determines that j will not make a tran-
sition, then j is removed from the time queue (i.e., it has become latent). Node j will then
only be processed following an event at a fanin node. Suppose that no nodes change voltage
at ¢, (i.e., if all nodes have become latent), then no nodes will be processed in the future. In
this case, the node voltages at ¢, , v (t, ), are a solution of the system for ¢ 2 1,, as will be pro-

ven next.

[Lemma 4.1] Assume that there exists at least one solution for a given time-invariant sys-
tem

Yt)=f(y(t)), where yO)=yo (4.14)

If an initial slope, y’ (0), is zcro, then, y (t) =y is a solution of the system for ¢ 2 0.
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Proof: Suppose that y(t)=yp is a solution of Equation (4.14) for ¢ 20. Then, Equations

(4.15) and (4.16) are obtained.

y(t) =0, fort20. ' (4.15)

fyt)=fGo)=f0)=y@© =0, fort20. (4.16)
From Equations (4.15) and (4.16),
yt)=fy@t)) =0, fort=0. 4.17)

Since y (t) =y, for z 2 0, satisfies the given system equation, it is a solution of the system.

o

If f (y (t)) of Equation (4.14) is continuous and satisfies the Lipschitz condition for0<: < b,

y(t) =yois a unique solution of the system for0 <t < b [89].

In the case of a pmahel LC resonant circuit [62,90], there is only one node. Because
the voltage across the LC circuit keeps changing even after reaching a peak voltage (where a
slope is zero), Lemma 4.1 does not seem to hold for this circuit at first glance. Notice, how-
~ ever, that the circuit belongs to the class of second-order circuits whose system equation is

given as in Equation (4.18)
Y +20 +wdy = u;(z). (4.18)

rather than first-order circuits of Equation (4.14). The lemma does not apply to a second-
order equation. However, the system equation of any second-order circuit made of linear
time-invariant elements can always be written in the form of first-order state equation as fol-

lows:

EREEIERES w19
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In fact, the behavior of the LC resonant circuit is formulated in the form of Equation (4.19), if
the Modified Nodal Analysis method [91, 90] (usually abbreviated to MNA in the literature)
is used, which selects an inductor current as well as a node voltage as network variables.
Since the inductor current changes at a timepoint where the node voltage is at its peak, not all
the derivatives of network variables are zero as required to apply Lemma 4.1. Therefore, the
lemma is not applicable. The ELogic algorithm uses the Nodal Analysis method and hence
an event means that a node achieves a new voltage state as defined in Definition 4.4. How-
ever, if other analysis methods are used for the implementation of the ELogic technique, the
occurrence of any of the network variables achieving a new state must be defined as an event.
Assuming MNA is used to solve an LC resonant circuit, if an inductor achieves a new cﬁrrent
state, it is an event. A network variable y; is then processed at ¢, only if the variable y; or
any of its fanin variables achieves a new variable state at ¢, , where a fanin variable is defined

in Definition 4.2,

4.3.3. STABILITY OF THE ELOGIC ALGORITHM

The stability of numerical integration methods is problem-dependent. Therefore, the
stability is investigated using following equation whose exact solution is given by

y)=e™:
y=-iy, yO =1 (4.20)

where A and y are generally complex numbers [78,63). The initial value problem of Equa-
tion (4.20) is chosen as the test equation, because it is the simplest equation commonly
encountered in practice. Even though the behavior of a system is usually represented in the

form of nonlinear equations as follows (which is the case when MOS circuits are analyzed):



y =1,
its local behavior about some operating point yq can often be approximated by variational
linear equations:

dy = Ady

where

A= ‘a't‘a%l'yﬂa

The region of absolute stability for the explicit Euler integration method is in the circle
I1-ol <1, illustrated in Figure 4.5, where 6 =AA. When the explicit Euler method is used
to solve the test differential equation of Equation (4.20) with a set of values of 4 and A inside

the stable region, a perturbation in a single mesh value y, will produce a change in subse-

2 Re (C)

Figure 4.5 Region of Absolute Stability for the Explicit Euler method (c=hA )
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quent values which does not increase from step to step. Note that a voltage change is
bounded in the ELogic algorithm. Therefore, even though the explicit Euler method is not
A-stable nor stiffly stable [78,79], it is possible to keep G inside the stable region. This is

discussed next.

Consider a linear RC circuit shown in Hgﬁre 4.6(a), where a voltage at Node j charges
_upor discharges from Vy,, to Vgg. Figure 4.6(b) illustrates the charging-up Wavefom and
an ELogic rising transition from VNow 10 Vyex at Node j. The linear RC circuit is meaning-
ful to investigate the stability of the ELogic algorithm, as the linear test equation of Equation
(4.20) is meaningful for the investigation of the stability of numerical integration methods.
Thus, the stability property of the ELogic algorithm will be derived using the linear RC cir-
cuit.
[Lemma 4.2] The explicit Euler method is stable for the linear RC circuit of Fig}lre 4.6(a)
in the circle 11 —o1 < 1 on 6—plane , where G=hA = 7{‘?.
Proof: From the test circuit, a voltage across a capacitor C, v, (¢), and its rate of change are
given as follows:

ve(t) = Vg + (VNow — Vig) e , where A= 715 4.21)

Ve(®) = A(Veg = Vow) e~ (4.22)
Thus, a system equation is given by

Ve(t) = =Av.(t)+AVgg , where v.(0)=Viow (4.23)

Let v, denote a computed value of v.(¢) at #, by using a difference method of the explicit
Euler. To see the change due to a perturbation of size 8 in v, at subsequent time points £, .,

k>0, let v, be (v, + 8). By solving Equation (4.23) from ¢, with v,, using the explicit Euler
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Figure 4.6 Figures for the Investigation of the Stability of ELogic
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integration method, the node voltage at ¢,4+x is computed as follows:
Vn.‘* = Vpak +(l—h }\.)k8= Va+k +(l—0’)k5 (4.24)

Therefore, the region of the explicit Euler method for the linear RC circuit of Figure 4.6(a) is

in the circle 11 — 6l <1 on 6-plane, as shown in Figure 4.5. o

For the purpose of investigating the effect of the size of a voltage change on the stabil-
ity of ELogic, it is necessary to study how the location of ¢ varies on Figure 4.5 by changing

the size of a voltage change.

[Lemma 4.3] When the ELogic algorithm is used to solve a linear RC circuit of Figure

4.6(a), the value of ¢ depends on a particular voltage change Node j makes as follows:

c=hi= Y __ (4.25)

where AV is (Vyex — Vivow ), a voltage change Node j makes, and Viv,,, (Viyex) is the current
(next) voltage state at Node ;.

Proof: From Equation (4.22),
Ve (0 = A (Veg = Vivow) (4.26)

Because the ELogic algorithm uses the explicit Euler method, the transition time 4 for Node

J to make a voltage change of AV is (refer to Figure 4.6(b)):

_ AV _ AV .
h =S50 = TWa —Veew) @27

Thus, o is given as:

Lemma 4.3 indicates that ¢ can be bounded inside the stable region by bounding the voltage
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changes in the ELogic algorithm.

[Theorem 4.1] The ELogic algorithm is stable for the linear RC circuit of Figure 4.6(a), if
and only if it allows Node j to make a transition between discrete voltage states when Condi-
tions 4.1 are satisfied.

Conditions 4.1

(1) The next voltage state (Vy.x) and Vgg must be in the same direction, when compared

to the present voltage state (Vyow ).

(2) The voltage change AV the ELogic algorithm allows must not be larger than twice the

difference of Vgp and the present voltage state.
1AV = | Ve =VNow | £ 2| Vgg —Vivow | (4.28)

Proof: Let 6; denote ¢ of an ELogic transition with a particular voltage change. Lemma 4.2
states that the explicit Euler method is stable for the linear RC circuit of Figure 4.6(a), when
o) is in the circle |11-6l <1 on G-plane. Therefore, it is sufficient to prove that:
Claim4.1.1

If 0y is inside the circle 11 -0l £1, ihe corresponding ELogic transition satisfies Conditions
4.1.

Claim4.1.2

If an ELogic transition satisfies Conditions 4.1, o, is inside the circle |1 -cl < 1.
Claim4.1.1 will be proven first. Since A (= -th-) is real for the test circuit, 61 (=/ARA) is also

real. Thus, if oy isinthecircle I11-61<1,0<0y<2. From Lemma 4.3,

AV
0< W <2 (4-29)

For a rising transition (Vgg > Vivow ), Equation (4.29) yields the following:
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0 <AV £ 2(Veg —VNow) (4.30)
Similarly, followings are derived for a falling transition (Vgg < Viow) from Equation (4.29):
| 0 <-AV £ 2(VNow - VEg) (4.31)
Since AV is (VNex — Vvow ), Equations (4.30) and (4.31) are summarized as Conditions 4.1.

Claim4.1.2 can be proven easily by following the proof of Claim4.1.1 in the opposite order.

Thus, its proof is omitted. o

Conditions 4.1 are used for ELogic to determine if a node will make a transition to the next

state.

4.34. ACCURACY OF THE ELOGIC ALGORITHM

Another important issue for discussion is the accuracy of the ELogic algorithm. The
ELogic algorithm is convergent when it solves a circuit whose node voltages are monotoni-
cally rising or falling: any desired degree of accuracy can be achieved by picking a small

enough voltage step (AV).

[Theorem 4.2] When the ELogic algorithm solves a circuit whose system equation
v’ = f (v) satisfies a Lipschitz condition and node voltages are strictly monotonically rising

or falling for 0<t¢ <b, vj, approaches v;(t) for all nodes j for all 0<t<b as n

approaches e with AV = V"‘x‘"‘ , where v; , is a voltage at Node j after m transitions com-

puted by the ELogic algorithm, v;(t) is a true voltage at Node j at time ¢ =§:h j ks Where

h; x is the kth transition time at Node j, AV is a voltage step, and V y,x is the maximum node
voltage in a circuit during operation.

Proof: AV approach zero as n approaches o-. Since all node voltages are strictly
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monotonically rising or falling for 0<¢ < b, transition times A; . are 'deﬁned and approach
zero as n approaches o for all nodes j and for all transitions 1<k <m. The ELogic
waveform of the m transitions at node j will be the same as the one produced by a difference
method using the explicit Euler with timesteps of h;x, 1 <k <m. Since the explicit Euler

method is a convergent method [78], Theorem 4.2 holds. o©

In Figure 4.6(b), AE illustrates the transition error of the ELogic algorithm after Node j

made a transition between two voltage states.

The other local error of the ELogic algorithm is a "round-off" error that occurs due to
the precision of ELogic states. While the transition error of ELogic occurs when a node
makes a transition to the next state, the round-off error occurs if a node does not make a tran-
sition to the next state because Conditions 4.1 are not met. This type of round-off error is
obviously bounded by a voltage step AV. Note that, as in the case of local versus global trun-
cation -error, where bounding the local truncation error at a timestep makes no guarantee
about the global error of difference methods after many timesteps especially when nonlinear
circuits are solved, the choice of a voltage step-size in ELogic bounds the error at each transi-
tion but provides no guarantee about the global error after many transitions. However, our
experience with ELogic is that on average the local errors do not accumulate, if transitions
are allowed only when the local behavior of a nonlinear circuit at the operating point satisfies
Conditions 4.1. Of course, a pathological nonlinear circuit could be constructed in order to
amplify the error due to a choice of state-values. In this case, we would argue that this was a
poor choice of states for the particular circuit or design-style. Such circuits can be found even

for accurate circuit simulators using any finite floating-point precision.
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44. THE ELOGIC ALGORITHM FOR MOS CIRCUITS

In ELogic, the Shichman-Hodges model [92) equations are used to represent MOS
transistors. If desired, more sophisticated models, or a table-lookup model [93, 94,95, 96]

can be used to improve accuracy.

When processing Node j without floating cap;xcitors at t,, ELogic determines if it will
make a transition to next state, as follows. First, ELogic linearizes MOS transistors using the
small-signal model [63] and obtains the Thevenin equivalent circuit [(62] of fanin nodes of
Node j, Fl;, at a given timepoint ¢,. The Thevenin equivalent circuit of the F/; at j can be
obtained by source transformation after computing the Norton equivalent circuit of each of
FI;. The Thevenin equivalent circuit represents the local behavior of the circuit to Node j at
t,. The Thevenin equivalent circuit has the same configuration as the stability test circuit
- shown in Figure 4.6(a). Thevenin equivalent voltage source, Vgg, is the open-circuit voltage
at Node j at ¢,, which can be obtained after disconnecting a grounded capacitor at the node,
Cj.j- Then, ELogic computes the next voltage state by comparing Vgp and the present state,
Vnow. Node j will make a transition to the next voltage state only if the conditions of Equa-
tion (4.30) or (4.31) are satisfied. As an illustration, one might consider two voltage states,
Vi < Viq1. Let the threshold voltage V,, be the middle value of the two voltage states.
Assuming that the present state is Vi, if Vgg lies above V,;,, Equation (4.30) is satisfied and

hence a rising transition is made.

While the previously described scheme works very well in practice, occasionally it is
possible for nodes to oscillate between two adjacent states without changes in the state of the
fanin nodes. This numerical, adjacent-state oscillation may occur when the exact steady-state
node voltage is not close enough to a discrete voltage state. This artificial oscillation is illus-

trated in Figure 4.7. Let V., denote the exact steady-state voltage at Node j. In the figure,
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Figure 4.7 Nlustration of Numerical, Adjacent-State Oscillation

Vexact lies between V;, and V,H.,.- Assume thaf the present voltage state of Node j is V4 (Ain
Figure 4.7) and Vg lies'between Vin and V**+1, Then, Node j makes a transition from V* to
V*+1_ When the voltage at Node j reaches V4+! (B in Figure 4.7), Vg is computed again. If
the new Vg remains between V,;, and V**1, the voltage state of Node j will remain at V4*!
(this is what happens in most cases). However, because one of the input voltage states used
to evaluate MOS transistors changed from V* to V¥+1, occasionally, the new Vgg may move
to between V* and V,,. In this case, Node j will make a transition back to V¥ and artificial
oscillation occurs. In order to prevent the adjacent-state oscillation, the ELogic algorithms
employs a cycle detector: the cycle detection is performed at each node as it makes a transi-
tion to an adjacent state. If the transition reverses a direction more than once, and the event
that caused the transition was not external to the node (i.e not a state change at a fanin node),

then the cycle detector prevents the node from making the second reversal transition (transi-
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tion C-D in Figure 4.7). One must note that this cannot suppress real oscillations in the cir-
cuit, since they must involve more than two states or a change in state at at least one fanin
node. If a local oscillation occurs within a state (i.e., below the resolution of the analysis
technique) and, if such an .oscillation is truly part of the circuit characteristic, then more states

should be used to model its behavior effectively.

Now, consider Node j having floating capacitors. As mentioned earlier, when ELogic
processes the node, it computes the Norton equivalents of fanin nodes (FI;) to obtain the
Thevenin circuit at j. Note that the Norton equivalent of a capacitor in series with a voltage
source involves a current source which is a function of the rate of change of the value of the
voltage source. Therefore, if there is a floating capacitor between j and FI;, the algorithm
has to compute the rate of change of the voltage at FI; to obtain the Norton equivalent circuit
of FI; at t,. However, computing voltage change rates at FI; is expensive. Furthermore, if
Node j has no resistive elements, the Norton equivalent circuit at the node consists of only a
current source and a capacitance. Hence Vgg cannot be computed and the Thevenin
equivalent at the node does not exist. Therefore, if Node j has floating capacitors and its vol-
tage change rate is not zero, ELogic determines the node makes a transition to the next vol-

tage state. From Equation (4.10), a voltage change rate at Node j is given as follows:
rate of voltage change at Node j = —Cjl(vp) f(Va,un)

As it does for nodes without floating capacitors, the cycle detector prevents Node j from
making the second reversal transition to suppress artificial oscillation, when j reverses the
transition direction more than once, and the event that caused the transitions was not a state

change at Fi;.
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4.5. THE ELOGIC DELAY MODEL FOR TIMING VERIFICATION

The ELogic algorithm can be used for as a delay model for timing verification as fol-
lows. First, the path analysis section extracts a chain of transistors from a circuit, in a sys-
tematic way: breadth-first, depth-first, or topological-order-based manner. The input to the
chain of transistors is a waveform fragment. The effect of the input change propagates as
waveform fragments through the circuit. Then, the delay is obtained by comparing the
waveform fragments at nodes in the transistor chain. Since the size of the transistor chain is
usually small, the ELogic algorithm is practical for delay evaluation, even when the chains

have floating capacitors.

The accuracy of the ELogic delay model has been compared to that of existing switch-
level delay models, using the switch-level cﬁﬁcal-path analyzer, Crystal [23]. Crystal has
three RC delay models: lumped RC model, lumped slope RC model, and distributed slope
RC model. Crystal was modified to use the ELogic delay model, while the path analysis sec-
tion was left the same [97,61]. The modified version of Crystal will be referred to as
E—Crystal in this dissertation. The data structure of E-Crystal was modified to store the
waveform segment. This waveform segment is used as an input to other transistor chains,
extracted later. As mentioned earlier, RC delay models assume that there is only one direct
path from a reference node (power supply or ground) to the signal-nodes of the circuit. Thus,
a transistor chain extracted by Crystal is a series of pass transistors from the reference node to
a gate or output node. This chain, as is, may not be the correct subcircuit to simulate using
the ELogic delay model. For example, when the falling transition of NMOS inverter is
examined, only the NMOS driver is extracted and the NMOS depletion load is missing.
Therefore, a function which extracts missing elements, if any, from the circuit description

was added. Simulation by the ELogic delay model is performed until an output node reaches
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a steady state. After the simulation is finished, E-Crystal updates the worst delay waveform
segment on the output node. While E-Crystal uses the ELogic delay model, the detailed
implementatioh is slightly different from the ELogic delay model used in E-TV, described
earlier in this chapter. The detailed implementation of the ELogic delay model used in E-

Crystal can be found in [60, 97].

The accuracy of the ELogic delay model employed in E-Crystal was compared to that
of Crystal’s distributed slope RC model (DS model), using'a CMOS microprocessor SOAR
(Smalltalk On A RISC) chip [98] and its ALU (Arithmetic Logic Unit). The DS model uses
the ratio approach [65] and the results of Penfield-Rubenstein model [64]. It is the most

accurate among Crystal’s three RC delay models.

Depending on the voltage step chosen for the ELogic delay model, the DS model has
been shown to be about 30 to 300 times faster. Note that the only diffemﬁce of E-Crystal and
Crystal is their delay model. In this case, the CPU times directly reflect the efficiency of the
delay model employed. However, CPU times of timing verification also depend on the path
analysis approach. For this reason, E-TV uses the topological-order based search for path
analysis, which is more efficient than a modified depth-first search used in Crystal. As
described in Chapter 3, the topological-order based search locates the worst delay path to
each node only once, while a modified depth-first search locates the worst delay path to each
node more than once on the average and the running time is exponential with the circuit size

in the worst case. Experimental results of E-TV can be found in Chapter 6.

The ALU of SOAR has 1694 transistors and 1189 nodes. Both Crystal (DS model) and
E-Crystal using 0.5V steps ran to extract 15 worst delay paths of the circuit. Figure 4.8 illus-
trates the results. In the figure, the X axis represents the delays by SPICE2 and the Y axis

represents the delays estimated by Crystal and E-Crystal. If the delay estimates by Crystal or
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Figure 4.8 Delay Estimates Comparison on SOAR ALU
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é-Crystal are exactly the same as those by SPICE2, a 45° straight line from left bottom to
right top comer appears. The dotted lines compare the delay estimates by Crystal and
SPICE2, for 15 worst delay paths extracted by Crystal. The solid lines compare the delay
estimates by E-Crystal using 0.5V step and SPICE2, for 15 worst delay paths extracted by E-
Crystal. Each line of the figure corresponds to one worst delay path from input nodes to out-
put nodes of the ALU. Each segment of the line corresponds to a chain of transistors in the
path. The breakpoint represents the delay estimates up to that transistor chain. From Figure
4.8, it is observed that tfle ELogic delay models provide more accurate delay estimates than
the DS model. One should notice that the DS model altemnately underestimates and overesti-
mates the delay through a chain of transistors. Thus, for this well-behaved example, the total
error in delay estimation of path is decreased by compensation. However, the DS delay
model may not find the right worst delasl path, especially when it is used in critical-path

analysis where the search is pruned.

The SOAR chip has 34,526 transistors and 13,311 nodes. This time, the delay esti-
mates of the two delay models were compared using the same paths. First, 12 worst delay
paths of the SOAR chip were extracted by Crystal. Then, delays through these paths were

estimated by E-Crystal with 0.2V step and SPICE2. The results are given in Table 4.1 as

. " Overall Avg. Path 4
Verifier Model Error(% Error(%
| DS Model -19.3 46.4

Crystal
ELogic
-1.2 1.6
E-Crystal (O.IV. step)
ELogic 0.45 42
(0.2V step) : i

Table 4.1 Delay Estimates Comparison on SOAR Chip
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well as in Figure 4.9. In the table, "Overall Error" is an error of total delay estimates
obtained for all worst delay paths by delay models compared to that c;f SPICE2. "Avg. Path
Error” is the average of the absolute error in estimating total delays in the worst delay paths
up to each chain of transistors. In Figure 4.9, the delay estimates by the DS model sprez{ds
much more widely than in Figure 4.9, since the underestimation and the overestimation did
not alternate as for ALU. This fact accounts for the large error of the DS model shown in
Table 4.1. In Figure 4.9, SPICE2 determines that Path A is the worst delay path among the
extracted 12 paths. However, the DS model in Crystal fails in ordering delay paths and
reports Path B as the worst delay path. The results indicate that the DS model, while it is the
most accurate among three RC delay models available, does not have good absolute accuracy
nor good relative accuracy in this example. Even though the worst delay paths reported by
timing verifier are frequently re-evaluated using more accurate technique, the evaluation of
wrong worst delay paths such as Path B is not helpful. Since the ELogic delay model is more
accurate, it certainly" reduces the chance of reporting wrong worst-case delay paths, as illus-

trated in the figure.

The experimental results demonstrate the use of the ELogic delay model improves the
accuracy of delay estimates greatly over the existing RC delay models. While the accuracy
improvement can also be achieved by using the standard simulation approach, it is too slow
to be practical. The ELogic delay model is reasonably fast and accurate. Compared to
SPICE [5,41], ELogic typically runs a factor of 30 to 300 times faster and produces a delay
error of 1% to 20% when it uses 0.1V to 1V step-size, depending on the nature of the circuit.
More comparisons of accuracy and simulation speed between ELogic and SPICE can be
found in Chapter 6 of this dissertation and in [61]. The ELogic delay model also provides a

trade-off between speed and accuracy in the same analysis as well as over a number of ana-
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lyses, by varying the number of voltage states [61]. In addition, a waveform at a node with
the worst delay is used as an input to other transistor chains. The easiest way to store a
waveform is using a list of voltage-timepoints for a transition (waveform segment). When
the input waveform is not given as a smooth function, the standard simulation approaches
have difﬁc;tﬂty converging. The ELogic delay model handles such a waveform segment
without difficulty, when it is used as an input to transistor chains extracted later. These are

some of motivations to develop a timing verifier that uses the ELogic delay model.
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CHAPTER §

ELECTRICAL-LOGIC BASED TIMING VERIFIER

(E-TV)

In this chapter, the concept and the approaches employed for the development of an
accurate timing verifier for MOS digital VLSI systems, referred to as Electrical-logic based

Timing Verifier (E-TV), are presented.

The main purpose of E-TV is to detect the péssibility of timing errors that violate the
maximum delay constraints in multiphase synchronous and combinational MOS digital sys-
tems. If a signal does not get to a space point by the intended timepoint, it is regarded as a
timing error. In addition, E-TV serves as a cri;ical path finder which locates the critical paths
in a system. For a synchronous system, E-TV reports tﬁe paths in each logic segment in the
critical order using their evaluation-time margin. For a given clocked path, the evaluation-
time margin is defined as a time interval from the transition timepoint at the succeeding space
reference to the succeeding time reference of the path. Thus, it represents the severity of the
timing problem of the clocked path. This information can be used to improve the speed of
the system. It was noted that a timing verifier or critical path finder can be only as accurate
as its delay model. The experimental results illustrated that E-TV is not only fast but also
accurate enough to be practical. The experimental results are presented in Chapter 6. In

addition, E-TV provides a speed-accuracy trade-off, as with the ELogic algorithm.

Like most other timing verifiers, E-TV propagates logic signals through a system

value-independently. Hence it computes the worst-case path delays and uses them to detect
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timing errors or to locate the critical paths. E-TV uses a critical-iaath analysis approach: the
search space is pruned and only the critical paths of a system are examined. E-TV visits each
node once in the topological order so as to find the worst delay path leading to it. Thus, as
mentioned in Chapter 3, the running time of E-TV is approximately linear with a circuit size.
After extracting candidate transistor chains for the worst delay path to each node, E-TV com-
putes path delays using the ELogic delay model. As does the leveling, the topological order-
ing assumes that there are no loops in a graph. Thereforé, E-TV breaks signal-flow loops in a
circuit while it orders nodes topologically. For the verification of a synchronous systeﬁ, E-
TV propagates clock signals through the system. Then, it uses the actual clock signals that
arrive at clocked storage elements to check timing violations. Therefore, clock skew is taken

into account automatically.

5.1. SIGNAL FLOW THROUGH MOS TRANSISTORS

The direction of signal flow is the direction that a logic "0" or "1" signal flows through
an MOS transistor. Note that the logic "0" flows in the opposite direction of current flow
while the logic "1" signal flows in the same the direction. As an example, when the output
node of an inverter discharges, the current flows from the output node to ground through a
pull-down transistor, but the logic "0" signal flows from ground to the output node. In princi-
pal, the logic signal can flow in either direction through an MOS transistor channel, from
drain to source terminals or from source to drain terminals. Therefore, each MOS transistor
channel constructs a simple signal-flow loop which must be broken for the topological order-
ing of nodes. In a typical design, however, most transistors are unidirectional such that sig-
nals flow only in one direction during operation, and only a small number of MOS transistors

are bidirectional. When breaking a signal-flow loop by an unidirectional transistor, it is very
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important to preserve an edge which represents its intended signal flow, and remove the other
edge to break the loop. The removal of a wrong edge blocks forward paths through the uni-
directibnal transistor, and causes unrealistic paths to be examined. Consider Figure 5.1,
where all MOS transistors are unidirectional. Signals are intended to flow through MOS
transistors as represented by arrows. Assume that the loop by the source-drain channel of M1
was broken so that a signal flows from Node 2 to Node I, rather than as shown. Then, a real
path A is blocked and, instead, a bogus path B is examined. This illustrates that, for switch-
level timing verification, it is crucial to find all unidirectional MOS transistors and to assign

the directions of signal flow through them correctly.

5.1.1. AUTOMATIC DERIVATION OF SIGNAL FLOW
There are two possible approaches for assigning the direction of signal flow:
(1) The circuit designer specifies the signal flow directions during design.

(2) A computer algorithm derives the signal flow directions after the design is completed.

N

,#jﬁ#

Figure 5.1 Breaking A Loop of An Unidirectional Transistor

» Path B

» Path A
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The first approach imposes an extra burden on the designer. However, they can certainly set
the signal flow through unidirectional MOS transistors correctly, since they understand
circuit’s function. In many cases, cells are replicated or created by synthesis tools, reducing
the amount of work required by the designer. Additionally, while a bidirectional MOS
transistor transfers logic signals in both directions, the designer may assign the signal flow so
that more important paths can be examined. Thus, this approach is preferable to the second
one. Nevertheless, the second approach eases the user’s task of direction finding, when it is
necessary to verify a design without signal flow identification. For this purpose, E-TV pro-
vides a program, called FLOW, which the user can run to set the signal flow in a design

automatically in advance. In this section, the approach used in FLOW is described.

Consider the signal flow through an inverier. The logic "0" signal flows from ground to
an output node through a pull-down transistor, and the logic "1" signal flows from a power
supply to the output node through a puﬂ-up transistor, because the ground and power supplies
are working as loéic information sources. If the drain or the source terminal of an MOS
transistor is connected to ground or a power supply, a logic signal can flow only from the
ground or the power supply to the other terminal. This can be used as a rule to set the signal
flows through MOS transistors whose source or drain terminal is connected to ground or to
any power supply. In fact, FLOW uses a set of rules to find unidirectional MOS transistors
and to assign the signal flow directions through them. Recently, such approaches, which
derive the directions of signal flow through MOS transistors using a set of rules, have been
used in some switch-level timing verifiers such as TV [99] and Pearl [57]. For example, TV
applies a set of safe rules, then unsafe rules, repeatedly to determine transistor signal flow.
However, its rules for NMOS circuits, that depend on transistor ratios to find pass transistors,

are said to be virtually unusable for CMOS circuits [57]. Thus, in Pearl, it is attempted to
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prove that flow is impossible from either the source to drain or drain to source by searching
for a transistor gate, feedback paths, and power supplies through transistor channels to some
maximum search depth. The limitation of this approach is that the program can get lost in
circuits that require {nordmate amounts of computation, unless the search depth is limited to
reasonable level. On the other hand, FLOW defines two kinds of information sources, as will
be described scon. Then, rules are applied to the transistors having their source or drain ter-
minal connected to the candidate nodes that are updated during the signal-flow derivation,
starting from the information source nodes. Therefore, the signal flow can be derived
efficiently. It should be noted that some unidirectional transistors may be left bidirectional,

but no bidirectional elements can be set for the signal flow.

The basic rules developed for FLOW to derive the signal flow are as follows.

Rule 1. Information source, sink, station, and signal flow :
Nodes with a voltage source or ground are strong information source nodes by their
definition. Input nodes to the design are weak information source nodes by the designer’s
intention. Similarly, the output node of an and-or-inverter serves as weak information
source for other transistors. Logic signals flow from strong information source nodes to
weak information source nodes, or from information source nodes to non-information-
source nodes (such as information station/sink nodes that are described next) through the
source-drain channels of MOS transistors. Output nodes from a design and the gate termi-
nals of MOS transistors serve as information sink such that an entered logic signal does
not nece§sarﬂy have to leave. All other nodes serve as information station, where a logic

signal which entered through one path must leave through another.

Rule 2. One unset transistor at a node :
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For a given node X which is not an information sink, if all but one of the MOS transistors
having their source or drain terminal connected to X are set for signal flow, and a logic
signal enters X through them, the logic signal must leave X through the unset transistor.
Similarly, for a given node X which is not an information source, if all but one of the
MOS transistors having their source or drain terminal connected to X are set, and a logic

signal leaves X through them, a logic signal must enter X through the unset transistor.

Rule 3. Pseudo transistor:
Two transistors, whose source or drain terminals are connected to the same node X, have
the same direction of signal flow relative to Node X, if the two transistors turn on and off
simultaneously or mutually exclusively by other than fixed voltage sources. Thus, these

transistors can be viewed as one pseudo transistor, when applying Rule 2.

Rule 4. Information circulation through loops :
The logic signal does not circulate through loops made of the source-drain channels of

MOS transistors.

FLOW first finds all and-or-inverters in a design and sets the signal flow through their
pull-up and pull-down transistors toward output nodes. FLOW then sets the signal flow
through transistors having their source or drain terminal connected to ground, any power sup-
ply, or the output node of an and-or-inverter, using Rule 1. Note that pass transistors con-
nected between the output nodes of two and-or-inverters are not set, because they have the
same strength. Then, FLOW sets the signal flow through unset transistors by applying Rules
2 and 3 to nodes, repeatedly. During the signal-flow derivation, FLOW maintains a list of
candidate nodes to apply rules. If FLOW sets a transxistor by examining its source/drain node,

the condition at the other source/drain node changes. Hence the node becomes a candidate
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for a examination. When the candidate list becomes empty, the signal-flow derivation is

completed and unset transistors are considered as bidirectional.

5.12. PSEUDO TRANSISTORS FOR SIGNAL-FLO.V‘7 DERIVATION

It has been mentioned in Rule 3 that a number of transistors can be viewed as one
pseudo transistor for the purpose of the signal-flow derivation in some cases. In this section,
the other two situations where FLOW views a number of transistors as one pseudo transistor

are presented.

When a number of transistors are connected in parallel between two nodes, they form a
loop or loops made of the source-drain channels of the transistors. As described in Rule 4,
information does not circulate through the loop. Thus, the transistors have the same direction
of signal flow relative to two nodes and hence can be viewed as one. pseudo transistor for the

signal-flow derivation, when applying Rule 2.

A biconnected graph is a connected subgraph with no cut-vertices, which has only two
end points connected outside of it. Roughly speaking, in order for a logic signal to pass
through a biconnected graph, one end point must serve as an entrance and the other one must
serve as an exit for the passage. Therefore, when applying Rule 2, a group of transistors
whose source-drain channels form a biconnected graph behaves as one pseudo transistor at
two end nodes for the direction derivation, provided that none of the source/drain nodes of

the transistors serves as an information source or sink.

[Lemma 5.1] A group of transistors whose source-drain channels form a biconnected graph
behaves as one pseudo transistor connecting the two end nodes for the signal-flow derivation,
provided that none of the source/drain nodes of the transistors serves as an information source

or sink.
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Proof: Let Gg denote a biconnected graph formed by MOS transistors, where edges represent
their source-drain channels. Figure 5.2 illustrates nine possible cases, depending on the sig-
nal flows through edges of Gp connected to two end nodes X and Y. Note that all transistors
of Gp connected to X or Y can be represented by one edge without a loss of generality, if their
directions of signal flow are the same with respective to X or Y. Due to the fact that the infor-
mation does not circulate through a loop (Rule 4), followings are required for Figures 5.2(a)
to (g) to be valid:

1. (a) and (e) must have information sink in Gp.
2. (b) must have information source or sink in Gp.
3.(c)and (f) mus; have information source in Gp .
4. (d) must have information sink in Gp.

5. (g) must have information source in Gp.

~ Therefore, if the biconnected graph G contains no information source and sink nodes, only
Figures 5.2(h) and (i) are possible. In both (h) and (i), all transistors in G, that are con-
nected to X or Y, have the same direction of the signal flow with réspect to X orY. Thus, a
group of transistors forming a biconnected graph behaves as one pseudo transistor for the

signal-flow derivation of transistors connected to two end nodes. o

FLOW uses the above lemma when applying Rule 2 at end nodes. By doing so, it
improves the chance of assigning the signal flow, compared to existing approaches. For those
transistors in Gp that are not connected to end nodes, the signal flow is set to prevent infor-
mation loops. Some of the transistors may be bidirectional. An example of transistors form-

ing a biconnected graph is the pull-up or the pull-down transistor group of an and-or-inverter.
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Figure 5.2 Signal Flow through A Biconnected Graph
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5.2. WORST-CASE OPERATIONS

E-TV defines two types of events, depending on the method for signal propagation:
value-dependent and value-independent events. A value-dependent event is the one which is
made possible by value-dependent signal propagation. It is guaranteed to occur at f,;iven or
computed timepoints, since all necessary conditions are supported. On the other hand, the
value-independent event is made possible by value-independent signal propagation. The
event is expected to occur at the given/computed timepoints, only if all necessary conditions
are supported. Because it is not known if all necessary conditions are supported, its
occurrence is uncertain. Value-dependent and value-independent signal propagations have
been described in Chapter 3. The events include the rising or falling transition of node vol-
tages, switching of pass elements, or open/close operations of paths. When a transition at a
node is value-dependent, the node is said to be value-dependent. Otherwise, the node is said

to be value-independent.

In E-TV, all signal nodes except clock nodes and logic-control nodes (to be described in
Section 5.3) are value-independent. Therefore, the analysis of a particular transistor chain
may involve some value-dependent nodes and some value-independent nodes. This section
describes the effect of event types in determining the timepoint at which a path opens and
closes in the worst case and the predecessor which is responsible for the worst-case operation.
The results are used to find the worst (longest) delay predecessor. For example, the output of
an NMOS and-or-inverter is pulled up after all pull-down paths become open. Thus, the

worst rising delay predecessor will be the input node which opens its pull-down path last.
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5.2.1. SERIES CONNECTION OF TWO PASS ELEMENTS

Consider Figure 5.3, where two pass elements (PE! and PE2) are connected in series.
Assume that Node A is value-dependent. The open operation of a path is investigated. Let
Torr(PE 1) and Topr (PE2) denote the times at which PE! and PE2 turn off in the worst
case, respectively. Because the worst-case time point at which Path A-C-E closes or opens is
investigated instead of the worst-case path delay, the delay through PEI or PE2 needs not be
considered. First, suppose that PE! and PE2 tumn off value-dependently. Then, because both

pass elements are guaranteed to turn off at the given times, the following results are obtained:

(1) Worst-case operation 1 (series connection, open operation)
Conditions
(1) Series connection of two pass elements (Figure 5.3).
(2) PEI and PE2 tum off at Topr (PE 1) and Togr (PE 2), value-dependently (Node B
and D are value-dependent).
Results
(1) The predecessor for the worst-case operation is Node B, if PE! tums off first. Oth-

erwise, the predecessor for the worst-case operation is Node D.

s}
o
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>— PE1 >— PE2 >—

Figure 5.3 Two Pass Elements Connected in Series
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(2) The path opens at Min (Torr (PE 1), Torr (PE 2)) in the worst case.

(3) Node E becomes value-dependent.

Now, suppose that PE] and PE2 turn off value-independently. There is no guarantee
that the pass elements will tum off at the specified times. Thus, the following results are

obtained:

(2) Worst-case operation 2 (series connection, open operation)

Conditions
(1) Series connection of two pass elements (Figure 5.3).
(2) PEI and PE2 turn off at Topr (PE 1) and Topr (PE 2), value-independently (Node B
and D are value-independent).

Results
(1) The predecessor for the worst-case operation is Node B, if PE! tums off later. Oth-
erwise, the predecessor for the worst-case operation is Node D.
(2) The path opens at Max (Togr (PE 1), Topr (PE 2)) in the worst case.

(3) Node E becomes value-independent.

The next case is where one pass element tumns off value-dependently, while the other
one turns off value-independently. Suppose that PEI tums off value-dependently and PE2
turns off value-independently. If PE! turns off first, Path A-E will open at that time. How-
ever, when Torr (PE 1) > Torr (PE 2), some conditions that are necessary for PE2 to tumn off
at Torr(PE2) may not be supported. As a result, it is not clear if PE2 turns off at
Torr (PE 2), earlier than PEI. In the worst case, the path may open when PEI tums off.
Therefore, regardless of which one turns off first, the worst-case open-operation predecessor

of the path is Node B.



113

(3) Worst-case operation 3 (series connection, open operation)

Conditions
(1) Series connection of two pass elements (Figure 5.3).
(2) PEI wms off at Topr (PE 1) value-dependently and PE2 tums off at Topr (PE2)
value-independently (Node B is value-dependent and Node D is value-independent).

Results
(1) The predecessor for the worst-case operation is Node B which is value-dependent
(2) The path opens at Togr (PE 1) in the worst case.

(3) Node E becomes value-dependent.

From Worst-case operations 1 to 3, the following observation is obtained.

[Observation 5.11 Worst-case open-operation of series connection

Consider two pass elements, connected in series as in Figure 5.3. Suppose that Node A is
vélue-dependen;. Then, the path opens value-dependently if, and only if, at least one pass
element turns off value-dependently. The predecessor of the path for the worst-case open-
operation is the gate of a pass element which tumns off value-dependenﬁy, or the gate of the
pass element which tumns off first if both tum off value-dependently. The worst-case path-

open time is the first time at which any pass element turns off value-dependently. o

Now, consider the worst-case close-operation of the path. Let Toy(PE1) and
Ton (PE2) denote the times at which PE! and PE2 turn on in the worst case, respectively.
The path closes only when both pass elements turn on. Therefore, the worst-case close time

of Path A-E depends on the pass element which closes later, regardless of node type.

(4) Worst-case operation 4 (series connection, close operation)

Conditions
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" (1) Series connection of two pass elements (Figure 5.3).
(2) PEI and PE2 umn on at Toy (PE 1) and Toy (PE 2).
Results
(1) The predecessor for the worst-case operation is the gate of a pass element which
turns on later.
(2) The path closes at Max (Torr(PE 1), Torr (PE 2)) in the worst case.

(3) The node type of E follows the type of the worst-case operation predecessor;

5.2.2. PARALLEL CONNECTION OF TWO PASS ELEMENTS

The effect of event types on parallel connection of pass elements is found to be the dual
“of the effect on series connection. The worst-case operations of two pass elements connected

in parallel, which is shown in Figure 5.4, are summarized as follows.

(1) Worst-case operation 5 (parallel connection, open operation)

PE3

PE4

V.

I
H

Figure 5.4 Two Pass Elements Connected in Parallel
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Conditions
(1) Parallel connection of two pass elements (Figure 5.4).
(2) PE3 and PE4 tum off at Togpr (PE 3) and Topr(PE 4).
Results
(1) The predecessor for the worst-case operation is the gate of a pass element which
turns off later.
(2) The path opens at Max (Tofgr (PE 3), Torr (PE 4)) in the worst case.

(3) Node type of I follows the type of the worst-case operation predecessor.

(2) Worst-case operation 6 (parallel connection, close operation)

Conditions
(1) Parallel connection of two pass elements (Figure 5.4).
(2) PE3 and PE4 tumn on at Toy (PE 3) and Ton (PE 4), value-dependently (Node G and
H are value-dependent).

Results
(1) The predecessor for the worst-case operation is Node G, if PE3 tums on first. Oth-
erwise, the predecessor for the worst-case operation is Node H.
(2) The path closes at Min (Ton (PE 3), Toy (PE 4)) in the worst case.

(3) Node I becomes value-dependent.

(3) Worst-case operation 7 (parallel connection, close operation)
Conditions
(1) Parallel connection of two pass elements (Figure 5.4).
(2) PE3 and PE4 turn on at Ton(PE 3) and Ton (PE 4), value-indépendently (Node G

and H are value-independent).
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Results
(1) The predecessor for the worst-case operation is Node G, if PE3 turns on later. Oth-
erwise, the predecessor for the worst-case operation is Node H.
(2) The path closes at Max (Toy (PE 3), Ton (PE 4)) in the worst case.

(3) Node I becomes value-independent.

(4) Worst-case operation 8 (parallel connection, close operation)

Conditions
(1) Parallel connection of two pass elements (Figure 5.4).
(2) PE3 tums on at Toy(PE3) value-dependently and PE4 tumns on at Toy(PE4)
value-independently (Node G is value-dependent and Node H is value-independent).

Results
(1) The predecessor for the worst-case operation is Node G which is value-dependent.
(2) The path closes at Toy (PE 3) in the worst case.

(3) Node I becomes valué-dependent.

From Worst-case operations 6 to 8, the following observation is obtained.

[Observation 5.2] Worst-case close-operation of parallel conhection

Consider two pass elements, connected in i)arallel as in Figure 5.4. Suppose that Node F is
value-dependent. Then, the‘ path closes value-dependently if, and only if, at least one pass
element turns on value-dependently. The predecessor of the path for the worst-case close-
operation is the gate of a pass element which tums on value-dependently, or the gate of the
pass element which turns on first if both tum on value-dependently. The worst-case path-

close time is the first time at which any pass element tumns on value-dependently. o
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5.2.3. COMPOSITE CONNECTION OF PASS ELEMENTS

Once the worst-case open/close-operation has been performed for two pass elements
that are connected in series or in parallel, they can be represented by one super pass element
for further worst-case operations. The worst-case operation predecessor of the path
represents the gating node of the super pass element. Then, two pass elements that include a
super pass element (or super pass elements) can again be modeled as one super pass element
after the worst-case open/close-operation. Therefore, the worst-case operation predecessor
and the worst-case open/close-times of a complex path can be obtained by modeling two pass
elements as one super pass element repeatedly. Note that the repeated application of the
super pass element justifies thai Observations 5.1 and 5.2 hold even when more than two

pass elements are connected in parallel or in series.

5.3. SYSTEM MODELING AND TIMING VERIFICATION

Unlike other switch-level timing verifiers, E-TV deals with voltage waveform. In order
to determine the transition time of a wavefétm, E-TV defines the logic threshold voltage of an

inverter as follows:

[Definition 5.1] Logic threshold voltage of an inverter, V.

The logic threshold voltage of an inverter, V,r, is defined as the input or the output vol-

tage of an inverter when the input node and the output node have the same voltage. o

An inverter with its input and output tied together generates V, r. The derivation of V7 can
be found in [25, 100]. Because V;r depends on the transistor size of an inverter and the tech-
nology used, E-TV defines that a transition occurs when a waveform crosses a typical value of

Vir, specified by the user.
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53.1. MODELING OF SYNCHRONOUS SYSTEMS

Figure 5.5 illustrates how E-TV models a synchronous system, using a 3-phase clocking
system as an example. It should be noted that only the system inside the box with thick bord-
erline is modeled by E-TV, and pulse and clock generators are excluded. Clock signals are
said to be primary, if they are fed directly from a clock generator without passing through
resistors or and-or-inverters of clock control circuit. Otherwise, they are called as secondary
clock signals. While primary clock signals are the outputs of a clock generator, E-TV models
them as ideal pulse power supplies. The internal resistance of the clock generator and the
long wires of a layout can be modeled using resistors. In the figure, primary/secondary clock
signals, CLK1, CLK2, and CLK3, and clocked storage elements (CSE’s) are used for the glo-
bal synchronization of the system. Any signals that are not used for global synchronization,
while they are derived from a clock generator, are not treated as clock signals in E-TV. E-TV
allows the (_iesigner to use both transparent and edge-triggered clocked storage elements in
~ the same system. Notice that the figure illustrates CLK1 logic evaluation section only, which
consists of CLK 1-CLK 2 and CLK 1-CLK 3 logic segments. Once the primary clock signals
are defined by the user, E-TV extracts all primary and secondary clock nodes, that are in turn
used to identify clocked storage elements, logic segments, and logic evaluation sections. E-
TV treats clock signals in a special way and they are value-dependent in propagation. Even
though it is possible to regard clock signals as ordinary value-independent signﬂs during a
veriﬁcétion [23], treating clock signals specially in E-TV provides a significant advantage.
This advantage is described later in this section. The timing constraints imposed by clock

nodes and clocked storage elements have been described in detail in Chapter 2.

There is one other type of signal that is modeled by pulse power supplies: logic-control

(CTRL) signals. The logic-control signal controls the signal flows through pass transistors in
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combinational logic (CL) between pairs of clocked storage elements (CSE’s). Like clock sig-
nals, logic-control signals are value-dependent in propagation. The primary and secondary
logic-control signals are defined in the same way. The logic-control signal imposes timing
constraints; the output terminal of a pass transistor that is controlled by the logic-control sig-

nal must settle before the pass transistor tumns off.

The logic-control signal is utilized for two purposes. First, the designer may use it to
model a periodic control signal derived from a clock generator, that he/she does not want to
view as a global synchronization clock signal. Second, it may be used to model a control sig-
nal that is generated in a design itself. In a typical design, there are many cases when a part
of the design is controlled by a signal generated at another part of the design. Because such a
control signal is value-independent, it does not impose any timing constraints, unless it is
treated spécially. The designer can use the logic-control signals to model such control sig-
nals. Even though the real control signals may not be periodic in general, they are specified
in the form of pulse power supplies in order to represent their timing relationsh%p to clock

signals.

Data-in (DI )’ nodes in Figure 5.5 are nodes that are driven from off-chip. They
correspond to Inputs of Figure 2.1. Data-out (D/0O) nodes drive off-chip and they correspond
to Outputs of Figure 2.1. When verifying an incomplete design, D/I and D/O nodes are use-
ful to model nodes that can be perceived as input/output nodes temporarily, but will be in a
combinational logic block upon design complétion. For each D/I node, the design objective
of signal arrival time can be specified for timing verification with the logic evaluation section

it belongs to. Like other ordinary signal nodes, D/I and D/O nodes are value-independent.
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53.2. TIMING VERIFICATION OF SYNCHRONOUS SYSTEMS

E-TV performs a timing verification for each logic evaluation section, one by one. The
timing verification is composed of two tasks: propagating signal transitions through a logic
evaluation section and checking the signal timing against constraints. For the verification of
a logic evaluation section, value-independent ﬁsing/fa]ling transitions start to propagate from
the preceding reference storage elements when they tumn on. The value-independent transi-
tions also start to propagate from D/I nodes at the times specified by the user. The propaga-
tion finishes when all signals arrive at the succeeding reference storage elements or D/O
nodes. Then, the signal timings are compared to .constraints. As described in Chapter 2, the
propagation through clocked paths must finish by the succeeding time reference. Hence E-TV
locates the worst delay path (longest delay bath) leading to each succeeding clocked storage
element, using the worst-case delay. Then, it computes the evaluation-time margin of the
path, using the actual arﬁving clock éignal at the succeeding clocked storage element. If the
evaluation-time inargin of any worst delay path is less than zero, E-TV reports that the path
violates the maximum timing constraint imposed by clock signals. E-TV also reports the
worst delay paths in each logic segment in the critical order using their evaluation-time mar-
gin. This provides the designer with the correct information necessary to improve a system
speed. Note that the longest delay path is not necessarily the most critical path because of
clock skew. If a combinational logic block contains dynamic circuits such as
precharged/predischarged modules and N/P-type dynamic logic gates, E-TV checks if their
associated timing constraints, described in Chapter 2, are satisfied during a signal propaga-
tion.

Consider a 3-phase clocking scheme, illustrated in Figure 5.6. For the sake of simpli-

city, CTRL, D/I, and D/O nodes are omitted. Assume that all clock nodes are primary and
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Figure 5.6 A 3-Phase Clocking Scheme
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CSEl, CSE2, and CSE3 are active-high transparent storage elements. There are three logic
evaluation sections, in the figure: CLK1, CLK2, and CLK3 sections. CLK1 section consists of
CSEl, CL1, and CSE2. CLK?2 section consists of CSE2, CL2, CSE3, CL4, and CSEl. CLK3
section consists of CSE3, CL3, and CSEI. Suﬁpose that E-TV verifies CLK2 logic evaluation
section first, then, CLK3, and CLK1 sections. In order to verify CLK2 section, E-TV must
separate it from the remainder of the system. Thus, E-TV locates CSE2 by finding all storage

elements clocked by CLK2. Then, traversing from CSE2 along the signal flow, E-TV
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identifies combinational logic, CL2 and CL4, and the succeeding reference storage elements,
CSE3 and CSEI. Next, E-TV visits nodes in CLK2 section in the topological order. For each
node, it extracts transistor chains, analyzes them using the ELogic delay model, and deter-
mines the worst delay path leading to it. In this way, E-TV propagates signals through the
CLK?2 section from CSE2. Suppose that ¢t/ is chosen as the preceding time reference. Then,
when the signal arrives at CSE3 or CSE], the arrival time is compared to 2 or 3 respectively
to determine if there is any possible timing violation. After the verification of the CLK2 sec-
tion, CLK3 and CLK1 sections are examined in the same way. The procedures for the

verification of synchronous systems are shown in Algorithm 5.1.

[1] Read in circuit and construct a data structure
[2] Find-unspecified data-in and data-out nodes
[3] Find secondary clock/logic-control nodes and compute their waveforms
[4] Put all nodes in the system in the topological order
[5] Propagate fixed nodes that are set at logic "1" or "0" by the user
[6] Prune out a part of circuit that is not between primary inputs and outputs
specified by the user
[7] Find all dynamic circuits using precharging and predischarging
[8] Find all clocked storage elements
[9] For each clock phase,
[9.a] Identify a logic evaluation section by extracting clocked paths
[9.b] Visit nodes in the section in the topological order
[9.c] For each node,
[9.c.1] Extract transistor chains and compute delays using the ELogic delay
model
[9.c.2] Locate the longest delay path leading to the node
[9.d] Detect timing errors, using actual arriving clock/logic-control signals
[9.e] List clocked paths in the critical order using the worst-case evaluation-time
margin

Algorithm 5.1 Procedures for The Synchronous System Verification
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The occurrence of clock edges is like a rolling wheel. There is no first occurring clock
edge. Therefore, E-TV orders clock edges internally for convenience (the order of clock
edges has been defined in Definition 2.7 in Chapter 2). For example, when E-TV verifies
CLK?2 section of Figure 5.6, clock edges are arranged in the order of CLK2(R) - CLK2(F) -
CLK3(R) - CLK3(F) - CLKI(R) - CLKI(F). This ordering of clock edges makes it easy for
E-TV to detect timing violations, since all delay-limiting clock edges come after the preced-
ing time reference, CLK2(R). An exception to this is a clock signal which controls the
pre(dis)charging time of dynamic nodes. Consider a node A which precharges while CLK] is
high. If Node A follows an NMOS pass transistor clocked by CLK2, it belongs to CLK2 logic
evaluation section. When CLKé section is verified, CLKI(R) and CLKI(F) are ordered after
CLK2(R). However, the precharging of Node A is performed before CLK2(R). Therefore, the
clock edges, CLKI(R) and CLKI(F), that limit the precharging of N(;de A occur before

CLK2(R).

Some timing verifiers (23] treat clock signals in a different way; the user specifies
whether the preceding clock signal is "rising" or "falling” (changing), while setting the
succeeding clock signals at logic "1" or logic "0" (fixed) to separate the logic evaluation sec-
tion under verification from the rest of a circuit. As an example, when CLK! logic evaluation
section in Figure 5.6(a) is examinea, the user sets CLK1 at "rising" and CLK2 at logic "0".
As CSEI turns on with CLKI(R), an input signal begins to propagate through it. When the
signal arrives at CSE2, the propagation stops, because the logic "0" signal turns CSE2 off.
Even though this approach is efficient, it has the following weaknesses. First, the approach
may not separate the logic evaluation section for examination from the rest of the circuit in
some cases. In Figure 5.6, CLK! section has only CLK 1-CLK?2 logic segment (all CSE’s are

active-high). If CSE2 includes both active-high and active-low transparent clocked storage
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. elements, the CLK1 section would also have CLK 1-CLK 2 logic segment. In this case, the
conditions for CLK2 to tum off active-high and active-low transparent clocked storage ele-
ments conflict with each other. As a result, the CLK] section can ﬁot be separated success-
fully from the rest, until the user separates the clock nodes for two types of transparent

clocked storage elements. This is a big burden pn the user.

Another weakness would be that the approach has no clock information for the check of
the timing constraints. Thus, it can not detect the possibility of timing errors. Instead, the
approach reports the worst delay path leading to each succeeding clocked storage elements.
It is the user’s responsibility to find the critical paths by considering clock skew, and deter-

mine whether they satisfy the given set of timing constraints.

In addition,-the user may not obtain the worst delay paths for each logic segment,
because the approach does not distinguish between logic segments. Consider the case where
the CLK2 logic evaluation section of Figure 5.6 is being verified. The section consists of
CLK2-CLK3 and CLK2-CLK1 logic segments. While the two logic segments have the
same preceding time reference, they have different succeeding time references. If the preged-
ing time reference for the two segments is ¢/, the succeeding time references for
CLK2-CLK3 and CLK2-CLK1 segments are 2 and ¢3, respectively. Since the
CLK 2—Cm segment has more time for the signal propagation through CL4 than the
CLK2-CLK 3 segment does for CL2, the designer may assign larger path delays to CL4. In
the extreme case, any path in CL4 may have a larger delay than the worst delay of CL2. In
this case, the approach can report the worst delay paths in CL2 only after reporting all paths
in CL4. Note that the number of worst delay paths or critical paths to be reported by a timing
verifier is finite. Even though the number can be variable, the user may not know a sufficient

number. However, a path A in CL2 may be more critical than a path B in CL4 due to the
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~ shorter evaluation period available, even though it has a smaller delay. Therefore, even
though it is more complex, the better approach is to treat clock signals in the way that E-TV

does.

It has been mentioned that, for a D/I node, the logic evaluation section to which it
belongs needs to be specified. This is described, using a circuit segment shown in Figure 5.7,
where all CSE’s are active-high transparent. Assume that a circuit inside the box with dashed

borderline is to be verified. Then, Nodes a and b are described as D/I nodes. Let CLI and
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CLK2
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Figure 5.7 Clocked Paths with D/I Nodes
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CL2 have the same propagation delay, D. Consider the case that the signal arrivals at Nodes
a and b are represented as Ea and Eb, as shown on a timing chart, without specifying the
logic sections they belong to. There are two paths to reach Node ¢ from outside the box,
Paths A and B. The signal arrival time at Node c through Path A is (¢/ + D) and the one
through Path B is (3 + D). Therefore, Path B is selected as the worst delay path leading to
Node ¢. However, the user may specify that the signal arrives at Node b at Eb’, one clock
period before Eb, because it is expected to arrive there once every clock period. In this case,
the signal arrival time at Node ¢ through Path B is (22 + D) and Path A will be chosen as the
worst delay path leading to Node ¢. This happens because the signal arrival times at D//
nodes have not been adjusted properly with respect to the succeeding time reference. As a
result, the succeeding time references for two paths are not aligned on the timing chart; i.e.,

" 15 constrains Path A, while ¢4 constrains Path B.

One of the solutions for this seems to be to request the user to specify the signal arrival
times at D/I nodes in the way that the succeeding time references for all paths, that begin at
the D/I nodes and eﬁd at the storage elements clocked by the same clock phase, can be the
same. However, it is not only very time consuming but also impossible when paths starting
from the same D/I node end at storage elements clocked by different clock phases. Similar
problems may exist among clocked paths that begin from D// nodes and that begin from the

“clocked storage elements inside the box. Therefore, E-TV asks the user to specify the logic
evaluation sections that D// nodes belong to so that it can handle all paths consistently
whether they begin from D/I nodes or from clocked storage elements inside the box. When
E-TV verifies CLKi logic evaluation section, it moves the signal arrival times at D/l nodes
that belong to the section to within the first clock cycle after CLKi (R). When the associated

logic evaluation sections are not specified, E-TV excludes paths from such D/ nodes to the
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first-encountered clocked storage elements from verification.

When E-TV verifies CLKi section, some MOS transistors inside the section may be
controlled by nodes outside the section. E-TV regards such control signals as readily avail-
able before the verification of the section starts. E-TV assumes that they may be logic "0" or

"1" fixed signals and hence both cases are examined.

53.3. MODELING AND TIMING VERIFICATION OF COMBINATIONAL LOGIC
CIRCUITS

A synchronous system consists of clocked storage elements with combinational logic
between them. Therefore, the timing verification of combinational logic circuits is not much
different from that of the synchronous system. In fact, E-TV consfdeis a combinational logic
circuit as a circuit between clocked storage elements in a synchronous system. The model is
seen in Figure 5.8. In the figure, D/I, D/O, and logic-control (CTRL) nodes are defined as
those in the model of a synchronous system. The signal arrival times can be specified for
each D/I nodes. Since no clock nodes exist in a combinational logic circuit, only logic-
control nodes impose timing constraints. Unless otherwise specified, the same algorithms
and approaches are used for the verification of the combinational logic circuit and the syn-

chronous system.

In case of a combinational logic circuit, the value-independent rising/falling signals
propagate from D/I nodes at the times specified by the user. If CTRL nodes are encountered
during the signal propagation, their associated timing constraints are checked as for the syn-
chronous system. When all signals arrive at D/O nodes, the verification is completed. Since
there are no clock signals in a combinational circuit, E-TV locates the worst (longest) delay

path leading to each D/O node from D/I nodes. Then, they are reported from the one with the
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longest delay. The procedures for the verification of the combinational logic circuit are
presented in Algorithm 5.2. Note that the algorithm is similar to Algorithm 5.1 for the
verification of the synchronous system except that the procedures associated with clock sig-
nals are omitted. Therefore, only the algorithm for synchronous system verifications is dis-

cussed in this chapter.

54. DELAY COMPUTATIONS

During the propagation of rising and falling signals, E-TV computes nominal rising and
falling transition times using a typical logic threshold voltage of an inverter, Vyr. These
nominal transition times are used to detect the worst delay path (longest delay path) 'and tim-
ing errors in a system. E-TV stores the worst delay rising and falling waveform fragments for
each node. These waveforms are used as input waveforms to the next transistor chains.

Therefore, E-TV computes transition times and delays waveform-dependently.

The waveform-dependent computation has the following advantages. First, when the
propagation delay through inverting stages is computed, the phase inversion is properly
reflected. As an example, consider a chz;in of two inverters. Let Ty and Tp denoté the rising
and falling delays of the inverter. Then, the worst-case delay through the chain of two invert-
ers is (Ty+Tp). However, suppose that Ty > Tp. If a delay is computed waveform-
independently, the worst-case delay through each inverter is Ty and hence the worst-case
delay through two inverters is (2xTy). However, when the ELogic delay model is used, a ris-
ing input pulls the output of the first inverter to ground, which in tumn pulls the output of the
second inverter high. Or, a falling input pulls the output of the first in?erter high, which in
turn pulls the output of the second inverter low. Therefore, the correct worst-case delay

(Ty+Tp) is obtained in any case.
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Figure 5.8 Modeling of The Combinational Logic Circuit by E-TV

[1] Read in circuit and construct a data structure

[2] Find unspecified data-in and data-out nodes

[3] Find secondary logic-control nodes and compute their waveforms

{4] Put all nodes in the system in the topological order

{S] Propagate fixed nodes that are set at logic "1" or "0" by the user

[6] Prune out a part of circuit that is not between primary inputs and outputs

specified by the user

[7] Visit nodes in the topological order

[8] For each node, _
[8.a] Extract transistor chains and compute delays using the ELogic delay model
[8.b] Locate the longest delay path leading to the node

[9] Detect timing errors, using actual arriving logic-control signals

[10] List the paths of [8.b] from the one with the longest delay, that end at D/O nodes.

Algorithm 5.2 Procedures for The Combinational Logic Verification
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Another advantage of waveform-dependence is that realistic gate voltages of MOS
transistors are used for delay computations. When the logic "1" signal of 5V passes through
an NMOS pass transistor, it becomes a weak logic "1" signal; i.e., the output voltage will be
about one threshold voltage below the gate voltage of the NMOS pass transistor. If NMOS
transistors are controlled by the weak logic "1" rather than the strong logic "1", the propaga-
tion delays through them will be longer. Since E-TV uses a realistic waveform obtained from

- the preceding transistor chains, it provides realistic propagation delays. An additional advan-
tage of waveform-dependence is that it naturally incorporates an input waveform shape and

load conditions into the delay computation. Thus, delays can be computed accurately.

5.5. NODE ORDERING AND LOOP CUTTING

E-TV orders nodes in a given system topologically by c.arrying out a depth first search.
Loops in the system are broken during the node ordering. The procedures are presented in’
Algorithm 5.3, using pidgin C. The key idea of the algorithm is as follows:

(1) During forward steps, if a node all of whose descendent nodes at any depth have been
visited is met, it constitutes a parallel path. Such nodes are marked as FINISHED in
Algorithm 5.3.

(2) During forward 'steps, if a node such that some of its descendent nodes have been
visited, while some are not, is met, then there exists a loop. Such nodes are marked as
ACTIVE in Algorithm 5.3.

(3) Order nodes in decreasing order as they are postvisited.

In the algorithm, root nodes are nodes whose in-degree is zero, such as ground, power sup-

plies, and D/I nodes.
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TopoOrder(Q I* Topological ordering of nodes */
{

Order = total number of nodes;
foreach (np; e {set of root nodes}) {
Visit(np;);
}
}

Visit(np)
{
Mark np ACTIVE;

foreach (fop; e {set of child nodes of np }) {
if ( fop;: is FINISHED ) { /* Parallel path */

}

elseif ( fop; is ACTIVE) {  /* Loop detected */
/* NOTE 1*/

}

else { I* Not visited yet */
Visit(fop;);

}

}

Mark np FINISHED;
Order = Order - 1;
Order of np = Order;

Algorithm 5.3 Topological Node Ordering and Loop Breaking

In case of the synchronous system, the topological ordering is performed for the whole
system before a verification begins and for each logic evaluation section during a verification.
The topological order of nodes in the whole system is used for a simple switch-level simula-
tion to propagate fixed nodes that the user set at logic "1" or "0" (this is discussed in Section

5.6). During a verification, the topological order of nodes in each logic evaluation section is
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used to visit nodes systematically to locate the worst delay path.

As mentioned in Chapter 3, the static breaking of signal-flow loops blocks forward
paths. Certainly, the number of blocked forward paths depends on the edge removed to break
a loop. Therefore, it is important to choose an edge to remove intelligently. However,
finding an optimal edge which blocks the minimum number of forward paths is NP complete.
E-TV uses simple strategies to reduce the chance of blocking forward paths as follows:

(1) When a signal-flow loop is made of MOS transistor channels only and does not

involve the gate of an MOS transistor, the loop is broken immediately.

(2) When a signal-flow loop involves the gate of an MOS transistor, E-TV traces back up

to the. gate of the most recently visited MOS transistor and cuts there.
This algorithm is performed at the place of NOTE 1 in Algorithm 5.3. The above two cases
are illustrated in Figures 5.9 and 5.10, where an arrow represents the signal flow through an
MOS transistor. In Figure 5.9, a loop is made of MOS transistor channels only. Therefore,
after traversing M1-M2-M3-M4-MS5, E-TV breaks the loop at A as soon as it detects the loop.
In Figure 5.10, a lobp involves the gate of M6. After traversing M1-M2-M3-M4-M6-M7, if
E-TV detects the loop at Node A, it traces back to the gate of M6 and breaks the loop at Node
C. If the loop is broken at Node A rather than at Node C, all forward paths coming from
Nodes D and E will be blocked. Even though the strategy is simple, it greatly reduces the

chance of blocking forward paths.

5.6. CONSTANT NODE VALUES

Some timing verifiers such as Crystal [23] allow the user to set certain nodes at logic
"0" or "1". Such nodes are called as fixed nodes. In addition, fixed nodes include nodes with

a fixed voltage supply, ground, or nodes forced to be set by the other fixed nodes. When a
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node is set at a fixed value, E-TV consid;ars that the node does not change its value during the
timing verification. If a node is fixed in value, then any MOS transistor whose gate is
attached to that node is forced to be either tumed on or tumed off, depending on the type of
the transistor and the fixed value. If a transistor is forced off because its gate is fixed, then no
paths involving that transistor are considered. As a result, paths passing through the transis-
tor are excluded from timing verification. Therefore, while fixed nodes allow the user to
eliminate unwanted paths from'veriﬁcation. they must be used with consideration. As men-
tioned previously, fixed nodes set other nodes at a fixed logic va:lue. For example, if an input
of a NOR gate is fixed at logic "1" value, then its output is fixed at logic "0" value. Thus, E-
TV performs a simple switch-level simulation to check if already fixed nodes cause other
nodes to also be fixed. The user may specify some transistors such as depletion NMOS loads
are weak in their conductance. These transistors are weaker in strength than oﬂiﬁary transis-
tors in determirﬁrig the logic state of nodes. When a node has two incoming paths with dif-
ferent logic signals, a path through a transistor with stronger conductance determines the
logic state at the node. In the case that the conductance to logic "0" and logic "1" are the
same, which should not happen in a properly described circuit, the node is not fixed. It
should be noted that logic signals at fixed nodes propagate through transistors that are tumed

on by already fixed nodes.

" E-TV propagates fixed nodes according to the topological ordering of nodes, because it
indicates an order of tasks to be done without reprocessing a particular task. This simple
switch-level simulation is very efficient, but powerful enough to propagate fixed nodes for
the verification of a variety of NMOS and CMOS designs. The weakness of the current
implementation is that it checks the conductance of local transistors only, rather than check-

ing the effective conductance of the entire path back to the fixed voltage source node.
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5.7. CLOCKED STORAGE ELEMENTS

Transparent clocked storage elements are classified into positive-active and negative-
active types, while edge-triggered clocked storage elements are classified into positive edge-
triggered and negative edge-triggered types. Their associated timing constraints on clocked
paths with given clock signals have been described in Chapter 2. The clocked storage ele-
ments are used as the boundaries of clocked paths and for the derivation of timing con-
straints. Therefore, if not all clocked storage elements are found, the verification results will
be incorrect. However, as mentioned in Chapter 3, the identification of clocked storage ele-
ments and their set-up time computations are some of the difficulties that switch-level timing
verifiers have. Some existing switch-level timing verifiers implicitly assume that the clocked
storage element in a MOS design is the pass transistor register type [23,24]. For others, the
discussion on the kinds of clocked storage elements allowed in a design and the way the set-
up times are taken into account are not available in literature (56, 57]. This section describes
how E-TV models both transparent and edge-triggered clociced storage elements. In the next
section, it is described how E-TV identifies the clocked paths and checks their satisfaction of

timing constraints with the set-up times and clock skew taken into account.

There are two possible approaches to identify clocked storage elements in a design:

(1) The user specifies the clocked storage elements used in the input file.

(2) The program identifies the clocked storage elements used from a circuit description.
The first approach has been used for block or higher level timing verifications. For example,
block-level timing verifiers [22, 37] provide the models of clocked storage elements, that are
similar to the models of other functional logic blocks such as logic gates. The user or the
synthesis tool, when used in synthesis loops, is requested to specify the set-up time and the

hold time of the elements. The models of clocked storage elements can be referenced to
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describe a design.

While this approach is easy on a program, it is not practical to use at the switch level,
because clocked storage elements usually consist of many transistors. It is not easy to
describe which transistor belongs to which type of clocked storage element. In addition, sup-
pose that the user obta.ined a transistor-level circuit description from a layout, using a circuit
extractor [101, 102, 103, 104]. Then, it would be very time-consuming for the user to find all
clocked storage elements and identify their type. Furthermore, the user may have to describe
each clocked storage element individually due to different internal parasitic capacitances,
rather than describing them in a fashion similar to referencing subcircuits for a circuit simula-

tion. Thus, the second approach was chosen for E-TV.

In order to identify the clocked storage elements used, a program may explore:

(1) a transistor-level circuit description

or

(2) a higher level system description.
When the user designs a system in a top-down fashion within a hierarchical design environ-
ment, system descﬁptions that are higher than transistor level are available. These higher
level descriptions may be inputs to synthesis tools or circuit designers. In any case, the
higher level descriptions are more abstract functional descriptions. Thus, the higher level
description is easier to explore than a transistor-level description to find clocked storage ele-
ments. However, this method is applicable only to the top-down hierarchical design metho-
dology, where circuit elements are linked between different levels in some way, so that the
information on the clocked storage elements can be transferred to transistor level properly.
When a system is designed in a bottom-up fashion, or when only a transistor-level description

has been obtained without a higher level description, the use of this method is out of the
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question. Since this method is not robust enough for the general use, E-TV explores a

transistor-level description for the identification of clocked storage elements.

There are two possible approaches for a program to find clocked storage elements and

decide their type from a transistor-level description.

(1) Comparing the circuit topology of the elements.

(2) Approximating the element type.
The first approach works as follows. A program has a circuit topology library of all kinds of
clocked storage elements available, along with other information such as their type. After
finding a candidate transistor group for a clocked storage element, the program compares its
topology to those stored in the library. If the circuit topology matches, r.hé candidate is deter-
mined to be the clocked storage element with the matched topology. This topology-matching
method is robust. A new design of clocked storage element can be easily added at any time.
However, notice that some types of clocked storage elements, such as a CMOS edge-
triggered D flip-flop, are made of as many as 28 MOS transistors. Therefore, this method

consumes too much CPU time for topology comparison and is not practical.

The second approach works as follows. Any clocked storage element has at least one
transistor clocked by a clock signal, which works as the core of the element. Therefore, it is
possible to treat each clocked transistor as a pass transistor register. Consider the CLK1 logic
evaluation section shown in Figure 5.11. M1 and M2 are clocked transistors of the preceding
and the succeeding clocked storage elements. For a verification, a signal starts to propagate
from Node A at CLKI(R) as M1 turns on. If M2 is met during a traversal, it is checked
whether the signal at B settles before CLK2(F) or not. This approach is used by the existing
switch-level timing verifiers [23,24]. Even though the method is very fast, it has disadvan-

tage. While the method assumes that all clocked transistors are pass transistor registers, they
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Figure 5.11 CLKI Logic Evaluation Section

may be the NMOS/PMOS drivers of inverting stages. Because a traversal is performed along
the signal flow, there may be paths that do not pass through clocked transistors. Such an
example is shown in Figure 5.12, where a signal propagation must finish while CLK1 is high. .
The traversal along the signal flow is represented using a dotted line. . Thus, some clocked

paths may be excluded from examination.

Another disadvantage concerns the end points of clocked paths. Even though the end
points of the logic section for verification must be the output nodes of the succeeding clocked
storage elements, this method worries about the output terminals of clocked transistors. Tim-
ing verifiers employing this method will check whether the output terminals of clocked
transistors settle by a specific timepoint, rather than checking if the outputs of the succeeding
clocked storage elements settle. Thus, the verification results and the worst delay of the sec-
tion are optimistic. Finally, the method does not distinguish the clocked pass transistors in
dynamic logic gates such as domino logic or NORA logic from those in clocked storage ele-

ments. As a result, it has difficulty checking the satisfaction of the timing constraints associ-
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ated with the dynamic logic gates.

To overcome such a disadvantage, E-TV approximates clocked storage elements in a
different way. In E-TV, two basic elements that compose clocked storage elements are
defined: transparent clocked elements and memory elements. A transparent clocked element
latches information during a certain clock phase and a memory element stores the latched
information. There are two kinds of transparent clocked elements: pass transistor registers
and clocked inverting stages. A pass transistor register merely pro\;ides a path for a signal to
i)ass with the same polarity during a certain clock phase. A clocked inverting stage is an
inverting stage whose drivers are controlled by clock signals. An example of a clocked
inverting stage is a NAND gate with a clock signal applied to one of its input nodes. During
a certain clock phase, the input signal of a clocked inverting stage is transferred to its output

node with a reversed polarity. Clocked inverting stages eliminate difficulties that arise from



141

the fact that any clocked transistor is treated as a pass transistor register. Memory elements,
the other element that composes a clocked storage element, may be a dynamic memory ele-
ment as simple as a node capacitance. Or,‘ they may be static memory elements such as
cross-coupled inverters, whose feedback path may or may not be cut by a pass transistor (pass
transistors), and RS latches. E-TV uses transparent clocked elements and memory elements
as the beginning and ending boundaries of clocked paths to define a logic evaluation section.

The satisfaction of timing constraints associated with these boundaries are examined.

E-TV assumes that a transparent clocked storage element consists of a transparent
clocked element (or transparent clocked elements) followed by a memory element (or
memory elements), where the number of transparent clocked elements and memory elements
used .depends on the kind of the clocked storage element. As an example, a transparent D
flip-flop, shown in Figure 5.13, consists of two transparent clocked inverting stages followed

by one memory element.

E-TV assumes that an edge-triggered clocked storage element comprises two levels of
transparent clocked storage elements that are clocked by CLK and CLK. Figure 5.14 illus-
trates a negative edge-triggered clocked ‘storage element whose structure is represented as
two levels of transparent storage elements. In the figure, T_CSE is a positive-active tran-
sparent clocked storage element such as a NMOS pass transistor register followed by an
inverter. While CLK is high, the first T_CSE is active and the signal at Node A propagates to
Node B. Let 3 denote the time necessary for Node B to store a signal. Then, a signal at Node
A during 8 before CLK (F) will be stored at Node B at CLK(F). Assume that an inverter
shown to generate Cﬁ is delay free. When the second T_CSE becomes active at CLK(F),
the signal at Node B propagates to Node C. Thus, two T_CSE’s work as a negative edge-

triggered clocked storage element which samples an input signal at Node A available during &
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before CLK(F) and changes an output signal at Node C at CLK(F). To detect the possibility
of timing errors associated with an edge-triggered element, E-TV applies timing constraints
twice by looking at it as two cascaded transparent clocked storage elements. When examin-
ing a clocked path ending at Nede C in Figure 5.14, E-TV .examines two clocked paths, the
one ending at B and the other from A to C. Because the second one is very short, it almost

always satisfies the timing constraints.

5.8. TIMING VERIFICATION OF LOGIC EVALUATION SECTIONS

As defined in Chapter 2, the set-up and the hold times of clocked storage elements are
sampling intervals that are located before and after an activating clock edge. They are useful
concepts for block-level timing verification, where clocked storage elements are represented
as black boxes. A timing verifier simply checks whether the input signals of clocked storage
elements are kept unchanged during set-up and hold times, whose values are specified by the

user [22, 37].

At the switch level, on the other hand, a timing verifier must compute the set-up and the
hold times. The set-up and the hold times are attributed to the difference of the internal
delays of input and clock signals. Thus, they can be computed by locating the paths for those
two signals in a clocked storage element. However, a better approach is to compare the clock
arrival and the input signal settling times at appropriate points inside a clocked storage ele-
ment directly. This can be described with the help of Figure 5.15. In the figure, CSE1 and
CSE2 are transparent type consisting of an NMOS pass transistor register, clocked through
two inverters, and a capacitance. If the blqck-levél approach is employed, a program com-
putes the set-up times of CSE1 and CSE2 and a delay through CL, D¢;. Then, Equation

(2.2) is used to detect a possible timing error. However, a timing verifier can detect the pos-
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sible timing errors without involving the set-up and the hold times by directly comparing the
transitions at the clock node of pass transistor register and its output node as follows.
Transistor M1 turns on, when a clock signal at an intenal node B rather than B’ goes high.
At the same time, a signal starts to propagate from Node A through C, CL and M2, to Node F.
During this propagation, M2 is forced to remain on. Then, the transition at Node F is com-
pared to the falling transition at an internal clock node E rather than E’, at which M2 actually
turns off. Notice that this direct-comparison approach is more convenient and less error-
prone than the block-level approach for switch-level timing verification. The advantage of
the direct-comparison approach includes the fact that the influence of clock skew is automati-
cally taken into account for verification. Since the direct-comparison method uses the actual

arriving clock signals at clocked transparent elements, it is not concerned about clock skew.
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Due to the above reasons, E-TV uses the direct-comparison approach for the detection of pos-

sible timing errors.

E-TV defines three core nodes in a clocked storage element for the direct-comparison
approach: Clock_Node, Start_Node, and End_Node. Clock_Node is a clock node of a tran-
sparent clocked element. It provides two timepoints: a preceding time reference (zpg) at
which a signal starts to propagate and a succeeding time reference (zsg) by which the signal
propagation must finish. Start Node is a node which defines the starting point of clocked’
paths, while End_Node is a node which corresponds to the end point of clocked paths. Thus,
Stqrt_Node and End_Node are the preceding and succeeding space references (spr and ssg ),
respectively. Typically, Start_Node is the output node of a transparent clocked element and
End_Node is the output node of a memory element. In E-TV, a clocked path is defined as a
path that begins from the Start_Node of a preceding clocked storage element and ends at the
End_Node of a succeeding clocked storage element. For the clocked path illustrated in Fig-
ure 5.15, Clock_Node’s are Nodes B and E. Start_Node is Node C and End_Node is Node F.

The direct comparison of transition times are made between Clock_Node and End_Node.

The idea of E-TV for the verification of the synchronous system can be summarized as
follows:

(1) Edge-triggered clocked storage elements are assumed to be two levels of transparent
clocked storage elements, as shown in Figure 5.14.
(2) Transparent clocked storage elements are viewed as a transparent clocked element (or
transparent clocked elements) followed by a memory element (or memory elements), as
shown in Figure 5.13.
(3) Clocked paths are defined as paths between the Start_Node’s of preceding clocked

storage elements and the End_Node’s of succeeding clocked storage clements.
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(4) Signals start to propagate from Start_Node’s, when the transparent clocked elements
of preceding clocked storage elements tum on (become active).

(5) During a signal propagation, the transparent clocked elements of succeeding clocked
storage element must remain active (the clocking delay of the succeeding clocked storage
element must be zero). .
(6) The possible timing errors are detected by the direct-comparison of transition times at

the Clock_Node and End_Node of succeeding clocked storage elements. If Equation (5.1)

is satisfied, E-TV determines that the clocked path satisfies timing constraints.

End Node < IClock Node 5.1

where tgna Node is a transition time at End_Node of succeeding clocked storage element
and Iciock Node iS @ timepoint at which the transparent clocked element of the succeeding

clocked storage element becomes inactive.

In the case that a transparent clocked element is followed by a static memory element,
End_Node is usually the output node of the static memory element after passing through a
feedback loop. However, the speed of signal propagation through the memory element is
very fast. Thus, E-TV approximates the output terminal of transparent clocked element as
End_Node (i.e., Start_Node and End_Node are the same). E-TV finds these three kinds of
nodes by propagating clock signals and identifying whether clocked transistors are pass
transistor registers or they are part of clocked inverting stages. Figures 5.16 and 5.17 illus-
trate the true Clock_Node, Start_Node, and End_Node of clocked storage elements that are
commonly used in MOS VLSI designs and their approximations by E-TV. In both figures, an
ME. in a circle represents a dynamic or static memory element. The true Clock_Node,

Start_Node, and End_Node are denoted as c, s, and e, while E-TV’s approximations arc
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denoted as C, S, and E. When there are a number of sets of Clock_Nodes, Start_Nodes, and
End_Nodes, they are represented by adding a single quotation mark (e.g.,C’,C"’, C""’, - - ).
In Figure 5.17, c, s, and e are obtained when the edge-triggered clocked siorage element is
treated as one element, while C, S, and E are obtained by partitioning it into two transparent

clocked storage elements.

A node can serve as the End_Node of more than one clocked path as illustrated in Fig-
ure 5.18(a) and (b), where a circle represents a combinational logic. A node can serve as the
Start_Node of more than one clocked path as in Figure 5.18(c). Or, combinational logic can
be used more than once per clock cycle. The logic path illustrated in Figure 5.18(d) is used

twice per clock cycle, for the periods of CLK 1-CLK 2 and CLK 3—CLK 4.

E-TV finds each logic evaluation section by traversing a system along signal flows from
the Start_Node’s of clocked storage elements whose transparent clocked elements are active
to the End_Node’s of clocked storage elements whose transparent elements are inactive dur-
ing the given clock phase. When clocked storage elements, whose transparent elements are
active during the clock phase, are encountered during traversing, E-TV continues the traver-

sal.

59. WORST DELAY PATH AND PREDECESSOR

It is interesting to investigate whether the worst (longest) delay path and the responsible
parent or predecessor can be found for a given transistor block by one simulation. There are
two cases to consider:

(1) There are multiple paths which lead to the output node of a transistor block. The worst
delay path of the output node and the worst delay parent is sought among the multiple

paths and the source/drain terminals of the last pass transistors on the paths, respectively.
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(2) There is a single path which leads to the output node of a transistor block. The worst
delay parent is sought between the gate and the source/drain terminals of the last pass

transistor on the path.

As an illustration of the first case, consider a circuit fragment shown in Figure 5.19(a),
where four MOS transistors tum on value-independently. There are two paths leading to

Node Output from Node Input. The worst rising delay parent of Node Output is sought

M1 _| ] _1 w3
1
Input .......|: Path 1 —_1r— c v Output
M2 —— S RN :L_c
e ? — T o
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Figure 5.19 Examples of Locating The Worst Delay Path and Parent
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between its two fanin nodes, / and 2. A simulation can be performed by applying a rising
signal to Node Input and a power supply Vdd to the gates of four MOS transistors. Let Tp (1)
and Tp(2) denote delays from Node Input to Nodes I and 2, obtained by the simulation,
respectively. It can be queried: can Node / be determined as the worst delay parent of Node
Output, if Tp (1) > Tp(2)? Assume that M1 and M2 have the same W/L ratio, M3 has a very
large W/L ratio, and M4 has a very small W/L ratio. Since M3 couples Nodes I and Output
very strongly, the effective load capacitance at Node I is (C+Co). On the other hand, .the
effective load capacitance at Node 2 remains the same as C, because M4 has a very small
W/L ratio. Therefore, a path from Node /nput to Node 1 will have a larger delay than a path
from Node Input to Node 2; i.e., Tp (1) > Tp (2). However, a path from Node / to Node Out-
put will have a much smaller delay than a path from Node 2 to Node Output. As a result,
even though Tp (1) is larger than Tp (2), the lower path may be the worst delay path leading
to Node Output, depending on the W/L ratios of M3 and M4, and Node 2'may be the true
worst delay parent of Node Outpx;t. This observation indicates that the correct worst delay
parent of Node Output can be determined only by simulating both paths leading to Node Out-
put individually and comparing their path delays. During the simulation of the upper path,
M2, C2 and M4 must be excluded. Similarly, when the lower path is simulated, M, CI and

M3 must be excluded.

For the second case, consider a circuit fragment shown in Figure 5.19(b), where M
tumns on value-independently. Assume that the rising signals at Nodes /nput and G2 are
given. It is going to be determined which node is the worst rising delay parent of Node Out-
put, Node I or G2. A simulation can be performed by applying rising signals at Nodes /nput
and G2, and a power supply Vdd to Node G1. Let the rising transition times at Nodes G2 and

I be denoted as tg2(R) and #3(R). If tg2(R) > t1(R), G2 is the worst rising delay parent of
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Node Output. However, if tg2(R) < t1(R), Node I cannot be safely determined as the worst
delay parent of Node Output, because ¢1(R ) is affected by Co as well as C1. Thus, the worst
delay parent of Node Output can be determined only by simulating a path consisting of M1

and C1 and by comparing the transition time at Node 1 to tg2(R).

The above two observations reveal that, unfortunately, the worst delay path and the
worst delay parent (predecessor) of the output node of a given transistor block can not be

found by one simulation, in general.

5.10. DETECTION OF THE WORST DELAY PATH AND PREDECESSOR

As investigated in the previous section, when a node has more than one candidate path
for the worst delay path, delays through the candidate paths must be compared after siqxulat—
ing each path separately. Similarly, when a node has more than one candidate node for the
worst delay parent, transition times at the candidate nodes must be compared after simulating
each path leading to the candidate node. In this section, it is described how E-TV locates the

worst delay path and the worst delay predecessor of a node in a circuit.

5.10.1. TRANSISTOR CHAINS

In order to determine the worst delay path of each node, E-TV extracts linear chains of
transistors leading to the node. Then, it simulates each transistor chain using the ELogic
delay model. When E-TV extracts a transistor chain, it always traces back up to a voltage
source or ground. Even though this approach consumes more CPU time than tracing back by
a fixed number of nodes or to another non voltage-soufce node, computed delay values are
more accurate. However, long transistor chains are rarely used in practice. In fact, they are

more likely the results of the erroneous assignment of signal flow. Thus, E-TV excludes a
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transistor chain from consideration, if it has more transistors in series than specified by the

user.

Each processed node stores two kinds of information for the extraction and the simula-
tion of the next transistor chains: information parent and worst delay parent for rising and
falling transitions. An information parent is the source/drain terminal of tht;, last MOS
transistor on the worst delay path towards some strong information source (power supplies or
ground). Information parents are used to trace back to extract transistor chains for delay
evaluation. The worst delay parent may be the same as an information parent or it may be the
gate of the last transistor on the worst delay path. The worst delay parent is used to find the
outside worst delay predecessor of a transistor chain, to which E-TV applies the worst delay
waveform stored at the node to evaluate the path delay through the transistor chz;in. The out-
side worsf delay predecessor of a transistor chain is the first worst delay parent which is not
‘the source/drain terminal but the gate of the MOS transistor in the chain during a backward

trace.

How E-TV extracts a transistor chain and how it determines the worst delay path of a
node can be illustrated using Figure 5.20. In the figure, the information parent and the worst
delay parent of processed nodes are represented using dotted lines with letters of 7 and W,
respectively. Suppose that the worst falling delay path of Node & is sought. Transistor
chains are obtained by tracing back along information parents, beginning from each MOS
transistor through which a signal enters 4. Thus, two transistor chains will be extracted. By
tracing back from M35, the first transistor chain, M5, M4, M2, and M1, is obtained. Similarly,
another transistor chain of M10, M8, and M6 is obtained by tracing back from M10. As an
example of finding the outside worst delay predecessor, consider the first transistor chain con-

taining M5. Because the node between d and g with the worst delay has not been decided yet,
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Figure 5.20 An Example of Locating The Worst Delay Path
(Grounded capacitors are omitted for convenience)

the signal arrival times at Nodes d and g are compared first. If a signal arrives at Node g
later, the outside worst delay predecessor of the transistor chain is Node g. Or, if a signal
arrives at Node d later, E-TV traces back along the transistor chain to find the first worst delay
parent which is not on the path. Therefore, Node b becomes the outside worst delay prede-
cessor. After the outside worst delay predecéssor is determined, E-TV assigns an initial con-
dition at each node on the path in such a way that only the nodes that come after the outside

worst delay predecessor make a falling transition. It can be illustrated by supposing that
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Node b is the outside worst delay predecessor of the transistor chain. Then, Node a is initial-
ized to OV and Nodes c, d, and A are initialized to 5V. During a delay evaluation, E-TV
applies a power supply Vdd to the gates of all transistors except Node b where E-TV applies *
the worst delay waveform stored at the node. After computing delays through both transistor
chains, E-TV determines the worst delay path leading to Node 4 by comparing their path
delays. Suppose that the first transistor chain is the worst delay path of Node 4. Then, Node
d becomes the information parent of Node 4. If Node g is the outside worst delay predeces-
sor of the transistor chain, Node g becomes the worst delay parent of 4. Otherwise, Node d

becomes the worst delay parent.

The worst delay parents are also used to trace back to find the worst delay path from
preceding clocked storage elements or data-in nodes. As an example, the worst delay path of -

Node A will be - - - -b—c—d-h, if d is the worst delay parent of Node 4.

5.10.2. CMOS TRANSMISSION GATES

It is known that NMOS pass transistors transfer the logic "0" signal quite well but they
transfer the logic "1" signal poorly. On the other hand, PMOS pass transistors transfer the
logic "1" signal well but they transfer the logic "0" signal poorly. Thus, in a CMOS design,
the pair of NMOS and PMOS pass transistors is used as a transmission gate, where both logic
"0" and "1" signals need to be transmitted. If the pair of NMOS and PMOS pass transistors
are not treated as one transmission gate, the verification results will be very pessimistic. The
reason for this is that when a path is examined for the logic "0", PMOS transistors are choseq
to compose the worst delay path. On the other hand, NMOS transistors are chosen to com-
pose the worst deléy path for the logic "1" signal. E-TV treats the pair of NMOS and PMOS

pass transistors as one transmission gate. By doing so, the accuracy of verification results is
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significantly improved. For this, when E-TV traces back to extract transistor chains, it finds
NMOS and PMOS pass transistors that are in parallel between two nodes and controlled by

complementary signals.

An NMOS or a PMOS pass transistor has only two candidate nodes for the worst delay
parent, gate and source/drain terminals. However, as shown in Figure 5.21, a CMOS
transmission gate has three candidate nodes, A, B, and C, for the worst delay parent of D. Let
tran(A) denote the transition time at Node A without the loading effect of Node D. Let
tran(B) and tran(C) denote the times at which M/ and M2 tum on, respectively. Then, there

are six cases to consider:

(1) Case 1: tran(B) < tran(C) < tran(A)
(2)Case 2 : tran(C) < tran(B) < tran(A)
(3) Case 3: tran{A) < tran(B) < tran(C)
(4)Case 4. tran(A) < tran(C) < tran(B)

g

1

=
M1

M2

y c y

9

Figure 5.21 CMOS Transmission Gate
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(5)Case 5: tran(B) < tran(A) < tran(C)
(6) Case 6: tran(C) < tran(A) < tran(B)

In the first two cases, an input signal arrives at Node A after both M1 and M2 turn on. Thus,
Node A is the worst delay parent of Node D. In Cases 3 and 4, an input signal arrives at Node
A before M1 or M2 tumns on. Thus, one of Nodes B and C, whichever turns on later, is the
worst delay parent of Node D. In the last two cases, when an input signal arrives ;1t Node A,
one pass transistor is on and the other is still off. The appropriate worst delay parent in this
case is the node which keeps its pass transistor still off: Node C in Case 5 and Node B in Case
6. Therefore, E-TV determines a candidate node with the latest signal arrival time as the

worst delay parent.

. When one of two gate terminals of a CMOS transmission gate is determined to be the
outside worst delay predecessor of a transistor chain, E-TV applies the worst delay waveform
stored at each gate terminal for delay evaluation. Even though the waveforms might have
been computed value-independently, they are usually related closely through one or a few
inverters. The circuit condition which causés the worst delay at one gate terminal is most
likely to cause the worst delay at the other gate terminal. Therefore, it is appropriate to use
the worst delay waveform stored at each gate terminal. When a CMOS transmission gate is
used as a succeeding clocked storage element, E-TV determines that a timing constraint is

violated if the signal at End_Node does not settle before both pass transistors turn off.

5.10.3. AND-OR-INVERTERS

The block diagram of an and-or-inverter is illustrated in Figure 5.22. Both logic "0"
and "1" information sources are reachable from Node out through separate paths. In order to
determine the worst rising delay predecessor of out from Nodes inputs 1 and inputs 2, the fol-

lowing two cases need be considered:
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Figure 5.22 Block Diagram of An And-Or-Inverter

(1).Case 1: Pull-down path opens first. Then, pull-up path closes.

(2) Case 2: Pull-up path closes first. Then, pull-down path opens.
In Case 1, pull-down paths are already open, when a pull up begins. Thus, the worst rising
delay predecessor of Node out is one of inputs 2, which closes a pull-up path last. In Case 2,
even though pull-up paths are on, Node out cannot be pulled up fully until all puil-down
paths become open. Thus, the worst rising delay predecessor is one of inputs 1, which opens
a pull-down path last. However, it should be noted that, in this case, there is a time interval
for which both pull-up and pull-down paths are on. During this interval, a direct path is esta-
blished for current to flow from a power supply to ground. Thus, it is reasonable to assume
that this time interval is short enough in practical designs so that an input which closes a
pull-up path last can be regarded as the worst rising delay predecessor. Therefore, in any
case, E-TV determines an input which closes a pull-up path last as the worst rising delay path

of Node out. Similarly, an input which closes a pull-down path last is determined as the
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worst falling delay path of Node out.

When an NMOS depletion load or an "always-on" weak PMOS transistor is used in the
pull-up logic of an and-or-inverter, there are no external inputs to the pull-up logic. In this
case, when all pull-down paths become open, the node voltage at out begins to rise up. Thus,
E-TV determines an input node which opens a pull-down path last as the worst rising delay
predecessor of Node out. The way to determine the predecessor of out for the worst-case
open-operation of pull-down logic has been described in Section 5.2. The rising transition
timepoint of Node out is computed by adding a pull-up delay to the timepoint at which the

worst delay predecessor opens the pull-down path.

5.11. TIMING VERIFICATION OF DYNAMIC CIRCUITS

Precharging is an important technique for the design of combinational logic between
clocked storage element pairs in MOS synchronous systems. Dynamic circuits that employ
_ the precharging technique are precharged/predischarged modules, domino logic [31], and
NORA logic [32]. Because these circuits provide the significant advantage of faster circuit
operation, area reduction, and power consumption reduction in many applications, they are
quite common in high performance MOS VLSI designs [98, 105]. However, the dynamic cir-
cuits have tight timing constraints to satisfy, since they make the use of the dynamic charge
storage at nodes. The satisfaction of these timing constraints is difficult to examine properly
at other than switch level. In spite of their importance, unfortunately, the verification of the

dynamic circuits have been neglected by the existing switch-level timing verifiers.

In order to verify dynamic circuits, E-TV identifies them before a timing verification
begins. Then, when they are encountered during the signal propagation to locate the critical

paths, E-TV checks whether or not they satisfy timing constraints. The timing constraints
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associated with dynamic circuits have been described in Chapter 2 in detail. Dynamic cir-
cuits with precharging/discharging have precharged or predischarged nodes. Thus, E-TV
locates them by finding all precharged and predischarged nodes that can be identified by
checking the following. A node A which precharges while ¢ is low and evaluates while ¢ is
high satisfies the following two conditions:
(1) Precharging paths (pull-up paths):
While ¢ is low, at least one pull-up path between Node A and a power supply must be
closed to establish a precharging path. While ¢ is high, all pull-up paths must be open.
) Evaluatic_m paths (pull-down paths):
While ¢ is low, all pull-down paths between Node A and ground must be open. While
¢ is .high, clocked transistors on the pull-down paths, that tum off while ¢ is low, must

turn on to establish evaluation paths.

Predischarged nodes can be found by exchanging the conditions for pull-up and pull-
down paths. After finding all precharged and predischarged nodes, E-TV determines the type
of their associated dynamic circuits: precharged/predischarged modules or N/P-type dynamic
logic gates used in domino and NORA logic. This information is used to examine the satis-

faction of timing constraints that are described in Section 2.8.

Consider a rising transition at a precharged node. As long as the timing constraints on
input signals are satisfied, the precharged logic "1" signal at the node remains undisturbed.
That is, a logic "1" signal is available as soon as a precharging is done. Thus, only a
precharging path is meaningful for the rising transition at a precharged node. When E-TV
propagates the worst delay rising transition at a precharging node to the following stages, it
propagates a rising transition made through a precharging path only. Similarly, in case of a

predischarged node, only a falling transition through a predischarging path is propagated to
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the next stages.

A precharged module and N/P-type dynamic logic gates have been illustrated in Figures
2.8 and 2.10. Even though a precharged module and an N-type dynamic logic gate are simi-
lar in configuration, they can be differentiated by observing the way inputs affect their
precharged node. In case of a precharged module, inputs are applied to the source/drain ter-
minals of pass transistors connected to a precharged node. Note that the pass transistors may
be controlled by other than clock signals. In case of an N-type dynamic logic gate, the inputs
from previous stages are applied only to the gate terminals of MOS transistors in the N-type
logic that composes evaluation paths between its precharged node and ground (refer to Figure

2.10).

When an N/P-type dynamic logic gate has more than one evaluation path (e.g., NOR
gate), all evaluation paths may share one clocked transistor. Or, if it is more convenient for
layout, each evaluation path may have its own clocked transistor. Even though the gates of
these clocked transistors are usually tied to the same clock-node, they may be controlled by
different clock-nodes. In this case, when Equation (2.15) is.used to exarr;ine the falling tran-
sition at the precharged node, ¢;(F) must be the clock signal which controls each evaluation
path. However, since these clock nodes must be in very close proximity, the clock signal
arrival times at the nodes will be almost the same. Thus, E-TV selects one of the clock nodes
randomly and uses that clock node when applying Equation (2.15). Some dynamic circuits
do not have clocked transistors on their evaluation paths. In this case, E-TV checks whether
the falling (rising) transition at the precharged (predischarged) node finishes before the next

precharging (predischarging) period begins.
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5.12, VERIFICATION OF DESIGN REFERENCES

When transparent clocked storage elements are used, two contiguous single-stage
clocked paths can trade the amount of time available for logic evaluation with each other to
satisfy timing constraints. This is illustrated, using Figure 5.23. Assume that delays through
CSE’s are negligible. If CSE’s are positive edge-triggered type, CLI and CL2 have following

separate unrelated timing constraints from Equation (2.1):

De1£T1 (5.2)

Dcr2£T2 (5.3)

If a delay through CLI is too large to satisfy Equation (5.2), a clock separation T/ must be
increased. Even though D¢y, is small, it is of no help for CLI to satisfy the given con-
straints. Now, suppose that CSE’s are active-high transparent. The timing constraints are,

then, given as follows from Equation (2.4):

CLK1 CLK2 CLK3
L | y

> cse +@+ CSE +@—>— CSE >

CLK1 [ 1 [
k- T1 Sk T2 S
CLK2 [ ]
kT
CLK3 [ 1

Figure 5.23 A Two-Stage Clocked Path
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D1 £T1+4T3 (5.4

Dcr2<T3+T4 5.5)
Dcp1+Dc2£T14T34T4 (5.6)

Equations (5.4) and (5.5) are timing constraints for each single-stage clocked path, while
Equation (5.6) is for a two-Stage clocked path. Notice that T3 can be used for the evaluation
of CLI dr CL2. If D¢y is small enough, T3 can be used for the evaluation of CLI. This
would provide the designer with flexibility in managing the system timing to satisfy con-
straints. Note that, however, even when all single-stage clocked paths satisfy timing con-
_ Straints, their combined multi-stz;lge clocked paths may not satisfy timing constraints, as
described in Chapter 2. If the designer wish to maintain clocked path delays between pairs of
transparent clocked storage elements in a bumper-to-bumper fashion to use clock separations
maximally, not only is it very risky due to process variations but also the design complexity
is a very big burden. Thus, the designer uses the timing constraints for ;edge-tﬁggered type as
"design references" for the easy management of the system timing, even though a system
uses transparent clocked storage elements. In other words, assuming CSE’s are active-high
transparent, the clocked paths of Figure 5.23 are designed to satisfy Equations (5.2) and (5.3)
instead of Equations (5.4), (5.5) and (5.6). By using this design reference method, if all
single-stage clocked paths satisfy the timing constraints, multistage clocked paths satisfy tim-
ing constraints automatically. Thus, if the longest path delay in each single-stage logic seg-
ment satisfies Equation (2.1), the whole system satisfies timing constraints. This design-
reference method is used for E-TV to detect the possible timing errors of multistage clocked
paths; when transparent clocked storage elements are used, E-TV checks if each logic seg-
ment satisfies the design reference rather than examining all multistage clocked paths indivi-

dually.
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CHAPTER 6

PERFORMANCE EVALUATION OF E-TV

Two rr;icroprocessor designs have been studied extensively to evaluate the performance
of E-TV: CMOS SOAR and SPUR. CMOS Smalltalk On A Risc (SOAR) [98] is a 32 bit
Reduced Instruction Set Computer (RISC), designed at the University of California, Berkeley,
using a 3 micron CMOS technology to execute the Smalltalk-80 programming language
efficiently. Symbolic Processing Using RISC's (SPUR) [105] is a bus-oriented shared
memory 32 bit multiprocessor under development at the University of California, Berkeley.
Each workstation accommodates up to 12 processors, providing an aggregate performance of
over SO MIPS. These circuits were chosen because they use different design techniques (both
dynamic and static logic), use state-of-the-art CMOS technologies, are large circuits, have
been fabricated and do work, and, perhaps most importantly, were available in an understand-

able format and the designers were available for consultation.

In addition to path analysis, in this chapter, two other issues - the performance of the
ELogic method and the accuracy of the MOS model used in the E-TV program - are dis-

cussed.

6.1. THE E-TV MOS MODEL

The present implementation of the E-TV program uses the Shichman-Hodges equations
[92] to model MOS transistors, although any MOS companion model could be used in its
place. The equations are used as the MOS1 dc model of the SPICE program [5]. While the

SPICE MOS2 dc model [106, 107] models additional first- and second-order effects such as
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surface field dependent mobility more accurately, it is computatic;nally less efficient. As
mentioned in Chapter 4, ELogic is a generalization of multi-state logic-level analysis (e.g.
[7,22,66,8]) and circuit-level analysis which provides a less-precise analysis result to
improve the performance for digital MOS circuits (e.g. [67,68, 69,70,71] ). Thus, analysis
speed is one of the E-TV’s important features and the computation efficiency of the MOS
model affects the performance. In addition, if well characterized and experimentally deter-
mined dc parameters are used, analysis accuracy using the MOS1 dc model is adequate for
most MOS digital circuit design [29]. Therefore, the MOS1 dc model has been implemented
in the present E-TV program. The experimental results which illustrate that the MOS1-DC
model has adequate accuracy for the timing verification of MOS digital circuits are presented
later. Note that if a more accurate MOS dc model is necessary, it is étraightforward to

replace the MOS1-DC model used in E-TV with a MOS2 implementation.

One of the popular MOS gate capacitance models is the piecewise linear voltage-
dependent capacitance model proposed by Me);er [110] and recently improved by Sakallah et
al. [111]. This model is used in the SPICE program. The present implementation of E-TV
does not have a built-in gate capacitance model for MOS transistors and the user is required
to approximate the gate capacitance by constant grounded capacitors (linear charge-voltage
relationship). An experiment has been carried out to compare the performance of the con- .
stant grounded capacitor model (LGC model) to that of the Meyer gate capacitance model for
delay computations. The experimental results showed that the LGC model is accurate
enough to be used for timing verification. The LGC model and the experimental results are

also presented in detail in this chapter.
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6.2. PATH ANALYSIS AND THE ELOGIC METHOD

In order to evaluate the performance of the path analysis section of E-TV and the
analysis method employed in the ELogic delay model, E-TV was used to extract the critical
paths of the test circuits. The delays through the .cﬁtical paths were then estimated by SPICE
using the same MOS dc model (MOS1 dc model) and the delays estimated by the two pro-

grams were compared.

The ELogic delay model provides trade offs between accuracy and analysis speed by
changing the voltage step-size. To illustrate this, E-TV was used to analyze test circuits using

four different voltage step-sizes: 0.1V, 0.25V, 0.5V, and 1V. All CPU times presented are

for a VAX 8800 running Ultrix!. E-TV reports as many critical paths in each logic segment
as requested by the user, using the worst-case evaluation-time margin. Among them, SPICE
[5] was used to analyze the most critical path of each logic segment for comparison. Since

SPICE was used to analyze the extracted critical path only, its CPU times are not presented.

For the test circuits, only MOS2 model parameters were available. Thus, MOS1 dc
model parameters for the SOAR and SPUR circuits were obtained as follows. There are five
device parameters in the MOS1 model [106, 107] : VTO (zero-bias threshold voltage), KP
(transconductance parameter), GAMMA (bulk threshold parameter), PHI (surface potential)
and LAMBDA (channel-length modulation). Among them, all parameters except KP were
used without adjustment. KP was determined by matching the dc transfer curve of an
inverter made of NMOS and PMOS transistors with the most typical channel length and
width for the circuit (usually the smallest device available in the technology). The current
value flowing through the inverter was ;natched as the input voltage changed for the MOS1

and MOS2 models. The value of the model parameters used for the test circuits and the

! VAX and Ultrix are trademarks of Digital Equipment Corporation.
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details of the method that determined KP of MOSI1 are presented in Appendices 1 and 2,
respectively. The SPICE inputs of the critical paths of the test circuits are included in
Appendix 3. Copies of all software and the netlist of the test circuits are included as Appen-
dix 4.

Sometimes, critical paths may be identical (contain the same circuit blocks) except for
very minor differences near the ends. Such paths are called as siblings. When there are
sibling critical paths in different logic segments, their path delays are almost the same, how-
ever, the succeeding time references are quite different. Thus, in this case, only the most crit-

ical path has been analyzed for comparison.

The first test circuit is the ALU of the SOAR microprocessor. The circuit uses domino
logic (31] and precharged busses. A 1-bit circuit is illustrated in Figure 5.24. The li)gic
evaluation performed by the circuit begins as ¢3 goes high and must finish before ¢3 goes
low. The circuit contains 1,692 MOS transistors and 1,067 nodes. E-TV visited 408 and 871
nodes in order to locate the worst rising and falling delay paths, respectively. The numbers
of transistor chains E-TV extracted to evaluate the rising and falling delays are 566 and 1,195,
respectively. During a verification, the select-signals (XOR, SUM, PASS, AND, and OR
nodes) were set at S5V so that all paths passing through the pass transistors controlled by those
sigrials could be examined. Note that select-signals can be described as logic-control
(CTRL) signals. In this case, E-TV also checks whether or not the signal at the output termi-
nal of a pass transistor controlled by a select-signal settles before the pass transistor tumns off.
If a signal arrives earlier at an input terminal, the propagation is held until the pass transistor
turns on. The worst case is when an LSB generated carry propagates to the MSB. The
verification results are shown in Tables 5.1 and 5.2. Table 5.1 compares the analysis speed

and the memory usage of E-TV for different voltage steps. The critical-path delays estimated
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Figure 5.24 One Bit of SOAR ALU

by E-TV and SPICE are compared in Table 5.2. The tables illustrate the speed-accuracy
trade-off of E-TV. That is, the delay error of E-TV decreases and the CPU time increases, as
the voltage step-size gets smaller. This accuracy-speed trade-off can be obtained not only
over analyses but also in the same analysis for the different parts of a circuit. From Table
5.2, it is clear that the ELogic method used in E-TV is accurate enough for practical use

(delay error less than 7.4% compared to SPICE MOS1), if a voltage step of 0.5V or smaller is
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used for this circuit design style.

The second test circuit is the SOAR circuit, excluding the ALU. The circuit contains
34,410 MOS transistors and 12,769 nodes. The numbers of nodes E-TV visited to locate the
worst rising and falling delay paths are 47,226 and 49,717, respectively. E-TV computed the
rising and the falling delays of 80,446 and 84,907 transistor chains, respectively. The
verification results are presented in Tables 5.3 and 5.4. For this example, the delay error of

E-TV is less than 13%, when a voltage step-size is not larger than 0.5V.

The first test circuit from the SPUR microprocessor is a NuBus interface controller
[108] which is used in the cache controller [109]. The circuit is designed using a Programm-
able Logic Array (PLA) [25,28], whose input registers to the AND plane are active when ¢1
' is high, and whose output registers of the OR piane are active when ¢2 is high. The circuit
contains 740 MOS transistors and 231 nodes. E-TV located the worst rising and falling delay
paths of 227 nodes, and computed the rising and the falling delays of 227 and 555 transistor
chains, respectively. The ﬁnalysis results are presented in Tables 5.5 and 5.6. For this exam-
ple, the delay error of E-TV is less than 11% when compared to SPICE MOS1 and when the

voltage step is 0.5V or smaller.

The next test circuit is an on-chip instruction cache (OIC) controller in SPUR, which
has 1,205 MOS transistors and 404 nodes. The circuit contains four PLAs, which are con-
nected as shown in Figure 5.25. The registers for the PLAs are pass transistor registers or
precharged modules. Thus, for example, paths that end at ¢1 registers may be constrained by
®1(R) or ¢1(F). E-TV located the worst rising delay paths of 505 nodes and the worst falling
delay paths of 532 nodes. And, the rising delays of 558 transistor chains and the falling
delays of 1,615 transistor chains were evaluated by E-TV. The verification results are

presented in Tables 5.7 and 5.8. Notice that E-TV identifies all logic segments and examines
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|| Voltage step
1V | 0.5V | 025V | 0.1V
CPU time (sec) 37.1 | 60.6 96.3 .| 2199
Memory M byte) || 1.2 14 1.8 3.1

Table 5.1 CPU time and Memory Usage Comparisons of E-TV on The SOAR ALU

ETV [ SPICE
Voltage step
1V 0.5V | 0.25V 0.1V (MOST)
®3(R)-03(F)seg. || 77.6ns | 69.3ns | 67.5ns | 66.9ns || 64.5ns

Table 5.2 Critical Path Delay Estimates Comparison on The SOAR ALU
Using E-TV and SPICE

Voltage step
1V_] 05V | 025V | 0.1V
CPU time (sec) 8754 | 9823 | 11541 | 19842
Memory (M byte) 21 26 36 64

Table 5.3 CPU time and Memory Usage Comparisons of E-TV on The SOAR

E-TV SPICE
Voltage step
1V 0.5V 0.25V 0.1V || (MOS1)
d3(R)93(F) seg. || 155.5ns | 123.0ns | 143.0ns | 129.3ns || 126.7ns
O3(R )-01(R) seg. Sibling of ¢3(R )-93(F) seg.
3(R)—O1(F) seg. Sibling of $3(R )—93(F) seg.
O2(R)—$3(F)seg. | 449ns | 42.5ns | 43.Ins | 41.78ns || 38.4ns
®1(R)—¢1(F) seg. || 178.8ns | 156.9ns | 166.8ns | 166.0ns || 167.0ns

Table 5.4 Critical Path Delay Estimates Comparison on The SOAR
Using E-TV and SPICE
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|| Voltage step
1V | 0.5V | 0.25V | 0.1V
CPU time (sec) 62 | 9.6 18.3 | 39.1
Memory (M byte) | 04 | 05 0.6 0.9

Table 5.5 CPU time and Memory Usage Comparisons of E-TV
on The NuBus Interface Controller

E-TV " SPICE

Voltage step I
1V 0.5V | 025v | 0.1V |
O1(R)—42(F) seg. || 6.88ns | 6.58ns | 649ns | 6.42ns || 5.92ns

Table 5.6 Critical Path Delay Estimate Comparison on The NuBus Interface Controller

(MOS1)

Using E-TV and SPICE
J ' phi 3
phi2 phi 3
PLA 5 PLA
phi 2 Y
phi 1 4r Y'Y
1‘ l_I_J(— phi 4
phi 1 phi 4
PLA <« PLA

Figure 5.25 On-Chip Instruction Cache Controller in SPUR
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Voltage step
| v | osv | 025v | 0.1V
[ CPUtime (sec) | 137 | 194 | 317 | 69.8
Memory (M byte) || 0.6 0.7 0.8 14

Table 5.7 CPU time and Memory Usage Comparisons of E-TV

on The OIC Controller
E-TV SPICE
Voltage step (MOS1)

1V 0.5V | 025V | 0.1V
d4(R)>-91(R)seg. || 4.50ns | 4.5Ins | 4.39ns | 4.32ns || 4.18ns

®4(R)-01(F)seg. || 7.60ns | 6.51ns | 642ns | 6.30ns | 5.91ns
d3(R)—94(R)seg. || 5.37ns | 5.07ns | 497ns | 4.94ns | 4.70ns
$3(R)-94(F)seg. || 7.5Ins | 7.29ns | 7.11ns | 6.99ns || 6.53ns

O3(R)—¢92(F)seg. || 4.18ns | 3.97ns | 3.88ns | 3.83ns || 3.80ns
$2(R)—04(R) seg. || 6.5Ins | 6.38ns | 6.12ns | 6.04ns || 5.78ns
O2(R)—p4(F)seg. || 9.35ns | 9.95ns | 9.77ns | 9.55ns 9.09ns
¢2(R)—93(R) seg. || 6.35ns | 6.21ns | 5.95ns | 5.93ns || 5.73ns
O2(R)—93(F)seg. || 7.75ns | 8.05ns | 7.69ns | 7.65ns [ 7.08ns
$2(R)-01(R) seg. || 5.07ns | 4.80ns | 4.73ns | 4.70ns || 4.79ns

2(R)-01(F)seg. | 6.9Ins | 741ns | 7.17ns | 7.01ns 6.60ns
P1(R)-d4(R)seg. || 5.86ns | 5.78ns | 5.74ns | 5.74ns 5.62ns
O1(R)—94(F)seg. || 7.24ns | 7.66ns | 7.57ns | 7.51ns || 7.14ns
d1(R)>93(R)seg. || 6.00ns | 592ns | 5.89ns | 5.88ns || 5.69ns
O1(R)Y-93(F)seg. || 7.43ns | 8.04ns | 7.70ns | 7.69ns h 7.20ns
O1(R)—02(R) seg. || 5.14ns | 5.05ns | 5.00ns | 4.99ns || 4.96ns
O1(R)-92(F)seg. || 6.02ns | 5.84ns | 5.76ns | 5.73ns || 5.64ns

Table 5.8 Critical Path Delay Estimates Comparison on The OIC Controller
Using E-TV and SPICE
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them separately. For this circuit, when the voltage step does not exceed 0.5 V, the delay error
of E-TV is typically less than 10% compared to SPICE MOS]1, again an acceptable error in

most cases.

The last test circuit is the SPUR ALU which was designed using the domino logic
structure [31]. The circuit contains 4,286 MOS transistors and 2,258 nodes. E-TV visited
1,264 and 2,689 nodes to locate their worst rising and falling delay paths, respectively, and it
evaluated the rising and the falling delays of 1,844 and 3,512 transistor chains, respectively.
The results are shown in Tables 5.9 and 5.10. In this example, the delay estimates of E-TV

are accurate to within 7.1% for all four voltage steps compared to SPICE MOS1.

From the experimental results, I have shown that E-TV verifies multiphase systems suc-
cessfully, including those employing dynamic circuits. It has also been shown that the ELo-
gic method analyzes a given circuit with good accuracy (typically less than 10% delay error
when compared to SPICE using the same MOS dc model) with a voltage step which is not
larger than 0.5V over a wide range of circuit design styles (both dynamic and static logic) and
in a state-oftart CMOS technology. The analysis spegd was show.'n to be fast enough for

practical use.

6.3. EVALUATION OF THE E-TV MOS MODEL

In this section, the accuracy of the E-TV MOS model is evaluated using the SPICE pro-
gram and it is shown that the MOS1-DC and LGC models introduced earlier have adequate
accuracy to be used for the timing verification of most MOS digital systems. The SPICE
MOS2 dc model and the Meyer capacitance model were used for comparison under the
assumption that they are accurate enough to be used as references. The experiments have

been performed in the following order, using the critical paths of the test circuits:
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Voltage step
1v | 0.5V | 025V | 0.1V
CPU time (sec) 78.6 | 1120 | 179.9 | 387.0
Memory (M byte) | 2.6 3.1 4.0 6.7

Table 5.9 CPU time and Memory Usage Comparisons of E-TV on The SPUR ALU

E-TV SPICE
Voltage step

1V 05V | 025V 0.1V (MOS1)

$3(R)~93(F) seg. || 13.45ns | 12.83ns | 12.57ns | 12.44ns || 12.56ns
P3(R)-94(R) seg. Sibling of $3(R )~93(F) seg.
O3(R )-04(F ) seg. Sibling of $3(R )—43(F ) seg.

92(R)—03(R) seg. || 10.56ns | 10.12ns | 10.05ns | 9.98ns [| 9.98ns
02(R )—93(F ) seg. Sibling of $2(R }-43(R) seg.

02(R)-94(R) seg. | 9.16ns | 8.76ns | 8.69ns | 8.63ns || 8.62ns
¢2(R )—04(F ) seg. Sibling of $2(R )—¢4(R) seg.

Table 5.10 Critical Path Delay Estimates Comparison on The SPUR ALU
Using E-TV and SPICE

(D
2

3

@

Determine the value of KP for the MOS1-DC model from the given MOS2 parameters.

Compare the accuracy of the MOS1-DC model and the MOS2 dc model by comparing

their delay estimates for the critical-path of the test circuits.

Compare the accuracy of the E-TV gate capacitance model (LGC model) and the Meyer

gate capacitance model by comparing their delay estimates for the critical-path of the

test circuits.

Evaluate the aggregate effect of the E-TV MOS model (MOS1-DC and LGC models)

compared to the MOS2 dc and Meyer capacitance models.
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6.3.1. DETERMINATION OF THE MOS1 DC MODEL PARAMETERS

As mentioned before, it is necessary to determine KP from the given MOS2 parameters
to use the MOS1 model. The effective value of KP for the MOS1 model depends on the
dimension of MOS transistors. Thus, it is desirable to determine the value of KP for each
different-sized MOS transistor so that MOS transistors with different dimension (channel
length or width) can refer to a different model card. However, while the value qf KP is very
sensitive to the channel length of MOS transistors for short devices, it is less sensitive to the
channel width. Therefore, KP was determined for each different channel length using the
average channel width for devices of that length for the accuracy comparison of the MOS

models.

The value of KP was determined according to the following steps:

Step1: Determine KP by matching the DC characteristic of the MOS transistors as close
as possible for each different channel length using inverters as described in Sec-

tion 6.2 (see Appendix 2).

Step2:  Under the actual operating condition, the output of the inverter is not able to
switch as fast as its input. Thus, KP was adjusted once more to match the delays
through a 10-inverter chain with 100fF load at each node for the MOS1 and
MOS2 models.

In Step 1, the values of KP for NMOS and PMOS tfansistors were adjusted separately, while
they were scaled by the same constant in Step 2 to match the inverter chain delays. The
typical-sized transistors of the test circuits and their values of KP, obtained by Steps 1 and 2,

are presented in Table 5.11.
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Test | MOS KP ()
Circuit | Type WIL (1) Step1 | Step2
NMOS 5/3 219 20.99
PMOS 5/3 421 4.06

SOAR —Mos | 577 190 | 19.63
PMOS | 57 | 395 | 4.08
NMOS | 1116 | 408 | 36.0
PMOS | 64/1.6 | 145 | 1278
spug | NMOS | 1124 | 416 | 376

PMOS | 6.4/24 14.8 13.39

NMOS | 11/3.2 41.6 38.6
PMOS | 6.4/3.2 14.8 13.75

Table 5.11 Effective Values of KP for The MOS1 Model for Test Circuits

63.2. THE E-TV MOS DC MODEL

In this section, the accuracy of the MOS1-DC model is compared to the MOS2 dc
model. First, SPICE computed the delays through the critical paths presented in Section 6.2
using the MOS1-DC model with the KP as determined in Section 6.3.1 and it computed the
delays again using the MOS2 dc model. Then thg delays were compared. In order to com-
pare the dc models only, capacitance parameters such as CGDO, CGSO, CGBO, CJ and
CJSW were set at zero. Note that the gate capacitance can not be excluded for delay compu-
tations when the MOS2 model is used. If TOX (oxide thickness) is not specified, it is
assumed to be 1000nm. On the other hand, if TOX is set to large value to Areduce the gate
capacitance, the surface mobility is affected. Thus, the Meyer model was used for both
MOS1 and MOS2 models. The delays of the critical paths using the two MOS models are
compared from Tables 5.12 to 5.16. The tables illustrate that the delay error of the MOS1-
DC model was less than 10% for more than half of the critical paths and it was 18% at worst

for the test circuits, compared to the MOS2 dc model. Note that it was not necessary to



Critical Path Delay Error of MOS1-DC
Path MOS1-DC | MOS2dc | compared to MOS2 dc
$3(R)—93(F) seg. 104.48n 88.4n 18.7%

Table 5.12 Delay Estimate Comparison on The Critical Path of The SOAR ALU

Using MOS1-DC and MOS2 dc Models

Critical Path Delay Error of MOS1-DC Clock

Path MOS1-DC | MOS2dc | compared to MOS2dc | skew
®3(R)—03(F) seg. 145.1n 131.2n 10.5% 2.3n
$2(R )-93(F) seg. 45.87n 41.97n -9.3% 1.43n
O1(R )-1(F) seg. 215.7n 190.3n 13.3% 7.7n

Table 5.13 Delay Estimates Comparison on The Critical Paths of The SOAR Circuit
Using MOS1-DC and MOS2 dc Models

Critical Path Delay Error of MOS1-DC
Path MOS1-DC | MOS2dc | compared to MOS2 dc
$1(R)-O2(F) seg. 7.016ns 7.206ns -2.6%

Table 5.14 Delay Estimate Comparison on The Critical Path of The NuBus Interface
in The SPUR Circuit Using MOS1-DC and MOS2 dc Models




179

Critical Path Delay Error of MOS1-DC
Path MOS1-DC.| MOS2dc | compared to MOS2 dc
$4(R»-91(R) seg. 4.974ns 4.904ns 1.4%
P4(R )-91(F) seg. 7.011ns 6.970ns 0.6%
$3(R )-94(R ) seg. 5.547ns 5.571ns -0.4%
P3(R )H4(F ) seg. 7.703ns 7.728ns -0.3%
93(R )-02(F ) seg. 4.594ns 4412ns 4.1%
d2(R )-94(R) seg. 6.765ns 6.798ns -0.5%
$2(R )-94(F ) seg. 10.81ns 10.90ns -0.8%
O2(R)-93(R) seg. 6.775ns 7.420ns -8.7%
O2(R )-93(F ) seg. 8.566ns 8.578ns -0.1%
P2(R )-01(R) seg. 5.692ns 6.068ns -6.2%
O2(R)-01(F) seg. 7.811ns 7.777ns 0.4%
d1(R »-94(R) seg. 6.619ns 7.138ns -71.3%
O1(R )—94(F ) seg. 8.445ns 8.953ns -5.7%
O1(R)-93(R) seg. 6.737ns 7.276ns -714%
O1(R )—93(F) seg. 8.537ns 9.060ns -5.8%
O1(R)—92(R) seg. 5.899ns 6.340ns -7.0%
1R )—2(F) seg. 6.757ns 7.127ns -5.2%

Table 5.15 Delay Estimates Comparison on The Critical Paths of The OIC Controller
in The SPUR Circuit Using MOS1-DC and MOS2 dc Models

Critical Path Delay Error of MOS1-DC
Path MOS1-DC | MOS2dc | compared to MOS2 dc
93(R )—H3(F ) seg. 15.79ns 14.07ns 12.2%
d2(R )»—93(R) seg. 12.53ns 11.18ns 12.1%
d2(R )-04(R ) seg. 10.76ns 9.458ns 13.8%

Table 5.16 Delay Estimates Comparison on The Critical Paths of The SPUR ALU Circuit
Using MOS1-DC and MOS2 dc Models
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"tune" the model parameters to the circuit to obtain this delay error. Existing switch-level
delay models usually require extensive tuning of the parameters to a given circuit and to a
given process during the circuit design to obtain usable accuracy, but even after that process
they still suffer from poor accuracy as pointed out in Chapter 4. The E-TV delay error can be
reduced further, if desired, by determining KP for each different channel width as well as
each different channel length, or by adapting the MOS1-DC model to include more sophisti-
cated geometric modeling. However, this was not done in E-TV since the error obtained with

the efficient MOS1-DC model is small enough for practical purposes.

6.3.3. THE E-TV GATE CAPACITANCE MODEL

Figure 5.26 illustrates the nonlinear capacitances associated with MOS transistors,
whose values vary with the node voltages at G, D, S and B which represent gate, drain, source
and bulk terminals respectively. Figuie 5.27 illustrates the LGC model that E-TV uses. The
model assumes that the bulk terminal is connected to a constant voltage source. The user is

required to specify the capacitances shown in the figure, where the capacitances are given as

follows:
Cg =Kgate xW x(Cox X(L —2%LD )+CGDO +CGSO ) (5.7.2)
Cd =Kgate xW x CGDO + Keqd x (Cj x AD + Cjsw X PD) (5.7.b)
Cs =Kgate xW X CGSO + Kegqs X (Cj X AS +Cjsw X PS) (5.7¢)
where
Kgate . parameter to obtain equivalent linear gate capacnance
W (L) . channel width (length) of a transistor
LD : lateral diffusion
Cox . gate capacitance per unit area
CGDO (CGSO) :  gate-drain (gate-source) overlap capacitance -
Cj (Cjsw) . junction bottom (sidewall) capacitance

AS (PS) . source area (perimeter)
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Figure 5.27 The Gate Capacitance Model E-TV Uses
( The Constant Grounded Capacitance (LGC) Model )
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AD (PD) ~ :  drain area (perimeter)
Keqd (Kegs) :  parameter to obtain equivalent linear junction capacitance

The suggested value of Kgate is 1.3, as is derived from the experimental results below.

The purpose of the experiment described in this section is to determine the value of
Kgate by which the LGC model of Figure 5.27 can approximate the Méyer gate capacitancé
model best in terms of path delays, and to evaluate how good the resulting approximation is.
The effect of junction capacitances on path delays is usually negligible compared to other

capacitances. Thus, Equations (5.7.a), (5.7.b) and (5.7.c) can be rewritten as follows:

Cg =Kgate xW X (Cox Xx(L —2XLD )+CGDO +CGSO ) (5.8.a)
Cd =Kgate XxW x CGDO (5.8.b)
Cs =Kgate X W x CGSO ' (5.8.)

If the junction capacitances are not negligible for path delays, the suggested vaiue of Keqd
and Kegs for non-graund terminals whose node voltage switches between OV and 5V is 0.54
from [29]. For the experiment, the MOS1 DC model was used to compare the LGC and
Meyer models because if the MOS2 model is used the gate capacitance can not be excluded
from SPICE simulation. Since the oxide thickness of the SOAR and SPUR circuits are 50nm
and 25nm, the corresponding values of Cox are 0.69fF/u? and 1.38/u? respectively, and the
constant grounded capacitances were computed using Equations (5.8.a) to (5.8.c). Tables
5.17 to 5.21 compare the delays through the critical paths, which were computed using the
Meyer model and the LGC model with five different values of Kgate. The numbers in
parentheses are the delay errors of the LGC model compared to the Meyer model. In the
table, "Avg Abs Ermr" is the average of the absolute error, "Max Err" is the maximum error
and "Min Err" is the minimum error, when Kgate of the corresponding column was uscd.

From the tables, it is clear that 1.3 is the best choice as the value of Kgate. For the critical
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Critical Meyer LGC Model
Kgate
P;
ath Model ™3 11 | 12 13 14
O3(R)93(F)seg. | 151.6n | 137.1n | 141.8n 146.4n 150.8n | 155.2n
(9.6%) | (-6.5%) | (-3.4%) | (-0.5%) | (2.4%)

Table 5.17 Delay Estimate Comparison on The Critical Path of The SOAR ALU
Using The Meyer and LGC Models

Critical Meyer LGC Model
Kgate
Parh Model ™% 1.1 12 13 1.4
¢3(R)—03(F)seg. | 167.7n | 162.2n | 164.8n | 169.5n | 171.3n | 173.6n
(-33%) | (-17%) | (1.1%) | 2.1%) | (3.5%)
d2(R)»-93(F)seg. | 53.4n 51.5n 52.3n 53.1n 54.0n 54.8n
(-3.6%) | (-2.0%) | (-0.6%) | (1.1%) | (2.6%)
O1(R)-91(F)seg. | 270.6n | 251.In | 257.8n | 262.9n 269.2n |- 273.0n
| (7.2%) £-4.7%g 5-2.8%2 (-0.5%) 50.9%2
Avg Abs

Ermr 4.7% 2.8% 1.5% 1.2% 2.3%
Max Err -71.2% 4.7% -2.8% 2.1% 3.5%
Min Err -3.3% -1.7% -0.6% -0.5% 0.9%

Table 5.18 Delay Estimates Comparison on The Critical Paths of The SOAR circuits

Using The Meyer and LGC Models

Critical Meyer LGC Model
Kgate
Path Model ™5 11 12 13 | 14
1R )-92(F)seg. | 7.26n 7.1n 7.153n 7.2n 7.26n | 7.31n
(-22%) | (-1.5%) | (-0.8%) | (0%) | (0.7%)

Table 5.19 Delay Estimate Comparison on The Critical Path of NuBus interface
in The SPUR Circuit Using The Meyer and LGC Models
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Critical Meyer LGC Model
Kgate
Path Model 5 11 12 13 14
¢4(R)-01(R)seg. | 5.15n 5.16n 5.21n 5.27n 5.32n 5.37n
(-0.6%) | (04%) | (1.5%) | (2.5%) (3.5%)
d4R)91(F)seg. | 7.28n 7.09n 7.14n 7.20n 7.26n 7.32n
(-2.6%) | (-19%) | (-1.1%) | (-0.3%) | (0.5%)
O3(R)-p4(R)seg. | 5.75n 5.67n 5.72n 5.77n 5.81n 5.86n
(-14%) | (-05%) | (0.3%) | (1.0%) (1.9%)
O3(R)-04(F)seg. | 8.0In 7.8%5n 7.97n 8.02n 8.10n 8.16n
(-1.5%) | (-05%) | (0.1%) | (1.1%) (1.9%)
P3(R)92(F)seg. | 4.75n 4.68n 4.72n 4.77n 4.81n 4.85n
(-2.3%) | (-1.5%) | (-0.4%) | (0.4%) (1.3%)
O2(R )-94(R) seg. 7.00n 6.96n 7.02n 7.07n 7.13n 7.15n
(-0.6%) | (03%) | (1.0%) | (1.9%) (2.7%)
d2(R)~p4(F)seg. | 11.22n | 10.90n 1099n | 11.07n 11.15n 11.24n
. (-2.9%) | (-20%) | (-1.3%) | (-0.6%) | (0.2%)
d2(R —03(R) seg. 6.99n 6.78n 6.81n 6.84n 6.87n 6.90n
(-3.0%) | (-2.6%) | (-2.1%) | (-1.7%) | (-1.3%)
O2(R)-03(F)seg. | 8.84n 8.68n 8.75n 8.81n 8.88n 8.95n
(-1.8%) | (-1.0%) | (-0.3%) | (0.5%) (1.2%)
O2(R)»-01(R)seg. | 592n 5.73n 5.7 5.8n 5.83n 5.86n
(-32%) | (-2.5%) | (-2.0%) | (-1.5%) | (-1.0%)
O2(R }-O1(F) seg. 8.09n 7.90n 7.96n 8.03n 8.09n 8.15n
(-2.3%) | (-1.6%) | (-0.7%) | (0.0%) (0.7%)
¢1(R)H4(R)seg. | 6.84n 6.60n 6.64n 6.67n 6.70n 6.73n
(-3.5%) | (-2.9%) | (-2.5%) | (-2.0%) | (-1.6%)
®1(R )—04(F ) seg. 8.71n 8.32n 8.36n 8.39n 8.43n 8.46n
(-4.5%) | (-4.0%) | (-3.6%) | (-3.2%) | (-2.9%)
®1(R )—03(R) seg. 6.94n 6.73n 6.77n 6.80n 6.83n 6.86n
(-3.0%) | (-24%) | (l2.0%) | (-1.6%) | (-1.2%)
O1(R)—93(F)seg. | 8.77n 8.45n 8.48n 8.52n 8.55n 8.55n
(-3.6%) | (-3.3%) | (2.8%) | (-2.1%) | (-1.6%)
$1(R )»-02(R) seg. 6.11n 5.88n 5.92n 5.95n 5.98n 6.01n
(-3.8%) | (-3.1%) | (-2.6%) | (-2.1%) | (-1.6%)
$1(R)»-02(F)seg. | 7.08n 6.81n 6.87n 6.91n 6.97n 7.02n
- ) | (-3.0%) | (24%) | (-1.6%) | (-0.8%)
Avg Abs
Err 2.6% 2.0% 1.6% 1.4% 1.6%
Max Err 4.5% -4.0% -3.6% -3.2% 3.5%
Min Err -0.6% 0.3% 0.1% 0.0% 0.5%

Table 5.20 Delay Estimates Comparison on The Critical Paths of The OIC Controller
in The SPUR Circuit Using The Meyer and LGC Models
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paths of the test circuits, the delay error of the LGC model using the Kgate of 1.3 was less
than 3.2% compared to the Meyer model. Thus, I conclude that the LGC model is accurate

enough to be used for timing verification.

634. THE AGGREGATE ACCURACY OF THE E-TV MOS DC AND LGC
MODELS

The accuracy of the E-TV MOS dc (MOS1-DC) and LGC models was evaluated in Sec-
tions 6.3.2 and 6.3.3 separately. In this section, the aggregate effect of the MOS1-DC and
LGC models is presented. The delays through the critical paths of the test circuits were com-
puted by SPICE; first using the MOS2 dc and Meyer capacitance models and then using the
MOSI-DC and LGC (Kgate was set at 1.3) models. The results are comparéd’ in Tables 5.22
to 5.26. In the tables, the numbers in parentheses are the delay errors of the MOS1-DC and

LGC models compared to the MOS2 dc and Meyer capacitance models.

As seen in Tables 5.22 and 5.23, the delay error using the MOS1-DC and LGC models
was 10% to 12% for the critical paths of the SOAR circuit, compared to the MOS2 dc model
~ with the Meyer capacitance model. From Tables 5.24 and 5.25, when the MOS1-DC and
LGC models were used to compute the delays through the critical paths of the NuBus inter-
face and the OIC controller of the SPUR circuit, the delay error ranged from -9% to 4%, com-
pared to using the MOS2 dc and Meyer models. From Table 5.26, the MOS1-DC and LGC
models overestimated the delays through the critical paths of the SPUR ALU by 12% to 17%,
compared to the MOS2 dc and Meyer capacitance models. Therefore, for the test circuits,
when the MOS1-DC and LGC models were used, the absolute delay error for critical paths
was less than 17% compared to the MOS2 model using the Meyer capacitance model. Since

much of the delay error comes from the MOS dc model rather than from the LGC model, as
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Critical Meyer LGC Model
Kgate
Path Model ™70 11 12 13 14
O33R )-H3(F)seg. | 16.73n | 16.25n 16.47n 16.6Tn | 16.87n | 17.08n
(-29%) | (-1.6%) | (-04%) | (0.8%) | (2.1%)
02(R)>-93(R) seg. | 13.09n | 13.04n 13.19n 13.35n | 13.50n | 13.66n
(-04%) | (0.8%) 2.0%) | (3.1%) | (4.3%)
$2(R)—9p4(R)seg. | 11.22n | 11.15n 11.32n 1145n | 11.57n | 11.70n
(-0.3%) | (09%) | (2.0%) | (3.1%) | (4.3%)
Avg Abs
Emr 1.2% 1.1% 1.47% 2.3% 3.6%
Max Err -2.9% -1.6% 2.0% 3.1% 4.3%
Min Err -0.3% 0.8% -0.4% 0.8% 2.1%

Table 5.21 Delay Estimates Comparison on The Critical Paths of The SPUR ALU

Using The Meyer and LGC Models

Critical MOS2dc & MOS1-DC &
Path Meyer LGC (Kgate=1.3)
$3(R)-93(F ) seg. 136.0n 150.8n" (10.9%)

Table 5.22 Delay Estimate Comparison on The Critical Path of The SOAR ALU
Using The MOS2 dc and Meyer Models, and The MOS1-DC and LGC Models

Critical MOS2dc & MOS1-DC &
Path Meyer LGC (Kgate=1.3)
d3(R)—H3(F) seg. 152.9n 171.3n (12%)
O2(R )—93(F) seg. 48.6n 540n (11.1%)
O1(R)—1(F) seg. 241.9n 269.2n  (11.3%)

Table 5.23 Delay Estimates Comparison on The Critical Paths of The SOAR circuit
Using The MOS2 dc and Meyer Models, and The MOS1-DC and LGC Models
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Critical MOS2dc & MOS1-DC &
Path Meyer LGC (Kgate=1.3)

1R )—42(F ) seg. 7.46n 7.26n  (-2.7%)

Table 5.24 Delay Estimate Comparison on The Critical Path of The SPUR NuBus interface
Using The MOS2 dc and Meyer Models, and The MOS1-DC and LGC Models

Critical MOS2dc & MOS1-DC &
Path Meyer LGC (Kgate=1.3)
®4(R)—01(R) seg. 5.14n 5.32n (3.5%)
04(R)-O1(F) seg. 7.16n 7.26n (1.4%)

93(R)—04(R) seg. 5.79n 5.81n (0.3%)
O3(R)—04(F ) seg. 8.05n 8.10n (0.6%)
®3(R )—$2(F ) seg. 4.62n 4.81n (4.1%)
®2(R)—d4(R) seg. 7.04n 7.13n (1.3%)
$2(R)—04(F ) seg. 11.32n 11.15n  (-1.5%)
O2(R)-03(R) seg. 7.66n 6.87n  (-10.3%)
&2(R)—43(F) seg. 8.87n " 8.88n (0.1%)
O2(R)—01(R) seg. 6.3n 5.83n (-7.5%)
$2(R)—91(F) seg. 8.08n “8.09n . (0.1%)
O1(R)—94(R) seg. 7.36n . 6.70n (-9.0%)

91(R)—G4(F ) seg. 9.23n 8.43n (-8.7%)
O1(R)—H3(R) seg. 7.45n 6.86n (-8.4%)
O1(R)—03(F) seg. 9.3n 8.55n (-8.1%)
O1(R)—42(R) seg. 6.58n 5.98n (-9.1%)
®1(R)—2(F) seg. 7.46n 6.97n (-6.6%)

Table 5.25 Delay Estimates Comparison on The Critical Paths of The SPUR OIC Controller
Using The MOS2 dc and Meyer Models, and The MOS1-DC and LGC Models

Critical MOS2dc & MOS1-DC &
Path Meyer LGC (Kgate=1.3)

®3(R )—93(F ) seg. 14.94n 16.87n  (12.9%)
$2(R)—03(R) seg. 11.74n 13.50n  (15.0%)
$2(R)-04(R) seg. 9.91n 11.57n  (16.7%)

Table 5.26 Delay Estimates Comparison on The Critical Paths of The SPUR ALU
- Using The MOS2 dc and Meyer Models, and The MOS1-DC and LGC Models
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shown in Sections 6.3.2 and 6.3.3, the delay error is expected to reduce by tuning the parame-
ters such as KP and VTO for different channel widths as well as for different channel lengths

and using design experience.

6.3.5. CONCLUSIONS

The purpose of using timing verifiers is to find problematic signal patbs in a digital sys-
tem due to path delays that are either too long or too short, and which the designer has
difficulty finding because of the complexity of the circuit under analysis. That is, rather than
being used as a substitute for a circuit analysis program such as SPICE [5] or ASTAP (6] or
for a logic simulator such as LOGIS [9] or ILOGS [10], a timing verifier is used to detect the
possibility of timing errors aqd to locate the associated paths in a digital system so that those
suspected signal paths can be analyzed in more detail using accurate circuit-level analysis
programs. Therefore, while the MOS model to be used by tiining verifiers must be accurate
enough to locate tﬁe problematic sigal paths, it does not require the same accuracy as the
model used by circuit analysis programs. Instead, the MOS model for timing verifiers should
be fast enough to examine the millions of paths in the system in a reasonable amount of CPU
time, while accurate enough to identify the critical paths correctly. Note that, in general, a
MOS model becomes less efficient as it becomes more accurate and vice versa. Therefore, it

is important to choose the proper compromise between accuracy and efficiency.

As described in Chapter 4, there are two kinds accuracy associated with delay models to
consider for timing verification: absolute accuracy and relative accuracy. The absolute meas-
ure represents the accuracy of the delay estimates by a delay model compared to the true
delay values (as determined by SPICE, for example), while the relative accuracy represents

the ability of the delay model to determine the slower and faster paths relative to one another.
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Thus, if a delay model has good absolute accuracy, it also has good relative accuracy while
the opposite is not true. In order that a timing verifier may detect a possible timing error, the
delay model needs good absolute accuracy, while the delay model only needs good relative

accuracy to order signal paths in terms of relative delay.

- The existing switch-level RC delay models are very efﬁciént, but they have very poor
absolute accuracy. The parameters for the RC delay models are usually obtained by estimat-
ing the delays through a small set of static gates using the delay models and SPICE, and then
matching the estimated delays by adjusting some coarse, circuit-specific parameters. It is the
SPUR designers’ experience that when those parameters are adjusted optimally, the typical
delay error of the timing verifiers using the RC delay models (e.g., [23,24]) is about 30 %
for paths made of static gate chains only, about 100 % for typical signal paths made of static
gates and pass transistor chains, and much greater (up to 300 % to 400 % in the worst case)
for pass transistor chains {112], when compared to the delays estimated by SPICE. Certainly,
this large delay error is not acceptable for a delay model to be used for the detection of the
possibility of timing errors. Even though, as with any other delay model, the error of such
RC delay models can'be reduced by adjustiné parameters repeatedly after delay comparisons
with the SPICE program on a circuit-specific basis (the delay estimates by the RC delay
models presented in Chapter 4 were obtained after very careful parameter tuning to achieve
the best results by comparing them to the SPICE estimates), it is not méaningful to use such
an approach because the user already has the SPICE delay estimates to begin with! On the
other hand, it has been illustrated that the maximum delay error of the E-TV MOS model

_ (MOS1-DC and LGC models) was only 17% for the critical paths of the test circuits without
repeated tuning of MOS parameters, when compared to the MOS2 dc and Meyer capacitance

models. Thus, I conclude that the E-TV MOS model has sufficient accuracy to detect the pos-



190

sible timing errors in systems of the types described in this dissertation. For some timing
verifier applications (e.g., locating the slowest paths), the delay model may only need good
relative accuracy. However, as illustrated in Chapter 4, the RC delay models do not have
good relative accuracy either. They could not list signal paths in the SOAR circuit in the
correct relative delay order and hence failed to locate the slowest path. On the other hand,
the ELogic delay model located the path successfully. To conclude, the MOS1-DC and LGC
models have far superior accuracy compared to those of the RC delay models used in existing
timing verifiers. While the MOS2 dc and Meyer models might provide more accurate delay
estimates, they are computationally much less efficient than the MOS1-DC and LGC models
and do not provide better relative timing estimates. For these reasons, the MOS1-DC and

LGC models are provided in the E-TV program.
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CHAPTER 7

CONCLUSIONS

Timing verification programs are very important CAD tools for improving the operating
speed, reducing the silicon area and power consumption, and detecting the possibility of tim-
ing errors in a digital system. Even though simulation can be used to analyze a circuit for the
same purposes, the necessary work is exponential in the number of input nodes. Hence tim-
ing verification, which carries out only one analysis (or a small number of analyses) and pro-
vides the same or more information for the improvement or correction of the design much

more quickly, is used in preference.

This dissertation summarized the timing constraints which synchronous systems must
satisfy to operate properly, including those for specific design styles using precharging and
predischarging as well as those for signal paths between pairs of clocked storage elements.
Algorithms for the verification of a synchronous system which uses both edge-triggered and

transparent clocked storage elements in the same design have been presented.

Timing verifiers are available at switch level, block level, and behavioral level. Among
them, switch-level timing verifiers are the most appropriate for MOS designs. Unfortunately,
the existing switch-level delay models suffer from poor accuracy. This dissertation presented
the ELogic delay model which is not only accurate but also fast enough for practical use.
The numerical properties of the ELogic algorithm such as stability and accuracy have been
investigated. Since the i/oltage change a node can make is bounded, the algorithm has proven
to remain in a stable region when solving a linear RC test circuit. The ELogic algorithm can

also be used for simulation.
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E-TV is an accurate timing verifier developed for MOS designs and uses the ELogic
delay model. It detects the possibility of timing errors and locates the critical paths in syn-
chronous and combinational MOS digital systems. E-TV allows the designer to use both tran-

sparent and edge-triggered clocked storage elements in the same synchronous system.

Since E-TV traverses a circuit in the topological order of nodes, its running time is
almost linear with circuit size. Like some other switch-level timing verifiers [24,57], E-TV
uses a rule-based approach to derive transistor signal flow. An approach and a set of rules
developed for E-TV were presented. By using the idea of biconnected transistor groups, the
chance of the signal-flow assignment has been improved. A novel loop-breaking algorithm
which is simple but greatly reduces the number of blocked forward paths was presented. An
efficient switch-level simulation algorithm using topologicai order of nodes is used to pro-

pagate fixed nodes in E-TV.

E-TV approximates the clocked storage element using two types of element: clocked
transparent element and memory element. This approach eliminates problems that arise from
treating any clocked storage element as a pass transistor register, as other switch-level timing
verifiers do. By comparing the transitions at internal nodes of clocked storage elements
directly, E-TV does not need to compute setup times, and clock skew is taken into account for

the detection of time errors automatically.

The experimental results indicate that E-TV can verify multiphase systems successfully,
including dynamic circuits such as precharged modules, domino, and NORA logic. E-TV
with 0.5V step required about 2.7 hours on a VAX 8800 to verify a large system with 34,410
MOS transistors. The current implementation of the E-TV program uses the MOS1 DC and
linear grounded capacitance models for MOS transistors. When the vc;ltage step is equal to

or smaller than 0.5V, the delay error of E-TV was typically less than 10% (as the voltage step
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gets smaller, so does the delay error), compared to SPICE using the same MOS DC model.
Thus, the ELogic analysis method was shown to be not only efficient but also accurate
enough for timing verification. When compared to the SPICE2 DC and Meyer gate capaci-
tance models, the E-TV MOS model were accurate with less than 17% of delay error for the
critical paths of test circuits, and hence has sufficient accuracy to be used for timing
verification. Existing switch-level timing verifiers use RC delay models. Note that, while
they are efficient, they are not sufficiently accurate. On other hand, while the MOS2 DC and
Meyer models are more accurate, they are not efficient enough to examine the uncountable

paths in a design.

Future work to be done remains in following areas. First, it is worthwhile to apply the
concept of "slacks" for MOS source/drain channels to provide the user with a measure of the

severity of the timing problem.

Second, the interface of E-TV to the design data base such as OCT [113, 114] will pro-
vide many benefits. OCT is a CAD/VLSI data representation system which offers an inter-
face for storing information about the various aspects of an evolving chip design. Some
benefits for using such a data base includes the following. Because the higher level circuit
information is available, easy solutions may be found for some problems such as identifying
clocked storage elements. The program can also be enhanced to be more user-friendly. For
example, the program may highlight the worst delay path on a layout using a graphic editor
such as VEM [113, 115] so that the designers can locate it easily. Another possible benefit is
that the program can be easily used for the optimization of a design by logic synthesis tools

that use the same data base.

One final area of future work is due to the fact E-TV may occasionally report unrealistic

worst delay paths. This is a generic limitation of all timing verifiers using the value-
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independent approach. As mentioned in Chapter 3, there have been some attempts [42,43] to
identify such false paths automatically. However, they are not efficient enough for practical
use, and do not take the effect of the propagation delay into account properly in determining
whether a particular path is sensitizable. Developing an efﬁcient algorithm or method which
can locate these false paths and exclude them from consideration is still one of the "open"

research areas in timing verification.
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APPENDIX 1

MOS MODEL PARAMETERS

This appendix contains MOS model parameters that were used for E-TV and SPICE to

analyze the test circuits described in Section 5.13.

(1] MOS model parameters used for the analysis of the SOAR circuit.

[1.1] MOS1 parameters for E-TV and SPICE

* MOS1 parameters for SOAR

* Obtained from MOS2. kp was adjusted to match dc characteristic.
.model nmos nmos vto=0.93 kp=21.8e-6 gamma=0.834 phi=0.695
+ lambda=0.025 1d=0.24u

.model pmos pmos vto=-0.844 kp=4.45e-6 gamma=0.723 phi=0.514
+ lambda=0.0527 1d=0.51u

[1.2] MOS2 parameters for SPICE

* MOS?2 parameters for SOAR

.model nmos nmos(level=2 tox=50n nsub=10e15 vto=0.93 xj=0.45u
+ 1d=0.24u js=1.24¢-4 pb=0.80 uo=381 ucrit=99e4 uexp=0.001

+ utra=0 lambda=0.025 cgbo=4.0e-10 tpg=1

+ cgdo=5.2e-10 cgso=5.2e-10 cj=3.2e4 cjsw=9.0e-10

+ vmax=5.5e4 neff=1.0e-2 rsh=25 delta=1.47 nfs=3.73e11)

.model pmos pmos(level=2 tox=50n nsub=2.97¢14 vto=-0.844 xj=0.0258u
+ 1d=0.51u js=7.75¢e-5 pb=0.88 uo=100 ucrit=18500 uexp=0.145

+ gamma=0.723 lambda=0.0527 cgbo=4.0e-10 tpg=-1

+ cgdo=4.0e-10 cgso=4.0e-10 cj=2.0e-4 cjsw=4.0e-10

+ vmax=10e4 neff=.01 rsh=95 delta=2.19 nfs=1.62¢12)
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[2] MOS model parameters used for the analysis of the SPUR circuit.

[2.1] MOS1 parameters for E-TV and SPICE

* MOS1 parameters for SPUR
* Obtained from MOS2. kp was adjusted to match dc characteristic.
.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.771 1d=0.2u

" .model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045
+ phi=0.735 1d=0.05u

[2.2] MOS2 parameters for SPICE

* MOS2 parameters for SPUR.

.model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
+ tox=25n nsub=4e16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=5.5¢4

+ js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

%

.model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
+ tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

+ js=1000u cgso=220p cgdo=220p cj=67C0u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735



207

APPENDIX 2

MOS1 MODEL PARAMETER ADJUSTMENT

Model parameters for the SOAR and SPUR circuits were available for the MOS2 model
only. Among the five device parameters of the MOS1 model (106, 107] (VTO, KP, GAMMA,
PHI and LAMBDA), all parameters except KP were used without adjustment. In this appen-
dix, the method which is used to determine the value of KP for the MOS1 model from MOS2
model parameters is described. Since the process for SOAR and SPUR is different, their KP
was determined separately. A key idea of the method is to adjust the value of KP of MOS1
to match the dc transfer curve of an inverter shown in Figure A2.1 and to match the value of
current flowing through the inverter to the input change, as much as possible using the MOS1
and MOS2 models. Since the value of KP to be determined for MOS1 depends on the
transistor size used, the average channel length and width of transistors in a circuit was usgd.
The transistor sizes used are illustrated in Table A2.1 The dc transfer curve and the value of
current (/) are compared for both circuits in Figures A2.2, A2.3, A2.4 and A2.5, using the

model parameters presented in Appendix 1.
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Figure A2.1 An Inverter Used To Determine The Values of KP of

The MOS1 Model From MOS2 Model Parameters

SOAR SPUR
M1 || 14um/44pum | 11lpm/1.6um
M2 || 10um/3pum | 6.4pm/1.6pum

Table A2.1 The Size of Transistors (W/L) Used To Determine The Values of

KP of The MOS1 Model From MOS2 Model Parameters




209

Vout

5V

Vin
5V

Figure A2.2 DC Transfer Curve of The Inverter in Figure A2.1

Using The MOS1 and MOS2 Models for SOAR

60uA

¥» Vin

Figure A2.3 Current Through The Inverter Shown in Figure A2.1

Using The MOS1 and MOS2 Models for SOAR
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Vout
5V

Vin
5V

Figure A2.4 DC Transfer Curve of The Inverter in Figure A2.1

Using The MOS1 and MOS2 Models for SPUR

A
300uA

Figure A2.5 Current Through The Inverter Shown in Figure A2.1

Using The MOS1 and MOS2 Models for SPUR
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APPENDIX 3

SPICE INPUT DATA
FOR THE CRITICAL PATHS OF EXAMPLE CIRCUITS

This appendix contains the input data used by SPICE for the analysis of the SOAR and

SPUR examples of Chapter 6.
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[1] SPICE input data for the critical path of the SOAR ALU (¢3(R )—¢3(F ) segment)

* SPICE input data for the critical path of the SOAR ALU
* (§3(R)—93(F ) segment)
A%

.opt acct opts nomod nopage limpts=500
Jtran 1ns 150ns

.print tran v(1016)

* .

e sl sl s S s 3k ke sl sk 5 e e o sk e s afe e sk e s sk e s ke e s ke e s s ke s se sk e o el e ke o e o sl o e o e o e ke sl e s e ke ke sk sk o e e ke ok o o

* MOS1 parameters for SOAR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto=0.93 kp=21.8e-6 gamma=0.834 phi=0.695

+ lambda=0.025 1d=0.24u

.model pmos pmos vto=-0.844 kp=4.45¢e-6 gamma=0.723 phi=0.514

+ lambda=0.0527 1d=0.51u

"""" akeskesteselealefe e etk ke desedele e kel e el e e ke s e ke e o ke ke e el e ke kel s e oe
MOS2 parameters for SOAR

.model nmos nmos(level=2 tox=50n nsub=10e15 vt0=0.93 xj=0.45u

+ 1d=0.24u js=1.24e-4 pb=0.80 uo=381 ucrit=99%4 uexp=0.001

+ utra=0 lambda=0.025 cgbo=4.0e-10 tpg=1

+ cgdo=5.2¢-10 cgso=5.2e-10 cj=3.2e-4 cjsw=9.0e-10

+ vmax=35.5e4 neff=1.0e-2 rsh=25 delta=1.47 nfs=3.73e11)

.model pmos pmos(level=2 tox=50n nsub=2.97e14 vto=-0.844 xj=0. 0258u

+ 1d=0.51u js=7.75¢-5 pb=0.88 uo=100 ucrit=18500 uexp=0.145 "

+ gamma=0.723 lambda=0.0527 cgbo=4.0e-10 tpg=-1

+ cgdo=4.0e-10 cgso=4.0e-10 cj=2.0e-4 cjsw=4.0e-10

+ vmax=10e4 neff=.01 rsh=95 delta=2.19 nfs=1.62¢12)

.options method=gear gmin=10p reltol=0.01 abstol=10p vntol=10u

.options chgtol=1p

ke s e e e 2fe Seske e e e e e She e e e she dfeske abe she she s ofe she e e e e sk e s e e e s e e she el sheale sfe e e she she e e she e e v e e e e e e e e e ke ek ke ok

sk

vdd10dc5
vphi_3 15 0 pulse 05 0 1n 1n 100n 200n
a*

******‘*******

c45450 1ff
c171044 0 77ff
¢1712 707 O 78ff
c1718 15 0 62ff
c1719 15 0 63ff
c1723 15 0 67ff
c1728 15 0 61ff
€1735 762 0 122ff
c1751 67 0 77ff
c1758 778 0 791f
c1762 15 0 62ff
c1764 15 0 63ff



c1768 15 0 67f
c1770 111 0 63ff
c1774 15 0 61ff
c1782 108 0 122ff
c1784 842 0 72ff
¢1802 860 O 78ff
c180S 147 0 791f
c1809 15 0 62ff
c1811 15 0 63ff
c1815 15 0 671f
c1821 15 0 611f
c1829 864 0 122ff
c1831 201 0 72ff
c1849 222 0 78ff
c1852 888 0 79ff
c1856 15 0 62ff
c1858 15 0 63ff
c1862 15 0 67ff
c1868 15 0 61ff
c1876 215 0 122ff
c1878 947 0 70ff
c1897 967 0 79ff
€1900 257 0 79ff
c1904 15 0 62ff
€1906 15 0 63ff

- ¢1910 15 0 66ff
c1916 15 0 61ff
c1925 1016 0 89ff
c1926 303 O 72ff
c1933 15 0 50ff
c1948 326 0 78ff
¢1952 15 0 62ff
c1954 15 0 67ff
€1962 388 0 122ff
€1972 408 0 79ff
€1975 15 0 63ff
c1978 15 0 61ff
c1985 412 0 72ff
c1996 445 0 77ff
c1999 15 0 62ff
€2001 15 0 67ff
€2009 500 O 158ff
€2032 520 0 79ff
c2035 15 0 63ff
€2038 15 0 61ff
c2045 572 0 72ff
€2056 597 0 78ff
€2059 15 0 62ff
€2061 15 0 67ff
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€2069 656 0 122ff
€2079 674 0 79ff
c2082 15 0 63ff
c2085 15 0 61ff
€2092 678 0 72ff
*k

m59015450nmosw=4ul=3u
m414540440nmosw=4ul=3u
v40400dc 5

m11044 98 68 Onmos w=4ul=3u
vo898 0dc 5

m68 68 63 67 0 nmos w=4ul=3u
v63630dcS

m25167 113111 Onmos w=4ul=3u
v1131130dc5

m1611 111 128 1 pmosw=7ul=3u
m1520 128 1270 nmos w=T7ul = 3u
m151 12719108 Onmosw=7ul=3u
vl19190dc5s

m195144 108 11 pmosw=Tul=3u

" m207 148 144 147 0 nmos w = 4ul=3u

m301205147 1 1pmosw=7ul=3u
m285 201 205 196 Onmos w=4ul=3u
m343235201 1 1 pmosw=7ul=3u
m355 237235222 0nmos w=4ul=3u
m323223222 11 pmosw="Tul=3u
m425 215 223286 Onmos w=4ul=3u
m487 3232151 1 pmos w=Tul=3u
m499 259 323 257 O0nmos w=4ul=3u
m467 31125711 pmosw=Tul=3u
m451 3033112950 nmos w=4ul=3u
m51133530311pmosw="7ul=3u
mS523 337 335 326 O nmos w = 4ul = 3u
m616 3923261 1 pmosw="7ul=3u
m596 388 392 383 0 nmos w=4ul=3u
m659 423388 1 1 pmos w=7ul=3u
m671 425 423 408 Onmos w=4ul=3u
m639409408 1 1 pmosw="T7ul=3u
m749 412 409 478 0 nmos w=4ul=3u
m808 4414121 1pmosw="Tul=3u
m697 446 441 445 O nmos w=4ul=3u
m788 507445 1 1 pmos w="7ul=3u
m768 500 507 495 O nmos w=4ul=3u
m9295215001 1 pmosw=7ul=3u
m815 522 521 5200 nmos w=4ul=3u
m909 5795201 1 pmos w=7ul=3u
m893 572 579 567 O nmos w = 4ul=3u
m955 606 572 1 1 pmos w=7ul =3u
m967 608 606 597 0 nmos w =4ul=3u
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m1059 659597 1 1 pmos w=7ul=3u

m1039 656 659 653 0 nmos w =4ul=3u

m1096 688 6561 1 pmos w=7ul=3u

m1108 650 688 674 O nmos w=4ul=3u

m1076 6756741 1 pmos w=T7ul=3u

m1185 678 675 740 0 nmos w=4ul=3u

m1242 703678 1 1 pmos w=Tul=3u

"m1131 708 703 707 O nmos w =4ul =3u

m1222 7697071 1 pmos w=Tul=3u

m1202 762 769 757 Onmos w =4ul =3u

m1259 7887621 1 pmos w=T7ul=3u

m1271 790 788 778 O nmos w =4ul=3u

m1360 846778 1 1 pmos w=T7ul=3u

m1344 842 846 837 O0nmos w=4ul=3u

m1404 876 842 1 1 pmos w=Tul=3u

m1416 878 876 860 O nmos w=4ul=3u

m1384 8618601 1 pmosw="7ul=3u

m1487 864 861 925 Onmos w=4ul=3u

m1544 8898641 1 pmosw=7ul=3u

m1434 850 889 888 O nmos w=4ul=3u

m1524 954 888 1 1 pmos w="T7ul=3u

m1508 947 954 942 0 nmos w=4ul=3u

m1565 976947 1 1 pmos w=7ul =3u

m1577 978 976 967 0nmos w=4ul=3u

m1656 10199671 1 pmos w=T7ul=3u

m1637 1016 1019 1011 0 nmos w=4ul=3u

Jdc v(1016)=5 v(1019)=0 v(967)=5 v(976)=0 v(947)=5 v(954)=0
.ic v(888)=5 v(889)=0 v(864)=5 v(861)=0 v(860)=5 v(876)=0
Jc v(842)=5 v(846)=0 v(778)=5 v(788)=0 v(762)=5 v(769)=0
Jdc v(707)=5 v(703)=0 v(678)=5 v(675)=0 v(674)=5 v(688)=0
.ic v(656)=5 v(659)=0 v(597)=5 v(606)=0 v(572)=5 v(579)=0
Jdc v(520)=5 v(521)=0 v(500)=5 v(507)=0 v(445)=5 v(441)=0
Jdc v(412)=5 v(409)=0 v(408)=5 v(423)=0 v(388)=5 v(392)=0
.dc v(326)=5 v(335)=0 v(303)=5 v(311)=0 v(257)=5 v(323)=0
Jdc v(215)=5 v(223)=0 v(222)=5 v(235)=0 v(201)=5 v(205)=0
Jdc v(147)=5 v(144)=0 v(108)=5 v(127)=5 v(128)=0 v(111)=5
dc v(67)=5 v(68)=5 v(44)=5 v(45)=5 v(15)=0

*

* evaluation logic of n-type dynamic logic gates
mal48 148 100148 101148 O nmos w=4ul=3u
v148 100148 0dc 5

c148 148 0 1ff

dc v(148)=5

c101148 101148 0 1ff

ic v(101148)=5

mb148 101148 1500 nmos w=4ul=3u
mal96 196 100196 101196 0 nmos w=4ul=3u
v196 100196 0 dc 5

c196 196 0 1ff
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ic v(196)=5

c101196 101196 0 1ff

ic v(101196)=5

mbl196 101196 150 O nmos w=4ul=3u
ma237 237 100237 101237 Onmos w=4ul=3u
v237 100237 0dc 5

237237 0 1ff

icv(237)=5

¢101237 101237 0 1ff

ic v(101237)=5

mb237 101237 1500 nmos w=4ul=3u
ma286 286 100286 101286 O nmos w=4ul=3u
v286 100286 0dc 5

c286 286 0 1ff

ic v(286)=5

¢101286 101286 0 1ff

ic v(101286)=5

mb286 101286 150 0nmos w=4ul=3u
ma259 259 100259 101259 Onmos w=4ul=3u
v259 1002590dc 5

€259 2590 1ff

ic v(259)=5

¢101259 101259 0 1ff

ic v(101259)=5

mb259 1012591500 nmos w=4ul =3u
ma295 295 100295 101295 0nmos w=4ul=3
v295 100295 0dc 5 ‘
€295 295 0 1ff

ic v(295)=5

¢101295 101295 0 1ff

ic v(101295)=5

mb295 101295 150 0nmos w=4ul=3u
ma337 337 100337 101337 O0nmos w=4ul=3u
v337 1003370dc 5

¢337 3370 1ff

icv(337)=5

¢101337 101337 0 1ff

ic v(101337)=5

mb337 1013371500 nmos w=4ul=3u
ma383 383 100383 101383 0nmos w=4ul=3u
v383 1003830dc 5

c383 383 0 1ff

dc v(383)=5

c101383 101383 0 1ff

ic v(101383)=5

mb383 101383 1500 nmos w=4ul=3u
mad425 425 100425 101425 Onmos w =4ul=3u
v425 100425 0dc 5

c425 4250 1ff
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ic v(425)=5

c101425 101425 0 1ff

ic v(101425)=5

mb425 101425 1500 nmos w=4ul=3u
mad478 478 100478 101478 0 nmos w=4ul=3u
v478 100478 0dc 5

c478 478 0 1ff

ic v(478)=5

c101478 101478 0 1ff

icv(101478)=5

mb478 101478 150 0nmos w=4ul=3u
mad46 446 100446 101446 Onmos w=4ul=3u
v446 100446 0dc 5

c446 446 0 1ff

ic v(446)=5

¢101446 101446 0 1ff

ic v(101446)=5

mb446 101446 1500 nmos w=4ul=3u
ma495 495 100495 101495 O nmos w=4ul=3u
v495 1004950dc 5

c495 495 0 1ff

dic v(495)=5

c101495 101495 O 1ff

ic v(101495)=5 .

mb495 101495 1500 nmos w=4ul=3u
ma522 522 100522 101522 Onmos w=4ul=3u
v522 1005220dc 5

¢522 522 0 1ff

ic v(522)=5

c101522 101522 O 1ff

ic v(101522)=5

mb522 101522 1500 nmos w=4ul=3u
ma567 567 100567 101567 Onmos w=4ul=3u
v567 1005670dc 5

€567 567 0 1ff

ic v(567)=5

¢101567 101567 0 1ff

ic v(101567)=5

mb567 101567 1500 nmos w=4ul=3u
ma608 608 100608 101608 O nmos w=4ul=3u
v608 100608 0dc 5

c608 608 0 1ff

ic v(608)=5

¢101608 101608 O 1ff

ic v(101608)=5

mb608 101608 1500 nmos w=4ul=3u
ma653 653 100653 101653 Onmos w=4ul=3u
v653 100653 0dc 5

¢653 653 0 1ff
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dc v(653)=5

c101653 101653 0 1ff

ic v(101653)=5

mb653 101653 1500 nmos w=4ul=3u
ma690 690 100690 101690 0 nmos w=4ul=3u
v690 100690 0dc 5

€690 650 0 1ff

ic v(690)=5

¢101690 101690 O 1ff

ic v(101690)=5

mb690 101690 150 0 nmos w=4ul=3u
ma740 740 100740 101740 0 nmos w=4ul=3u
v740 1007400dc S

740 740 0 1ff

dc v(740)=5

¢101740 101740 0 1ff

dc v(101740)=5

mb740 101740 1500 nmos w=4ul=3u
ma708 708 100708 101708 O nmos w=4ul=3u
v708 100708 0 dc 5

¢708 708 O 1ff

dic v(708)=5

c101708 101708 O 1ff

ic v(101708)=5

mb708 101708 150 0 nmos w=4ul=3u
ma757 757 100757 101757 Onmos w=4ul=3u
v757 1007570dc 5

c757 757 0 1ff

Acv(757)=5

c101757 101757 0 1ff

icv(101757)=5

mb757 1017571500 nmos w=4ul=3u
ma790 790 100790 101790 0 nmos w=4ul=3u
v790 100790 0dc 5

c790 790 0 1ff

ic v(790)=5

¢101790 101790 0 1ff

ic v(101790)=5

mb790 101790 150 0nmos w=4ul=3u
ma837 837 100837 101837 Onmos w=4ul=3u
v837 1008370dc 5

c837 837 0 1ff

icv(837)=5

c101837 101837 0 1ff

ic v(101837)=5

mb837 1018371500 nmos w=4ul=3u
ma878 878 100878 101878 O nmos w=4ul=3u
v878 100878 0 dc 5

c878 878 0 1ff
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ic v(878)=5

c101878 101878 0 1ff

ic v(101878)=5

mb878 101878 1500 nmos w=4ul=3u
ma925 925 100925 101925 0nmos w=4ul=3u
v9251009250dc 5

€925 925 0 1f

ic v(925)=5

c101925 101925 O 1ff

ic v(101925)=5

mb925 101925 1500 nmos w=4ul=3u
ma890 850 100890 101860 O nmos w=4ul=3u
v890 1008900dc 5

¢890 890 0 1ff

ic v(890)=5

c101890 101890 0 1ff

dc v(101890)=5

mb890 101890 15 0 0 nmos w =4ul=3u
ma942 942 100942 101942 Onmos w=4ul=3u
v942 100942 0dc 5

c942 942 0 1ff

dc v(942)=5

¢101942 101942 0 1ff

icv(101942)=5 -

mb942 101942 150 0 nmos w=4ul=3u

. ma978 978 100978 101978 O nmos w=4ul=3u
v978 100978 0dc 5

c¢978 978 0 1ff

ic v(978)=5

c101978 101978 O 1ff

ic v(101978)=5

mb978 101978 150 0 nmos w=4ul=3u
mal011 1011 1001011 1011011 0 nmos w=4ul=3u
v1011 1001011 0dc 5

c1011 1011 O 1ff

icv(1011)=5

c1011011 1011011 O 1ff

icv(1011011)=5

mbl011 1011011 1500 nmos w=4ul=3u

* missing cap

c1019 1019 0 1ff

976 976 0 1ff

c954 954 0 1ff

c889 889 0 1ff

c861 861 0 1ff

¢876 876 0 1ff

¢846 846 0 1ff

c788 788 0 1ff

¢769 769 0 1ff

219



¢703 703 O 1ff
¢675 675 0 1ff
c688 688 0 1ff
€659 659 O 1ff
¢606 606 O 1ff
¢579 579 0 1ff
¢521 521 0 1ff
¢507 507 0 1ff
c441 441 0 1ff
¢409 409 0 1ff
423 423 0 1ff
¢392 392 0 1ff
€335 3350 1ff
c¢311 3110 1ff
€323 323 0 1ff
€223 223 0 1ff
€235 235 0 1ff
¢205 205 O 1ff
cl44 144 0 1ff
c127 127 0 1ff
c128 128 0 1ff
c68 68 0 1ff
.end
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[2] SPICE input data for the critical path of the SOAR circuit, excluding the ALU

[2.1] $3(R »-43(F) segment (SOAR)

* SPICE input data for the critical path of the SOAR circuit, excluding the ALU
* O3(R )~3(F) segment
*

.tran 1n 200n
.print tran v(9298)
E 3

.................. " b by ode ok ol ok ol o ade ol o8 e sde ske ske sk ke sk sk sk
e ok o h i ek e e 3¢ 3¢ ofe e 3¢ dfe sle e e e

* MOS]1 parameters for SOAR

* Obtained from MOS?2. kp was adjusted to match dc characteristic.

.model nmos nmos vto=0.93 kp=21.8e-6 gamma=0.834 phi=0.695

+ lambda=0.025 1d=0.24u

.model pmos pmos vto=-0.844 kp=4.45¢-6 gamma=0.723 phi=0.514

+ lambda=0.0527 1d=0.51u
****************************************************************{k****
* MOS?2 parameters for SOAR

.model nmos nmos(level=2 tox=50n nsub=10e15 vto=0.93 xj=0.45u

+ 1d=0.24u js=1.24e-4 pb=0.80 uo=381 ucrit=99e4 uexp=0.001

+ utra=0 lambda=0.025 cgbo=4.0e-10 tpg=1

+ cgdo=5.2e-10 cgso=5.2¢e-10 cj=3.2e-4 cjsw=9.0e-10

+ vmax=5.5e4 neff=1.0e-2 rsh=25 delta=1.47 nfs=3.73e11)

.model pmos pmos(level=2 tox=50n nsub=2.97e14 vto=-0.844 xj=0.0258u
+ 1d=0.51u js=7.75¢e-5 pb=0.88 u0o=100 ucrit=18500 uexp=0.145

+ gamma=0.723 lambda=0.0527 cgbo=4.0e-10 tpg=-1

+ cgdo=4.0e-10 cgso=4.0e-10 cj=2.0e-4 cjsw=4.0e-10

+ vmax—lOe4 neff=.01 rsh=95 delta=2.19 nfs=1.62e12)

ke ke e ofe e she e fe o e e e she e ok afeake ke ke ke e e s o s sfe e e fe e e she e e e e e e e e e Sl S ke e e e S sk e e e Sk e Sk s e S sk She e e S ke ek ke

* O X X K K X X ¥ *

vdd 111111 0dc 5

* clock skew is 5.1n for rising

vphi_3 11073 0 pulse 0 5 4.6n 1n 1n 1500n 2000n

* clock skew is 2.3n for falling

vphi_3_bar 11284 0 pulse 5 0 1.8n 1n 1n 1500n 2000n

Jdc v(9298)=5 v(9075)=5 v(9252)=5 v(9253)=0 v(5345)=5 v(10167)=0

.ic v(10540)=0 v(10793)=5 v(12184)=0 v(12291)=5 v(12335)=5 v(12334)=5
Jic v(12331)=0 v(12333)=5 v(12330)=0 v(12328)=5 v(12286)=0 v(12508)=0
Jdc v(12621)=0 v(12620)=5 v(12535)=0 v(12533)=5 v(12491)=0 v(12400)=0
.ic v(12594)=0 v(12595)=0 v(12381)=5

%

€12594 12594 0 0.1ff
€12595 12595 0 0.1ff



€9252 9252 0 0.1ff
€9253 9253 0 0.1ff
€34493 12491 0 64f
€34660 12184 0 65ff
€34936 12334 0 95ff
€34939 12333 0 78ff
€34943 12328 0 95ff
€34997 12331 0 S5ff
€34998 12330 0 55ff
€35398 12335 0 70ff
€35448 12621 0 188ff
€35449 12620 0 212ff
€35958 12291 0 76ff
€36157 10540 0 86ff
€36906 12286 0 926ff
€36958 9075 0 1251ff
€37113 12535 0 295ff
€37446 5345 0 286ff
¢37601 10167 0 51ff
€37945 12400 0 153ff
€37977 9298 0 73ff
c38064 12381 0 225ff
€38625 12508 0 221ff
c38638 10793 0 987ff
c38684 12533 0 73ff
%k

m24183 9075 5781 9298 111111 pmos w = 4ul=3u

v578157810dc 0

m24248 9075 5284 9298 0 nmos w =4ul=3u

v5284 5284 0dc S

m23932 9075 5346 9252 0 nmos w=Tul=3u

v5346 5346 0dc 5

m23783 09253 9252 O nmos w = 15ul=3u
m24027 9253 119252 111111 111111 pmos w=4ul=8u

v9252 1192520dc 0

m23933 9253 5345 9255 0 nmos w=T7ul=3u

€37673 9255 0 1494
Jdc v(9255)=0

m24265 0 9099 9255 0 nmos w =26ul=3u

v9099 9099 0 de 5

m26511 0 10167 5345 Onmos w=31ul=3u
m27491 10167 10541 10540 0 nmos w =4u1=3u

v10541 10541 0dc 5

m28143 10540 10793 111111 111111 pmos w = 6ul = 3u
m32416 10793 12184 00 nmos w=4ul=3u

m33319 12184 12291 111111 111111 pmos w=11ul=3u
m33289 12291 12473 123350 nmos w =4ul=3u

v12473 12473 0dc 5§

m33304 12291 12475 12335111111 pmos w =4ul=3u
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v12475 124750dc 0

m32856 12335 12292 12334 111111 pmos w=4ul=3u
v12292 12292 0dc 0

m33027 12334 12331 00 nmos w=4ul=3u

m32961 12331 12333 111111 111111 pmos w = 8ul=3u
m33026 0 12330 12333 0 nmos w=4ul=3u

m32958 12330 12328 111111 111111 pmos w=8ul=3u
m33061 12328 12286 0 0 nmos w=4ul=3u

m33762 12286 12610 12508.0 nmos w =4ul=3u

v12610 126100dc 5

m33850 111111 12621 12508 0 nmos w =4ul=3u
m33839 111111 12620 12508 111111 pmos w=7ul=3u
m33849 111111 12620 12621 111111 pmos w= 58.9ul=2.8u
m33863 12620 12535 00 nmos w=27ul=3u

m33469 111111 12422 12552 111111 pmos w=27ul=3u
v12422 12422 0dc 0

dcv(12552)=5

€12552 12552 0 O.1ff

m33468 12552 12533 12535 111111 pmos w=27ul=3u
m33430 0 12491 125330 nmos w=4ul=3u

'm33396 12400 12502 12491 0 nmos w =4u 1= 3u

v12502 12502 0dc §

m33465 12400 12549 12491 111111 pmos w=7ul =3u
v12549 125490dc 0

m33652 12594 10371 12400 111111 pmos w =24ul=3u
v10371 10371 0dc 0

m33653 12595 12422 12594 111111 pmos w = 24ul = 3u
m33654 111111 12381 12595 111111 pmos w =24ul=3u
%

m33089 0 11667 12381 0 nmos w=4ul=3u

Jdc v(12381)=5

m31273 11667 11073 11666 0 nmos w =4ul=3u
m30688 11667 11284 11666 111111 pmos w=7ul=3u
ic v(11667)=0

c11667 11667 0 250ff

* 11073 is phi3 and 11284 is phi3-bar

m31274 11655 11601 11666 0 nmos w =4ul=3u
m30689 11655 11668 11666 111111 pmos w=T7ul=3u
Jdc v(11666)=5

c11666 11666 0 0.1ff

vgl11601 11601 0 dc 5

vg11668 11668 0dc 0

m30678 11654 11492 11655 111111 pmos w=4ul=3u
Jdc v(11655)=5 :

€36920 11655 0 113ff

v11492 114920dc 0

m30715 11654 11694 11653 111111 pmos w=4ul=3u
Jdc v(11654)=5

c11654 11654 0 0.1ff
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v11694 11694 0dc 0

m30676 11652 11592 11653 111111 pmos w=4ul=3u
dc v(11653)=5

c11653 11653 0 0.1ff

v11592 115920dc 0

m30675 11652 10379 11651 111111 pmos w=4ul=3u
ic v(11652)=5

€11652 11652 0 0.1ff

v10379 10379 0dc 0

m30674 11650 11591 11651 111111 pmos w=4ul=3u
dic v(11651)=5

c11651 11651 0 0.1ff

v11591 11591 0dc O

m30673 11650 10312 111111 111111 pmos w=4ul=3u
.dc v(11650)=5

c11650 11650 0 0.1ff

v10312 103120dc 0

.end



225

[2.2] $2(R )—93(F ) segment (SOAR)

* SPICE input data for the critical path of the SOAR cxrcmt, excluding the ALU
" phlZ(R)-ph13(F) segment

Aran 1n 100n
.print tran v(9298)
*

* MOSl parameters for SOAR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto=0.93 kp=21.8e-6 gamma=0.834 phi=0.695

+ lambda=0.025 1d=0.24u

.model pmos pmos vto=-0.844 kp=4.45¢-6 gamma=0.723 phi=0.514

+ lambda=0.0527 1d=0.51u

She e S e e e s e 2 e 3 e 2fe e o 3k e e 2k o ake e ke s 2 ok s e ke abe e e e 2 ok ke abe o ke o b e afe e 2k s sk e 2k 3k 3k o 3 e e ke s e ¢ e e o e ke e e ek e
* MOS?2 parameters for SOAR

.model nmos nmos(level=2 tox=50n nsub=10e15 vto=0.93 xj=0.45u

+ 1d=0.24u js=1.24e-4 pb=0.80 uo=381 ucrit=99¢4 uexp=0 001

+ utra=0 lambda=0.025 cgbo=4.0e-10 tpg—l

+ cgdo=5.2e-10 cgso=5.2e-10 cj=3.2e-4 cjsw=9.0e-10

+ vmax=5.5¢e4 neff=1.0e-2 rsh=25 delta=1.47 nfs=3.73e11)

.model pmos pmos(level=2 tox=50n nsub=2.97¢14 vto=-0.844 xj=0.0258u

+ 1d=0.51u js=7.75e-5 pb=0.88 uo=100 ucrit=18500 uexp=0.145

+ gamma=0.723 lambda=0.0527 cgbo=4.0e-10 tpg=-1

+ cgdo=4.0e-10 cgso=4.0e-10 cj=2.0¢e-4 cjsw=4.0e-10

+ vmax=10e4 neff=.01 rsh=95 delta=2.19 nfs=1.62¢e12)

S9e 3k e dfe e e s e e s e e ok e o e e e she e abe e dbe s e she e she ke she ek sk e s she e she ke o e sk ke o e e ok sk ke 3k ke 3 s ke she ok she e ok s k¢ de e ok e ok sfevke e
*

* clock skew is 2n for rising, 2.34n for falling transitions.

vphil 12285 0 pulse 0 5 1.5n 1n 1n 100n 200n

* clock skew is 1.9n for rising, 1.43n for falling transitions.
vphil_bar 12295 0 pulse 5 0 0.93n In 1n 100n 200n

vdd 1111110dc 5

Jic v(9298)=5 v(9075)=5 v(9252)=5 v(9253)=0 v(5345)=0 v(10167)=5
.ic v(10540)=5 v(10802)=5 v(10793)=0 v(12184)=5 v(12291)=0
€37977 9298 0 73ff

€36958 9075 0 1251ff

€9252 9252 0 0.1ff

€9253 9253 0 0.1ff

€37446 5345 0 286ff

c37601 10167 0 51ff

€36157 10540 O 86ff

c10802 10802 0 0.1ff

€38638 10793 0 987ff

€34660 12184 0 65ff

€35958 12291 0 76ff

¥ K X K ¥ %X X ¥ ¥ ¥
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%k

m24248 9075 5284 9298 Onmos w=4ul=3u

v5284 5284 0dc 5

m24183 9075 57819298 111111 pmos w =4ul=3u
v578157810dc 0

m23932 9075 5346 9252 0 nmos w=Tul=3u

v5346 5346 0dc 5

m23783 09253 9252 0nmos w= 15ul=3u

m23933 9253 534592550 nmos w=Tul=3u

m23973 111111 5272 9255 111111 pmos w=8ul=3u
¢37673 9255 0 1494

ic v(9255)=5

v527252720dc 0

m27028 111111 10167 5345 111111 pmos w = 68ul=3u
m27491 10167 10541 105400 nmos w=4ul=3u
v10541 10541 0dc 5

m28215 10802 10785 105400 nmosw=7ul=3u
v10785107850dc 5

m28293 0 10793 10802 0 nmos w=7ul=3u

m32415 10793 12184 111111 111111 pmos w=8ul=3u
m33329 12184 12291 00 nmos w= 11lul=3u

m32765 12292 12285 12291 0nmos w=4ul=3u
m32793 12292 12295 12291 111111 pmos w=4ul=3u
c37989 12292 0 127f )
m32821 111111 12314 12292 111111 pmos w=23ul=3u
v12314 12314 0dc 0

ic v(12292)=5

.end
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[2.3] $1(R)-¢1(F) segment (SOAR)

* SPICE input data for the critical path of the SOAR circuit, excluding the ALU
: phil(R)-phil(F) segment

.tran 2n 300n
.print tran v(4785)
%

ke el e o e s e s e s e s e s e sk e s she e sk e s e s sk e s e e s e o sl e s e e e e e fe s fe s e s ke s o e s s e ke o o sk sk sk sk sk sk ok ok

* MOS]1 parameters for SOAR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto=0.93 kp=21.8e-6 gamma=0.834 phi=0.695

+ lambda=0.025 1d=0.24u

.model pmos pmos vto=-0.844 kp=4.45¢-6 gamma=0.723 phi=0.514

+ lambda=0.0527 1d=0.51u

e o e e e e e e e s e e sbe she e she e sfe s she o e s e 3k ahe s e e e 3 o e e e ok o e ok o ok ke she ke sk she o b ok e e o s e ok o e ke 3k ke sk S sfe ke e e dfedke e
* ~ MOS?2 parameters for SOAR

.model nmos nmos(level=2 tox=50n nsub=10e15 vto=0.93 xj=0.45u

+ 1d=0.24u js=1.24e-4 pb=0.80 uo=381 ucrit=99%4 uexp=0.001

+ utra=0 lambda=0.025 cgbo=4.0e-10 tpg=1

+ cgdo=5.2e-10 cgso=5.2¢e-10 cj=3.2e-4 cjsw=9.0e-10

+ vmax=5.5¢4 neff=1.0e-2 rsh=25 delta=1.47 nfs=3.73el1)

.model pmos pmos(level=2 tox=50n nsub=2.97e14 vto=-0.844 xj=0.0258u

+ 1d=0.51u js=7.75e-5 pb=0.88 uo=100 ucrit=18500 uexp=0.145

+ gamma=0.723 lambda=0.0527 cgbo=4.0e-10 tpg=-1

+ cgdo=4.0e-10 cgso=4.0e-10 cj=2.0e-4 cjsw=4.0e-10

+ vmax=10e4 neff=.01 rsh=95 delta=2.19 nfs=1.62¢12)

e 3k e 3 ok e e e e e e ahe e she o be o e e e e she e she e ke e she ke s e ke s e o ake e s e s e sk e e sk e ke sk o sk e ke sk e dhe ke she e ok e 2k sk e ok e ke Sheoke ok
%

* clock skew is 7.67n and 7.95n for rising and falling transitions.
vphil 179 0 pulse 0 S 7.2n 1n 1n 500n 1000n

* clock skew 9.21n and 8.74n for rising and falling transitions.
vphil_bar 613 0 pulse 5 0 8.25n 1n 1n 500n 1000n

Vdd 1010100dc 5

.ic v(4785)=5 v(4784)=5 v(5002)=0 v(5006)=0 v(4514)=0 v(4757)=0
.ic v(4500)=5 v(4501)=5 v(4488)=0 v(4717)=0 v(4299)=0 v(4300)=0
.ic v(4296)=5 v(4295)=5 v(4193)=0 v(4198)=0 v(3896)=0 v(4145)=0
.ic v(3878)=5 v(3879)=5 v(3939)=0 v(4100)=0 v(3701)=5 v(3698)=0
Jdc v(3697)=0 v(3653)=5 v(3573)=5 v(3464)=5 v(3465)=0 v(3097)=5
.ic v(3094)=0 v(3093)=0 v(3052)=5 v(2979)=5 v(2869)=0 v(2870)=5
Jdc v(2503)=0 v(2504)=0 v(2500)=5 v(2499)=5 v(2399)=0 v(2403)=0
Jdc v(2286)=0 v(2359)=0 v(2132)=5 v(2131)=5 v(2117)=0 v(2307)=0
Jdc v(2065)=5 v(1805)=0 v(1518)=5 v(1501)=0 v(1502)=0 v(1556)=5
Jdc v(1722)=5 v(1512)=0 v(1752)=0 v(1513)=5 v(1499)=0

€2424 2424 0 0.1ff

€2980 2980 0 0.1ff

€2978 2978 0 0.1ff

* N K X K N ¥ * ¥ %



€3574 3574 0 0.1ff
c4791 4791 0 0.1ff
€34696 3896 0 52ff
c34727 4500 0 55£f
€34743 4488 0 243ff
c34867 4717 0 81ff
€35101 2399 0 243ff
€35106 2403 0 81ff
€35192 4514 0 52ff
€35276 2500 0 55£f
€35379 2065 0 53ff
¢35471 3052 0 243ff
c35482 2979 0 81ff
€35597 2503 0 53ff
€35694 3094 0 55ff
€36293 3653 0 243ff
€36311 3573 0 81ff
€36400 3097 0 53ff
€36543 3698 0 55ff
€36754 4193 0 243ff
€36761 4198 0 81ff
c36808 1501 0 55ff
¢36810 1513 O 86ff
c36818 1556 0 243ff
c36887 1722 0 736ff
€36916 3701 O 53ff
€36959 4296 0 S55ff
€37137 2132 0 55ff
c37178 2117 0 243ff
€37332 2307 0 81ff
c37427 1518 0 52ff
€37437 5002 0 243ff
€37456 5006 0 81ff
€37641 4299 0 53ff
€37816 2286 0 52ff
€38248 2869 0 52ff
€38505 3464 0 52ff
€38579 3878 0 S5ff
€38598 3939 0 243ff
c38686 4100 0 81ff
c1499 1499 0 0.1ff
c1502 1502 0 0.1ff
c1512 1512 0 0.1ff
€1752 1752 0 0.1ff
c1805 1805 0 0.1ff
€21312131 00.1ff
€2359 2359 0 0.1ff
€2499 2499 0 0.1ff
€2504 2504 0 0.1ff
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€2870 2870 0 0.1ff
¢3093 3093 0 0.1ff
€3465 3465 0 0.1ff
€3697 3697 0 0.1ff
€3879 3879 0 0.1ff
c4145 4145 00.1ff
c4295 4295 0 0.1ff
c4300 4300 0 0.1ff
c4501 4501 0 0.1ff
c4757 4757 0 0.1ff
c4784 4784 0 0.1ff
c4785 4785 0 0.1ff
*

m12130 4785 614 4784 101010 pmos w =7ul = 3u
m12578 4784 182 4785 0 nmos w=4ul=3u
m12599 4784 5002 0 0 nmos w= 12ul=3u
m12343 5002 557 5006 101010 pmos w =4ul=3u
v5575570dcO

m12381 5006 4514 4789 0 nmos w=4ul=3u
m12382 5006 4791 4789 101010 pmos w =4ul=3u
* inverter made from 4514 to 4791

mzz 4791 4514 00 nmos w=4ul =4u

mzz1 1010104514 4791 101010 pmos w =4ul=4u
ic v(4791)=5

*

m12133 101010 4790 4789 101010 pmos w=8ul=3u
v479047900dc O

ic v(4789)=5

c4789 4789 0 0.1ff

m12043 4757 4513 4514 101010 pmos w = 16ul = 3u
m12044 101010 4500 4757 101010 pmos w = 16ul = 3u
m11361 4501 182 4500 0 nmos w=4ul=3u

m12033 4501 614 4500 101010 pmos w =7ul=3u
m11402 4501 4488 0 Onmos w= 12ul=3u

m11802 4717 557 4488 101010 pmos w =4ul =3u
*y5575570dcO

m11756 4512 4299 4717 0 nmos w =4u 1= 3u
m11757 4512 4513 4717 101010 pmos w =4ul=3u

* inverter made from 4299 to 4513

mzzz 45134299 0 0nmos w=4ul=4u

mzzz1 101010 4299 4513 101010 pmos w = 4ul=4u
ic v(4513)=5

c4513 4513 00.1ff

*

m12026 4512 4487 101010 101010 pmos w = 8ul =3u
v4487 4487 0dc 0

dc v(4512)=5

c4512 4512 0 0.1ff

m10704 4300 4220 4299 101010 pmos w = 16ul = 3u
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m10705 101010 4296 4300 101010 pmos w = 16ul=3u
m10939 4295 182 4296 0 nmos w=4ul=3u

v182 1820dc5

m10700 4296 614 4295 101010 pmos w = 7ul=3u
v6146140dcO

m11313 4295419300 nmos w= 12ul=3u

m10464 4193 557 4198 101010 pmos w =4ul=3u
*v5575570dc 0

m10490 4198 3896 4219 0 nmos w=4ul=3u
m10491 4198 42204219 101010 pmos w =4ul=3u
m10703 101010 4197 4219 101010 pmos w = 8ul = 3u
v419741970dc O

icv(4219)=5

c4219 4219 0 0.1ff

* inverter made from 3896 to 4220

mzzzz 4220 3896 00 nmos w=4ul=4u

mzzzz1 101010 3896 4220 101010 pmos w =4ul=4u
dc v(4220)=5

42204220 00.1ff

E

m10331 4145 3895 3896 101010 pmos w = 16ul = 3u
v389538950dcO

m10332 101010 3878 4145 101010 pmos w = 16ul = 3u
m9718 3879 182 3878 Onmos w=4ul=3u

*v182 1820dc 5

m10321 3879 614 3878 101010 pmos w =T7ul=3u
*v614 614 0dc O

m9783 3879 3939 00 nmos w = 12ul= 3u

m10108 4100 557 3939 101010 pmos w =4ul=3u
*v5575570dcO

m10536 4100 3895 3893 O nmos w=4ul=3u
*v389538950dc 5

m10535 4100 3701 3893 101010 pmos w =4ul=3u
m10586 101010 1010878 3893 101010 pmos w = 30u 1= 3u
¢38697 3893 0 157ff

v1010878 1010878 0 dc O

Jdc v(3893)=5

. m9698 03698 3701 O nmos w=4ul=3u

m9686 3697 182 3698 O nmos w=4ul=3u
*v1821820dc5

m9049 3698 614 3697 101010 pmos w=T7ul=3u
*v614 6140dc 0

m9253 3697 3653 101010 101010 pmos w = 30ul=3u
m9270 3653 557 3573 101010 pmos w =4u 1= 3u
m8665 3610 3574 3573 0 nmos w=4ul=3u

m8667 3610 3464 3573 101010 pmos w =4ul=3u

* inverter made from 3464 to 3574

mzzzzz 3574 3464 0 0 nmos w=4ul=4u

mzzzzz1 101010 3464 3574 101010 pmos w = 4ul=4u
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Jdc v(3574)=0
%*

*m9667 0 3698 3610 0nmosw=121=3

*v3698 3698 0dc 5

m9667 0 13698 3610 0 nmos w= 12ul=3u

v13698 13698 O dc 5

¢36290 3610 0 157ff

ic v(3610)=0 .

m8286 3464 3465 0 0 nmos w=4ul=3u

m8482 101010 3097 3465 101010 pmos w = 8ul = 3u
m7709 0 3094 3097 O nmos w =4ul=3u

m7719 3093 182 3094 O nmos w =4ul=3u

*v182 1820dc5

m7427 3094 614 3093 101010 pmos w=7ul=3u
*v614 6140dc 0

m7690 3093 3052 101010 101010 pmos w = 30ul = 3u
m?7675 3052 557 2979 101010 pmos w =4ul=3u
*y5575570dc0 '

m7028 2979 2869 2978 0 nmos w =4ul = 3u

m?7029 2979 2980 2978 101010 pmos w =4ul=3u
m7706 2978 3009 0 0 nmos w=4ul=3u
v300930090dc 5

* inverter made from 2869 to 2980 -

mxzz 2980 2869 0 0 nmos w =4ul=4u

mxzz1 101010 2869 2980 101010 pmos w = 4ul =4u
ic v(2980)=5

3

m6890 2917 2870 2869 101010 pmos w = 16ul=3u
m6891 101010 2709 2917 101010 pmos w = 16ul=3u
v270927090dc 0

icv(2917)=5

c2917 2917 00.1ff

m6682 02503 2870 0 nmos w=4ul=3u

mS5856 2504 112424 2503 101010 pmos w= 16ul=3u
v112424 112424 0dc O ,

mS5857 101010 2500 2504 101010 pmos w = 16ul=3u
m6109 2499 182 2500 0 nmos w=4ul=3u

*v182 1820dc 5

m5853 2500 614 2499 101010 pmos w =T7ul=3u
*v614 6140dc O

m6126 2499 2399 0 0 nmos w = 12ul=3u

m5618 2399 557 2403 101010 pmos w =4ul=3u
*y5575570dc O

m5644 2403 2286 24230 nmos w=4ul=3u

m5645 2403 2424 2423 101010 pmos w =4ul=3u
m5855 101010 2402 2423 101010 pmos w = 8ul=3u
* inverter made from 2286 to 2424

mxxzz 2424 2286 0 0 nmos w =4u 1 =4u

mxxzz1 101010 2286 2424 101010 pmos w =4ul=4u



Jdc v(2424)=5
*

v240224020dc O

dc v(2423)=5

2423 2423 0 0.1ff

m5492 2359 2287 2286 101010 pmos w = 16ul = 3u
v228722870dc 0

m5493 101010 2132 2359 101010 pmos w = 16u I = 3u
m5255 2131 1822132 0nmos w=4ul=3u
*v1821820dc S

m5482 2131 614 2132 101010 pmos w=7ul=3u
*v614 614 0dc 0

m4929 2131211700 nmos w=12ul=3u

m5267 2307 557 2117 101010 pmos w =4u 1= 3u
*v5575570dc 0

*m5694 2307 22872116 0nmosw=41=3

m5693 2307 2065 2116 101010 pmos w =4ul=3u
m5738 101010 12132 2116 101010 pmos w = 30ul = 3u
icv(2116)=5

c37392 2116 0 157ff

v12132 121320dc 0

m4513 2065 1805 0 0 nmos w=4ul=3u

m4060 101010 1518 1805 101010 pmos w = 8ul=3u
m3326 0 1501 1518 0nmos w=4ul=3u

m3309 1502 182 1501 O nmos w=4ul=3u
*v1821820dc 5

m3943 1502 614 1501 101010 pmos w = 7u 1= 3u
*v614 614 0dc 0

m3961 1502 1556 101010 101010 pmos w = 30ul=3u
m3718 1722 559 1556 101010 pmos w =4ul=3u
v5595590dcO

m4000 0 1512 1722 0 nmos w=40ul = 3u

m3947 1512 348 1752 101010 pmos w = 10ul=3u
v348 3480dc O

m3740 101010 1513 1752 101010 pmos w=20ul = 3u
m3336 0 1499 1513 0nmos w= 12ul=3u

m3308 1500 179 1499 0 nmos w=4ul=3u

m3942 1500 613 1499 101010 pmos w = 7ul = 3u
m3960 1500 1557 101010 101010 pmos w = 30ul = 3u
dc v(1500)=5

¢1500 1500 0 O.1ff

v155715570dc O

.end
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(3] SPICE input data for the critical path of the NuBus Interface Controller in the SPUR cir-

cuit

* SPICE input data for the critical path of the NuBus Interface
* Controller in the SPUR circuit

* (61(R)—92(F ) segment)

.tran 0.5n 10n

.print tran v(265)

ok

e S 3 3 3 e S e e e e e e e e e e e e e e e sk e o e e e e e e e e e e e s e 3k s s e e e ke e e ofe e e b e e e e e e e fe e e e e e ok ke e oke ke

* MOS]1 parameters for SPUR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025

+ phi=0.7711d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

+ phi=0.735 1d=0.05u

ade afe sfe e ok e sfe e e e o S e 3 e s 3k e ahe ke e e e e ahe e e s e e afe e e ke she e e e 3 e e e ke e S b e e o e ke e e e o e e o s ke 2k e e o e ke e e ok
* MOS2 parameters for SPUR.

* .model nmos nmos level=2 vio= 0.75 kp=76.0u gamma=.40 lambda=.025

* + t0x=25n nsub=4¢16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=>5.5e4

* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=. 045

* +tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735

e 3 e e 3fe 3he 2 e 2 e e ohe e 3 e afe e dke e e e ok e e sk 3 e she e e e ke e e ke e e ke e o ke e sk ke e e e sk e e e dhe e she e ke she e e e e e sfe e e o e e ke
*

vphil 3310 pulse 05 00.01n0.01n 25.0n 100n
vphil_1290 0 pulse 5 0 0 0.01n 0.01n 25.0n 100n
v2682680dcS

v2462460dcO

v3093090dcO

vdd 1000dc S

Jdc v(265)=0 v(223)=0 v(120)=5 v(143)=0

.dic v(202)=5 v(201)=0 v(245)=5 v(331)=0

c807 265 0 45fF

c848 223 0 46ff

€951 120 0 158ff

€929 143 0 186ff

¢869 202 0 183ff

¢870 201 0 355ff

c827 245 0 86ff

€741 331 0 2671ff

m625 265 268 223 O nmos w =3.2ul= 1.6u
m594 265 246 223 100 pmos w = 3.2ul = 1.6u



m572 100 120 223 100 pmos w=6.4ul=1.6u
m325 120 143 0 0 nmos w = 3.2ul = 1.6u

m44 143 0 100 100 pmos w=3.2ul=3.2u
m318 143202 00 nmos w =3.2ul= 1.6u
m548 202 201 00O nmos w =8.8ul= 1.6u
mS597 100 245 201 100 pmos w = 13.6ul = 1.6u
m719 309 331 245 O nmos w = 3.2ul= 1.6u
m679 309 290 245 100 pmos w=3.2ul = 1.6u
.end '
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[4] SPICE input data for the critical path of the On-Chip Instruction Cache Controller in the

SPUR circuit

[4.1] $4(R )-91(R ) segment (SPUR On-Chip Instyuction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* ($4(R)—91(R) segment)
%

e ke 2 e e e e e e 3 e e e e s e e ke e e e s e e sk she e e s e e b e S 3k e e e o e e e ek e o e o e e o e s ke e de ke o o e s e e ke e s ek ok

* MOS]1 parameters for SPUR

* Obtained from MOS?2. kp was adjusted to match dc characteristic.

.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025

+ phi=0.771 1d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

+ phi=0.735 1d=0.05u

she o e 3k 3 3 e she e dhe e e o fe e fe e e e e e dfe sk e e e e e e e he e e e e e e e e e e e e e e o e ke e e e e she e e e b e ke e e e S e ke e dhe ke ke
* MOS2 parameters for SPUR.

* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4e16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=5.5¢4

* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735

e 3k 3k ok ok she sk afe e o s e s 2 s s s s she ke ok 3k 3¢ 3¢ s 3 ke o e ke ke e e ok 2k 3k sk e e ke e ke s sk ke ok o sk 3k 3¢ 3k 3 2k ok 2k ok ok ok ok 2k 2k 2k vk ok ok e e ok 3k
*

vdd20dc S

c1437 192 0 97ff

c1439 190 0 803ff

c1489 101 0 585ff

c1540 85 0 60ff

c1541 87 0 128ff

c1543 84 0 41ff

c1475 154 0 80ff

m248 8402 2 pmos w=3.2ul=3.2u
m268 0 85 84 O nmos w =3.2ul=1.6u
m251 087 850 nmos w=3.2ul= 1.6u
m288 2 101 87 2 pmos w = 13.6u 1 = 1.6u
m541 101 192 0 0 nmos w =8ul=1.6u
m534 192 194 154 2 pmos w = 3.2ul = 1.6u
mS528 192 150 154 O nmos w = 3.2ul = 1.6u
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m392 154022 pmosw=32ul=3.2u

.print tran v(84)

Jdc v(84)=0 v(85)=5 v(87)=0 v(101)=5 v(192)=0.v(190)=0 v(154)=5
vphi4 1900 pulse 050 1n 1n 14n 80n

vphi4_b 194 0 pulse 500 1n In 14n 80n

tran 0.1n 10n

.end
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[4.2] $4(R )-91(F ) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* ($4(R)—91(F ) segment)

...............................................................

* MOS1 parameters for SPUR
* Obtained from MOS2. kp was adjusted to match dc characteristic.
.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.771 1d=0.2u
.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045
+ phi=0.735 1d=0.05u
"""" el e 3he s e e S e ahe s e she s e ahe e ahe e ohe e ke she s e she e 3 el ke she abe o ke abe she b e e e e e e ke ke 2he ke e ke b e ek
* MOS?2 parameters for SPUR.
* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4¢16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=5.5e4
* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p
** phi F = -0.3855862 -> phi=0.771
* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4
* + js=1000u cgso=220p cgdo=220p cj=67Cu cjsw=215p cgbo=400p
** phi F = 0.3675644 -> phi=0.735

ke e 2 e e S e e e s e e e sfe e s e e o b e e s e e e s e e e e s e e e e s e e s e e de ae she e e sk e she ke e she e s sfe e o ke sk e e s b sk e e ok e
E 3

vdd20dcs

€1217 393 0 97ff

c1438°191 0 96ff

€1439 190 0 803ff

¢1493 100 0 5871ff

¢1537 90 0 65£f

€1539 89 0 127f

c1545 82 0 50ff

c1476 153 0 75ff

m1178 393 129 82 2 pmos w = 3.2ul= 1.6u
v1291290dc0

m1181 393 131 82 0 nmos w =3.2ul= 1.6u
v1311310dcS

m246 82022 pmos w=3.2ul=32u
m272090 820 nmos w=3.2ul = 1.6u
m255 0 89 90 0 nmos w = 3.2ul= 1.6u
m284 2 100 89 2 pmos w = 13.6u 1= 1.6u
m5400 191 100 0 nmos w = 8ul=1.6u
m533 191 194 153 2 pmos w = 3.2ul= 1.6u
mS527 191 190 153 O nmos w = 3.2ul= 1.6u
m391 153022 pmosw=3.2ul=32u
.print tran v(393)
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¢ v(393)=0 v(82)=0 v(90)=5 v(89)=0 v(100)=5 v(191)=0 v(153)=5 v(150)=0
vphi4 1900 pulse 050 1n 1n 14n 80n

vphi4_b 194 0 pulse 500 1n In 14n 80n

tran 0.1n 10n

.end
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[4.3] $3(R )~$4(R) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

: (03(R)—44(R) segment)
obe 3be 3k she e sk be abe ke she 3¢ ol ."'_"' e 3k 3¢ 2 3l ¢ ¢ 3k e ek e

* MOS1 parameters for SPUR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025

+ phi=0.771 1d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

+ phi=0.735 1d=0.05u

35 3o e e ke dfe e he e e e e e e o e She e o e 2 e e e S e dfe 2 e e e e e e v e e e e e S She e ke e e o e e she e o e ke e e e ke 3k b e e ke ke ke e e ke K¢
* MOS?2 parameters for SPUR.

* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* +'tox=25n nsub=4e16 tpg=+1 xj=.25u ld=.20u uexp=.16 vmax=5.5e4

* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* 4+ js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735 '

Sheje 3k e 3 b e ke s e 3 afe e e she e e s heshe e s e e s e e e 3 e feshe e e s she e e s she ke s s sfe e e she e s e e ke fe sfe e ke s e e sk e sfeofe e sfe e sfesfe o
*

vdd20dc 5

c1352 80 0 572ff

c1361 262 0 100ff

c1362 261 0 720ff

€1549 59 0 135ff

c1577 35 0 92ff

c1604 8 0 84ff

c1434 195 0 93ff
m68022pmosw=32ul=32u
m17583500nmos w=3.2ul=1.6u
m163 059 350 nmos w=3.2ul=1.6u
m244 2 80 59 2 pmos w = 13.6ul = 1.6u
m855 0262 80 0 nmos w = 8ul=1.6u
m827 262 261 195 0 nmos w=3.2ul=1.6u
m842 262 270 195 2 pmos w =3.2ul = 1.6u
m543 195022 pmosw=32ul=24u
.print tran v(8)

.dc v(8)=0 v(35)=5 v(59)=0 v(80)=5 v(262)=0 v(195)=S5 v(261)=0
vphi3 2610 pulse 050 In 1n 14n 80n
vphi3_b 2700 pulse 500 1n 1n 14n 80n
tran 0.1n 10n

.end
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[4.4] 3(R )-94(F ) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* (03(R )—04(F ) segment)
ok

* MOS1 parameters for SPUR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025

+ phi=0.771 1d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

+ phi=0.735 1d=0.05u

3le e 3l e s e e ae e e o e e s e s e e s sfe ke b e e s e ke s b e s o S he e s she e e s 3 she e e ae o b e afe e de sl e e e e e ke e e Sfe e e e S e ke ke ke
* MOS2 parameters for SPUR.

* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025

* + tox=25n nsub=4e16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=5.5e4

* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771 ,

* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045

* 4+ tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735

34 34 e sk 2 ke 2 o e e e e s e Sfe e S e e S e e e 2 e e she ke e ke e e e v e e S e e S b e e e S e e S e e 3 S e ke ke e 2k ke Sk e 3 20 2k ke e e e e e
*

vdd20dc S

c1207 403 0 113ff

c1351 71 O 786ff

€1360 263 0 99ff

c1362 261 0 720ff

c1555 70 0 107ff

c1564 47 0 109ff

c1599 12 0 112ff

c1603 9 0 79ff

c1433 196 0 93ff

m1205 9 190 403 O nmos w = 6.4ul= 1.6u
v1901900dc5

m1530 1290 nmos w=3.2ul=1.6u
ml012022 pmos w=32ul=32u

m95 12 47 00 nmos w=3.2ul = 1.6u
m2174770 00 nmos w=8.8ul= 1.6u
m228 271 70 2 pmos w = 13.6u 1 = 1.6u
m856 71263 00 nmos w=8ul=1.6u
m828 263 261 196 0 nmos w = 3.2u 1= 1.6u
m843 263 270 196 2 pmos w = 3.2u 1 = 1.6u
m544 19602 2 pmos w =3.2ul=24u
.print tran v(403)
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Jdc v(403)=5 v(9)=5 v(12)=0 v(47)=5 v(70)=0 v(71)=5
Jc v(263)=0 v(196)=5 v(261)=0

vphi3 2610 pulse 050 1n 1n 14n 80n

vphi3_b 270 0 pulse SO0 1n 1n 14n 8Cn

tran 0.1n 10n

end
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[4.5] $3(R )—42(F ) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

: ($3(R)—92(F) segment)
Aedecdesheseode ok deokeseodeofoleafe ol delesteeofe stolekoleof ok ook ookt steoflekodetesok ek steole ek stk e o sk ek ok o
* MOS]1 parameters for SPUR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025

+ phi=0.771 1d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

+ phi=0.735 1d=0.05u

ahe e obe e e e o s e sfe e e s e she e o e e e she e e e ok s e s ok dhe ke e abe e el e e e e e she e e obe e she e e e ofe S e S e S e e ke S e dbe e e 2k ke ke ke e
* MOS?2 parameters for SPUR.

* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025

* 4+ tox=25n nsub=4e16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=5.5¢4

* 4+ js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045

* + tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735

3¢ 3fe 2 e e She e ke dfe she e e e he e e S e e e ke s e s e e s s ke e 2 e e e e e e 3¢ s e e s ke s b e e e e e e fe She e e e e e e ke Sk ke e e ke ke ek ok
%k

vdd20dc5

c1351 71 O 786ff

c1360 263 0 991f

c1511 111 0 12ff

c1521 109 0 116ff

¢1362 261 0 720ff

c1433 196 0 93ff

m308 109 112 111 2 pmos w=11.2ul=1.6u
v1121120dc0

m307 1117122 pmos w=112ul= 1.6u
m856 71263 00 nmos w = 8ul=1.6u

m828 263 261 196 0 nmos w=3.2ul= 1.6u
m843 263 270 196 2 pmos w=32ul=1.6u
m544 196022 pmos w=3.2ul=2.4u

.print tran v(109)

Jic v(109)=0 v(111)=0 v(71)=5 v(263)=0 v(196)=5 v(261)=0
vphi3 2610 pulse 050 In In 14n 80n
vphi3_b 270 0 pulse 500 1n 1n 14n 80n
tran 0.1n 10n

.end
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[4.6] $2(R )-94(R) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* (92(R )~94(R) segment)
*

* MOS1 parameters for SPUR

* Obtained from MOS2. kp was adjusted to match dc characteristic.
.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.771 1d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045
+ phi=0.735 1d=0.05u

e sk o o e e sfe e e e s s s e she bk 3¢ 3he 3k 3he Sk Sk Sk S ke she 3¢ sk sk sk 3k sk sk 3k e ke e o ke sk ok ek e o o ke ok ke ke sk s e ke ke sl s o o steshesheofe e sfe ek sk

* MOS2 parameters for SPUR.

* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4¢16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=5.5¢4

* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735

abe e ke e e 2 e s e S e 3 e b S e S e S b e b e ke e e e o e e fe e e 3 e sk e o e e e e e ke S e She S e ke e e S e e e e e ke e ¢ e e e e e ek Sk
*

vdd20dc5

c1250 66 0 835ff

c1252 123 0 892ff

¢1257 357 0 100ff

c1569 43 0 157ff

c158527 0 87ff

c1606 6 O 84ff

¢1298 319 0 59ff
m46022pmosw=32ul=32u

m168 0276 0nmos w=3.2ul=1.6u
m109043 270 nmos w=3.2ul= 1.6u
m212 2 66 43 2 pmos w = 13.6u 1 = 1.6u
m1121 0357 66 0nmos w = 8ul=1.6u
m1102 357 1233190 nmos w=3.2ul=1.6u
m1113 357112319 2 pmos w=3.2ul=1.6u
m1028 319022 pmos w=32ul=3.2u
.print tran v(6)

Ac v(6)=0 v(27)=5 v(43)=0 v(66)=5 v(357)=0 v(319)=5 v(123)=0
vphi2 123 0 pulse 050 1n 1n 14n 8Cn
vphi2_b 112 0 pulse S00 In 1n 14n 80n
Aran0.1n 10n

.end
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[4.7] $2(R )—¢4(F ) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

: ($2(R)—44(F) segment)
*: : Lo ok Lo ok : : : .......... : ......... e wde ke jeok :‘ ---------- ‘*#**********
* MOS1 parameters for SPUR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025

+ phi=0.771 1d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

+ phi=0.735 1d=0.05u

e 3 e 2 3 e ke e e e e e e e e e e e S e e e e e e e e S ke e e e e e e e e e S e e e afe e she e e e e e e e e e e e e e e e e e ke e e e ke ke
* MOS?2 parameters for SPUR.

* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4¢16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=5.5¢4

* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* 4+ tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

%k

vdd20dc5

c1303 317 0 971f

c1343 278 0 94ff

c1334 286 0 91ff

c1335 287 0 136ff

c1307 116 0 527ff

c1518 117 0 116ff

¢1249 69 0 773ff

€1256 358 0 100ff

c1252 123 0 892ff

¢1297 320 0 68ff

c1509 118 0 18ff

m1013 317 190278 O nmos w = 3.2ul=1.6u
m1019 317 194 278 2 pmos w = 3.2ul = 1.6u
v1901900dc5

v1941940dc0

m864 278022 pmos w=3.2ul=3.2u
m944 278 286 0 O nmos w =3.2ul= 1.6u
m876 0287 286 O nmos w =3.2ul=1.6u
m983 2 116 287 2 pmos w = 13.6u 1l = 1.6u
m328 0117 116 0 nmos w =5.6u 1= 1.6u
m3152 119 118 2 pmos w = 16.8u 1 = 1.6u
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'v1191190dcO
m314 118 69 117 2 pmos w = 16.8ul = 1.6u
m1122 69 358 0 0 nmos w =8ul = 1.6u
m1103 358 123 320 0 nmos w=3.2ul = 1.6u
m1114 358 112 320 2 pmos w = 3.2ul = 1.6u
m1029 320022 pmosw=3.2ul=32u
.print tran v(317)
dc v(317)=0 v(278)=0 v(286)=5 v(287)=0 v(116)=5 v(118)=5
Jdc v(117)=0 v(69)=5 v(358)=0 v(320)=5 v(123)=0
vphi2 123 0 pulse 050 1n In 14n 80n
vphi2_b 112 0 pulse 500 In 1In 14n 80n
tran 0.1n 15n
.end
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[4.8] $2(R »-93(R) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* (02(R )—93(R) segment)

%

e e 2l e 2k she ol e S ke e she e sfe ke dde ke e s 3k s o e e e o e ok e afe s ke 3 S e e e e o ol e o ale ake ole ok dfe e 3 3 3k sk 3k sk o 2 ok 2k dle 3fe sfe e
* MOS1 parameters for SPUR

* Obtained from MOS?2. kp was adjusted to match dc characteristic.
.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.771 1d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045
+ phl=0 735 1d=0.05u

* MOS2 parameters for SPUR

* model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* 4+ t0x=25n nsub=4e16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=5.5¢4

* 4+ js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

* model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* 4 t0X=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* 4+ js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735

*********************************************************************
%

vdd20dcS

¢1363 73 0 9791f

c1374 255 0 136ff

c1406 223 0 86ff

¢1428 201 0 100ff

c1519 114 0 101ff

¢1520 113 0 116ff

c1510 115 0 12ff

m549201 022 pmos w=32ul=2.4u
m760 0223 201 O nmos w =3.2ul= 1.6u
m740 0 255 223 0 nmos w = 3.2ul= 1.6u
m836 2 73 255 2 pmos w = 13.6ul = 1.6u
m3250 11373 0nmos w=3.2ul= 1.6u
m312 113112 1152 pmos w=11.2ul = 1.6u
m31111511422 pmosw=112ul=1.6u
v1141140dc0

.print tran v(201)

.ic v(201)=0 v(223)=5 v(255)=0 v(73)=5 v(113)=0 v(115)=5 v(114)=0
vphi2_b 1120 pulse 500 1n 1n 14n 80n
tran 0.1n 10n

.end
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[4.91 $2(R )-43(F ) segment (SPUR On-Chip Instruction Cache Controller)

~* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* (92(R )—93(F) segment)

L ]

seskestesdetesdetoleesfeokofololeleol kol ok el ok ool otk kol e ok el ek ekl ot il ok ek ok
* MOS1 parameters for SPUR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025

+ phi=0.771 1d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

+ phi=0.735 1d=0.05u

sfe le ke e fe s o s e e ok e e o e he e e e e b e e e ke s e sk e e e e sk e she e ke s e b e e e ke o e ke s e e sl ae e s e ke sk e ke sk e ke sk s ke e ke e
* MOS?2 parameters for SPUR.

* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025

* + tox=25n nsub=4¢16 tpg=+1 xj=.25u 1d=20u uexp=.16 vmax=5.5¢4

* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

*- .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045

* + tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735

e e b 2 e e s sk e e Sk e S b e 3 s e s o s e e 3 e e e o e e s e 2k e e e e s e e s afe e e s b e o e e e e S e ok o b s e e sk e e e e s feoke ke

vdd20dc5

c1252 123 0 892ff

c1358 265 0 100ff

c1363 73 0 9791f

c1374 255 0 136ff

¢1377 252 0 164ff

¢1425 203 0 98ff

c1431 198 0 123ff

¢c1520 113 0 116ff

c1507 124 0 2ff

m830 265261 198 Onmos w=3.2ul=1.6u
v2612610dcs

m845 265 270 198 2 pmos w = 3.2ul= 1.6u
v2702700dc 0

m546 198 02 2 pmos w =3.2ul=2.4u
m697 0203 198 O0nmos w=3.2ul=1.6u
m695 203 252 0 0 nmos w = 3.2ul = 1.6u
m835 252 25522 pmos w = 14.4ul= 1.6u
m820 25573 00 nmos w=28.8ul=1.6u
m3102 113732 pmosw=112ul=1.6u
m327 113123 124 O0nmosw=32ul= 1.6u
m326 124 114 00 nmos w =3.2ul = 1.6u
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v1141140dc5

.print tran v(265)

dc v(265)=0 v(198)=0 v(203)=5 v(252)=0 v(255)=5 v(73)=0 -
dc v(113)=5 v(124)=0v(123)=0

vphi2 123 0 pulse 050 1n 1n 14n 80n

dran 0.1n 10n

.end
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[4.10] $2(R)—01(R) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* (O2(R)-01(R) segment)
%
e e e e e ofe e e e e 3k 3fe e S ¢ de k¢ 3¢ dfe 2l e o e o e e ke o sk o o 2 e o e ale ke e o e ke ke sfe 3 e 3fe 3k e Ok e 3k e 3k 3¢ ok 3¢ ke de e Ak

* MOS1 parameters for SPUR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025

+ phi=0.771 1d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

+ phi=0.735 1d=0.05u

e dfe e e e e o e e e e e s S e 3he e s e s o ke e s ke s e e s s e s e sk ke sk e ke she e ke e 3 e e el ke she e e s e e e e e Sfe e e e e fe ke e e de ke e
* MOS?2 parameters for SPUR.

* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4e16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=5.5e4

* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735

3¢ e 2 e e S e ke s e e s e e s sbe e o e e e s e e e s fe e e e e e e e 3 e she e e e e e e ke e e sfe e s e ke she e s e e 3 e e e she s e e e sfe dfesfe ke
*

vdd20dc5

€1239 379 0 96ff

c1240 377 0 109ff

c1363 73 0 979ff

€1520 113 0 116ff

c1519 114 0 101ff

c1510 115 0 12ff

m1159 37937700 nmos w=4ul = 1.6u
m1146 2 110 378 2 pmos w=16.8ul = 1.6u
v1101100dcO

m1145 378 73 377 2 pmos w = 16.8ul = 1.6u
m3250 113 730nmos w = 3.2u 1= 1.6u
m312 113112 1152 pmos w= 11.2ul = 1.6u
m31111511422pmosw=112ul=1.6u
v1141140dc0

*

.print tran v(379) ’

.ic v(379)=5 v(378)=5 v(377)=0 v(73)=5 v(113)=0 v(115)=5 v(114)=0
vphi2_b 112 0 pulse 500 1n 1n 14n 80n

tran 0.1n 10n

.end
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[4.11] $2(R )—$1(F) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* (¢2(R )-01(F ) segment)

s e e s sk ks o ko ke ok ek sk ek o
* MOS1 parameters for SPUR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025

+ phi=0.771 1d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

+ phi=0.735 1d=0.05u

A etk ksl e o skt sk e ek e o e

* MOS?2 parameters for SPUR.

* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4e16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=>5.5¢4

* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

* model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* 4+ tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735

*********************************************************************
*

vdd20dcS

c1217 393 0 97ff

c1250 66 0 835ff

c1252 123 0 892ff

c1257 357 0 100ff

c1524 99 0 120ff

c1538 88 0 65ff

c1545 82 0 50ff

c1298 319 0 591f

m1178 393 129 82 2 pmos w=3.2ul=1.6u

v1291290dcO

m1181 393 131 82 0 nmos w=3.2ul= 1.6u
" v1311310dc S

m246 82022 pmos w=3.2ul=32u

m270 82 88 0 0 nmos w =3.2ul= 1.6u

m269 0 99 88 O nmos w =3.2ul=1.6u

m304 2 66 99 2 pmos w = 13.6u 1 = 1.6u

m1121 0 357 66 0 nmos w = 8ul= 1.6u

m1102 357 123 319 O nmos w=3.2ul = 1.6u

m1113 357 112319 2 pmos w=3.2ul = 1.6u

m1028 319022 pmos w=32ul=3.2u

.print tran v(393)
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Jdc v(393)=0 v(82)=0 v(88)=5 v(99)=0 v(66)=5 v(357)=0 v(319)=5 v(123)=0
vphi2 1230 pulse 050 1n 1In 14n 80n

vphi2_b 112 0 pulse 500 1n 1n 14n 80n

tran 0.1n 10n

.end
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[4.12] $1(R)—4(R) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* (01(R )—4(R) segment)
E 3

* MOS1 parameters for SPUR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025

+ phi=0.771 1d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

+ phi=0.735 1d=0.05u

she e o e D 3 e e S e S e e e e S sk ke S s e 3 she e e s e s she e o e e she e e ake o e e o e e afe e s e dfe o e e o e e s s e e e e e ke e sbe ok e ek ke
* MOS?2 parameters for SPUR.

* model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* 4+ tox=25n nsub=4¢16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=5.5¢4

* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771 _

* model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* 4+ js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735

she sl sk sk e e e s e o s e s e o e she S e ke she s ke sk ke S e s e o e e 3k e e e o ke e e 2 e e e ke e sk e e e e e b o e e she sk e o e e e e ok ke ek e
*

vdd20dc5

¢1370 64 0 730ff

c1489 101 0 585ff

c1490 143 0 116ff

c1586 26 0 91ff

c1595 16 0 178ff

¢1606 6 0 84ff

c1488 144 0 12ff
m46022pmosw=32ul=32u

m167 626 00 nmos w=3.2ul=1.6u
m700 1626 0 nmos w=3.2ul = 1.6u
m204 2 64 16 2 pmos w = 13.6ul= 1.6u
m372 0 143 64 O nmos w =3.2ul = 1.6u
m370 143 129 144 2 pmos w= 11.2ul = 1.6u
m369 144 101 22 pmos w = 11.2ul = 1.6u
v1011010dcO

.print tran v(6)

Jdc v(6)=0 v(26)=5 v(16)=0 v(64)=5 v(143)=0
vphil_b 129 0 pulse 500 In In 14n 80n
tran0.1n 10n

.end
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[4.13] $1(R)—94(F ) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* (91(R)—4(F') segment)

%

......... ade b e sk e sk e s e sk sk e sk e o e o b e sk e sl fe o sk ke s ke o e fe sk fe sk e sk o e e sk e ek e o e s e ke sk e

* MOS]1 parameters for SPUR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025

+ phi=0.7711d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

+ phi=0.735 1d=0.05u '

She b ke S e s e e e e sfe o e s e afe e sfe s she ke o e s 3k s e 3 she b e e e s e s e e she e s e afe e afe e e e she s ok e e sk s ke e sk e ke ok e ke ke e ok ke ke ok
* MOS?2 parameters for SPUR.

* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025

* + tox=25n nsub=4¢e16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=>5.5e4

* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045

* + tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735

ke e e 3 e e e e e ok e o e e e e e ahe s e ke e e 3k e e ke o e ke e e ke sk e e ke ak e ke e e sheshe s e s e Sk s ke o 3k Sk s ke s ok s e Sk s ke ok e ke e ke ke
%

vdd20dcs

c1436 193 0 96ff

c1474 155 0 851f

c1471 158 0 751f

c1445 183 0 178ff

¢1370 64 0 730ff

c1490 143 0 116ff

c1488 144 0 12ff

c1489 101 0 585ff

m529 193 190 155 O nmos w = 3.2ul = 1.6u
v1901900dc S

mS535 193 194 155 2 pmos w=3.2ul = 1.6u
v1941940dcO

m393 155022 pmos w=3.2ul=3.2u
m451 155 158 00 nmos w = 3.2ul= 1.6u
m443 0 183 158 O nmos w =3.2ul = 1.6u
m5312 64 1832 pmos w = 13.6ul=1.6u
m372 0 143 64 O nmos w = 3.2u 1l = 1.6u
m370 143 129 144 2 pmos w=11.2ul = 1.6u
m369 144 101 22 pmos w = 11.2ul= 1.6u
v1011010dc O

.print tran v(193)
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Jdc v(193)=0 v(155)=0 v(158)=5 v(183)=0 v(64)=5 v(143)=0 v(144)=5
vphil_b 129 O pulse 500 1n 1n 14n 80n

tran 0.1n 10n

.end
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[4.14] $1(R)—93(R) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* (01(R )—63(R) segment)
*

e ke 2 o e o ke sfe e e e 2 o e e e ke e o o e fe o e o e o ofe e e ek o e o ek e e s e e e e e e S e e e e 2 e s e S e ke e e e e e ke e

* MOS1 parameters for SPUR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025

+ phi=0.771 1d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

+ phi=0.735 1d=0.05u

e e 3 e 3 e s e e e e sfe e e s e e e e e s e e e e e e e e e e ke s e dbe e e e e e e e e e e e e ke e e e e dbe e e e e e e e e e e e e de e ke Sk
* MOS2 parameters for SPUR.

* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025

* + tox=25n nsub=4e16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=5.5e4

* + js=1000u cgs0=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045

* + tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735

Sfe e e e S e s ke e e e b e ke e ke e e she e e abe e e e ahe e s e s she e o she e e ke s e o e ok e b e e e o e o e e s ke ke b e e e o e dhe e ke o ke e ke sk
*

vdd20dc5s

c1428 201 0 100ff

¢1396 233 0 91ff

€1423 207 0 244ff

¢1370 64 0 730ff

c1490 143 0 116ff

c1488 144 0 12ff

c1489 101 0 585ff

m549201022 pmosw=32ul=24u
m769 201 233 00 nmos w =3.2ul= 1.6u
m663 0207 233 O nmos w=3.2ul = 1.6u
m790 2 64 207 2 pmos w = 13.6u 1= 1.6u
m372 0 143 64 Onmos w = 3.2ul = 1.6u
m370 143 129 144 2 pmos w=112ul=1.6u
m369 144101 22 pmosw=11.2ul=1.6u
v101 101 0dc O

.print tran v(201)

Jc v(201)=0 v(233)=5 v(207)=0 v(64)=5 v(143)=0 v(144)=5
vphil_b 129 0 pulse 500 In 1n 14n 80n
tran 0.1n 10n

.end
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[4.15] 61(R )—93(F ) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* ($1(R)—93(F ) segment)
*

e sk s e e feskeke e e e i Aok etk etk ok etk deskefesle e b e ke e e se s sk sk ok
* MOS1 parameters for SPUR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025

+ phi=0.771 1d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

+ phi=0.735 1d=0.05u

s ale sk o she e sfeobe s sfe o e sk e s e s e s e o ke o b o e o e o e e sk e sk e o e o sk afe sl sfe e s e e s s she o sk e sk ook ek e sk e sk e sk e sk oe ke ok
* MOS2 parameters for SPUR.

* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025

* + tox=25n nsub=4e16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=>5.5¢4

* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045

* + tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* 4+ js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

ik ph1 F =0.3675644 -> phi=0.735

e e ok e e ofe e o ke o e o e o e ke o e e ke s e afe e b e ok e she o e e 3k e o e e e s e e e e e e e e e e e She e She o e s b e e e e ke e ke e ke e ke ke

vdd20dc S

c1358 265 0 100ff

¢1370 64 0 730ff

c1415 213 0 93ff

c1423 207 0 2441t

c1431 198 0 123ff

c1489 101 0 585ff

c1490 143 0 1161f

c1488 144 0 12ff

m830 265 261 198 0 nmos w=3.2ul= 1.6u
v2612610dcS

m845 265 270 198 2 pmos w=3.2ul = 1.6u
v2702700dc0

m546 19802 2 pmos w=3.2ul=2.4u
m716 0213 198 0 nmos w =32ul=1.6u
m570 0207 213 0 nmos w = 3.2ul= 1.6u
m790 2 64 207 2 pmos w = 13.6ul= 1.6u
m3720 143 64 Onmos w=3.2ul=1.6u
m370 143 129 144 2 pmos w = 11.2ul = 1.6u
m369 144 101 22 pmos w = 11.2u 1= 1.6u
v1011010dcO

.print tran v(265)
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Jdc v(265)=0 v(198)=0 v(213)=5 v(207)=0 v(64)=5 v(143)=0 v(144)=5
vphil_b 129 0 pulse 500 In 1n 14n 80n

Aran 0.1n 10n

.end
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(4.16] $1(R)—$2(R) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* (O1(R)»-92(R) segment)
*

s 3 s o s o sl e e ae e o o o o o o sk e e ke e ke e e e e b e o s sl e e e e b b s o e b ke e e e s s e ol s o s e e e s sk e s o s skese sk e e

* MOS]1 parameters for SPUR

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025

+ phi=0.771 1d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

+ phi=0.735 1d=0.05u

sheoke e o sk she ek ke ok dbe b she ke e e s sheofe e e e d o e she e e e a s o S ske e sfe e e e ke e e she e fe e e e s sheofe e e sk sk sk she ke e ok ok ke ke sk o ke ke e
* MOS?2 parameters for SPUR.

* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4¢16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=>5.5¢4

* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735

e S o 3 s 3 e e e e ke e e o s o s e b e e e e e e e fe e e e e e e e e e e S sk e e Sesbe b o o s s e e e e e e e sfe e e e ke ke e ofe e ke deoke e
*

vdd20dc 5

c1258 75 0 744ff

€1276 337 0 153ff

c1288 329 0 671f

€1296 321 0 50ff

c1480 150 0 111ff

c1481 149 0 116ff

c1479 151 0 12ff

m1030321 022 pmosw=32ul=32u
m1058 0329 321 Onmos w=32ul=1.6u
m1057 0337 329 Onmos w = 3.2ul = 1.6u
m1115275 3372 pmos w=13.6ul=1.6u
m388 0 149 75 O nmos w =3.2ul = 1.6u
m386 149 129 151 2 pmos w= 11.2ul=1.6u
m385 151 150 22 pmos w=11.2ul = 1.6u
v15015004dc0

.print tran v(321)

Jdc v(321)=0 v(329)=5 v(337)=0 v(75)=5 v(149)=0 v(151)=5
vphil_b 129 0 pulse 500 1In 1n 14n 80n
.tran 0.1n 10n

.end
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[4.17] $1(R)—$2(F ) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* (91(R )—¢2(F ) segment)
*

deskodetodesioolefoloiolololtolololstokokstol doloololeiok sdetololetok ook kol sedessfesieak sk ok ok dolololodo ok ok ok otk
* MOST parameters for SPUR
* Obtained from MOS2. kp was adjusted to match dc characteristic.
.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.771 1d=0.2u
.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045
+ phi=0.735 1d=0.05u
Se ke e e sfe o fe e she e b o e 2 e ok e she e o ke sk e ake e s e e e ke o e ke o e e ke e e e sfe e e ke s e ke e e s fe e e she e ke e e e e she e ke ke ke ke ke ke ok
* MOS?2 parameters for SPUR.
* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4e16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=>5.5e4
* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p
** phi F = -0.3855862 -> phi=0.771
- * .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4
* 4+ js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p
** phi F = 0.3675644 -> phi=0.735

e e 3he e 2 e e e s e e e she e o e e S e e e S b e S S e e e ke e 3k e e S s e e Sk e e e S s e S b e e She e sk e S ke 6 ke e e o ke ke ke e sk e ke ok e
%

vdd20dcS

c1253 361 O 114ff

c1264 65 0 729ff

c1278 345 0 107ff

c1282 335 0 58ff

€1293 324 0 63ff

c1294 323 0 51ff

c1485 103 0 584ff

c1486 146 0 116ff

c1484 147 0 12ff

m1106 361 123 323 0 nmos w = 6.4ul = 1.6u
vi231230dcS

m1047 0324 323 O nmos w = 3.2ul= 1.6u
m1033 324022 pmosw=32ul=3.2u
m1044 324 33500 nmos w = 3.2ul= 1.6u
m1074 335 345 0 0 nmos w = 8.8ul=1.6u
m1085 2 65 345 2 pmos w = 13.6ul = 1.6u
m3800 146 65 0nmos w =3.2ul = 1.6u
m378 146 129 147 2 pmos w = 11.2ul = 1.6u
m377 14710322 pmos w =11.2ul = 1.6u
v1031030dc0

.print tran v(361)




Jdc v(361)=5 v(323)=5 v(324)=0 v(335)=5
dc v(345)=0 v(65)=5 v(146)=0 v(147)=5
vphil_b 129 0 pulse 500 1n 1n 14n 80n
{ran 0.1n 10n

.end
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[5]1 SPICE input data for the critical path of the SPUR ALU

[5.1] $3(R )—43(F ) segment (SPUR ALU)

* SPICE input data for the critical path of the SPUR ALU
* (O3(R )~93(F') segment)
%*

3ok 3 e s e e ke s e S 3he e e e e ok e e e s e e s e e e e s e e e e s she e e s e e S 3k ek s e e e e e 2 ke s e o e e e e e s sfe e she e sk e vde e

* MOS1 parameters for SPUR
* Obtained from MOS2. kp was adjusted to match dc characteristic.
.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.7711d=0.2u
.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045
+ phi=0.735 1d=0.05u
3Je 3¢ 3¢ dfe o e sfele afe ahe she s e afe s o e dhe she e 3 o ke e dhe 3 e s 3 e e s e e e e sfe dbe ke o e e e e ke e e dhe e dhe e e ke o e e e e e ¢ e e s e 3fe dhe sfedfe e
* MOS?2 parameters for SPUR.
* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4e16 tpg=+1 xj=.25u 1d=.20u uexp=.16 vmax=>5.5e4
* 4+ js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p
** phi F = -0.3855862 -> phi=0.771
* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4
* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p
** phi F = 0.3675644 -> phi=0.735
" 3he dle 3fe e 3¢ e 3fe e e 3 e 3 e s e 3 e ke e ke sk b she e e e ke b e e s she e ke S e e 2he e 34 o e ke e Sk 2k dbe ke dle dhe ke e e e S he 3he ke he ke e e e de e ke ek e
sk

.tran 0.1n 20n

.print tran v(662)

.opt nopage nomod

vphi3 176 0 pulse 05 0 1n 1n 100n 200n

vdd50dc S

Jdc v(662)=0 v(664)=0 v(660)=5 v(632)=0 v(631)=5 v(423)=0
Jdc v(422)=5 v(214)=0 v(213)=5 v(217)=5 v(216)=0 v(940)=5
Jdc v(860)=0 v(906)=5 v(867)=0 v(874)=5 v(875)=5 v(876)=5
ic v(176)=0

€5892 662 0 225ff

c5890 664 O 15ff

€5896 660 0 197ff

€5712 632 0 306ff

¢5917 631 0 260ff

€5927 423 0 306ff

c6126 422 0 260ff

€6136 214 0 306ff

€6335 213 0 260ff



¢6338 217 0 3ff

c6340 216 0 55ff

¢5606 940 0 63ff

¢5617 860 0 148ff

¢5643 906 0 63ff

5644 867 0 108ff

€5676 876 0 3ff

c5677 875 0 3ff

¢5680 874 0 80ff

€5709 176 0 7502ff

m881 662 8 664 5 pmos w =13.6ul= 1.6u
v880dcO

m880 664 660 5 5 pmos w = 13.6ul = 1.6u
m1073 660 632 807 0 nmos w=6.4ul=1.6u
c5741 807 O 3ff

ic v(807)=5

m1072 807 806 805 O nmos w = 6.4ul=1.6u
c5742 805 O 3ff

v806 806 0 dc 5

Aic v(805)=5

m1071 805 176 0 0nmos w=6.4ul=1.6u
m838 632 631 55 pmos w = 16ul = 1.6u
m841 631423 635 0nmos w=6.4ul=1.6u
€5920 635 0 3ff

ic v(635)=5

m840 635 634 633 O nmos w=6.4ul=1.6u
€5921 633 0 3ff

v6346340dc5

dic v(633)=5

m839 633176 00 nmos w=6.4ul=1.6u
mS556 423422 5 5 pmos w=16ul = 1.6u
mS559 422 214 426 0 nmos w = 6.4ul=1.6u
c6129 426 0 3ff

dc v(426)=5

m558 426 425 424 0 nmos w = 6.4ul = 1.6u
v425 4250dc 5

c6130 424 0 3ff

dc v(424)=5

m557 424 176 00 nmos w = 6.4ul= 1.6u
m274 214213 5 5 pmos w = 16ul = 1.6u
m277213 180217 0nmos w=6.4ul=1.6u
v1801800dc5

m276 217 216 215 0 nmos w = 6.4u 1= 1.6u
¢6339 215 0 3ff

icv(215)=5 '

m275215176 0 0 nmos w =6.4ul=1.6u
m13252169405 S pmos w=8ul=1.6u
m1319 941 860 940 O nmos w=6.4ul=1.6u
c5605 941 O 3ff
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ic v(941)=5

m1320 943 942 941 O nmos w=6.4ul=1.6u
v9429420dc 5

c5604 943 0 3ff

ic v(943)=5

m1321 0176 943 0 nmos w=6.4ul=1.6u
m1269 860906 5 5 pmos w=8ul=1.6u
m1263 907 867 906 O nmos w= 6.4ul = 1.6u
c5642 907 0 3ff

ic v(907)=5

m1264 908 893 907 0 nmos w = 6.4ul = 1.6u
c5641 908 0 3ff

v8938930dc S

dc v(908)=5

m1265 0 176 908 0 nmos w = 6.4ul=1.6u
m1210 867 874 5 5 pmos w=8ul=1.6u
m1214 875 3 874 O nmos w = 6.4ul= 1.6u
v330dcS

m1215 876 30 875 Onmos w=6.4ul= 1.6u
v30300dc5

ml1216 0176 876 O nmos w=6.4ul=1.6u
.end
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[5.2] $2(R )~93(R ) segment (SPUR ALU)

* SPICE input data for the critical path of the SPUR ALU
* ($2(R)—93(R) segment)
*

* MOS]1 parameters for SPUR

* Obtained from MOS2. kp was adjusted to match dc characteristic.
.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.7711d=02u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

e e el e e " ek 1 st ske she e she sk e ske 3 ke 3k 3k ke she ke sk ske 3k e sk 3¢ ke 3k stk sk e sk ke s ke sk ok ke

* MOS2 parameters for SPUR.

* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4e16 tpg=+1 xj=.25u ld=.20u uexp=.16 vmax=5.5e4

* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771

* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* +tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735

she ke ok obe 2 ok o e e o s abe e e o e o e e e e e e ke b s ke abe ok s e ke ahe ke o e e 3k e e e ke e e e ke o e e e 3k e ke o e ke e S ke e ke o e e e dfe s ske ok
&

tran 0.05n 15n

.print tran v(1451) v(178)

vphi2 1934 0 pulse 0 5 0 1n 1n 100n 200n

vphi2_bar 1937 0 pulse S 0 0 1n 1n 100n 200n

vdd50dcSs

ic v(178)=0 v(849)=5 v(848)=0 v(864)=5 v(3)=0 v(1459)=5
Jdc v(1462)=5 v(1456)=0 v(1451)=5 v(1448)=5 v(1936)=0

Jdc v(1935)=5 v(1934)=0

%

¢6376 178 0 85ff
€5697 849 0 85ff
¢5698 848 0 93ff
¢5684 864 0 85ff
65433 0 326ff
c5093 1459 0 144ff
c5085 1462 0 3ff
c5092 1456 0 181ff
c5096 1451 0 145
c5098 1448 0 181fF
c4611 1936 0 196ff
c4613 1935 0 100ff
c4427 1934 0 965fF
%



m1140 178 849 5 5 pmos w=7.2ul= 1.6u
m1135 849 848 0 0 nmos w=32ul= 1.6u
m1188 848 864 5 S pmos w=7.2ul=1.6u
m1183 864 3 00nmos w=3.2ul=1.6u

m2321 3 1459 5 5 pmos w = 18.4ul= 1.6u
m2327 1459 1454 1462 0 nmos w = 6.4ul = 1.6u
v1454 14540dc 5

m2326 1462 1456 0 O nmos w = 6.4ul= 1.6u
m2312 5 1451 1456 5 pmos w = 8ul = 1.6u
m2310 1451 1450 1448 5 pmos w=3.2ul = 1.6u
v1450 14500 dc O

m3395 0 1936 1448 O nmos w = 8ul = 1.6u
m3398 5 1935 1936 5 pmos w=9.6ul = 1.6u
m3391 1935 1934 1933 0 nmos w = 3.2ul = 1.6u
m3396 1935 1937 1933 5 pmos w= 8ul= 1.6u
c4612 1933 0 73ff

ic v(1933)=0

m4032 1933 2128 0 O nmos w = 3.2ul = 1.6u
v212821280dc 5

.end
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[5.3] $2(R )-94(R ) segment (SPUR ALU)

* SPICE input data for the critical path of the SPUR ALU
* (92(R )—94(R) segment)
*

* MOS1 parameters for SPUR
* Obtained from MOS2. kp was adjusted to match dc characteristic.
.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.771 1d=0.2u

.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045

* MOS?2 parameters for SPUR.
* model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025

* 4 tox=25n nsub=4e16 tpg=+1 xj=.25u 1d=20u uexp=.16 vmax=5.5¢4

* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p

** phi F = -0.3855862 -> phi=0.771 -

* model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045

* + tox=25n nsub=2.0e16 tpg=-1 xj=.20u 1d=.05u uexp=.15 vmax=9.0e4

* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p

** phi F = 0.3675644 -> phi=0.735

she sheshe e 3 S shefe e e 3 Sk o she e e e o e s she e fe e e s she e ofe e o e e e e sk 3 s ok o s o sk s s s e e e e e S sk she ke sfe ke sk she e ke ke sk ske ke ke ke ok
sk

.tran 0.05n 15n

.print tran v(92)

.opt nopage nomod limpts=8C0

vphi2 1934 0 pulse 0 5 0 1n 1n 100n 200n
vphi2_bar 1937 0 pulse 5 0 0 1n 1n 100n 200n
vdd50dcS

dcv(92)=5 v(93)=0 v(1523)=5 v(1526)=5 v(1520)=0
Jdc v(1515)=5 v(1513)=5 v(1961)=0 v(1960)=5 v(1934)=0
c6458 92 0 112ff

€6459 93 0 3271f

€5033 1523 0 144ff

¢5025 1526 0 3ff

¢5032 1520 0 181ff

c5036 1515 0 145ff

c5038 1513 0 181ff

c4587 1961 0 196ff

c4589 1960 0 100ff

c4427 1934 0 965ff

m113 09392 0 nmos w=3.2ul = 1.6u

m2453 93 1523 5 5 pmos w = 18.4ul = 1.6u
m2459 1523 1518 1526 O nmos w = 6.4u 1= 1.6u
v1518 1518 0dc 5

m2458 1526 1520 0 0 nmos w = 6.4ul = 1.6u

..............
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m2444 5 1515 1520 S pmos w = 8ul = 1.6u
m2442 1515 1450 1513 5 pmos w=3.2ul=1.6u
v1450 14500 dc 0

m3475 01961 1513 0 nmos w = 8ul = 1.6u
m3478 5 1960 1961 5 pmos w =9.6ul = 1.6u
m3471 1960 1934 1959 0 nmos w = 3.2ul=1.6u
m3476 1960 1937 1959 5 pmos w = 8ul=1.6u
c4588 1959 0 73ff

dc v(1959)=0

m4064 1959 2144 0 0 nmos w = 3.2ul = 1.6u
v214421440dc 5

.end
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APPENDIX 4

EXAMPLE RUNS

This appendix contains the netlist of a simple example, 1 bit of the SOAR ALU, and the
output from the E-TV program. Copies of all sofiware, and the examples described in this

dissertation, are available from the following address:

The Software Office

Industrial Liaison Program

Department of Electrical Engineering and Computer Sciences,
University of Califomia at Berkeley

Berkeley, CA 94720
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[1] E-TV input data for the SOAR 1bit circuit

**%* 1 bit of soar alu

* voltage step

step 0.1

* analysis request card
.phase high PHI3

MOS1 parameters for soar * kkk b

* Obtained from MOS2. kp was adjusted to match dc characteristic.

.model nmos nmos vt0=0.93 kp=21.8e-6 gamma=0.834 phi=0.695 lambda=0.025 1d=0.24
.model pmos pmos vto=-0.844 kp=4.45¢-6 gamma=0.723 phi=0.514 lambda=0.0527 1d=0.51
*

vDD10dc S
vsum 33 0dc 5
vand 320dc 5
vxor340dc 5
vor310dc 5
*

* clock signal

data clock PHI3 PHI3 15 .

.model PHI3 pulse 0 5 30¢-9 32¢-9 80e-9 82e-9 100e-9
*

* MOS transistors. The default unit of W and L is um.
ml190 1361351 1 pmosw=71=3Flow 1
m191 1138 137 1 pmos w=71=3 Flow 1
m193 1141140 1 pmosw=71=3 Flow 1
m194 1 143 142 1 pmos w=71=3 Flow 1
m196 136 144 145 0 nmos w =4 1 = 3 Flow 136
ml1970135136 0 nmosw=71=3Flow 0
m198 140 31 138 O nmos w =4 |1 =3 Flow 140
m199 142 32 138 0 nmos w =4 1 = 3 Flow 142
m201 0 141 140 0 nmos w =7 1=3 Flow 0
m2020 1431420 nmosw=71=3 Flow 0
m204 0138 1370 nmosw =4 1=3 Flow 0
m205 145 33 138 0 nmos w =4 1 =3 Flow 145
m206 135 34 138 0 nmos w =4 1 =3 Flow 135
m208 150 149 135 0 nmos w =4 1 = 3 Flow 150
m209 152 151 150 0 nmos w =4 1 =3 Flow 152
m210 154 153 141 0 nmos w =4 1= 3 Flow 154
m211 15542 138 0 nmos w =4 1 =3 Flow 155
m215 160 153 143 0 nmos w =4 1 = 3 Flow 160
m216 161 153 135 0 nmos w =4 1 = 3 Flow 161
m220 135 108 145 0 nmos w =4 1=3 Flow 135
m223 165 155 141 0 nmos w = 4 1 = 3 Flow 165
m224 166 155 160 0 nmos w =4 | = 3 Flow 166
m225 167 155 161 0 nmos w =4 1 = 3 Flow 167
m2310151540nmosw=41=3Flow0
m2320151650 nmosw=41=3 Flow0
m2330151660nmosw=41=3Flow0
m2340151670nmosw=41=3Flow0
m2350151520nmosw=41=3Flow0



m284 138 55 189 0 nmos w =9 1=3 Flow 189
m3091381511pmosw=71=3Flow1
m312115141 1 pmosw=71=3Flow 1
m313 1431511 pmosw=71=3Flow 1
m315135151 1 pmosw="71=3Flow 1
* Capacitance. The default unit is fF.
¢1792 1350 124

c15015001

c15215201

cl6116101

c16716701

¢1803 138 0 139

c13713701

¢190 136 0 59

cl4514501

¢1804 143 0 67

¢1807 1420 56

c16016001

cl66 166 0 1

- ¢1797 141 0 80

c15415401

cl6516501

c14014001

.end
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(2] Output of the E-TV program for the SOAR 1bit circuit

[ CLOCK SKEW VALUES ]

The clock signal is the one used to synchronize the

orderly and controlled flow of information in the system.

Primary clocks "phi’ and "phi-bar’ are defined to have

the same rising and falling slopes. They are defined to

cross each other at the inverting voltage of inverter (Vinv)

which can be set by the user.

*phi(-bar)’ nodes are compared to primary clock "phi(-bar)’.

Rising (falling) skew is the time difference of rising

(falling) waveforms of the clock node and primary signal.
node_name(rising_skew/falling_skew)

[1] clock 'PHI3" :

rises at 31.00ns, falls at 81.00ns with a period of 100.00ns

("’PHI3’ clock nodes]
(1) 15 (0.00ns/0.00ns) : primary
["PHI3-bar’ clock nodes] : None

No logic-control signals are given in the input file.

[ TIMING CONSTRAINT CHECK ]

SYNCHRONOUS SYSTEMS
Logic paths from input nodes/clocked storage elements to
output nodes/clocked storage elements, that are not inter-
posed by other clocked storage elements, are verified using
actual arriving logic-control/clock signals.
Paths ending at clocked storage elements are reported in the
order of the worst-case evaluation-time margin,
while paths ending at output nodes (blocked nodes) are
reported in order of the worst-case delay.

‘<< PHI3 section >>

( Timing Constraint Check against Clock Signals )
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[Segment 1] PHI3(R)->PHI3(F) : Clock Separation OK.

Primary clock information :
PHI3 rises at 31.00ns and PHI3 falls at 81.00ns. Sep.=50.00ns

(1) Node 138 falls at 44.94ns (Delay=13.94ns) while a limiting
clock node 15 (PHI3) falls at 81.00ns (F Skew=0.00ns)
Separation margin : 36.06ns

Node 138 falls at 44.94ns thru (m205)
Node 145 falls at 35.11ns thru (m220)
Node 135 falls at 35.03ns thru (m216)
Node 161 falls at 30.90ns thru (m225)
Node 167 falls at 30.78ns thru (m234)
Node 15 (clock PHI3) rises at 31.00ns

(2) Node 135 falls at 35.03ns (Delay=4.03ns) while a limiting
clock node 15 (PHI3) falls at 81.00ns (F Skew=0.00ns)
Separatior margin : 45.97ns

Node 135 falls at 35.03ns thru (m216)
Node 161 falls at 30.90ns thru (m225)
Node 167 falls at 30.78ns thru (m234)
Node 15 (clock PHI3) rises at 31.00ns

(3) Node 143 falls at 33.26ns (Delay=2.26ns) while a limiting
clock node 15 (PHI3) falls at 81.00ns (F Skew=0.00ns)
Separation margin : 47.74ns

Node 143 falls at 33.26ns thru (m215)
Node 160 falls at 30.90ns thru (m224)
Node 166 falls at 30.78ns thru (m233)
Node 15 (clock PHI3) rises at 31.00ns

(4) Node 141 falls at 32.80ns (Delay=1.80ns) while a limiting
clock node 15 (PHI3) falls at 81.00ns (F Skew=0.00ns)
Separation margin : 48.20ns

Node 141 falls at 32.80ns thru (m223)

Node 165 falls at 30.78ns thru (m232)

Node 15 (clock PHI3) rises at 31.00ns

[Segment 2] PHI3(R)->’BLOCKED nodes’ :
Primary clock information : PHI3 rises at 31.00ns
[ Rising transitions ]

(1) Node 137 (Delay = 10.60ns)

Node 137 rises at 41.60ns thru (m191)

Node 138 falls at 44.94ns thru (m205)
Node 145 falls at 35.11ns thru (m220)
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Node 135 falls at 35.03ns thru (m216)
Node 161 falls at 30.90ns thru (m225)
Node 167 falls at 30.78ns thru (m234)
Node 15 (clock PHI3) rises at 31.00ns

[ Falling transitions ]
(1) Node 137 (Delay = -46.17ns)
Node 137 falls at -15.17ns thru (m204)
Node 138 precharges at -10.26ns thru (m206)
Node 135 precharges at -16.56ans thru (m315)
Node 15 (clock PHI3) falls at 81.00ns

( Check for pre-(dis)charging delay ) : All OK or NONE

( Cycles in circuit ) : None

| ANALYSIS PARAMETERS and STATISTICS

[1] Global voltage step : 0.1V
[2] .gcapdef : 0.1fF
(3] MOS model : small-signal companion
[4] Inverting voltage : 2.5V
[5] Max depth of transistor in chain for delay evaluation : 8
[6] Fixed nodes were propagated
[7] Total mosfet number : 33
[8] Total net number : 33
[9] Number of stages for delay evaluation:
Total:37 Rising Transition=14 Falling Transition—23
{10] Number of nodes for delay evaluation:
Total:17 Rising Transition=9 Falling Transmon-l7
[11] Peak memory used : 149 kbyte

[12] CPU time usage
Readin and setup data struct. : 0.12sec
Initialization : 0.04sec

Finding data infout nodes  : 0.12sec

Finding control/clock nodes : Osec

Topological ordering all nodes: 0.02sec

Waveform generation for control/clock nodes : 0.01sec
Propagation of set-to-high(low) nodes : Osec
Pruning uninteresting nodes : Osec

Finding pre(dis)charged nodes : 0.01sec

Finding latches : 0.01sec

Timing verification between pairs of latches : 2.55sec
Design reference check : Osec

TOTAL : 2.89sec
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