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CHAPTER 1

INTRODUCTION

1.1. ANALYSIS OF VERY-LARGE-SCALE-INTEGRATED (VLSI) CIRCUITS

A circuit is a complex maze of signal paths that combine to effect an overall function.

In general, there are two analysis methods to ensure that the circuit design is correct: dynamic

analysis and static analysis, as illustrated in Figure 1.1. Dynamic analysis is the study of a

circuit's behavior as a function of time. One might, for example, be interested in the voltages

at a set of the output nodes of a circuit some time t after certain voltage sources are applied to

ANALYSIS

DYNAMIC STATIC

SIMULATION RULE CHECK VERIFICATION

GEOMETRICAL ELECTRICAL FUNCTIONAL TIMING

Figure 1.1 Analysis Methods of Circuit Designs



the input nodes. However, in general, it is not possible to obtain the analytical expressions

that represent the behavior of a circuiL Thus, in dynamic analysis, a circuit's response to a

particular set of inputs called a test vector is computed. This process is referred to as simula

tion. While computer simulations are also performed at process [1] and device levels

[2,3,4], they are performed mostly for the development of fabrication process, devices, or

device models. The most accurate simulator that is used by the circuit designers is probably

a circuit simulator such as SPICE [5] or ASTAP [6], which provides a fine-grain detailed ana

log waveforms at particular nodes in the design. Unfortunately, circuit simulation is a com

putationally expensive process and is, therefore, impractical for circuits consisting of more

than a few thousand transistors. There are two approaches for simulating VLSI designs of a

few hundred thousand transistors. The first approachis to break the design into a number of

smaller pieces and to simulate each piece at the circuit level. The second is to use higher

(coarser) level simulators such as switch-level simulators [7,8], logic (or gate) simulators

[9,10], and functional/behavioral simulators [11,12,13]. Switch-level/logic simulators

replace the analog waveforms of circuit simulators with logic levels 0, 1, and X (undefined).

Some simulators are augmented by a larger set of discrete levels in order to obtain more

detailed information. Switch-level simulators model MOS transistors as switches and logic

simulators model circuit elements at the gate level rather than the transistor level.

Functional/behavioral simulators allow the use of data and control representations.

The other type of analysis method, namely static analysis, examines a circuit that is

independent of input data. There are two kinds of static analysis. The first one is based on

rules checking which examines whether a circuit obeys geometric or electrical design rules.

Geometrical design rule checkers [14,15,16] ensure a margin of safety among wires and con

tacts of the layout for process errors so that the circuit will be manufactured correctly. Elcctr-



ical design rule checkers [17] detect the violations of electrical rules such as incorrect transis

tor ratios, short circuits, isolated parts of a circuit, and bad design practice. The second static

analysis method is verification. There are two types of verification: functional and timing. A

functional verifier [18,19,20] derives a circuit behavior by combining the behavior of each of

the primitive components. Then, it compares the derived circuit behavior with designer-

specified behavior. On the other hand, timing verification [21,22,23,24] is used for the

management of signal timing in a digital system. For example, in a synchronous system, if a

delay through a piece of combinational logic circuit is either too long (outside the required

clock range) or too short (which could cause a race condition), the system may not function

correctly. This is referred to as a timing error. Timing verifiers detect the possibility of such

timing errors. In addition, the maximum operation speed of a digital system is determined by

the slowest of its all possible signal paths, called the criticalpath. Timing verifiers are also

used to determine the critical paths to optimize the performance of the system.

U. SIMULATION VERSUS TIMING VERIHCATION

Although not impossible, it is computationally impractical to use detailed simulation

for the detection of critical paths or timing errors in a VLSI design, since the number of

necessary simulations would be exponential in the number of circuit nodes. In order to detect

critical paths or timing errors, it is necessary to locate the longest path first. Note that simula

tion requires an input vector in order to determine a system response. Simulation is not

guaranteed to locate the correct longest delay of a system unless the system is simulated with

all possible input vectors. This is because a particular input vector is necessary to compute a

pathological path delay, hence exhaustive simulation is inevitable. Additionally, even after

finding the input vector causing the longest delay, it may not be easy to locate the



corresponding path, because there may be millions of signal paths between input and output

nodes. On the other hand, as will be described in Chapter 3, timing verifiers carry out only

one analysis (or a few analyses) using fast delay approximation techniques and report much

of the information necessary to improve or correct the design. Therefore, timing verification

is preferred for the management of signal timing in a VLSI system due to its computational

efficiency and test completeness.

13. ORGANIZATION OF THE THESIS

In this dissertation, a complete and consistent study of timing verification techniques is

presented. Then, new approaches for the accurate timing verification of VLSI MOS designs

are described.

The main issue of Chapter 2 is the timing constraints that n-phase clocking synchronous

systems must satisfy in order to function correctly. First, two types of clocked storage ele

ments (edge-triggered and transparent) that are used for the global synchronization of system

signals are described. For an effective description of timing constraints, the terms and nota

tion that are not standardized in the literature are defined. Then, the timing constraints that

IC designers have used for the design of synchronous systems including those with

precharged busses and dynamic logic gates are described. Even though some of these timing

constraints can be found in the literature, they are usually presented only for single-phase or

two-phase clocking synchronous system and with only one of two types of clocked storage

elements. In addition, this chapter presents the algorithms that examine the satisfaction of

timing constraints of the combinational logic circuit between clocked storage elements.

In Chapter 3, timing verification techniques are introduced. First, to illustrate the

difference between simulation and timing verification, value-dependent and value-



independent signal propagations are compared. Two path analysis methods, path enumera

tion and critical-path analysis, are presented. Issues associated with path delays are

described, including delay computations and representations. Since a critical-path analyzer

can be implemented based on modified depth-first search, level-based search, or topological-

order based search, the complexity and loop-handling ofdifferent traversal approaches for the

critical-path analysis method are compared. Finally, problems specific to switch-level

critical-path analyzers are described.

The focus of Chapter 4 is the development of an accurate delay modeling technique,

referred to as Electrical-Logic (ELogic) modeling technique. The delay models of existing

switch-level timing verifiers are introduced, along with their respective strengths and limita

tions. Then, the ELogic delay model is introduced and its accuracy and stability properties

are investigated. Some experimental results that compare the accuracy of the existing

switch-level delay model and the ELogic delay model are included at the end of the chapter.

Chapter 5 presents the details of the concept and approaches developed for an accurate

timing verifier for MOS digital VLSI systems, referred to as Electrical-logic based Timing

Verifier (E-TV). First, a rule-based algorithm which determines the directions of signal flow

through MOS transistors is presented. The effect of value-dependent and value-independent

events in determining the worst delay predecessor of a path is investigated. Then, the models

of synchronous systems and combinational circuits and algorithms for their verification are

presented. Like other timing verifiers, E-TV breaks feedback loops in a circuit. A novel idea

which reduces the number of forward paths blocked by loop-breaking is presented. Follow

ing a description of a simple but efficient switch-level simulation algorithm which is used to

propagate the effect of nodes that the user sets at logic "1" or "0", the way in which E-TV

views clocked storage elements along with how it actually verifies combinational logic paths



are presented. Algorithms for the extraction of transistor chains and for determining the

worst-case predecessor of an and-or-inverter are presented. In addition, the way E-TV deals

with dynamic circuits using precharging is described.

In Chapter 6, the performance of E-TV is evaluated using two microprocessor designs

as test circuits. First, the performance of the path analysis section of E-TV and the analysis

method (ELogic) used for delay computations are evaluated. Then, the MOS model used in

E-TVis described and its accuracy is compared to the SPICE MOS2 model.

Conclusions and directions for future work are provided in Chapter 7.



CHAPTER 2

TIMING CONSTRAINTS OF SYNCHRONOUS SYSTEMS

Proper management of signal timing in a digital system is essential for the successful

operation of the system. All signals in the system must arrive at intended places in space,

and in the intended sequence at the times intended by the designer. Otherwise, the system,

while possibly functionally correct, will have timing problems or will fail to achieve its per

formance objectives. However, as the system size grows larger and the design gets more

complex, the precise prediction of propagation delays of signals through the system becomes

more difficult and the timing management of all signals is extremely complex. Two design

disciplines that alleviate the complex task of managing signals are self-timed systems and

synchronous systems [25,26,27,28]. In self-timed systems, all signals are held up until the

slowest one arrives. Sequence and time are connected in the interior of parts called elements

and all system events are assured to occur in proper sequence rather than at particular times.

In synchronous systems, which are most widely used, system-wide clock signals are gen

erated by a timing device called a clock generator. These clock signals are used for syn

chronization by holding up all signals periodically to equalize the delays. Sequence and time

are connected through the clock signal.

While designers tend to cope with the complexity of managing signal timing in a sys

tematic way by employing the clocking methodology of a synchronous system, there are still

strict timing constraints that synchronous systems must satisfy in order to function correctly.

Even though these timing constraints have been described in the literature [25,26,27,28], the

description is not sufficiently organized to be used for timing verification. In addition, it is



not complete in the sense that a formulation for general n-phase clocking using both edge-

triggered and transparent synchronization elements is not available. For example, Glasser

[28] presents only the timing constraints of single-phase or two-phase clockingcircuits using

pass transistor registers whose delaycanbe ignored, hi this chapter, the timing constraints of

synchronous systems are reorganized in general forms for timing verification, with a particu

laremphasis on MOS circuit designtechniques. The algorithms forthe timing verification of

synchronous systems are also presented. The timing constraints that aredescribed are used in

the ELogic-based timing verifier (E-TV) for the detection of possible timing errors in syn

chronous MOS systems.

2.1. CLOCKED STORAGE ELEMENTS

The Mealy finite state machine model of a synchronous system is shown in Figure 2.1

[25]. This synchronous system uses storage elements (usually registers or latches) in con

junction with clock signals to hold up the movement of signals to the next stages of the com

binational logic until an intended time is reached. The clock pulses generatedby a clock gen

erator are distributed throughout the system. These clock signals affect the storageelements

in such a way that the elements can latch and store signals only at discrete instants or for the

period of time associated with the clock. Storage elements that are used for the global syn

chronization of system signals, with clock signals, will be referred to as clocked storage ele

ments (CSE's) [25] throughout this dissertation. The topological requirement of synchronous

systems is that all closed paths of the systems pass through one or more clocked storage ele

ments. The timing constraints for the system depend on the type of clocked storage elements

used in addition to the clocking scheme. One common clocked storage elements used in TTL

are "edge-triggered" flip-flops. Even though edge-triggered types are sometimes used in



Inputs / > /—> Outputs

Present
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, Next
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1—>

4CSE K
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CL: Combinational Logic
CSE: Clocked Storage Element

Figure 2.1 Clocking Scheme of Synchronous Systems

MOS VLSI designs, the "transparent" type is much more commoa There are "pulse-width

sensitive" elements such as JK master-slave flip-flop, but they are rarely used due to the so-

called "glitch-catching" problem [29].

The edge-triggered clocked storage element samples and latches input data value during

a short time period (sampling interval) around a rising or falling clock edge (activating clock

edge), and changes its output state on the clock edge. If a rising clock edge causes the ele

ment to change the output state, the element is positive edge-triggered type. Otherwise, the

element is negative edge-triggered type. Examples of the edge-triggered type are the JK

edge-triggered flip-flop and the D edge-triggered flip-flop [29].
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The clock node of a transparent clocked storage element works as an ENABLE node,

which, when active, makes the element transparent (the output follows the input) [29]. If an

element becomes transparent while the ENABLE signal is high, the element is active-high

transparent type. Otherwise, the element is active-low transparenttype. The transparent type

is also an example of the "level-sensitive" type, because the element becomes transparent

whenthe ENABLE signallevel is active. The beginning andthe end of ENABLE period will

be referred to as activating and inactivating clock edges respectively. Note that, unlike the

edge-triggered element, the output of the transparentelement follows the input data as soon

as it becomes available during ENABLE period. The examples of transparent type are pass

transistor registers and D transparent flip-flops [29]. The most common clocked storage ele

ments used in MOS VLSI circuits are pass transistor registers [28].

2.2. DEFINITIONS AND NOTATION

Possibly because the subject of timing constraints has not been dealt with often in the

literature, terms and notation are not yet standardized. Therefore, in this section terms and

notation are defined so that the timing constraints of synchronous systems can be described

clearly and unambiguously. They will be used throughout this dissertation.

[Notation 2.1] §(R) and §(F) clock edges

For a given clock, <J>, §(R) and <1>(F) clock edges denote the rising (R) and falling (F)

edges of <J>, respectively, d

[Definition 2.1] Clocking by clock phase

Storage elements are said to be clocked by <j>(/?) or §(F), or said to be clockedby <J> or

<j>, if the elements are activated by the rising or falling edge of <J>. Clocked storage elements
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having the same activating clock edge are said to be clocked by the same clock phase, a

[Definition 2.2] Clocked path in synchronous systems

A clocked path is a signal path which begins and ends at clocked storage elements,

referred to as preceding clocked storage element (P_CSE) and succeeding clocked storage

element (S_CSE). a

The purpose of timing verification of a system is to examine whether or not a signal,

which begins to propagate from a specific point in space at a specific point in time, arrives at

another specific point in space by a specific point in time. In this dissertation, the start and

end time points for timing verification are referred to as a preceding and succeeding time

references (tpR and Isr). The corresponding space points are referred to as preceding and

succeeding space references (spr and ssr). When a clocked path is subject to timing

verification, P_CSE and S_CSE of the clocked path will be referred to as preceding and

succeeding reference clocked storage elements (PR_CSE and SR_CSE), if necessary, to

avoid confusion.

[Definition 23] Synchronous loop ofclocked paths

A clocked path forms a synchronous loop if the preceding and the succeeding clocked

storage elements are clocked by the same clock phase, a

Delays through clocked paths with a synchronous loop constrain a clock period.

[Definition 2.4] Single-stage and multistage clocked paths

A single-stage clocked path is a clocked path which has only two clocked storage ele

ments in the path: preceding and succeeding elements. A multistage clocked path is a

clocked path which consists of more than one contiguous single-stage clocked path, without
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synchronous loops unless the whole path forms a synchronous loop. An TV-stage clocked

path refers to a multistageclockedpath consisting of AT single-stage clockedpaths, d

Single-stage clocked paths are basic units to consider for timing verification. Multis

tage clockedpaths exists only in multiphase clocking systems. No more than one storageele

ment in a multistage clocked path is clockedby the same clock phase, except when the whole

path forms a synchronous loop or transparentclocked storage elements are consecutive. The

clocked path of$j and <j>/ represents a clocked path which begins logic evaluation at <J>; (R)

and finishes it at ty(F), when P_CSE and S_CSE areideal clocked storage elements without

delays. Figures 2.2 and 2.3 illustrate (fc - fy single-stage and multistage clocked paths, where

P_SCE and S_CSE are positive edge-triggered type.

[Definition 2.5] Clocked logic segments (single-stage and multistage)

A <j>,- - ty single-stage (multistage) clocked logic segment in a digital system is a collec

tionof all <j)j- - §j single-stage (multistage) clocked paths in thesystem, o

[Definition 2.6] Logic evaluation sections

A §i-logic evaluation section in a digital system is a collection of all single-stage logic

segments in the system, whose preceding storage elements are clocked by <j);. a

There may be as many as N2 single-stage clocked logic segments and N logic evalua

tion sections in a circuit under analysis, whereN is the number of clock edges which are used

for synchronization. Assuming that no single-stage logic segments form a synchronous loop,

there may b&N(N-\) single-stage clocked logic segments. Even though there are 2n clock

edges available for synchronization in n-phase clocking systems, system designers usually

use n rising or n falling edges only.
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[Notation 2.2] Propagation delay

For a given logic path A, the propagation delay through A is denoted by Da . a

[Notation 2.3] Activating and inactivating clock edge

For a given clocked storage element, CSE, ^(CSE) denotes times at which the

activating clock edges of CSE occur. For a given transparent clocked storage element, CSE,

tiAE (CSE) denote the times at which the inactivating clock edges of CSE occur, d

23. CLOCKED PATHS USING EDGE-TRIGGERED CLOCKED STORAGE ELE

MENTS

When edge-triggered clocked storage elements are used, it is important to keep the

input data unchanged during the sampling interval around an activating clock edge to guaran

tee that the correct input values are latched. The part of the error-free sampling interval

before the activating clock edge is called a set-up time, and the one after the activating clock

edge is called a hold time [26,29]. If the slowest arriving signals settle at the input nodes of

clocked storage elements the set-up time before an activating clock edge, they will remain

stable until the end of the hold time, unless logic paths are extremely fast. Since the hold

time is usually negligibly smaller than propagation delays through logic paths, many timing

verifiers check only whether or not the input data of clocked storage elements become stable

before the set-up time.

[Notation 2.4] Setup time of clocked storage element

For a given clocked storage element, CSE, TSetup(CSE) denotes the set-up time of

CSE. a



15

Consider a single-stageclocked path,illustrated in Figure2.2. Suppose that P_CSE and

S_CSE are edge-triggered type. Then, the propagation delay of the clocked path, DCl . must

satisfy following constraints to ensurethat input data to S_CSE settles before the set-up time:

Dcl ± tsR-tpR = [tAE(SjCSE)^TsErup(S_CSE)]-tAE(P_CSE) (2.1)

Note that r^(S_CSE), a timepointatwhichthe activating clock edge of S_CSE occurs, is the

next closest one to tAE(P_CSE) on timing chart. If clock signals shown in Figure 2.4 are

used for synchronization and the two clocked storage elements are positive edge-triggered

type, following constraints must be satisfied:

DCL ^ t3-t\-Tsmup(S_CSE)

A multistage clocked path also must satisfy the timing constraints of Equation (2.1). In

this case, Dcl represents a propagation delay through the multistage clocked path; Dcl is

the sum of delays through single-stage clocked paths which constitute the multistage clocked

Tp

t1 t2 t3 t4 t5 t6

Figure 2.4 Clock Signals
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path. However, fortunately, any multistage clocked path using edge-triggered clocked

storage elements, including the one which constrains a clock period, satisfies timing con

straints automatically if each of its constituent single-stage clocked paths satisfies timing con

straints. Thus, when verifying a system which uses edge-triggered clocked storage elements,

timing verifiers obtain the maximum propagation delay through each single-stage logic seg

ment and apply Equation (2.1) for the timing verification of the system.

2.4. CLOCKED PATHS USING TRANSPARENT CLOCKED STORAGE ELE

MENTS

In a system using transparent clocked storageelements, input signals of clocked storage

elements must remain stable during a set-up time for correct values to be latched. The set-up

time of transparent type is a short time interval just before the inactivating clock edge.

Consider a single-stage clocked path, illustrated in Figure 2.2, once more. This time,

clocked storage elements used are assumed to be transparent type. To ensure the correct

input data to be latched, the propagation path delay, Dcl »must satisfy:

Dcl £ tsR-tpR = [tEND(S_CSE)-TsmVp(S_CSE)]-tAE(P_CSE) (2.2)

where

tEND(S_CSE) : tAE(S_CSE), if a clocked path forms a synchronous loop.
tiAE(S_CSE)> otherwise.

In the above constraints, t£ND(S_CSE) is the next closest one to tAE(P_CSE) on the timing

chart If a particular single-stage clocked path forms a synchronous loop (i.e., i = j in Figure

2.2), the path employs a single-phase clocking scheme. In this case, Dcl constrains a clock

period. Otherwise, Dcl constrains a clock separation, which is a separation between clock
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edges of different phase. Note that a single-stage clocked path using transparent elements

may use both preceding and succeeding clock phases for logic evaluation, unless it forms a

synchronous loop. In Figure 2.2, if P_CSE and S_CSE are positive-active transparent type

and clock signals illustrated in Figure 2.4 are used for synchronization, Equation (2.2) yields

following constraints:

DCL ^ t4-tl-TSETUp(S_CSE)

[Definition 2.7] Order of clock edges

For a given clocked path, clocked logic segment, or logic evaluation section for timing

verification, the order ofclock edges is the one that clock edges occur on a timing chart dur

ing one clock period, beginning from a preceding activating clock edge, a

Note that an order of clock edges is not an order of clock signals specified by the user.
»

Suppose that a single-stage clocked path of CSE2-CL2-CSE3 in Figure 2.5 is verified. If

CSE2 is positive-active transparent type, a preceding activating clock edge is §3(R). Thus,

the increasing order of clock edges for the path is §3(R) - <|>3(F) - §4(R) - §4(F) - tyl(R) -

♦1(F) -<|>2(tf)-<i>2(F).

[Definition 2.8] Clocking delay of clocked storage elements

When an input signal arrives at a clocked storage element, CSE, before an activating

clock edge does, it can not be latched until an activating clock edge arrives. A clocking delay

(CSE) is defined as a time interval the input signal must wait to be latched as follows:

clocking delay (CSE) = min (tAE(CSE) - tREADY(CSE), 0) (2.3)

where tREADY (CSE) is a timepoint at which an input data of CSE is ready, a
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If an input signalarrives at a clocked storage elementon or afteran activating clock edge, the

clocking delay is zero. The concept of the clocking delay will be used for the description of

the algorithms for the verification* of multistage clocked paths which use transparent clocked

storage elements.

The timing constraints of Equation (2.2) can be applied to examine multistage clocked

pathsas well as single-stage clocked paths, if the meaningof Dcl is modified as follows:

Dcl ^ tsR-tpR = [tEND(SR_CSE)-TSETUp(SR_CSE)]-tAE(PR_CSE) (2.4)

where

Dcl • Propagation time through a clocked path, excluding clocking
delays of interposed clocked storage elements.

tEND(SR_CSE) : tAE(SR_CSE), if a clocked path forms a synchronous loop.
tiAE (SR_CSE), otherwise.

Note that Dcl is a sum of delays through successive single-stage clocked paths and it is not a

sum of the worst-case delays in successive single-stage clocked logic segments. Like a

single-stage clocked path, if a multistage clocked path forms a synchronous loop, it con

strains a clock period. If not, it constrains a clock separation. However, t£ND (SRjCSE) for a

multistage clocked path may not be the next closest one to tAE (PRjCSE) as it is for a single-

stage clocked path. A time difference between tEND(SR_CSE) and tAE(PR_CSE) in Equa

tion (2.4) is equal to or larger than a clock period, if clock edges activating storage elements

between PR_CSE and SR_CSE are not in monotonically increasing order. Therefore, when

tAE(PR_CSE) is given for a multistage clocked path, t£ND(SR_CSE) must be computed by

considering the evaluation period of each of its constituent single-stage clocked paths on the

timing chart, one by one from the first to the last single-stage clocked paths. As an example,

let all the clocked storage elements in Figure 2.5 be positive-active transparent type. Assume
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that tAE(CSE1) is 11 on timing chart. Then, the evaluation periods for CL1, CL2, and CL3

are from t\ to *3, f2 to t5, and t4 to r6, respectively. Since the path does not form a syn

chronous loop, the proper tENo(CSE4) \st6, which is 7> + To apart from r^ (CSF1).

When a system uses transparent clocked storage elements, a multistage clocked path

may not satisfy timing constraints, even when all of its constituent single-stage clocked paths

satisfy their timing constraints. Therefore, when a multistage clocked path is examined, all

of its nested clocked paths must be examined and assessedusing Equation (2.4). If a multis-

N
tage clocked path has N constituent single-stage clocked paths, it has Y j nested clocked

paths. Since the path of Figure 2.5 has 3 constituent single-stage paths, the following 6

nested clocked paths must satisfy their timing constraints as follows:

(1) Single-stage nested clocked paths

Dcli $ t3-t\-TsETUp(CSE2)
DCL2 < f 5 - r2 - Tsetup (CSE 3)
DCL3 < f 6 - f4 - Tsetup (CSE4)

(2) 2-stage nested clocked paths

Dcl\+Dcl2 £ t5-tl-TSETUp(CSE3)
DcL2 + DCL3 ^ t6-t2-TSETUp(CSE4)

(3) 3-stage nested clocked path

Dcli+Dcl2+Dcl3 ^ t6-tl-TSETUp(CSE4) = TP +T0-TSetup(CSE4)

The algorithm for the verification of N-stage clocked paths are shown in Algorithm 2.1, in a

high-level Pidgin-C description.

As mentioned earlier, when transparent clocked storage elements are used, the fact that

all constituent single-stage clocked paths satisfy their timing constraints does not guarantee

that the corresponding multistage clocked path satisfies its timing constraints. However,
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/* START: Constraint checkfor a N-stage clocked path, MCP, using transparent type */

foreach(;e (1 N}){

extract all j -stage nested clocked paths from MCP ;

foreach (NestjCPi e [set of./-stage nested clocked paths]) {
check NestjCPi using Equation (2.4);

}
}

/* END: Constraint checkfor MCP */

/* Note: Dcl in Equation (2.4) is the sum of delays throughthe constituent
single-stage paths ofCL, which does not includea clocking delay. */

Algorithm 2.1 Constraint Check For A N-stage Clocked Path Using Transparent Type

there has been an attempt to examine a multistage path on the fly, while verifying constituent

single-stage clocked paths [24,30]. A key idea of this approach is to examine and evaluate a

path from a preceding reference clocked storage element, which changes during verification,

to the end of a constituent single-stage clocked path which is most recently examined and

evaluated. The approach is described in Algorithm 2.2. In the description, the boxed part is

used later in this chapter to describe the algorithm for the verification of clocked paths that

use both types of storage elements. Suppose that a multistage clocked path MCP, which uses

transparent clocked storage elements, is subject to timing verification using Equation (2.2).

Let a preceding reference clocked storage element (PR_CSE) be the preceding clocked

storage element of MCP initially. A signal starts to propagate from PRCSE at

tAE(PR_CSE). Algorithm 2.2 examines each single-stage clocked path, one by one from the

first one to the last one. Suppose that SCPi denotes the i th constituent single-stage clocked
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/* START: Constraint checkfor a N-stage clocked path, MCP, using transparent type *l

PRJCSE = PjCSE ofMCP ;
Propagate a signal at tAE(PR_CSE);

foreach (SCPi = ith constituent single-stage clocked path ofMCP ,/e (1,..., N}) {

Check SCPi using Equation (2.2);
if (PRJCSE *P_CSE of SCPi ) {

if (P CSE of MCP to S_CSEj forms a synchronous loop) {

/* SjCSEi must be the last single-stage clocked path ofMCP */
if(tREADY(S_CSEi) > (tAE(S_CSEi)-tSETUp(S_CSEi)))

report a clock period violation;
}

S_CSEi = S_CSE of SCPi ;

X(tREADY(S_CSEi) < tAE(S_CSEi)){
/* CASE 1: Pathfrom PRjCSE to SjCSEi satisfies constraints */
Delay a signal propagation until SjCSEi becomes active;
PRJCSE = SjCSEi ;

}
else {

if(tREADY(SjCSEi) > (tiAE(S_CSEi)-TsETUP(S_CSEi)))
I* CASE 2: Pathfrom currentPRJCSE to SjCSEi violates constraints */
report a clock separation violation;

else if (SCPi is the last one in MCP); /* CASE 3: Constraints satisfied */
else /*CASE4:*/

/* Pathfrom PRJCSE to SjCSEi is still subject to verification */
}

}
} /* END: Constraint checkfor MCP */

where

PRCSE : Preceding reference clocked storage element
PjCSE (SjCSE) : Preceding (Succeeding) clocked storage element
tREADY (SjCSEi) • Timepoint at which an input of SjCSEi is ready

Algorithm 2.2 Constraint Check For A N-stage Clocked Path Using Transparent Type
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pathof MCP and SjCSEi denotes its succeeding clocked storage element. In general, after

examining SCPi. Algorithm 2.2 checks if a path from the preceding clocked storageelement

of MCP to SjCSEi forms a synchronous loop. If the path forms a synchronous loop, SCPi

must be the last constituent single-stage clocked path of MCP from the definition. Hence a

signal propagation through the path must finish by tSR(SjCSEi) to satisfy the following ine

quality:

tREADY(S_CSEi) > tSR(S_CSEi) = tAE(S_CSEi)-tsETUP(SjCSEi)

where tREADY(SjCSEi) is an input signal arrival time at SjCSEi. If the pathdoes not form a

synchronous loop, there are two cases to consider:

(1) An input signal arrives before an activating clock edge at S_CSE of SCPi •

(2) An input signal arrives after an activating clock edge at S_CSE of SCPi •

If an input signal is ready before an activating clock edge to arrive at S_CSE of SCPi» a

pending path from the current PR_CSE to the S_CSE of SCPi satisfies maximum delay con

straints (CASE 1 in Algorithm 2.2). In this case, a signal propagation is delayed until S_CSE

of SCPi is activated; i.e., a clocking delay is added to the path delay. The signal starts to

propagate through the path again when S_CSE of SCPi becomes active, as it starts to pro

pagate at PCSE of MCP when it becomes active. Therefore, PR_CSE is updated by the

S_CSE of SCPi for the examination of the remaining path of MCP. On the other hand, when

an input signal arrives after an activating clock edge at S_CSE of SCPi. one of following two

cases happens:

(2.1) An input signal does not arrive by a set-up time before an inactivating clock edge.

(2.2) An input signal arrives by a set-up time before an inactivating clock edge.

If an input signal does not arrive at S_CSE of SCPi by a set-up time before an inactivating

clock edge, a pending path for timing verification, which is a path from the current PRJCSE
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to S_CSE of SCPi, violates timing constraints (CASE 2 in Algorithm 2.2). When an input

signal arrives by a set-up time before an inactivating clock edge, if SCPi is the last single-

stage clocked path in MCP, the pending path is regarded as satisfying timing constraints

(CASE 3 in Algorithm 2.2). If it is not the last one, the pending path is still subject to timing

verification (CASE 4 in Algorithm 2.2). The algorithm moves to the next constituent single-

stage clocked path to examine while PR_CSE is kept the same.

Figure 2.6 illustrates CASE 1 to CASE 4 in Algorithm 2.2, assuming that the set-up

times of NMOS pass transistor registers are negligible. In CASE 1, the input of CSE2 settles

before r2 which is tAE(CSE2). Thus, CLl satisfies timing constraints and d2 represents a

clocking delay through CSE2. In CASE 2, the input of CSE2 settles after t3 which is

tjAE(CSE2) and CLl violates timing constraints. In CASE 4, the input of CSE2 settles

between f2 and t3 and CLl is pending for verification. CASE 1* to CASE 4' in Figure 2.6

also illustrate CASE 1 to CASE 4 in Algorithm 2.2, respectively, involving more than one

single-stage clocked path. In CASE 1, pending paths CLl and CL2 satisfy timing con

straints, while they fail in CASE 2. From CASE 2, notice that a multistage path may violate

timing constraints, even though its constituent single-stage paths satisfy timing constraints

individually. In CASE 3, the early part illustrates how a signal propagates after CASE 1 has

occurred. After CLl is examined, PR_CSE changes from CSE1 to CSE2. Because CL3 is

the last single-stage path in this particular example, a multistage path of CL2 and CL3

satisfies timing constraints. In CASE 4, a multistage path of CLl and CL2 is still subject to

verification.

Clock pulse width (ENABLE period) must be wide enough so that the output nodes of

transparent clocked storage elements can settle. However, it is easily satisfied and, therefore,

the designers are not concerned about the clock pulse width unless they use a single-phase
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clocking scheme which limits the clock pulse width, as will be described later.

2.5. CLOCKED PATHS USING EDGE-TRIGGERED AND TRANSPARENT

CLOCKED STORAGE ELEMENTS

Circuit designers may use both edge-triggered and transparent clocked storage elements

in one design. Thus, the types of preceding and succeedingclocked storage elements may be

different and so it is helpful to derive timing constraints and algorithms that are applicable

regardless of the element types used. A clocked path takes an activating clock edge as a

preceding time reference (fa?), whateverthe type of a preceding clocked storage element is.

However, a succeeding time reference (tsR) depends on the type of a succeeding clocked

storage element (S_CSE). If S_CSE is edge-triggered type or the path forms a synchronous

loop, an activating clock edge will be tsR. Otherwise an inactivating clock edge will be tsR.

Therefore, the timing constraints and algorithms presented earlier can be modified to reflect

above facts for the timing verification of the clocked paths using either type of elements.

From Equation (2.1) and (2.2), timing constraints for a single-stage clocked path illus

trated in Figure 2.2 are given as follows:

Dcl ^ tSR -tpR = [tEND(S_CSE)-TSETUp(SjCSE)]-tAE(PjCSE) (2.5)

where

tEND (S_CSE) : *ae(SjCSE), if SjCSE is edge-triggered type or the path forms
a synchronous loop.

tiAE (SjCSE), otherwise.

and tEND (SjCSE) is the next closest one to tAE(PjCSE).

As mentioned earlier, edge-triggered clocked storage elements partition a multistage

clocked path into sub-paths whose timing verification can be carried out independently of
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each other. If all the partitioned sub-paths satisfy their timing constraints, the multistage

clocked path is also guaranteed to satisfy its timing constraints. Therefore, the timing

verification of a multistage clocked path using both types of clocked storageelements can be

translated into a task of examining each sub-path separately, provided that they are parti

tioned by interposed edge-triggered clocked storage elements. If a multistage path has N

interposed edge-triggered clocked storage elements between its preceding and succeeding

clocked storage elements, there are A/+1 sub-paths to verify independently. The sub-path is a

single-stage or multistage clocked path. If a sub-path is multistage, all of its interposed

clocked storage elements are transparent type. There are four types of sub-paths as listed in

Table 2.1.

Sub-Path type
CSE Type

Preceding CSE Succeeding CSE

Typel Edge-triggered Edge-triggered

Type 2 Edge-triggered Transparent

Type 3 Transparent Edge-triggered

Type 4 Transparent Transparent

Table 2.1 Types Of Sub-Paths Which Can Be Verified Individually
After Partitioning A Multistage Clocked Path

Algorithms 2.1 and 2.2 can be modified as follows to check if each sub-path satisfies timing

constraints.

Modified Algorithm MA2.1:

tEND (SjCSEi) for Equation 2.4 is redefined as follows:



tEND (SRJCSE) : tAE (SRJCSE), if SRjCSE is edge-triggered type or
a clocked path forms a synchronous loop.

tiAE (SRJCSE), otherwise.

Modified Algorithm MA2.2:

The boxed part in Algorithm 2.2 is modified to followings:

Check SCPi using Equation (2.5);
if (PRJCSE * PJCSE of SCPi ) {

if* (PJCSE ofMCP to SjCSEi forms a synchronousloop or
SjCSEi is edge-triggered type) {

28

2.6. SINGLE-PHASE CLOCKING

The simplest clocking scheme, even though its timing constraints are not simple to

satisfy, is a single-phase scheme which uses only one clock phase [25,28]. Since the same

clock phase is applied to all clocked storage elements, all clocked paths form synchronous

loops. Thus, clocked path delays must be smaller than a clock period. More precisely, from

Equation (2.5), the maximum delay DMax of the combinational logic in a single-phase clock

ing system is constrained as.follows, irrespective of clocked storage element types:

DMax < TP-Tsetup (SjCSE) (2.6)

where Tp is a clock period and S_CSE is a succeeding clocked storage element.

Suppose a single-phase clocking system uses transparent clocked storage elements.

Since only one clock phase is used, all clocked storage elements in the system are active dur

ing an ENABLE period. If a combinational logic has path delays that are smaller than the

ENABLE period, the newly generated next states are latched as inputs during the same

ENABLE period. If such race conditions exist, the system will not function correctly.

Therefore, the minimum path delay of the combinational logic, DMin, must satisfy following
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constraints:

Tenable ^ DMm +T0H(S_CSE) (2.7)

where Tenable is an ENABLE period for which clocked storage elements in the system

become transparent, and T0H is a hold time. Equations (2.6) and (2.7) mean that not only the

slowest path but also the fastest path in the system must be observed.

The single-phase clocking is cheap and fast. However, if transparent clocked storage

elements are used for synchronization, it is difficult to implement combinational logic block

which satisfies the two-sided constraints of Equations (2.6) and (2.7) under all conditions of

process variation in manufacture. This clocking scheme was employed in many of the early

TTL systems, but is not popular in MOS VLSI circuits where transparent pass transistor

registers are commonly used.

2.7. MULTIPHASE CLOCKING

The advantage of using multiphase clocking is that the system can be free of two-sided

constraints and the combinational logic may have single-sided relations which constrain the

maximum path delay, even when transparent clocked storage elements are used. As in

single-phase clocking system, race conditions may occur in multiphase clocking systems

from synchronous-looped paths whose constituent clocked storage elements are all tran

sparent type. However, race conditions can be avoided by choosing clock signals properly

for a given clocking scheme and, thus, the painful minimum delay constraints can be elim

inated. One of the most common ways to avoid race conditions is to use nonoverlapping

clock signals so that only one transparent clocked storage element in any synchronous-looped

path can be active at any time. In fact, even if overlapping clock signals are used, race condi

tions do not occur as long as not all transparent clocked storage elements of the synchronous
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looped-path are active at the same time. One of the examples is the canonical three-phase

overlapping clocking scheme, where only two phases, not three phases, simultaneously over

lap [28]. If an overlapping clocking scheme presents two-sided constraints due to simultane

ous overlapping of all clock signals, the precise constraints on the minimum delay to avoid a

race depends on the particular scheme used.

Examination of the maximum delays through the combinational logic of a multiphase

clocking system is partitioned into two tasks:

(1) Identifying all single-stage and multistage clocked paths in a system that make a syn

chronous loop or terminate prematurely before making a synchronous loop.

(2) Verifying identified clocked paths against timing constraints, using Modified Algo

rithm MA2.1 or MA2.2.

The above tasks can be performed simultaneously. Figure 2.7 illustrates a system which has

two isolated closed paths: Path J and Path 2. If a timing verifier starts a clocked-path search

from only (J>i clock nodes, it detects Path 1 but misses Path 2. In general, when a timing

verifier looks for clocked paths in a system, the search must start from all clock nodes in

order to find all clocked paths.

2.8. PRECHARGING

Precharging is a quite useful technique in MOS circuit designs, because it provides the

advantages of faster operation, reduced power consumption, and greater circuit density,

depending on the application [29,28]. However, once the stored charge is lost, it cannot be

recovered until the next precharging time. Thus, circuits become more sensitive to glitches

and timing errors and have tight timing constraints to satisfy. Figure 2.8 illustrates a part of

circuit which uses a precharged bus. In the figure, CSE1 and CSE2 are NMOS transmission
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gates. A precharging element (PE) may be a PMOS or an NMOS transistor. During a

precharging period, the precharging element is on and BUS precharges. Then it discharges

through CSE1 depending on the logic signal at A during an evaluation period (($>,). Since

BUS takes its input signal from Node A while (J),- is high, it belongs to fy (R) logic evaluation

section.

If a precharging element is an NMOS transistor, BUS is precharged while <j>y is high,

where ty and <|>,- are usually nonoverlapping, as illustrated in Figure 2.4. Obviously, a

precharging time through anNMOS precharging element, TPRechg . must satisfy foliowings:

Tprechg $ toFF(PE)-toN(PE) = fy(F) -fy(R) (2.8.a)

When a precharging element is a PMOS transistor, <|>y is usually (J),-. Thus, the precharging

time througha PMOS precharging element, TPrechg . must satisfy the following:

Tprechg Z toFF(PE)-t0N(PE) = <|>,-(R)-<j>;(F) = fc(K)-fo(F) <2.8.b)

[Notation 2.5] Rising and falling transition times

For a given node A, tA (R) and tA(F) are times at which rising and falling transitions

occur, respectively, a

Note that precharging uses dynamic charge storage. If Node A does not complete its rising

transition before CSE1 is on, the charge stored on BUS will be lost. Therefore, Node A must

complete its rising transition by the time that CSE1 is clocked on:

tA(R) < *H(R) (2.9)

Provided that Equation (2.9) is satisfied, a logic "1" signal is available at BUS as soon as the

precharging is done. Hence when a timing verifier needs to propagate the worst-case rising

transition at BUS to the next logic gates, it propagates a rising transition through a precharg-
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ing path,and all other risingtransitions are ignored.

Since an output transmission gate CSE2 is also gated by fo, the rising and falling transi

tions at Node B through CSE2 must finish before CSE2 turns off:

tB(F) < fr(F) (2.10.a)

tB(R) < fr(F) (2.10.b)

Since a logic "0" signal at Node A starts to pass through CSEl at $,(#). Equation (2.10.a)

means that a falling delay through CSEl and CSE2, Dfc, must n°t be larger than the pulse

width of <J>j for which fa is high:

Dfc £ fc(F)-fc(K) <2.H.a)

Similarly, a logic "1" signal at BUS starts to pass through CSE2 at §i(R). Thus, Equation

(2.10.D) means that a rising delay through CSE2, Dfc, must not be larger than the pulse

width of <|>,-:

Dfc <4n(F)-h(R) (2.11.D)

One should notice that, while circuits using precharged modules are faster than static

circuits, they have to satisfy tight timing constraints. A circuit example using precharged

modules is illustrated in Figure 2.9. Suppose that CSE3 is an active-high transparent type

with a negligible set-up time. Then Equations (2.4), (2.8), (2.9), (2.11.a) and (2.1 l.b) yield

the following constraints to satisfy:

From Equation (2.4) : D + DCL2 ^ tyj(F)-$i(R) = 14 -11

Dcli+D < fc(F>-ty(*) = t6-t3

D +DCli+Dcl2 ^ TP (2.12)

where D is the path delay through CSE 1 and CSE 2
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From Equation (2.8): Tprechg ^ §j(E)-$(R) = t4-t3

From Equation (2.9) : tA(R) ^ tl,foTan evaluation period of t\ and tz (2.13)

From Equation (2.11 .a): Dfc < 12-11

From Equation (2.11.6): D& < r2 - f1

As mentioned earlier, the first three constraints, derived from Equation (2.4), apply to succes

sive clocked paths rather than successive clocked logic segments in the system. As an illus

tration, (D +Dcl\+Dcl2) in Equation (2.12) is a sum of delays through one of precharged

modules, a path in CL2, and a path in CLl, that are successive. It is not the sum of the
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worst-case delay through precharged modules, the worst-case delay in CL2, and the worst-

case delay in CLl.

Two other circuit modules that use precharging and predischarging are illustrated in

Figure 2.10: N-type and P-type dynamic logic gates [31,32]. The N-type dynamic logic gate

is used in both NMOS and CMOS designs, while the P-type dynamic logic gate is available

only in CMOS designs. In NMOS design, Ml is an NMOS transistor, and <J)/ is ty or another

clock signal which is nonoverlapping with <J)y. The output node, Output, is precharged when

tyi is high andis conditionally discharged through N-type logic block while <j>y is high. These

N-type dynamic logic gates are used as precharged busses in NMOS design. In CMOS

design, Ml of the N-type dynamic logic gate is a PMOS transistor, and <j>; is ty. Output is

precharged when ty is low and is conditionally discharged while <J>y is high. N-type dynamic

Vdd

♦ M1

Inputs N-type

Logic

\ H[ M2

(a)

Output

Vdd

Inputs P-type

Logic

Ti HI M4

Oul

(b)

Figure 2.10 (a) N-Type Dynamic Logic Gate (b) P-Type Dynamic Logic Gate
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logic gates are used as precharged busses in CMOS design or they are used to construct

CMOS domino logic [31], where each N-type dynamic logic gate is followed by an inverter

to ensure a single transition from logic "0" to logic "1" at the gates of NMOS transistors in

the next N-type dynamic logic gates. Thus, the domino logic precharges the output nodes of

N-type dynamic logic gates and evaluates multiple logic levels during the same clock phase,

where the outputs fall sequentially, like a row of dominos. The domino logic consisting of

the N-type of Figure 2.10(a) will precharge when ty is low and evaluates when fy is high.

Since an N-type dynamic logic gate utilizes precharging, its timing constraints are similar to

those for precharged modules illustrated in Figure 2.8. If Ml is an NMOS transistor (NMOS

design), a precharging time must satisfy the following:

Tprechg £ t0FF(M\)-t0N(M\) = fc(F)-fc(*)' (2.14.a)

Similarly, if Ml is a PMOS transistor (CMOS design), the following constraints are given for

precharging an output node:

Tprechg ± t0FF(M\)-toN(M\) = fc(R)-fe(F) = ^(R)-fyj(F) (2.14.b)

The falling output transition of an N-type dynamic logic gate, which starts after <$>y (R), must

finish by the next (J);- (F) at whichM2 turns off.

touiPUt(F) < fy(F) (2.15)

When falling input transitions of an N-type dynamic logic gate do not finish until Ml turns

off, Output may lose its charge by charge sharing or discharging through NMOS transistors

of N-type logic block as Ml turns off. Therefore, most circuit designers prefer the falling

input transitions to finish by the time Ml turns off as follows. If Ml is an NMOS transistor

(NMOS design), •
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tlNPUTs(nZtoFF(Ml) = $i(F) (2.16.3)

Similarly, ifMi is a PMOS transistor(CMOS design),

tiNPurs(F) $ toFF(M\) = fr(R) = ty(R) (2.16.D)

Another circuit design technique which uses prechargingand predischarging is a NORA

logic [32], which consists of alternating N-type and P-type dynamic logic gates. Ml of N-

type dynamic logic gateis a PMOStransistor and hence <j>,- is ty. Output of a P-type dynamic

logic gate of Figure 2.10(b) is predischarged when <j>;- is high andis evaluated when <$>y is low.

In a NORA logic, no inverters follow N-type or P-type dynamic logic gates. Like a domino

logic, the NORA logic precharge and predischarge the output nodes of N-type and P-type

dynamic logic gates, respectively. Then, it evaluates multiple logic levels during the same

clock phase. The NORA logic consisting of the N-type and P-type logic gates of Figure 2.10

precharges and predischarges when fy is low and, then, evaluates when <$>y is high. Notice

that a P-type dynamic logic gate is the dual of an N-type dynamic logic gate. Hence, the

predischarging time of P-type dynamic logic gate has following timing constraints to satisfy:

Tpredischg ^ t0FF(M4)-toN(M4) = fy(F)-$,(/?) (2.17)

The rising output transition of a P-type dynamic logic gate, which starts after §j(R), must

finish by the next (J); (R) at whichMS turns off.

tomPui(R) * ty{R) (2.18)

Similarly to the falling input transitions of an N-type dynamic logic gate, the rising input

transitions of a P-type dynamic logic gate must finish before M4 turns off and M3 turns on:

tiNPUTsW) Z t0FF(M4) = t0N(M3) = $,(F) (2.19)
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2.9. CLOCK SKEW

During clock distribution in a synchronous system, there is a variation in the arrival

time of clock signals to different clocked storage elements due to different propagation

delays. This arrival time variance is called clock skew. Clock skew changes the effective

clock period and clock separations and, as a result, generally impacts system performance

adversely. An extreme clock skew turns nonoverlapping clocks into overlapping clocks and

may introducetwo-sided timing constraints. Note that clock skewis signal-relative at a logic

and not a function of the absolute delay of signals in the circuit. Since it is difficult to predict

clock skew and clock timing exactly, the control of clock skew is a problem in large systems,

including VLSI systems. Althoughthe clock delay can be reduced by placing re-shaping cir

cuits at intervals along a long line, the overall delay is still fairly long compared to the propa

gation delay through a single MOS gate.

One way of looking at the influence of clock skew is to transform the clock skew to

appear in the clocked paths as an absolute delay from a given reference point (usually the out

put of the clock generator) [28]. Suppose a clocked storage element, CSE, has a clock skew

of dsKEW- The clock skew on the clock signal path to CSE can be eliminated by adding a

delay dSKEW to the logic path following CSE, while the same delay is subtracted from the

other logic path which precedes CSE. This transformationis shown in Figure 2.11.

Another way of taking the influence of the clock skew into account is to use actual

clock arrival times to clocked storage elements, when attempting to verify clocked paths

against timing constraints. That is, clock skew affects timing constraints by changing the

effective clock separation or clock period. This approach is used in E-TV, as will be

described in Chapters.
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CHAPTER 3

TIMING VERIFICATION TECHNIQUES

During the design process of a digital system, designers examine the signal timings at

various design points. There are two main purposes for the examination of signal timings.

First, designers attempt to detect the possibility of timing errors. Needless to say, if there are

any timing errors, the system will not function correctly. Therefore, detecting and correcting

timing errors are crucial for the successful operation of the design. Second, designers attempt

to optimize the performanceof the system. In a system, the actual operating speed is deter

mined by the slowest of all possible signal paths. The system speed can sometimes be

improved greatly by reducing propagation delays through a few critically slow paths. Thus,

designers are interested in identifying critical paths for the speed improvement of a system.

At the same time, an unnecessarily fast section, compared to the restof a system, usually con

sumes extra silicon area and power. Thus, designers are also interested in identifying the

unnecessarily fast paths in the system to save silicon areaand power.

To investigate system timings, designers would need to extract appropriate circuit

pieces from the system. However, as the size and complexity of a system increase, it is no

longer a simple task even for skilled designers to extract the right circuit pieces to analyze.

Thus, since the Program Evaluation and Review Technique (PERT) [33,34] had been applied

to logic design [21], many timing verification tools have been developed in order to help

designers detect timing errors and optimize system performance

[35,22,36,37,38,23,24,30]. PERT was developed as an aid in estimating end dates and

critical paths for the scheduling of large projects.
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While it may depend on a detailed implementation, a timing verifier usually needsthree

functional sections: the path analyzer, the delaymodeler, and the timing-constraint checker.

The operation of the three functional sections canbe summarized as follows. A pathanalyzer

extracts a logic block in a given system, systematically. A delay modeler evaluates a propa

gation delay through the logic block. Using this delay value, a path analyzercomputes a path

delay from starting nodes to the output node of the logic block. Then, a timing-constraint

checker attempts to ascertainwhether or not the path violates any timing constraints, or com

putes proper clock separations using the path delay. A timing verifier without a delay

modeler requires the user to specify propagation delays through logic blocks in a system.

In this chapter, various aspects of timing verification techniques, including signal pro

pagation, delay computations, and path analysis, are described. The path-analysis approach

used in E-TV is the critical-path analysis method which detects only the critical paths in a

given system. A number of critical-path analysis methods are 'described in detail, with

emphasis on the switch level.

3.1. SIGNAL PROPAGATION FOR TIMING VERIFICATION

There are two possible approaches in propagating signals in a system for timing

verification: value-dependent and value-independent propagations. Assuming that a signal at

an input node of a logic block changes, the value-dependent approach propagates its effect to

the output node of the logic block only when the other input conditions support it Conven

tional simulators [6,5,9,10,39,40,41] belong to this approach. On the other hand, the

value-independent approach always propagates the input change of the logic block to the out

put node without attempting to check whether the signal conditions at other input nodes sup

port that propagation. Most timing verifiers [21,35,22,37,23,24,30] use value-independent
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approach. Figure 3.1 compares two approaches. Suppose that all logic gates in Figure 3.1

have a unit delay for the simplicity of comparison. Also, suppose that the worst (longest)

delay from input nodes A and B to an output node E is sought, when both inputs change at

time f=0. As one of value-dependent approaches, the simulation results are shown in Table

3.1 for four sets of changing input signals. In the table, "Input States" represents whether an

input rises or falls at time r=0. For examples, A(R) or A(F) represents that an input signal at

B

-»- Buffer

C

D
V

AND
-"S—

OR
p

y

Figure 3.1 A Circuit Example Illustrating Pattern-Independent and
Pattern-Dependent Signal Propagations

Outout fRisine) Outout (Falling)

Input
States

A(R), B(R) A(F),B(R) A(R),B(F) A(F),B(F)

Node t<0 t>0 t<0 t>0 t<0 t>0 t<0 t>0

A 0 1 1 1 1 0 0 0 0 . 1 1 0 0 0

B 0 1 1 1 0 1 1 1 1 0 0 0 0 0

C 0 0 1 1 1 1 0 0 0 0 1 1 0 0

D 0 0 0 1 0 0 1 0 0 0 0 1 0 0

E 0 0 1 1 0 0 1 1 1 1 0 1 1 0

Table 3.1 Simulation Results ofFigure 3.1
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Node A rises or falls at time f=0. From the simulation results, the worst rising delay at E is 1

unit delay, when "Input States" is (A(R), B(R)} or (A(F), B(R)}. The corresponding worst

delay path is found to be Path B-(OR gate)-E from Figure 3.1. Similarly, the worst falling

delay at E is 2 unit delay, when "Input States" is (A(F), B(F)}. The worst delay pathis Path

B-(AND gate)-D-(OR gate)-E. On the otherhand,when value-independentapproach is used,

both the rising and the falling worst delays are 3 unit delays through Path A-(Buffer)-C-

(AND gate)-D-(OR gate)-E. Because these delays are the worst among all possible cases,

they are called the worst-case delays. In this example, value-independent worst delays are

pessimistic, compared to value-dependent worst delays computed by simulation, because

their worst delay path is the one which can not be activated under real operating conditions.

In Figure 3.1, in order for the value-independent worst delay path to be active, following two

conditions must be satisfied at t >0.

(1) Node B must be at logic "1" in order for the signal change at Node C to propagate to

Node D through an AND gate.

(2) Node B must be at logic "0", in order for the signal change at Node D to propagate to

Node E through an OR gate.

Because above two conditions conflict with each other, this value-independent worst delay

path, A-(Buffer)-C-(AND gate)-D-(OR gate)-E, can not be activated. The paths that are

detected by value-independent approach but cannot be activated under real operating condi

tions are called false paths. When value-independent approach is employed, the user needs

to perform a case analysis [22], which analyzes a number of different cases within a given

circuit, one after another, to exclude false paths from consideration. The false paths can be

identified by checking the consistency of the signal conditions that are necessary for paths to

be activated either manually or automatically by a computer [42,43]. Even though the

value-independent approach may detect false paths, it has an advantage of significantly
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reduced work in finding the critical paths in a system and test completeness, when compared

to value-dependent approach. Note that value-dependent approach may not examine the criti

cal paths, unless a particular set of input values is fed to the system; e.g., (A(F), B(F)} must

be applied for the detection of the worst falling delay of 2 units at Node E, in this particular

example. Therefore, exhaustive simulation is necessary and the amount of work to locate the

critical path is exponential in the number of input nodes. Even though there are many algo

rithms that find efficient sets of input vectors which can cover most sensitizable paths in a cir

cuit [44,45], the use of such input vectors do not guarantee that the value-dependent

approach examines pathological paths. In addition, when simulation is used, it is very

difficult to extract the critical paths in a circuit. As a result, the value-independent approach,

which provides efficiency and test completeness, is favored for timing verification. In this

dissertation, timing verifiers refer to the ones which use value-independent signal propaga-

tion.

3.2. PATH ANALYSIS FOR TIMING VERIFICATION

The path analyzersof existing timing verifiers fall into one of two categories in examin

ing paths to locate the critical paths: path enumeration and critical-path analysis method.

The path enumeration method [35,36] extracts, examines and assesses all possible

paths in circuits between preceding and succeeding space references. This method is also

referred to as the path oriented approach. Because there is usually more than one path

between each pair of preceding and succeeding points, the number of paths to examine grows

exponentially with the number of circuit branches. Therefore, this method suffers from long

computer running times for large circuits but is suitable for small combinational logic cir

cuits. The advantage of having all paths examined is that it is easy to handle false paths. The
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individual false path may be blocked before analysis or it can be simply ignored after

analysis.

To describe the critical-path analysis method [21,22,23,24], it is convenient to define

following terms.

[Definition 3.1] Ancestor, descendant, parent, child, source, and sink nodes in a

directed acyclic graph

In a directed acyclic graph, if v and w are two nodes such that v is on the path from r to

w, v is an ancestor of w and w is a descendant of v. If v and w are adjacent, v is the parent of

w and w is a child of v. A source node is a node which has no ancestor. A sink node is a

node which has no descendant. a

When Node A is the parent of Node B on the critical path, A is called a critical parent.

Unlike path enumeration methods which examine all paths, the critical-path analysis method

locates only the critical paths between preceding and succeeding space references. In con

trast with the path oriented approach, this method has been referred to as block oriented

approach [37], because it identifies the critical path leading up to each block (or each point).

While this is a perfectly relevant name to be used at the block level, the critical-path analysis

method is a more appropriate name, as the approach can also be used at other levels such as

switch level. During critical-path analysis, each node stores information on its critical path

only and information on other paths is lost during the search. Therefore, it is difficult for the

method to locate the real critical path, when the detected one is a false path. Consider a

directed signal graph of Figure 3.2, where edges represent logic blocks. Suppose Node A is

the critical parent of Node B. Then, the critical-path analysis method takes A-B-C-F and A-

B-C-D as the critical paths for Nodes F and D, respectively. Let Path A-B-C-D, which is the
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Figure 3.2 A Signal Graph IllustratingThe Difficulty of Critical-Path
Analysis in Blocking An Individual False Path
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critical path for D, be a false path. Then, the next critical path (E-B-C-D), must be chosen as

the real critical path for Node D. However, because Node B does not store information on

the second critical parent (Node E), the critical-path analysis method has difficulty finding

the right critical path for Node D (A-B-C-D), Thus, the method must do case analysis, men

tioned in previous section, to keep from locating false critical paths. If path enumeration

method is used, four paths, A-B-C-D, A-B-C-F, E-B-C-D, and E-B-C-F, will be examined. If

PathA-B-C-D is found to be a false path, it may be ignored and PathE-B-C-D can be taken as

the critical path for D. On the other hand,becausethe critical-path analysis method examines

paths that contains the critical paths for parent nodes only, it runs much more quickly and

hence is more appropriate for large circuits than the path-enumeration method.

33. DELAYS FOR TIMING VERIFICATION

33.1. DELAY COMPUTATION METHODS

Delays through groups of transistors or logic blocks (hereafter, logic blocks) in a system

can be computed statically or dynamically for timing verification. The static delay
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computation method [22,46,30] computes a propagation delay through each functional logic

block before a verification starts. The propagation delays can be computed using the delay

modelerof a timing verifieror othermethods suchas simulationtools. These delays areused

when computing total path delays through functional logic blocks during path analysis. Fora

multi-input logic block, the worst-case delay among the delays between pairs of input and

output nodes is commonly chosen as a delay for the logic block. Therefore, this method

tends to overestimate path delays. Although some timing verifiers that use static delays allow

a delay for each pair of input and output nodes, factors such as the information about the

input waveform and load condition are not taken into account. On the other hand, the

dynamic delay computation method [23,24] computes a delay through an actual path

extracted during path analysis. Timing verifiers using this method usually extract a logic

block by tracing back along the path they traversed until a voltage source or ground is

reached. Then, an external input signal is applied to the gate of a driver on the logic block to

compute a path delay. Thus, two paths with the same schematic but different layouts are

evaluated separately using their actual parasitics. Even though dynamic delay computation is

more time consuming than static delay computation, it is preferred because of its superior

accuracy.

332. DELAY REPRESENTATIONS

There are three methods for representing path delays or signal arrival times at nodes:

nominal value, min-max, and statistical representations.

In the nominal value representation [23,24], each node in a circuit has a single nominal

arrival time for each signal. The nominal arrival time at the output of a logic block is the

sum of the nominal input arrival time and a nominal delay through the logic block.
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In the min-max representation [38], signal arrival times at nodes and signal delays

through logic blocks have the upper and lower bounds. For this method to be useful for

designers, the bounds must be tight enough.

In the statistical delay representation [21,37,35,47], a standard deviation and a vari

ance areused to represent the delay distribution. As anexample, in the Timing-Analysis pro

gram [37], the delay through eachlogic block and the signal arrival time at eachnode consist

of a mean value (u.) and a delay standard deviation (o). The mean arrival time at a node is

the sum of a mean arrival time at the input of a logic block and a mean delay through the

logic block. The arrival time standard deviations are computed by applying standard convo

lutions. The latest (or earliest) arriving signal path of a node is obtained by comparing the

worst-case arrival timeof thenode through incoming paths, u, + p a (or jx - p a), where p is a

confidence level defined by the user. This statistical representation is useful in analyzing sys

tems built using discrete components from different wafer lots, since the device characteris

tics from different wafers may vary widely. However, timing verifiers based on this

representation are only as accurate as the user-defined parameters such as correlation

coefficients and confidence levels. The selection of these parameters is both technology and

system dependent, and is error-prone. In the case of one-chip VLSI MOS systems, device

characteristics are usually very similar. Therefore, for such one-chip systems, a better

approach is multiple analyses of the system, usingdifferent sets of transistor parameters, for

example, one set obtained from typical process and another from the worst case process.

Some approach (e.g., [48]) allows the user to selectone of the three representations for

delays and time in the analysis, or to extend the program by developing new delay models to

meet special needs. Independent of the delay representation, the concept of "slack" is used to

provide a measure of the severity of the timing problem in some timing verifiers
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[21,37,24,30].

3.4. TIMING VERIFICATION LEVELS

Like simulation, timing verification can span several levels, such as behavioral, block,

and switch levels. The timing verificationlevel, here, refers to the level of timing primitives

used for path analysis and constraint verification. The timing verification level may be dif

ferent from the circuit primitive level used for delay computations, because timing verifiers

may compute path delays from the lower level circuit description, especially when they have

a hierarchical design data base [36,38].

The example of the behavioral timing verifier is SLTV [49], which calls a general

behavioral simulator Helix [50] to perform behavioral analyses. In SLTV, the primitives are

described using one of hardware description languages. It has an advantage that existing

primitives can be easily adapted to a particular technology and new primitives can be easily

added.

The block-level timing verifiers [22,37] provide models for functional logic blocks

such as clocked storage elements Catches and flip-flops) and logic gates. When a block-level

timing verifier verifies a synchronous system, it can obtain all necessary information on

clocked storage elements such as set-up times from a circuit description. However, unlike

bipolar designs, MOS transistors can be used as switches but these MOS transistors are

difficult to model at the block level properly.

In the switch-level timing verification [24,23], the system is described at MOS transis

tor level. The switch-level timing verifiers usually extract linear chains of transistors rather

than functional logic blocks. Then, delays through the transistor chains are computed using a

simple method, as will be described in Chapter 4. The switch-level timing verifiers have
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some difficulties dealing with synchronoussystems: first, a variety of design techniques such

as precharged busses and domino logic impose different timing constraints, as described in

Chapter 2. Second, the identification of clocked storage elements and the computation of

their set-up times are difficult However,switch-leveltiming verifiersmodel MOS transistors

that are used as switches more accurately than block-level timing verifiers. Therefore, they

are more appropriate for MOS VLSI designs.

3.5. CRITICAL-PATH ANALYSIS

Critical-path analyzers examine path delays leading to each node in a circuit, while

pruning non-critical paths. Therefore, they need to visit nodes in a systematic manner. There

are three approaches available for this purpose: modified depth-first search [23], modified

breadth-first search [24], and topological-order based search. Two aspects that deserve a

discussion are complexity and how each approachdeals with loops in the circuit. In this sec

tion, the complexity of the three approaches and their methods of handling feedback loops are

discussed.

3.5.1. COMPLEXITY OF CRITICAL-PATH ANALYSIS

The running time of any critical-path analyzer is O(m), if it computes the critical path

for each node only once, where m is the number of edges in a given directed graph. How

ever, if a modified depth-first search is employed, it computes the critical path for some nodes

more than once on the average. Consider a directed graph fragment shown in Figure 3.3,

where an edge and an arrow represent a timing primitive and the direction a signal flows

through it. There are two paths to Node / from Node A: A-B-D-F-G-H-l and A-B-E-H-L

Suppose the slowest path from A to / is sought. The work required by a modified depth-first
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Figure 3.3 A Directed Graph Fragment

search,, a modified breadth-first search and topological-order based search, will be compared

next.

As its name implies, a modified depth-first search is a variation of depth-first search.

Depth-first search [51,52] starts at node v and marks it as having been visited. Next, it visits

any unvisited nodes adjacent to v (forward stepping). If x is the most recently visited node,

the searchcontinues by visiting some unvisited node y adjacent to x. If y has been previously

visited, the depth-first search finds another new node adjacent to x. If y has not been previ

ously visited, it visits y and begins the search anew, starting at node y. After completing the

search through all nodes adjacent to y, the search returns to x (back tracing). The process of

selecting unvisited nodes adjacent to x is continued until the list of these nodes is exhausted.

As anexample, a depth-first search visits nodesin a graph illustrated in Figure 3.3 as follows:

A-B-D-F-G-H-1-(H)-(G)-(F)-(D)-(B)-E-(B)-(A)-C-(A) (3.1)

where a node name in a parentheses represents a back tracing. When a critical-path analyzer

based on a modified depth-first search examines Path A-B-D-F-G-H, the other path to H
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through Node E has not been explored yet. Thus, the analyzer assigns Path

A-B-D-F-G-H as the slowest pathleading to Node H. Similarly, when Node / is visited

next, PathA -B -D -F-G-H-I is assignedas its slowest path. After tracing back to B from

/, the analyzervisits E, and then H again through a new path A-B -E-H. At this time, it

compares the new path delay to the old critical pathdelay stored at Node H. If the new path

delay is smallerthan the old one, the analyzer traces back and visits Node C. However, if the

new path delay is largerthan the old critical path delay, the critical path to H is updated by

the new path, A-B -E-H. Then, Node /, which is a child ofH, is visited againto update the

new critical path. In general, if the critical path of a node is first assigned or is updated by a

new path, the critical-path analyzer visits its children to examine their critical paths. Two

extreme cases can happen when a modified depth-first search visits already visited nodes for

locating the critical path:

(1) Best case: a path analyzertraces back from already visited nodes without updating the

critical path.

(2) Worst case: a path analyzer updates the critical path of an already visited node, when

ever the one for any of its parent nodes is updated.

The running times for the best and worst cases are linear and exponential with a graph size

respectively. The worst case corresponds to the path enumeration approach which examines

all possible paths. An analyzer using a modified depth-first search on the average computes

the critical path for each node more than once. On the other hand, the other two approaches

(modified breadth-first and topological-order based search) compute the critical path only

once for each node, when they are applied to a given acyclic digraph (if it is not acyclic,

cycles must be broken in advance). The running time of these approaches to compute the

longest path or shortest path in an acyclic digraph is O(m), where m is the number of edges

[53]; the complexity of two approaches for finding critical paths is linear, or approximately



53

linear if edge delays must be computed, with a circuit size.

Breadth-first search [51,52] starts at node v and marks it as having been visited. The

node v is at this time said to be unexplored. A node will be said to have been explored when

all nodes adjacent to it have been visited. All unvisited nodes adjacent to v are visited next.

These are now visited but unexplored nodes and Node v has now been explored. The newly

visited nodes which haven't been explored are placed on the end of a list of unexplored

nodes. The first node on this list is the next node to be explored. Exploration continues until

no unexplored nodes are left. The list of unexplored nodes operates as a queue. For a

directed graphillustrated in Figure 3.3, a breadth-first searchvisits nodes as follows:

A-{B,C}-{D,E}-{F,H}-{G,1} (3.2)

where nodes in a brace can be visited in any order. Notice that, from Equation (3.2),

breadth-first search visits H before it visits G. When H is visited, no information is available

on the path coming from Node G yet Thus, when breadth-first search is used for finding the

critical paths, the conditions to visit child nodes aremodified; after node v is visited, its child

w is visited only if all of w's parent nodes have been visited. This modified breadth-first

search is called level-based search, because of the fact that it visits nodes from the lowest to

the highest level, where the level of a node is defined as follows [54]:

[Definition 3.2] Level of a node

For a given acyclic digraph, the level of source nodes is defined as zero. For the other

nodes, the level is defined as follows:

level of Node j = 1 +MAX (level of parents of Node j) a

In other words, the level of Node j is the number of edges on the longest path from source

nodes to.Node j. Leveling can be performed by repeatedly deleting nodes with in-degree
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zero and associated edges, starting from source nodes. All nodes with in-degree zero have

the same level and they must be deleted at a time. The node level increases by one, each time

all nodes with in-degree zero are deleted. Another method of leveling a graph, which breaks

cycles at the same time, is described in the next section. The leveling of a graph illustrated in

Figure 3.3 is as follows:

Level 0 1 2 3 4 5 6

A
B

C

D

E
F G H I

Table 3.1 Leveling of a Graph in Figure 3.3

Note that a level-based search visits H after G, while the original breadth-first search visits H

before G. If nodes in a graph represent different tasks and edge directions represent pre

cedence relations between the tasks, then the entire process can be completed without repro

cessing a particular task by following the node level order. In Table 3.1, Nodes D and E

have the same level. Note that the tasks corresponding to a given level can be executed in

parallel.

A topological ordering of an acyclic digraph is a total ordering of its nodes such that

ancestor nodes are ordered before descendant nodes [53]. While leveling is one type of topo

logical ordering, the topological ordering in this dissertation will refer to the one which

assigns different orders to different nodes. Similar to leveling, a topological ordering can be

performed by repeatedly deleting a node with in-degree zero with a complexity of O(m),

where m is the number of edges [55]. In this case, each node with in-degree zero must be

deleted individually but can be performed in any order. The node order increases by one as a

node is deleted. An alternative method would be to carry out a depth-first search and order

the nodes in decreasing order as they are postvisited [53]. A topological ordering of a graph



55

in Figure 3.3 using the latter method is shown in Equation (3.3) in increasing order, when

nodes are visited as in Equation (3.1):

A-C-B-E-D-F-G-H-l (3.3)

The topological order also indicates the order of work to be done without doing the same

work again. When the critical-path analysis method is implemented on multi-processors,

breadth-first search is a better choice than topological ordering, because it presents different

tasks that can be done in parallel.

3.5.2. BREAKING FEEDBACK LOOPS IN CRITICAL-PATH ANALYSIS

Suppose that a circuit for timing verification contains signal feedback loops formed by

timing primitives. Unless the circuit is redescribed using a new timing primitive which con

tains the feedback loop, all timing verifiers seeking the longest delay paths must break the

feedback loop. Otherwise the longest delay path is not well defined, because traversing once

around the loop will increase a path delay by the loop delay.

Among the three approaches available for critical-path analysis, a modified depth-first

approach breaks feedback loops in more natural ways than level or topological-ordered based

approach. A modified depth-first approach selects an edge to cut dynamically depending on

the path taken around the loop during search, while the other two approaches select it stati

cally. This can be illustrated using a digraph fragment containing a loop with multiple entry

and exit points, which is shown in Figure 3.4. In the digraph, Path B-C-E-G-B forms a

loop. There are four paths passing through the loop without repeated nodes: A-B-C-D,

A-B-C-E-G-H,F-E-G-H,2Xi<\F-E-G-B-C-D.

Consider a critical-path analyzer using a modified depth-first search. When the

analyzer enters the loop through Edge A-B during path analysis, it traverses Paths
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A-B-C-D and A-B-C-E-G-H without cutting any edge. When the analyzer visits

Node B again by traversing A-B-C-E-G-B, it traces back after cutting Edge G-B to

break the loop. Next, when the analyzer enters the loop through Edge F-E, it traverses Paths

F-E-G-H and F-E-G-B-C-D. When it visits Node E again by traversing

F-E-G-B-C-E, it cuts Edge C-E and traces back. Therefore, a critical-path analyzer

using a modified depth-first search cuts Edge G-B when it visits the loop through Edge

A-B, or it cuts Edge C-E when it visits through Edge F-E. Because of the fact that the

analyzer selects an edge to cut dynamically depending on the traversed path during path

analysis, it can examine all paths passing through the loop.

Level-based search assumes that a given digraph is acyclic. Thus, a critical-path

analyzer using this approach breaks loops made of timing primitives statically before path

analysis, usually during leveling. An algorithm which breaks loops in a graph during level

ing is shown in Algorithm 3.1 [54]. Because finding an optimal edge which blocks the



[1] Set all node levels = 0.

Mark all source nodes PROCESSED and put them on work stack.

[2] Is work stack empty?

If no, go to step [3].

Else, go to step [5].

[3] Remove a node, j, from work stack.

Update the level of child nodes, tfs ,ofj, where

new level ofnode k = MAX {(old level), (1 + level of j)}

If all parent nodes ofk arePROCESSED,

mark node k PROCESSED and put it on work stack.

[4] If all nodes have been PROCESSED, stop.

[5] Break a loop by removing an edge of the loop.

Find nodes, p's, whose all parentnodes are PROCESSED.

Mark//.s PROCESSED and put them on work stack.

Go to step [2].

Algorithm 3.1 Algorithm for Leveling and Loop-Breaking
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minimum number of paths is very time consuming and impractical, a random edge is usually

cut.
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Like the level-based approach, topological ordering assumes that a given digraph is

acyclic. Thus, a critical-path analyzer using topological ordering also must break loops in a

circuit statically before path analysis. When depth-first search is utilized for topological ord

ering, the method can detect the last edge completing a loop. Even though such edges may

not be optimal edges to cut, they are better choices than random edges in most cases; they

will cut fewer forward paths. This can be seen using Figure 3.4. Suppose that a depth-first

search visits the loop of B-C-E-G-B through Edge A-B during topological ordering.

Then, Edge G-B will be cut to break the loop. In this case, only a path F-E-G-B -E-D is

blocked. On the other hand, if the depth-first search visits the loop through Edge F-E, Edge

C-E will be cut and a path A-B-C-E-G-H is blocked. Thus, in either case, only one

path is blocked. Notice that the removal of other edges B-C ovE-G blocks three paths. As

an example, if Edge B-C is removed, Paths A-B-C-D, A-B-C-E-G-H, and

F-E-G-B-C-D are blocked from path analysis.

Signals can flow through MOS transistors in both directions, from source to drain and

from drain to source during operation. Thus, an MOS transistor itself forms a loop between

source and drain terminals. In MOS circuits, however, most MOS transistors are intended to

be unidirectional', their signals are expected to flow only in one direction during normal

,operation. Some switch-level critical-path analyzers utilize the signal flow direction of uni

directional transistors during path analysis [23,24]. Users are strongly recommended to

specify signal flow directions of all unidirectional MOS transistors in a circuit If they are not

specified, a critical-path analyzer using a modified depth-first approach may examine many

unnecessary paths. It will not only consume extra CPU time but also may detect unrealistic

critical paths in the circuit. On other hand, if a critical-path analyzer uses level or

topological-order based approach, it will determine a signal flow direction of an MOS transis-
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tor arbitrarily to break a loop, if it is not specified by the user. Therefore, such loop-

breakings may exclude important paths from examination by inadvertently choosing wrong

directions. Note that, even for bidirectional MOS transistors where signals flow in both

directions of source-drain channels, the users are recommended to specify the signal flow

directions so that more important directions from the designers' viewpoint can be examined.

Directions of signal flow through unidirectional MOS transistors can be specified by circuit

designers during design, or can be determined later automatically by a computer program

[42,43].

3.6. SWITCH-LEVEL CRITICAL-PATH ANALYSIS

A pass-transistor tree is shown in Figure 3.5, where signal flows are represented using

arrows. In the figure, Node p has m input transistors and n output transistors. Suppose that a

path delay from Node (in_l) to Node (out_l) is to be computed. In this situation, it is impor-

in 1

in m

Min 1

Min m

P

T

J

Mout 1

J-^-L

Mout n

Figure 3.5 A Pass Transistor Tree

out 1

out n
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tant to know how many transistors are "on" during signal propagation through the path. The

"on-transistors" affect the path delay, and hence must be considered for delay computations.

Most switch-level critical-path analyzers perform value-independent analysis and they do not

keep track of functional relationship among nodes. They do not have the necessary informa

tion for the determination of transistors that are on during signal propagation. Thus, they

determine which transistors are on, based on assumptions as follows. When signals enter a

node through more than one MOS transistor, the assumption would be that the transistors

must be mutually exclusive in driving the node to avoid signal contention or too optimistic

results, with the exception of "always-on" weak transistors such as NMOS depletion loads.

In Figure 3.5, it is assumed that only one of m input transistors turns on at a time to drive

Node p. Similarly, when a signal leaves a node through more than one MOS transistor, it is

assumed that only one of the transistors, along the path for the delay computation, is on. Oth

erwise, the computed delay will be too pessimistic due to loading effect. In Figure 3.5, it is

assumed that only one of n output transistors turns on at a time. To summarize, switch-level

critical-path analyzers assume that only one MOS transistor turns on at a time between two

nodes on a given signal path. They extract transistor chains rather than transistor trees to

compute path delays. As an illustration, when switch-level critical-path analyzers compute a

path delay from Node (in_l) to (outj) in Figure 3.5, they extract a transistor chain of Mm \

and Mout \. It should be noted that timing verifiers of other abstraction level use correspond

ing assumptions, as long as they also use the value-independent approach. For example,

when a falling delay through a 2-input NOR gate is computed for block-level timing verifiers,

it is usually assumed that only one input signal rises and the other remains at logic "0" (only

one driver turns on and the other remains turned off), even though both input signals may rise

at the same time under real operating conditions.
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Another issue that deserves discussion is the selection of candidate paths by higher

level as well as switch-level critical-path analyzers for the determination of critical path.

Assume that, in Figure 3.5, the worst delay path from input nodes to the middle node p is

(inj)-p. Now, suppose that a switch-level critical-path analyzer locates the worst delay path

from input nodes to an output node (out_l). If a critical-path analyzer uses a modified

depth-first search, it determines a path it examines first, say Path (in_l)-p, as the worst delay

path for Node p. Next, it determines an extended path (in_l)-p-(out_l) and determines the

path as the worst delay path from input nodes to (out_l). Then, it computes a path delay

from the next input node, in_2, to Node p. In general, suppose that Path (in_i)-p is a new

path whose delay is most recently computed. If the new path delay is larger than an old worst

delay stored at p, the worst delay path for p from input nodes is updated by the new path.

And, the analyzer examines its extended path (in_i)-p-(out_l) to update the worst delay path

for (out_l). However, if the new path delay of (in_i)-p-(out_l) is smaller than the old worst

delay stored at Node p, the analyzer moves to the next input node. Thus, once the analyzer

examines (in_j)-p, which is the worst delay path for Node p, no paths from the next input

nodes to (out_l) will be examined. If a critical-path analyzer makes use of level or

topological-order based path analysis, it first examines all paths from input nodes to p and

finds that (inj)-p is the worst delay path from input nodes top. Then, the analyzer examines

its extended path (inJ)-p-(out_l) only to find the worst delay path from input nodes to

(out_l). One must notice that a critical-path analyzer, regardless of its approach to visit

nodes, examines only a path extended from the worst delay path for Node p, when searching

for the worst delay path for (outJ). In general, when a critical-path analyzer locates the

worst delay path for a node, it examines a path only if it includes the worst delay path for one

of its parent nodes. All other paths are pruned from the worst delay path search. This search

space pruning greatly reduces the complexity of finding the worst delay path. However, even
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though it is very rare, the worst delay path may not include the worst delay path for a parent

node. For example, in Figure 3.5, the worst delay path for (out_l) may be (in_k)-p-(out_l),

while the worst delay path for its parentp is (inj)-p. Similarly, it is possible that two output

nodes (out_q) and (out_r) have different worst delay paths up to their parent node/? in Figure

3.5; e.g., the worst delay path for (out_q) may be (inJ)-p-(out_q) while the one for (out_r) is

(in_k)-p-(out_r). Unlike the path enumeration method that examines all paths, the critical-

path analysis method prunes the search space for the worst delay paths. However, it must be

stated that a chance that the real worst delay paths may be excluded from consideration is

very low in practical circuits, typically less than 0.02% [24]. On the other hand, the critical-

path analysis method provides substantial advantage in complexity over the path enumeration

method, depending on the approach used to visit nodes. For a pass transistor chain illustrated

in Figure 3.5, a path enumerator examines O(mxn) paths: all paths between each input-output

node pair. A depth-first based critical-path analyzer examines from 0(m+n) to O(mxn) paths.

However, a level or topological-order based critical-path analyzer examines only 0(m+n)

paths: m paths from each input node to Node p and n paths from the worst delay parent ofp

to each output node. Partly for these reasons, E-TV uses the critical-path analysis method

based on topological-ordering for the timing verification of digital systems.
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CHAPTER 4

DELAY MODELING AND

THE ELECTRICAL-LOGIC ALGORITHM

During switch-level timing verification, a delay modeler evaluates delays through

transistor groups extracted by a path analyzer so that a timing-constraint checker can detect

paths that possibly violate timing constraints. Thus, timing verification results are only as

accurate as the delay model that a timing verifier uses. Any timing errors or critical paths

reported by a timing verifier with an inaccurate delay model are not useful for the correction

or improvement of a design. In this chapter, the advantages and disadvantages of the delay

models used in existing switch-level timing verifiers [23,56,24,57] are discussed. Then, a

new form of circuit modeling and analysis technique, referred to as Electrical-Logic (ELogic)

[58,59,60,61], is presented. ELogic has been implemented using the Node Analysis method

[62,63]. In this chapter, the Node Analysis based implementation of the ELogic technique is

presented in detail, including the discussion of its accuracy and stability properties. The

implementation has been shown to provide a continuous trade off between efficiency and pre

cision [61]. Finally, the use of ELogic for the delay model in timing verification is described.

The model is referred to as the ELogic delay model in this dissertation. As one of motiva

tions of developing an ELogic-based timing verifier, some experimental results illustrating

that the ELogic delay model has much greater accuracy than the existing switch-level delay

model are also included.
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4.1. EXISTING SWITCH-LEVEL DELAY MODELS

The existing switch-level timing verifiers suchas Crystal [23], LEADOUT[56], TV [24]

and Pearl[57] extract linear chains of MOS transistors and use the RC delay model to com

pute delays through the transistor chains; nonlinearMOS transistors are replaced by linear

resistors in series with a switch, and a variation of the RC time constant is used as a delay.

Consider a linear RC chain of Figure 4.1. Assume that Node in is a driving node with a

strong signal source such as a voltage source. The simplest RC delay model is the lumped

RC delay model which lumps all resistances and capacitances together to compute a time

constant. Therefore, the delay from the driving node in to Node n is given as follows:

delay = Y Ri Y Ci

= (RI+R2 + ••• +fl/z)(Cl + C2+ ••• +Cn)

This model is overly pessimistic, because of the fact that each capacitance is multiplied by

total resistance of the chain, including resistors that are not on the charging or discharging

path. The error due to lumping resistances and capacitances can be avoided by using the

R1 R2 Rn

Figure 4.1 A Linear RC Chain
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results of Penfield-Rubenstein model [64]. While the Penfield-Rubenstein model computes

upper and lower bounds for signal delay in RC tree networks, their average is used as a "typi

cal" delay in Crystal [23] and TV [24]. Using this method, the delay value at Node n through

the RC chain is given as follows:

delay =^((j^R] )Ci)

= RIC1 + (RI+R2)C2+ ••• +(Rl+R2+ ••• +Rn)Cn

The error of RC delay models also comes from their poor incorporation of input waveform

shape and load conditions into the delay computation. Therefore, some RC delay models use

a ratio approach [65] for improved accuracy, which combines factors such as the input rise

time, the output load, and transistor size into a single ratio, called rise-time ratio. This ratio

is then used to determine the "effective resistance" of a transistor, that provides better delay

estimates.

The RC delay models are very efficient in delay computation and their accuracy has

been improved by using the results of Penfield-Rubenstein and the ratio approach. However,

they still suffer from poor accuracy. It is claimed that, even though the RC delay models

have a poor absolute accuracy, the relative accuracy is good enough for ordering the worst

delay paths and, therefore, they can be used for timing verification successfully [24]. How

ever, it should be pointed out that the tasks of a timing verifier arenot only ordering the worst

delay paths but also detecting problematic paths that may violate timing constraints. Thus,

the absolute, accuracy as well as the relative accuracy is important. If the delay model with a

poor absolute accuracy is used, the timing verifier can not determine correctly if there are any

timing errors or not. In addition, the clock period of synchronous designs recommended by

such a timing verifier is not meaningful. Furthermore, due to poor relative accuracy, the RC
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delay model has a high chance of choosing thewrong worst delay path, as willbe revealed in

a CMOS example soon. Designers usually evaluate the worst delay paths reported by a tim

ingverifier using more exactanalysis programs such asSPICE2 [5]. However, theevaluation

of the wrong worst delay paths is not helpful for the correction of timing errors. Another

weakness of the RC delay models is that they assume there is only one direct path from a

reference node (power supply or ground) to the signal-nodes of the circuit. When more than

one reference node drives a node at the same time, the RC delay models cannot compute a

delay to the node correctly. As an illustration, consider an NMOS inverter. When the pull

down delay of the inverter is computed, only the driver of the inverter is considered. Even

though the depletion load in the NMOS inverter is on during the pull-down, it is not taken

into account for a pull-down delay computation.

Timing verifiers examine a large number of paths in a system. Therefore, the delay

model for timing verification must be efficient. On the other hand, the accuracy of timing

verifiers is determined by the accuracy of the delay model they make use of. Thus, the delay

model must be accurate too. Even though RC delay models are efficient, they have a poor

accuracy as described earlier. What is required is a delay model which is not only fast but

also accurate enough to be used for timing verification. As one of such delay models, the

ELogic delay model is presented in the next section.

4.2. THE ELECTRICAL-LOGIC MODELING TECHNIQUE

In a conventional circuit modeling and simulation approach, a timestep is selected and

the voltages (and currents) corresponding to the new time are computed. A key idea of

Electrical-Logic (ELogic) is to model a technology in terms of a set of discrete, possibly

non-uniformly spaced states of network variables (such as voltages and currents) and to solve
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for the time required to make a transition between adjacent states. The idea of using addi

tional states (beyond 0 and 1) to provide a more precise model of the behavior of a digital cir

cuit, in both the time-domain and for static (clocked, settled) analysis, has evolved over the

past decade (e.g. [7,22,66,8] ). In addition, the notion of providing a less-precise circuit

simulation to improve the performance of circuit simulators for digital MOS circuits was

introduced in [67] and has been pursued since by many researchers (e.g. [68,69,70,71]). A

generalization of logic simulation to the electricaldomain, both in signal value and strength,

was introduced in [72] and has been implemented andextended in a number of systems (e.g.

[73,74,75,76]).

ELogic is a generalization of many of these earlier efforts, from both the logic and the

electrical points of view, and is defined as follows:

[Definition 4.1] Electrical-logic modeling technique

1. A set of discrete states of network variables [Sl I i=l ,...,#*} is defined. The network

variables can be charges, fluxes, voltages, and currents.

2. Network variables are only allowed to make a transition from one state to an adjacent

state:

Si -> SJ , j=i±l

3. The//r^f time tn+\ at which the next state of the variables (Si+l or51'"1) is achieved is

computed, rather than solving fornetworkvariables x at a given time point:

f„+1 =min {t I x(t) = SJ,j=i±l,t > tn, where x(tn) = Sl }

4. The number and values of the states of the variables can be varied between analyses and

between portions of a circuit in the same analysis.

When the behavior of a network variable x is described in the form of x -f (t), there may be
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more than one tj that satisfies f(tj) =SNEXT, where SNEXT is the next discrete state. The

ELogic technique computes the first one among the possibly many timepoints after the

current timepoint, as has been defined in (3).

43. NODAL ANALYSIS BASED ELOGIC ALGORITHM

The ELogic modeling technique can be implemented using any circuit analysis method

[62,63]: Nodal Analysis, Mesh Analysis, Loop Analysis, Cut-set Analysis, and Hybrid

Analysis. The analysis method determines network variables and circuit elements for

analysis.

In this dissertation, an ELogic algorithm which implements the Nodal Analysis method

is presented. Unless otherwise specified, ELogic denotes the Nodal Analysis based ELogic

algorithm in this dissertation. ELogic supports following circuit elements: linear resistors

and capacitors, voltage-controlled resistive elements, voltage-controlled capacitors, voltage-

controlled current sources, and independent current sources. In addition, ELogic supports

independent voltage sources, as is described soon. Since ELogic is based on Nodal Analysis,

node voltages are chosen as network variables and ELogic solves for the amount of time

required for a node to make a transition between adjacent discrete node-voltage states. An

example of the ELogic output voltage waveforms at two neighboring nodes, j and k, are illus

trated in Figure 4.2. In the figure, the voltages VO through V5 represent the discrete set of

voltage states, {V1' I i=Q 5}. As an example, the nodevoltage at j is VI at time tl. At tl,

ELogic finds the next voltage state for Node j, which is V2 in this example. Then, ELogic

computes the time for Node j to achieve V2. If a node voltage is computed to lie between

two adjacent states at some steady-state value, its value must be rounded off to the nearest

voltage state. Therefore the precision of an ELogic waveform is determined by the number
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t1 t2 time

(Nodej)

(Node k)
time

Figure 4.2 An Example of ELogic Output Waveforms

andvalues of the voltage states defined. As more voltage states areused, the waveform frag

ments (set of voltage state changes and corresponding times) that represent activity at a node

will contain more time points and, as a result, solving for the waveform will take longer.

Hence ELogic provides a continuous precision-efficiency trade off between the circuit and

logic/switch-level simulation. The experimental results on its trade-off between precision

and efficiency were presented in [61].

ELogic is used as a basis of the "Fast Timing simulation mode" in MOTIS3 [71] and

Lsim's circuit simulator, Smile [77]. The idea of solving for a time rather than solving for

node voltages is also used in the program SPECS [75], developed independently, to obtain

reasonable timing results by appropriately handling the unknown state (X) during transitions.
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In SPECS, transistor subnetworks are described utilizing capacitive nodes and macro-

switches, such as pull-up, pull-down, and pass transistors. Then, the macro-switch is

modeled using a currentsource to find the nearesttime pointat which any of the subnetwork

nodes reaches its next voltage. This method is efficientbut suffers from accuracy problems.

On the other hand, the ELogic algorithm analyzes a circuit using more detailed transistor-

level models, so its accuracy is comparable to that of circuit-level analysis in the extreme

case.

4.3.1. TRANSITION TIME COMPUTATION OF THE ELOGIC ALGORITHM

ELogic assumes that each node, except voltage source nodes and ground, has grounded

capacitance to guarantee a finite slope of the voltage waveform. There are a wide variety of

discretization techniques in time for the purpose of solving a system of differential equations

numerically. There are three issues to consider for the selection of a discretization method:

accuracy, stability and efficiency. ELogic uses the explicit Euler (Forward Euler) integration

method [78,79,63] for discretization, which is a convergent first-order integration method.

While higher order methods provide more accurate solutions, they are computationally more

expensive than a first-order method. ELogic shares the notion used in timing simulators

which sacrifice accuracy in favor of efficiency [67,68,69,70,71]. It is known that an impli

cit integration method has better stability property than the explicit integration method.

However, when the implicit integration method is used to solve for node voltage at j, it needs

other node voltages at the same timepoint. When applied to very large systems that contain

nonlinear MOS transistors, an implicit method requires a large matrix solution at each

tinieppint, hence it is more time consuming. By making use of the explicit integration

method, ELogic can compute the timepoints of nodes independently of one another, and as a
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result can exploit the multirate behavior of waveforms [80] efficiently. While the region of

stability of the explicit Euler integration method is not as largeas that of the implicit methods

for a test equation of y =- Xy, it is possible to keep the ELogic algorithm inside the stable

region for a test circuit. This is described shortly. There is also another class of integration

methods, called semi-implicit methods [81,82,83]. As the name implies, the semi-implicit

method is a mixture of explicit and implicit integration methods. It is formulated to be as

implicit as possible to obtain better stability properties than using explicit methods, without

making it necessary to perform a standard matrix solution at each timepoinL The semi-

implicit methods include one iteration of the Jacobi-relaxation method or the Seidel-

relaxation method at the nonlinear equation level after applying the implicit Euler (Backward

Euler) method to the given nonlinear differential equations. Thus, they are referred to as the

Jacobi semi-implicit and Seidel semi-implicit method, respectively [83]. These semi-implicit

integration methods have been used widely for timing analysis, because of their efficiency

andbetter stability than the explicit integration methods for a certain classof circuits (e.g., if

the matrix A is diagonally dominant with negative diagonal entries, when a system of equa

tions is formulated in the form of x (t) = Ax (t) [67,68,84]). However, a drawback with the

use of these methods is that tightly coupled feedback loops, or bidirectional circuit elements,

can cause severe inaccuracies. One element that can cause such a problem is the floating

capacitor [82]. A floating capacitor is a capacitor whose terminals are connectedneitherto a

fixed voltage source nor to ground node. To describe the way semi-implicit methods deal

with floating capacitors, the following definitions are necessary.

[Definition 4.2] Fanin variables (inputs) and fanout variables

Suppose that the behaviorof a circuit is described in following system of nonlinear dif

ferential equations:
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F(x,x,u) = 0

wherex is a variablevector and u is an input vector to the circuit. Afanin variable (input) of

Xj is defined as any variable xt (any input uk), k*j, which, if its value changes, may result

directly (not involving other variables) in a change of the value of the variable Xj. Afanout

variable ofxj is a variable xi,l*j, whose value canbe influencedtiirectlyby a change in the

value ofxj. a

When the Nodal Analysis method analyzes a circuit, the variables computed are node-to-

datum voltages. Thus, the fanin and fanout variables are the voltage at the fanin and fanout

nodes that are defined as follows:

[Definition 43] Fanin and fanout nodes

Afanin node FI-t of node i is defined as any node which, if its state changes, may result

directly (not involving other nodes) in a change in state at node i. A fanout node FOi of

Node i is a node whosevoltagestate can be influenced directly by a voltage change at /. a

When Jacobi and Seidel semi-implicit methods are used to solve for Node j at tn+\, they

apply an implicit Euler integration method to model the grounded capacitance at j. How

ever, because they performonly one iteration at the nonlinearequation level, it is equivalent

to applying a fixed voltage source atFiji Jacobi semi-implicit method applies a fixed voltage

source whose value equals the node voltage at FIj at tn and Seidel semi-implicit method

applies a fixed voltage source whose value equals the node voltage at FIj at tn+\ (if it has

been already computed) or tn (otherwise). Therefore, unlike the explicit Euler integration

method, these methodsturn all floating capacitors into grounded capacitors equivalentiy.
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The equations for the computation of transition times are derived as follows. By apply

ing Kirchoff Current Law (KCL) [62] at each node, a system of equations can be formulated

in following form:

F(v,v,u) = 0 (4.1)

where v is a vector of node-to-datum voltages and u is an input vector (current sources) to the

circuit. By moving all terms that are not associated with capacitive elements to the right

handside, Equation (4.1) yields

Q(v) = -f(v,u) (4.2)

where Q(v) is a matrix of node charges and f(v,u) is a vector of current leaving nodes through

all elements other than capacitive ones. Therefore, Equation (4.2) can be written as follows:

C(v)v =-f(v,u), where C(v) = ^£0. (4.3)

Since each node has a grounded capacitor, the capacitance matrix C(v) is strictly diagonally

dominant, i.e.,

IC,il > Y \Cij I , forall i (4.4)
j=Xj*i

From Equation (4.4), the Gershgorin Circle theorem [85] indicates that zero is not an eigen

value of C(v). Hence C(v) is nonsingular and C_1(v) exists. By moving C(v) of Equation

(4.3) to right handside,

v =-C(vr1f(v.u) (4.5)

The application of the explicit Euler method to above equation yields

v„+i - vn = - h C-Vn) f (vn,un) (4.6)

where vn is a node-to-datum voltage vector at time tn and h is a timestep. Equation (4.6)

•M
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can be decoupled for each Node j as follows (in this section, Node j represents the ; th node

when circuit equations are written in the form of (4.5)):

V0").n+1-V0> = ~h CJ_1(vn) f(Vn.U„) (4.7)

where V(/)t„ is avoltage atNode j at tn and Cj-1(vn) is the yth row of C_1(vn). The transi

tion time for a node to make a given voltage change is discussed separately for circuits

without and with floating capacitors.

When there are no floating capacitors in the circuit, a capacitance matrix C (v„) and its

inverse, C_1(vn)» are diagonal matrices. Therefore, Equation (4.7) turns out to be:

v0').»+i-v(/).n = -hCfj&n) fj(v„,u„) (4.8)

where

V0'V» • voltage at Node j at tn.

Cjj (V„): grounded capacitance at Node j at tn

fj(vn ,u„): currentleaving Node j at tn through all elements other than capacitiveones

Let vy^+i and v^ in above equation be the next and present voltage states, S^xt and

Snow • ELogic computes a time for Node j to make a transition from Snow to SNext. as fol

lows:

Transition time,h = C/vKV"> @Nga -SNow) (49)
—/yAvn»un)

Suppose that ELogic computes the transition time of Node j in Figure 4.3. From the

figure, the denominator of Equation (4.9) is given as follows:

N

-/y(Vn,Un) = £/y('n)

where N is the number of y 's fanin nodes from which there is a DC path to j, and /y (t„) is a



75

lii

J L

1.1(v)

N

I
J L

c N,N(v)
I Nj

Z
].](v)

Figure 4.3 A Circuit Fragment without Floating Capacitors

current entering Node j from i at tn. Notice that ELogic can substitute a grounded capacitor

at the fanin node i of j by a constant voltage source whose value is equal to v/(f„), because it

applies the explicit Euler integration method to a circuit without floating capacitors.

Next, consider a circuit which has floating capacitors. From Equation (4.7), when there

are floating capacitors in the circuit, the time h for Node j to make a transition from SNow to

$Next»is given as follows:

Transition time,h = SNext ~$Nc
-CfKVn) f(v„,U„)

(4.10)

In above equation, Cj_1(vn) is the j th row of C_1(vn) which is no longer a diagonal matrix.

It is well known thatthe complexity to obtain the inverse of a matrix is 0 (/i3), where n is the

dimension of the matrix [63]. Therefore, it is important for ELogic to keep the dimension of
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matrix for inverse computation as small as possible. Note that, if the user includes floating

capacitors that are intentionally added or functionally important only, C (Vn) will be sparse.

In fact, many designers have approximated the gate capacitance of MOS transistor by attach

ing the same amount of capacitance from a gate to ground when analyzing a large MOS

design, i.e., they have modeled the gate capacitance as grounded capacitance rather than

floating capacitance). Therefore, ELogic computes C_1(vn) by exploiting the fact that the

inverse of a block diagonal matrix is a collection of the inverse of individual submatrix on the

diagonal, as follows:

a 0 0 0 0

nn-i

-i zn 0 0 0 0
S ,00 0

888o$
Because each submatrix is much smaller than C(Vn) in dimension, C_1(vn) can be com

puted very efficiently. Furthermore, Equation (4.10) is only interested in the yth row of

C_1(vn)- Thus, ELogic computes only the inverse of one submatrix which contains Node j,

not the other submatrices. Note that the nonzero elements of C (vn) represent the connec

tivity between nodes through floating capacitors: if Cij is nonzero, C,,,- is nonzero, and

Nodes i and j are connected through floating capacitance. Therefore, ELogic constructs a

submatrix that contains Node j for inverse computation by tracing nodes that are reachable

from Node j through floating capacitors.

When Node j has no floating capacitors, the associated submatrix is a one-element

matrix with C;j(Vn), agrounded capacitance at/ Thus, Cj_1(vn) can bereconstructed as fol

lows:

Cf^) = [00— 00C/-j(Vn)00--- 00] (4.11)
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The substitution of Equation (4.11) into Equation (4.10) yields Equation (4.9). Thus, for

those nodes without floating capacitors, ELogic uses Equation (4.9) whether or not the circuit

contains floating capacitors.

When Node j has floating capacitors connected to its fanin nodes, the fanin nodes can

not be replaced by constant voltage sources. The substitutions will turn floating capacitors

into grounded capacitors equivalently, as described with semi-implicit integration methods.

Let a set of nodes, {p, • • • J, • • • yq}, are reachable each other through floating capacitors,

andthe corresponding diagonal submatrix of C (v„) be E. E_1 is computed by applying the

Gaussian Elimination to an augmented matrix, [E I I ], as follows [63]:

Gaussian Elimination

[E I I] ¥ [I I E"1]

Let [ejp "• • ejj ••• eiq\ be a row vector of E"1, which corresponds to Node j, where the

subscript of each element represents anode name. Then, Cj"1 is constructed as follows:

CfKvn) = [0- •• 0ejp ••• ejj ••• ejq 0- •• 0] (4.12)

Notice that the above construction needs only one rowof E"1. Thus, ELogic places Node j

at the right-bottom corner of E so that the last row of E"1 can become the necessary row to

construct Cj"1. By doing so, the corresponding row is available as the forward elimination of

the Gaussian Elimination is completed, and hence the back substitution will not be needed.

From Equations (4.10) and (4.12), the voltage changerate at Node j at tn is given as follows:

voltage change rate at Node j at tn = - Cj"l(vn) f (v„,un)

=jZiejt (-/*(v„,un))] =£[ejk h(tn)]

where h(tn) is the sum of the currents entering Node k at tn through all elements other than
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the capacitive ones. Therefore, the computational work to process Node j with floating capa

citors increases N times, where N is the number of nodes reachable from j through floating

capacitors, when compared to the work for a node without floating capacitors.

If nonlinear capacitor models are available, the user can describe a circuit more accu

rately. However, if all capacitors in a circuit are linear, C(v) remains the same at all

timepoints; C"1 needs be computed only once before an analysis starts rather than at each

timepoint Thus, the analysis will require much less CPU time by using linear capacitors

only. A timing verifier is expected to examine numerous paths in a system. While ELogic is

able to handle nonlinear capacitors, only linear capacitors are allowed by the ELogic-based

timing verifier (E-TV) for reasons of efficiency.

Since the ELogic algorithm is based on the Nodal Analysis method, it supports only

current sources as inputs to a circuit (u in Equation (4.1)). Thus, independent voltage sources

with a resistive element in series are transformed to independent current sources with the

resistive element in parallel (source transformation). If a capacitor connects Node j and a

varying voltage source, the voltage source affects the current that leaves j. On the other

hand, if a capacitor connects Node j and a fixed voltage source, the capacitor is a grounded

capacitor at jt not a floating capacitor. Therefore, a system of equations can be formulated

from a circuit which contains grounded independent voltage sources as follows:

C(V)v =-f(V,vln) (4.13)

= -G(V)v+G(V)vln+C(V)vin

where

v g Rn: node-to-datum voltages excluding voltage sources.

Vj„ g RP: voltage sources.
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V e Rn+P: node voltages consisting ofv and vin.

C (V) e RnXn: node-to-datum capacitancematrix, except voltage source nodes.

Cu: sum ofcapacitances connected to Node i

Cij: - (capacitance connected from Node j to Node i)

C (V) e RnxP: voltage-source node capacitancematrix.

Cij: capacitance connected from voltage source j to Node i

G (V) g Rnxn: node-to-datum conductance matrix, except voltage source nodes.

Gu: sum of conductance connected to Node i

Gy: - (conductance connected from Node j to Node /)

G (V) e RnxP: voltage-source node conductance matrix.

Gij: conductance connected from voltage source j to Node i

Then, the same procedures from Equation (4.5) apply. An example using linear resistors and

capacitors is illustrated in Figure 4.4. From the figure, applying KCL at the three nodes

yields the following:

C01+C1+C12 -C12 -CQ1
-C12 C02+C2+C12 -C02
-C01 -C02 C01+C02

vi

V2

v«

G01+G1+G12 -G12 -G01
-G12 G2+G12 0
-G01 0 G01

vi

V2

Vin

Since v^ and v^ are known, the last equation can be eliminated. By arranging the resulting

equations, following equations in the form of Equation (4.13) are obtained:

rC01+Cl+C12 -C12 1
[ -C12 C02+C2+C12J

vi

V2

-[G01+G1+G12 -G
-G12 G2+G

12 1
j\2\

vi

V2

TgoiI v. . Tcoil •
[ 0 J v* + [_C02j VL
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C01 C12

G01 G12

Vin 0 G1 ^ ZZ C1 G2 C2

Figure 4.4 An ELogic Circuit Example With A Voltage Source

432. IMPLEMENTATION OF THE ELOGIC ALGORITHM

ELogic is implemented using the event-driven algorithm for efficiency, which has been

used successfully for event-driven simulation both at logic level [86,87] and circuit level

[84,88,39,58,80]. Event-driven simulation is a general transient simulation technique

which views the time-domain response of a dynamic system as a succession of events that

have two attributes of the time (ex) and the nature (en) of the occurrence. The definition of

an event (en) and the implementation of the event scheduler - the mechanism responsible for

finding the next event (or events) and schedulingnew events - are program and analysis-level

dependent. For the ELogic algorithm, they are defined in the following way:

[Definition 4.4] Event and event-driven implementation of the ELogic algorithm
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An event is defined as a change in the voltage state of a node. An event-driven imple

mentation refers to the fact that Node j is processed at tn only if an event has occurred at tn

atNode j orat anyof its fanin nodes FIj. a

Processing Node j at tn involves the following steps:

(1) update the voltage at Node j at tn.

(2) obtain the next voltage state V^aa •

(3) determine whether Node j will make a transition to Vjv«*.

(4) if Node j will make a transition to Vm^, compute the transition time (hj), and

schedule Node j again in the time queue at the future time point (tn+i = tn + hj) at which

the node will be processed again.

If any of FIj changes state while Node j is scheduled in the time queue, the node is removed

from the time queue and rescheduled after the recomputation of the transition time using the

new fanin state (this often happens if the input transition is much faster than the output

response at j). If, after j has been processed, ELogic determines that j will not make a tran

sition, then j is removed from the time queue (i.e., it has become latent). Node j will then

only be processed following an event at a fanin node. Suppose that no nodes change voltage

at tn (i.e., if all nodes have become latent), then no nodes will be processed in the future. In

this case, the node voltages at tn, v (tn), are a solution of the system for t > tn, as will be pro

ven next.

[Lemma 4.1] Assume that there exists at least one solution for a given time-invariant sys

tem

y'(t) = f(y(t)), where y(0) = y0. (4.14)

If an initial slope, y' (0), is zero, then, y (t) = y o is a solution of the system for t > 0.
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Proof: Suppose that y(t) = yo is a solution of Equation (4.14) for t £0. Then, Equations

(4.15) and (4.16) are obtained.

y'(t) = 0, for r>0. (4.15)

f (y(t)) = f (yo) = f (y(0)) = y'(0) = 0, for t >0. (4.16)

From Equations (4.15) and (4.16),

y'(t) = f(y(t)) = 0, for t>0. (4.17)

Since y (t) = yo, for t > 0, satisfies the given system equation, it is a solution of the system.

If f (y (t)) of Equation (4.14) is continuous and satisfies the Lipschitz condition for 0 < t < b,

y (O = y o is a unique solution of the system for 0 < t < b [89].

In the case of a parallel LC resonant circuit [62,90], there is only one node. Because

the voltage across the LC circuit keeps changingeven after reaching a peak voltage (where a

slope is zero), Lemma 4.1 does not seem to hold for this circuit at first glance. Notice, how

ever, that the circuit belongs to the class of second-order circuits whose system equation is

given as in Equation (4.18)

y" + 2a/ +wgy = us(t). (4.18)

rather than first-order circuits of Equation (4.14). The lemma does not apply to a second-

order equation. However, the system equation of any second-order circuit made of linear

time-invariant elements can always be written in the form of first-order state equation as fol

lows:

* - -

=
a\\a\2

021^22
yi
yi

+
«i(0
"2(0 (4.19)
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In fact, the behavior of the LC resonant circuit is formulated in the form of Equation (4.19), if

the Modified Nodal Analysis method [91,90] (usually abbreviated to MNA in the literature)

is used, which selects an inductor current as well as a node voltage as network variables.

Since the inductor current changes at a timepoint where the node voltage is at its peak, not all

the derivatives of network variables are zero as required to apply Lemma 4.1. Therefore, the

lemma is not applicable. The ELogic algorithm uses the Nodal Analysis method and hence

an event means that a node achieves a new voltage state as defined in Definition 4.4. How

ever, if other analysis methods are used for the implementation of the ELogic technique, the

occurrence of any of the network variables achieving a new state must be defined as an event.

Assuming MNA is used to solve an LC resonant circuit, if an inductor achieves a new current

state, it is an event. A network variable yj is then processed at tn only if the variable yy- or

any of its fanin variables achieves a new variable state at tn, where a fanin variable is defined

in Definition 4.2.

433. STABILITY OF THE ELOGIC ALGORITHM

The stability of numerical integration methods is problem-dependent. Therefore, the

stability is investigated using following equation whose exact solution is given by

y(t) = e-*:

y =-Xy , y(0) = 1 (4.20)

where X and y are generally complex numbers [78,63]. The initial value problem of Equa

tion (4.20) is chosen as the test equation, because it is the simplest equation commonly

encountered in practice. Even though the behavior of a system is usually represented in the

form of nonlinear equations as follows (which is the case when MOS circuits are analyzed):
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y =f(y),

its local behavior about some operating point yo can often be approximated by variational

linear equations:

oy = A8y

where

A =^ly=,W

The region of absolute stability for the explicit Euler integration method is in the circle

11 - o I < 1, illustrated in Figure4.5, where a = h X. When the explicit Euler method is used

to solve the test differential equation of Equation (4.20) with a set of values of h and Xinside

the stable region, a perturbation in a single mesh value yn will produce a change in subse-

Re(C5i

Figure4.5 Region of Absolute Stability for the Explicit Euler method (a = hX)
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quent values which does not increase from step to step. Note that a voltage change is

bounded in the ELogic algorithm. Therefore, even though the explicit Euler method is not

A-stable nor stiffly stable [78,79], it is possible to keep a inside the stable region. This is

discussed next

Consider a linear RC circuit shown in Figure 4.6(a), where a voltage at Node j charges

up or discharges from Vnow to Veq . Figure 4.6(b) illustrates the charging-up waveform and

an ELogic rising transition from V^w to Vfy«* at Node j. The linear RC circuit is meaning

ful to investigate the stability of the ELogic algorithm, as the linear test equation of Equation

(4.20) is meaningful for the investigation of the stability of numerical integration methods.

Thus, the stability property of the ELogic algorithm will be derived using the linear RC cir

cuit

[Lemma 4.2] The explicit Euler method is stable for the linear RC circuit of Figure 4.6(a)

in the circle 11 - o I <1on c-plane, where a =hX= -JW.

Proof: From the test circuit, a voltage across a capacitor C, vc(r), and its rate of change are

given as follows:

ve(0 =Veq +(Vnow - VEQ) «-** , where 'X=-^u (4.21)

ve(0 = X(VEQ - VNow) e~* (4.22)

Thus, a system equation is given by

vc(0 = -Xvc(t) + XVEQ , where vc(0)= VNow (4.23)

Let vn denote a computed value of vc(t) at tn by using a difference method of the explicit

Euler. To see the change due to a perturbation of size 5 in vn at subsequent time points *„+*,

k>0, let vn be (v„ + 8). By solving Equation (4.23) from tn with v„, using the explicit Euler
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integration method, the node voltage at tn+t is computed as follows:

v„+* = vrt+* +(1 -h X)k 8 = vn+k +(1 -a)* 8 (4.24)

Therefore, the region of the explicit Euler method for the linear RC circuit of Figure 4.6(a) is

in the circle 11 - o I £ 1 on o-plane, as shown in Figure 4.5. a

For the purpose of investigating the effect of the size of a voltage change on the stabil

ity of ELogic, it is necessary to study how the location of a varies on Figure 4.5 by changing

the size of a voltage change.

[Lemma 43] When the ELogic algorithm is used to solve a linear RC circuit of Figure

4.6(a), the value of a depends on a particularvoltage change Node j makes as follows:

where AV is (YNext - Vnow), a voltage change Node j makes, and Vnow (V^e*) is the current

(next) voltage state at Node j.

Proof: From Equation (4.22),

vc(0) = X(VEQ-VNow) (4.26)

Because the ELogic algorithm uses the explicit Euler method, the transition time h for Node

j to make a voltage change of AV is (refer to Figure 4.6(b)):

h - -ML - AV (A ™
v(0) " X(VEQ-VNow) V'27*

Thus, a is given as:

a = h X = *v
Veq - Vnow

Lemma 4.3 indicates that a can be bounded inside the stable region by bounding the voltage
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changes in the ELogic algorithm.

[Theorem 4.1] The ELogic algorithm is stable for the linear RC circuit of Rgure 4.6(a), if

and only if it allows Node j to make a transition between discrete voltage states when Condi

tions 4.1 are satisfied.

Conditions 4.1

(1)The next voltage state (Vm^) and VEq mustbe in the samedirection, whencompared

to the present voltage state (Ynow ).

(2) The voltage change AV the ELogic algorithm allows must not be larger than twice the

difference of VEq and the present voltage state.

IAV I = I VNext -VNow I < 2 I VEQ - VNow I (4.28)

Proof: Let ai denote a of an ELogic transition with a particular voltage change. Lemma 4.2

states that the explicit Euler method is stable for the linear RC circuit of Figure 4.6(a), when

C\ is in the circle ll-al <1 on o-plane. Therefore, it is sufficient to prove that:

Qaim4.1.1

If Oi is inside the circle ll-al < 1, the corresponding ELogic transition satisfies Conditions

4.1.

Claim4.1.2

If an ELogic transition satisfies Conditions 4.1, Ci is inside the circle ll-al < 1.

Claim4.1.1 will be proven first Since X(= -JU) is real for the test circuit, G\ (= hX) is also

real. Thus, if G\ is in the circle ll-al£l,0<ai<2. From Lemma 4.3,

AV

'EQ - Vfjow
0 < v AV < 2 (4.29)

For a rising transition (VEQ > VNow), Equation (4.29) yields the following:
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0 < AV <; 2(VEQ -VNow) (4.30)

Similarly, foliowingsare derived for a falling transition (VEq < Vnow) fromEquation(4.29):

0 < - AV <S 2 (yNow - Veq) (4.31)

Since AV is (V#«* - Vnow), Equations (4.30) and (4.31) are summarized as Conditions 4.1.

Claim4.1.2 can be proven easily by following the proof of Claim4.1.1 in the opposite order.

Thus, its proof is omitted, d

Conditions 4.1 are used for ELogic to determine if a node will make a transition to the next

state.

43A. ACCURACY OF THE ELOGIC ALGORITHM

Another important issue for discussion is the accuracy of the ELogic algorithm. The

ELogic algorithm is convergent when it solves a circuit whose node voltages are monotoni

cally rising or falling: any desired degree of accuracy can be achieved by picking a small

enough voltage step (AV).

[Theorem 4.2] When the ELogic algorithm solves a circuit whose system equation

v' = f (v) satisfies a Lipschitz condition and node voltages are strictly monotonically rising

or falling for 0£t£b, v,^ approaches Vj(t) for all nodes j for all 0<r <^b as n

Vapproaches ~ with AV = max, where vi/n is a voltage at Node j afterm transitions com-

m

puted by the ELogic algorithm, vj(t) is a true voltage at Node j at time f = Xfy.*» where

hjjc is the fan transition time at Node j, AV is a voltage step, and Vmax is the maximum node

voltage in a circuit during operation.

Proof: AV approach zero as n approaches «>. Since all node voltages are strictly
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monotonically rising or falling for 0 < t < b, transition times hjjt are defined and approach

zero as n approaches °o for all nodes j and for all transitions 1<k < m. The ELogic

waveform of the m transitions at node j will be the same as the one producedby a difference

method using the explicit Euler with timesteps of fy*, 1<k <m. Since the explicit Euler

method is a convergent method [78], Theorem 4.2 holds, a

In Figure 4.6(b), AE illustrates the transition error of the ELogic algorithm after Node j

made a transition between two voltage states.

The other local error of the ELogic algorithm is a "round-off error that occurs due to

the precision of ELogic states. While the transition error of ELogic occurs when a node

makes a transition to the next state, the round-off error occurs if a node does not make a tran

sition to the next state because Conditions 4.1 are not met. This type of round-off error is

obviously bounded by a voltage step AV. Note that as in the case of local versus global trun

cation error, where bounding the local truncation error at a timestep makes no guarantee

about the global error of difference methods after many timesteps especially when nonlinear

circuits are solved, the choice of a voltage step-size in ELogic bounds the error at each transi

tion but provides no guarantee about the global error after many transitions. However, our

experience with ELogic is that on average the local errors do not accumulate, if transitions

are allowed only when the local behavior of a nonlinear circuit at the operating point satisfies

Conditions 4.1. Of course, a pathological nonlinear circuit could be constructed in order to

amplify the error due to a choice of state-values. In this case, we would argue that this was a

poor choice of states for the particularcircuit or design-style. Such circuits can be found even

for accurate circuit simulators using any finite floating-point precision.



91

4.4. THE ELOGIC ALGORITHM FOR MOS CIRCUITS

In ELogic, the Shichman-Hodges model [92] equations are used to represent MOS

transistors. If desired, more sophisticated models, or a table-lookup model [93,94,95,96]

can be used to improve accuracy.

When processing Node j without floating capacitors at tn, ELogic determines if it will

make a transition to next state, as follows. First ELogic linearizes MOS transistors using the

small-signal model [63] and obtains the Thevenin equivalent circuit [62] of fanin nodes of

Node j, FIj, at a given timepoint tn. TheThevenin equivalent circuit of the FIj at j can be

obtained by source transformation after computing the Norton equivalent circuit of each of

FIj. The Thevenin equivalent circuit represents the local behavior of the circuit to Nodej at

tn. The Thevenin equivalent circuit has the same configuration as the stability test circuit

shown in Figure 4.6(a). Thevenin equivalent voltage source, Veq , is the open-circuit voltage

at Node j at tn, which can be obtained after disconnecting a grounded capacitor at the node,

Cjj. Then, ELogic computes the next voltage state by comparing VEq and the present state,

Vnow • Node j will make a transition to the next voltage state only if the conditions of Equa

tion (4.30) or (4.31) are satisfied. As an illustration, one might consider two voltage states,

Vk < Vjk+i. Let the threshold voltage Vtn be the middle value of the two voltage states.

Assuming that the presentstate is V*, if VEq lies above Vtn, Equation (4.30) is satisfied and

hence a rising transition is made.

While the previously described scheme works very well in practice, occasionally it is

possible for nodes to oscillate between two adjacent states without changes in the state of the

fanin nodes. This numerical, adjacent-state oscillation may occur when the exact steady-state

node voltage is not close enough to a discrete voltage state. This artificial oscillation is illus

trated in Figure 4.7. Let Vexact denote the exact steady-state voltage at Node j. In the figure,
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k+1

time

Figure4.7 Illustration of Numerical, Adjacent-State Oscillation

Vexact lies between Vk and V^+i. Assume that the present voltage state of Node j is V* (A in

Figure 4.7) and VEQ lies between Vln and V*+1. Then, Nodey makes atransition from Vk to

yk+i when me voitage atNode; reaches V*+1 (5 in Figure 4.7), VEQ is computed again. If

the new VEq remains between Vth and V*+1, the voltage state of Node j will remain at V*+1

(this is what happens in most cases). However, because one of the input voltage states used

to evaluate MOS transistors changed from V* to V*+1, occasionally, the new VEQ may move

to between V* and Vth. In this case, Node j will make a transition backto V* and artificial

oscillation occurs. In order to prevent the adjacent-state oscillation, the ELogic algorithms

employs a cycle detector: the cycle detection is performed at each node as it makes a transi

tion to an adjacent state. If the transition reverses a direction more than once, and the event

that caused the transition was not external to the node (i.e not a state change at a fanin node),

then the cycle detector prevents the node from making the second reversal transition (transi-
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tion C-D in Figure 4.7). One must note that this cannot suppress real oscillations in the cir

cuit since they must involve more than two states or a change in state at at least one fanin

node. If a local oscillation occurs within a state (i.e., below the resolution of the analysis

technique) and, if such an oscillation is truly partof the circuit characteristic, then more states

should be used to model its behavior effectively.

Now, consider Node j having floating capacitors. As mentioned earlier, when ELogic

processes the node, it computes the Norton equivalents of fanin nodes (FIj) to obtain the

Thevenin circuit at j. Note that the Norton equivalent of a capacitor in series with a voltage

source involves a current source which is a function of the rate of change of the value of the

voltage source. Therefore, if there is a floating capacitor between j and FIj, the algorithm

has to compute the rate of change of thevoltage atFIj to obtain the Norton equivalent circuit

of FIj at tn. However, computing voltage change rates atFIj is expensive. Furthermore, if

Node j has no resistive elements, the Norton equivalent circuit at the node consists of only a

current source and a capacitance. Hence VEq cannot be computed and the Thevenin

equivalent at the node does not exist Therefore, if Node j has floating capacitors and its vol

tage change rate is not zero, ELogic determines the node makes a transition to the next vol

tage state. From Equation (4.10), a voltage changerate at Node j is given as follows:

rate of voltage change at Node j = - Cj-1(vn) f (vn ,un)

As it does for nodes without floating capacitors, the cycle detector prevents Node j from

making the second reversal transition to suppress artificial oscillation, when j reverses the

transition direction more than once, and the event that caused the transitions was not a state

change at FIj.
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4.5. THE ELOGIC DELAY MODEL FOR TIMING VERIFICATION

The ELogic algorithm can be used for as a delay model for timing verification as fol

lows. First, the path analysis section extracts a chain of transistors from a circuit, in a sys

tematic way: breadth-first, depth-first, or topological-order-based manner. The input to the

chain of transistors is a waveform fragment The effect of the input change propagates as

waveform fragments through the circuit Then, the delay is obtained by comparing the

waveform fragments at nodes in the transistorchain. Since the size of the transistor chain is

usually small, the ELogic algorithm is practical for delay evaluation, even when the chains

have floating capacitors.

The accuracy of the ELogic delay model has been compared to that of existing switch-

level delay models, using the switch-level critical-path analyzer," Crystal [23]. Crystal has

three RC delay models: lumped RC model, lumped slope RC model, and distributed slope

RC model. Crystal was modified to use the ELogic delay model, while the path analysis sec

tion was left the same [97,61]. The modified version of Crystal will be referred to as

E-Crystal in this dissertation. The data structure of E-Crystal was modified to store the

waveform segment. This waveform segment is used as an input to other transistor chains,

extracted later. As mentioned earlier, RC delay models assume that there is only one direct

path from a reference node (power supply or ground) to the signal-nodes of the circuit. Thus,

a transistor chain extracted by Crystal is a series of pass transistors from the reference node to

a gate or output node. This chain, as is, may not be the correct subcircuit to simulate using

the ELogic delay model. For example, when the falling transition of NMOS inverter is

examined, only the NMOS driver is extracted and the NMOS depletion load is missing.

Therefore, a function which extracts missing elements, if any, from the circuit description

was added. Simulation by the ELogic delay model is performed until an output node reaches
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a steady state. After the simulation is finished, E-Crystal updates the worst delay waveform

segment on the output node. While E-Crystal uses the ELogic delay model, the detailed

implementation is slightly different from the ELogic delay model used in E-TV, described

earlier in this chapter. The detailed implementation of the ELogic delay model used in E-

Crystal can be found in [60,97].

The accuracy of the ELogic delay model employed in E-Crystal was compared to that

of Crystal's distributed slope RC model (DS model), using a CMOS microprocessor SOAR

(Smalltalk On A RISC) chip [98] and its ALU (Arithmetic Logic Unit). The DS model uses

the ratio approach [65] and the results of Penfield-Rubenstein model [64]. It is the most

accurate among Crystal's three RC delay models.

Depending on the voltage step chosen for the ELogic delay model, the DS model has

been shown to be about 30 to 300 times faster. Note that the only difference of E-Crystal and

Crystal is their delay model. In this case, the CPU times directly reflect the efficiency of the

delay model employed. However, CPU times of timing verification also depend on the path

analysis approach. For this reason, E-TV uses the topological-order based search for path

analysis, which is more efficient than a modified depth-first search used in Crystal. As

described in Chapter 3, the topological-order based search locates the worst delay path to

each node only once, while a modified depth-first search locates the worst delay path to each

node more than once on the average and the running time is exponential with the circuit size

in the worstcase. Experimental results of E-TV canbe found in Chapter 6.

The ALU of SOAR has 1694 transistors and 1189 nodes. Both Crystal (DS model) and

E-Crystalusing 0.5V steps ranto extract 15 worst delay pathsof the circuit Figure 4.8 illus

trates the results. In the figure, the X axis represents the delays by SPICE2 and the Y axis

represents the delays estimated by Crystal and E-Crystal. If the delay estimates by Crystal or
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Figure 4.8 Delay Estimates Comparison on SOAR ALU
X-axis: SPICE2 Y-axis: Delay Model
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E-Crystal are exactly the same as those by SPICE2, a 45° straight line from left bottom to

right top comer appears. The dotted lines compare the delay estimates by Crystal and

SPICE2, for 15 worst delay paths extracted by Crystal. The solid lines compare the delay

estimates by E-Crystal using 0.5V step and SPICE2, for 15 worst delay paths extracted by E-

Crystal. Each line of the figure corresponds to one worst delay path from input nodes to out

put nodes of the ALU. Each segment of the line corresponds to a chain of transistors in the

path. The breakpoint represents the delay estimates up to that transistor chain. From Figure

4.8, it is observed that the ELogic delay models provide more accurate delay estimates than

the DS model. One should notice that the DS model alternately underestimates and overesti

mates the delay through a chain of transistors. Thus, for this well-behaved example, the total

error in delay estimation of path is decreased by compensation. However, the DS delay

model may not find the right worst delay path, especially when it is used in critical-path

analysis where the search is pruned.

The SOAR chip has 34,526 transistors and 13,311 nodes. This time, the delay esti

mates of the two delay models were compared using the same paths. First, 12 worst delay

paths of the SOAR chip were extracted by Crystal. Then, delays through these paths were

estimated by E-Crystal with 0.2V step and SPICE2. The results are given in Table 4.1 as

Verifier Model
Overall

Error(%)

Avg. Path
Error(%)

Crystal DS Model -19.3 46.4

E-Crystal

ELogic
(O.lVstep)

-1.2 1.6

ELogic
(0.2V step)

0.45 4.2

Table 4.1 Delay Estimates Comparison on SOAR Chip
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well as in Figure 4.9. In the table, "Overall Error" is an error of total delay estimates

obtained for all worst delay paths by delay models compared to that of SPICE2. "Avg. Path

Error" is the average of the absolute error in estimating total delays in the worst delay paths

up to each chain of transistors. In Figure 4.9, the delay estimates by the DS model spreads

much more widely than in Figure 4.9, since the underestimation and the overestimation did

not alternate as for ALU. This fact accounts for the large error of the DS model shown in

Table 4.1. In Figure 4.9, SPICE2 determines that PathA is the worst delay path among the

extracted 12 paths. However, the DS model in Crystal fails in ordering delay paths and

reports Path B as the worst delay path. The results indicate that the DS model, while it is the

most accurate among three RC delay models available,does not have good absolute accuracy

nor good relative accuracy in this example. Even though the worst delay paths reported by

timing verifier are frequently re-evaluated using more accurate technique, the evaluation of

wrong worst delay paths such as Path B is not helpful. Since the ELogic delay model is more

accurate, it certainly reduces the chance of reporting wrong worst-case delay paths, as illus

trated in the figure.

The experimental results demonstrate the use of the ELogic delay model improves the

accuracy of delay estimates greatly over the existing RC delay models. While the accuracy

improvement can also be achieved by using the standard simulation approach, it is too slow

to be practical. The ELogic delay model is reasonably fast and accurate. Compared to

SPICE [5,41], ELogic typically runs a factor of 30 to 300 times faster and produces a delay

error of 1% to 20% when it uses 0.1V to IV step-size, depending on the nature of the circuit.

More comparisons of accuracy and simulation speed between ELogic and SPICE can be

found in Chapter 6 of this dissertation and in [61]. The ELogic delay model also provides a

trade-off between speed and accuracy in the same analysis as well as over a number of ana-
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lyses, by varying the number of voltage states [61]. In addition, a waveform at a node with

the worst delay is used as an input to other transistor chains. The easiest way to store a

waveform is using a list of voltage-timepoints for a transition (waveform segment). When

the input waveform is not given as a smooth function, the standard simulation approaches

have difficulty converging. The ELogic delay model handles such a waveform segment

without difficulty, when it is used as an input to transistor chains extracted later. These are

some of motivations to develop a timing verifier that uses the ELogic delay model.
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CHAPTER 5

ELECTRICAL-LOGIC BASED TIMING VERIFIER

(E-TV)

In this chapter, the concept and the approaches employed for the development of an

accurate timing verifier for MOS digital VLSI systems, referred to as Electrical-logic based

Timing Verifier (E-TV), are presented.

The main purpose of ErTV is to detect the possibility of timing errors that violate the

maximum delay constraints in multiphase synchronous and combinational MOS.digital sys

tems. If a signal does not get to a space point by the intended timepoint, it is regarded as a

timing error. In addition, E-TV serves as a critical path finder which locates the critical paths

in a system. For a synchronous system, E-TV reports the paths in each logic segment in the

critical order using their evaluation-time margin. For a given clocked path, the evaluation-

time margin is defined as a time interval from the transition timepoint at the succeeding space

reference to the succeeding time reference of the path. Thus, it represents the severity of the

timing problem of the clocked path. This information can be used to improve the speed of

the system. It was noted that a timing verifier or critical path finder can be only as accurate

as its delay model. The experimental results illustrated that E-TV is not only fast but also

accurate enough to be practical. The experimental results are presented in Chapter 6. In

addition, E-TV provides a speed-accuracy trade-off, as with the ELogic algorithm.

Like most other timing verifiers, E-TV propagates logic signals through a system

value-independently. Hence it computes the worst-case path delays and uses them to detect



102

timing errors or to locate the critical paths. E-TV uses a critical-path analysis approach: the

search space is pruned and only the critical paths of a system are examined. E-TV visits each

node once in the topological order so as to find the worst delay path leading to it. Thus, as

mentioned in Chapter 3, the running time of E-TV is approximatelylinear with a circuit size.

After extracting candidate transistor chains for the worst delay path to each node, E-TVcom

putes path delays using the ELogic delay model. As does the leveling, the topological order

ing assumes that there are no loops in a graph. Therefore,E-TV breaks signal-flowloops in a

circuit while it orders nodes topologically. For the verificationof a synchronous system, E-

TVpropagates clock signals through the system. Then, it uses the actual clock signals that

arrive at clocked storage elements to check timing violations. Therefore, clock skew is taken

into account automatically.

5.1. SIGNAL FLOW THROUGH MOS TRANSISTORS

The direction of signal flow is the direction that a logic "0" or "1" signal flows through

an MOS transistor. Note that the logic "0" flows in the opposite direction of current flow

while the logic "1" signal flows in the same the direction. As an example, when the output

node of an inverter discharges, the current flows from the output node to ground through a

pull-down transistor, but the logic "0" signal flows from ground to the output node. In princi

pal, the logic signal can flow in either direction through an MOS transistor channel, from

drain to source terminals or from source to drain terminals. Therefore, each MOS transistor

channel constructs a simple signal-flow loop which must be broken for the topological order

ing of nodes. In a typical design, however, most transistors are unidirectional such that sig

nals flow only in one direction during operation, and only a small number of MOS transistors

are bidirectional. When breaking a signal-flow loop by an unidirectional transistor, it is very
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important to preserve an edge which represents its intended signal flow, and remove the other

edge to break the loop. The removal of a wrong edge blocks forward paths through the uni

directional transistor, and causes unrealistic paths to be examined. Consider Figure 5.1,

where all MOS transistors are unidirectional Signals are intended to flow through MOS

transistors as represented by arrows. Assume that the loop by the source-drain channel ofMI

was broken so that a signal flows from Node 2 to Node 7, rather than as shown. Then, a real

path A is blocked and, instead, a bogus path B is examined. This illustrates that, for switch-

level timing verification, it is crucial to find all unidirectional MOS transistors and to assign

the directions of signal flow through them correctly.

5.1.1. AUTOMATIC DERIVATION OF SIGNAL FLOW

There are two possible approaches for assigning the direction of signal flow:

(1) The circuit designer specifies the signal flow directions during design.

(2) A computer algorithm derives the signal flow directions after the design is completed.

^__1 ^L
> PathB

M1

J—^T
> Path A

Figure 5.1 Breaking A Loop of An Unidirectional Transistor
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The first approachimposes an extra burden on the designer. However, they can certainly set

the signal flow through unidirectional MOS transistors correctly, since they understand

circuit's function. In many cases, cells are replicated or created by synthesis tools, reducing

the amount of work required by the designer. Additionally, while a bidirectional MOS

transistortransferslogic signals in both directions, the designermay assign the signal flow so

that more important paths can be examined. Thus, this approach is preferable to the second

one. Nevertheless, the second approach eases the user's task of direction finding, when it is

necessary to verify a design without signal flow identification. For this purpose, E-TV pro

vides a program, called FLOW, which the user can run to set the signal flow in a design

automatically in advance. In this section, the approach used in FLOW is described.

Consider the signal flow through an inverter. The logic "0" signal flows from ground to

an output node through a pull-down transistor, and the logic "1" signal flows from a power

supply to the output node through a pull-up transistor, because the ground and power supplies

are working as logic information sources. If the drain or the source terminal of an MOS

transistor is connected to ground or a power supply, a logic signal can flow only from the

ground or the power supply to the other terminal. This can be used as a rule to set the signal

flows through MOS transistors whose source or drain terminal is connected to ground or to

any power supply. In fact, FLOW uses a set of rules to find unidirectional MOS transistors

and to assign the signal flow directions through them. Recently, such approaches, which

derive the directions of signal flow through MOS transistors using a set of rules, have been

used in some switch-level timing verifiers such as TV [99] and Pearl [57]. For example, TV

applies a set of safe rules, then unsafe rules, repeatedly to determine transistor signal flow.

However, its rules for NMOS circuits, that depend on transistor ratios to find pass transistors,

are said to be virtually unusable for CMOS circuits [57]. Thus, in Pearl, it is attempted to



105

prove that flow is impossible from either the source to drain or drain to source by searching

for a transistor gate, feedback paths, and power supplies through transistor channels to some

maximum search depth. The limitation of this approach is that the program can get lost in

circuits that require inordinate amounts of computation, unless the search depth is limited to

reasonable level. On the other hand, FLOW defines two kinds of information sources, as will

be described soon. Then, rules are applied to the transistors having their source or drain ter

minal connected to the candidate nodes that are updated during the signal-flow derivation,

starting from the information source nodes. Therefore, the signal flow can be derived

efficiently. It should be noted that some unidirectional transistors may be left bidirectional,

but no bidirectional elements can be set for the signal flow.

The basic rules developed for FLOW to derive the signal flow are as follows.

Rule 1. Information source, sink, station, and signalflow :

Nodes with a voltage source or ground are strong information source nodes by their

definition. Input nodes to the design are weak information source nodes by the designer's

intention. Similarly, the output node of an and-or-inverter serves as weak information

source for other transistors. Logic signals flow from strong information source nodes to

weak information source nodes, or from information source nodes to non-information-

source nodes (such as information station/sink nodes that are described next) through the

source-drainchannels of MOS transistors. Output nodes from a design and the gate termi

nals of MOS transistors serve as information sink such that an entered logic signal does

not necessarily have to leave. All other nodes serve as information station, where a logic

signal which entered through one path must leave through another.

Rule 2. One unset transistor at a node :
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For a given node X which is not an information sink, if all but one of the MOS transistors

having their source or drain terminal connected to X are set for signal flow, and a logic

signal enters X through them, the logic signal must leave X through the unset transistor.

Similarly, for a given node X which is not an information source, if all but one of the

MOS transistors having their source or drain terminal connected to X are set, and a logic

signal leaves X through them, a logic signal must enter X through the unset transistor.

Rule 3. Pseudo transistor:

Two transistors, whose source or drain terminals are connected to the same node X, have

the same direction of signal flow relative to NodeX, if the two transistors turn on and off

simultaneously or mutually exclusively by other than fixed voltage sources. Thus, these

transistors can be viewed as one pseudo transistor, when applying Rule 2.

Rule 4. Information circulation through loops :

The logic signal does not circulate through loops made of the source-drain channels of

MOS transistors.

FLOW first finds all and-or-inverters in a design and sets the signal flow through their

pull-up and pull-down transistors toward output nodes. FLOW then sets the signal flow

through transistors having their source or drain terminal connected to ground, any power sup

ply, or the output node of an and-or-inverter, using Rule 1. Note that pass transistors con

nected between the output nodes of two and-or-inverters are not set, because they have the

same strength. Then, FLOW sets the signal flow through unset transistors by applying Rules

2 and 3 to nodes, repeatedly. During the signal-flow derivation, FLOW maintains a list of

candidate nodes to apply rules. If FLOWsets a transistor by examining its source/drain node,

the condition at the other source/drain node changes. Hence the node becomes a candidate
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for a examination. When the candidate list becomes empty, the signal-flow derivation is

completed and unset transistors are consideredas bidirectional.

5.1.2. PSEUDO TRANSISTORS FOR SIGNAL-FLOW DERIVATION

It has been mentioned in Rule 3 that a number of transistors can be viewed as one

pseudo transistor for the purpose of the signal-flow derivation in some cases. In this section,

the other two situations where FLOWviews a number of transistors as one pseudo transistor

are presented.

When a number of transistors are connected in parallel between two nodes, they form a

loop or loops made of the source-drain channels of the transistors. As described in Rule 4,

information does not circulate through the loop. Thus, the transistors have the same direction

of signal flow relative to two nodes and hence can be viewed as one.pseudo transistor for the

signal-flow derivation, when applying Rule 2.

A biconnected graph is a connected subgraph with no cut-vertices, which has only two

end points connected outside of it. Roughly speaking, in order for a logic signal to pass

through a biconnected graph, one end point must serve as an entrance and the other one must

serve as an exit for the passage. Therefore, when applying Rule 2, a group of transistors

whose source-drain channels form a biconnected graph behaves as one pseudo transistor at

two end nodes for the direction derivation, provided that none of the source/drain nodes of

the transistors serves as an information source or sink.

[Lemma 5.1] A group of transistors whose source-drain channels form a biconnected graph

behaves as one pseudo transistor connecting the two end nodes for the signal-flow derivation,

provided that none of the source/drain nodes of the transistors serves as an information source

or sink.
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Proof: Let Gb denote a biconnected graph formed by MOS transistors, where edges represent

their source-drain channels. Figure 5.2 illustrates nine possible cases, depending on the sig

nal flows through edges of Gb connected to two end nodes X and Y. Note that all transistors

of Gb connected to X or Ycan be represented by one edge without a loss of generality, if their

directions of signal flow are the same with respective to X or Y. Due to the fact that the infor

mation does not circulate through a loop (Rule 4), followings are required for Figures 5.2(a)

to (g) to be valid:

1. (a) and (e) must have information sink in Gb .

2. (b) must have information source or sink in Gb •

3. (c) and (f) must have information source in Gb .

4. (d) must have information sink in GB.

5. (g) must have information source in Gb.

Therefore, if the biconnected graph Gb contains no information source and sink nodes, only

Figures 5.2(h) and (i) are possible. In both (h) and (i), all transistors in Gb , that are con

nected to X or Y, have the same direction of the signal flow with respect to X or Y. Thus, a

group of transistors forming a biconnected graph behaves as one pseudo transistor for the

signal-flow derivation of transistors connected to two end nodes, a

FLOW uses the above lemma when applying Rule 2 at end nodes. By doing so, it

improves the chance of assigning the signal flow, compared to existing approaches. For those

transistors in Gb that are not connected to end nodes, the signal flow is set to prevent infor

mation loops. Some of the transistors may be bidirectional. An example of transistors form

ing a biconnected graph is the pull-up or the pull-down transistor group of an and-or-inverter.
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(b)

(d)

(f) —M

(h)

Figure 5.2 Signal Flow through A Biconnected Graph
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5.2. WORST-CASE OPERATIONS

E-TV defines two types of events, depending on the method for signal propagation:

value-dependent and value-independent events. A value-dependent event is the one which is

made possible by value-dependent signal propagation. It is guaranteed to occur at given or

computed timepoints, since all necessary conditions are supported. On the other hand, the

value-independent event is made possible by value-independent signal propagation. The

event is expected to occur at the given/computed timepoints, only if all necessary conditions

are supported. Because it is not known if all necessary conditions are supported, its

occurrence is uncertain. Value-dependent and value-independent signal propagations have

been described in Chapter 3. The events include the rising or falling transition of node vol

tages, switching of pass elements, or open/close operations of paths. When a transition at a

node is value-dependent, the node is said to be value-dependent. Otherwise, the node is said

to be value-independent

In E-TV, all signal nodes except clock nodes and logic-control nodes (to be described in

Section 5.3) are value-independent. Therefore, the analysis of a particular transistor chain

may involve some value-dependent nodes and some value-independent nodes. This section

describes the effect of event types in determining the timepoint at which a path opens and

closes in the worst case and the predecessor which is responsible for the worst-case operation.

The results are used to find the worst Congest) delay predecessor. For example, the output of

an NMOS and-or-inverter is pulled up after all pull-down paths become open. Thus, the

worst rising delay predecessor will be the input node which opens its pull-down path last.
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5.2.1. SERIES CONNECTION OF TWO PASS ELEMENTS

Consider Rgure 5.3, where two pass elements (PEI and PE2) are connected in series.

Assume that Node A is value-dependent. The open operation of a path is investigated. Let

Tqff(PEI) and T0ff(PE2) denote the times at which PEI and PE2 tum off in the worst

case, respectively. Because the worst-casetime point at which Path A-C-Ecloses or opens is

investigated instead of the worst-case path delay, the delay through PEI or PE2 needs not be

considered. First, suppose that PEI and PE2 turn offvalue-dependently. Then, because both

pass elements are guaranteed to tum off at the given times, the following results are obtained:

(1) Worst-case operation 1 (series connection, open operation)

Conditions

(1) Series connection of two pass elements (Figure 5.3).

(2) PEI and PE2 tum off at T0ff(PE 1) and T0ff(PE2), value-dependentiy (Node B

and D are value-dependent).

Results

(1) The predecessor for the worst-case operation is Node B, if PEI turns off first. Oth

erwise, the predecessor for the worst-case operation is Node D.

B

> PE1 PE2

Figure 5.3 Two Pass Elements Connected in Series
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(2) The path opens at Min(T0ff(PE 1), T0ff(PE2)) in the worst case.

(3) Node E becomes value-dependent

Now, suppose that PEI and PE2 turn off value-independently. There is no guarantee

that tiie pass elements will tum off at the specified times. Thus, the following results are

obtained:

(2) Worst-case operation 2 (series connection, open operation)

Conditions

(1) Series connection of two pass elements (Figure 5.3).

(2) PEI and PE2 tum off at T0ff(PE 1) and T0ff(PE2), value-independently (Node B

and D are value-independent).

Results

(1) The predecessor for the worst-caseoperationis Node B, \fPEI tums off later. Oth

erwise, the predecessor for the worst-case operation is Node D.

(2) The path opens at Max (T0ff(PE 1), T0ff(PE2)) in the worst case.

(3) Node E becomes value-independent

The next case is where one pass element turns off value-dependentiy, while the other

one tums off value-independently. Suppose that PEI turns off value-dependentiy and PE2

turns off value-independently. If PEI turns off first, Path A-E will open at that time. How

ever, when T0ff(PE 1) > T0ff(PE2), some conditions that are necessary for PE2 to turn off

at Toff (PEI) may not be supported. As a result, it is not clear if PE2 turns off at

T0ff(PE2), earlier than PEL In the worst case, the path may open when PEI tums off.

Therefore, regardless of which one turns off first, the worst-case open-operation predecessor

of the path is Node B.
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(3) Worst-case operation 3 (series connection, open operation)

Conditions

(1) Series connection of two pass elements (Figure 5.3).

(2) PEI turns off at T0ff(PE 1) value-dependentiy and PE2 tums off at T0ff(PE2)

value-independently (Node B is value-dependent and Node D is value-independent).

Results

(1) The predecessor for the worst-case operation is Node B which is value-dependent

(2) The path opens at Toff(PE 1) in the worst case.

(3) Node E becomes value-dependent

From Worst-case operations 1 to 3, the following observation is obtained.

[Observation 5.1] Worst-case open-operation of series connection

Consider two pass elements, connected in series as in Figure 5.3. Suppose that Node A is

value-dependent Then, the path opens value-dependentiy if, and only if, at least one pass

element turns off value-dependentiy. The predecessor of the path for the worst-case open-

operation is the gate of a pass element which turns off value-dependentiy, or the gate of the

pass element which turns off first if both turn off value-dependentiy. The worst-case path-

open time is the first time at which any pass element turns off value-dependentiy. a

Now, consider the worst-case close-operation of the path. Let Ton(PEI) and

Ton(PE2) denote the times at which PEI and PE2 turn on in the worst case, respectively.

The path closes only when both pass elements tum on. Therefore, the worst-case close time

of Path A-E depends on the pass element which closes later, regardless of node type.

(4) Worst-case operation 4 (series connection, close operation)

Conditions
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(1) Series connection of two pass elements (Rgure 5.3).

(2) PEI and PE2 turn on at T0n(PE 1) and T0n(PE2).

Results

(1) The predecessor for the worst-case operation is the gate of a pass element which

turns on later.

(2) The path closes at Max (T0ff(PE 1), T0ff(PE2)) in the worst case.

(3) The node type ofE follows the type of the worst-case operation predecessor.

5.2.2. PARALLEL CONNECTION OF TWO PASS ELEMENTS

The effect of event types on parallel connection of pass elements is found to be the dual

of the effect on series connection. The worst-case operationsof two pass elements connected

in parallel, which is shown in Rgure 5.4, are summarized as follows.

(1) Worst-case operation 5 (parallel connection, open operation)

PE3

PE4

H

Figure 5.4 Two Pass Elements Connected in Parallel
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Conditions

(1) Parallel connection of two pass elements (Figure 5.4).

(2) PE3 and PEA tum off at T0Ff(PES) and T0ff(PEA).

Results

(1) The predecessor for the worst-case operation is the gate of a pass element which

turns off later.

(2) The path opens at Max (T0ff (PE3), T0ff(PE4)) in the worst case.

(3) Node type of7 follows the type of the worst-case operation predecessor.

(2) Worst-case operation 6 (parallel connection, close operation)

Conditions

(1) Parallel connection of two pass elements (Figure 5.4).

(2) PE3 and PEA tum on at Ton(PES) and Ton(PEA), value-dependentiy (Node G and

H are value»dependent).

Results

(1) The predecessor for the worst-case operation is Node G, if PE3 tums on first Oth

erwise, the predecessor for the worst-case operation is Node H.

(2) The path closes at Min (T0n(PE3), T0n(PEA)) in the worst case.

(3) Node I becomes value-dependent

(3) Worst-case operation 7 (parallel connection, close operation)

Conditions

(1) Parallel connection of two pass elements (Figure 5.4).

(2) PE3 and PE4 turn on at Ton(PES) and Ton (PEA), value-independently (Node G

and H are value-independent).
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Results

(1) The predecessor for the worst-case operation is Node G, if PE3 turns on later. Oth

erwise, the predecessor for the worst-case operation is Node H.

(2) The path closes at Max (T0n(PE 3), T0n(PEA)) in the worst case.

(3) Node I becomes value-independent

(4) Worst-case operation 8 (parallel connection, close operation)

Conditions

(1) Parallel connection of two pass elements (Figure 5.4).

(2) PE3 tums on at T0n(PES) value-dependentiy and PEA turns on at T0n(PEA)

value-independently (Node G is value-dependent and Node H is value-independent).

Results

(1) The predecessor for the worst-case operation is Node G which is value-dependent

(2) The path closes at Ton (PE 3) in the worst case.

(3) Node I becomes value-dependent

From Worst-case operations 6 to 8, the following observation is obtained.

[Observation 5.21 Worst-case close-operation of parallel connection

Consider two pass elements, connected in parallel as in Rgure 5.4. Suppose that Node F is

value-dependent. Then, the path closes value-dependentiy if, and only if, at least one pass

element turns on value-dependentiy. The predecessor of the path for the worst-case close-

operation is the gate of a pass element which turns on value-dependentiy, or the gate of the

pass element which turns on first if both tum on value-dependentiy. The worst-case path-

close time is the first time at which any pass element turns on value-dependentiy. d
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5.2.3. COMPOSITE CONNECTION OF PASS ELEMENTS

Once the worst-case open/close-operation has been performed for two pass elements

that are connected in series or in parallel, they can be represented by one super pass element

for further worst-case operations. The worst-case operation predecessor of the path

represents the gating node of the super pass element. Then, two pass elements that include a

super pass element (or super pass elements) can again be modeled as one super pass element

after the worst-case open/close-operation. Therefore, the worst-case operation predecessor

and the worst-case open/close-times of a complex path can be obtained by modeling two pass

elements as one super pass element repeatedly. Note that the repeated application of the

super pass element justifies that Observations 5.1 and 5.2 hold even when more than two

pass elements are connected in parallel or in series.

53. SYSTEM MODELING AND TIMING VERIFICATION

Unlike other switch-level timing verifiers, E-TV deals with voltage waveform. In order

to determine the transition time of a waveform, E-TVdefines the logic threshold voltage of an

inverter as follows:

[Definition 5.1] Logic threshold voltage of an inverter, Vlt

The logic threshold voltage of an inverter, Vw, is defined as the input or the output vol

tage of an inverter when the input node and the output node have the same voltage, a

An inverter with its input and output tied together generates Vw The derivation of VLT can

be found in [25,100]. Because Vw depends on the transistor size of an inverter and the tech

nology used, E-TVdefines that a transition occurs when a waveform crosses a typical value of

Vlt* specified by the user.
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5.3.1. MODELING OF SYNCHRONOUS SYSTEMS

Rgure 5.5 illustrates how E-TV models a synchronous system, using a 3-phase clocking

system as an example. It should be noted that only the system inside the box with thick bord

erline is modeled by E-TV, and pulse and clock generators are excluded. Clock signals are

said to be primary, if they are fed directly from a clock generator without passing through

resistors or and-or-inverters of clock control circuit Otherwise, they are called as secondary

clock signals. While primary clock signals arethe outputs of a clock generator, E-TV models

them as ideal pulse power supplies. The internal resistance of the clock generator and the

long wires of a layout can be modeled using resistors. In the figure, primary/secondary clock

signals, CLK1, CLK2, and CLK3, and clocked storage elements (CSE's) are used for the glo

bal synchronization of the system. Any signals that are not used for global synchronization,

while they are derived from a clock generator, are not treated as clock signals in E-TV. E-TV

allows the designer to use both transparent and edge-triggered clocked storage elements in

the same system. Notice that the figure illustrates CLKI logic evaluation section only, which

consists of CLK1-CLK2 and CLK l-CLKS logic segments. Once the primary clock signals

are defined by the user, E-TV extracts all primary and secondary clock nodes, that are in turn

used to identify clocked storage elements, logic segments, and logic evaluation sections. E-

TV treats clock signals in a special way and they are value-dependent in propagation. Even

though it is possible to regard clock signals as ordinary value-independent signals during a

verification [23], treating clock signals specially in E-TV provides a significant advantage.

This advantage is described later in this section. The timing constraints imposed by clock

nodes and clocked storage elements have been described in detail in Chapter 2.

There is one other type of signal that is modeled by pulse power supplies: logic-control

(CTRL) signals. The logic-control signal controls the signal flows through pass transistors in
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combinational logic (CL) between pairs of clocked storage elements (CSE's). Like clock sig

nals, logic-control signals are value-dependent in propagation. The primary and secondary

logic-control signals are defined in the same way. The logic-control signal imposes timing

constraints; the output terminal of a pass transistor thatis controlled by the logic-control sig

nal mustsettle before the pass transistor turns off.

The logic-control signal is utilized for two purposes. First, the designer may use it to

model a periodic control signal derived from a clock generator, that he/she does not want to

view as a globalsynchronization clock signal. Second, it may be used to model a control sig

nal that is generated in a design itself. In a typical design, there are many cases when a part

of the design is controlledby a signal generated at another partof the design. Because such a

control signal is value-independent, it does not impose any timing constraints, unless it is

treated specially. The designer can use the logic-control signals to model such control sig

nals. Even though the real control signals may not be periodic in general, they are specified

in the form of pulse power supplies in order to represent their timing relationship to clock

signals.

Data-in (D/I) nodes in Figure 5.5 are nodes that are driven from off-chip. They

correspond to Inputs of Figure2.1. Data-out (D/O) nodes drive off-chip and they correspond

to Outputs of Figure 2.1. When verifying an incomplete design, D/I and D/O nodes are use

ful to model nodes that can be perceived as input/output nodes temporarily, but will be in a

combinational logic block upon design completion. For each D/I node, the design objective

of signal arrival time can be specified for timing verification with the logic evaluation section

it belongs to. Like other ordinary signal nodes, D/I and D/O nodes are value-independent
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53.2. TIMING VERIFICATION OF SYNCHRONOUS SYSTEMS

E-TV performs a timing verification for each logic evaluation section, one by one. The

timing verification is composed of two tasks: propagating signal transitions through a logic

evaluation section and checking the signal timing against constraints. For the verification of

a logic evaluation section, value-independent rising/falling transitions start to propagate from

the preceding reference storage elements when they tum on. The value-independent transi

tions also start to propagate from D/I nodes at the times specified by the user. The propaga

tion finishes when all signals arrive at the succeeding reference storage elements or D/O

nodes. Then, the signal timings are compared to constraints. As described in Chapter 2, the

propagation through clocked paths must finish by the succeeding time reference. Hence E-TV

locates the worst delay path (longest delay path) leading to each succeeding clocked storage

element, using the worst-case delay. Then, it computes the evaluation-time margin of the

path, using the actual arriving clock signal at the succeeding clocked storage element. If the

evaluation-time margin of any worst delay path is less than zero, E-TV reports that the path

violates the maximum timing constraint imposed by clock signals. E-TV also reports the

worst delay paths in each logic segment in the critical order using their evaluation-time mar

gin. This provides the designer with the correct information necessary to improve a system

speed. Note that the longest delay path is not necessarily the most critical path because of

clock skew. If a combinational logic block contains dynamic circuits such as

precharged/predischarged modules and N/P-type dynamic logic gates, E-TV checks if their

associated timing constraints, described in Chapter 2, are satisfied during a signal propaga

tion.

Consider a 3-phase clocking scheme, illustrated in Figure 5.6. For the sake of simpli

city, CTRL, D/I, and D/O nodes are omitted. Assume that all clock nodes are primary and



CLK1

CLK2

CLK3

CLK1

CSE1 •

•4r+

k-

CLK2

•/»—(CL1 \r>- CSE2 ~V>/cL2V/>-

-0

CLK3

CSE3 -

•*-/-

^- CL3 -<—><-

(a)

Tp *l

t1 t2 t3 t4 time

(b)

Figure 5.6 A 3-Phase Clocking Scheme
(a) System Model (b) Clock Signals

122

CSEI, CSE2, and CSE3 are active-high transparent storage elements. There are three logic

evaluation sections, in the figure: CLKl, CLKl, andCLK3 sections. CLKl section consists of

CSEI, CL1, and CSE2. CLKl section consists of CSE2, CL2, CSE3, CIA, and C5E7. CLK3

section consists of CSE3, CL3, and CSEI. Suppose that E-TVverifies CLKl logic evaluation

section first, then, CLK3, and CLKl sections. In order to verify CLKl section, E-TV must

separate it from the remainder of the system. Thus, E-TV locates CSE2 by finding all storage

elements clocked by CLKl. Then, traversing from CSE2 along the signal flow, E-TV
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identifies combinational logic, CL2 and CIA, and the succeeding reference storage elements,

CSE3 and CSEI. Next, E-TV visits nodes in CLKl section in the topological order. For each

node, it extracts transistor chains, analyzes them using the ELogic delay model, and deter

mines the worst delay path leading to it In this way, E-TV propagates signals through the

CLKl section from CSEI. Suppose that tl is chosen as the preceding time reference. Then,

when the signal arrives at CSE3 or CSEI, the arrival time is compared to tl or t3 respectively

to determine if there is any possible timing violation. After the verification of the CLK2 sec

tion, CLK3 and CLKl sections are examined in the same way. The procedures for the

verification of synchronous systems are shown in Algorithm 5.1.

[1] Read in circuit and construct a data structure
[2] Find-unspecified data-in and data-outnodes
[3] Find secondaryclock/logic-control nodes and compute their waveforms
[4] Put all nodes in the system in the topological order
[5] Propagate fixed nodes that areset at logic" 1" or "0" by the user
[6] Pruneout a partof circuit that is not between primaryinputs and outputs

specified by the user
[7] Find all dynamic circuitsusing precharging and predischarging
[8] Find all clocked storage elements
[9] For each clock phase,

[9.a] Identify a logic evaluationsectionby extractingclocked paths
[9.b] Visit nodes in the section in the topological order
[9.c] For each node,

[9.c. 1] Extract transistorchains and compute delays using the ELogic delay
model

[9.C.2] Locate the longest delay path leading to the node
[9.d] Detecttiming errors, using actual arriving clock/logic-control signals
[9.e] List clocked pathsin the critical orderusing the worst-case evaluation-time

margin

Algorithm 5.1 Procedures forThe Synchronous System Verification
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The occurrence of clock edges is like a rolling wheel. There is no first occurring clock

edge. Therefore, E-TV orders clock edges internally for convenience (the order of clock

edges has been defined in Definition 2.7 in Chapter 2). For example, when E-TV verifies

CLK2 section of Figure 5.6, clock edges are arranged in the order of CLK1(R) - CLK1(F) -

CLK3(R) - CLK3(F) - CLK1(R) - CLK1(F). This ordering of clock edges makes it easy for

E-TV to detect timing violations, since all delay-limiting clock edges come after the preced

ing time reference, CLK1(R). An exception to this is a clock signal which controls the

pre(dis)charging time of dynamic nodes. Consider a node A which precharges while CLKl is

high. If Node A follows an NMOS pass transistor clocked by CLKl, it belongs to CLKl logic

evaluation section. When CLKl section is verified, CLK1(R) and CLK1(F) are ordered after

CLK1(R). However, the prechargingofNode A is performed before CLK1(R). Therefore, the

clock edges, CLK1(R) and CLK1(F), that limit the precharging of Node A occur before

CLK2(R).

Some timing verifiers [23] treat clock signals in a different way; the user specifies

whether the preceding clock signal is "rising" or "falling" (changing), while setting the

succeeding clock signals at logic "1" or logic "0" (fixed) to separate the logic evaluation sec

tion under verification from the rest of a circuit As an example, when CLKl logic evaluation

section in Figure 5.6(a) is examined, the user sets CLKl at "rising" and CLKl at logic "0".

As CSEI turns on with CLK1(R), an input signal begins to propagate through it When the

signal arrives at CSEI, the propagation stops, because the logic "0" signal tums CSEI off.

Even though this approach is efficient, it has the following weaknesses. First, the approach

may not separate the logic evaluation section for examination from the rest of the circuit in

some cases. In Figure 5.6, CLKl section has only CLK 1-CLK2 logic segment (all CSE's are

active-high). If CSEI includes both active-high and active-low transparent clocked storage
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elements, the CLKl section would also have CLKI-CLK2 logic segment. In this case, the

conditions for CLKl to tum off active-high and active-low transparent clocked storage ele

ments conflict with each other. As a result, the CLKl section can not be separated success

fully from the rest, until the user separates the clock nodes for two types of transparent

clocked storage elements. This is a big burden pn the user.

Another weakness would be that the approach has no clock information for the check of

the timing constraints. Thus, it can not detect the possibility of timing errors. Instead, the

approach reports the worst delay path leading to each succeeding clocked storage elements.

It is the user's responsibility to find the critical paths by considering clock skew, and deter

mine whether they satisfy the given set of timing constraints.

In addition, the user may not obtain the worst delay paths for each logic segment,

because the approach does not distinguish between logic segments. Consider the case where

the CLKl logic evaluation section of Figure 5.6 is being verified. The section consists of

CLK2-CLKS and CLK2-CLKI logic segments. While the two logic segments have the

same preceding time reference, they have different succeeding time references. If the preced

ing time reference for the two segments is tl, the succeeding time references for

CLK2-CLKS and CLK2-CLKI segments are tl and t3, respectively. Since the

CLK2-CLKI segment has more time for the signal propagation through CIA than the

CLK2-CLKS segment does for CL2, the designer may assign larger path delays to CIA. In

the extreme case, any path in CIA may have a larger delay than the worst delay of CL2. In

this case, the approach can report the worst delay paths in CL2 only after reporting all paths

in CIA. Note that the number of worst delay paths or critical paths to be reported by a timing

verifier is finite. Even though the number can be variable, the user may not know a sufficient

number. However, a path A in CL2 may be more critical than a path B in CIA due to the
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shorter evaluation period available, even though it has a smaller delay. Therefore, even

though it is more complex, the better approach is to treat clock signals in the way that E-TV

does.

It has been mentioned that, for a D/I node, the logic evaluation section to which it

belongs needs to be specified. This is described, using a circuit segment shown in Figure 5.7,

where all CSE's are active-high transparent. Assume that a circuit inside the box with dashed

borderline is to be verified. Then, Nodes a and b are described as D/I nodes. Let CL7 and
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Figure 5.7 Clocked Paths with DA Nodes



127

CL2 have the same propagation delay, D. Consider the case that the signal arrivals at Nodes

a and b are represented as Ea and Eb, as shown on a timing chart, without specifying the

logic sections they belong to. There are two paths to reach Node c from outside the box,

Paths A and B. The signal arrival time at Node c through Path A is (tl + D) and the one

through Path B is (t3 + D). Therefore, Path B is selected as the worst delay path leading to

Node c. However, the user may specify that the signal arrives at Node b at Eb', one clock

period before Eb, because it is expected to arrive there once every clock period. In this case,

the signal arrival time at Node c through Path B is (tl + D) and Path A will be chosen as the

worst delay path leading to Node c. This happens because the signal arrival times at D/I

nodes have not been adjusted properly with respect to the succeeding time reference. As a

result, the succeeding time references for two paths are not aligned on the timing chart; i.e.,

t5 constrains Path A, while t4 constrains Path B.

One of the solutions for this seems to be to request the user to specify the signal arrival

times at D/I nodes in the way that the succeeding time references for all paths, that begin at

the D/I nodes and end at the storage elements clocked by the same clock phase, can be the

same. However, it is not only very time consuming but also impossible when paths starting

from the same D/I node end at storage elements clocked by different clock phases. Similar

problems may exist among clocked paths that begin from D/I nodes and that begin from the

clocked storage elements inside the box. Therefore, E-TV asks the user to specify the logic

evaluation sections that D/I nodes belong to so that it can handle all paths consistently

whether they begin from D/I nodes or from clocked storage elements inside the box. When

E-TV verifies CLKi logic evaluation section, it moves the signal arrival times at D/I nodes

that belong to the section to within the first clock cycle after CLKi (R). When the associated

logic evaluation sections are not specified, E-TV excludes paths from such DI nodes to the
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first-encountered clocked storage elements from verification.

When E-TV verifies CLKi section, some MOS transistors inside the section may be

controlled by nodes outside the section. E-TV regards such control signals as readily avail

able before the verification of the section starts. E-TVassumes that they may be logic "0" or

"1" fixed signals and hence both cases are examined.

533. MODELING AND TIMING VERIFICATION OF COMBINATIONAL LOGIC

CIRCUITS

A synchronous system consists of clocked storage elements with combinational logic

between them. Therefore, the timing verification of combinational logic circuits is not much

different from that of the synchronous system. In fact, E-TV considers a combinational logic

circuit as a circuit between clocked storage elements in a synchronous system. The model is

seen in Figure 5.8. In the figure, D/I, D/O, and logic-control (CTRL) nodes are defined as

those in the model of a synchronous system. The signal arrival times can be specified for

each D/7 nodes. Since no clock nodes exist in a combinational logic circuit, only logic-

control nodes impose timing constraints. Unless otherwise specified, the same algorithms

and approaches are used for the verification of the combinational logic circuit and the syn

chronous system.

hi case of a combinational logic circuit, the value-independent rising/falling signals

propagate from D/7 nodes at the times specified by the user. If CTRL nodes are encountered

during the signal propagation, their associated timing constraints are checked as for the syn

chronous system. When all signals arrive at D/O nodes, the verification is completed. Since

there are no clock signals in a combinational circuit, E-TV locates the worst (longest) delay

path leading to each D/O node from D/7 nodes. Then, they are reported from the one with the



129

longest delay. The procedures for the verification of the combinational logic circuit are

presented in Algorithm 5.2. Note that the algorithm is similar to Algorithm 5.1 for the

verification of the synchronous system except that the procedures associated with clock sig

nals are omitted. Therefore, only the algorithm for synchronous system verifications is dis

cussed in this chapter.

5.4. DELAY COMPUTATIONS

During the propagation of rising and falling signals, E-TVcomputes nominal rising and

falling transition times using a typical logic threshold voltage of an inverter, Vu- These

nominal transition times are used to detect the worst delay path (longest delay path) and tim

ing errors in a system. E-TVstores the worst delay rising and falling waveform fragments for

each node. These waveforms are used as input waveforms to the next transistor chains.

Therefore, E-TVcomputes transition times and delays wavefoim-dependently.

The waveform-dependent computation has the following advantages. First, when the

propagation delay through inverting stages is computed, the phase inversion is properly

reflected. As an example, consider a chain of two inverters. Let Ty and To denote the rising

and falling delays of the inverter. Then, the worst-case delay through the chain of two invert

ers is (Tu+Tp). However, suppose that Tu>Tp. If a delay is computed waveform-

independently, the worst-case delay through each inverter is Ty and hence the worst-case

delay through two inverters is (2x7V). However, when the ELogic delay model is used, a ris

ing input pulls the output of the first inverter to ground, which in tum pulls the output of the

second inverter high. Or, a falling input pulls the output of the first inverter high, which in

turn pulls the output of the second inverter low. Therefore, the correct worst-case delay

(Tu+Tp) is obtained in any case.
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[1] Read in circuit and construct a data structure
[2] Find unspecified data-in and data-out nodes
[3] Find secondary logic-control nodes and compute their waveforms
[4] Put all nodes in the system in the topological order
[5] Propagate fixed nodes that are set at logic "1" or "0" by the user
[6] Prune out a part of circuit that is not between primary inputs and outputs

specified by the user
[7] Visit nodes in the topological order
[8] For each node,

[8.a] Extract transistor chains and compute delays using the ELogic delay model
[8.b] Locate the longest delay path leading to the node

[9] Detect timing errors,using actual arrivinglogic-control signals
[10] List the paths of [8.b] from the one with the longest delay, that end at D/O nodes.

Algorithm 5.2 Procedures for The Combinational Logic Verification
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Another advantage of waveform-dependence is that realistic gate voltages of MOS

transistors are used for delay computations. When the logic "1" signal of 5V passes through

an NMOS pass transistor, it becomes a weak logic "1" signal; i.e., the output voltage will be

about one threshold voltage below the gate voltage of the NMOS pass transistor. If NMOS

transistors are controlled by the weak logic "1" rather than the strong logic "1", the propaga

tion delays through them will be longer. Since E-TVuses a realistic waveform obtained from

the preceding transistor chains, it provides realistic propagation delays. An additional advan

tage of waveform-dependence is that it naturally incorporates an input waveform shape and

load conditions into the delay computation. Thus, delays can be computed accurately.

5.5. NODE ORDERING AND LOOP CUTTING

E-TV orders nodes in a given system topologically by carrying out a depth first search.

Loops in the system are broken during the node ordering. The procedures are presented in

Algorithm 5.3, using pidgin C. The key idea of the algorithm is as follows:

(1) During forward steps, if a node all of whose descendent nodes at any depth have been

visited is met, it constitutes a parallel path. Such nodes are marked as FINISHED in

Algorithm 5.3.

(2) During forward steps, if a node such that some of its descendent nodes have been

visited, while some are not, is met, then there exists a loop. Such nodes are marked as

ACTIVE in Algorithm 5.3.

(3) Order nodes in decreasing order as they are postvisited.

In the algorithm, root nodes are nodes whose in-degree is zero, such as ground, power sup

plies, and D/7 nodes.



TopoOrderO /* Topological ordering ofnodes */
{

Order = total number of nodes;

foreach (npi e {set of rootnodes)) {
Visit(npi);

)
}

Visit(np)
{

Mark np ACTIVE;

foreach (fopi e {set of child nodes of np}) {
if (fopi is FINISHED) { /* Parallel path */
)
else if ( fopi is ACTIVE) { /* Loop detected */

/* NOTE 1 */

}
else { /* Not visited yet */

Visitffopi);
}

}

Mask np FINISHED;
Order = Order-1;
Order of np = Order,

}

Algorithm 5.3 Topological Node Ordering and Loop Breaking
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In case of the synchronous system, the topological ordering is performed for the whole

system before a verification begins and for each logic evaluation section during a verification.

The topological order of nodes in the whole system is used for a simple switch-level simula

tion to propagate fixed nodes that the user set at logic "1" or "0" (this is discussed in Section

5.6). During a verification, the topological order of nodes in each logic evaluation section is
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used to visit nodes systematically to locate the worst delay path.

As mentioned in Chapter 3, the static breaking of signal-flow loops blocks forward

paths. Certainly, the number of blocked forward paths depends on the edge removed to break

a loop. Therefore, it is important to choose an edge to remove intelligently. However,

finding an optimal edge which blocks the minimum number of forward paths is NP complete.

E-TVuses simple strategies to reduce the chance of blocking forward paths as follows:

(1) When a signal-flow loop is made of MOS transistor channels only and does not

involve the gate of an MOS transistor, the loop is broken immediately.

(2) When a signal-flow loop involves the gate of an MOS transistor, E-TV traces back up

to the gate of the most recently visited MOS transistor and cuts there.

This algorithm is performed at the place of NOTE1 in Algorithm 5.3. The above two cases

are illustrated in Figures 5.9 and 5.10, where an arrow represents the signal flow through an

MOS transistor. In Figure 5.9, a loop is made of MOS transistor channels only. Therefore,

after traversing M1-M2-M3-M4-M5, E-TVbreaks the loop at A as soon as it detects the loop.

In Figure 5.10, a loop involves the gate of M6. After traversing M1-M2-M3-M4-M6-M7, if

E-TVdetects the loop at Node A, it traces back to the gate of M6 and breaks the loop at Node

C. If the loop is broken at Node A rather than at Node C, all forward paths coming from

Nodes D and E will be blocked. Even though the strategy is simple, it greatly reduces the

chance of blocking forward paths.

5.6. CONSTANT NODE VALUES

Some timing verifiers such as Crystal [23] allow the user to set certain nodes at logic

"0" or "1". Such nodes are called zsfixed nodes. In addition, fixed nodes include nodes with

a fixed voltage supply, ground, or nodes forced to be set by the other fixed nodes. When a
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Figure 5.9 A Loop Made of MOS Transistor Channels Only
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node is set at a fixed value, E-TV considers that the node does not change its value during the

timing verification. If a node is fixed in value, then any MOS transistor whose gate is

attached to that node is forced to be either turned on or turned off, depending on the type of

the transistor and the fixed value. If a transistor is forced off because its gate is fixed, then no

paths involving that transistor are considered. As a result, paths passing through the transis

tor are excluded from timing verification. Therefore, while fixed nodes allow the user to

eliminate unwanted paths from verification, they must be used with consideration. As men

tioned previously, fixed nodes set other nodes at a fixed logic value. For example, if an input

of a NOR gate is fixed at logic "1" value, then its output is fixed at logic "0" value. Thus, E-

TV performs a simple switch-level simulation to check if already fixed nodes cause other

nodes to also be fixed. The user may specify some transistors such as depletion NMOS loads

are weak in their conductance. These transistors are weaker in strength than ordinary transis

tors in determining the logic state of nodes. When a node has two incoming paths with dif

ferent logic signals, a path through a transistor with stronger conductance detennines the

logic state at the node. In the case that the conductance to logic "0" and logic "1" are the

same, which should not happen in a properly described circuit, the node is not fixed. It

should be noted that logic signals at fixed nodes propagate through transistors that are turned

on by already fixed nodes.

E-TV propagates fixed nodes according to the topological ordering of nodes, because it

indicates an order of tasks to be done without reprocessing a particular task. This simple

switch-level simulation is very efficient, but powerful enough to propagate fixed nodes for

the verification of a variety of NMOS and CMOS designs. The weakness of the current

implementation is that it checks the conductance of local transistors only, rather than check

ing the effective conductance of the entire path back to the fixed voltage source node.
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5.7. CLOCKED STORAGE ELEMENTS

Transparent clocked storage elements are classified into positive-active and negative-

active types, while edge-triggered clocked storage elements areclassified into positive edge-

triggered and negative edge-triggered types. Theirassociated timing constraints on clocked

paths with given clock signals have been described in Chapter 2. The clocked storage ele

ments are used as the boundaries of clocked paths and for the derivation of timing con

straints. Therefore, if not all clocked storageelements are found, the verification results will

be incorrect However, as mentioned in Chapter 3, the identification of clocked storage ele

ments and their set-up time computations are someof the difficulties that switch-level timing

verifiers have. Some existing switch-leveltiming verifiers implicitly assume that the clocked

storage element in a MOS design is the pass transistor register type [23,24]. For others, the

discussion on the kinds of clocked storage elements allowed in a design and the way the set

up times are taken into accountare not available in literature [56,57]. This section describes

how E-TVmodels both transparent and edge-triggered clocked storage elements. In the next

section, it is described how E-TV identifies the clocked paths and checks their satisfaction of

timing constraints with the set-up times and clock skew taken into account.

There are two possible approaches to identify clocked storage elements in a design:

(1) The user specifies the clocked storage elements used in the input file.

(2) The program identifiesthe clocked storageelementsused from a circuit description.

The first approach has been used for block or higher level timing verifications. For example,

block-level timing verifiers [22,37] provide the models of clocked storage elements, that are

similar to the models of other functional logic blocks such as logic gates. The user or the

synthesis tool, when used in synthesis loops, is requested to specify the set-up time and the

hold time of the elements. The models of clocked storage elements can be referenced to
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describe a design.

While this approach is easy on a program, it is not practical to use at the switch level,

because clocked storage elements usually consist of many transistors. It is not easy to

describe which transistor belongs to which type of clocked storage element. In addition, sup

pose that the user obtained a transistor-level circuit description from a layout, using a circuit

extractor [101,102,103,104]. Then, it would be very time-consuming for the user to find all

clocked storage elements and identify their type. Furthermore, the user may have to describe

each clocked storage element individually due to different internal parasitic capacitances,

rather than describing them in a fashion similar to referencing subcircuits for a circuit simula

tion. Thus, the second approach was chosen for£-7V.

In order to identify the clocked storage elements used, a program may explore:

(1) a transistor-level circuit description

or

(2) a higher level system description.

When the user designs a system in a top-down fashion within a hierarchical design environ

ment, system descriptions that are higher than transistor level are available. These higher

level descriptions may be inputs to synthesis tools or circuit designers. In any case, the

higher level descriptions are more abstract functional descriptions. Thus, the higher level

description is easier to explore than a transistor-level description to find clocked storage ele

ments. However, this method is applicable only to the top-down hierarchical design metho

dology, where circuit elements are linked between different levels in some way, so that the

information on the clocked storage elements can be transferred to transistor level properly.

When a system is designed in a bottom-up fashion, or when only a transistor-level description

has been obtained without a higher level description, the use of this method is out of the
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question. Since this method is not robust enough for the general use, E-TV explores a

transistor-level description for the identification of clocked storage elements.

There are two possible approaches for a program to find clocked storageelements and

decide their type from a transistor-level description.

(1) Comparing the circuit topology of the elements.

(2) Approximating the element type.

The first approach works as follows. A program has a circuit topology library of all kinds of

clocked storage elements available, along with other infonnation such as their type. After

finding a candidate transistor group for a clocked storage element, the program compares its

topology to those stored in the library. If the circuit topology matches, the candidate is deter

mined to be the clocked storage element with the matched topology. This topology-matching

method is robust. A new design of clocked storage element can be easily added at any time.

However, notice that some types of clocked storage elements, such as a CMOS edge-

triggered D flip-flop, are made of as many as 28 MOS transistors. Therefore, this method

consumes too much CPU time for topology comparison and is not practical.

The second approach works as follows. Any clocked storage element has at least one

transistor clocked by a clock signal, which works as the core of the element. Therefore, it is

possible to treat each clocked transistor as a pass transistor register. Consider the CLKl logic

evaluation section shown in Figure 5.11. Ml and Ml are clocked transistors of the preceding

and the succeeding clocked storage elements. For a verification, a signal starts to propagate

from Node A at CLK1(R) as Ml turns on. If Ml is met during a traversal, it is checked

whether the signal at B settles before CLK1(F) or not This approach is used by the existing

switch-level timing verifiers [23,24]. Even though the method is very fast, it has disadvan

tage. While the method assumes that all clocked transistors are pass transistor registers, they
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CLK1 CLK2

Figure 5.11 CLKl Logic Evaluation Section

may be the NMOS/PMOS drivers of inverting stages. Because a traversal is performed along

the signal flow, there may be paths that do not pass through clocked transistors. Such an

example is shown in Figure 5.12, where a signal propagation must finish while CLKl is high.

The traversal along the signal flow is represented using a dotted line. Thus, some clocked

paths may be excluded from examination.

Another disadvantage concerns the end points of clocked paths. Even though the end

points of the logic section for verification must be the output nodes of the succeeding clocked

storage elements, this method worries about the output terminals of clocked transistors. Tim

ing verifiers employing this method will check whether the output terminals of clocked

transistors settle by a specific timepoint, ratherthan checking if the outputs of the succeeding

clocked storage elements settle. Thus, the verification results and the worst delay of the sec

tion are optimistic. Finally, the method does not distinguish the clocked pass transistors in

dynamic logic gates such as domino logic or NORA logic from those in clocked storage ele

ments. As a result, it has difficulty checking the satisfaction of the timing constraints associ-
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Figure 5.12 A Clocked Path Which Does Not PassThrough A Clocked Transistor

ated with the dynamic logic gates.

To overcome such a disadvantage, E-TV approximates clocked storage elements in a

different way. In E-TV, two basic elements that compose clocked storage elements are

defined: transparent clocked elements and memory elements. A transparent clocked element

latches infonnation during a certain clock phase and a memory element stores the latched

information. There are two kinds of transparent clocked elements: pass transistor registers

and clocked inverting stages. A pass transistorregistermerely provides a path for a signal to

pass with the same polarity during a certain clock phase. A clocked inverting stage is an

inverting stage whose drivers are controlled by clock signals. An example of a clocked

inverting stage is a NAND gate with a clock signal applied to one of its input nodes. During

a certain clock phase, the input signal of a clocked inverting stage is transferred to its output

node with a reversed polarity. Clocked inverting stages eliminate difficulties that arise from
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the fact that any clocked transistor is treated as a pass transistor register. Memory elements,

the other element that composes a clocked storage element, may be a dynamic memory ele

ment as simple as a node capacitance. Or, they may be static memory elements such as

cross-coupled inverters, whose feedback path may or may not be cut by a pass transistor (pass

transistors), and RS latphes. E-TVuses transparent clocked elements and memory elements

as the beginning and ending boundariesof clocked paths to define a logic evaluation section.

The satisfaction of timing constraints associated with these boundaries areexamined.

E-TV assumes that a transparent clocked storage element consists of a transparent

clocked element (or transparent clocked elements) followed by a memory element (or

memory elements), where the number of transparent clocked elements and memory elements

used depends on the kind of the clocked storage element As an example, a transparent D

flip-flop, shown in Figure 5.13, .consists of two transparentclocked inverting stages followed

by one memory element

E-TV assumes that an edge-triggered clocked storage element comprises two levels of

transparent clocked storage elements that are clocked by CLK and CLK. Figure 5.14 illus

trates a negative edge-triggered clocked storage element whose structure is represented as

two levels of transparent storage elements. In the figure, TjCSE is a positive-active tran

sparent clocked storage element such as a NMOS pass transistor register followed by an

inverter. While CLK is high, the firstTjCSE is active and the signal at Node A propagates to

Node B. Let 8 denote the time necessary for Node B to store a signal. Then, a signal at Node

A during 5 before CLK(F) will be stored at Node B at CLK(F). Assume that an inverter

shown to generate CLK is delay free. When the second TjCSE becomes active at CLK(F),

the signal at Node B propagates to Node C. Thus, two TCSE's work as a negative edge-

triggered clocked storage element which samples an input signal at Node A available during 8
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before CLK(F) and changes an outputsignal at Node C at CLK(F). To detect the possibility

of timing errors associated with an edge-triggered element, E-TV applies timing constraints

twice by looking at it as two cascaded transparent clocked storage elements. When examin

ing a clocked path ending at Node C in Figure 5.14, E-TV examines two clocked paths, the

one ending at B and the other from A to C. Because the second one is very short, it almost

always satisfies the timing constraints.

5.8. TIMING VERIFICATION OF LOGIC EVALUATION SECTIONS

As defined in Chapter 2, the set-up and the hold times of clocked storage elements are

sampling intervals that are located before and after an activating clock edge. They are useful

concepts for block-level timing verification, where clocked storage elements are represented

as black boxes. A timing verifier simply checks whether the input signals of clocked storage

elements are kept unchanged during set-up and hold times, whose values are specified by the

user [22,37].

At the switch level, on the other hand, a timing verifier must compute the set-up and the

hold times. The set-up and the hold times are attributed to the difference of the internal

delays of input and clock signals. Thus, they can be computed by locating the paths for those

two signals in a clocked storage element However,a better approach is to compare the clock

arrival and the input signal settling times at appropriate points inside a clocked storage ele

ment directly. This can be described with the help of Figure 5.15. In the figure, CSEI and

CSE2 are transparent type consisting of an NMOS pass transistor register, clocked through

two inverters, and a capacitance. If the block-level approach is employed, a program com

putes the set-up times of CSEI and CSE2 and a delay through CL, Dcl- Then, Equation

(2.2) is used to detect a possible timing error. However, a timing verifier can detect the pos-
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sible timing errors without involving the set-up and the hold times by directly comparing the

transitions at the clock node of pass transistor register and its output node as follows.

Transistor Ml turns on, when a clock signal at an intemal node B rather than B' goes high.

At the same time, a signal starts to propagate from Node A through C, CL and Ml, to Node F.

During this propagation, Af2 is forced to remain on. Then, the transition at Node F is com

pared to the falling transition at an intemal clock node E rather than E', at which Ml actually

turns off. Notice that this direct-comparison approach is more convenient and less error-

prone than the block-level approach for switch-level timing verification. The advantage of

the direct-comparison approach includes the fact that the influence of clock skew is automati

cally taken into account for verification. Since the direct-comparison method uses the actual

arriving clock signals at clocked transparent elements, it is not concerned about clock skew.
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Due to the above reasons, E-TVuses the direct-comparison approach for the detection of pos

sible timing errors.

E-TV defines three core nodes in a clocked storage element for the direct-comparison

approach: Clock_Node, Start_Node, and End_Node. ClockJJode is a clock node of a tran

sparent clocked element It provides two timepoints: a preceding time reference (*/>#) at

which a signal starts to propagate and a succeeding time reference (r$/?) by which the signal

propagation must finish. Start_Node is a node which defines the starting point of clocked

paths, while End_Node is a node which corresponds to the end point of clocked paths. Thus,

Start_Node and End_Node are the preceding and succeeding space references (spr and ssr ),

respectively. Typically, Start_Node is the output node of a transparent clocked element and

End_Node is the output node of a memory element. In E-TV, a clocked path is defined as a

path that begins from the Start_Node of a preceding clocked storage element and ends at the

End_Node of a succeeding clocked storage element. For the clocked path illustrated in Fig

ure 5.15, Clock_Node's areNodes B and E. Start_Node is Node C and EndJ/ode is Node F.

The direct comparison of transition times aremade between Clock_Node and End_Node.

The idea of E-TV for the verification of the synchronous system can be summarized as

follows:

(1) Edge-triggered clocked storage elements are assumed to be two levels of transparent

clocked storage elements, as shown in Figure 5.14.

(2) Transparent clocked storage elements areviewed as a transparent clocked element (or

transparent clocked elements) followed by a memory element (or memory elements), as

shown in Figure 5.13.

(3) Clocked paths are defined as paths between the Start_Node's of preceding clocked

storage elements and the End_Node's of succeeding clocked storage elements.
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(4) Signals start to propagate from Start_Node's, when the transparent clocked elements

of preceding clocked storage elements tum on (become active).

(5) During a signal propagation, the transparent clocked elements of succeeding clocked

storage element must remain active (the clocking delay of the succeeding clocked storage

element must be zero).

(6) The possible timing errors are detected by the direct-comparison of transition times at

the Clock_Node and End_Node of succeedingclocked storage elements. If Equation (5.1)

is satisfied, E-TV detemiines that the clocked path satisfies timing constraints.

tEndJfode ^ tdockjfode (5-1)

where tgnd Node is a transition time at End_Node of succeeding clocked storage element

and tciock Node is a timepoint at which the transparent clocked element of the succeeding

clocked storage element becomes inactive.

In the case that a transparent clocked element is followed by a static memory element,

End_Node is usually the output node of the static memory element after passing through a

feedback loop. However, the speed of signal propagation through the memory element is

very fast. Thus, E-TV approximates the output terminal of transparent clocked element as

End_Node (i.e., Start_Node and End_Node are the same). E-TV finds these three kinds of

nodes by propagating clock signals and identifying whether clocked transistors are pass

transistor registers or they are part of clocked inverting stages. Figures 5.16 and 5.17 illus

trate the true Clock_Node, Start_Node, and End_Node of clocked storage elements that are

commonly used in MOS VLSI designs and their approximations by E-TV. In both figures, an

ME. in a circle represents a dynamic or static memory element The true Clock_Node,

Start_Node, and End_Node are denoted as c, s, and e, while £-7V's approximations are
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denoted as C, S, and E. When there are a number of sets of ClockJJodes, Start_Nodes, and

EndJIodes, they arerepresented by addinga single quotation mark (e.g., C ,C",C", • • • )•

In Figure 5.17, c, s, and e are obtained when the edge-triggered clocked storage element is

treated as one element, while C, S, and E are obtained by partitioning it into two transparent

clocked storage elements.

A node can serve as the End_Node of more than one clocked path as illustrated in Fig

ure 5.18(a) and (b), where a circle represents a combinational logic. A node can serve as the

Start_Node of more than one clocked path as in Figure 5.18(c). Or, combinational logic can

be used more than once per clock cycle. The logic path illustrated in Figure 5.18(d) is used

twice per clock cycle, for the periods of CLK 1-CLK2 and CLK S-CLKA.

E-TV finds each logic evaluation section by traversing a system along signal flows from

the Start_Node's of clocked storage elements whose transparent clocked elements are active

to the End_Node's of clocked storage elements whose transparent elements are inactive dur

ing the given clock phase. When clocked storage elements, whose transparent elements are

active during the clock phase, are encountered during traversing, E-TV continues the traver

sal.

5.9. WORST DELAY PATH AND PREDECESSOR

It is interesting to investigate whether the worst (longest) delay path and the responsible

parent or predecessor can be found for a given transistor block by one simulatioa There are

two cases to consider:

(1) There are multiple paths which lead to the output node of a transistor block. The worst

delay path of the output node and the worst delay parent is sought among the multiple

paths and the source/drain terminals of the last pass transistors on the paths, respectively.
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(2) There is a single path which leads to the output node of a transistor block. The worst

delay parent is sought between the gate and the source/drain terminals of the last pass

transistor on the path.

As an illustration of the first case, consider a circuit fragment shown in Figure 5.19(a),

where four MOS transistors turn on value-independently. There are two paths leading to

Node Output from Node Input. The worst rising delay parent of Node Output is sought

Input

Input

M1 1_ M3
J 1 J L

(a)

G1

I
J L

M1

G2

J_

(b)

__Co

V

Output

Output

Figure 5.19 Examples of Locating The Worst Delay Path and Parent
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between its two fanin nodes, 1 and 1. A simulation can be performed by applying a rising

signalto Node Inputand a power supply Vdd to the gatesof fourMOS transistors. Let To (1)

and TD(2) denote delays from Node Input to Nodes 1 and 2, obtained by the simulation,

respectively. It can be queried: can Node 1 be determined as the worst delay parentof Node

Output, if TD (1) > TD (2)? Assume that Ml and Ml have the same W/L ratio, M3 has a very

large W/L ratio, and M4 has a very small W/L ratio. Since M3 couples Nodes 1 and Output

very strongly, the effective load capacitance at Node / is (C+Co). On the other hand, the

effective load capacitance at Node 2 remains the same as C, because M4 has a very small

W/L ratio. Therefore, a path from Node Input to Node 1 will have a largerdelay than a path

from Node Input to Node 2; i.e., 7b (1) > Tp (2). However, a path from Node 1 to Node Out

put will have a much smaller delay than a path from Node 2 to Node Output. As a result,

even though TD(\) is larger than 7£>(2), the lower path may be the worst delay path leading

to Node Output, depending on the W/L ratios of M3 and M4, and Node 2 may be the true

worst delay parent of Node Output. This observation indicates that the correct worst delay

parentof Node Output can be determined only by simulating both paths leading to Node Out

put individually and comparing their path delays. During the simulation of the upper path,

Ml, CI and M4 must be excluded. Similarly, when the lower path is simulated, Ml, CI and

M3 must be excluded.

For the second case, consider a circuit fragment shown in Figure 5.19(b), where Ml

turns on value-independently. Assume that the rising signals at Nodes Input and Gl are

given. It is going to be determined which node is the worst rising delay parent of Node Out

put, Node 1 or Gl. A simulation can be performed by applying rising signals at Nodes Input

and Gl, and a power supply Vdd to Node Gl. Let the rising transition times at Nodes Gl and

/ be denoted as tci(R) and t\(R). If tai(R) > t\(R), Gl is the worst rising delay parent of
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Node Output. However, if tGi(R) < t\(R), Node 1 cannot be safely determined as the worst

delay parent of Node Output, because t\(R) is affected by Co as well as CI. Thus, the worst

delay parent of Node Output can be determined only by simulating a path consisting of Ml

and CI and by comparing the transition time at Node 1 to tG2(R ).

The above two observations reveal that, unfortunately, the worst delay path and the

worst delay parent (predecessor) of the output node of a given transistor block can not be

found by one simulation, in general.

5.10. DETECTION OF THE WORST DELAY PATH AND PREDECESSOR

As investigated in the previous section, when a node has more than one candidate path

for the worst delay path, delays through the candidate paths must be compared after simulat

ing each path separately. Similarly, when a node has more than one candidate node for the

worst delay parent, transition times at the candidate nodes must be compared after simulating

each path leading to the candidate node. In this section, it is described how E-TV locates the

worst delay path and the worst delay predecessor of a node in a circuit.

5.10.1. TRANSISTOR CHAINS

In order to determine the worst delay path of each node, E-TV extracts linear chains of

transistors leading to the node. Then, it simulates each transistor chain using the ELogic

delay model. When E-TV extracts a transistor chain, it always traces back up to a voltage

source or ground. Even though this approach consumes more CPU time than tracing back by

a fixed number of nodes or to another non voltage-source node, computed delay values are

more accurate. However, long transistor chains are rarely used in practice. In fact, they are

more likely the results of the erroneous assignment of signal flow. Thus, E-TV excludes a
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transistor chain from consideration, if it has more transistors in series than specified by the

user.

Each processed node stores two kinds of information for the extraction and the simula

tion of the next transistor chains: information parent and worst delay parent for rising and

falling transitions. An information parent is the source/drain terminal of the last MOS

transistor on the worst delay path towards some strong information source (power supplies or

ground). Information parents are used to trace back to extract transistor chains for delay

evaluation. The worst delay parentmay be the same as an information parentor it may be the

gate of the last transistor on the worst delay path. The worst delay parent is used to find the

outside worst delay predecessor of a transistorchain, to which E-TV applies the worst delay

waveform stored at the node to evaluate the path delay through the transistor chain. The out

side worst delay predecessor of a transistor chain is the first worst delay parent which is not

the source/drain terminal but the gate of the MOS transistor in the chain during a backward

trace.

How E-TV extracts a transistor chain and how it determines the worst delay path of a

node can be illustrated using Figure 5.20. In the figure, the information parent and the worst

delay parent of processed nodes are represented using dotted lines with letters of / and W,

respectively. Suppose that the worst falling delay path of Node h is sought. Transistor

chains are obtained by tracing back along information parents, beginning from each MOS

transistor through which a signal enters h. Thus, two transistor chains will be extracted. By

tracing back from Af5, the first transistor chain, M5, M4, Ml, and Ml, is obtained. Similarly,

another transistor chain of M10, M8, and M6 is obtained by tracing back from M10. As an

example of finding the outside worst delay predecessor, consider the first transistor chain con

taining M5. Because the node between d and g with the worst delay has not been decided yet,
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the signal arrival times at Nodes d and g are compared first If a signal arrives at Node g

later, the outside worst delay predecessor of the transistor chain is Node g. Or, if a signal

arrives at Node d later, E-TV traces back along the transistorchain to find the first worst delay

parent which is not on the path. Therefore, Node b becomes the outside worst delay prede

cessor. After the outside worst delay predecessor is determined, E-TV assigns an initial con

dition at each node on the path in such a way that only the nodes that come after the outside

worst delay predecessor make a falling transition. It can be illustrated by supposing that
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Node b is the outside worst delay predecessor of the transistor chain. Then, Node a is initial

ized to OV and Nodes c, d, and h are initialized to 5V. During a delay evaluation, E-TV

applies a power supply Vdd to the gates of all transistors except Node b where E-TV applies

the worst delay waveform stored at the node. After computing delays through both transistor

chains, E-TV determines the worst delay path leading to Node h by comparing their path

delays. Suppose that the first transistor chain is the worst delay path of Node h. Then, Node

d becomes the information parent of Node h. If Node g is the outside worst delay predeces

sor of the transistor chain, Node g becomes the worst delay parent of h. Otherwise, Node d

becomes the worst delay parent.

The worst delay parents are also used to trace back to find the worst delay path from

preceding clocked storage elements or data-in nodes. As an example, the worst delay path of

Node h will be b-c -d-h, if d is the worst delay parent of Node h.

5.10.2. CMOS TRANSMISSION GATES

It is known that NMOS pass transistors transfer the logic "0" signal quite well but they

transfer the logic "1" signal poorly. On the other hand, PMOS pass transistors transfer the

logic "1" signal well but they transfer the logic "0" signal poorly. Thus, in a CMOS design,

the pair of NMOS and PMOS pass transistors is used as a transmission gate, where both logic

"0" and "1" signals need to be transmitted. If the pair of NMOS and PMOS pass transistors

are not treated as one transmission gate, the verification results will be very pessimistic. The

reason for this is that when a path is examined for the logic "0", PMOS transistors are chosen

to compose the worst delay path. On the other hand, NMOS transistors are chosen to com

pose the worst delay path for the logic "1" signal. E-TV treats the pair of NMOS and PMOS

pass transistors as one transmission gate. By doing so, the accuracy of verification results is
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significantly improved. For this, when E-TV traces back to extract transistor chains, it finds

NMOS and PMOS pass transistors that are in parallel between two nodes and controlled by

complementary signals.

An NMOS or a PMOS pass transistorhas only two candidate nodes for the worst delay

parent, gate and source/drain terminals. However, as shown in Figure 5.21, a CMOS

transmission gate has three candidate nodes, A, B, and C, for the worst delay parent of D. Let

tran(A) denote the transition time at Node A without the loading effect of Node D. Let

tran(B) and tran(C) denote the times at which Ml and Ml turn on, respectively. Then, there

are six cases to consider:

(1) Case 1
(2) Case 2
(3) Case 3
(4) Case 4

tran(B) < tran(C) < tran(A)
tran(C) < tran(B) < tran(A)
tran(A) < tran(B) < tran(C)
tran(A) < tran(C) < tran(B)

B

r+n
M1

A

L*F

D

^ !3
C *

Figure 5.21 CMOS Transmission Gate
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(5) Case 5 : tran(B) < tran(A) < tran(C)
(6) Case 6 : tran(C) < tran(A) < tran(B)

hi the first two cases, an input signal arrives at Node A after both Ml and Ml tum on. Thus,

Node A is the worst delay parent of Node D. hi Cases 3 and 4, an input signal arrives at Node

A before Ml or Ml turns on. Thus, one of Nodes B and C, whichever turns on later, is the

worst delay parent of Node D. In the last two cases, when an input signal arrives at Node A,

one pass transistor is on and the other is still off. The appropriate worst delay parent in this

case is the node which keeps its pass transistor still off: Node C in Case 5 and Node B in Case

6. Therefore, E-TV determines a candidate node with the latest signal arrival time as the

worst delay parent

. When one of two gate terminals of a CMOS transmission gate is determined to be the

outside worst delay predecessor of a transistor chain, E-TV applies the worst delay waveform

stored at each gate terminal for delay evaluation. Even though the waveforms might have

been computed value-independently, they are usually related closely through one or a few

inverters. The circuit condition which causes the worst delay at one gate terminal is most

likely to cause the worst delay at the other gate terminal. Therefore, it is appropriate to use

the worst delay waveform stored at each gate terminal. When a CMOS transmission gate is

used as a succeeding clocked storage element, E-TV determines that a timing constraint is

violated if the signal atEnd_Node does notsettle before both pass transistors tum off.

5.10.3. AND-OR-INVERTERS

The block diagram of an and-or-inverter is illustrated in Figure 5.22. Both logic "0"

and "1" information sources are reachable from Node out through separate paths. In order to

determine the worst rising delay predecessor of out from Nodes inputs 1 and inputs 1, the fol

lowing two cases need be considered:
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(l).Case 1: Pull-down path opens first. Then, pull-up path closes.

(2) Case 2: Pull-up path closes first Then, pull-down path opens.

In Case 1, pull-down paths are already open, when a pull up begins. Thus, the worst rising

delay predecessor of Node out is one of inputs 2, which closes a pull-up path last In Case 2,

even though pull-up paths are on, Node out cannot be pulled up fully until all pull-down

paths become open. Thus, the worst rising delay predecessor is one of inputs 1, which opens

a pull-down path last However, it should be noted that, in this case, there is a time interval

for which both pull-up and pull-down paths are on. During this interval, a direct path is esta

blished for current to flow from a power supply to ground. Thus, it is reasonable to assume

that this time interval is short enough in practical designs so that an input which closes a

pull-up path last can be regarded as the worst rising delay predecessor. Therefore, in any

case, E-TV determines an input which closes a pull-up path last as the worst rising delay path

of Node out. Similarly, an input which closes a pull-down path last is determined as the
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worst falling delay path of Node out.

When an NMOS depletion load or an "always-on" weak PMOS transistor is used in the

pull-up logic of an and-or-inverter, there are no external inputs to the pull-up logic. In this

case, when all pull-down paths become open, the node voltage at out begins to rise up. Thus,

E-TV determines an input node which opens a pull-down path last as the worst rising delay

predecessor of Node out. The way to determine the predecessor of out for the worst-case

open-operation of pull-down logic has been described in Section 5.2. The rising transition

timepoint of Node out is computed by adding a pull-up delay to the timepoint at which the

worst delay predecessor opens the pull-down path.

5.11. TIMING VERIFICATION OF DYNAMIC CIRCUITS

Precharging is an important technique for the design of combinational logic between

clocked storage element pairs in MOS synchronous systems. Dynamic circuits that employ

the precharging technique are precharged/predischarged modules, domino logic [31], and

NORA logic [32]. Because these circuits provide the significant advantage of faster circuit

operation, area reduction, and power consumption reduction in many applications, they are

quite common in high performance MOS VLSI designs [98,105]. However, the dynamic cir

cuits have tight timing constraints to satisfy, since they make the use of the dynamic charge

storage at nodes. The satisfaction of these timing constraints is difficult to examine properly

at other than switch level. In spite of their importance, unfortunately, the verification of the

dynamic circuits have been neglected by the existing switch-level timing verifiers.

In order to verify dynamic circuits, E-TV identifies them before a timing verification

begins. Then, when they are encountered during the signal propagation to locate the critical

paths, E-TV checks whether or not they satisfy timing constraints. The timing constraints
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associated with dynamic circuits have been described in Chapter 2 in detail. Dynamic cir

cuits with precharging/discharging have precharged or predischarged nodes. Thus, E-TV

locates them by finding all precharged and predischarged nodes that can be identified by

checking the following. A node A which precharges while <j> is low and evaluates while <J> is

high satisfies the following two conditions:

(1) Precharging paths (pull-up paths):

While <j) is low, at least one pull-up path between Node A and a power supply must be

closed to establish a precharging path. While <J> is high, all pull-up paths must be open.

(2) Evaluation paths (pull-down paths):

While <|> is low, all pull-down paths between Node A and ground must be open. While

(j) is high, clocked transistors on the pull-down paths, that tum off while 0 is low, must

tum on to establish evaluation paths.

Predischarged nodes can be found by exchanging the conditions for pull-up and pull

down paths. After finding all precharged and predischarged nodes, E-TV determines the type

of their associated dynamic circuits: precharged/predischarged modules or N/P-type dynamic

logic gates used in domino and NORA logic. This infonnation is used to examine the satis

faction of timing constraints that are described in Section 2.8.

Consider a rising transition at a precharged node. As long as the timing constraints on

input signals are satisfied, the precharged logic "1" signal at the node remains undisturbed.

That is, a logic "1" signal is available as soon as a precharging is done. Thus, only a

precharging path is meaningful for the rising transition at a precharged node. When E-TV

propagates the worst delay rising transition at a precharging node to the following stages, it

propagates a rising transition made through a precharging path only. Similarly, in case of a

predischarged node, only a falling transition through a predischarging path is propagated to
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the next stages.

A precharged module and N/P-type dynamic logic gates have been illustrated in Figures

2.8 and 2.10. Even though a prechargedmodule and an N-type dynamic logic gate are simi

lar in configuration, they can be differentiated by observing the way inputs affect their

precharged node. In case of a precharged module, inputs are applied to the source/drain ter

minals of pass transistors connected to a precharged node. Note that the pass transistors may

be controlled by other than clock signals. In caseof an N-type dynamic logic gate, the inputs

from previous stages are applied only to the gate terminals of MOS transistors in the N-type

logic that composes evaluation paths between its precharged node and ground (refer to Figure

2.10).

When an N/P-type dynamic logic gate has more than one evaluation path (e.g., NOR

gate), all evaluation paths may share one clocked transistor. Or, if it is more convenient for

layout, each evaluation path may have its own clocked transistor. Even though the gates of

these clocked transistors are usually tied to the same clock-node, they may be controlled by

different clock-nodes. In this case, when Equation (2.15) is used to examine the falling tran

sition at the precharged node, <j>;(F) must be the clocksignal which controls each evaluation

path. However, since these clock nodes must be in very close proximity, the clock signal

arrival times at the nodes will be almost the same. Thus, E-TV selects one of the clock nodes

randomly and uses that clock node when applying Equation (2.15). Some dynamic circuits

do not have clocked transistors on their evaluation paths. In this case, E-TV checks whether

the falling (rising) transition at the precharged (predischarged) node finishes before the next

precharging (predischarging) period begins.
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5.12. VERIFICATION OF DESIGN REFERENCES

When transparent clocked storage elements are used, two contiguous single-stage

clocked paths can trade the amount of time available for logic evaluation with each other to

satisfy timing constraints. This is illustrated, usingFigure 5.23. Assume that delays through

CSE's are negligible. If CSE's are positive edge-triggered type, CLl and CLl have following

separate unrelated timing constraints from Equation (2.1):

DCL2^T2

(5.2)

(5.3)

If a delay through CLl is too large to satisfy Equation (5.2), a clock separation Tl must be

increased. Even though Dqli is small, it is of no help for CLl to satisfy the given con

straints. Now, suppose that CSE's are active-high transparent, The timing constraints are,

then, given as follows from Equation (2.4):

CLK1

CLK1

A.
CSE

CLK2

CLK3

CLK2

•MCL1 CSE CL2h^-

K- T1 -H«- T2 -H

|«- -»|«- T4 ~H
T3

Figure 5.23 A Two-Stage Qocked Path

CLK3

CSE
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Dcxi <Tl+r3 (5.4)

DCL2<TS + TA (5.5)

DCLi+DCL2<Tl + TS + TA (5.6)

Equations (5.4) and (5.5) are timing constraints for each single-stage clocked path, while

Equation (5.6) is for a two-stage clocked path. Notice that T3 can be used for the evaluation

of CLl or CLl. If Dcli is small enough, T3 can be used for the evaluation of CLL This

would provide the designer with flexibility in managing the system timing to satisfy con

straints. Note that, however, even when all single-stage clocked paths satisfy timing con

straints, their combined multi-stage clocked paths may not satisfy timing constraints, as

described in Chapter 2. If the designer wish to maintain clocked path delays between pairs of

transparent clocked storage elements in a bumper-to-bumper fashion to use clock separations

maximally, not only is it very risky due to process variations but also the design complexity

is a very big burden. Thus, the designer uses the timing constraints for edge-triggered type as

"design references" for the easy management of the system timing, even though a system

uses transparent clocked storage elements. In other words, assuming CSE's are active-high

transparent, the clocked paths of Figure 5.23 are designed to satisfy Equations (5.2) and (5.3)

instead of Equations (5.4), (5.5) and (5.6). By using this design reference method, if all

single-stage clocked paths satisfy the timing constraints, multistage clocked paths satisfy tim

ing constraints automatically. Thus, if the longest path delay in each single-stage logic seg

ment satisfies Equation (2.1), the whole system satisfies timing constraints. This design-

reference method is used for E-TV to detect the possible timing errors of multistage clocked

paths; when transparent clocked storage elements are used, E-TV checks if each logic seg

ment satisfies the design reference rather than examining all multistage clocked paths indivi

dually.
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CHAPTER 6

PERFORMANCE EVALUATION OF E-TV

Two microprocessor designs have been studied extensively to evaluate the performance

of E-TV: CMOS SOAR and SPUR. CMOS Smalltalk On A Rise (SOAR) [98] is a 32 bit

ReducedInstruction Set Computer (RISC), designed at the University of California, Berkeley,

using a 3 micron CMOS technology to execute the Smalltalk-80 programming language

efficiently. Symbolic Processing Using RISC's (SPUR) [105] is a bus-oriented shared

memory 32 bit multiprocessor under development at the University of California, Berkeley.

Each workstation accommodates up to 12 processors, providing an aggregate performance of

over 50 MIPS. These circuits were chosen because they use different design techniques (both

dynamic and static logic), use state-of-the-art CMOS technologies, are large circuits, have

been fabricated and do work, and, perhaps most importantly, were available in an understand

able format and the designers were available for consultation.

In addition to path analysis, in this chapter, two other issues - the performance of the

ELogic method and the accuracy of the MOS model used in the E-TV program - are dis

cussed.

6.1. THE E-TV MOS MODEL

The present implementation of the E-TV program uses the Shichman-Hodges equations

[92] to model MOS transistors, although any MOS companion model could be used in its

place. The equations are used as the MOS1 dc model of the SPICE program [5]. While the

SPICE MOS2 dc model [106,107] models additional first- and second-order effects such as
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surface field dependent mobility more accurately, it is computationally less efficient. As

mentioned in Chapter 4, ELogic is a generalization of multi-state logic-level analysis (e.g.

[7,22,66,8]) and circuit-level analysis which provides a less-precise analysis result to

improve the performance for digital MOS circuits (e.g. [67,68,69,70,71]). Thus, analysis

speed is one of the E-TV's important features and the computation efficiency of the MOS

model affects the performance. In addition, if well characterized and experimentally deter

mined dc parameters are used, analysis accuracy using the MOSl dc model is adequate for

most MOS digital circuit design [29]. Therefore, the MOSl dc model has been implemented

in the present E-TV program. The experimental results which illustrate that the MOSl-DC

model has adequate accuracy for the timing verification of MOS digital circuits are presented

later. Note that if a more accurate MOS dc model is necessary, it is straightforward to

replace the MOSl-DC model used in E-TV with a MOS2 implementation.

One of the popular MOS gate capacitance models is the piecewise linear voltage-

dependent capacitance model proposed by Meyer [110] and recently improved by Sakallah et

al. [111]. This model is used in the SPICE program. The present implementation of E-TV

does not have a built-in gate capacitance model for MOS transistors and the user is required

to approximate the gate capacitance by constant grounded capacitors (linear charge-voltage

relationship). An experiment has been carried out to compare the performance of the con

stant grounded capacitor model (LGC model) to that of the Meyer gate capacitance model for

delay computations. The experimental results showed that the LGC model is accurate

enough to be used for timing verification. The LGC model and the experimental results are

also presented in detail in this chapter.
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62. PATH ANALYSIS AND THE ELOGIC METHOD

In order to evaluate the performance of the path analysis section of E-TV and the

analysis method employed in the ELogic delay model, E-TV was used to extract the critical

paths of the test circuits. The delays through the critical paths were then estimated by SPICE

using the same MOS dc model (MOSl dc model) and the delays estimated by the two pro

grams were compared.

The ELogic delay model provides trade offs between accuracy and analysis speed by

changing the voltage step-size. To illustrate this, E-TVwas used to analyze test circuits using

four different voltage step-sizes: 0.1V, 0.25V, 0.5V, and IV. All CPU times presented are

for a VAX 8800 running Ultrix1. E-TV reports asmany critical paths in each logic segment

as requested by the user, using the worst-case evaluation-time margin. Among them, SPICE

[5] was used to analyze the most critical path of each logic segment for comparison. Since

SPICE was used to analyze the extracted critical path only, its CPU times are not presented.

For the test circuits, only MOS2 model parameters were available. Thus, MOSl dc

model parameters for the SOAR and SPUR circuits were obtained as follows. There are five

device parameters in the MOSl model [106,107] : VTO (zero-bias threshold voltage), KP

(transconductance parameter), GAMMA (bulk threshold parameter), PHI (surface potential)

and LAMBDA (channel-length modulation). Among them, all parameters except KP were

used without adjustment KP was determined by matching the dc transfer curve of an

inverter made of NMOS and PMOS transistors with the most typical channel length and

width for the circuit (usually the smallest device available in the technology). The current

value flowing through the inverter was matched as the input voltage changed for the MOSl

and MOS2 models. The value of the model parameters used for the test circuits and the

1VAX andUltrix are trademarks of Digital Equipment Corporation.
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details of the method that determined KP of MOSl are presented in Appendices 1 and 2,

respectively. The SPICE inputs of the critical paths of the test circuits are included in

Appendix 3. Copies of all software and the netlist of the test circuits are included as Appen

dix^

Sometimes, critical paths may be identical (contain the same circuit blocks) except for

very minor differences near the ends. Such paths are called as siblings. When there are

sibling critical paths in different logic segments, their path delays are almost the same, how

ever, the succeeding time references are quite different. Thus, in this case, only the most crit

ical path has been analyzed for comparison.

The first test circuit is the ALU of the SOAR microprocessor. The circuit uses domino

logic [31] and precharged busses. A 1-bit circuit is illustrated in Figure 5.24. The logic

evaluation performed by the circuit begins as $3 goes high and must finish before $3 goes

low. The circuit contains 1,692 MOS transistors and 1,067 nodes. E-TV visited 408 and 871

nodes in order to locate the worst rising and falling delay paths, respectively. The numbers

of transistorchains E-TVextracted to evaluate the rising and falling delays are566 and 1,195,

respectively. During a verification, the select-signals (XOR, SUM, PASS, AND, and OR

nodes) were set at 5V so that all paths passing through the pass transistors controlled by those

signals could be examined. Note that select-signals can be described as logic-control

(CTRL) signals. In this case, E-TV also checks whether or not the signal at the output termi

nal of a pass transistor controlled by a select-signal settles before the pass transistor turns off.

If a signal arrives earlierat an input terminal, the propagation is held until the pass transistor

turns on. The worst case is when an LSB generated cany propagates to the MSB. The

verification results are shown in Tables 5.1 and 5.2. Table 5.1 compares the analysis speed

and the memory usage of E-TV for different voltage steps. The critical-path delays estimated
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->-

Figure 5.24 One Bit of SOAR ALU

by E-TV and SPICE are compared in Table. 5.2. The tables illustrate the speed-accuracy

trade-off of E-TV. That is, the delay error of E-TV decreases and the CPU time increases, as

the voltage step-size gets smaller. This accuracy-speed trade-off can be obtained not only

over analyses but also in the same analysis for the different parts of a circuit. From Table

5.2, it is clear that the ELogic method used in E-TV is accurate enough for practical use

(delay error less than 7.4% compared to SPICE MOSl), if a voltage step of 0.5V or smaller is
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used for this circuit design style.

The second test circuit is the SOAR circuit, excluding the ALU. The circuit contains

34,410 MOS transistors and 12,769 nodes. The numbers of nodes E-TV visited to locate the

worst rising and falling delay paths are47,226 and49,717, respectively. E-TVcomputed the

rising and the falling delays of 80,446 and 84,907 transistor chains, respectively. The

verification results are presented in Tables 5.3 and 5.4. For this example, the delay errorof

E-TV is less than 13%, when a voltage step-size is not largerthan 0.5V.

The first test circuit from the SPUR microprocessor is a NuBus interface controller

[108] which is used in the cache controller [109]. The circuit is designed using a Programm

able Logic Array (PLA) [25,28], whose input registers to the AND plane are active when (J>1

is high, and whose output registers of the OR plane are active when <|>2 is high. The circuit

contains 740 MOS transistors and 231 nodes. E-TV located the worst rising and falling delay

paths of 227 nodes, and computed the rising and the falling delays of 227 and 555 transistor

chains, respectively. The analysis results are presented in Tables 5.5 and 5.6. For this exam

ple, the delay error of E-TV is less than 11% when compared to SPICE MOSl and when the

voltage step is 0.5V or smaller.

The next test circuit is an on-chip instruction cache (OIC) controller in SPUR, which

has 1,205 MOS transistors and 404 nodes. The circuit contains four PLAs, which are con

nected as shown in Figure 5.25. The registers for the PLAs are pass transistor registers or

precharged modules. Thus, for example, paths that end at $1 registers may be constrained by

<j>l(fl) or 01(F). E-TV located the worst rising delay paths of 505 nodes and the worst falling

delay paths of 532 nodes. And, the rising delays of 558 transistor chains and the falling

delays of 1,615 transistor chains were evaluated by E-TV. The verification results are

presented in Tables 5.7 and 5.8. Notice that E-TV identifies all logic segments and examines



Voltage step

IV 0.5V 0.25V 0.1V

CPU time (sec) 37.1 60.6 96.3 219.9

Memory (M byte) 1.2 1.4 1.8 3.1

Table 5.1 CPU time and Memory Usage Comparisons of E-TV on The SOAR ALU

E-TV
SPICE

(MOSl)
Voltage step

IV 0.5V 0.25V 0.1V

(J)3(/?H>3(F)seg. 77.6ns 69.3ns 67.5ns 66.9ns 64.5ns

Table 5.2 Critical Path Delay Estimates Comparison on The SOAR ALU
Using E-TV and SPICE

Voltage step

IV 0.5V 0.25V 0.1V

CPU time (sec) 8754 9823 11541 19842

Memory (M byte) 21 26 36 64

Table 5.3 CPU time and Memory Usage Comparisons of E-TV on The SOAR

E-TV
SPICE

(MOSl)
Voltage step

IV 0.5V 0.25V 0.1V

<j>3(/?H>3(F)seg. 155.5ns 123.0ns 143.0ns 129.3ns 126.7ns

<|>3(flH>l(/Oseg. Sibling of §S(R)-tyS(F) seg.

4)3(7? H>KF)seg. Sibling of $S(R )-<t>3(F) seg.

d>2(/?H>3(F)seg. 44.9ns 42.5ns 43.1ns 41.78ns 38.4ns

<l>l(/?H>l(F)seg. 178.8ns 156.9ns 166.8ns 166.0ns 167.0ns

Table 5.4 Critical Path Delay Estimates Comparison on The SOAR
Using E-TV and SPICE
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Voltage step

IV 0.5V 0.25V 0.1V

CPU time (sec) 6.2 9.6 18.3 39.1

Memory (M byte) 0.4 0.5 0.6 0.9

Table 5.5 CPU time and Memory Usage Comparisons of E-TV
on The NuBus Interface Controller

E-TV
SPICE

(MOSl)
Voltage step

IV 0.5V 0.25V 0.1V

<|>l(/?H>2(F)seg. 6.88ns 6.58ns 6.49ns 6.42ns 5.92ns
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Table 5.6 Critical Path Delay Estimate Comparison on The NuBus Interface Controller
Using E-TV and SPICE

K-phi4

Figure 5.25 On-Chip Instmction Cache Controller in SPUR



Voltage step

IV 0.5V 0.25V 0.1V

CPU time (sec) 13.7 19.4 31.7 69.8

Memory (M byte) 0.6 0.7 0.8 1.4

Table 5.7 CPU time and Memory Usage Comparisons of E-TV
on The OIC Controller

E-TV
SPICE

(MOSl)
Voltage step

IV 0.5V 0.25V 0.1V

<H(tfH>l(*)seg. 4.50ns 4.51ns 4.39ns 4.32ns 4.18ns

<H(/?H>l(F)seg. 7.60ns 6.51ns 6.42ns 6.30ns 5.91ns

<J>3(*H>4(/Oseg. 5.37ns 5.07ns 4.97ns 4.94ns 4.70ns

<|>3(tfH>4(F)seg. 7.51ns 7.29ns 7.11ns 6.99ns 6.53ns

(J)3(/?H)2(F)seg. 4.18ns 3.97ns 3.88ns 3.83ns 3.80ns

<J>2(/?H>4(/Oseg. 6.51ns 6.38ns 6.12ns 6.04ns 5.78ns

<|>2(/?H>4(F)seg. 9.35ns 9.95ns 9.77ns 9.59ns 9.09ns

(J)2(/?H>3(/?)seg. 6.35ns 6.21ns 5.95ns 5.93ns 5.73ns

<|>2(tfH>3(F)seg. 7.75ns 8.05ns 7.69ns 7.65ns 7.08ns

<|>2(/?H)l(/?)seg. 5.07ns 4.80ns 4.73ns 4.70ns 4.79ns

d>2(/?H)l(F)seg. 6.91ns 7.41ns 7.17ns 7.01ns 6.60ns

01(/?H>4(/?)seg. 5.86ns 5.78ns 5.74ns 5.74ns 5.62ns

<|>l(KH>4(F)seg. 7.24ns 7.66ns 7.57ns 7.51ns 7.14ns

<|>l(/?H>3(K)seg. 6.00ns 5.92ns 5.89ns 5.88ns 5.69ns

<|)l(/?H)3(F)seg. 7.43ns 8.04ns 7.70ns 7.69ns 7.20ns

(|)l(/?H>2(/?)seg. 5.14ns 5.05ns 5.00ns 4.99ns 4.96ns

(|)l(/?H)2(F)seg. 6.02ns 5.84ns 5.76ns 5.73ns 5.64ns

Table 5.8 Critical Path Delay Estimates Comparison on The OIC Controller
Using E-TV and SPICE
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them separately. For this circuit, when the voltage step does not exceed 0.5 V, the delay error

of E-TV is typically less than 10% compared to SPICE MOSl, again an acceptable error in

most cases.

The last test circuit is the SPUR ALU which was designed using the domino logic

structure [31]. The circuit contains 4,286 MOS transistors and 2,258 nodes. E-TV visited

1,264 and 2,689 nodes to locate their worst rising and falling delay paths, respectively, and it

evaluated the rising and the falling delays of 1,844 and 3,512 transistor chains, respectively.

The results are shown in Tables 5.9 and 5.10. In this example, the delay estimates of E-TV

are accurate to within 7.1% for all four voltage steps compared to SPICE MOSl.

From the experimental results, I have shown that E-TVverifies multiphase systems suc

cessfully, including those employing dynamic circuits. It has also been shown that the ELo

gic method analyzes a given circuit with good accuracy (typically less than 10% delay error

when compared to SPICE using the same MOS dc model) with a voltage step which is not

larger than 0.5V over a wide range of circuit design styles (both dynamic and static logic) and

in a state-of-art CMOS technology. The analysis speed was shown to be fast enough for

practical use.

63. EVALUATION OF THE E-TV MOS MODEL

In this section, the accuracy of the E-TV MOS model is evaluated using the SPICE pro

gram and it is shown that the MOSl-DC and LGC models introduced earlier have adequate

accuracy to be used for the timing verification of most MOS digital systems. The SPICE

MOS2 dc model and the Meyer capacitance model were used for comparison under the

assumption that they are accurate enough to be used as references. The experiments have

been performed in the following order, using the critical paths of the test circuits:



Voltage step

IV 0.5V 0.25V 0.1V

CPU time (sec) 78.6 112.0 179.9 387.0

Memory (M byte) 2.6 3.1 4.0 6.7

Table 5.9 CPU time and Memory Usage Comparisons ofE-TV on The SPUR ALU

E-TV
SPICE

(MOS1)
Voltage step

IV 0.5V 0.25V 0.1V

<|>3(/?H>3(F)seg. 13.45ns 12.83ns 12.57ns 12.44ns 12.56ns

<J)3(/?H)4(/?)seg. Sibling of 4>3(rt )-$3(F) seg.

4>3(/?H>4(F)seg. Sibling of 4>3(flHt>3(F) seg.

<|>2(tfH>3(tf)seg. 10.56ns 10.12ns 10.05ns 9.98ns 9.98ns

<|>2(/?H>3(F)seg. Sibling of <|>2(# H>3(K ) seg.

<|>2(/?H>4(/*)seg. 9.16ns 8.76ns 8.69ns 8.63ns 8.62ns

<|>2(/?H>4(F)seg. Sibling of$2(R y§4(R) seg.

Table 5.10 Critical Path Delay Estimates Comparison on The SPUR ALU
Using E-TV and SPICE
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(1) Determine the value of KP for the MOS 1-DC model from the given MOS2 parameters.

(2) Compare the accuracy of the MOSl-DC model and the MOS2 dc model by comparing

their delay estimates for the critical-path of the test circuits.

(3) Compare the accuracy of the E-TV gate capacitancemodel (LGC model) and the Meyer

gate capacitance model by comparing their delay estimates for the critical-path of the

test circuits.

(4) Evaluate the aggregate effect of the E-TV MOS model (MOSl-DC and LGC models)

compared to the MOS2 dc and Meyer capacitance models.
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63.1. DETERMINATION OF THE MOSl DC MODEL PARAMETERS

As mentioned before, it is necessary to determine KP from the given MOS2 parameters

to use the MOSl model. The effective value of KP for the MOSl model depends on the

dimension of MOS transistors. Thus, it is desirable to determine the value of KP for each

different-sized MOS transistor so that MOS transistors with different dimension (channel

length or width) can refer to a different model card. However, while the value of KP is very

sensitive to the channel length of MOS transistors for short devices, it is less sensitive to the

channel width. Therefore, KP was determined for each different channel length using the

average channel width for devices of that length for the accuracy comparison of the MOS

models.

The value of KP was determined according to the following steps:

Step 1: Determine KP by matching the DC characteristic of the MOS transistors as close

as possible for each different channel length using inverters as described in Sec

tion 6.2 (see Appendix 2).

Step 2: Under the actual operating condition, the output of the inverter is not able to

switch as fast as its input. Thus, KP was adjusted once more to match the delays

through a 10-inverter chain with lOOfF load at each node for the MOSl and

MOS2 models.

In Step 1, the values of KP for NMOS and PMOS transistors were adjusted separately, while

they were scaled by the same constant in Step 2 to match the inverter chain delays. The

typical-sized transistors of the test circuits and their values of KP, obtained by Steps 1 and 2,

are presented in Table 5.11.



Test

Qrcuit

MOS

Type
W/L(u.)

KP(u)
Stepl Step 2

SOAR

NMOS

PMOS

5/3
5/3

21.9

4.21

20.99

4.06

NMOS

PMOS 5/7
19.0

3.95

19.63

4.08

SPUR

NMOS

PMOS

11/1.6
6.4/1.6

40.8

14.5

36.0

12.78

NMOS

PMOS

11/2.4
6.4/2.4

41.6

14.8

37.6

13.39

NMOS

PMOS

11/3.2
6.4/3.2

41.6

14.8

38.6

13.75

Table 5.11 Effective Values of KP for The MOS 1 Model for Test Circuits
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632, THE E-TV MOS DC MODEL

In this section, the accuracy of the MOSl-DC model is compared to the MOS2 dc

model. First, SPICE computed the delays through the criticalpaths presented in Section6.2

using the MOSl-DC model with the KP as determined in Section 6.3.1 and it computed the

delays again using the MOS2 dc model. Then the delays were compared. In order to com

pare the dc models only, capacitance parameters such as CGDO, CGSO, CGBO, CJ and

CJSW were set at zero. Note that the gate capacitancecan not be excluded for delay compu

tations when the MOS2 model is used. If TOX (oxide thickness) is not specified, it is

assumed to be lOOOnm. On the other hand, if TOX is set to large value to reduce the gate

capacitance, the surface mobility is affected. Thus, the Meyer model was used for both

MOSl and MOS2 models. The delays of the"critical paths using the two MOS models are

compared from Tables 5.12 to 5.16. The tables illustrate that the delay error of the MOSl-

DC model was less than 10% for more than half of the critical paths and it was 18% at worst

for the test circuits, compared to the MOS2 dc model. Note that it was not necessary to



Critical

Path

Path Delay Error of MOSl-DC

compared to MOS2 dcMOSl-DC MOS2dc

<|>3(KH>3(F)seg. 104.48n 88.4n 18.7%

Table 5.12 Delay Estimate Comparisonon The Critical PathofThe SOAR ALU
Using MOSl-DC and MOS2 dc Models

Critical

Path

Path Delay Error of MOSl-DC

compared to MOS2 dc

Qock

skewMOSl-DC MOS2 dc

(|>3(/?H>3(F)seg.
<|>2(flH>3(F)seg.
<j>l(*H>l(F)seg.

145. In

45.87n

215.7n

131.2n

41.97n

190.3n

10.5%

9.3%

13.3%

2.3n

1.43n

7.7n

178

Table 5.13 Delay Estimates Comparison on The Critical Paths of The SOAR Circuit
Using MOSl-DC and MOS2 dc Models

Critical

Path

Path Delay Error of MOSl-DC

compared to MOS2 dcMOSl-DC MOS2dc

<Dl(/?>-<t)2(F)seg. 7.016ns 7.206ns -2.6%

Table 5.14 Delay Estimate Comparisonon The Critical PathofThe NuBus Interface
in The SPUR Circuit Using MOSl-DC and MOS2 dc Models



Critical

Path

Path Delay Error of MOSl-DC

compared to MOS2 dcMOSl-DC. M0S2dc

<H(/*H>l(*)seg. 4.974ns 4.904ns 1.4%

<H(*H>KF)seg. 7.011ns 6.970ns 0.6%

<j>3(/?H>4(/Oseg. 5.547ns 5.571ns -0.4%

<|)3(/?H>4(F)seg. 7.703ns 7.728ns -0.3%

<|)3(/?H)2(F)seg. 4.594ns 4.412ns 4.1%

<J>2(/?H>4(/Oseg. 6.765ns 6.798ns -0.5%

<|)2(/?H>4(F)seg. 10.81ns 10.90ns -0.8%

(|)2(/?H>3(/?)seg. 6.775ns 7.420ns -8.7%

<j>2(*H>3(F)seg. 8.566ns 8.578ns -0.1%

<t>2(/?H>l(fl)seg. 5.692ns 6.068ns -6.2%

<|>2(tfH>l(F)seg. 7.811ns 7.777ns 0.4%

<|>l(/?H>4(fl)seg. 6.619ns 7.138ns -7.3%

<j>l(*H>4(F)seg. 8.445ns 8.953ns -5.7%

<|>l(flH>3(fl)seg. 6.737ns 7.276ns -7.4%

(|>l(/?H)3(F)seg. 8.537ns 9.060ns -5.8%

<j>l(flH>2(fl)seg. 5.899ns 6.340ns -7.0%

<|>l(tfH>2(F)seg. 6.757ns 7.127ns -5.2%
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Table 5.15 Delay Estimates Comparison on The Critical PathsofThe OIC Controller
in The SPUR Circuit Using MOSl-DC and MOS2 dc Models

Critical

Path

Path Delay Error of MOSl-DC

compared to MOS2 dcMOSl-DC MOS2dc

<|>3(flH>3(F)seg.
<j)2(/?H)3(/?)seg.
(|)2(/?>-<H(^)seg.

15.79ns

12.53ns

10.76ns

14.07ns

11.18ns

9.458ns

12.2%

12.1%

13.8%

Table 5.16 Delay EstimatesComparison on The Critical PathsofThe SPUR ALU Circuit
Using MOSl-DC and MOS2 dc Models
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"tune" the model parameters to the circuit to obtain this delay error. Existing switch-level

delay models usually require extensive tuning of the parameters to a given circuit and to a

given process during the circuit design to obtain usable accuracy, but even after that process

they still suffer from poor accuracy as pointed out in Chapter 4. The E-TV delay error can be

reduced further, if desired, by determining KP for each different channel width as well as

each different channel length, or by adapting the MOSl-DC model to include more sophisti

cated geometric modeling. However, this was not done in E-TV since the error obtained with

the efficient MOSl-DC model is small enough for practical purposes.

633. THE E-TV GATE CAPACITANCE MODEL

Figure 5.26 illustrates the nonlinear capacitances associated with MOS transistors,

whose values vary with the node voltages at G, D, S andB which represent gate, drain, source

and bulk terminals respectively. Figure 5.27 illustrates the LGC model that E-TV uses. The

model assumes that the bulk terminal is connected to a constantvoltage source. The user is

required to specify the capacitances shown in the figure, where the capacitances are given as

follows:

Cg=Kgate xWx(Coxx(L-2xLD )+CGDO + CGSO ) (5.7.a)

Cd =Kgate xWxCGDO +Keqdx(Cj xAD +Cjsw xPD) (5.7.b)

Cs =Kgate xW xCGSO + Keqs x(Cj xAS + Cjsw xPS) (5.7.c)

where

Kgate
W(L)
LD

Cox

CGDO (CGSO)
Cj (Cjsw)
AS (PS)

parameter to obtain equivalent linear gate capacitance
channel width Gength) of a transistor
lateral diffusion

gate capacitance per unit area
gate-drain(gate-source)overlap capacitance
junction bottom (sidewall) capacitance
source area (perimeter)



Cgd Cdb
TL Cj(d)

G ©• i <» o B

HI—_
Cgs ^f- Cj(s)

Cgb

Csb

Figure 5.26 Nonlinear Capacitances Associated With MOS Transistors

G ° r-

eg -1-
I

D?

=b Cd

IE—°B

=±= Cs

Figure 5.27 The Gate Capacitance Model E-TV Uses
(The Constant Grounded Capacitance (LGQ Model)
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AD(PD) drain area (perimeter)
Keqd(Keqs) : parameter to obtain equivalent linear junction capacitance
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The suggested value ofKgate is 1.3, as is derived from the experimentalresultsbelow.

The purpose of the experiment described in this section is to determine the value of

Kgate by which the LGC model of Figure 5.27 can approximate the Meyer gate capacitance

model best in terms of path delays, and to evaluate how good the resulting approximation is.

The effect of junction capacitances on path delays is usually negligible compared to other

capacitances. Thus, Equations (5.7.a), (5.7.b) and (5.7.c) can be rewritten as follows:

Cg =Kgate xWx(Coxx(L -IxlD ) + CGDO +CGSO ) (5.8.a)

Cd = Kgate xW xCGDO (5.8.b)

Cs = Kgate x W x CGSO (5.8.c)

If the junction capacitances are not negligible for path delays, the suggested value of Keqd

and Keqs for non-ground terminals whose node voltage switches between OV and 5V is 0.54

from [29]. For the experiment, the MOSl DC model was used to compare the LGC and

Meyer models because if the MOS2 model is used the gate capacitance can not be excluded

from SPICE simulation. Since the oxide thickness of the SOAR and SPUR circuits are 50nm

and 25nm, the corresponding values of Cox are 0.69fF/u,2 and 1.38/u2 respectively, and the

constant grounded capacitances were computed using Equations (5.8.a) to (5.8.c). Tables

5.17 to 5.21 compare the delays through the critical paths, which were computed using the

Meyer model and the LGC model with five different values of Kgate. The numbers in

parentheses are the delay errors of the LGC model compared to the Meyer model. In the

table, "Avg Abs Err" is the average of the absolute error, "Max Err" is the maximum error

and "Min Err" is the minimum error, when Kgate of the corresponding column was used.

From the tables, it is clear that 1.3 is the best choice as the value of Kgate. For the critical
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Critical

Path

Meyer

Model

LGC Model

Kgate

1.0 1.1 . 1.2 1.3 1.4

<|>3(KH>3(F)seg. 151.6n 137.1n

(-9.6%)
141.8n

(-6.5%)
146.4n

(-3.4%)
150.8n

(-0.5%)
155.2n

(2.4%)

Table 5.17 Delay Estimate Comparison on The Critical Path ofThe SOAR ALU
Using The Meyer and LGC Models

Critical

Path

Meyer

Model

LGC Model

Kgate

1.0 1.1 1.2 1.3 1.4

<|>3(flH>3(F)seg. 167.7n 162.2n 164.8n 169.5n 171.3n 173.6n

(-3.3%) (-1.7%) (1.1%) (2.1%) (3.5%)

<j>2(*H>3(F)seg. 53.4n 51.5n 52.3n 53.1n 54.0n 54.8n

(-3.6%) (-2.0%) (-0.6%) (1.1%) (2.6%)

(|>l(flH>l(F)seg. 270.6n 251.1n 257.8n 262.9n 269.2n 273.0n

(-7.2%) (-4.7%) (-2.8%) (-0.5%) (0.9%)

Avg Abs
Err 4.7% 2.8% 1.5% 1.2% 2.3%

Max Err -7.2% -4.7% -2.8% 2.1% 3.5%

MinErr -3.3% -1.7% -0.6% -0.5% 0.9%

Table 5.18 DelayEstimates Comparison on The Critical Paths ofThe SOAR circuits
Using The Meyer and LGC Models

Critical

Path

Meyer

Model

LGC Model

Kgate

1.0 1.1 1.2 1.3 1.4

<j>l(/?H>2(F)seg. 7.26n 7.1n

(-2.2%)

7.153n

(-1.5%)

7.2n

(-0.8%)

7.26n

(0%)

7.31n

(0.7%)

Table 5.19 DelayEstimate Comparison on The Critical Path of NuBus interface
in The SPUR Circuit Using The Meyer and LGC Models



Critical

Path

<H(/?H>l(K)seg.

<H(*H>l(F)seg.

<}>3(/*H>4(tf)seg.

<|)3(/?H)4(F)seg.

<|>3(/?H>2(F)seg.

<|>2(/?H)4(/?)seg.

<t>2(/?H>4(F)seg.

<t>2(/?H>3(/?)seg.

<J)2(/?H)3(F)seg.

(j>2(flH>l(/?)seg.

(|)2(/?H)l(F)seg.

(|)l(/?H>4(/?)seg.

<|>1(K HH(F) seg.

<j>l(i?H>3(/?)seg.

<|>l(/?H>3(F)seg.

<|>l(/?H)2(/?)seg.

<J>l(/*H>2(F)seg.

Avg Abs
Err

Max Err

MinErr

Meyer

Model

5.19n

7.28n

5.75n

8.01n

4.79n

7.00n

11.22n

6.99n

8.84n

5.92n

8.09n

6.84n

8.71n

6.94n

8.77n

6.1 In

7.08n

1.0

5.16n
(-0.6%)
7.09n

(-2.6%)

5.67n
(-1.4%)
7.89n

(-1.5%)
4.68n

(-2.3%)

6.96n
(-0.6%)
10.90n

(-2.9%)
6.78n

8.68n
(-1.8%)
5.73n

(-3.2%)

7.90n

(-2.3%)

6.60n

(-3.5%)
8.32n

(-4.5%)

6.73n

(-3.0%)
8.45n

(-3.6%)
5.88n

(-3.8%)

6.81n

(-3,8%)

2.6%

-4.5%
-0.6%

1.1

5.21n
(0.4%)
7.14n

(-1.9%)

5.72n
(-0.5%)
7.97n

(-0.5%)
4.72n

(-1.5%)
7.02n

(0.3%)
10.99n

(-2.0%)
6.81n

(-2.6%)
8.75n

(-1.0%)
5.77n

(-2.5%)

7.96n

(-1.6%)
6.64n

(-2.9%)
8.36n

(-4.0%)

6.77n
(-2.4%)

8.48n

(-3.3%)
5.92n

(-3.1%)

6.87n

(-3.0%)

2.(

-4.0%
0.3%

LGC Model

Kgate
1.2

5.27n
(1.5%)
7.20n

(-1.1%)

5.77n

(0.3%)
8.02n

(0.1%)
4.77n

(-0.4%)

7.07n

(1.0%)
11.07n

(-1.3%)
6.84n

(-2.1%)

8.81n
(-0.3%)

5.8n

(-2.0%)

8.03n

(-0.7%)
6.67n

(-2.5%)
8.39n

(-3.6%)

6.80n
(-2.0%)
8.52n

(-2.8%)
5.95n

(-2.6%)

6.91n

(-2.4%)

1.6%

-3.6%
0.1%

1.3

5.32n

(2.5%)
7.26n

(-0.3%)

5.81n

(1.0%)
8.10n

(1.1%)
4.81n
(0.4%)

7.13n

(1.9%)
11.15n

(-0.6%)
6.87n

(-1.7%)

8.88n

(0.5%)
5.83n

(-1.5%)

8.09n
(0.0%)
6.70n

(-2.0%)
8.43n

(-3.2%)

6.83n

(-1.6%)
8.55n

(-2.1%)
5.98n

(-2.1%)

6.97n

(-1,6%)

1.4%

-3.2%

0.0%
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1.4

5.37n

(3.5%)
7.32n

(0.5%)

5.86n
(1.9%)
8.16n

(1.9%)
4.85n

(1.3%)
7.19n

(2.7%)
11.24n

(0.2%)
6.90n

(-1.3%)

8.95n
(1.2%)
5.86n

(-1.0%)

8.15n

(0.7%)

6.73n
(-1.6%)
8.46n

(-2.9%)
6.86n

(-1.2%)
8.59n

(-1.6%)
6.01n

(-1.6%)

7.02n

(-0,8%)

1.6%

3.5%

0.5%

Table 5.20 Delay Estimates Comparison on The Critical Paths ofThe OIC Controller
in The SPUR Circuit Using The Meyer and LGC Models
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paths of the test circuits, the delay error of the LGC model using the Kgate of 1.3 was less

than 3.2% compared to the Meyer model. Thus, I conclude that the LGC model is accurate

enough to be used for timing verification.

63A. THE AGGREGATE ACCURACY OF THE E-TV MOS DC AND LGC

MODELS

The accuracy of the E-TV MOS dc (MOSl-DQ and LGC models was evaluated in Sec

tions 6.3.2 and 6.3.3 separately. In this section, the aggregate effect of the MOSl-DC and

LGC models is presented. The delays through the critical paths of the test circuits were com

puted by SPICE; first using the MOS2 dc and Meyer capacitance models and then using the

MOSl-DC and LGC (Kgatewas set at 1.3) models. The results are compared in Tables 5.22

to 5.26. In the tables, the numbers in parentheses are the delay errors of the MOSl-DC and

LGC models compared to the MOS2 dc and Meyer capacitance models.

As seen in Tables 5.22 and 5.23, the delay error using the MOSl-DC and LGC models

was 10%to 12% for the critical paths of the SOARcircuit, comparedto the MOS2 dc model

with the Meyer capacitance model. From Tables 5.24 and 5.25, when the MOSl-DC and

LGC models were used to compute the delays through the critical paths of the NuBus inter

face and the OIC controller of the SPUR circuit, the delay error ranged from -9% to 4%, com

pared to using the MOS2 dc and Meyer models. From Table5.26, the MOSl-DC and LGC

modelsoverestimated the delays through the criticalpathsof the SPUR ALU by 12%to 17%,

compared to the MOS2 dc and Meyercapacitance models. Therefore, for the test circuits,

when the MOSl-DC and LGC models were used, the absolute delay error for critical paths

was less than 17% compared to the MOS2 model using the Meyercapacitance model. Since

much of the delay error comes from the MOS dc model rather than from the LGC model, as
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Critical

Path

Meyer

Model

LGC Model

Kgate

1.0 1.1 1.2 1.3 1.4

$3(KH>3(F)seg. 16.73n 16.25n 16.47n 16.67n 16.87n 17.08n

(-2.9%) (-1.6%) (-0.4%) (0.8%) (2.1%)

<t>2(/?H>3(fl)seg. 13.09n 13.04n 13.19n 13.35n 13.50n 13.66n

(-0.4%) (0.8%) (2.0%) (3.1%) (4.3%)

<j>2(/?H>4(/?)seg. 11.22n 11.19n 11.32n 11.45n 11.57n 11.70n

(-0.3%) (0.9%) (2.0%) (3.1%) (4.3%)

Avg Abs
En- 1.2% 1.1% 1.47% 2.3% 3.6%

Max Err -2.9% -1.6% 2.0% 3.1% 4.3%

Min En- -0.3% 0.8% -0.4% 0.8% 2.1%

Table 5.21 Delay Estimates Comparison on The Critical Paths ofThe SPUR ALU
Using The Meyer and LGC Models

Critical

Path

MOS2dc&

Meyer
MOSl-DC &

LGC (Kgate=\3)
<|>3(/?H>3(F)seg. 136.0n 150.8n" (10.9%)

Table 5.22 Delay Estimate Comparison on The Critical Path ofThe SOAR ALU
Using The MOS2 dc and Meyer Models, andThe MOSl-DC and LGC Models

Critical

Path

MOS2 dc &

Meyer
MOSl-DC &

LGC (Kgate=\3)
<l>3(/?H>3(F)seg. 152.9n 171.3n (12%)

<|>2(flH>3(F)seg. 48.6n 54.0n (11.1%)

<|>l(/?H>l(F)seg. 241.9n 269.2n (11.3%)

Table 5.23 Delay Estimates Comparison on The Critical Paths ofThe SOAR circuit
Using The MOS2 dc and Meyer Models, andThe MOSl-DC and LGC Models



Critical

Path

M0S2dc&

Meyer
MOSl-DC &

LGC (Kgate=l3)

<J>l(tfH>2(F)seg. 7.46n 7.26n (-2.7%)
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Table 5.24 Delay Estimate Comparison on The Critical Path ofThe SPUR NuBus interface
Using The MOS2 dc and Meyer Models, and The MOSl-DC and LGC Models

Critical

Path

<H(/Q-<t>l(/Oseg.

4>4(/0-<l>l(F)seg.

(D3(/?)H>4(/Oseg.

d>3(/g HH(F) seg.
4>3(flH>2(F)seg.

02(/Q-<H(/?)seg.

<D2(/Q-<l>4(F)seg.

d)2(/?)-4)3(/?)seg.

<t»2(/?H>3(F)seg.

4)2(/g)H>l(/?)seg.
<t>2(/Q-<|>l(F)seg.

<t)l(/?)-<i)4(/?)seg.

»!(/? )-hH(F) seg.

4)1(7? H)3(fl) seg.

<Dl(/?)H>3(F)seg.

d)l(/?)^)2(/g)seg.

<t>l(/?)-4>2(F)seg.

MOS2dc&

Meyer

5.14n

7.16n

5.79n

8.05n

4.62n

7.04n

11.32n

7.66n

8.87n

6.3n

8.08n

7.36n

9.23n

7.49n

9.3n

6.58n

7.46n

MOSl-DC &

LGC (Kf>ate=1.3)

5.32n (3.5%)

7.26n (1.4%)

5.81n (0.3%)

8.10n (0.6%)

4.81n (4.1%)

7.13n (1.3%)

11.15n (-1.5%)

6.87n (-10.3%)

8.88n (0.1%)

5.83n (-7.5%)

8.09n (0.1%)

6.70n (-9.0%)

8.43n (-8.7%)

6.86n (-8.4%)

8.55n (-8.1%)

5.98n (-9.1%)

6.97n (-6.6%)

Table5.25 Delay Estimates Comparison onThe Critical Paths of The SPUR OIC Controller
Using The MOS2 dc andMeyer Models, andThe MOSl-DC and LGC Models

Critical

Path

MOS2dc&

Meyer
MOSl-DC &

LGC (Kgate=l3)

<J>3(/?H»3(F)seg. 14.94n 16.87n (12.9%)

<|>2(flH>3(/Oseg. 11.74n 13.50n (15.0%)

(|>2(/?H>4(K)seg. 9.91n 11.57n (16.7%)

Table 5.26 Delay Estimates Comparisonon The Critical PathsofThe SPUR ALU
Using The MOS2 dc and Meyer Models, andThe MOSl-DC and LGC Models
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shown in Sections 6.3.2 and 6.3.3, the delay error is expected to reduce by tuning the parame

ters such as KP and VTO for different channel widths as well as for different channel lengths

and using design experience.

63.5. CONCLUSIONS

The purpose of using timing verifiers is to find problematic signal paths in a digital sys

tem due to path delays that are either too long or too short, and which the designer has

difficulty finding because of the complexity of the circuit under analysis. That is, rather than

being used as a substitute for a circuit analysis program such as SPICE [5] or ASTAP [6] or

for a logic simulator such as LOGIS [9] or ILOGS [10], a timing verifier is used to detect the

possibility of timing errors and to locate the associated paths in a digital system so that those

suspected signal paths can be analyzed in more detail using accurate circuit-level analysis

programs. Therefore, while the MOS model to be used by timing verifiers must be accurate

enough to locate the problematic sigal paths, it does not require the same accuracy as the

model used by circuit analysis programs. Instead, the MOS model for timing verifiers should

be fast enough to examine the millions of paths in the system in a reasonable amount of CPU

time, while accurate enough to identify the critical paths correctly. Note that, in general, a

MOS model becomes less efficient as it becomes more accurate and vice versa. Therefore, it

is important to choose the proper compromise between accuracy and efficiency.

As described in Chapter 4, there are two kinds accuracy associated with delay models to

consider for timing verification: absolute accuracyand relative accuracy. The absolute meas

ure represents the accuracy of the delay estimates by a delay model compared to the true

delay values (as determined by SPICE, for example), while the relative accuracy represents

the ability of the delay model to determine the slower and faster paths relative to one another.
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Thus, if a delay model has good absolute accuracy, it also has good relative accuracy while

the opposite is not true. In order that a timing verifier may detect a possible timing error, the

delay model needs good absolute accuracy, while the delay model only needs good relative

accuracy to order signal paths in terms of relative delay.

• The existing switch-level RC delay models are very efficient, but they have very poor

absolute accuracy. The parameters for the RC delay models are usually obtained by estimat

ing the delays through a small set of static gates using the delay models and SPICE, and then

matching the estimated delays by adjusting some coarse, circuit-specific parameters. It is the

SPUR designers' experience that when those parameters are adjusted optimally, the typical

delay error of the timing verifiers using the RC delay models (e.g., [23,24]) is about 30 %

for paths made of static gate chains only, about 100 % for typical signal paths made of static

gates and pass transistor chains, and much greater(up to 300 % to 400 % in the worst case)

for pass transistor chains [112], when compared to the delays estimated by SPICE. Certainly,

this large delay erroris not acceptable for a delay model to be used for the detection of the

possibility of timing errors. Even though, as with any otherdelay model, the error of such

RC delay models can be reduced by adjusting parameters repeatedly afterdelay comparisons

with the SPICE program on a circuit-specific basis (the delay estimates by the RC delay

models presented in Chapter 4 were obtained after very careful parameter tuning to achieve

the best results by comparing them to the SPICE estimates), it is not meaningful to use such

an approach because the user already has the SPICE delay estimates to begin with! On the

other hand, it has been illustrated that the maximum delay error of the E-TV MOS model

(MOSl-DC and LGC models) was only 17% for the critical paths of the test circuits without

repeated tuning of MOS parameters, whencompared to the MOS2 dc and Meyercapacitance

models. Thus, I conclude that the E-TV MOS model has sufficient accuracy to detect the pos-
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sible timing errors in systems of the types described in this dissertation. For some timing

verifier applications (e.g., locating the slowest paths), the delay model may only need good

relative accuracy. However, as illustrated in Chapter 4, the RC delay models do not have

good relative accuracy either. They could not list signal paths in the SOAR circuit in the

correct relative delay order and hence failed to locate the slowest path. On the other hand,

the ELogic delay model located the path successfully. To conclude, the MOSl-DC and LGC

models have far superior accuracy compared to those of the RC delay models used in existing

timing verifiers. While the MOS2 dc and Meyer models might provide more accurate delay

estimates, they are computationally much less efficient than the MOSl-DC and LGC models

and do not provide better relative timing estimates. For these reasons, the MOSl-DC and

LGC models are provided in the E-TV program.



191

CHAPTER 7

CONCLUSIONS

Timing verification programs arevery important CAD tools for improving the operating

speed, reducing the silicon area and power consumption, and detecting the possibility of tim

ing errors in a digital system. Even though simulation can be used to analyze a circuit for the

same purposes, the necessary work is exponential in the number of input nodes. Hence tim

ing verification, which carries out only one analysis (or a small number of analyses) and pro

vides the same or more information for the improvement or correction of the design much

more quickly, is used in preference.

This dissertation summarized the timing constraints which synchronous systems must

satisfy to operate properly, including those for specific design styles using precharging and

predischarging as well as those for signal paths between pairs of clocked storage elements.

Algorithms for the verification of a synchronous system which uses both edge-triggered and

transparentclocked storage elements in the same design have been presented.

Timing verifiers are available at switch level, block level, and behavioral level. Among

them, switch-level timing verifiers are the most appropriate for MOS designs. Unfortunately,

the existing switch-level delay models suffer from poor accuracy. This dissertation presented

the ELogic delay model which is not only accurate but also fast enough for practical use.

The numerical properties of the ELogic algorithm such as stability and accuracy have been

investigated. Since the voltage change a node can make is bounded, the algorithm has proven

to remain in a stable region when solving a linear RC test circuit. The ELogic algorithm can

also be used for simulation.
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E-TV is an accurate timing verifier developed for MOS designs and uses the ELogic

delay model. It detects the possibility of timing errors and locates the critical paths in syn

chronous and combinational MOS digital systems. E-TV allows the designer to use both tran

sparent and edge-triggered clocked storageelements in the same synchronous system.

Since E-TV traverses a circuit in the topological order of nodes, its running time is

almost linear with circuit size. Like some other switch-level timing verifiers [24,57], E-TV

uses a rule-based approach to derive transistor signal flow. An approach and a set of rules

developed for E-TV were presented. By using the idea of biconnected transistor groups, the

chance of the signal-flow assignment has been improved. A novel loop-breaking algorithm

which is simple but greatly reduces the number of blocked forward paths was presented. An

efficient switch-level simulation algorithm using topological order of nodes is used to pro

pagate fixed nodes in E-TV.

E-TV approximates the clocked storage element using two types of element: clocked

transparent element and memory element. This approacheliminates problems that arise from

treating any clocked storage element as a pass transistor register, as other switch-level timing

verifiers do. By comparing the transitions at internal nodes of clocked storage elements

directly, E-TV does not need to compute setup times, and clock skew is taken into account for

the detection of time errors automatically.

The experimental results indicate that E-TV can verify multiphase systems successfully,

including dynamic circuits such as precharged modules, domino, and NORA logic. E-TV

with 0.5V step required about 2.7 hours on a VAX 8800 to verify a large system with 34,410

MOS transistors. The current implementation of the E-TV program uses the MOSl DC and

linear grounded capacitance models for MOS transistors. When the voltage step is equal to

or smaller than 0.5V, the delay error of E-TV was typically less than 10% (as the voltage step
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gets smaller, so does the delay error), compared to SPICE using the same MOS DC model.

Thus, the ELogic analysis method was shown to be not only efficient but also accurate

enough for timing verification. When compared to the SPICE2 DC and Meyer gate capaci

tance models, the E-TV MOS model were accurate with less than 17% of delay error for the

critical paths of test circuits, and hence has sufficient accuracy to be used for timing

verificatioa Existing switch-level timing verifiers use RC delay models. Note that, while

they are efficient, they are not sufficiently accurate. On other hand, while the MOS2 DC and

Meyer models are more accurate, they are not efficient enough to examine the uncountable

paths in a design.

Future work to be done remains in following areas. First, it is worthwhile to apply the

concept of "slacks" for MOS source/drainchannels to provide the user with a measure of the

severity of the timing problem.

Second, the interface of E-TV to the design data base such as OCT [113,114] will pro

vide many benefits. OCT is a CAD/VLSI data representation system which offers an inter

face for storing information about the various aspects of an evolving chip design. Some

benefits for using such a data base includes the following. Because the higher level circuit

information is available, easy solutions may be found for some problems such as identifying

clocked storage elements. The program can also be enhanced to be more user-friendly. For

example, the program may highlight the worst delay path on a layout using a graphic editor

such as VEM [113,115] so that the designers can locate it easily. Another possible benefit is

that the program can be easily used for the optimization of a design by logic synthesis tools

that use the same data base.

One final area of future work is due to the fact E-TV may occasionally report unrealistic

worst delay paths. This is a generic limitation of all timing verifiers using the value-
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independent approach. As mentioned in Chapter 3, therehavebeen some attempts [42,43] to

identify such false paths automatically. However, they are not efficient enough for practical

use, and do not take the effea of the propagation delay into account properly in determining

whether a particularpath is sensitizable. Developing an efficient algorithm or method which

can locate these false paths and exclude them from consideration is still one of the "open"

research areas in timing verification.
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APPENDIX 1

MOS MODEL PARAMETERS

This appendix contains MOS model parameters that were used for E-TV and SPICE to

analyze the test circuits described in Section 5.13.

[1] MOS model parameters used for the analysis of the SOAR circuit

[1.1] MOSl parameters for E-TV and SPICE

* MOSl parameters for SOAR
* Obtained from MOS2. kp was adjusted to match dc characteristic,
.model nmos nmos vto=0.93 kp=21.8e-6 gamma=0.834 phi=0.695
+ lambda=0.025 ld=0.24u

.model pmos pmos vto=-0.844 kp=4.45e-6 gamma=0.723 phi=0.514
+ lambda=0.0527 ld=0.51u

[1.2] MOS2 parameters for SPICE

* MOS2 parameters for SOAR
.model nmos nmos(level=2 tox=50n nsub=10el5 vto=0.93 xj=0.45u
+ ld=0.24ujs=1.24e-4pb=0.80uo=381 ucrit=99e4 uexp=0.001
+ utra=0lambda=0.025 cgbo=4.0e-10 tpg=l
+ cgdo=5.2e-10 cgso=5.2e-10 cj=3.2e-4 cjsw=9.0e-10
+ vmax=5.5e4 neff==1.0e-2 rsh=25 delta=1.47 nfs=3.73el 1)
.model pmos pmos0evel=2 tox=50n nsub=2.97el4 vto=-0.844 xj=0.0258u
+ ld=0.51u js=7.75e-5 pb=0.88 uo=100 ucrit=18500 uexp=0.145
+ gamma=0.723 lambda=0.0527 cgbo=4.0e-10 tpg=-l
+ cgdo=4.0e-10 cgso=4.0e-10 cj=2.0e-4 cjsw=4.0e-10
+ vmax=10e4 neff=.01 rsh=95 delta=2.19 nfs=1.62el2)



[2] MOS model parameters used for the analysis of the SPUR circuit.

[2.1] MOSl parameters for£-7V and SPICE

* MOSl parameters for SPUR
* Obtained from MOS2. kp was adjusted to match dc characteristic,
.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.771 ld=0.2u
.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045
+ phi=0.735 ld=0.05u

[2.2] MOS2 parameters for SPICE

* MOS2 parameters for SPUR.
.model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
+ tox=25n nsub=4el6 tpg=+l xj=.25u ld=.20u uexp=.16 vmax=5.5e4
+ js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p
** phi F = -0.3855862 -> phi=0.771
*

.model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
+ tox=25n nsub=2.0el6 tpg=-l xj=.20u ld=.05u uexp=.15 vmax=9.0e4
+ js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p
** phi F = 0.3675644 -> phi=0.735

206



207

APPENDIX 2

MOSl MODEL PARAMETER ADJUSTMENT

Model parameters for the SOAR and SPUR circuits were available for the MOS2 model

only. Among the five device parameters of the MOSl model [106,107] (VTO, KP, GAMMA,

PHI and LAMBDA), all parameters except KP were used without adjustment. In this appen

dix, the method which is used to determine the value of KP for the MOSl model from MOS2

model parameters is described. Since the process for SOAR and SPUR is different, their KP

was determined separately. A key idea of the method is to adjust the value of KP of MOSl

to match the dc transfer curve of an inverter shown in Figure A2.1 and to match the value of

current flowing through the inverter to the input change, as much as possible using the MOSl

and MOS2 models. Since the value of KP to be determined for MOSl depends on the

transistor size used, the average channel length and width of transistors in a circuit was used.

The transistor sizes used are illustrated in Table A2.1 The dc transfer curve and the value of

current (/) are compared for both circuits in Figures A2.2, A2.3, A2.4 and A2.5, using the

model parameters presented in Appendix 1.
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Vin

+5V

rHLM1

—ILM2
+

Vout

Figure A2.1 An Inverter Used To Determine The Values of KP of

The MOSl Model From MOS2 Model Parameters

SOAR SPUR

Ml 14um/4.4pm lljim/1.6|im

M2 10|im/3jxm 6.4um/1.6uin

Table A2.1 The Size ofTransistors (W/L) Used To Determine The Values of

KP ofThe MOSl Model From MOS2 Model Parameters
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Figure A2.2 DC Transfer Curve ofThe Inverter in Figure A2.1

Using The MOSl and MOS2 Models for SOAR
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Figure A2.3 Current Through The Inverter Shown in Figure A2.1

Using The MOSl and MOS2 Models for SOAR
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Figure A2.4 DC Transfer Curve ofThe Inverter in Figure A2.1

Using The MOSl and MOS2 Models for SPUR
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Figure A2.5 Current Through The Inverter Shown in Figure A2.1

Using The MOSl and MOS2 Models for SPUR

210



211

APPENDIX 3

SPICE INPUT DATA

FOR THE CRITICAL PATHS OF EXAMPLE CIRCUITS

This appendix contains the input data used by SPICE for the analysisof the SOAR and

SPUR examples ofChapter 6.
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cl76815 0 67ff

cl7701110 63ff

cl77415 0 61ff

cl782 108 0 122ff

cl784 842 072ff

cl802 860078ff

cl805147 079ff

cl80915 062ff

cl81U5 0 63ff

cl81515 0 67ff

cl82U5 0 61ff

C1829 864 0122ff

cl831201072ff

cl849 222 078ff

cl852 888 079ff

cl85615 0 62ff

cl858 15 0 63ff

cl86215 067ff

cl868 15 0 61ff

cl876 215 0122ff

cl878 947 070ff

cl897 967 079ff

cl900257 079ff

C1904 15 0 62ff

cl90615 0 63ff

cl91015 0 66ff

cl91615 061ff

cl9251016 0 89ff

cl926 303 072ff

cl933 15 050ff

cl948 326 078ff

cl95215 0 62ff

C1954 15 0 67ff

C1962 388 0 122ff

cl972 408 079ff

C1975 15 0 63ff

C1978 15 0 61ff

cl985 412 072ff

cl996445 077ff

cl99915 062ff

c200U5 0 67ff

c2009 5000158ff

c2032 520 079ff

c203515 0 63ff

c2038 15 0 61ff

c2045 572 072ff

c2056 597 0 78ff

C2059 15 0 62ff

c206U5 0 67ff
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C2069 656 0 122fT

c2079 674 079ff

C2082 15 0 63ff

c208515 0 61ff

c2092 678 072ff
*

m590 15 450nmos w = 4ul=3u

m4145 40 44 0 nmos w = 4u 1 = 3u

v4040 0dc5

mllO44 98 68 0nmos w = 4u 1 = 3u

v98 980dc5

m68 68 63 670nmos w = 4u 1 = 3u

v63 63 0dc5

m25167 113 1110nmosw = 4ul = 3u

vll31130dc5

ml61 1 111 128 lpmosw = 7ul = 3u
ml52 0 128 127 0 nmos w = 7u 1 = 3u

ml51127 19 108 0 nmos w = 7u 1 = 3u

vl919 0dc5

ml95 144 108 1 1 pmos w = 7ul = 3u
m207 148 144 147 0 nmos w = 4u 1 = 3u

m301 205 147 11 pmos w = 7u 1= 3u
m285 201 205 196 0 nmos w = 4u 1 = 3u

m343 235 201 1 1 pmos w = 7u 1= 3u
m355 237 235 222 0 nmos w = 4u 1 = 3u

m323 223 222 1 1 pmos w = 7u 1= 3u
m425 215 223 286 0 nmos w = 4u 1 = 3u

m487 323 215 1 1 pmos w = 7u 1= 3u
m499 259 323 257 0 nmos w = 4u 1 = 3u

m467 311 257 1 1 pmos w = 7u 1= 3u
m451 303 311 295 0 nmos w = 4u 1 = 3u

m511 335 303 1 1 pmos w = 7u 1= 3u
m523 337 335 326 0 nmos w = 4u 1 = 3u

m616 392 326 1 1 pmos w = 7u 1= 3u
m596 388 392 383 0 nmos w = 4u 1 = 3u

m659 423 388 1 1 pmos w = 7u 1= 3u
m671425 423 408 0 nmos w = 4u 1 = 3u

m639 409 408 1 1 pmos w = 7u 1= 3u
m749 412 409 478 0 nmos w = 4u 1 = 3u

m808 441412 1 1 pmos w = 7u 1= 3u
m697 446 441 445 0 nmos w = 4u 1 = 3u

m788 507 445 1 1 pmos w = 7u 1= 3u
m768 500 507 495 0 nmos w = 4u 1 = 3u

m929 521 500 1 1 pmos w = 7u 1= 3u
m815 522 521 520 0 nmos w = 4u 1 = 3u

m909 579 520 1 1 pmos w = 7u 1= 3u
m893 572 579 567 0 nmos w = 4u 1 = 3u

m955 606 572 1 1 pmos w = 7u 1= 3u
m967 608 606 597 0 nmos w = 4u 1 = 3u
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ml059 659 5971 1pmosw = 7u1= 3u
ml039 656 659 653 0 nmos w = 4u 1= 3u

ml096 688 656 1 1pmosw = 7u1= 3u
ml108 690 688 674 0 nmos w = 4u 1= 3u

ml076675 674 1 1pmosw = 7u1= 3u
ml185 678 675 740 0 nmos w = 4u 1= 3u

ml242703 678 1 1pmos w = 7u1= 3u
ml131 708 703 707 0 nmos w = 4u 1= 3u

ml222769 707 1 1pmosw = 7u1= 3u
ml202 762 769 757 0 nmos w = 4u 1= 3u

ml259788 762 1 1pmosw = 7u1= 3u
ml271 790 788 778 0 nmos w = 4u 1= 3u

ml360 846 778 1 1pmosw = 7u1= 3u
ml344 842 846 837 0 nmos w = 4u 1= 3u

ml404 876 842 1 1pmosw = 7u1= 3u
ml416 878 876 860 0 nmos w = 4u 1= 3u

ml384861 860 1 1pmos w = 7u1= 3u
ml487 864 861 925 0 nmos w = 4u 1= 3u

ml544 889 864 1 1pmosw = 7u1= 3u
ml434 890 889 888 0 nmos w = 4u 1= 3u

ml524954 888 11pmosw = 7u1= 3u
ml508 947 954 942 0 nmos w = 4u 1= 3u

ml565976 947 11pmosw = 7u1= 3u
ml577 978 976 967 0 nmos w = 4u 1= 3u

ml656 1019 967 1 1pmosw = 7u1= 3u
ml637 1016 1019 1011 0 nmos w = 4u 1= 3u

.ic v(1016)=5 v(1019)=0 v(967)=5 v(976)=0 v(947)=5 v(954)=0

.ic v(888)=5 v(889)=0 v(864)=5 v(861)=0 v(860)=5 v(876)=0

.ic v(842)=5 v(846)=0 v(778)=5 v(788)=0 v(762)=5 v(769)=0

.ic v(707)=5 v(703)=0 v(678)=5 v(675)=0 v(674)=5 v(688)=0

.ic v(656)=5 v(659)=0 v(597)=5 v(606)=0 v(572)=5 v(579)=0

.ic v(520)=5 v(521)=0 v(500)=5 v(507)=0 v(445)=5 v(441)=0

.ic v(412)=5 v(409)=0 v(408)=5 v(423)=0 v(388)=5 v(392)=0

.ic v(326)=5 v(335)=0 v(303)=5 v(311)=0 v(257)=5 v(323)=0

.ic v(215)=5 v(223)=0 v(222)=5 v(235)=0 v(201)=5 v(205)=0

.ic v(147)=5 v(144)=0 v(108)=5 v(127)=5 v(128)=0 v(lll)=5

.icv(67)=5 v(68)=5 v(44)=5 v(45)=5 v(15)=0
*

* evaluation logic ofn-type dynamic logic gates
mal48 148 100148 101148 0 nmos w = 4u 1 = 3u

vl48 100148 Ode 5

cl48 148 0 Iff

.icv(148)=5
C101148 101148 0 Iff

.icv(101148)=5
mbl48 101148 15 0 0 nmos w = 4u 1 = 3u

mal96 196 100196 101196 0 nmos w = 4u 1 = 3u

vl96 100196 Ode 5

cl96 196 0 Iff
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.icv(196)=5
C101196 101196 0 Iff

.icv(101196)=5
mbl96 101196 15 0 0 nmos w = 4u 1 = 3u

ma237 237 100237 101237 0 nmos w = 4u 1 = 3u

v237 100237 Ode 5

c237 237 0 Iff

.icv(237)=5
C101237 101237 0 Iff

.icv(101237)=5
mb237 101237 15 0 0 nmos w = 4u 1 = 3u

ma286 286 100286 101286 0 nmos w = 4u 1 = 3u

v286 100286 Ode 5

c286 286 0 Iff

.icv(286)=5
C101286 101286 0 Iff

.icv(101286)=5
mb286 101286 15 0 0 nmos w = 4u 1 = 3u

ma259 259 100259 101259 0 nmos w = 4u 1 = 3u

v259 100259 Ode 5

c259 259 0 Iff

.icv(259)=5
C101259 101259 0 Iff

.icv(101259)=5
mb259 101259 15 0 0 nmos w = 4u 1 = 3u

ma295 295 100295 101295 0 nmos w = 4u 1 = 3u

v295 100295 Ode 5

c295 295 0 Iff

.icv(295)=5
C101295 101295 0 Iff

.icv(101295)=5
mb295 101295 15 0 0 nmos w = 4u 1 = 3u

ma337 337 100337 101337 0 nmos w = 4u 1 = 3u

v337 100337 Ode 5

c337 337 0 Iff

.icv(337)=5
C101337 101337 0 Iff

.icv(101337)=5
mb337 101337 15 0 0 nmos w = 4u 1 = 3u

ma383 383 100383 101383 0 nmos w = 4u 1 = 3u

v383 100383 Ode 5

c383 383 0 Iff

.icv(383)=5
C101383 101383 0 Iff

.icv(101383)=5
mb383 101383 15 0 0 nmos w = 4u 1= 3u

ma425 425 100425 101425 0 nmos w = 4u 1= 3u

v425 100425 0 dc 5

c425 425 0 Iff
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.icv(425)=5
C101425 101425 0 Iff

.icv(101425)=5
mb425 101425 15 0 0 nmos w = 4u 1 = 3u

ma478 478 100478 101478 0 nmos w = 4u 1 = 3u

v478 100478 Ode 5

c478 478 0 Iff

.icv(478)=5
C101478 101478 0 Iff

.icv(101478)=5
mb478 101478 15 0 0 nmos w = 4u 1 = 3u

ma446 446 100446 101446 0 nmos w = 4u 1 = 3u

v446 100446 Ode 5

c446 446 0 Iff

.icv(446)=5
C101446 101446 0 Iff

.icv(101446)=5
mb446 101446 15 0 0 nmos w = 4u 1 = 3u

ma495 495 100495 101495 0 nmos w = 4u 1 = 3u

v495 100495 Ode 5

c495 495 0 Iff

.icv(495)=5
C101495 101495 0 Iff

.icv(101495)=5
mb495 101495 15 0 0 nmos w = 4u 1 = 3u

ma522 522 100522 101522 0 nmos w = 4u 1 = 3u

v522 100522 Ode 5

c522 522 0 Iff

.ic v(522)=5
C101522 101522 0 Iff

.ic v(101522)=5
mb522 101522 15 0 0 nmos w = 4u 1 = 3u

ma567 567 100567 101567 0 nmos w = 4u 1 = 3u

v567 100567 Ode 5

c567 567 0 Iff

.icv(567)=5
C101567 101567 0 Iff

.icv(101567)=5
mb567 101567 15 0 0 nmos w = 4u 1 = 3u
ma608 608 100608 101608 0 nmos w = 4u 1 = 3u
v608 100608 Ode 5

c608 608 0 Iff

.icv(608)=5
C101608 101608 0 Iff

.icv(101608)=5
mb608 101608 15 0 0 nmos w = 4u 1 = 3u

ma653 653 100653 101653 0 nmos w = 4u 1 = 3u
v653 100653 Ode 5

c653 653 0 Iff
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.icv(653)=5
C101653 101653 0 Iff

.icv(101653)=5
mb653 101653 15 0 0 nmos w = 4u 1 = 3u

ma690 690 100690 101690 0 nmos w = 4u 1 = 3u

v690 100690 Ode 5

c690 690 0 Iff

.icv(690)=5
C101690 1016900 Iff

.icv(101690)=5
mb690 101690 15 0 0 nmos w = 4u 1 = 3u

ma740 740 100740 101740 0 nmos w = 4u 1 = 3u

v740 100740 Ode 5

c7407400 Iff

.icv(740)=5
C101740 101740 0 Iff

.icv(101740)=5
mb740 101740 15 0 0 nmos w = 4u 1 = 3u

ma708 708 100708 101708 0 nmos w = 4u 1 = 3u

v708 100708 Ode 5

c708 708 0 Iff

.icv(708)=5
C101708 101708 0 Iff

.icv(101708)=5
mb708 101708 15 0 0 nmos w = 4u 1 = 3u

ma757 757 100757 101757 0 nmos w = 4u 1 = 3u

v757 100757 Ode 5

c757 757 0 Iff

.icv(757)=5
C101757 101757 0 Iff

.icv(101757)=5
mb757 101757 15 0 0 nmos w = 4u 1 = 3u

ma790 790 100790 101790 0 nmos w = 4u 1 = 3u
v790 100790 Ode 5

c790 790 0 Iff

.icv(790)=5
C101790 101790 0 Iff

.icv(101790)=5
mb790 101790 15 0 0 nmos w = 4u 1 = 3u

ma837 837 100837 101837 0 nmos w = 4u 1 = 3u
v837 100837 Ode 5

c837 837 0 Iff

.ic v(837)=5
C101837 101837 0 Iff

.icv(101837)=5
mb837 101837 15 0 0 nmos w = 4u 1= 3u

ma878 878 100878 101878 0 nmos w = 4u 1= 3u

v878 100878 Ode 5

c878 878 0 Iff
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.icv(878)=5
C101878 101878 0 Iff

.icv(101878)=5
mb878 101878 15 0 0 nmos w = 4u 1 = 3u

ma925 925 100925 101925 0 nmos w = 4u 1 = 3u

v925 100925 Ode 5

c925 925 0 Iff

.icv(925)=5
C101925 101925 0 Iff

.icv(101925)=5
mb925 101925 15 00 nmos w = 4u 1 = 3u

ma890 890 100890 101890 0 nmos w = 4u 1 = 3u

v890 100890 Ode 5

c890 890 0 Iff

.icv(890)=5
C101890 101890 0 Iff

.icv(101890)=5
mb890 101890 15 0 0 nmos w = 4u 1 = 3u

ma942 942 100942 101942 0 nmos w = 4u 1 = 3u

v942 100942 Ode 5

c942 942 0 Iff

.icv(942)=5
C101942 101942 0 Iff

.ic v(101942)=5
mb942 101942 15 0 0 nmos w = 4u 1 = 3u

ma978 978 100978 101978 0 nmos w = 4u 1 = 3u

v978 100978 Ode 5

c978 978 0 Iff

.icv(978)=5
C101978 101978 0 Iff

.ic v(101978)=5
mb978 101978 15 0 0 nmos w = 4u 1 = 3u

malOl 11011 1001011 1011011 0 nmos w = 4u 1 = 3u
vlOll 1001011 Ode 5

clOll 10110 Iff

.icv(1011)=5
clOHOll 10110110 Iff

.icv(1011011)=5
mblOll 1011011 1500nmosw = 4ul = 3u

* missing cap
C1019 1019 0 Iff

c976 976 0 Iff

c954 954 0 Iff

c889 889 0 Iff

c861 861 0 Iff

c876 876 0 Iff

c846 846 0 Iff

c788 788 0 Iff

c769 769 0 Iff
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C703 703 0 Iff

c675 675 0 Iff

c688 688 0 Iff

c659 659 0 Iff

c606 606 0 Iff

c579 579 0 Iff

c521 521 0 Iff

c507 507 0 Iff

c441 441 0 Iff

c4094090 Iff

C423 423 0 Iff

c392 392 0 Iff

c335 335 0 Iff

c311 3110 Iff

c323 323 0 Iff

c223 223 0 Iff

c235 235 0 Iff

c205 205 0 Iff

C144 144 0 Iff

cl27 127 0 Iff

cl28 128 0 Iff

c68 68 0 Iff

.end

220



JJIOOS6S3IS6SZP

JJl'00fr6S3Ifr6SZro

*

S=(18£ZI)a0=(S6SZI)A0=(fr6SZl)Aor
0=(00frn)A0=(l6i7Zl)AS=(££SZI)a0=(S£S3I)aS=(0Z9ZI)a0=(IZ9ZI)aor
0=(80SZI)a0=(983ZI)aS=(83£ZI)A0=(0££ZI)aS=(£££ZI)a0=(I££ZI)aor
S=(t7££3l)AS=(S££ZI)aS=(l6ZZl)A0=v>8I31)aS=(£6Z.01)a0=(0frS0l)Aor

0=(Z.9I0I)aS=(SWS)a0=(£SZ6)aS=(ZSZ6)aS=(SZX)6)aS=(86Z6)aor
UOOOZUOOSI"IuiU8*l0Sosmdo1^8311-reqgradA

SUHJBJJOJUg*£SIA\9X;S^[OOXO*
"0003UOOSI"IuxU9>S0osmd0£ZX)ll£~mdA

SUISUJOJUX'SSIA\9X;S3J0OX0*
SOPOIIIUIPPA

*

*********************************************************************

(ZP39'X=sju6rZ=^PPS6=^sJX0'=B3ut790l=x«uiA+*
Ol-oO't^Avsfo^-ao'^rooi-oO't^osSoox-sO't^opSo+*
X-=Sdl0l-O0,t7=OQ3oz<e:j70'0=BpquiBX£2Z,-0=BrauiBS+*

S^X^dxonoOSSI^Ponoo^onsS'O^dc-gg/.-^sfnxs^PI+*
n8S30'0=fxt^8'0-=oiAt?XOZ.6*2=Qnsuuos=xoij=X9A9x)somdsomdx9pour*

(TI9£Z,*£=sniz.t7,I=BJl9pS3^SJ3-30'l=JJ3Ui79c-c=:XBmA+*
oi-oo*6=Avsrot7-9r£=rooi-ors=osSoox-ors=op§o+*

X=Sdj0I-30't7=oq§oS30'0=«pqmBXo=BJin+*
I00'0=dxont7966=5ponx8£=ono8'0=qdt7-oi7n=srn^-o=px+*

nSt7"0=fx£6"0=01Agxooi=Qnsuuoc=xoi£=X9A9t)souiusouiuX9pour*
HVOSJQJSJ9J9UIBJBd£SOW*

nxs*0=PlaSO*0=Bpqtm?x+

P\S"0=Vfl££Z/0=BUIure39-3SVP=&\W78'0"=°1Asomdsomdxopour
n^-o=PIS20*0=BpquiBX+

S69"0=nJdt7£8*0=BUIureS9-3813=^£6'0=°JAsouiusouiux9pour
*opsu9PBJBqooptpjBuiojpgjsnfpBsba\dxXSOWra<MJpourejqo*

tfVOSJOJSJ919UIBJBdxSOW*

*

(86Z6)AHBOjuud*
U003uiow

*

mgmSgs(i)£(Ky)£<l*
HIVo^SuipnxoxaimaiptfVOS3mJ°mB(*popuoamjojBjBpjndtngoidS*

(HVOS)W9UI39SU)£<K¥)£<!>[IX]

HIVomSuipnxox9*imaipHVOSomJOmsdIBopuo9tpjojbjbpjndmsous[3]
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c92529252 00.1ff

c9253 9253 00.1ff

C34493 124910 64ff

C34660 12184 0 65ff

C34936 12334 0 95ff

C34939 12333 078ff

C34943 12328 0 95ff

C34997 12331 0 55ff

C34998 12330 0 55ff

C35398 12335 0 70ff

C35448 12621 0 188ff

C35449 12620 0212ff

C35958 12291 076ff

C36157 10540 0 86ff

C36906 12286 0 926ff

c36958 9075 01251ff

c37113 12535 0 295ff

c37446 5345 0286ff

C37601 10167 0 51ff

C37945 12400 0 153ff

c37977 9298 0 73ff

C38064 12381 0 225ff

C38625 12508 0 221ff

C38638 10793 0 987ff

C38684 12533 0 73ff
*

m24183 9075 5781 9298 llllll pmos w = 4u 1= 3u
v578157810dc0

m24248 9075 5284 9298 0 nmos w = 4u 1 = 3u

v5284 5284 0dc5

m23932 9075 5346 9252 0 nmos w = 7u 1 = 3u

v5346 5346 0dc5

m23783 0 9253 9252 0 nmos w = 15u 1 = 3u

m24027 9253 119252 llllll llllll pmos w = 4ul= 8u
V9252119252 OdcO

m23933 9253 5345 9255 0 nmos w = 7u 1 = 3u

C37673 9255 0 1494
.icv(9255)=0
m24265 0 9099 9255 0 nmos w = 26u 1= 3u

v9099 9099 0de5

m26511 0 10167 5345 0 nmos w = 31u 1= 3u

m27491 10167 10541 10540 0 nmos w = 4u 1= 3u

vl054U05410dc5

m28143 1054010793 llllll llllll pmos w = 6ul = 3u
m32416 10793 12184 0 0 nmos w = 4u 1= 3u

m33319 12184 12291 llllll llllll pmosw= llul = 3u
m33289 12291 12473 12335 0 nmos w = 4u 1= 3u

vl2473 12473 0dc5

m33304 12291 12475 12335 llllll pmosw = 4u1= 3u
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V12475 12475 OdcO

m32856 12335 12292 12334 llllll pmos w = 4u 1= 3u
V12292 12292 OdcO

m33027 12334 12331 0 0 nmos w = 4u 1 = 3u

m32961 12331 12333111111 llllll pmos w=8ul = 3u
m33026 0 12330 12333 0 nmos w = 4u 1 = 3u

m32958 1233012328 llllll llllll pmos w= 8ul = 3u
m33061 12328 12286 0 0 nmos w = 4u 1 = 3u

m33762 12286 12610 12508.0 nmos w = 4u 1 = 3u

vl2610126100dc5

m33850 llllll 1262112508 0 nmos w = 4u 1 = 3u

m33839 llllll 1262012508 llllll pmos w = 7ul = 3u
m33849 llllll 12620 12621 111111 pmos w = 58.9u 1= 2.8u
m33863 12620 12535 0 0 nmos w = 27u 1 = 3u

m33469 llllll 12422 12552 llllll pmos w = 27u 1= 3u
V12422 12422 OdcO

.icv(12552)=5
C12552 12552 0 0.Iff

m33468 12552 12533 12535 llllll pmos w = 27u 1= 3u
m33430 0 12491 12533 0 nmos w = 4u 1= 3u

m33396 12400 12502 12491 0 nmos w = 4u 1= 3u

vl250212502 0dc5

m33465 12400 12549 12491 llllll pmos w = 7u1= 3u
V12549 12549 OdcO

m33652 12594 10371 12400 llllll pmosw = 24u 1= 3u
V10371 10371 OdcO

m33653 12595 12422 12594 llllll pmos w = 24u 1= 3u
m33654 llllll 12381 12595 llllllpmos w = 24ul = 3u
*

m33089 0 11667 12381 0 nmos w = 4u 1= 3u

.ic v(12381)=5
m31273 11667 11073 11666 0 nmos w = 4u 1 = 3u

m30688 11667 11284 11666 llllll pmos w = 7ul = 3u
.icv(11667)=0
cl 166711667 0 250ff

* 11073 is phi3 and 11284 is phi3-bar
m31274 11655 11601116660nmosw = 4ul = 3u
m30689 11655 11668 11666 llllll pmos w = 7ul = 3u
.icv(11666)=5
cl 166611666 OO.lff

vgll601116010dc5
vgl 1668 11668 OdcO
m30678 11654 11492 11655 llllll pmos w = 4ul = 3u
.icv(11655)=5
C36920 11655 0113ff

vl 1492 11492 OdcO

m30715 11654 11694 11653 llllll pmos w = 4ul = 3u
.icv(11654)=5
cl 1654 11654 OO.lff

223



vl 1694 11694 OdcO

m30676 11652 11592 11653 llllll pmos w = 4ul = 3u
.icv(11653)=5
C11653 11653 OO.lff

vl 1592 11592 OdcO

m30675 11652 10379 11651 llllll pmos w = 4ul = 3u
.icv(11652)=5
cl 1652 11652 OO.lff

V10379 10379 OdcO

m30674 11650 11591 11651 llllll pmos w = 4ul = 3u
.icv(11651)=5
C11651 11651 OO.lff

vl 1591 11591 OdcO

m30673 1165010312111111 llllll pmos w = 4ul = 3u
.icv(11650)=5
cl 1650 11650 OO.lff

vl0312 10312 OdcO

.end
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JJ9Z.0163318S6S£0

JJS90*8l3l099fr£o

JJZ.860£6Z.0l8£98£o

JJIO0308013080P

JJ9800frS0lZ.Sl9£O

JJIS0Z.9101109Z.£0

JJ9830Sfr£S9t*Z.£O

JJl00£S36£S36O
JJ1003S363S36O

JJIS310SZ.068S69£0

UZL08636ZZ6Z.£0
0=(16331)aS=(W131)a0=(£6Z.01)aS=(30801)aS=(0frS0l)Aor

S=(Z.9101)a0=(SKS)a0=(£S36)aS=(3S36)aS=(SZX)6)aS=(8636)aor
SOPOllllllPPA

U003UOOIuiuxug6'00SosmdoS6331JBq~xmdA
suoptsuBJj8uix[Bjjojugfr'X'SuisujojU6*xsia\9^sxooxo*

U003UOOIuxuxuc*xS0osmdoS8331IW^a
•suopisuBJjSunjBjjojutg#3'SuisujojU3StA\9XSS00X0*

*

(3lO39'l=sjU6l'3=^PPS6=iISJi0,=Jiout790l=x«uiA+*
Ol-oO't^Avsfotraox^oOl-oO'l^osgooi-^l^opSo+*
X-=3dlOl-oO't7=oqSo/#3j70,0=BpqmBxg3Z.*0=B«rareS+*

ct7X,0=dxonOOS8l=luonoox=on88,0=Qdc-9g^/,=sfnxs,0=Pl+*
n8S30'0=fxti78'0-=olAfl0Z.6'3=QnsuUOS=XOJ3=pA9j)souidsomdxopour*

(HO£Z.,£=sju^'x=BJXopS3=iISJ3-90-X=JiOUfrOS*S=x«uiA+*
Ol-oO'6=Avsrot7-93,£=foOl-03'S=osSooi-03*S=opSo+*

X=SdiOl-O0*t^oq8oS30'0=spquiBX0=&nn+*

lOO'O^^n^oee^PonxSE^noS'O^dtT-o^r^sfn^^PI+*
nSfr'0=fx£6'0=°5ASloOl=QnsuU0S=X°13=pA9T)somusouiuxopour*

HVOSJOJSJ9J9UIBJBd3S0W*

niS0=PlZ.3S00=«PquiBl+
MS'0=njd£3Z/o=buiuibS9-9cytr=dx.\rp%'0-=QiAsomdsomdppour

nW0=PlS300=*PqmBX+
S69'0=nI<J\?£%'0=vunjas29-98'13=d^£6'0=°JAsomusomuppour

•opstrapBJBtpopipjBtuonpgjsnfpBsbmcty"3SOP\[ra0JJpouiBiqo*
HVOSJOJsj9j9uiBJBdxSOJM*

*

(8636)Aubjjmud*
uooiuiuw

*

W9iuS9S(d)£Wd-(H)3nid*
HIVoip3uipnxox9linaipHVOS3mJ°mBdl^opuo9tnjojBjBpjnduiHDIdS*

(HVOS)W0UI39S(j/)£(Ho/)34>[3*3]
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m24248 9075 5284 9298 0 nmos w = 4u 1 = 3u

v5284 5284 0dc5

m24183 9075 5781 9298 llllll pmos w = 4ul = 3u
v5781 5781 OdcO

m23932 9075 5346 9252 0 nmos w = 7u 1 = 3u

v53465346 0dc5

m23783 0 9253 9252 0 nmos w = 15u 1 = 3u

m23933 9253 5345 9255 0 nmos w = 7u 1 = 3u

m23973 llllll 52729255 llllll pmos w= 8ul = 3u
C37673 9255 0 1494

.icv(9255)=5
V5272 5272 OdcO

m27028 llllll 10167 5345 llllll pmos w = 68ul = 3u
m27491 10167 10541 10540 0 nmos w = 4u 1 = 3u

vl0541 10541 Ode 5

m28215 10802 10785 10540 0 nmos w = 7u 1 = 3u

vl0785 10785 0dc5

m28293 0 10793 10802 0 nmos w = 7u 1 = 3u

m32415 10793 12184111111 llllll pmos w=8ul = 3u
m33329 12184 12291 0 0 nmos w = llu 1 = 3u

m32765 12292 12285 12291 0 nmos w = 4u 1 = 3u

m32793 12292 12295 12291 llllll pmos w = 4u 1= 3u
C37989 12292 0 127ff

m32821 llllll 12314 12292 llllll pmos w = 23ul = 3u
vl2314 12314 OdcO

.icv(12292)=5

.end
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Jjr008Z.638Z.63O

JJl'O0086308630

m'oomitw&
0=(66H)aS=(£ISI)a0=(3SZ.l)A0=(31SI)aS=(33Z.I)aor

S=(9SSI)a0=(30SI)a0=(10SI)aS=(81SI)a0=(S081)aS=(S903)aor
0=(Z.0£3)a0=(Z.l13)aS=(1£13)aS=(3£13)a0=(6S£3)a0=(9833)aor
0=(£0t73)A0=(66£3)aS=(66fr3)AS=(00S3)a0=(K)S3)a0=(£0S3)aor
S=(0Z.83)a0=(6983)aS=(6Z.63)aS=(3S0£)a0=(£60£)a0=(fr60£)Aor
S=(Z.60£)a0=(S9K)aS=(fr9fr£)AS=(£Z,S£)aS=(£S9£)a0=(Z.69£)aor
0=(869£)aS=(10Z.£)a0=(00lfr)A0=(6£6£)aS=(6Z.8£)aS=(8Z.8£)aor
O=(SM*0a0=(968£)a0=(86lfr)A0=(£6ltOAS=(S63fr)AS=(963tOAor
0=(00£t)A0=(663^)a0=(Z.IZ*)a0=(881*)aS=(lOSfr)AS=(OOSfr)Aor
0=(Z.SZ*)a0=(MSfr)A0=(900S)a0=(300S)aS=v>8Z*)aS=(S8Z*)aor

SOPOOIOIOIPPA
"0001"OOSuiuxucj*80Sosmdq£\gjBqxiqdA

•suonisuBJjSuipBjpusSutsujoju|7Z/8Pubui3'6M9X;Sxooxo*
"0001UOOS"IuiU37,gqosmdo6Z.IIJUdA

•suopisuBJjSuirpjpuBSutsuJOJUC6'/,pUBUL9'LStAV9XS3100X0*

*

*********************************************************************

(3lO39'l=sju6l*3=^PPS6=MSJi0,=JJ3ui790l=xBmA+*
0l-o0't7=A\sfot7-90*3=ro0l-O0't7=os3o0l-o0't«=opSo+*
X-=Sdioi-oO>=oq3oz#3SO'0=BPQureig2Z,-o=BuiuiBS+*

SH'O^^noOSSl^Ponoo^onsS'O^dc-oc/.-^sfnic^px+*
n8S30*0=fxW78'0-=oiat7X0Z,6'3=Qnsuuos=xoj3=X9A9T)somdsomdxopour*

(HO£Z.*£=sjxiZ.l7,l=BJl9PS3=^sj3-90,l=JJOUf79S'S=xBUJA+*
Ol-oO*6=A^sfotr93-£=fooi-03'S=os8ooi-03'S=op3o+*

X=Sdioi-30>=oqSoS30*0=«PQurexo=*nn++
lOO*0=dxoni7966=5IJonx8£=ono8'0=Qdtr9t73*l=srntr3-o=PX+*

n£t7*0=(x£6*0=°JAcx90X=qnsuuos=xoi3=xoa9t)souiusomuxopour*
HVOSJQJSJ9JomBJBd3SOIAI*

niS'0=PlZ.3S0'0=«Pqurex+

WS'0=Wd£3Z/0=Bumre39-3$P'V=&itWO-=°JAsomdsomdppour
ni730=PlS30*0=«Pqurei+

S69'0=[u.a*K8*0=Burare^9-08'l3=<bI£6'0=°JAsomusomuppour
'opsuopBJBqoopipjBtuoipgjsnfpBsba\dx;3S0Nuiojjpsureiqo*

HVOSJQJsj9j9uiBJBdxSOW*

*

(S8Z,fc)Auenjuud-
uoO£U3Uua*

*

HratuSos(dDlWd-(>i)xnxd*
HTVotpSuipnxoxo*jmojptfVOS3mJ°W&popuo9tpjojbjbpmdui33idS*

(tfVOS)WomS9S(^)i<Ky)x<t>[£'3]
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C2870 2870 OO.lff

C3093 3093 OO.lff

C3465 3465 OO.lff

C3697 3697 OO.lff

C3879 3879 OO.lff

C4145 4145 OO.lff

C4295 4295 OO.lff

C4300 4300 OO.lff

C45014501 OO.lff

C4757 4757 OO.lff

C4784 4784 OO.lff

C4785 4785 OO.lff
*

ml2130 4785 614 4784 101010 pmos w = 7u 1= 3u
ml2578 4784 182 4785 0 nmos w = 4u 1 = 3u

ml2599 4784 5002 0 0 nmos w = 12u 1 = 3u

ml2343 5002 557 5006 101010 pmos w = 4u 1= 3u
v557 557 OdcO

ml2381 5006 4514 4789 0 nmos w = 4u 1 = 3u

ml2382 5006 47914789 101010 pmos w = 4u 1= 3u
* inverter made from 4514 to 4791

mzz 47914514 0 0 nmos w = 4u 1 = 4u

mzzl 10101045144791 101010 pmos w = 4u 1= 4u
.icv(4791)=5
*

ml2133 101010 4790 4789 101010 pmos w = 8u 1= 3u
v4790 4790 OdcO

.ic v(4789)=5
C4789 4789 OO.lff

ml2043 4757 4513 4514 101010 pmos w = 16u 1= 3u
ml2044 101010 4500 4757 101010 pmos w = 16u 1= 3u
ml 1361 4501 182 4500 0 nmos w = 4u 1 = 3u

ml2033 4501 614 4500 101010 pmos w = 7u 1= 3u
ml 1402 45014488 0 0 nmos w = 12u 1 = 3u

ml 1802 4717 557 4488 101010 pmos w = 4u 1= 3u
*v557 557 OdcO

ml 1756 4512 4299 4717 0 nmos w = 4u 1 = 3u

ml 1757 4512 4513 4717 101010 pmos w = 4u 1= 3u
* inverter made from 4299 to 4513

mzzz 4513 4299 0 0 nmos w = 4u 1 = 4u

mzzzl 101010 4299 4513 101010 pmos w = 4u 1= 4u
.icv(4513)=5
C4513 4513 OO.lff
*

ml2026 4512 4487 101010 101010 pmos w = 8u 1= 3u
v4487 4487 OdcO

.icv(4512)=5
C4512 4512 OO.lff

ml0704 4300 4220 4299 101010 pmos w = 16u 1= 3u
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ml0705 101010 4296 4300 101010 pmos w = 16u 1= 3u
ml0939 4295 182 4296 0 nmos w = 4u 1 = 3u

vl821820dc5

ml0700 4296 614 4295 101010 pmos w = 7u 1= 3u
v614 614 OdcO

ml 1313 4295 4193 0 0 nmos w = 12u 1 = 3u

ml0464 4193 557 4198 101010 pmos w = 4u 1= 3u
*v557 557 OdcO

ml0490 4198 3896 4219 0 nmos w = 4u 1 = 3u

ml04914198 4220 4219 101010 pmos w = 4u 1= 3u
ml0703 101010 4197 4219 101010 pmos w = 8u 1= 3u
v4197 4197 OdcO

.icv(4219)=5
C4219 4219 OO.lff

* inverter made from 3896 to 4220

mzzzz 4220 3896 0 0 nmos w = 4u 1 = 4u

mzzzzl 101010 3896 4220 101010 pmos w = 4u 1= 4u
.icv(4220)=5
C4220 4220 OO.lff
*

ml0331 4145 3895 3896 101010 pmos w = 16u 1= 3u
v3895 3895 OdcO

ml0332 101010 3878 4145 101010 pmos w = 16u 1= 3u
m9718 3879 182 3878 0 nmos w = 4u 1 = 3u

*vl82 182 0dc5

ml0321 3879 614 3878 101010 pmos w = 7u 1= 3u
* v614 614 0 dc 0

m9783 3879 3939 0 0 nmos w = 12u 1= 3u

ml0108 4100 557 3939 101010 pmosw = 4u1= 3u
* v557 557 0 dc 0

ml0536 4100 3895 3893 0 nmos w = 4u 1 = 3u

*v3895 3895 0dc5

ml0535 4100 3701 3893 101010 pmos w = 4u 1= 3u
ml0586 101010 1010878 3893 101010 pmos w = 30u 1= 3u
C38697 3893 0 157ff

V1010878 1010878 OdcO

.icv(3893)=5
m9698 0 3698 3701 0 nmos w = 4u 1 = 3u

m9686 3697 182 3698 0 nmos w = 4u 1 = 3u

*vl82 182 0dc5

m9049 3698 614 3697 101010 pmos w = 7u 1= 3u
*v614 614 OdcO

m9253 3697 3653 101010 101010 pmos w = 30u 1= 3u
m9270 3653 557 3573 101010 pmos w = 4u 1= 3u
m8665 3610 3574 3573 0 nmos w = 4u 1 = 3u

m8667 3610 3464 3573 101010 pmos w = 4u 1= 3u
* inverter made from 3464 to 3574

mzzzzz 3574 3464 0 0 nmos w = 4u 1 = 4u

mzzzzzl 101010 3464 3574 101010 pmos w = 4u 1= 4u
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.icv(3574)=0
*

* m9667 0 3698 3610 0 nmos w = 121 = 3

*v3698 3698 0dc5

m9667 0 13698 3610 0 nmos w = 12u 1 = 3u

vl369813698 0dc5

c36290 36100157ff

.icv(3610)=0
m8286 3464 3465 0 0 nmos w = 4u 1 = 3u

m8482 101010 3097 3465 101010 pmos w = 8u 1= 3u
m7709 0 3094 3097 0 nmos w = 4u 1 = 3u

m7719 3093 182 3094 0 nmos w = 4u 1 = 3u

*vl82 182 0dc5

m7427 3094 614 3093 101010 pmos w = 7u 1= 3u
*v614 614 OdcO

m76903093 3052 101010 101010 pmos w = 30u 1= 3u
m7675 3052 557 2979 101010 pmos w = 4u1= 3u
*v557 557 OdcO

m7028 2979 2869 2978 0 nmos w = 4u 1 = 3u

m7029 2979 2980 2978 101010 pmos w = 4u 1= 3u
m7706 2978 3009 0 0 nmos w = 4u 1 = 3u

v3009 3009 0dc5

* inverter made from 2869 to 2980

mxzz 2980 2869 0 0 nmos w = 4u 1 = 4u

mxzzl 101010 2869 2980 101010 pmos w = 4u 1= 4u
.ic v(2980)=5
*

m6890 2917 2870 2869 101010 pmosw = 16u 1= 3u
m6891 101010 2709 2917 101010 pmosw = 16u 1= 3u
v2709 2709 OdcO

.icv(2917)=5
C2917 2917 OO.lff

m6682 0 2503 2870 0 nmos w = 4u 1 = 3u

m5856 2504 112424 2503 101010 pmos w = 16u 1= 3u
vl 12424 112424 OdcO

m5857 101010 2500 2504 101010 pmos w = 16u 1= 3u
m6109 2499 182 2500 0 nmos w = 4u 1 = 3u

*vl82 182 0dc5

m5853 2500 614 2499 101010 pmos w = 7u 1= 3u
*v614 614 OdcO

m6126 2499 2399 0 0 nmos w = 12u 1 = 3u

m5618 2399 557 2403 101010 pmos w = 4u 1= 3u
*v557 557 OdcO

m5644 2403 2286 2423 0 nmos w = 4u 1 = 3u

m5645 2403 2424 2423 101010 pmos w = 4u 1= 3u
m5855 101010 2402 2423 101010 pmos w = 8u 1= 3u
* inverter made from 2286 to 2424

mxxzz 2424 2286 0 0 nmos w = 4u 1 = 4u

mxxzzl 101010 2286 2424 101010 pmos w = 4u 1= 4u
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.icv(2424)=5
*

v2402 2402 OdcO

.icv(2423)=5
C2423 2423 OO.lff

m5492 2359 2287 2286 101010 pmos w = 16u 1= 3u
v2287 2287 OdcO

m5493 101010 2132 2359 101010 pmos w = 16u f = 3u
m5255 2131 182 2132 0 nmos w = 4u 1 = 3u

*vl82 182 0dc5

m5482 2131 614 2132 101010 pmos w = 7u 1= 3u
*v614 614 OdcO
m4929 21312117 0 0 nmos w = 12u 1 = 3u

m5267 2307 557 2117 101010 pmos w = 4u 1= 3u
*v557 557 OdcO

* m5694 2307 2287 2116 0 nmos w = 41 = 3

m5693 2307 2065 2116 101010 pmosw = 4u1= 3u
m5738 101010 12132 2116 101010 pmosw = 30u 1= 3u
.icv(2116)=5
c37392 2116 0157ff

V12132 12132 OdcO

m4513 2065 1805 0 0 nmos w = 4u 1 = 3u

m4060 101010 1518 1805 101010 pmos w = 8u 1= 3u
m3326 0 1501 1518 0 nmos w = 4u 1 = 3u

m3309 1502 182 1501 0 nmos w = 4u 1 = 3u

*vl82 182 0dc5

m3943 1502 614 1501 101010 pmos w = 7u 1= 3u
*v614 614OdcO

m3961 1502 1556 101010 101010 pmos w = 30u 1= 3u
m3718 1722 559 1556 101010 pmos w = 4u 1= 3u
v559 559 OdcO

m4000 0 1512 1722 0 nmos w = 40u 1 = 3u

m3947 1512 348 1752 101010 pmos w = lOu 1= 3u
v348 348 OdcO

m3740101010 1513 1752 101010 pmos w = 20u 1= 3u
m3336 0 1499 1513 0 nmos w = 12u 1= 3u

m3308 1500 179 1499 0 nmos w = 4u 1= 3u

m3942 1500 613 1499 101010 pmosw = 7u1= 3u
m39601500 1557 101010 101010 pmos w = 30u 1= 3u
.icv(1500)=5
C1500 1500 OO.lff

V1557 1557 OdcO

.end
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[3] SPICE input data for the critical path of theNuBus Interface Controller in the SPUR cir

cuit

* SPICE input data for the critical path of the NuBus Interface
* Controller in the SPUR circuit

* (<t>l(/v»H>2(F) segment)
.tran0.5nl0n

.print tran v(265)
*

*********************************************************************

* MOS 1 parameters for SPUR
* Obtained from MOS2. kp was adjusted to match dc characteristic,
.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.771 ld=0.2u
.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50lambda=0.045
+ phi=0.735 ld=0.05u

* MOS2 parameters for SPUR.
* .model nmos nmos level=2 vto=0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4el6 tpg=+l xj=.25u ld=.20u uexp=.16 vmax=5.5e4
* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p
** phi F = -0.3855862 -> phi=0.771
* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0el6 tpg=-l xj=.20u ld=.05u uexp=.15 vmax=9.0e4
* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p
** phi F = 0.3675644 -> phi=0.735

*

vphil 331 0 pulse 05 0 O.Oln O.Oln25.0n lOOn
vphilj 290 0 pulse 5 0 0 O.Oln O.Oln 25.0n lOOn
v268 268 0dc5

v246 246 OdcO

v309 309 OdcO

vddl000dc5

.ic v(265)=0 v(223)=0 v(120)=5 v(143)=0

.ic v(202)=5 v(201)=0 v(245)=5 v(331)=0
c807 265 045ff

c848 223 046ff

c951 120 0158ff

c929 143 0 186ff

c869 202 0183ff

c870 201 0 355ff

c827 245 0 86ff

c7413310267ff

m625 265 268 223 0 nmos w = 3.2u 1 = 1.6u

m594 265 246 223 100 pmos w = 3.2u 1= 1.6u



m572 100 120 223 100 pmos w = 6.4u 1= 1.6u
m325 120 143 0 0 nmos w = 3.2u 1 = 1.6u

m44 143 0 100 100 pmos w = 3.2u 1= 3.2u
m318 143 202 0 0 nmos w = 3.2u 1 = 1.6u

m548 202 201 0 0 nmos w = 8.8u 1 = 1.6u

m597 100 245 201 100 pmos w = 13.6u 1= 1.6u
m719 309 331 245 0 nmos w = 3.2u 1 = 1.6u

m679 309 290 245 100 pmos w = 3.2u 1= 1.6u
.end
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[4] SPICE input data for the critical path of the On-Chip Instruction Cache Controller in the

SPUR circuit

[4.1] ^4(R)-^l(R) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* (<H(flH>W) segment)
*

* MOS 1 parameters for SPUR
* Obtained from MOS2. kp was adjusted to match dc characteristic,
jnodel nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.771 ld=0.2u
.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045
+ phi=0.7351d=0.05u

* MOS2 parameters for SPUR.
* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4el6 tpg=+l xj=.25u ld=.20u uexp=.16 vmax=5.5e4
* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p
** phi F = -0.3855862 -> phi=0.771
* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0el6 tpg=-l xj=.20u ld=.05u uexp=.15 vmax=9.0e4
* +js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p
** phi F = 0.3675644 -> phi=0.735

*

vdd20dc5

cl437192 097ff

cl439190 0 803ff

cl4891010585ff

cl540 85 060ff

C1541 87 0 128ff

cl543 84 041ff

C1475 154 0 80ff

m248 84 0 2 2 pmos w = 3.2u 1= 3.2u
m268 0 85 84 0 nmos w = 3.2u 1 = 1.6u

m251 0 87 85 0 nmos w = 3.2u 1 = 1.6u

m288 2 101 87 2 pmos w = 13.6u 1= 1.6u
m541 101 192 0 0 nmos w = 8u 1 = 1.6u

m534 192 194 154 2 pmos w = 3.2u 1= 1.6u
m528 192 190 154 0 nmos w = 3.2u 1 = 1.6u



m392 154 0 2 2 pmos w = 3.2u 1= 3.2u
.print tran v(84)
.ic v(84)=0 v(85)=5 v(87)=0 v(101)=5 v(192)=0 v(190)=0 v(154)=5
vphi4 190 0 pulse 0 5 0 In In 14n 80n
vphi4_b 194 0 pulse 5 0 0 In In 14n 80n
.tranO.lnlOn

.end
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(g6g)Awsnluud*

n3'£=I"3"£=a\somd330£SlI6£u*
"9*x=1nz*£=avsouiu0£Sl061161Z.3S™

"91=I"3£=avsomdz£Slttfl161££S«i
"9'1=In8=a\somu00011610OfrS™

n9*x=1no/gx=avsomd3680013fr83Ui
«9'l=In3*£=avsomu006680SS3™
"91=In3£=avsouiu0380603Z,3Ui

n3*£=In3'£=avsomd330389PZW
SOPOI£U£IA

*9'l=in3*£=Avsouiuo38l£l£6£181lui
0OP0631631A

1*9*1=Inr£=avsomd338631£6£8Z,llui
JJSZ.O£S19Z,HO

JJOSO38S^SP

JJZZl0686£SP

JJS9006Z,£SP

JJZ.8S000l£6HO

JJ£0800616£MO
JJ9601618£HO

JJZ.60£6£Z.l3lo

SOP03PPA

*

*********************************************************************

S£Z/0=Wd<-H79SZ.9£'0=d?ud**
d00t7=oq2odcx3=Avsfonoz.9=fodo33=opSodo33=os§onoooi=s[+*

t790*6=x^uiAg\*=dx9nn£o*=pxn03-fxl-=3dj9xoo*3=qtisuuc*/=xoj+*
c|70'=BpquiBX0S'=buiuibSnQ'LZ=&\SZ,'0-=°1A3=X9A9xsomdsomdxopom**

lZi/0=tud<-398SS8£*0-=dWd**
d00fr=°q2od093=A\sfonQ£3=fodo33=op3odo33=osSonoooi=sf+*

frOc*c=xBuiA9x*=dx9nno3*=pxng*7*=fxx+=Sdj9xoj7=qnsuucj=xoj+*
S30'=BPQureiOfr-BiuureSno*9/,=d^c//o=oja3=X9A9xsomusomuxopom**

"afldSJOJSJ919UIBJBd3SON*

nS00=PlS£Z.*0=Wd+
SW)'0=bPQuibx0S'0=buhub3no*£l=cbiSZ,'0-=°JAsomdsomdppour

nrO=PlUZ/0=!ud+
S30*0=i*P<Iuibio^'0=^uiuibSnc*6g=cbigi'o=ojasomusomuxopom*
•opsuojOBJBqoopqoiBm01pojsnfpBsbavcbf.*3SOWuiojjp9im*aqo*

^QdSJOJSJ9J9UIBJBdXSOW*
*********************************************************************

*

(mornSgs(i)i<H^)*
jmojpHfldSoqiuijoxxojjuoooqoB3*

uoporujsuidnQ-uootpjoqjBdXBopuo9tpjojBiBpmduigoidS*

(J9XI0HU03gqoBOuopormsuidno-uotfndS)W9mS9S(^)x<Hof)H)[3>]

Z.£3



.ic v(393)=0 v(82)=0 v(90)=5 v(89)=0 v(100)=5 v(191)=0 v(153)=5 v(190)=0
vphi4 190 0 pulse 0 5 0 In In 14n 80n
vphi4_b 194 0 pulse 5 0 0 In In 14n 80n
.tranO.lnlOn

.end
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PU9*

uoiuxX)UBjr

U08ut7iuxux00Sosmdo0Z,3q~£jqdA
U08up\uxuxoS0osmdo193£WdA

0=(193)aS=(S61)a0=(393)aS=(08)a0=(6S)aS=(S£)a0=(8)aor
(8)aubjjjuud*

n|r*3=xri3*g=avsomd330S61£PS™
n9*x=xn3*g=avsomd3£610Z.33933fr8«i
n9*x=xn3*g=avsomu0S61193393Z.38UJ

n9*x=xns=avsomu0083930SS8UI

1*9*1=In9*£l=avsomd36S083t*3ui
1*9*1=IH3'£=avsomu0S£6S0£91™

H9l=IH3*£=avsouiu00S£8SZ,lui

ri3"£=xnz'Z=avsomd33089™
JJ£60S61KHO

JJ-^8081-0910

JJ36OS£Z.Z.SP

JJS£106S6KIO

JJ03Z.019339£P

JJOOl039319£P
JJZZ,S0083S£P

copo3PPA

*

S£Z.'0=iqd<-t*9SZ,9£*0=dW***
d00t7=oq3odsi3=Avsfonoz.9=fodo33=opSodo33=osSon000l=sf+*

t790*6=x*euiA£x*=dx9nn£o*=Plno3*=[xx-=Sdj9xoo*3=qnsuu$3=xoj+*
SW)'=bPQuibx0S'=*6uiujbSno*z,3=d3lSZ/O-^OM3=X0A9xsomdsomdxopom**

lZ.Z/0=!ud<-398SS8£*0-=diud**
doot^oqSodo93=AVsfon0£3=fod033=op3od033=osSonoooi=sf+*

t79S*S=XBuiA9x*=dx9nno*7*=pxn£*7*=fx\+=3di9X9tr=qnsuu£3=xoi.+*
SSO'^PQurei0*"7*=*euimBSno'9Z,=d^c//o=oja3=xoa9isouiusouiux9pom**

HfidSJPJsJ9puiBJBd3S0W*

nSOO=PlS£Z/0=iud+
SW)'0=bPQuibxoS'O^iuuibSno'Sl*^SZ/O-^JAsomdsomdxopom*

nro=PllZ,Z/0=?ud+
S30*0=BpquiBxOKO^urareSnc/6£=cbigi'Q=oiasomusomuppour
*opsu9PBJBqoopup}BmoipgisnfpBsbavcbj*3S0Wuiojjp9unnqo*

-afldSJOJSJ9J9UIBJBdXSOW*
*********************************************************************

*

(rjudmfts(u)p$-(V)Z$)*
papHfldSominJ0XXQUU03oqoBO*

uoponnstrrdnQ-uooipjoqjBdxBOpuo9tpjojBjBpmduiHDIdS*

(J9XI0JJU03oqoBOuononnsuidnQ-uoHfldS)lu9inS9S(v)pfy-{y)£<J>[£>]

6£3



(£0fr)Aubjimud*
nfr*3=IH3*£=avsomd330961PPS™

n9'l=IH3'£=avsomdz9610Z.3£93£^8™
1*9*1=IH3*£=avsouiuQ961193£93838UI

H9*l=In8=avsomu00£93IZ.9S8U1
ii9*l=1n9*£l=avsomd3OZ.U3833™

"9*1=Iii8*8=avsomu00OZ.LPZ.13UI

ii9*l=IH3*£=avsomu00LP31S6™

H3*£=IH3*£=avsomd33031Oiui
1191=IH3*£=avsomu06310£Slui

SOP0061061A

n9*x=Int7*9=avsomu0£OP0616S03iui

JJ£6096l££frP

JJ6Z.06£09P

JJ3H03166SP

JJ6010LPP9S\o

JJZ.010OZ.SSSIO
JJ03Z.019339£P

JJ660£9309£P

JJ98Z,0UIS£P

JJ£ll0£0frZ.03P
SOP03PPA

*

S£Z,0=!qd<-WSZ.9£*0=d?ud**
dooi7=oq3odcx3=A\sfono/,9=rodo33=op3odo33=osSonoooi=sf+*

tr90'6=xBuiA$x*=dx9nngo*=PlH03'=rxl-=8dl9loo*3=Qnsuu$3=xoj+*
StK)'=BPO,urex0S'=buiuib3no*££=d3[SZ.*0"=o1a3=XOA9isomdsomdxopom**

UZ.'0=!ud<-398SS8£*0-=dW***
dooi7=oq3odo93=Avsfono£3=fod033=op3od033=os3onooOl=sf+*

trOg*g=xBraA9x*=dx9nno3*=PXnS3'=fxx+=3dj9XO|7=qnsuu£3=xoj+*
S30'=*sPQiuBI0t7*=*eiuure3no'9Z,=<klSL'O=oiA3=xoa9xsomusomuxopom**

'HfldSJOJsjopumred3SOW*

nS0*0=PlS£Z/0=?ud+
gt^)*0=BpquiBX0S'0=BurajB3no*Sl=<klSZ,'0-=OJAsomdsomdxopom*

n3*0=PllZ.Z/0=iud+
S30*0=BPQiaBlo^O=BuraiB3ng*6£=<bigL'O=oiasomusomuxopom*
opsuopBJBqoopqoiBm01psjsnfpBsbav<b(*3SOWuiojjpsuirnqo*

HfldSJOJSJ9J9UIBJBdxSOW*

*

0U91U39SU)f4-(2/)£(|>)*
imojp*afldSoipuijonanuoagqoBO*

uoponnsuidno-uooipjoqiBdxsopuo9injojbjbpmdtnHDIdS*

(J9XI0J1U039qoBOuoponnsuidiqo-uoHTldS)JuoraSgs(j)p$-(y)£<|>[py]

0173



.ic v(403)=5 v(9)=5 v(12)=0 v(47)=5 v(70)=0 v(71)=5

.ic v(263)=0 v(196>5 v(261)=0
vphi3 2610 pulse 0 5 0 In In 14n 80n
vphi3_b 270 0 pulse 5 0 0 In In 14n 80n
.tranO.lnlOn

.end
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pU9*

uoiux'OUBJr

U08ut7Xuxux00Sosmdo0Z.3Q"£iqdA
uo8uhuxuxoS0osmdoX93£iudA

0=(193)aS=(961)a0=(£93)aS=(lZ>0=(lI1)a0=(601)aor
(60x)aubjjjuud*

WZ=In3*£=avsomd330961PPS™
n9*x=xnr£=avsomdz9610Z.3£93ZP2™
n9l=IH3*£=avsomu0961193£93838™

n9'l=In8=avsouiu00£93U9S8UI

H9*l=in3*xi=A\somd33XZ.IllZ.0£ui
0OP03H3HA

H9l=IH3*ll=avsomd3III31160180£ui
JJ£6096l££frP

JJ03Z.019339£P
JJ911060U3SP

JJ31011UISP

JJ660£9309£P

JJ98Z,0UIS£P

SOP03PPA

*

S£Z/0=!qd<-PP9SL9V0=djud**
d00t7=oq3odcx3=Avsfonoz.9=fod*033=op3odo33=os3onoooi=sf+*

t790*6=x^uiAcx*=dxgnngo*=Pln03'=fxl-=3dj9XO0,3=QHSUu£3=xoi+*
S170'=bPQuibxoS-buiuibSno*/.3=<bic/,*o-=oja3=xoa9xsomdsomdxopom**

lZ.Z/0=!ud<-398SS8£*0-=diud**
doot«=oq3odo93=Avs|bno£3=fodo33=op3odo^osSonoooi=sf+*

J79C*c=xbuia9x*=dx9nno3*=PltiS3'=fxx+=Sdj9X©t«=qnsuuc*/=xoj+*
S30'=*ePQuiBXot7*=BmuiB3no*9Z,=d^SZ.0=°1A3=xoa9xsouiusomuxopom**

"afldSJOJSJ9J9UIBJBd3SOW*

HS00=PIS£Z/0=!ud+
SKTO^PQuibx0S'0="euiuiB8no*cx=cbiSZ/0-=°JAsomdsomdxopom*

n3*0=PIlZ.Z,*0=!Ud+
S30'0=upquiBiot7*0=BUimB3nc/6g=cbigL'O=oiasomusomuxopom*
•opsugpBJBqoopqoiBiu01pojsnfpBsbav<b(*3SOWuiojjpourejqo*

HfldSJOJsjopureredxSOW*

*

(mgmSosU)3<K#)£<!>)*
imaip*aadSominjgnanuoooqoBO*

uoponjjsuidno-uooqjjoinsdxsopuo9ipjojbibprmduigaids*

(J9X10JJU00oqoBOuorprtnsuiduQ-uo*afldS)ttioiuSos(^)3<H¥)£<!>[S'p]
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PU9*

uoxux'OUBJV

U08uhuxux00Sosmdo311Q~3!udA
U08u\?\uxuxoS0osmdo£313?udA

0=(£31)aS=(6l£)A0=(Z.S£)aS=(99)a0=(£**)aS=(Z.3)a0=(9)aor
(9)Aubjjjuud*

H3*£=IH3*£=avsomd33o6l£830iui
n9*x=xnrg=avsomd36l£311Z.S££lliui
H9l=IH3£=avsomu06l££31LSI3011™

H9'l=Ins=avsomu099LSI0131iui

H9*l=IH9'£l=avsomd3gfr993313m
H9l=Inrg=avsomu0Z.3ZP0601™

ii9*l=IH3*£=avsomu09Z.3089iui

n3*£=IH3*£=avsomd3309frui
JJ6S06l£863P

JJfr809909P

JJZ.80LZS8SP
JJZ.SlO£t769SP

JJOOl0LS£Z.S3P

JJ3680£313S3P

JJS£80990S3P

copo3PPA

*

S£Z/0=iud<-t-*9SZ.9£*0=d?ud**
doot*=oqSodcx3=Avs[bnoz.9=fod033=op3od033=osSonoooi=sf+*

t7906=x^uiAgx*=dx9nn$o*=Plno3*=fxl-=3dj9X903=qnsuuc*/=xoj+*
C470'=i2pquiBx0S'=TeuiuiBSno*z.3=d3jSZ.*0-=°1A3=ioa9xsomdsomdxopom**

IZ,Z/0=W<I<-398SS8£*0-=d?ud**
d00t7=oq3odo93=Avsfonog3=fodo33=op8od033=osSonoooi=sf+*

t70c/c=XBmA9x*=dxonno3*=pxnS3'=fxx+=Sdj9x©t7=qnsuu£3=xoj+*
S30"=BPQurex017*=^uiuibSno*9Z.=d^gi'O=oja3=xoaoxsomusomuxopom**

"andsjojsjapuiBJBd3sow*

nS0*0=PlS£Z/0=!ud+
c^o*o=BpquiBX0S*0=buiuibSno'Sl*"^SZ,"0-=oiasomdsomdxopom*

n3'0=PllZ.Z/0=!ud+
S30*0=TePQurexop'Q^vaasetng'6£=d%cx*o=oiasomusomuxopom*
*opsu9PBJBqoopqoiBmojpgjsnfpBsbavcbi*3SOWuiojjpgurejqo*

^TldSJOJsjopuiBJBdxSOW*

*

0u9iu39s(y)t7<Ktf)340*
jmojpHfldSomuiJ9norjuo3oqoBO*

uonoiujsuidno-uooipjoqjsdxBopuo9ujjojBjBprmduiHDIdS*

(J9X10JJU039qoB3uoporujsuidnQ-uQ}tfldS)luouiSas(x)p§-(y)3<l>[9>]

£PZ



"9*1=Iii8*9l=avsomd38116113Sl£™
H9*l=lH9'S=Avsouiuo9llZ.ll083£™

n9*x=In9*gx=avsomdzZ.839113£86™
H9*l=IH3*£=avsomu0983Z.8309Z.8™

ii9*l=IH3'£=avsomu009838Z.3PP6^

H3*£=IH3*£=avsomd3308Z.3W8UI
Oopo^lWlA

Sop0061061a

ii9*l=In3*£=avsomd38Z.3ttflZ.l£6101™
ii9*l=Xnz'£=avsomu08Z.3061Z.l££101™

JJ8108H60SP

JJ89003£Z,63P

JJ3680£313S3P

JJ00108S£9S3P

JJ£Zi.0696fr3P

JJ9H0Z.H81SP

JJZ.3S09llZ.0£P

JJ9£l0Z.83S££\o

JJl60983fr££P

JJ1?608Z.3£KP

JJZ.60Z.l££0£P

SOP03PPA

*

S£Z/0=!ud<--rt79SZ.9£*0=dmd**
doot«=oqSodcx3=Avsfonoz.9=?odo33=op3odo33=ossonoool=sf+*

t790*6=x*euiAcx*=dx9nn^o*=Plno3*=fxl-=Sdj9X90*3=qnsuuc*7=xoj+*
ct70'=BpquiBx0S*=euiujbSnQ'LZ=d%SZ.*0-=oja3=xoa9xsomdsomdxopom**

UZ/0=!ud<-398SS8£*0-=diud**
doo^=oqSod093=Avsfonogz=fodo33=opsodo33=osSonoooi=sf+*

^9c*c=xbuia9x*=dx9nno3*=plnc£*=fxx+=Sdj9xot7=qnsuu££=xoj+*
S30'=bPQuibxOfr-EtmiiBSno*9Z.=d^c//o=oja3=xoa9xsomusomuxopom**

•>HldSJOJsjopuiBJBd3SOW*

nSO*0=PlS£Z/0=njd+
StO'O^PQiuBX0S*0=^uiiub2no'Sl""^SZ/O-^iasomdsomdxopom*

H3*0=PlILL'0=W&+
S30*0=BPcmrei0t7*0=BuraiB8nc/6g=cbic//o=oiasomusomuxopom*
*opsu9jOBJBqoopqojsm01pojsnfpBsbavcty'3SOWuiojjp9uiBiqo*

-afldSjojsj9puiBJBdxSOW*

*

(m9ra§9S(^)t7<Ky)3<|>)*
jmaipHfldSoujuijgnoJiuoooqoB3*

uoponnsuidiuo-uooqijoqjBdXBopuo9ujjojbjbpmainHDIdS*

(J9X10J1U0D9qoB3uonoaosuidnQ-uoHTldS)"WoraSos(j)p$-(}i)z$[L'p]

PPZ



vll91190dc0

m314 118 69 117 2 pmos w = 16.8u 1= 1.6u
mll22 69 358 0 0 nmos w = 8u 1 = 1.6u

ml 103 358 123 320 0 nmos w = 3.2u 1 = 1.6u

ml114 358 112 320 2 pmos w = 3.2u 1= 1.6u
ml029 320 0 2 2 pmos w = 3.2u 1= 3.2u
.print tranv(317)
.ic v(317)=0 v(278)=0 v(286)=5 v(287)=0 v(l 16)=5v(l 18)=5
.ic v(117)=0 v(69)=5 v(358)=0 v(320)=5 v(123)=0
vphi2 123 0 pulse 0 5 0 In In 14n 80n
vphi2_b 112 0 pulse 5 0 0 In In 14n 80n
.tran0.1nl5n

.end
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[4.8] <J>2(KH>3(/"0 segment (SPUR On-Chip Instruction CacheController)

* SPICE input data for the critical path ofthe On-Chip Instruction
* Cache Controller in the SPUR circuit

* (<J>2(fl )-$3(R ) segment)
*

*********************************************************************

* MOS 1 parameters for SPUR
* Obtained from MOS2. kp was adjusted to match dc characteristic,
.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.771 ld=0.2u
.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045
+ phi=0.735 ld=0.05u
*********************************************************************

* MOS2 parameters for SPUR.
* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4el6 tpg=+l xj=.25uld=.20u uexp=.16 vmax=5.5e4
* +js=1000ucgso=220pcgdo=220p cj=230u cjsw=260pcgbo=400p
** phi F = -0.3855862 -> phi=0.771
* .model pmos pmos level=2vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* +tox=25n nsub=2.0el6 tpg=-l xj=.20uld=.05u uexp=.15 vmax=9.0e4
* +js=1000u cgso=220p cgdo=220p cj=670ucjsw=215p cgbo=400p
** phi F = 0.3675644 -> phi=0.735
*********************************************************************

*

vdd20dc5

C1363 73 0 979ff

cl374 255 0136ff

cl406 223 0 86ff

C1428 201 0 lOOff

cl519114 0101ff

cl520113 0116ff

cl510115 012ff

m549 201 0 2 2 pmos w = 3.2u 1= 2.4u
m760 0 223 201 0 nmos w = 3.2u 1 = 1.6u

m740 0 255 223 0 nmos w = 3.2u 1 = 1.6u

m836 2 73 255 2 pmos w = 13.6u 1= 1.6u
m325 0 113 73 0 nmos w = 3.2u 1 = 1.6u

m312 113 112 115 2 pmos w = 11.2u 1= 1.6u
m311 115 114 2 2 pmos w = 11.2u 1= 1.6u
vll4 114 OdcO

.print tran v(201)

.ic v(201)=0 v(223)=5 v(255)=0 v(73)=5 v(l 13)=0 v(l 15)=5 v(l 14)=0
vphi2_b 112 0 pulse 5 0 0 In In 14n 80n
.tranO.lnlOn

.end



n9'l=In3'£=avsouiuo0HI*r3l93£™

n9i=in^*g=a\souiuofr3l£31£11Z.3£™

n9*I=Inr11=avsomd3£Z.£11301£™
n9*x=In8*8=avsomuo0£LSS3038™

n9*l=IWPl=avsomd33gc*/ZSZS£8™
n9*l=In3*£=avsouiu003S3£03S69™

"9*x=1nj*£=avsouiu0861£030Z.69™

WZ=In3*£=avsomd3308619frS™
0OP00Z.30Z.3A

n9*l=In3*£=avsomd38610Z.3S93S^8™
SOP0193193A

n9*x=1n*/*£=avsomu0861193S930£8™

JJ30fr3lZ,0SP

JJ9ll0£ll03SP

JJ£3l0861l£HO

JJ860£03S3frP

JJWl03S3LL£\o

JJ9£10SS3H£P

JJ6Z.60£Z,£9£P

JJOOl0S938S£P

JJ3680£313S3P

gopo3PPA

*

Sez,*0=md<•t7t9S^9£*0=diqd**
d00t7=oqSodcx3=Avsfonoz,9=(odo33=opSodo33=osSonoooi=sr+*

t790*6=x*e™A$x*=dx9nngo-PIno3'=rxl-=3di9xoo*3=qnsuu$3=xoi+*
ci70'=Bpqurex0S'=*e™™BSno*Z.3=d^c//o-=ojaz=xoa9xsomdsomdxopom**

lZ.Z/0=iud<-398SS8£*0-=djud**
d00t7=oq3od093=Avsfono£3=fod*033=op3odo33=osSonooOl=sf+*

t79S'S=x*emA9x*=dx9nno3*=pxn$3*=fxx+=Sdj9xot?=qnsuuc£=xoj+*
S30'=BPQureiOfr-buiuibSno*9Z=d3jSZ/O=oia3=xoa9jsomusomux9pom**

HfldSJOJSJOpuiBJBd3SOW*

nS0*0=PlS£Z.*0=iqd+
c*K)*o=BpquiBx0S*0=b™™bSno"Sl=d3lSZ.*0-=oiasomdsomdxopom*

n3*0=PllZ.Z/0=!ud+
S30'0=BPQ™Bl0t''0=Te™™B3ng*6£=d3igi'Q=0Msomusomuxopom*
•opsuopBJBqoopqoiBm01pgjsnfpBsbavd%*3SOW™oJJpounnqo*

HfldSJOJSJOpuiBJBdXSOW*
*********************************************************************

*

(JU9UI39SU)£$-(V)Z$)*
jmaipHfldSominjoxxojjuoooqoBO*

uonoansuidnQ-uQoipjoqjBdXBopuo9qijojBjBpinduiHDIdS*

(J9H0JJU03oqoBDuouoansuidnQ-uoHfidS)JU9mS9S(i)e<K^[6>]

LPZ



vll41140dc5

.print tran v(265)

.ic v(265)=0 v(198)=0 v(203)=5 v(252)=0 v(255)=5 v(73)=0

.ic v(113)=5 v(124)=0v(123)=0
vphi2 123 0 pulse 0 5 0 In In 14n 80n
.tranO.lnlOn

.end
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PU9*

uoxuxouBJj*

U08up\uxuxo0Sosindo311q~3«ldA
0=(H1)aS=(Sll)A0=(£ll)AS=(£Z.)A0=(Z.Z.£)aS=(8Z.£)aS=(6Z.£)aor

(6Z.£)aubjijuud*
*

0op0HIMIA

n9l=Inrxi=avsomd33HISllll£™
n9*l=inril=Avsouid3g\\3x1£XI3l£™

n9*l=In3£=avsomu0£L£110S3£™

n9*x=xn8*9l=avsomd3LL££L%L£SPlI™
OOPOOHOIIA

n9l=in8*9l=avsomd38Z.£Oil39HI™
n9t=Infr=avsomu00LL£6L£6SII™

JJ310SH01SP

JJ1010H161SP

JJ9llO£ll03SP

JJ6Z.60£Z.£9£P
JJ6010Z.Z.£0WP

JJ9606Z.£6£3P

SOP03PPA

*

S£Z/0=™d<-t-*9SZ.9£*0=d™d**
doot7=oq3od5X3=Avsfonoz,9=fod*033=opSodo^osSonooOl=sf+*

t790*6=x^™Asr=dxonngo*=Plno3=?xl-=Sdj9X90*3=qnsuu£3=xoj+*
c^tO-Bpqurex0S'=^™™bSno*z.3=d2isz/0-=oia3=ioaoxsomdsomdxopom**

UZ/0=™d<-398SS8£*0-=d™d**
doOt^oqSodo93=Avsfon0£3=(bdozz=opSodo33=osSonoooi=sf+*

t79£'S=xB™A9x*=dxonno3*=Plnc*/*=fx\+=2d\9xo*7=qnsuuc*£=xoj+*
S30-Bpqurexo*r'=*6™™B3nO'9L=&[SL'O=°1a3=pA9jsouiusomux9pom**

HQdSJOJsjgpuiBJBd3SOW*

nS0*0=PIS£Z/0=™d+
SWO^Pq™^OS'O^™™^no*sl=d3iSZ,'0-=°1Asomdsomdxopom*

n3*0=PllZ,Z/0=™d+
S30*0=BPqureiOfr'O""2*6™™^nS'6£=&%SL'O=oi*somusomuxopom*
•opsuopBJBqoopqoiBm01pgjsnfpBsbavdbt"3SOW™oJJpounnqo*

HfldSJOJsjgpuiBJBdxSOW*
*********************************************************************

*

(m9uiS9s(y)x<Htf)3<i>)*
jmojp>mdSominJ9nojjuo39qoB3*

uoponnsuidnQ-uooqjjoipBdpppuo9ipjojbjbpmainHDIdS*

(J9XX0JJU03oqoBOuopoansuidiqo-uoHfldS)lu9iuS9S(y)x<My)3<l>[01**]

6*3
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[4.11] §2(R)-$1(F) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* ($2(R)-$l(F) segment)
*

*********************************************************************

* MOS 1 parameters for SPUR
* Obtained from MOS2. kp was adjustedto match dc characteristic,
.model nmos nmos vto= 0.75 kp=39.5ugamma=0.40 lambda=0.025
+ phi=0.771 ld=0.2u
jnodel pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045
+ phi=0.7351d=0.05u
*********************************************************************

* MOS2 parameters for SPUR.
* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4el6 tpg=+l xj=.25u ld=.20u uexp=.16 vmax=5.5e4
* +js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p
** phi F = -0.3855862 -> phi=0.771
* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0el6 tpg=-l xj=.20uld=.05u uexp=.15 vmax=9.0e4
* +js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p
** phi F = 0.3675644 -> phi=0.735
*********************************************************************

*

vdd20dc5

cl217 393 097ff

C1250 66 0 835ff

C1252 123 0 892ff

cl257 357 0 lOOff

cl524 99 0120ff

cl538 88 0 65ff

cl545 82 050ff

cl298 319 059ff

ml 178 393 129 82 2 pmos w = 3.2u 1= 1.6u
vl29 129 OdcO

mll81 393 131 82 0 nmos w = 3.2u 1= 1.6u
vl3U310dc5

m246 82 0 2 2 pmos w = 3.2u 1= 3.2u
m270 82 88 0 0 nmos w = 3.2u 1 = 1.6u

m269 0 99 88 0 nmos w = 3.2u 1 = 1.6u
m304 2 66 99 2 pmos w = 13.6u 1= 1.6u
ml 121 0 357 66 0 nmos w = 8u 1 = 1.6u

ml 102 357 123 319 0 nmos w = 3.2u 1 = 1.6u

ml 113 357 112 319 2 pmos w = 3.2u 1= 1.6u
ml028 319 0 2 2 pmos w = 3.2u 1= 3.2u
.print tran v(393)



.ic v(393)=0 v(82)=0v(88)=5v(99)=0v(66)=5 v(357)=0v(319)=5 v(123)=0
vphi2 1230 pulse 0 5 0 In In 14n 80n
vphi2_b 112 0 pulse 5 0 0 In In 14n 80n
.tranO.lnlOn

.end
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[4.12] §l(R)-§MR) segment (SPUR On-Chip instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* (<J>1(/?H>4(/*) segment)
*

*********************************************************************

* MOSl parameters for SPUR
* Obtained from MOS2. kp was adjusted to match dc characteristic,
.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.771 ld=0.2u
.model pmos pmos vto=-0.75 kp=15.0ugamma=0.50 lambda=0.045
+ phi=0.7351d=0.05u
*********************************************************************

* MOS2 parameters for SPUR.
* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4el6 tpg=+l xj=.25uld=.20uuexp=.16 vmax=5.5e4
* +js=1000u cgso=220pcgdo=220p cj=230u cjsw=260pcgbo=400p
** phi F = -0.3855862 -> phi=0.771
* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0el6 tpg=-l xj=.20u ld=.05u uexp=.15 vmax=9.0e4
* + js=1000u cgso=220p cgdo=220pcj=670ucjsw=215p cgbo=400p
** phi F = 0.3675644 -> phi=0.735
*********************************************************************

*

vdd20dc5

cl370 64 0730ff

cl4891010585ff

cl490143 0116ff

cl586 26 091ff

C1595 16 0 178ff

cl606 6 0 84ff

C1488 144 0 12ff

m4 6 0 2 2 pmos w = 3.2u 1= 3.2u
ml67 6 26 0 0 nmos w = 3.2u 1 = 1.6u

m70 0 16 26 0 nmos w = 3.2u 1 = 1.6u

m204 2 64 16 2 pmos w = 13.6u 1= 1.6u
m372 0 143 64 0 nmos w = 3.2u 1 = 1.6u

m370 143 129 144 2 pmos w = 11.2u 1= 1.6u
m369 144 101 2 2 pmos w = 11.2u 1= 1.6u
vlOl 101 OdcO

.print tran v(6)

.ic v(6)=0 v(26)=5 v(16)=0 v(64)=5 v(143)=0
vphil_b 129 0 pulse 5 0 0 In In 14n 80n
.tranO.lnlOn

.end



(g6l)Aubjjmud*

OOPOIOI101A
n9*x=inril=avsomdz3101**l69£™

n9*x=InrXI=avsomdz**l631£H0Z.£™
n9*l=In3*£=avsouiuo*9£H03Z,£™

n9l=In9£l=avsomd3£81*93l£S™
n9*x=xnrg=avsomuo8SI£810£**™

n9*x=Inr£=avsomuo08SISSIIS*™

n3*£=In3'£=avsomd330SSI£6£™
OOP0*61*61a

n9*l=Inr£=avsomd3ccxttfl£61S£S™
SOP0061061A

n9*x=xnrg=avsomu0SSI061£6163S™

JJS8S010168*P

JJ310**l88*P

JJ9llO£H06*P

JJ0£Z.0*90Z.£P

JJ8Z.I0£81SPPIO

JJSZ.08SIUHO

JJS80SSIPLPlo

JJ960£619£*P

copo3PPA

*

S£Z.*0=iqd<-**9SZ.9£*0=d!U_d**
d00*=oqSodgx3=Avsfonoz.9=(od033=opSod*033=os§onooOl=sf+*

|790,6=x*e™Acx*=dx9nngo*=Plnor=fxl-=3dj9ioo*3=qnsuuc^=xoi+*
c^o-BpquiBi0£'=muieSno*z.3=d^c/,*o-=om3=xoa9xsomdsomdxopom**

UZ/0=!ud<-398SS8£*0-=d™d**
doo*=oq8odo93=Avsfon0£3=fodo33=opSod*033=osSon000l=sf+*

t70C/£=xBUiA9x*=dxonno3*=pingr=[xx+=Sdj9XO|7=qnsuuc-7=xoj+*
S30*=BPqurei0*'=*e™™B2no*9Z.=d5ic//o=ou3=xoaoxsouiusomuxopom**

'HfldSJOJSJOpuiBJBd3S0W*

nS0*0=PIS£Z/0=!ud+
SWO^Pq™*3!QS'OF&mnsSno*SI=d^SZ,'0-=°1Asomdsomdxopom*

n*r*o=pilZ.Z/0=™d+
S30'0=BPq™Bl0**0=b™uib3nc/6£=cblgL'O=ojasomusomuxopom*
•opsuopBJBqoopqojBtu01pajsnfpBsbavcbj*3SOW™°JJpounnqo*

•dfldSJOJsiopmBJBdxSOW*

*

(mouiSos(^)t7<Ky)l<l>)*
imojpHridSoipuiJoxfOJiuoooqoBO*

uopounsuidiqo-uooqijoqjBdnppuooqjjojBjBpmainHDIdS*

(J9XX0JJU03oqoBOuoponnsuidnrj-uo>IfldS)luotmlos(j)p$-(}l)lb[£l'*l

£S3



.ic v(193)=0 v(155)=0 v(158)=5 v(183)=0 v(64)=5 v(143)=0 v(144)=5
vphilj) 129 0 pulse 5 0 0 In In 14n 80n
.tranO.lnlOn

.end
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PU3*

uoxuxoubjj*

U08uhuiux00Sosmdo631q~l™dA
S=(**1)a0=(£*1)aS=(*9)a0=(Z.03)aS=(££3)a0=(103)aor

(103)aubxjmud*
OOPOIOIIOIA

n9*l=Inr11=avsomdz3101**l69£™
n9*x=xnrXI=avsomd3m631£*X0Z.£™

n9*x=Inr£=avsouiu0*9£*l03Z.£™

n9*x=xn9*gx=avsomd3Z.03*9306Z,™
n9*l=Inr£=avsouiu0££3Z.030£99™

n9l=Inr£=avsomu00££310369Z.™

n*'3=Inr£=avsomd3301036PS^
JJS8S010168*P

JJ310**l88*P

JJ9llO£H06*P
JJ0£Z.0*90Z.£P

JJ**30Z,03£3*P
JJ160££396£P

JJOOl010383*P
SOP03PPA

*

S£Z/0=™d<-**9SZ,9£*0=d™d**
d00*=oq3odcx3=Avsfonoz.9=fodo33=op8odo33=osSonoooi=sf+*

t7O0*6=xBmAg\*=dxonn^o*=Plnor=fxl-=3dj9ioo*3=qnsuuc-7=xoj+*
ct70'=BpquiBX0S'=T3™™B^nO*Z.3=<fciSZ.*0"=°1A3=IOaoisomdsomdxopom**

UZ/0=™d<-398SS8£*0-=d™d**
doo*=oq3od093=Avsfono£3=fodo33=op3odo33=os§onrjooi=sf+*

t7ac/c=xBuiA9x*=dxonno3*=pxnc*/*=fxx+=Sdj9xat7=qnsuugz=xo\+*
S30*=BPqurei0*'=*eunuB2no*9Z,=d5igx*o=oja3=xoaoisomusomuxopom**

HTidSJOJSJOpuiBJBd3SOW*

nS0'0=PIS£Z,*0=Wd+
SWO^Pq™13!0S'0='e™™B3no*Sl=d3iSZ.*0-=°1Asomdsomdxopom*

nro=Piuz.*o=iqd+
S30'0='ePq™*el0*'0=*6™™b3n£*6£=d3igL'O=oiasomusomuxopom*
'opsuopBJBqoopqojBm01pajsnfpBsbavcfty'3SOW™0JJpourejqo*

^jfldSJOJsjopmuredxSOW*

*

(moui3os(y)g<Hy)l<!>)*
jmaipHfldSoipuijonojjuo3oqoBO*

uoponjjsuidiqo-uooqjjoqjBdpppuoaqijojBiBpmain3DidS*

(jono-nuoDoqoBOuopoansuidnQ-uoHfldS)momSos(j/)e<Ktf)l<l»[*l*]

SS3
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[4.15] §\(R)-ty3(F) segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* (<|>1(/?H>3(F) segment)
*

*********************************************************************

* MOSl parameters for SPUR
* Obtained from MOS2. kp was adjusted to match dc characteristic,
.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.771 ld=0.2u
.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50lambda=0.045
+ phi=0.735 ld=0.05u
*********************************************************************

* MOS2 parameters for SPUR.
* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4el6 tpg=+l xj=.25u ld=.20u uexp=.16 vmax=5.5e4
* +js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p
** phi F = -0.3855862 -> phi=0.771
* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0el6 tpg=-l xj=.20u ld=.05uuexp=.15 vmax=9.0e4
* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p
** phi F = 0.3675644 -> phi=0.735
*********************************************************************

*

vdd20dc5

C1358 265 0 lOOff

cl370 64 0 730ff

cl415 213 093ff

cl423 207 0244ff

cl431198 0123ff

cl4891010 585ff

cl490143 0116ff

cl488 144 0 12ff

m830 265 261 198 0 nmos w = 3.2u 1 = 1.6u

v2612610dc5

m845 265 270 198 2 pmos w = 3.2u 1= 1.6u
v270 270 OdcO

m546 198 0 2 2 pmos w = 3.2u 1= 2.4u
m716 0 213 198 0 nmos w = 3.2u 1= 1.6u
m570 0 207 213 0 nmos w = 3.2u 1 = 1.6u

m790 2 64 207 2 pmos w = 13.6u 1= 1.6u
m372 0 143 64 0 nmos w = 3.2u 1 = 1.6u

m370 143 129 144 2 pmos w = 11.2u 1= 1.6u
m369 144 101 2 2 pmos w = 11.2u 1= 1.6u
vlOl 101 OdcO

.print tran v(265)



.ic v(265)=0 v(198)=0 v(213)=5 v(207)=0 v(64)=5 v(143)=0 v(144)=5
vphilj) 129 0 pulse 5 0 0 In In 14n 80n
.tranO.lnlOn

.end
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[4.16] <j>l(#)H>2v70 segment (SPUR On-Chip Instruction Cache Controller)

* SPICE input data for the critical path of the On-Chip Instruction
* Cache Controller in the SPUR circuit

* (<J>1(jR H>2(K ) segment)
*

*********************************************************************

* MOS 1 parameters for SPUR
* Obtained from MOS2. kp was adjusted to match dc characteristic,
.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40lambda=0.025
+ phi=0.771 ld=0.2u
.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50lambda=0.045
+ phi=0.7351d=0.05u
*********************************************************************

* MOS2 parameters for SPUR.
* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4el6 tpg=+l xj=.25uld=.20uuexp=.16 vmax=5.5e4
* +js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p
** phi F = -0.3855862 -> phi=0.771
* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* +tox=25n nsub=2.0el6 tpg=-l xj=.20u id=.05u uexp=.15 vmax=9.0e4
* +js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p
** phi F = 0.3675644 -> phi=0.735
*********************************************************************

*

vdd20dc5

cl258 75 0744ff

C1276 337 0 153ff

C1288 329 0 67ff

cl296 3210 50ff

cl480150 0111ff

cl481149 0116ff

C1479 151 0 12ff

ml030 321 0 2 2 pmos w = 3.2u 1= 3.2u
ml058 0 329 321 0 nmos w = 3.2u 1 = 1.6u

ml057 0 337 329 0 nmos w = 3.2u 1 = 1.6u

ml 115 2 75 337 2 pmos w = 13.6u 1= 1.6u
m388 0 149 75 0 nmos w = 3.2u 1 = 1.6u

m386 149 129 151 2 pmos w = 11.2u 1= 1.6u
m385 151 150 2 2 pmos w = 11.2u 1= 1.6u
vl50 150 OdcO
.print tran v(321)
.ic v(321)=0 v(329)=5 v(337)=0 v(75)=5 v(149)=0 v(151)=5
vphil_b 129 0 pulse 5 0 0 In In 14n 80n
.tranO.lnlOn

.end



(X9£)awinmud*
OOPO£01£OIA

n9*l=Inr11=avsomdz3£01LPlLL£w
Wl=Inril=avsomdzLPl6319*18Z.£™

n9l=Inr£=avsouiuoS99*1008£™

n9*l=In9*£l=avsomdzS*£S93S801™
n9*x=xn8*8=avsouiuo0S*£S££*Z.0l™

n9*x=xnrg=avsomuo0S££*3£**0l™

nr£=Inr£=avsomd330*3£££01™
n9*l=In3*£=avsomuo£3£*3£0Z,*Ol™

SOPO£31£31A

n9l=In**9=avsomuo£3££3119£9011™

JJ310LPl*8*P

JJ9ll09H98*P
JJ*8SO£OlS8*P

JJIS0£3£*63P

JJ£90*3££63P

JJ8S0S££383P

JJZ.010S*£8Z.3P
JJ63Z,0S9*93P

JJH1019££S3P

SOP03PPA

*

S£Z.*0=iqd<-1t*9SZ.9£*0=d™d**
d00*=oq3odcx3=A\sfonoz,9=fod033=op3odo^=os3on()00l=sf+*

pdO$=xBuiA£i*=dxonnso*=PIno3'=fxl-=Sdi9xoo*3=qnsuucx=xoi+*
S*0'=BPqurei0S'=B™™B3nO'LZ=dyiSZ.'0-=oia3=paoxsomdsomdxopom**

UZ/0=!ud<-398SS8£*0-=dffld**
doo*=oq3odo93=Avsfono£3=(bd*033=op3odo33=osSonooOl=sf+*

t70cc=xBmA9x*=dxonnor=Plncr=fxx+=Sdj9xot7=qnsuuc3=xoi+*
c-70'=BpquiBioy=vwwes!tiO*9Z,=d3lSL'O=°lA3=xoaoxsomusomuppour*

HTldSJOJsiopuiBJBd3SOW*

nS0*0=PIS£Z.0=Wd+
S*0*0='ePq™BIQS"QF&unns!Sno*cx=d3ic£*o-=ojasomdsomdxopom*

nro=Piuz.*o=wd+
S30"0=BPq™BlQ/p'O^inaieSn^*6£=d3ic//o=ojasomusomuxopom*
•opsuojoBJBqoopqojBiuoipojsnfpBsbavd^*3SOW™ojjpounnqo*

"dTldSJOJSJOpuiBJBdXSOW*

*

OuoiiiSosUtecHyM)*
jmaip-dQdSoqiuijononuoooqoBO*

uoponnsuidiiQ-uooqijoqjBdiBopuooipjojBjBpjnduiaoidS*

(jonojjuoooqoBOuoponnsuidnQ-uoHfldS)JuomSos(^)3<Htf)l<i>[Z.I**]

6S3



.ic v(361)=5 v(323)=5 v(324)=0 v(335)=5

.ic v(345)=0 v(65)=5 v(146)=0 v(147)=5
vphilj) 129 0 pulse 5 0 0 In In 14n 80n
.tranO.lnlOn

.end
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JJ0930£l3S££9O

JJ90£0*139£190

JJ093033*93190

JJ90£0£3*Z,36SO

JJ0930l£9Z.l6S0

JJ90£03£93USO

JJZ.610099968SO

JJSIO*99068SO

JJS330399368SO

0=(9Z,l)Aor
S=(9Z.8)aS=(SZ,8)aS=(*Z.8)a0=(Z.98)aS=(906)a0=(098)aor
S=(0*6)a0=(913)aS=(Z.13)aS=(£13)a0=(*13)aS=(33*)aor
0=(£3*)aS=(1£9)a0=(3£9)aS=(099)a0=(*99)a0=(399)aor

copoSPPA

U003UOOIuxux0S0osmdo9Z.I£™dA
pomouoSBdou}do*

(399)auunrjuud*
uo3ux*Oubjj*

*

S£Z.*0=iqd<-**9SZ,9£*0=diqd**
d(X)*=oqSodcx3=Avsfonoz.9=|bd033=op3odo33=os3onrjoox=sf+*

t7O0'6=XB™Asl'=dxonn^o-Plnor=fxl-=3dj9xoo*3=qnsuuc-/=xoj+*
S*0'=BPqiuBI0S'=b™uib2no*z.3=d5icx*o-=oja3=xoaoxsomdsomdxopom**

lZ,Z/0=™.d<-398SS8£*0-=d™d**
d00*=oq3odo9j=Avsfono£3=fodo33=opSodo33=os3onoooi=sf+*

f70C*c=xBuiA9x*=dxonnor=PXn£r=[xx+=8dj9i9|7=qnsuu£<*=xoi+*
S30'=BPq™Bl0**=BmuiBSno*9Z.=dblSZ/O=°1A3=10A9Xsouiusomuxopom**

"dfldSJOJSJOpuiBJBd3SOW*

nS0*0=PlS£Z.*0=iqd+
S*0'0=BPq™BlOS'O""^™™^no*Sl=d>fSZ.'0-=°1Asomdsomdxopom*

nrO=PlUZ.*0=iqd+
S30'0=BPq™Bl0**0=1*™™!^nc*6£=d3|c//o=ojasomusomuxopom*
•opstrapBJBqoopqoiBinonpgjsnfpBsbavd^*3SOW™ojjp9uiBjqo*

^QdSJOJsjgpuiBJBdxSOW*
TTT*rTTTT*T*TTTTTTTTT

*

(m9tii39SU)g-Mtf)£<t>)*
flTVHfldSoqijoipBdXBopuooqijojbjbpmduiHDIdS*

(rnvHQdS)woraSos(j/)£<Hy)£4>[rs]

flTYHfldSomjoipBdXBopuo9qjjojbjbpmduiHDIdS[S]
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c6338 217 0 3ff

c6340216 055ff

c5606 940 063ff

C5617 860 0 148ff

c5643 906 0 63ff

C5644 867 0 108ff

c5676 876 0 3ff

C5677 875 0 3ff

C5680 874 0 80ff

c5709176 07502ff

m881 662 8 664 5 pmos w = 13.6u 1= 1.6u
v8 8 0dcO

m880 664 660 5 5 pmos w = 13.6u 1= 1.6u
ml073 660 632 807 0 nmos w = 6.4u 1 = 1.6u

c5741807 0 3ff

.icv(807)=5
ml072 807 806 805 0 nmos w = 6.4u 1 = 1.6u

C5742 805 0 3ff

v806 806 0dc5

.icv(805)=5
ml071 805 176 0 0 nmos w = 6.4u 1 = 1.6u

m838 632 631 5 5 pmos w = 16u 1= 1.6u
m841 631 423 635 0 nmos w = 6.4u 1 = 1.6u

c5920 635 0 3ff

.icv(635)=5
m840 635 634 633 0 nmos w = 6.4u 1 = 1.6u

C5921 633 0 3ff

v634 634 0dc5

.icv(633)=5
m839 633 176 0 0 nmos w = 6.4u 1 = 1.6u

m556 423 422 5 5 pmos w = 16u 1= 1.6u
m559 422 214 426 0 nmos w = 6.4u 1 = 1.6u

c6129426 03ff

.icv(426)=5
m558 426 425 424 0 nmos w = 6.4u 1 = 1.6u

v425 425Ode5

c6130424 0 3ff

.icv(424)=5
m557 424 176 0 0 nmos w = 6.4u 1 = 1.6u

m274 214 213 5 5 pmos w = 16u 1= 1.6u
m277 213 180 217 0 nmos w = 6.4u 1 = 1.6u

vl801800dc5

m276 217 216 215 0 nmos w = 6.4u 1 = 1.6u

c6339 215 0 3ff

.icv(215)=5
m275 215 176 0 0 nmos w = 6.4u 1 = 1.6u

ml325 216 940 5 5 pmos w = 8u 1= 1.6u
ml319 941 860 940 0 nmos w = 6.4u 1 = 1.6u

C5605 941 0 3ff
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.icv(941)=5
ml320 943 942 941 0 nmos w = 6.4u 1 = 1.6u

v942 942 0dc5

c5604 943 0 3ff

.icv(943)=5
ml321 0 176 943 0 nmos w = 6.4u 1 = 1.6u

ml269 860 906 5 5 pmos w = 8u 1= 1.6u
ml263 907 867 906 0 nmos w = 6.4u 1 = 1.6u

c5642907 0 3ff

.icv(907)=5
ml264 908 893 907 0 nmos w = 6.4u 1 = 1.6u

c5641908 0 3ff

v893 893 0dc5

.icv(908)=5
ml265 0 176 908 0 nmos w = 6.4u 1 = 1.6u

ml210 867 874 5 5 pmos w = 8u 1= 1.6u
ml214 875 3 874 0 nmos w = 6.4u 1 = 1.6u

v3 3 0dc5

ml215 876 30 875 0 nmos w = 6.4u 1 = 1.6u

v30 30 0dc5

ml216 0 176 876 0 nmos w = 6.4u 1 = 1.6u

.end
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[5.2] <J>2(tf H>3(fl ) segment (SPUR ALU)

* SPICE input data for the critical path of the SPUR ALU
* (<j>2(fl H>3(/*) segment)
*

*********************************************************************

* MOS 1 parameters for SPUR
* Obtained from MOS2. kp was adjusted to match dc characteristic,
.model nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.771 ld=0.2u
.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50lambda=0.045
+ phi=0.735 ld=0.05u
*********************************************************************

* MOS2 parameters for SPUR.
* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4el6 tpg=+l xj=.25u ld=.20u uexp=.16 vmax=5.5e4
* + js=1000u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=400p
** phi F = -0.3855862 -> phi=0.771
* .model pmos pmos level=2 vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0el6 tpg=-l xj=.20u ld=.05u uexp=.15 vmax=9.0e4
* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=400p
** phi F = 0.3675644 -> phi=0.735
*********************************************************************

*

.tran 0.05n 15n

.print tran v(1451) v(178)
vphi2 1934 0 pulse 0 5 0 In In lOOn 200n
vphi2_bar 1937 0 pulse 5 0 0 In In lOOn 200n
vdd5 0dc5

.icv(178)=0 v(849)=5 v(848)=0 v(864)=5 v(3)=0 v(1459)=5

.ic v(1462)=5 v(1456)=0 v(1451)=5 v(1448)=5 v(1936)=0

.icv(1935)=5v(1934)=0
*

C6376 178 0 85ff

C5697 849 0 85ff

C5698 848 093ff

C5684 864 0 85ff
C6543 3 0 326ff

C5093 1459 0 144ff

C5085 1462 0 3ff

c5092 1456 0181ff

C5096 1451 0 145ff

C5098 1448 0 181ff

c46111936 0196ff

C4613 1935 6 lOOff
c4427 1934 0965ff



ml 140 178 849 5 5 pmos w = 7.2u 1= 1.6u
ml 135 849 848 0 0 nmos w = 3.2u 1 = 1.6u

ml 188 848 864 5 5 pmos w = 7.2u 1= 1.6u
ml 183 864 3 0 0 nmos w = 3.2u 1 = 1.6u

m2321 3 1459 5 5 pmos w = 18.4u 1= 1.6u
m2327 1459 1454 1462 0 nmos w = 6.4u 1 = 1.6u

vl45414540dc5

m2326 1462 1456 0 0 nmos w = 6.4u 1 = 1.6u

m2312 5 1451 1456 5 pmos w = 8u 1= 1.6u
m2310 1451 14501448 5 pmos w = 3.2u 1= 1.6u
vl450 1450 OdcO

m3395 0 1936 1448" 0 nmos w = 8u 1 = 1.6u

m3398 5 1935 1936 5 pmos w = 9.6u 1= 1.6u
m3391 1935 1934 1933 0 nmos w = 3.2u 1 = 1.6u

m3396 1935 1937 1933 5 pmos w = 8u 1= 1.6u
c4612 1933 073ff

,icv(1933)=0
m4032 1933 2128 0 0 nmos w = 3.2u 1 = 1.6u

v2128 2128 0dc5

.end
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[5.3] $2(R y$4(R) segment (SPUR ALU)

* SPICE input data for the critical path of the SPUR ALU
* (<j>2(rt H>4(rt) segment)
*

*********************************************************************

* MOSl parameters for SPUR
* Obtained from MOS2. kp was adjusted to match dc characteristic,
jnodel nmos nmos vto= 0.75 kp=39.5u gamma=0.40 lambda=0.025
+ phi=0.771 ld=0.2u
.model pmos pmos vto=-0.75 kp=15.0u gamma=0.50 lambda=0.045
+ phi=0.7351d=0.05u
*********************************************************************

* MOS2 parameters for SPUR.
* .model nmos nmos level=2 vto= 0.75 kp=76.0u gamma=.40 lambda=.025
* + tox=25n nsub=4el6 tpg=+l xj=.25uld=.20uuexp=.16 vmax=5.5e4
* +js=1000u cgso=220pcgdo=220p cj=230u cjsw=260p cgbo=400p
** phi F =-0.3855862-> phi=0.771
* .model pmos pmos level=2vto=-0.75 kp=27.0u gamma=.50 lambda=.045
* + tox=25n nsub=2.0el6 tpg=-l xj=.20u ld=.05u uexp=.15 vmax=9.0e4
* + js=1000u cgso=220p cgdo=220p cj=670u cjsw=215pcgbo=400p
** phi F = 0.3675644 -> phi=0.735
*********************************************************************

*

.tran 0.05n 15n

.print tran v(92)

.opt nopage nomod limpts=800
vphi2 1934 0 pulse 0 5 0 In In lOOn 200n
vphi2_bar 1937 0 pulse 5 0 0 In In lOOn 200n
vdd5 0dc5

.icv(92)=5 v(93)=0 v(1523)=5 v(1526)=5 v(1520)=0

.ic v(1515)=5 v(1513)=5 v(1961)=0 v(1960)=5 v(1934)=0
c6458 92 0112ff

c645993 0 327ff

C5033 1523 0 144ff

c50251526 03ff

c50321520 0181ff

C5036 1515 0 145ff

C5038 1513 0 181ff

C4587 1961 0 196ff

c4589 1960 0 lOOff

c4427 1934 0 965ff

ml 13 0 93 92 0 nmos w = 3.2u 1 = 1.6u

m2453 93 1523 5 5 pmos w = 18.4u 1= 1.6u
m2459 1523 1518 1526 0 nmos w = 6.4u 1 = 1.6u

vl518 1518 0dc5

m2458 1526 1520 0 0 nmos w = 6.4u 1 = 1.6u



m2444 5 1515 1520 5 pmos w = 8u 1= 1.6u
m2442 1515 1450 1513 5 pmos w = 3.2u 1= 1.6u
V1450 1450 OdcO

m3475 0 1961 1513 0 nmos w = 8u 1 = 1.6u

m3478 5 1960 1961 5 pmos w = 9.6u 1= 1.6u
m3471 1960 1934 1959 0 nmos w = 3.2u 1 = 1.6u

m3476 1960 1937 1959 5 pmos w = 8u 1= 1.6u
c45881959 073ff
.icv(1959)=0
m4064 1959 2144 0 0 nmos w = 3.2u 1 = 1.6u

v2144 2144 0dc5

.end
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APPENDIX 4

EXAMPLE RUNS

This appendix contains the netlistof a simple example, 1bit of the SOAR ALU, and the

output from the E-TV program. Copies of all software, and the examples described in this

dissertation, are available from the following address:

The Software Office

Industrial Liaison Program

Departmentof Electrical Engineering and Computer Sciences,

University of California at Berkeley

Berkeley, CA 94720



[1] E-TV input data for the SOAR lbit circuit

*** i ^t of soar alu

* voltage step
.step 0.1
* analysis request card
.phase high PHI3
*************** MOSl parameters for soar *****************************
* Obtained from MOS2. kp was adjusted to match dc characteristic.
.modelnmosnmosvto=0.93 kp=21.8e-6 gamma=0.834 phi=0.695 lambda=0.025 ld=0.24
.modelpmospmosvto=-0.844 kp=4.45e-6 gamma=0.723 phi=0.514 lambda=0.0527 ld=0.51
*

vDD10dc5

vsum 33 0 dc 5

vand320dc5

vxor 34 0 dc 5

vor310dc5
*

* clock signal
dataciockPHI3PHI3 15 .
.model Pffl3 pulse 0 5 30e-9 32e-9 80e-9 82e-9 100e-9
*

* MOS transistors. The default unit ofW and L is um.

ml90 136 135 11 pmos w = 71 = 3 Flow 1
ml911138 137 1 pmos w = 71 = 3 Flow 1
ml93 1141140 1 pmos w = 71 = 3 Flow 1
ml94 1 143 142 1 pmos w = 71 = 3 Row 1
ml96 136 144 145 0 nmos w = 41 = 3 Flow 136
ml97 0 135 136 0 nmos w = 71 = 3 Flow 0

ml98 140 31138 0 nmos w = 41 = 3 Flow 140
ml99 142 32 138 0 nmos w = 41 = 3 Flow 142
m2010 141140 0 nmos w = 71 = 3 Row 0
m202 0 143 142 0 nmos w = 71 = 3 Row 0
m204 0 138 137 0 nmos w = 41 = 3 Row 0

m205 145 33 138 0 nmos w = 41 = 3 Row 145

m206 135 34 138 0 nmos w = 41 = 3 Row 135

m208 150 149 135 0 nmos w =•41 = 3 Row 150
m209 152 151150 0 nmos w = 41 = 3 Row 152
m210 154 153 141 0 nmos w = 41 = 3 Row 154

m211155421380nmosw = 41 = 3Row 155

m215 160 153 143 0 nmos w = 41 = 3 Flow 160
m216 161153 135 0 nmos w = 41 = 3 Row 161
m220 135 108 145 0 nmos w = 41 = 3 Flow 135

m223 165 155 1410 nmos w = 41 = 3 Flow 165

m224 166155 160 0 nmos w = 41 = 3 Row 166

m225 167 155 161 0 nmos w = 41 = 3 Flow 167

m231 0 15 154 0 nmos w = 41 = 3 Row 0

m232 0 15 165 0 nmos w = 41 = 3 Row 0

m233 0 15 166 0 nmos w = 41 = 3 Row 0
m234 0 15 167 0 nmos w = 41 = 3 Row 0

m235 0 15 152 0 nmos w = 41 = 3 Row 0
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m284138 55189 0nmosw = 91 = 3Rowl89

m309 138 15 11 pmos w = 71 = 3 Row 1
m312115 1411 pmos w = 71 = 3Rowl
m313 143 15 11 pmos w = 71 = 3 Row 1
m315 135 15 11 pmos w = 71 = 3 Row 1
* Capacitance. The default unit is fF.
C1792 135 0124

C150150 01

C15215201

cl61 16101

c 167 16701
cl803 138 0139
C137137 01

C190136059

C145145 01

C1804 143 067

C1807 142056

cl60 160 0 1

cl66 16601

C1797 1410 80

cl54 154 0 1

cl65 165 0 1

C14014001

.end
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[2] Output of the E-TVprogram for the SOAR lbit circuit

E-TV:

[ CLOCK SKEW VALUES ]

The clock signal is the one used to synchronize the
orderly and controlled flow of information in the system.
Primary clocks 'phi' and 'phi-bar' are defined to have
the same rising and falling slopes. They are defined to
cross each other at the inverting voltage of inverter (Vinv)
which can be set by the user.
'phi(-bar)' nodes are compared to primary clock 'phi(-bar)'.
Rising (falling) skew is the time difference of rising
(falling) waveforms of the clock node and primary signal.

node_name(rising_skew/falling_skew)

[1] clock 'PHI3':
rises at 31.00ns, falls at 81.00ns with a period of 100.00ns

['PHI3'clock nodes!
(1) 15 (0.00ns/0.00ns): primary

['PHI3-bar' clock nodes]: None

No logic-control signals are given in the input file.

[ TIMING CONSTRAINT CHECK ]

SYNCHRONOUS SYSTEMS
Logic paths from input nodes/clocked storage elements to
output nodes/clocked storage elements, that are not inter
posed by other clocked storage elements, are verified using
actual arriving logic-control/clocksignals.
Paths ending at clocked storage elements are reported in the
order of the worst-case evaluation-time margin,
while paths ending at output nodes (blocked nodes) are
reported in order of the worst-case delay.

« PHI3 section »

(Timing Constraint Check against Clock Signals)
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[Segment 1] PHI3(R)->PHI3(F): Clock SeparationOK.

Primary clock information:
PHD rises at 31.00ns and PHI3 falls at 81.00ns. Sep.=50.00ns

(1) Node 138 fallsat 44.94ns (Delay=13.94ns) while a limiting
clock node 15 (PHI3) falls at 81.00ns (F Skew=0.00ns)
Separation margin: 36.06ns

Node 138 falls at 44.94ns thru (m205)
Node 145 falls at 35.11ns thru (m220)
Node 135 falls at 35.03ns thru (m216)
Node 161 falls at 30.90ns thru (m225)
Node 167 falls at 30.78ns thru (m234)
Node 15 (clock PHI3) rises at 31.00ns

(2) Node 135 falls at 35.03ns (Delay=4.03ns) while a limiting
clock node 15 (PHI3) falls at 81.00ns (F Skew=0.00ns)
Separation margin: 45.97ns

Node 135 falls at 35.03ns thru (m216)
Node 161 falls at 30.90ns thru (m225)
Node 167 falls at 30.78ns thru (m234)
Node 15 (clock PHI3) rises at 31.00ns

(3) Node 143 falls at 33.26ns (Delay=2.26ns) while a limiting
clock node 15 (PHD) falls at 81.00ns (F Skew=0.00ns)
Separation margin: 47.74ns

Node 143 falls at 33.26ns thru (m215)
Node 160 falls at 30.90ns thru (m224)
Node 166 falls at 30.78ns thru (m233)
Node 15 (clock PHD) rises at 31.00ns

(4) Node 141 falls at 32.80ns (Delay=1.80ns) while a limiting
clock node 15 (PHD) falls at 81.00ns (F Skew=0.00ns)
Separation margin: 48.20ns

Node 141 falls at 32.80ns thru (m223)
Node 165 falls at 30.78ns thru (m232)
Node 15 (clock PHD) rises at 31.00ns

[Segment 2] PHD(R)->'BLOCKED nodes':

Primary clock information : PHD rises at 31.00ns

[ Rising transitions ]

(1) Node 137 (Delay = 10.60ns)

Node 137 rises at 41.60ns thru (ml91)
Node 138 falls at 44.94ns thru (m205)
Node 145 falls at 35.1 Ins thru (m220)
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Node 135 falls at 35.03ns thru (m216)
Node 161 falls at 30.90ns thru (m225)
Node 167 falls at 30.78ns thru (m234)
Node 15 (clock PHD) rises at 31.00ns

[ Falling transitions ]

(1) Node 137 (Delay = -46.17ns)

Node 137 falls at -15.17ns thru (m204)
Node 138 precharges at -1026ns thru (m206)
Node 135 precharges at -16.56ns thru (m315)
Node 15 (clock PHD) falls at 81.00ns

(Check for pre-(dis)charging delay): All OK or NONE

(Cycles in circuit): None

ANALYSIS PARAMETERS and STATISTICS

[I] Global voltage step: 0.1V
[2].gcapdef:0.1fF
[3] MOS model: small-signal companion
[4] Inverting voltage: 2.5V
[5] Max depth of transistor in chain for delay evaluation: 8
[6] Fixed nodes were propagated
[7] Total mosfet number : 33
[8] Total net number : 33
[9] Number of stages for delay evaluation:

Total:37 Rising Transition=14 Falling Transition=23
[10] Number of nodes for delay evaluation:

Total: 17 Rising Transition=9 Falling Transition=17
[II] Peak memory used : 149 kbyte
[12] CPU time usage

Readin and setup data struct: 0.12sec
Initialization : 0.04sec

Finding data in/out nodes : 0.12sec
Finding control/clock nodes : Osec
Topological ordering all nodes: 0.02sec
Waveform generation for control/clock nodes : O.Olsec
Propagation of set-to-high(low) nodes : Osec
Pruning uninteresting nodes : Osec
Finding pre(dis)charged nodes: O.Olsec
Finding latches : O.Olsec
Timing verification between pairs of latches: 2.55sec
Design reference check : Osec

TOTAL : 2.89sec
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