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Chapter 1

Introduction

This report describes the design of the backtrace processor in the wordprocessing
subsystem of a real-time large-vocabulary continuous-speech recognition system [1] [2] [3].
This system recognizes a 3000-word vocabulary in real time by processing 50,000 states per
frame, based on a frame width of 10ms. The system has the capacity to handle 8,000 words
in “off real-time”. ,

A brief introduction to hidden Markov models and the Viterbi algorithm and a
high-level explanation of the implementation of this algorithm in the system are given.

An overview of the design and operation of the wordprocessing subsystem is given
followed by the design and operation of the backtrace processor chip, one of the two custom
chips in the wordprocessing subsystem. The layout was created using the LagerIV Silicon
Compiler [4]. The chip was fabricated in a 2um nwell CMOS process and has 102 signal.
4 substrate, 13 power and 13 ground pins. Its die area is 6856pm by 7556um and it has
12,760 transistors.

This is followed by a discussion of a dual-port RAM that is used in the custom
chips of the wordprocessing subsystem. This RAM was designed by making extensive
modifications to an existing self-timed RAM.

The chip layout of the backtrace processor is included in an appendix.



Chapter 2

Overview of the Speech

Recognition System

Earlier hardware systems used dynamic time-warp algorithms [5] [6]. More re-
cently, Bisiani et al. [7] have built a multiprocessor system that uses the hidden Markov
model to recognize a 1,000 word vocabulary in 1.3 times real time. The hidden Markov
model has been shown to perform better than time-warp models.

This speech recognition system uses the hidden Markov model (8] and the Viterbi
algorithm [9] to achieve accurate recognition. It recognizes a 3,000 word vocabulary in real

time,

2.1 The Hidden Markov Model

The hidden Markov model models statistical processes with hidden states but
observeable outcomes that depend on these states. For example, consider the multi-state
system shown in Figure 2.1. The arrows indicate allowed state transitions. At each timestep.
a possibly unfair die is tossed; each state may have its own die. The result of this toss
determines the state to which the system changes. In the figure, X is the result of the die
toss. The mapping from dice toss result to next state can vary from state to state and defines
the transition probability. The observer does not have access to the state sequence; all he
sees is an output that is statistically dependent on the result of the die toss. An output
probability is thus defined as the probability that the die toss result causes a particular

output. This is called a second statistical process.

4
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Figure 2.1: Hidden Markov model for a multi-state system

The hidden Markov model, as illustrated in the above example, is characterized
by a hidden state sequence that is statistically dependent on a random process which is
not observeable; we can only observe a value that is statistically dependent on the random
process. This model is useful because the Viterbi algorithm can be used to efficiently

determine the state sequence from the observed output process.

2.2 The Viterbi Algorithm

The Viterbi algorithm is an efficient implementation of the optimal state-sequence
detector for hidden Markov models. It is best described by an example.

Consider a hidden Markov model that uses a random process to determine state
transitions, as shown in the trellis in Figure 2.2. If we allow the process to start at any state
and change to any state (including itself) with an associated transition probability (which
can be zero), we can calculate the probability of any state sequence. At time t — 1, each
state has a probability associated with it reflecting the likelihood of being in that state.
The probability of being in any state at time ¢ can be calculated using the formula :

P(j) = m?.x[Pt_l(i)a,-j] X b;(O0¢)

where P,(j) is the probability of being in state j at time ¢, a;; is the transition probability
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Figure 2.2: Trellis for evaluation of a hidden Markov model using the Viterbi algorithm

from state i to state j, b;(O;) is the probability that the output of state j matches the
observed output at time %, and ¢ spans all predecessor states. This means that only the
most likely path to state j is retained; all other paths are discarded. If the most probable
path leading to an ending state is stored, we will then be able to trace back through the

trellis to determine the most probable state sequence.

2.3 Implementation of the Viterbi Algorithm

The speech recognition system models speech with a hidden Markov model. This
modeling is done on two levels. In the word-level processing subsystem, each word consists
of several phonemes, and each phoneme is modeled using three states. Therefore a word is
represented by several states (15 states on average) and there is a probability associated with
each possible transition between states within a word. Every frame of 10 ms, the subsystem
uses the Viterbi algorithm to determine the probability of being in each state of every word
in the vocabulary. It uses up to four speech features as observeables (matching them against
the features expected for the current state) as well as state transition probabilities to make
this determination. These features may be the cepstrum, mel-cepstrum, normalized power.

or other such parameters of the speech sample.
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Figure 2.3: State Transition Diagram for HMM States Within a Word

In addition to states corresponding to phonemes, each word has two artificial
states: a source grammarnode and a destination grammarnode. The former is the word’s
first state and the latter is the word’s last state. They facilitate communication between
the two subsystems as explained below. As shown in Figure 2.3, each word is processed
left-to-right, and transitions are allowed only back to the current state and to succeeding
states. Each state may be succeeded by more than one state and preceded by more than one
state, but all successor states must be to the right of the current state in the state transition
diagram. The exceptions are the source grammarnode, which has no predecessors but may
have more than one successor, and the destination grammarnode, which may have more

than one predecessor but no successors.

Since the Viterbi algorithm only requires knowledge of probabilities at time ¢t — 1
in order to calculate probilities for time ¢, it is not necessary to store the entire trellis.
Therefore, the state probabilities at time ¢ — 1 are stored in one memory (memory 0) while
the probabilities at time ¢ are computed and stored in another memory (memory 1). During
the next frame memory 1 is used to calculate probabilities at time ¢ + 1, which in turn are
stored in memory 0. These memories are called the state probability memories.

In order to enable tracing back through the trellis at the end of the sentence, each
state has a tag associated with it that points to the previous word in the trellis. This tag
is stored together with the state probability and is copied between the state probability
memories as needed. When the probability of the destination grammarnode is high enough.
the tag and state ID are stored in a backtrace memory. At the end of the sentence, this
memory is read and the linked list of tags is traversed from the last state of the most
probable state sequence to its beginning, thus determining the sentence spoken.

In the grammar-level processing subsystem, each word is treated as a state. Every



frame, the subsystem tries to determine which words are ending based on destination gram-
marnode probabilities obtained from the wordprocessing subsystem. If a word has ended,
the subsystem uses a statistical language model to determine which words can follow the
word that just ended. It then updates the probabilities of the source grammarnodes of
the successor words and passes these new probabilities to the wordprocessing subsystem.
The system can therefore be modified to use any language model by simply replacing the

grammar processing subsystem with one that uses the new language model.



Chapter 3

The Wordprocessing Subsystem

The wordprocessing subsystem is implemented using two custom chips, three large
memory blocks, two FIFOs and many off-the-shelf support chips. The size of the memory
blocks makes it necessary to use dynamic RAMs, which typically have cycle times of 200
ns. Since one of these blocks (the Output Memory) is accessed randomly every clock cycle,
the board uses a. 5 MHz clock and a non-interleaved memory architecture.

The flow of data in the subsystem is shown in Figure 3.1.

3.1 Custom Chips

The custom chips are tabulated in Table 3.1 below.

| Chip Name | Designer | Die Size | Transistors | Signal Pads |

Viterbi Anton 11.6x

Processor | Stélzle 9.8mm? 25,000 204
Backtrace | Shankar 6.9x

Processor | Narayanaswamy | 7.6mm? 12,760 102

Table 3.1: Custom chips in the wordprocessing subsystem

3.1.1 Viterbi Processor

The Viterbi Processor contains the finite state machine that drives the entire

subsystem. The state transition diagram is shown in Figure 3.2.

When the subsystem is reset, it enters state 0. As soon as startframe is asserted.
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a transition to state 1 occurs and the output startcounter is asserted. This resets certain
registers on the two custom chips. A transition to state 14 occurs on the next clock. The
subsystem remains in this state until eow (end-of-word) goes high; this signals the processor
that real data is coming on the next clock cycle. In state 15, the output newframe becomes
active so that the counter addcounter begins counting up. addcounterholds the state address
for the Output Lookup Memory, Topology Memory and State Probability Memories, which
are explained in Section 3.3.

The Source FIFO is then checked to see if it has any available data. These data
are the source grammarnode probabilities. If not, the subsystem enters state 2 and waits
until data becomes available. addcounter is stalled during this state. As soon as data
is available, state 3 pops the first value off the FIFO and transits to state 4, where it
stays until eow is active again. During state 4, a word is processed. At the end of the
word, the FIFO is popped by states 5, 6 and 7. In states 8, 9 and 10 the subsystem
pushes the destination grammarnode probability into the Destination FIFO. This FIFO is
in the grammarprocessing subsystem. The subsystem then re-enters state 4 and repeats the
inner loop until eof (end-of-frame) goes high. It then pushes the destination grammarnode
probability of the last word onto the Destination FIFO and re-enters state 0. Here it awaits

the start of the next frame before repeating the entire sequence.

3.1.2 Backtrace Processor

The Backtrace Processor is the subject of Chapter 4, and a complete description

can be found there.

3.2 Backtrace Memory Processor

The Backtrace Memory Processor applies a threshold to the destination gram-
marnode probabilities in order to determine whether the probability that the current word
is ending is high enough to write it into the Backtrace FIFO. Every frame, 2 maximum frame
probability is obtained by keeping track of the largest state probability of all the states in
the vocabulary. Each frame, an offset uPbus.data is subtracted from the maximum frame
probability of the previous frame and the result is used as the threshold. This ensures that

only the most probable destination grammarnodes are written into the Backtrace FIFO.
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The other function of this module is to provide the backtrace tag for the system.
Whenever a word is written into the Backtrace FIFO, a new tag is generated and sent to the
grammarprocessing subsystem. This tag is the backtrace ID of the entry in the Backtrace

FIFO, and is generated by simply keeping count of how many words have been written into
the FIFO.

The Backtrace Memory Processor is implemented using Altera PLDs.

3.3 Memory Blocks

The three memory blocks are implemented using dynamic RAMs packaged as
SIMMs (Single In-line Memory Modules). There is a total of 12 Megabytes of memory in
the subsystem.

3.3.1 Output Memory and Lookup

The Output Lookup Memory is a 256K x 16 lookup table for addressing the Output
Memory. This allows the reduction of the size of the Output Memory by a factor of 256. It
uses two 256K x 8 SIMMs and is loaded only once, during system startup.

The Output Memory stores the probability that the current speech sample matches
the current state. It consists of four 2M x 8 banks. It is implemented as 8 SIMMs and is
loaded only at system startup. Its address is determined by 15 bits of data read from the
Output Lookup Memory and by four 8-bit of data signals obtained from speech features.

The output Memory can operate in two modes. In mode 0, only one speech feature
is used. In this case, all four speech input signals are identical. Fifteen bits of data read out
of the Output Lookup Memory are combined with 8 bits from the speech input to produce
a 23-bit address. This address points to the location in the Output Memory that stores the
desired probability.

In mode 1, each of the four 2-Megabyte banks is addressed by 13 bits from the
Output Lookup Memory and 8 bits from speech features; four different speech features can

therefore be handled. The four probabilities so obtained are added together and the result

is sent to the Viterbi Processor.
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3.3.2 Topology Memory

The Topology Memory holds the state transition probabilities. It is identical to
the Output Lookup Memory except for its size, 256K x 48. Its first 8 bits (7-0) hold the
probability that the current state is a predecessor to the destination grammarnode. Bits
31-24, 23-16 and 16-8 hold the transition probabilities of the three predecessors. Bits 43-40,
39-36 and 35-32 hold the relative positions of the three predecessors of the current state.
Bits 44 and 45 hold end-of-word and end-of-frame. Bit 46 tells the subsystem if one of the
predecessors is the source grammarnode while bit 47 tells the subsystem if there are more

predecessors for the present state.

3.3.3 State Probability Memory

The state probability memory stores the state probabilities of all the states in the
subsystem at time ¢ — 1 and time ¢. It has two banks of 256K x 32 each. The first 14 bits
store the probabilities, while the remaining 18 bits hold the backtrace tag that points to

the previous word. These are the memories mentioned in Section 2.3.

3.4 FIFOs

The two FIFOs are primarily meant for asynchronous communication between the

wordprocessing subsystem and other parts of the speech recognition system.

3.4.1 Source FIFO

The Source FIFO is 64 words deep and 32 bits wide. It passes data (updated
source-grammarnode probabilities) from the grammarprocessing subsystem to the wordpro-
cessing subsystem asynchronously. There is an identical FIFO in the grammarprocessing
subsystem that passes data (updated destination grammarnode probabilities) in the other

direction.

3.4.2 Backtrace FIFO

The Backtrace FIFO is 64 words deep and 48 bits wide, but only 44 bits are used.
It provides an asynchronous interface between the wordprocessing subsystem and the rest

of the speech recognition system for passing backtrace information. When it is almost full,
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it is popped onto the VME bus and the data is stored on a general-purpose processor board
for further processing after thie end of the sentence.

The first 18 bits are the backtrace tag, which point to the word that preceded
the current state. This is obtained from the Backtrace Processor. The next 10 bits hold
the word ID of the current word while the last 14 bits hold the destination grammarnode
probability of the current word. This probability is kept for recordkeeping purposes only; it
is not used in the speech recognition recognition algorithm. The word ID and destination

grammarnode probability are obtained from the Backtrace Memory Processor.

3.5 Miscellaneous Chips

DGN (see Figure 3.1) is an 8-input AND gate that decodes the 8-bit signal gn-
transprob so that if all the bits are high, dgnenable goes high. When dgnenable goes high,
the probability of a transition to the destination grammarnode is very small, so the Viterbi
Processor assumes that the current state cannot transit to the destination grammarnode.

MUX is an 18-bit two-to-one multiplexer that selects the backtrace data that is
passed to the grammarprocessing subsystem. If the current word is not being stored in
the backtrace memory, gnbtracel! from the Backtrace Processor is selected, otherwise the

location where the current word is being stored is selected.



Chapter 4

The Backtrace Processor

The Backtrace Processor is a slave to the Viterbi Processor, processing the back-
trace tag associated with each state. Each tag is a pointer to the previous word; the tags
therefore form a linked list of pointers from the end of the state sequence to the beginning.
This allows the system to trace a path through the backtrace memory to determine the
spoken sentence.

The Backtrace Processor consists of two main parts. The Backtrace Datapath
(btracedp) does the actual processing of the backtrace tag. The Upper Datapath (upperdp)
stores the backtrace tags for all the states in the word currently being processed and feeds
the correct tag to the Backtrace Datapath every clock cycle. These operations are described

in greater detail below. Figure 4.1 shows the interconnection between these two parts.

4.1 The Upper Datapath

The Upper Datapath consists of two parts, the Predecessor Selector (predsel) and
the Predecessor Address Datapath (predadd). In the Viterbi algorithm, the probability for
each state is determined from the probabilities of its predecessors. Most words have at
most 15 states. Therefore, an efficient way to get the predecessor data to biracedp is to read
the data for these 15 states sequentially onto the chip from the State Probability Memory
and store it in a 16-word on-chip RAM. The data can then be fed into biracedp. Since
the hidden Markov model may only make left-to-right transitions (Figure 2.3), the “max”
function from Section 2.2 does not consider states that occur later in the word. This allows

the custom chips to load the data into the on-chip RAM sequentially.
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Figure 4.2: Block Diagram of the Predecessor Selector (predsel)

In order to parallelize the “max” function in the Viterbi algorithm, three dual-
port RAMs are used. This number was chosen because most words have at most three
predecessors. In case of a larger number of predecessors, the signal morepredmuz7is active
and the probabilities of the next three predecessors are read into the dual-port RAMSs for
processing. These RAMs comprise predsel. They store exactly the same data but they are
read from different locations at the same time, corresponding to three different predecessors.

The block diagram for predsel is shown in Figure 4.2.

The read and write addresses for the dual-port RAM are calculated in predadd.
The write address (writeadd_data) is generated by a counter formed by inaddcounter! and
the adder feeding inaddmuz; the read addresses are calculated by adding offsets to the write
address. These offsets are obtained from the value of the signal predecessor_data, which is
read from the Topology Memory. The block diagram for predadd is shown in Figure 4.3. At
the beginning of the frame, the signal startcounter drives inaddmuz to reset writeadd.data.
This is necessary for simulations only; the hardware is insensitive to the starting point of

the counter since the read addresses generated by predadd are offset from writeadd_data.
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Figure 4.3: Block Diagram of the Predecessor Address Datapath (predadd)

4.2 The Backtrace Datapath

The Backtrace Datapath was broken up into two cascaded datapaths to obtain two
square blocks rather than a single rectangular block in the chip’s layout. This facilitates

easier floorplanning. A block diagram for this datapath is shown in Figure 4.4.

The Backtrace Datapath is heavily pipelined. Its pipeline stages are related to the
propagation delay of the logic on the Viterbi Processor that drives the multiplexer control

signals. This logic is implemented in a PLA on the Viterbi Processor.

The multiplexer MUX1 selects between the signal srcndbtrace_data from the source
FIFO and the data stored in the register srcndbtrace_reg2. srcndbtrace_data is the tag
associated with the source grammarnode and is selected at the beginning of a word. For
the rest of the word, MUX1 selects the data stored in srcndbirace_reg2. This data is actually
the output data from MUX1. All the registers on the chip are dynamic and must therefore
be refreshed periodically; the above arrangement effectively converts srcndbirace_reg? into

a static register that is loaded at the beginning of every word.
The inputs firstbtrace2.out, seconbtrace2-out and thirdbtrace2.out are the data read

out from the dual-port RAMs in predsel. They are the tags corresponding to the three

predecessors of the current state. MUX2 passes the data from srendbtrace_reg2 only when



srendbtrace2_data

n MUX1
Pall P4}
srendbirace2
srendbtrace rog2

firstbtraco2 out

2 18 18 soconbtrace2_out thirdbirace2_out
L4 L] MUX2 1

18 18

firstbtraced
*
{lrstbtraces soconblraces thirdbiraces
firsibirace rog5
btracedpupper

brratedplower

gndmux9

newword9

birace11_out gnbtrace11_out

Figure 4.4: Block Diagram of the Backtrace Datapath (btracedp)



one of the predecessors of the current state is the source grammarnode.

The control inputs sela and selb are derived in the Viterbi Processor from the
output of the “max” function in the Viterbi algorithm (Section 2.2 and they cause predmuz
to select the tag of the most likely predecessor.

The multiplexer bestmuz uses the control input morepredmuz7 to allow retention of
the tag of the previous most likely predecessor in case there are more than three predecessors.
In this case, the Viterbi Processor compares the probability of the most likely of the second
three predecessors to the probability of the most likely of the first three predecessors. The
more probable predecessor’s tag is selected by bestmuz.

The multiplexer gndmuz allows gnbtrace_reg10 to store the most probable predeces-
sor to the destination grammarnode. If the current state is more likely than any other state
to be the predecessor of this grammarnode, then gndmuz selects the output of btrace_reg9.

At the end of the word, newmuz causes gnbtrace_reg11 to store the tag of the most
probable predecessor to the destination grammarnode for the duration of the next word.
This allows the data to be stable for more than one clock cycle, which allows the Backtrace
Memory Processor more time to push data into the Backtrace FIFO.

In total, there are eighteen 18-bit registers and seven 18-bit two-to-one multiplexers

in the Backtrace Datapath..

4.3 Clocking Strategy

The figures shown thus far in this chapter do not show the clocking strategy, but it
is nevertheless important. There are two outside constraints imposed on the chip that affect
the clocking strategy. Firstly, the need for a testable circuit made it desirable to implement
all registers using scanpa.th registers. The schematic for the scanpath register used in this
chip is shown in Figure 4.5. It requires three clocks: the usual master and slave clocks and
the shift clock for shifting data into and out of the scanpath.

Secondly, the chip must be stalled during the dynamic RAMs’ refresh cycles. These
constraints, coupled with the need to buffer the clock, led to the use of standard cells for
gating as well as buffering the clocks. The standard cells are physically large and provide a
large output current drive. The logic realized in the standard cells is shown in Figure 4.6.
This figure shows the logic for driving five registers; on the chip each register is driven by

one logic module.
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4.4 Verification

Chip verification was done on two levels, design simulation and hardware testing.

4.4.1 Simulation

The LagerIV Silicon Compiler produces chip layout in Magic [10] format. The
layout was extracted and used by RSIM to simulate the chip. RSIM models transistors
as current sources and uses lumped node capacitances to determine approximate timing
information. Test vectors were fed into RSIM and the results compared to output vec-
" tors obtained from THOR [11]. THOR is a functional simulator which uses a hierarchical
behavioral description written in C. The entire speech recognition system was modeled us-
ing THOR even before the chips were built, and the chip design actually used the THOR
description as the blueprint. The THOR modeling allowed verification of the system’s

functionality before building hardware and easy design verification by simulation.

4.4.2 Scanpath Testing

The Backtrace Processor is heavily pipelined, and every register on the chip is a
scanpath register. This allows easy testing of the combinatorial parts of the chip. However,
the only testing machine available was a Tektronix DAS 9100, which was not very convenient
for the purpose. Instead, an IBM-PC based scanpath testing system was developed by Anton
Stolzle, Shankar Narayanaswamy and Robert Yu. This testing system is general enough to

test all chips that use the above scanpath scheme.

Testing System

The testing system uses a custom board that interfaces between the IBM-PC and
the user’s test board. The user specifies a test vector to be fed into the scanpath as a single
line of bits in a file on the PC. These bits are loaded by software into a memory on the
custom board. The custom board then downloads the bits into the chip to be tested on the
test board, runs the chip for one exactly clock cycle, and reads the scanpath out again into
the on-board memory. This output data is then copied into a file on the IBM-PC in exactly
the same format as the input test vector. Copying data to and from the custom board is

done by software written in TurboC running on the PC.
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Figure 4.7: Pinouts of the ribbon cable connector for the scanpath testing system

The custom board communicates with the test board by means of a 5-signal pro-
tocol. phim is the master clock, phis is the slave clock, scanin is the data to be loaded into
the scanpath and scanout is the data read out of the scanpath. scantest is a control signal
which tells the test board that the scanpath is active; when it goes low (for one clock cycle)
the test board knows that the scanpath is not being accessed and that it may run the chip.
There is also a ground reference pin. The pinouts on a 25-pin ribbon cable connector are

shown in Figure 4.7.

Test Board

The Backtrace Processor is packaged in a 132-pin Pin-Grid Array (PGA). Its pins
are therefore not easily accessible for connection of pattern generators and data acquisition
probes. The test board holds the chip in a ZIF socket and brings out all its pins to two
rows of wire-wrap headers. Power and ground rail headers encircle the chip. There is also a
boundary-scan shift register on the board to allow control of the chip’s control inputs. This
8-bit register is connected to the beginning of the scanchain. Finally, two adjacent rows of
13-pin headers are placed at the edge of the board for connecting the ribbon cable to the

scanpath testing system.

Format Conversion Software

Since the data format required by the testing system is not very readable, some
software was needed to translate data to and from a friendlier format. This program, called
scanpath, accepts an input file that has four columns per line and one line per scanpath
register in the scanchain. From this, it generates the correct sequence of bits for the testing

system.
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The lines are arranged in order of closeness of the register to the beginning of the
scanchain: the closest register being on the first line of the file. The first column of each
line is the name of the register. The second column is the number of bits in the register.
The third column contains a single character: “L” if the least significant bit of the register
is closest to the beginning of the scanchain and “M” otherwise. This allows the user to
specify data as a regular (rather than bit-reversed) number and let the computer reverse it
for him. Lastly, the fourth column contains a hexadecimal number representing the value to
be loaded into the register. If this number has too many bits, the most significant bits are
truncated until the correct number of bits is obtained. This allows unambiguous loading of
registers that have widths that are not multiples of four bits.

Below is an example of the input file for the Backtrace Processor. Note that the
first register is the boundary-scan register, which is loaded as part of the scanchain to allow

easy loading of test signals into the chip’s control inputs.

NwOGmOMp7SaSbGs2PsiNf 8 M FF
stprobin 18 L FFFFF
inaddcounter_regi_1 4 M A
topology.regi_1 4 L A
topology._regl 2 4 M A
topology._regl 3 4 L A
firstpredadd_reg2 4 M A
seconpredadd_reg2 4 L A
thirdpredadd_reg2 4 M A
btrace_reg6 18 M 11111
btrace_reg7 18 L 22222
btrace_.reg8 18 M 33333
btrace_reg9 18 L 44444
gnbtrace_reglQO 18 M 55555
gnbtrace_regil 18 L 66666
btrace_reglO 18 M 77777
btrace_reglil 18 L 88888
srcndbtrace_reg2 18 M 99999
firstbtrace_reg3 18 L AAAAA



firstbtrace_reg4 18 M. BBBBB
firstbtrace_regSs 18 L-CCCCC
seconbtrace_reg3 18 M DDDDD
seconbtrace_reg4 18 L EEEEE
seconbtrace_regs 18 M FFFFF
thirdbtrace_reg3 18 L 00000
thirdbtrace_reg4 18 M 11111
thirdbtrace_regs 18 L 22222

The string of bits resulting from processing the above input file is used by the
testing system, which in turn produces a similar output string of bits. This output vector
may then be compared to the input vector using scanpath. The program will produce a
file that has the same format and content as the earlier four-column file but with a fifth
column that holds (in hexadecimal and, if necessary, bit-reversed) the value obtained from
the testing system.

Below is an example of the output file for the Backtrace Processor. Note that the

contents of the boundary-scan register are unchanged.

NwOGmOMp7SaSbGs2PsiNf 8 M FF FF
stprobin 18 L FFFFF 00000
inaddcounter_regi_1 4 M A O
topology.regi_1 4 L A O
topology_regli 2 4 M A O
topology.regi.3 4 L A O
firstpredadd_reg2 4 M A 4
seconpredadd_reg2 4 L A 4
thirdpredadd_reg2 4 M A 4
btrace_reg6 18 M 11111 22222
btrace_reg7 18 L 22222 11111
btrace_reg8 18 M 33333 33333
btrace_reg9 18 L 44444 33333
gnbtrace_regli0 18 M S5555 04444
gnbtrace_regll 18 L 66666 15555
btrace_reglQ 18 M 77777 04444



(V)
~1

btrace_regil 18 L 88888 37777

srcndbtrace_reg2 18 M 99999 19999
firstbtrace_reg3 18 L AAAAA 19999
firstbtrace_reg4 18 M BBBBB 2AAAA
firstbtrace_reg5 18 L CCCCC 3BBBB
seconbtrace_reg3 18 M DDDDD 3FFFF
seconbtrace_reg4 18 L EEEEE 1DDDD
seconbtrace_regS 18 M FFFFF 2EEEE
thirdbtrace_reg3 18 L 00000 3FFFF
thirdbtrace_reg4 18 M 11111 00000
thirdbtrace_regbd 18 L 22222 11111

Results

Of the 30 chips fabricated, 18 passed the scanpath test based on 6 different test

vectors.



Chapter 5

The Dual-Port RAM

In the subcell predselon the Backtrace Processor (Figure 4.2), the predecessor tags
are stored in a dual-port RAM so that these tags can be available for processing while being
updated. The Viterbi Processor also uses predsel and therefore the dual-port RAM. Since
the LagerIV cell library did not have a dual-port RAM, it was necessary to design one from

scratch.

5.1 Specifications

The dual-port RAM had to meet several specifications:

It must allow independent reading and writing.

It must have separate input and output data busses.

It must not require clocks.

It must operate at 5 MHz for a 16 word x 32 bit RAM.

It should occupy minimum area.

It may be dynamic since the processors that use it will write the entire memory

sequentially, thereby refreshing it.

If the read address and write address are the same, then the data read must be the

data currently being written in.
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o It must be assembled by the tiling generator TimLager in the LagerIV Silicon Assem-
bly System.

At the time, a self-timed RAM designed by Brian Richards was available. Since it
would take longer to design a RAM from scratch, this RAM was modified to suit the above

specifications.

5.2 I/0O Description

The dual-port RAM has an input bus (in), an output bus (out), a read address
bus (read_addr), a write address bus (write_addr), a write enable (write) and a writestrobe
(pre). If in and out are N bits wide, then there are logo N words in the RAM.

writé is internally ANDed with p7e. When the user writes data into the RAM, he
should enable write and, while write_addr and in are valid, strobe 77€ low. When reading
data, simply set read_addr to the correct address and, after some propagation delay, out
will carry valid data.

The read and write operations are completely independent. If a particular address
is being written and read at the same time, out will initially show the old data but, after
some propagation delay, it will show the new data. This delay has been verified to be less

than 200 ns, as explained in Section 5.4 below.

5.3 Block-Level Description

A schematic diagram of the dual-port RAM is shown in Figure 5.1. The input
data is buffered and then fed into a standard 3-transistor dynamic RAM cell. The data
stored in this cell is detected with the aid of a pseudo-NMOS column precharge transistor.
and is then buffered on its way out of the RAM. Address decoding is done by tiling together

the appropriate cells.

5.4 Verification

Verification was done on several levels. First, the pseudo-NMOS column pull-up
was simulated with SPICE [12]. Then the complete RAM was simulated using RSIM. Lastly.
a fabricated chip containing the dual-port RAM was tested on the Tektronix DAS 9100.
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Figure 5.1: Schematic Diagram of the Dua.l-Port RAM
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5.4.1 SPICE Simulations .

One major difference between the dual-port RAM and the self-timed RAM is in
the column pull-up. The former uses a pseudo-NMOS column pull-up whereas the latter
uses a dynamic pre-charge. This modification meant that the size of the pull-up transistor
had to be decreased to avoid it overwhelming the pull-down transistor in the 3-T RAM cell.
However, it cannot not be too small; otherwise it cannot pull the column voltage up fast
enough if a “1” is read after a “0”.

The final transistor size was chosen to be 4\ long by 3\ wide, where A is a scale
factor that depends on the technology. For example, ) is set to 1.0 in a 2.0um technology.
This means that the pull-up transistor was 4um by 3um in a 2um technology. SPICE
simulations showed the column rise time to be 6 ns and the column voltage swing to be
from 5 Volts to 0.38 Volts, with the transition in output voltage levels occurring at a DC
input voltage of 1.5 Volts at the gate of the storage transistor. This is clearly sufficient for
the purpose. The SPICE deck was created automatically by ext2spice [13] from the layour
itself, so linear and nonlinear capacitances were simulated accurately. Resistive effects in
the column were not modeled in the SPICE simulations, but they would merely slow down

the RAM and it was fast enough that resistive effects would not render the RAM unusable.

5.4.2 RSIM Simulations

In order to test the functionality of the dual-port RAM, the layout was extracted
and an input file for RSIM was generated from this layout. RSIM models node capacitances
and the current drive of transistors to give an approximate timing analysis of the circuit.
This is also useful for making sure that the chip runs fast enough.

Simulations showed that the RAM was functional at 10 MHz.

5.4.3 Chip Testing

A 16 word x 32 bit version of the dual-port RAM was fabricated in a 1.6um n-well
process by MOSIS and tested on a Tektronix DAS 9100. The testing strategy was to write
every memory location with data, and then to read the data sequentially over and over
again until the DAS ran out of storage space (about 500 reads). This allowed verification

that the data in the RAM remained valid for a reasonable length of time. Since reading
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and writing are independent, the test also included reading and writing the same location
simultaneously.

Of the 30 chips tested, 24 were functional at a supply voltage of 5.25 Volts. None
worked off a 5-Volt supply. The highest clock rate used was 5 MHz, as the DAS could
not meet some of the timing constraints at higher clock speeds. This is sufficient since the
Speech Recognition System operates at 5 MHz.

The dual-port was verified, however, when the Backtrace Processor was tested.
Data could be written and read reliably from the dual-port RAMs on the Backtrace Pro-

cessor (which was fabricated in a 2um technology) at a supply voltage of 5 Volts.



Chapter 6

Conclusions

The backtrace processor for the wordprocessing subsystem of a large vocabulary
real time speech recognition system has been designed, fabricated and verified. It uses an
on-chip dual-port RAM that was designed by modifying an existing self-timed RAM. The
chip was assembled, laid out and routed using the LagerIV Silicon Compiler System. It was
simulated using THOR and RSIM.

Improvements may be made to the wordprocessing subsystem to increase its capa-
bilities. The subsystem may be parallelized by using several boards that each recognizes a
3,000 word vocabulary. The output memory could be doubled in capacity by using 4-Mbyte
SIMMs instead of the current 1-Mbyte ones. The backtrace memory could be transformed
into a FIFO so that the backtrace information may be transferred asynchronously to the
system CPU during the subsystem’s operation. This reduces the subsystem’s latency. Fi-
nally, a lot of the multiplexing and DRAM control could be put into a custom chip to save

board area. These changes are planned for future versions.
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Appendix A

Chip Layout

A plot of the Backtrace Processor is shown in Figure A.1. The major blocks can
be clearly distinguished.

At the top of the plot is btracedp. btracedpupper (labelled BDPUP) is on the left
while btracedplower (labelled BDPLO) is on the right. predadd is on the lower left of the

chip and predsel, on the lower right, is clearly distinguished by its three identical dual-port
RAMs.

The chip has 102 signal pads, 13 power pads and 13 ground pads. It uses 12,760
transistors and occupies 7.6mm? of silicon area in a 2um nwell process.

34
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Figure A.1: Chip Photo of the Backtrace Processor



Appendix B

Chip Pinouts

The pinouts of the Backtrace Processor are shown in Figure B.1. The package has
102 signal pins, 13 power pins, 13 ground pins and 4 substrate pins in a 132-pin Pin-Grid
Array (PGA).
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Figure B.1: Pinouts of the Backtrace Processor (top view)
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