

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A VITERBl SLAVE FOR A LARGE-VOCABULARY

REAL-TIME SPEECH RECOGNITION SYSTEM

by

Shankar Narayanaswamy

Memorandum No. UCB/ERL M89/134

14 December 1989

A VITERBl SLAVE FOR A LARGE-VOCABULARY

REAL-TIME SPEECH RECOGNITION SYSTEM

by

Shankar Narayanaswamy

Memorandum No. UCB/ERL M89/134

14 December 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A VITERBl SLAVE FOR A LARGE-VOCABULARY

REAL-TIME SPEECH RECOGNITION SYSTEM

by

Shankar Narayanaswamy

Memorandum No. UCB/ERL M89/134

14 December 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Contents

Table of Contents 1

1 Introduction 3

2 Overview of the Speech Recognition System 4
2.1 The Hidden Markov Model 4

2.2 The Viterbi Algorithm 5
2.3 Implementation of the Viterbi Algorithm 6

3 The Wordprocessing Subsystem 9
3.1 Custom Chips 9

3.1.1 Viterbi Processor 9

3.1.2 Backtrace Processor 12

3.2 Backtrace Memory Processor 12
3.3 Memory Blocks 13

3.3.1 Output Memory and Lookup 13
3.3.2 Topology Memory 14
3.3.3 State Probability Memory 14

3.4 FIFOs 14

3.4.1 Source FIFO 14

3.4.2 Backtrace FIFO 14

3.5 Miscellaneous Chips 15

4 The Backtrace Processor 16

4.1 The Upper Datapath 16
4.2 The Backtrace Datapath 19
4.3 Clocking Strategy 21
4.4 Verification 23

4.4.1 Simulation 23

4.4.2 Scanpath Testing 23

5 The Dual-Port RAM 28

5.1 Specifications 2S
5.2 I/O Description 29

5.3 Block-Level Description 29
5.4 Verification 29

5.4.1 SPICE Simulations 31

5.4.2 RSIM Simulations : 31

5.4.3 Chip Testing 31

6 Conclusions 33

A Chip Layout 34

B Chip Pinouts 36

Bibliography 38

Chapter 1

Introduction

This report describes the design of the backtrace processor in the wordprocessing

subsystem of a real-time large-vocabulary continuous-speech recognition system [1] [2] [3].

This system recognizes a 3000-word vocabulary in real time by processing 50,000 states per

frame, based on a frame width of 10ms. The system has the capacity to handle 8,000 words

in "off real-time".

A brief introduction to hidden Markov models and the Viterbi algorithm and a

high-level explanation of the implementation of this algorithm in the system are given.

An overview of the design and operation of the wordprocessing subsystem is given

followed by the design and operation of the backtrace processor chip, one of the two custom

chips in the wordprocessing subsystem. The layout was created using the LagerlV Silicon

Compiler [4], The chip was fabricated in a 2\im nwell CMOS process and has 102 signal.

4 substrate, 13 power and 13 ground pins. Its die area is 6856/tm by 7556/nn and it has

12,760 transistors.

This is followed by a discussion of a dual-port RAM that is used in the custom

chips of the wordprocessing subsystem. This RAM was designed by making extensive

modifications to an existing self-timed RAM.

The chip layout of the backtrace processor is included in an appendix.

Chapter 2

Overview of the Speech

Recognition System

Earlier hardware systems used dynamic time-warp algorithms [5] [6]. More re

cently, Bisiani et al. [7] have built a multiprocessor system that uses the hidden Markov

model to recognize a 1,000 word vocabulary in 1.3 times real time. The hidden Markov

model has been shown to perform better than time-warp models.

This speech recognition system uses the hidden Markov model [8] and the Viterbi

algorithm [9] to achieve accurate recognition. It recognizes a 3,000 word vocabulary in real

time.

2.1 The Hidden Markov Model

The hidden Markov model models statistical processes with hidden states but

observeable outcomes that depend on these states. For example, consider the multi-state

system shown in Figure 2.1. The arrows indicate allowedstate transitions. At each timestep.

a possibly unfair die is tossed; each state may have its own die. The result of tins toss

determines the state to which the system changes. In the figure, -Y is the result of the die

toss. The mapping from dice toss result to next state can vary from state to state and defines

the transition probability. The observer does not have access to the state sequence; all he

sees is an output that is statistically dependent on the result of the die toss. An output

probability is thus defined as the probability that the die toss result causes a particular

output. This is called a second statistical process.

.—. State 0

-"Co

X=1,3,4,5,6

State 3

X=3,4,5,6

X=4

State 1

X=1.2,3,4,5,6

State 2

Figure 2.1: Hidden Markov model for a multi-state system

The hidden Markov model, as illustrated in the above example, is characterized

by a hidden state sequence that is statistically dependent on a random process which is

not observeable; we can only observe a value that is statistically dependent on the random

process. This model is useful because the Viterbi algorithm can be used to efficiently

determine the state sequence from the observed output process.

2.2 The Viterbi Algorithm

The Viterbi algorithm is an efficient implementation of the optimal state-sequence

detector for hidden Markov models. It is best described by an example.

Consider a hidden Markov model that uses a random process to determine state

transitions, as shown in the trellis in Figure 2.2. If we allow the process to start at any state

and change to any state (including itself) with an associated transition probabiUty (which

can be zero), we can calculate the probability of any state sequence. At time t - 1, each

state has a probability associated with it reflecting the likelihood of being in that state.

The probability of being in any state at time t can be calculated using the formula :

Pt(j) = max[Pt-i(i)aij] Xbj(Ot)

where Pt(j) is the probability of being in state j at time *, a,j is the transition probabiUty

t=0

State0 o

State 1 O3,

o o o o

State 2 O

State 3 o

Figure 2.2: TrelUs for evaluation of a hidden Markov model using the Viterbi algorithm

from state i to state j, bj(Ot) is the probabiUty that the output of state j matches the

observed output at time t, and i spans all predecessor states. This means that only the

most Ukely path to state j is retained; all other paths are discarded. If the most probable

path leading to an ending state is stored, we will then be able to trace back through the

trelUs to determine the most probable state sequence.

2.3 Implementation of the Viterbi Algorithm

The speech recognition system models speech with a hidden Markov model. This

modeling is done on two levels. In the word-level processing subsystem, each word consists

of several phonemes, and each phoneme is modeled using three states. Therefore a word is

represented by several states (15 states on average) and there is a probabiUty associated with

each possible transition between states within a word. Every frame of 10 ms, the subsystem

uses the Viterbi algorithm to determine the probabiUty of being in each state of every word

in the vocabulary. It uses up to four speech features as observeables (matching them against

the features expected for the current state) as well as state transition probabiUties to make

this determination. These features may be the cepstrum, mel-cepstrum, normalized power,

or other such parameters of the speech sample.

source — •—" "*~ destination

grammarnode grammarnode

Figure 2.3: State Transition Diagram for HMM States Within a Word

In addition to states corresponding to phonemes, each word has two artificial

states: a source grammarnode and a destination grammarnode. The former is the word's

first state and the latter is the word's last state. They faciUtate communication between

the two subsystems as explained below. As shown in Figure 2.3, each word is processed

left-to-right, and transitions are allowed only back to the current state and to succeeding

states. Each state may be succeeded by more than one state and preceded by more than one

state, but all successor states must be to the right of the current state in the state transition

diagram. The exceptions are the source grammarnode, which has no predecessors but may

have more than one successor, and the destination grammarnode, which may have more

than one predecessor but no successors.

Since the Viterbi algorithm only requires knowledge of probabiUties at time t - 1

in order to calculate probilities for time t, it is not necessary to store the entire treUis.

Therefore, the state probabiUties at time t - 1 are stored in one memory (memory 0) while

the probabiUties at time t are computed and stored in another memory (memory 1). During

the next frame memory 1 is used to calculate probabiUties at time t + 1, which in turn are

stored in memory 0. These memories are called the state probabiUty memories.

In order to enable tracing back through the treUis at the end of the sentence, each

state has a tag associated with it that points to the previous word in the trelUs. This tag

is stored together with the state probabiUty and is copied between the state probability

memories as needed. When the probabiUty of the destination grammarnode is high enough,

the tag and state ID are stored in a backtrace memory. At the end of the sentence, this

memory is read and the linked list of tags is traversed from the last state of the most

probable state sequence to its beginning, thus determining the sentence spoken.

In the grammar-level processing subsystem, each word is treated as a state. Every

frame, the subsystem tries to determine which words are ending basedon destination gram

marnode probabilities obtained from the wordprocessing subsystem. If a word has ended,

the subsystem uses a statistical language model to determine which words can foUow the

word that just ended. It then updates the probabiUties of the source grammarnodes of

the successor words and passes these new probabiUties to the wordprocessing subsystem.

The system can therefore be modified to use any language model by simply replacing the

grammar processing subsystem with one that uses the new language model.

Chapter 3

The Wordprocessing Subsystem

The wordprocessing subsystemis implemented using two custom chips, three large

memory blocks, two FIFOs and many off-the-shelf support chips. The size of the memory

blocks makes it necessary to use dynamic RAMs, which typically have cycle times of 200

ns. Since one of these blocks (the Output Memory) is accessed randomly every clock cycle,

the board uses a 5 MHz clock and a non-interleaved memory architecture.

The flow of data in the subsystem is shown in Figure 3.1.

3.1 Custom Chips

The custom chips are tabulated in Table 3.1 below.

Chip Name Designer Die Size Transistors Signal Pads

Viterbi

Processor

Anton

Stolzle

11.6X

9.8mm2 25,000 204

Backtrace

Processor

Shankar

Narayanaswamy
6.9x

7.6mm2 12,760 102

Table 3.1: Custom chips in the wordprocessing subsystem

3.1.1 Viterbi Processor

The Viterbi Processor contains the finite state machine that drives the entire

subsystem. The state transition diagram is shown in Figure 3.2.

When the subsystem is reset, it enters state 0. As soon as startframe is asserted.

2
era'

W
cT
o

era

I
H

M
O
O
<T>
CO
CO

era

CO

a*

address

output
memory
+ lookup

85M0Y1B

topology
memory

grammar,
processor FIFO

source *

£iP

M-32

address

k J<

state
prob

t
«6k«m

state
prob

t-1

_25aU32,

stprobmems

N*
^.

.JGN

^

*">
-«*•

#0/10

iwwAvflW

pr«d*CM*ar

mottprtd

puatoct

•of

MW

Mrttutn$ptob

fccntnmprob

uUrOlnmpnb

gnlrtruprob

***» PROCESSOR

VITERBI

poptourctlnv

-^ ttencptebt

i inpty

mprobto

probti

poptoircativ
gnttfai
tt*B
mm
Mb
monpndntutT
grxtmii9
nmnrorctf
UMttcotaltr

mi

pu*M»«f3

gnprobtl

mtrtmum

piMMMiff

•^

-) prad*e«M<r

-> „«*«»« BACKTRACE
-) «Moc*

btncslt

gnbtncMl
PROCESSOR

backtrace
FIFO

1

backtrace
FIFO

2

8

/mux\<
A A

address

4 *•*•!

*addcountei
•) «tart count

pgrammar
processor£*

^

,'M

(ftMttrWOflf

0fl)prob

BACKTRACE

MEMORY

PROCESSOR
btmittoMtNt

wmntbla
C0

bueu
mnMim

-*s

^
UP

ehipty

dFIFO?
process I

startframebar

process i+1

* „. endfull) Qf
frame

emotybar

11

Figure 3.2: State Transition Diagram for the Finite State Macliine on the Viterbi Processor

12

a transition to state 1 occurs and the output startcounteris asserted. This resets certain

registers on the two custom chips. A transition to state 14 occurs on the next clock. The

subsystem remains in this state until eow (end-of-word) goes high; this signals the processor

that real data is coming on the next clock cycle. In state 15, the output newframe becomes

active so that the counter addcounter begins countingup. addcounterholds the state address

for the Output Lookup Memory, Topology Memory and State Probability Memories, which

are explained in Section 3.3.

The Source FIFO is then checked to see if it has any available data. These data

are the source grammarnode probabiUties. If not, the subsystem enters state 2 and waits

until data becomes available, addcounter is stalled during this state. As soon as data

is available, state 3 pops the first value off the FIFO and transits to state 4, where it.

stays until eow is active again. During state 4, a word is processed. At the end of the

word, the FIFO is popped by states 5, 6 and 7. In states 8, 9 and 10 the subsystem

pushes the destination grammarnode probabiUty into the Destination FIFO. This FIFO is

in the grammarprocessing subsystem. The subsystem then re-entersstate 4 and repeats the

inner loop until eo/(end-of-frame) goes high. It then pushes the destination grammarnode

probabiUty of the last word onto the Destination FIFO and re-enters state 0. Here it awaits

the start of the next frame before repeating the entire sequence.

3.1.2 Backtrace Processor

The Backtrace Processor is the subject of Chapter 4, and a complete description

can be found there.

3.2 Backtrace Memory Processor

The Backtrace Memory Processor appUes a threshold to the destination gram

marnode probabilities in order to determine whether the probabiUty that the current word

is ending is high enough to write it into the Backtrace FIFO. Every frame, a maximum frame

probabiUty is obtained by keeping track of the largest state probabiUty of all the states in

the vocabulary. Each frame, an offset uPbus-data is subtracted from the maximum frame

probabiUty of the previous frame and the result is used as the threshold. This ensures that

only the most probable destination grammarnodes are written into the Backtrace FIFO.

13

The other function of this module is to provide the backtrace tag for the system.

Whenever a word is written into the Backtrace FIFO, a new tag is generated and sent to the

grammarprocessing subsystem. This tag is the backtrace ID of the entry in the Backtrace

FIFO, and is generated by simply keeping count of how many words have been written into

the FIFO.

The Backtrace Memory Processor is implemented using Altera PLDs.

3.3 Memory Blocks

The three memory blocks are implemented using dynamic RAMs packaged as

SIMMs (Single In-line Memory Modules). There is a total of 12 Megabytes of memory in

the subsystem.

3.3.1 Output Memory and Lookup

The Output Lookup Memory is a 256K x 16 lookup table for addressing the Output

Memory. This allows the reduction of the size of the Output Memory by a factor of 256. It

uses two 256K x 8 SIMMs and is loaded only once, during system startup.

The Output Memory stores the probabiUty that the current speech sample matches

the current state. It consists of four 2M x 8 banks. It is implemented as 8 SIMMs and is

loaded only at system startup. Its address is determined by 15 bits of data read from the

Output Lookup Memory and by four 8-bit of data signals obtained from speech features.

The output Memory can operate in two modes. In mode 0, only one speech feature

is used. In this case, all four speech input signals are identical. Fifteen bits of data read our

of the Output Lookup Memory are combined with 8 bits from the speech input to produce

a 23-bit address. This address points to the location in the Output Memory that stores the

desired probability.

In mode 1, each of the four 2-Megabyte banks is addressed by 13 bits from the

Output Lookup Memory and 8 bits from speech features; four different speech features can

therefore be handled. The four probabiUties so obtained are added together and the result

is sent to the Viterbi Processor.

14

3.3.2 Topology Memory

The Topology Memory holds the state transition probabiUties. It is identical to

the Output Lookup Memory except for its size, 256K x 48. Its first 8 bits (7-0) hold the

probabiUty that the current state is a predecessor to the destination grammarnode. Bits

31-24, 23-16 and 16-8hold the transition probabiUties of the three predecessors. Bits 43-40,

39-36 and 35-32 hold the relative positions of the three predecessors of the current state.

Bits 44 and 45 hold end-of-word and end-of-frame. Bit 46 teUs the subsystem if one of the

predecessors is the source grammarnode while bit 47 teUs the subsystem if there are more

predecessors for the present state.

3.3.3 State Probability Memory

The state probability memory stores the state probabiUties of all the states in the

subsystem at time t - 1 and time t. It has two banks of 256K x 32 each. The first 14 bits

store the probabiUties, while the remaining 18 bits hold the backtrace tag that points to

the previous word. These are the memories mentioned in Section 2.3.

3.4 FIFOs

The two FIFOs are primarily meant for asynchronous communication between the

wordprocessing subsystem and other parts of the speech recognition system.

3.4.1 Source FIFO

The Source FIFO is 64 words deep and 32 bits wide. It passes data (updated

source-grammarnode probabiUties) from the grammarprocessing subsystem to the wordpro

cessing subsystem asynchronously. There is an identical FIFO in the grammarprocessing

subsystem that passes data (updated destination grammarnode probabiUties) in the other

direction.

3.4.2 Backtrace FIFO

The Backtrace FIFO is 64 words deep and 48 bits wide, but only 44 bits are used.

It provides an asynchronous interface between the wordprocessing subsystem and the rest

of the speech recognition system for passing backtrace information. When it is almost full.

15

it is popped onto the VME bus and the data is stored on a general-purpose processor board

for further processing after the end of the sentence.

The first 18 bits are the backtrace tag, which point to the word that preceded

the current state. This is obtained from the Backtrace Processor. The next 10 bits hold

the word ID of the current word while the last 14 bits hold the destination grammarnode

probabiUty of the current word. This probabiUty is kept for recordkeeping purposes only; it

is not used in the speech recognition recognition algorithm. The word ID and destination

grammarnode probabiUty are obtained from the Backtrace Memory Processor.

3.5 Miscellaneous Chips

DGN (see Figure 3.1) is an 8-input AND gate that decodes the 8-bit signal gn-

transprob so that if all the bits are high, dgnenable goes high. When dgnenable goes high,

the probabiUtyof a transition to the destination grammarnode is very small, so the Viterbi

Processor assumes that the current state cannot transit to the destination grammarnode.

MUX is an 18-bit two-to-one multiplexer that selects the backtrace data that is

passed to the grammarprocessing subsystem. If the current word is not being stored in

the backtrace memory, gnbtracell from the Backtrace Processor is selected, otherwise the

location where the current word is being stored is selected.

Chapter 4

The Backtrace Processor

The Backtrace Processor is a slave to the Viterbi Processor, processing the back

trace tag associated with each state. Each tag is a pointer to the previous word; the tags

therefore form a Unked Ust of pointers from the end of the state sequence to the beginning.

This allows the system to trace a path through the backtrace memory to determine the

spoken sentence.

The Backtrace Processor consists of two main parts. The Backtrace Datapath

(btracedp) does the actual processing of the backtrace tag. The Upper Datapath (upperdp)

stores the backtrace tags for all the states in the word currently being processed and feeds

the correct tag to the Backtrace Datapath every clock cycle. These operations are described

in greater detail below. Figure 4.1 shows the interconnection between these two parts.

4.1 The Upper Datapath

The Upper Datapath consists of two parts, the Predecessor Selector (predsel) and

the Predecessor Address Datapath (predadd). In the Viterbi algorithm, the probability for

each state is determined from the probabiUties of its predecessors. Most words have at

most 15 states. Therefore, an efficient way to get the predecessor data to btracedp is to read

the data for these 15 states sequentiaUy onto the chip from the State ProbabiUty Memory

and store it in a 16-word on-chip RAM. The data can then be fed into btracedp. Since

the hidden Markov model may only make left-to-right transitions (Figure 2.3), the "max"

function from Section 2.2 does not consider states that occur later in the word. This allows

the custom chips to load the data into the on-chip RAM sequentially.

16

stbtrace data

£

predsel

writoadd_data
firstprodadd2 data

seconpredadd2 data

thirdpredadd2 data

phim

phis

stall

pndocesaorjdata

i

predadd
,phim

,phis
Istall

thirdbtfc b»_data
upperdp

firstbtra :e data

seccnbtr ice data

X,

btracedp

k 7
btraeell out gnbtr*co11_ovt

aiendbtraee2 data
D

popsourcoinv

,gnsotect2

,phim

,phts

.staU

.sola

,se!b

morepredmux7

,gndmux9

,rawword9

.startcountar

-D
•D
•a
-a
-a
-a
•a
-a
•a
-a

•a
•a

Figure 4.1: Block Diagram of the Backtrace Processor

17

ISrstprad>dd2_data(3:0|

Mconprsdsdd2_dats{3:0|

thirdpredodd2_<Jata(3:0]

wriMadd_dato(3:0]

Srs&nttt_dBta!t7:0l

stprobln <t*t*T17:0J

D

atconpn<t2_dtt*{1?:0]

tHrdpnd2_<tatt(17:0J

Figure 4.2: Block Diagram of the Predecessor Selector (predsel)

18

In order to paralleUze the "max" function in the Viterbi algorithm, three dual-

port RAMs are used. This number was chosen because most words have at most three

predecessors. In case of a larger number of predecessors, the signal morepredmux7 is active

and the probabilities of the next three predecessors are read into the dual-port RAMs for

processing. These RAMs comprise predsel. They store exactly the same data but they are

read from different locations at the same time, corresponding to three different predecessors.

The block diagram for predsel is shown in Figure 4.2.

The read and write addresses for the dual-port RAM are calculated in predadd.

The write address (writeadd-data) is generated by a counter formed by inaddcounterl and

the adder feeding inaddmux; the read addresses are calculated by adding offsets to the write

address. These offsets are obtained from the value of the signal predecessor.data, which is

read from the Topology Memory. The block diagram for predadd is shown in Figure 4.3. At

the beginning of the frame, the signal startcounter drives inaddmux to reset writeadcLdata.

This is necessary for simulations only; the hardware is insensitive to the starting point of

the counter since the read addresses generated by predadd are offset from writeadd-data.

0001

L
\ Inaddmux A.

inaddeoyntert
inaddcountar roql

«?>
ISrstprsdtdttt

frstprodadd feq2

•4

pnd*c*u»or_d*tt(1ia]

topotogyl

tooolocv rooi

1113] {7:41 [3»]

trx tr>
wccnptadaddZ

wconpredadd coq2

'4

Ihifdpredadd2
tKrdpradadd roq2

'4

mrH»add_<tatt(3:01
—ocnpr»dadd2_dttt(3:0]

Bntpr0dadd2_dti(3£] tHrdpndadd2_d*U(3a)

Figure 4.3: Block Diagram of the Predecessor Address Datapath (predadd)

4.2 The Backtrace Datapath

19

The Backtrace Datapath was broken up into two cascaded datapaths to obtain two

square blocks rather than a single rectangular block in the chip's layout. This facilitates

easier floorplanning. A block diagram for this datapath is shown in Figure 4.4.

The Backtrace Datapath is heavily pipeUned. Its pipeline stages are related to the

propagation delay of the logic on the Viterbi Processor that drives the multiplexer control

signals. This logic is implemented in a PLA on the Viterbi Processor.

The multiplexer MUXl selects between the signal srcndbtrace-data from the source

FIFO and the data stored in the register srcndbtracejreg2. srcndbtrace.data is the tag

associated with the source grammarnode and is selected at the beginning of a word. For

the rest of the word, MUXl selects the data stored in srcndbtracejreg2. This data is actuaUy

the output data from MUXl. All the registers on the chip are dynamic and must therefore

be refreshed periodically; the above arrangement effectively converts srcndbtracejreg2 into

a static register that is loaded at the beginning of every word.

The inputs firstbtrace2_out, seconbtrace2jout and thirdbtrace2jout are the data read

out from the dual-port RAMs in predsel. They are the tags corresponding to the three

predecessors of the current state. MUX2 passes the data from srcndbtracejreg2 only when

srcndbtraca2_data

\

_out

1 r

'it

0 1
MUXl

popsourcolnv

.'1«

arendblmco2

srendblraca raq2

Jf« r" s«eonbtrace2_out thlrdbtraeaa
gnsel»ct2

0 1

MUX2
'tt

. 'ti

''

flratbtraeaS saeonbtraeaS thlrdbtraeaS

tlrsibtraea raa3 saconbtraea ragS Ihlrdbtraea rao3

i "

„

ttratbtraeai saconbtracad thlrdbtraead

tlrsibtraea raa4 saconbtraea rag4 Ihlrdbtraea »ff«

tlrstbtraeaS soconbtracoS thltdbiracaS

Hrstbtraea raoS saconbtraea ragS Ihlrdbtraea rags
btracedpupper

"biraeeaplower
0 1 J

pradmux

>

'tt
'

phlm

phts

stall

btraeaS

blraea ragO

bttaea7 scant•St

btraea rag7

;- <
0 1

bestmux
_, moraprodmux7

btraca8

btraea raga

btraea9

btraea rag9

1
1

t *
gndmux

gndtrmxa

> ^ '

btraealO gnbtraeatO

btraea rag 10 gnblraea raq10
, 'tt

* "

^ f~
1 0

newmux
now*rard9

blracoll gnbtraea11

blraea raql1 gnblraea nail
',.

btracf11_out gnbtrac

\
•1 1_out

Figure 4.4: Block Diagram of the Backtrace Datapath (btracedp)

20

21

one of the predecessors of the current state is the source grammarnode.

The control inputs sela and selb are derived in the Viterbi Processor from the

output of the "max" function in the Viterbi algorithm (Section 2.2 and they cause predmux

to select the tag of the most Ukely predecessor.

The multiplexer bestmux uses the control input morepredmuxl to allow retention of

the tag of the previous most Ukely predecessor in case there axemore than three predecessors.

In this case, the Viterbi Processor compares the probabiUty of the most Ukelyof the second

three predecessors to the probabiUty of the most Ukely of the first three predecessors. The

more probable predecessor's tag is selected by bestmux.

The multiplexer gndmuxallows gnbtracejreg10 to store the most probable predeces

sor to the destination grammarnode. If the current state is more Ukely than any other state

to be the predecessor of this grammarnode, then gndmux selects the output of btracejreg9.

At the end of the word, newmuxcauses gnbtracejreg11 to store the tag of the most

probable predecessor to the destination grammarnode for the duration of the next word.

This allows the data to be stable for more than one clock cycle, which allows the Backtrace

Memory Processor more time to push data into the Backtrace FIFO.

In total, there axe eighteen 18-bit registers and seven 18-bit two-to-one multiplexers

in the Backtrace Datapath..

4.3 Clocking Strategy

The figures shown thus faxin this chapter do not show the clocking strategy, but it

is nevertheless important. There axe two outside constraints imposed on the chip that affect

the clocking strategy. Firstly, the need for a testable circuit made it desirable to implement

all registers using scanpath registers. The schematic for the scanpath register used in this

chip is shown in Figure 4.5. It requires three clocks: the usual master and slave clocks and

the shift clock for shifting data into and out of the scanpath.

Secondly, the chip must be stalled during the dynamic RAMs' refresh cycles. These

constraints, coupled with the need to buffer the clock, led to the use of standard cells for

gating as weU as buffering the clocks. The standard ceUs axe physically large and provide a

laxge output current drive. The logic realized in the standard cells is shown in Figure 4.6.

This figure shows the logic for driving five registers; on the chip each register is driven by

one logic module.

IN >

LOAD SHIFTINV

LOADINV YYYSCANIN YYSHIFT

LOADINV • • • SCANOUT • * SHIFT
LOAD SHIFTINV

PHI1INV w w PHI1

Figure 4.5: Schematic of the Scanpath Register

phis p^. phlstrw

stalL-J^v-stallimt>
seantestir

phliw p^p phtmlpv

loadl shiftl phh
loadinvl shiftinvf phhlnvl

load5 shifts phi5
loadinvS shiftinvS phi1inv5

Figure 4.6: Schematic of the Scanpath Register Clock Drivers

99

>OUT

23

4.4 Verification

Chip verification was done on two levels, design simulation and hardware testing.

4.4.1 Simulation

The LagerIV SiUcon Compiler produces chip layout in Magic [10] format. The

layout was extracted and used by RSIM to simulate the chip. RSIM models transistors

as current sources and uses lumped node capacitances to determine approximate timing

information. Test vectors were fed into RSIM and the results compared to output vec

tors obtained from THOR [11]. THOR is a functional simulator which uses a hierarchical

behavioral description written in C. The entire speech recognition system was modeled us

ing THOR even before the chips were built, and the chip design actually used the THOR

description as the blueprint. The THOR modeUng allowed verification of the system's

functionality before building hardware and easy design verification by simulation.

4.4.2 Scanpath Testing

The Backtrace Processor is heavily pipeUned, and every register on the chip is a

scanpath register. This allows easy testing of the combinatorial parts of the chip. However,

the only testing machine availablewas a Tektronix DAS 9100,which wasnot very convenient

for the purpose. Instead, an IBM-PCbasedscanpath testing system wasdeveloped by Anton

Stolzle, Shankar Narayanaswamy and Robert Yu. This testing system is general enough to

test all chips that use the above scanpath scheme.

Testing System

The testing system uses a custom board that interfaces between the IBM-PC and

the user's test board. The user specifies a test vector to be fed into the scanpath as a single

Une of bits in a file on the PC. These bits are loaded by software into a memory on the

custom board. The custom board then downloads the bits into the chip to be tested on the

test board, runs the chip for one exactly clock cycle, and reads the scanpath out again into

the on-board memory. This output data is then copied into a file on the IBM-PC in exactly

the same format as the input test vector. Copying data to and from the custom board is

done by software written in TurboC running on the PC.

24

phim(1) phis(3) scantest(5) scanin(9) scanout(12) GND(13)

o 606000600
000000000000

Figure 4.7: Pinouts of the ribbon cable connector for the scanpath testing system

The custom board communicates with the test board by means of a 5-signal pro

tocol, phimis the master clock, phis is the slave clock, scanin is the data to be loaded into

the scanpath and scanoutis the data read out of the scanpath. scantest is a control signal

which tells the test board that the scanpath is active; when it goes low (for one clock cycle)

the test board knows that the scanpath is not being accessed and that it may run the chip.

There is also a ground reference pin. The pinouts on a 25-pin ribbon cable connector are

shown in Figure 4.7.

Test Board

The Backtrace Processor is packaged in a 132-pin Pin-Grid Array (PGA). Its pins

axe therefore not easily accessible for connection of pattern generators and data acquisition

probes. The test board holds the chip in a ZIF socket and brings out all its pins to two

rows of wire-wrap headers. Power and ground rail headers encircle the chip. There is also a

boundary-scan shift register on the board to aUow control of the chip's control inputs. This

8-bit register is connected to the beginning of the scanchain. Finally, two adjacent rows of

13-pin headers axe placed at the edge of the board for connecting the ribbon cable to the

scanpath testing system.

Format Conversion Software

Since the data format required by the testing system is not very readable, some

software was needed to translate data to and from a friendUer format. This program, called

scanpath, accepts an input file that has four columns per Une and one Une per scanpath

register in the scanchain. From this, it generates the correct sequenceof bits for the testing

system.

25

The Unes are arranged in order of closeness of the register to the beginning of the

scanchain: the closest register being on the first Une of the file. The first column of each

Une is the name of the register. The second column is the number of bits in the register.

The third column contains a single character: "L" if the least significant bit of the register

is closest to the beginning of the scanchain and "M" otherwise. This allows the user to

specify data as a regular (rather than bit-reversed) number and let the computer reverse it

for him. Lastly, the fourth column contains a hexadecimal number representing the value to

be loaded into the register. If this number has too many bits, the most significant bits are

truncated until the correct number of bits is obtained. This allows unambiguous loading of

registers that have widths that axe not multiples of four bits.

Below is an example of the input file for the Backtrace Processor. Note that the

first register is the boundary-scan register, which is loaded as part of the scanchain to allow

easy loading of test signals into the chip's control inputs.

Nw9Gm9Mp7SaSbGs2PsiNf 8 M FF

stprobin 18 L FFFFF

inaddcounter_regl_l 4 M A

topology_regl_l 4 L A

topology_regl_2 4 M A

topology_regl_3 4 L A

firstpredadd_reg2 4 M A

seconpredadd_reg2 4 L A

thirdpredadd_reg2 4 M A

btrace_reg6 18 M 11111

btrace_reg7 18 L 22222

btrace_reg8 18 M 33333

btrace_reg9 18 L 44444

gnbtrace.reglO 18 M 55555

gnbtrace.regll 18 L 66666

btrace.reglO 18 M 77777

btrace_regll 18 L 88888

srcndbtrace_reg2 18 M 99999

firstbtrace_reg3 18 L AAAAA

26

firstbtrace_reg4 18 M.BBBBB

firstbtrace_reg5 18 L CCCCC

seconbtrace_reg3 18 M DDDDD

seconbtrace_reg4 18 L EEEEE

seconbtrace_reg5 18 M FFFFF

thirdbtrace_reg3 18 L 00000

thirdbtrace_reg4 18 M 11111

thirdbtrace_reg5 18 L 22222

The string of bits resulting from processing the above input file is used by the

testing system, which in turn produces a similar output string of bits. This output vector

may then be compared to the input vector using scanpath. The program wiU produce a

file that has the same format and content as the earUer four-column file but with a fifth

column that holds (in hexadecimal and, if necessary, bit-reversed) the value obtained from

the testing system.

Below is an example of the output file for the Backtrace Processor. Note that the

contents of the boundary-scan register axe unchanged.

Nw9Gm9Mp7SaSbGs2PsiNf 8 M FF FF

stprobin 18 L FFFFF 00000

inaddcounter_regl_l 4 M A 0

topology_regl_l 4 L A 0

topology_regl_2 4 M A 0

topology_regl.3 4 L A 0

firstpredadd_reg2 4 M A 4

seconpredadd_reg2 4 L A 4

thirdpredadd_reg2 4 M A 4

btrace_reg6 18 M 11111 22222

btrace_reg7 18 L 22222 11111

btrace_reg8 18 M 33333 33333

btrace_reg9 18 L 44444 33333

gnbtrace.reglO 18 M 55555 04444

gnbtrace.regll 18 L 66666 15555

btrace.reglO 18 M 77777 04444

It

btrace.regll 18 L 88888 37777

srcndbtrace_reg2 18 M 99999 19999

firstbtrace_reg3 18 L AAAAA 19999

firstbtrace_reg4 18 M BBBBB 2AAAA

firstbtrace_reg5 18 L CCCCC 3BBBB

seconbtrace_reg3 18 M DDDDD 3FFFF

seconbtrace_reg4 18 L EEEEE 1DDDD

seconbtrace_reg5 18 M FFFFF 2EEEE

thirdbtrace_reg3 18 L 00000 3FFFF

thirdbtrace.reg4 18 M 11111 00000

thirdbtrace_reg5 18 L 22222 11111

Results

Of the 30 chips fabricated, 18 passed the scanpath test based on 6 different test

vectors.

Chapter 5

The Dual-Port RAM

In the subceUpredsel on the Backtrace Processor (Figure 4.2), the predecessor tags

axe stored in a dual-port RAM so that these tags can be available for processing wliile being

updated. The Viterbi Processor also uses predsel and therefore the dual-port RAM. Since

the LagerlV ceU Ubraxy did not have a dual-port RAM, it was necessary to design one from

scratch.

5.1 Specifications

The dual-port RAM had to meet several specifications:

It must allow independent reading and writing.

It must have separate input and output data busses.

It must not require clocks.

It must operate at 5 MHz for a 16 word x 32 bit RAM.

It should occupy minimum area.

It may be dynamic since the processors that use it wiU write the entire memory

sequentiaUy, thereby refreshing it.

If the read address and write address axe the same, then the data read must be the

data currently being written in.

28

29

• It must be assembled by the tiUng generator TimLager in the LagerlV SiUcon Assem

bly System.

At the time, a self-timed RAM designed by Brian Richards was available. Since it

would take longer to design a RAM from scratch, this RAM was modified to suit the above

specifications.

5.2 I/O Description

The dual-port RAM has an input bus (in), an output bus (out), a read address

bus (reaa\.addr), a wi'ite address bus (write.addr), a write enable (write) and a writestrobe

(pre). If in and out axe N bits wide, then there axe log2N words in the RAM.

write is internally ANDed with prE. When the user writes data into the RAM, he

should enable write and, wliile writcaddr and in axe vaUd, strobe pre low. When reading

data, simply set readjaddr to the correct address and, after some propagation delay, out

wiU carry valid data.

The read and write operations axe completely independent. If a particular address

is being written and read at the same time, out wiU initially show the old data but, after

some propagation delay, it wiU show the new data. This delay has been verified to be less

than 200 ns, as explained in Section 5.4 below.

5.3 Block-Level Description

A schematic diagram of the dual-port RAM is shown in Figure 5.1. The input

data is buffered and then fed into a standard 3-transistor dynamic RAM ceU. The data

stored in this cell is detected with the aid of a pseudo-NMOS column precharge transistor.

and is then buffered on its way out of the RAM. Address decoding is done by tiUng together

the appropriate ceUs.

5.4 Verification

Verification was done on several levels. First, the pseudo-NMOS column pull-up

was simulated with SPICE [12]. Then the complete RAM was simulated using RSIM. Lastly.

a fabricated chip containing the dual-port RAM was tested on the Tektronix DAS 9100.

30

Figure 5.1: Schematic Diagram of the Dual-Port RAM

31

5.4.1 SPICE Simulations

One major difference between the dual-port RAM and the self-timed RAM is in

the column pun-up. The former uses a pseudo-NMOS column pull-up whereas the latter

uses a dynamic pre-charge. This modification meant that the size of the pull-up transistor

had to be decreased to avoid it overwhelming the puU-down transistor in the 3-T RAM cell.

However, it cannot not be too small; otherwise it cannot puU the column voltage up fast

enough if a "1" is read after a "0".

The final transistor size was chosen to be 4A long by 3A wide, where A is a scale

factor that depends on the technology. For example, Ais set to 1.0 in a 2.0/nra technology.

This means that the puU-up transistor was 4/zm by Zpm in a 2\im technology. SPICE

simulations showed the column rise time to be 6 ns and the column voltage swing to be

from 5 Volts to 0.38 Volts, with the transition in output voltage levels occurring at a DC

input voltage of 1.5 Volts at the gate of the storage transistor. This is clearly sufficient for

the purpose. The SPICE deck was created automatically by ext2spice [13] from the layout,

itself, so Unear and nonUneax capacitances were simulated accurately. Resistive effects in

the column were not modeled in the SPICE simulations, but they would merely slow down

the RAM and it was fast enough that resistive effects would not render the RAM unusable.

5.4.2 RSIM Simulations

In order to test the functionality of the dual-port RAM, the layout was extracted

and an input file for RSIM was generated from this layout. RSIM models node capacitances

and the current drive of transistors to give an approximate timing analysis of the circuit..

This is also useful for making sure that the chip runs fast enough.

Simulations showed that the RAM was functional at 10 MHz.

5.4.3 Chip Testing

A 16 word x 32 bit version of the dual-port RAM was fabricated in a 1.6/im n-well

process by MOSIS and tested on a Tektronix DAS 9100. The testing strategy was to write

every memory location with data, and then to read the data sequentially over and over

again until the DAS ran out of storage space (about 500 reads). This allowed verification

that the data in the RAM remained vaUd for a reasonable length of time. Since reading

32

and writing are independent, the test also included reading and writing the same location

simultaneously.

Of the 30 chips tested, 24 were functional at a supply voltage of 5.25 Volts. None

worked off a 5-Volt supply. The highest clock rate used was 5 MHz, as the DAS could

not meet some of the timing constraints at higher clock speeds. This is sunicient since the

Speech Recognition System operates at 5 MHz.

The dual-port was verified, however, when the Backtrace Processor was tested.

Data could be written and read reUably from the dual-port RAMs on the Backtrace Pro

cessor (which was fabricated in a 2\xm technology) at a supply voltage of 5 Volts.

Chapter 6

Conclusions

The backtrace processor for the wordprocessing subsystem of a large vocabulary

real time speech recognition system has been designed, fabricated and verified. It uses an

on-chip dual-port RAM that was designed by modifying an existing self-timed RAM. The

chip was assembled, laid out and routed using the LagerlV SiUcon Compiler System. It was

simulated using THOR and RSIM.

Improvements may be made to the wordprocessing subsystem to increase its capa-

biUties. The subsystem may be paraUeUzed by using several boaxds that each recognizes a

3,000 word vocabulary. The output memory could be doubled in capacity by using 4-Mbyte

SIMMs instead of the current 1-Mbyte ones. The backtrace memory could be transformed

into a FIFO so that the backtrace information may be transferred asynchronously to the

system CPU during the subsystem's operation. This reduces the subsystem's latency. Fi

nally, a lot of the multiplexing and DRAM control could be put into a custom chip to save

board area. These changes axe planned for future versions.

33

Appendix A

Chip Layout

A plot of the Backtrace Processor is shown in Figure A.l. The major blocks can
be clearly distinguished.

At the top of the plot is btracedp. btracedpupper (labeUed BDPUP) is on the left
while btracedplower (labeUed BDPLO) is on the right, predadd is on the lower left of the
chip and predsel, on the lower right, is clearly distinguished by its three identical dual-port
RAMs.

The chip has 102 signal pads, 13 power pads and 13 ground pads. It uses 12,760
transistors and occupies 7.6mm2 of siUcon area in a 2/j.m nweU process.

34

35

:-::.:t,.:-:t.:-:,,,-::,,-:,.:'::

Figure A.l: Chip Photo of the Backtrace Processor

Appendix B

Chip Pinouts

The pinouts of the Backtrace Processor are shown in Figure B.l. The package has
102 signal pins, 13 power pins, 13 ground pins and 4 substrate pins in a 132-pin Pin-Grid
Array (PGA).

36

®.popnmcvinv
©

gnwlieg Mb

scakwbdpio scmoutbopio

0 © © © ©
mor«pr«imui7 immaajt GNoutlS

© ©
GNout14 Vdd

0
GKO

©
GNouS

©
GNouS

©
(MoM

®
Vdd

©
SUB

®
GKO

©
Vdd

©
M%

© © ©
GNO GNM17 Vdd GfteutIS GNouni

©
GNouS

©
Vdd sua CNoua

®
GKO SF*n17

©
sua

SCMttNSDPUP

© © © © ©
SCMCUTBDPUP gnUmoS CMoutl* CKO

Q ©
GNamit GNouTIO

©
GNou(7

©
GffcMS

®
GNO

®
CNamO

®
SRnt4

©
sums

©
S*n1»

LEGEND
GNauO Vdd BToutl 0

®
SftnIZ

®
Vdd

©
snnts

©
GNM1

©
BTout17

©
BToutlS

PRin - pre<tecessor_data

©
SHW

©
SHn10

®
SHnll STIn - stbtraco_data BToutU

©
BToutlS

©
BToutl 2

©
Sf*n9

©
Sf*i7

©
SftnB SRin - srcnoT>tracs2_clata

©
GNO

©
Vdd

©
BToutl 1

©
SRJfO

©
SUM

®
SHflS

BTout » btracel 1_out ©
Vdd

©
BToutIO BTauS

®
SRnZ

©

©
snmi

©
•an

®
SRnO

J©

GNout - gnbtracel l_cut ©
GMO

®
Vdd

BTeul7

©
BToutS

©
BTou*

©
BToutft

©
ft**

®
SCANOUTUOP

©
PRfllO

has) ®
OTouO

©
BTouM

nnlM

©
PHnn sua

©
PHnS

©
PfVl

) © © ©
1 SC/WMUD? STiiM GNO ST*1

®
9 STW

©
sr«2

®
Vdd

©
BToutl BTouS

©
GMD

© ®
PftnS

©
PRflS

S
CMC

) © © ©
> Vdd STmS Vdd

©
STWil 1 SIM

©
STWlS

©
stm

©
STinO BTouM

PRM PRn7
©
PfV>4

© S
Pf*n

) © © ©
0 ST«i17 STnlS STnlS

®
STWil I GMO

©
STing

®
ST/«i7

©
STin4

©
sr,ni

Figure B.l: Pinouts of the Backtrace Processor (top view)

37

Bibliography

[1] J. Rabaey, R. Brodersen, A. Stolzle,S. Narayanaswamy, D. Chen, R. Yu, P. Schrupp.
H. Murveit, and A. Santos. A Large Vocabulary Real Time Continuous Speech Recog
nition System. In VLSI Signal Processing III, pages 61-74. IEEE Press, 1988.

[2] H. Murveit, J. Mankoski, J. Rabaey, R. Brodersen, A. Stolzle, D. Chen.
S. Narayanaswamy, R. Yu, P. Schrupp, R. Schwartz, and A. Santos. A Large-
Vocabulary Real-Time Continuous-Speech Recognition System. In Proc ICASSP SO:
1989 International Conference on Acoustics Speech and Signal Processing, pages 789-
792, May 1989.

[3] A. Stolzle, S. Narayanaswamy, K. Kornegay, J. Rabaey, and R. Brodersen. A VLSI
Wordprocessing Subsystem for a Real Time Large Vocabulary Continuous Speech
Recognition System. In Proc CICC 89: 1989 Custom Integrated Circuits Conference.
pages 20.7.1-20.7.5, May 1989.

[4] Electronic Research Laboratory. LagerlV Distribution 1.0 Silicon Assembly System
Manual. University of California at Berkeley, distribution 1.0 edition, June 1988.

[5] B H Juang. On the Hidden Markov Model and Dynamic Time Warping for Speech
Recognition—A Unified View. AT&T B.L.T.J., 63(7):1213-1243, January 1984.

[6] Robert A Kavaler. The Design and Evaluation of a Speech Recognition System for
Engineering Workstations. PhD thesis, University of California at Berkeley, May 1986.

[7] R. Bisiani, T. Anantharaman, and L. Butcher. Beam: An Accelerator for Speech
Recognition. In Proc ICASSP 89: 1989 International Conference on Acoustics Spate!i
and Signal Processing, pages 782-784, May 1989.

[8] L R Rabiner and B H Juang. An Introduction to Hidden Markov Models. IEEE ASSP
Magazine, 3(1):4-16, January 1986.

[9] G D Forney Jr. The Viterbi Algorithm. Proc. IEEE, 61:268-278, March 1978.

[10] Walter Scott, Robert Mayo, Gordon Hamachi, and John Ousterhout. 1986 VLSI Tools:
Still More Work by the Original Artists. University of California at Berkeley, December
1985.

[11] VLSI/CAD Group. THOR. Stanford University, release 3.2 edition, 1986.

38

39

[12] Andrei Vladimirescu and Sally Liu. The Simulationof MOS Integrated Circuits Using
SPICE2. Technical Report UCB/ERL M80/7, University of California at Berkeley,
February 1980.

[13] Andrew J Burstein. A 9 Bit 10 MHz A/D Macrocell. Master's thesis, University of
California at Berkeley, November 1987.

	Copyright notice1989
	ERL-89-134

