Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



EXTENSIONS OF TWO-LEVEL MINIMIZATION
METHODS WITH APPLICATIONS TO MULTI-LEVEL
LOGIC SYNTHESIS

Copyright © 1989

by

Abdul A. Malik

Memorandum No. UCB/ERL M89/132

14 December 1989



EXTENSIONS OF TWO-LEVEL MINIMIZATION
METHODS WITH APPLICATIONS TO MULTI-LEVEL
LOGIC SYNTHESIS

Copyright © 1989

by

Abdul A. Malik

Memorandum No. UCB/ERL M89/132

14 December 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720




EXTENSIONS OF TWO-LEVEL MINIMIZATION
METHODS WITH APPLICATIONS TO MULTI-LEVEL
LOGIC SYNTHESIS

Copyright © 1989

by
Abdul A. Malik

Memorandum No. UCB/ERL M89/132

14 December 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



Extensions of Two-level Minimization Methods with

Applications to Multi-level Logic Synthesis -

Abdul A. Malik

University of California Department of Electrical Engineering
Berkeley, California and Computer Sciences

Abstract

Some recent developments in multi-level synthesis have renewed interest in two-level mini-
mization. This thesis makes contributions in the area of two-level minimization so that it
can be used efficiently as an aid to multi-level logic optimization. In particular the following
two problems are addressed. |

1. A commonly used heuristic algorithm for two-level logic minimization uses the offset
of the function. There are functions with reasonable size onsets and don’t care sets
that have very large offsets. Minimization techniques that use the offsets are not
véry efficient with such functions. When two-level minimization was used to obtain
local optimization in multi-level network, functions with large offsets were encountered

frequently.

An important contribution of this thesis is to introduce the notion of reduced offsets.
It is shown that reduced offsets can be used in a similar way as the exact offset is
used. The quality of minimization is maintained because the overall algorithm remains
unchanged. Several reduced offsets may need to be computed instead of a single exact
offset but each is usually much smaller than the exact offset and can be obtained much
faster. Some experimental results are presented to show that for many functions with

large offsets, the CPU time decreases when reduced offsets are used.

2. The generation of factored forms from two-level representaions is an important oper-
ation in multi-level minimization. The objective is to obtain factored forms with a
small number of literals so that the number of literals in the multi-level network is
minimized. Traditionally, the two level representation to be factored is treated as an
algebraic polynomial and algebraic factoring techniques are used. Such approaches

exclude Boolean operations and search only part of the solution space. In this thesis, a



new factoring algorithm is presented that uses Boolean properties and often produces

better factored forms which are not possible to obtain with algebraic methods.

The algorithms presented in this thesis have been implemented in Two-level mini-

mization program ESPRESSO and multi-level minimization environment MIS.

-

Prof. Alberto Sangiovanni-Vincentelli
Thesis Committee Chairman



Acknowledgements

I feel indebted to my research advisor professor Alberto Sangiovanni-Vincentelli
for persuading me to do my Ph.D dissertation in the area of Logic Synthesis and for his
continued guidance during the course of this dissertation. Professor Alberto Sangiovanni-
Vincentelli and professor Richard Newton have been my research advisors for the last two
and a half years. During that time, I have benefited from their encouragement, support
and valuable advice.

I consider it a great privilege to have the opportunity to work very closely with
professor Robert Brayton. One of my memorable experiences at Berkeley is the many
exciting and thought provoking technical discussions that I had with professor Brayton. I
am very grateful to professor Brayton for taking interest in my research.

My association with professors Sangiovanni, Brayton and Newton made the last
two years, the most rewarding years of my entire college education. I am grateful to all
three of them. I wish I had come into contact with them a little earlier during the course
of my graduate work at Berkeley.

I am also thankful to professor Charles Stone of the Department of Statistics for
his willingness to be on my Qualifying Exam and Thesis committees.

Thanks are also due to many present and past students in the department of
Electrical Engineering and Computer Sciences for their help and for making my stay at
Berkely a pleasant experience. In particular, I would like to mention Andrea Casotto,
David Harrison, Steve Lewis, Guy Marong, Cho Moon, Rajeev Murgai, Tom Quarles, Omid
Razavi, Richard Rudell, Res Saleh, Hamid Savoj, Ellen Sentovich, Narendra Shenoy, Jyuo-
Min Shyu, Kanwar Jit Singh, Rick Spickelmier, Herve Touati and Albert Wang. I am also
thankful to computer support staff members Brad Krebs and Kurt Pires.

Last but not the least, I acknowledge the partial funding from DARPA under
contract number N00039-C-0182 and from NSF under contract number UCB-BS16421.



Contents

Acknowledgements
Table of Contents
List of Figures
List of Tables

1 Introduction

2 Basic Definitions
2.1 Binary-valued Functions . .

2.1.1 Completely-specified Function. . . . .. ... ... ... .......
2.1.2 Incompletely-specified Function . . . . . ... ... ... .. ... ..

2.1.3 Tautology ......
2.1.4 Minterm.......

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

2.1.5 Onset,Don’t CareSetand Offset . . .. ................

2.1.6 Literal........

ooooooooooooooooooooooooooo

217 Product TermorCube. . . . . . i v i i v i ittt et et e een

2.1.8 Cube-representation
2.1.9 Universal Cube . . .

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

2.1.10 Containment of One Cubein Another . ... .............

2.1.11 Prime Cube .. ...

ooooooooooooooooooooooooooo

2.1.12 Implicant and Prime Implicant . ....................

2.1.13 Super Cube .. ...
2.1.14 Overexpanded Cube

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

2.1.15 Distance betweentwoCubes ... ... .. ...t vt e eenn.
2.1.16 Orthogonality betweentwoCubes ... ................
2.1.17 Intersectionof twoCubes . . .. . . . . i i i v v vt bt b oo ees

2.1.18 Sum-of-products . .
2.1.19 Unate Function . . .

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

2.1.20 Unate Sum-of-products Representation. . . . . .. ..........

2.1.21 Cofactor..... ..
2.1.22 Shannon’s Expansion

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

WO -IT IO OO G n DB N Wy



22 Multi-valued Functions . . . . . ¢ . v ¢t vt vt vt ittt bt et 9
221 Mvfunction. . . . .. i i ittt e e e e e e e e 9
2.2.2 Minterm....... et e et et ettt 10
2.2.3 Onset, Don’t CareSet,and Offset ... ................ 10
224 Literal . . ................ e e e 10
225 Product TebmorCube. ... .........00v v 10
2.2.6 Containment of one Cubeinanother.................. 11
2.2.7 Distance betweentwoCubes . ............. ... ... .. 12
2.2.8 IntersectionoftwoCubes .. ............ccveveu.. 12
229 PositionalNotation. . . . . . . ...ttt i it i it e e 12
2210 COVEL . v v v v it v ottt s e e e e e 13
2.2.11 Weakly UnateFunction . .. ... ... ..t v e ennnn 13
2212 WeaklyUnate Cover . . . . . . vt v v v v v v oot et o oo v e v o 13
2.2.13 Strongly Unate Function. . . . . ... ... ... ... .. .. ... 13
2214 Cofactor . . . v v v vt ittt e e e e e e e e 14
2.2.15 Generalized Shannon’s Expansion . .. ... ... v oo 14

23 Factored-forms .. .. ... .0ttt it i it ittt 14
23.1 AlgebraicDivision . ... ........ ..., 14
23.2 Cokerneland Kernel ..................0i... 15
233 Factored-form. ... ... .. .. ittt ittt ieeennnnos 15
2.3.4 Tree Representation of Factored From . ... ... .......... 15
2.3.5 Factored-Form as Representation of a Completely-Specified Function 16
2.3.6 Boolean Factored-form Minimization . . . . ... ........... 16

2.4 Multi-level Network . . . . .. o i i i it ittt ittt et et ae e e e 16

Background and Contributions 18

Reduced Offsets for Minimization of Binary-valued Functions 22

41 Imtroduction. . . .. . . ¢ v it it i it i ittt ettt e e 22

4.2 Reduced OffsetforaCube. ... ... ... ... ... 24

4.3 Reduced Offset foraSetofCubes . ...................... 25

44 Generalized Cube . . . . ... .. ittt ittt it ittt 27

4.5 Reduction Operator Rp and Reduced Offset . . ... ............. 29

46 Propertiesof Rp . . . .. vt i ittt it i i i e 31

4.7 Properties of the Reduced Offset .. ...................... 33

4.8 Unate Recursive Algorithm for the Reduced Offset fora Cube. . . ... .. 35
4.8.1 Applying Reduction Operator to Unate Sums-of-Products . . . . . . 36
482 Merging . . .. . .. i it it i i e e e e e e S 14

49 Overexpanded Cube . ... .. .. ittt ittt tteesonnnnenns 41

4.10 Improving Overexpanded Cube Computation . ... ............. 45

4.11 Using the Overexpanded Cube for Computing the Reduced Offset . . . .. 48

4.12 Further Improvements in Computing the Reduced Offset . . . . . . ... .. 54

413 Limitations . . . . ¢ v v i i it s e e et e e e e et e e 59



5 Reduced Offsets for Minimization of Multi-valued Functions

5.1
5.2
5.3
5.4

5.5
5.6
5.7
5.8
5.9

Introduction . . . . . . ot i v ittt i e e e e e e
Reduction operator R, and-Reduced Offset .. ................
Propertiesof Rp . . . . .o it it ittt ittt it e e
Unate Recursive Algorithm for the Reduced Offset fora Cube . . . ... ..
5.4.1 Recursive Shannon’s Cofactoring . . ..................
5.4.2 Applying Reduction Operator to Strongly Unate Sums-of-Products .
543 Merging . . . . v it it e e e e e e
Overexpanded Cube . ... ... .. i it ittt ittt tenennneas
Using the Overexpanded Cube to find the Reduced Offset . . ... ... ..
Storing CofactoringTree . . . . . .. ... ..o ittt i,
Experimental Results . . . . ... .. ... ittt it eennnn.
Limitations . .. ... ... i ittt ittt ittt

510 Conclusion . . . v vt i it ittt e e e e e e e e e et e e e e

6 Boolean Minimization for Factored Forms

6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8

Introduction. . . . . ... i i it ittt i e e e e e
Initial Factorization . ... ... ... ...t it i it i enen..
Reducing Literals in Initial Factored Form . . . . ... ............
6.3.1 Expansionofgjandgs ................. .. ... ...
6.3.2 RemovalofCubesfromg;andgz. ... ................
Choosingoptimal A=hiha+p . . . . . . o i i it i i i it .
Recursion . . .. ... ittt it ittt it e ittt
Example............. e e e s e e e s e e s e et e
Experimental Results. . .. .......... e e e e e e e e e e e
Comclusion . ... ...ttt ittt it e,

Bibliography

iv



List of Figures

2.1 Tree representation of a factored-form

oooooooooooooooooooooo

4.1 Dlustratingreduced offset . .. ........ ..o
4.2 Table for intersecting two generalized cubes . . ................



List of Tables

4.1

5.1
5.2

6.1

Offset vs. reduced offsets for binaray valued functions. . . ... ....... 62
Offset vs. reduced offsetsfor PLAs . . . . ... ...ttt v et v v 91
Multi-valued reduced offsets vs. offset for Achilles’ heel functions . . .. .. 92
Boolean factorization vs. Good factor and Quick factor . ... .. ... .. 105



Chapter 1

Introduction

Ever since the advent of integrated circuits, they have been growing in complexity.
Chips with more than a million transistors are now available. The increase in complexity
of digital ICs was enabled by extensive use of computers in the design process. The field
of study that addresses the use of computers for the design of ICs is known as Computer
Aided Design of Integrated Circuits (CAD of ICs).

Integrated circuits can be divided into two groups: analog ICs and digital ICs.
Analog integrated circuits work with data which is continuous in nature. Such circuits have
rather limited applications. They are used in audio amplifiers, televisions, etc. Digital ICs
deal with discretized data which is expressed as strings of 0s and 1s. Such circuits have
wide range of applications. Continuous data is often discretized; processed using digital ICs;
and finally converted back into continuous form. This techniques is an alternative to using
analog circuits. In addition, digital ICs have a wide range of applications from children’s
toys to space shuttles.

An important part of the design of digital ICs is to obtain a description of the
layout from the functional specification of the circuit. The functional specification is often
in the form of logic equations. The circuit to be laid out must produce for any input, an
output which conforms with the functional specification. The output must be produced
within an allowable time once the input has been applied. In addition, the circuit must
satisfy some testability requirements. The process of obtaining a layout description from
functional specification is known as logic synthesis. Since the cost of the circuit increases
with the area, the objective of logic synthesis is to obtain a circuit with the smallest area

possible that meets the timing and testing requirements.

1



The description of the layout produced by logic synthesis may be in the form of
interconnected modules (subcircuits). The implementation of the circuit as interconnected
modules is known as multi-level implementation. The process of obtaining such an imple-
mentation from functional specification is known as multi-level logic synthesis. The layout
description may be in the form of a Programmable Logic Array (PLA). PLA is a regu-
lar structure in which each path from the input to the output has at most two logic gates.
Such an implement:;.tion is called two-level implementation. The process of obtaining a PLA
based implementation is known as two-level logic synthesis. In addition to being a design
style in itself, two-level logic synthesis has been successfully used as an aid in multi-level
logic synthesis.

An aspect of logic synthesis i8 logic minimization. Given a representation for a.
functional specification in the form of a PLA or interconnected modules, logic minimization
attempts to obtain another representation for the same functional specification whose layout
would take less area than the original representation. Logic minimization can be two-level
minimization or multi-level minimization depending on whether the representation used is
in the form of PLA or interconnected modules.

The contribution of this thesis is to extend two-level logic minimization techniques
so that they are more suitable for use in multi-level logic synthesis. Chapter 2 presents some
basic definitions. Chapter 3 presents some historic background of two-level synthesis and
explain the contributions of this thesis in more detail. Chapter 3 also presents the outline
of the rest of the thesis.



Chapter 2

Basic Definitions

The purpose of this chapter is to present some basic definitions from the literature
that will be used in the later chapters. Most of the definitions related to binary-valued
functions are taken from [2]. The definitions needed to deal with multiple-valued functions
are those used by Sasao [18,19,20,22,21] and later in ESPRESSO-MYV [16]. Finally, defini-
tions used in regard to factored-forms are those developed by Brayton et. el [4,5,6]. Any
new definitions will be presented in each chapter as they are needed.

It is assumed that the reader is familiar with Boolean Algebra and the basic OR
(+) and AND (*) operators defined for it. Such preliminaries are covered in most standard
text books on Logic Design e.g [15]. First definitions related to binary-valued Boolean
" functions will be presented. They will be followed by definitions regarding multi-valued
functions. Finally, some definitions about factored-forms will be presented. Many terms
are common to binary-valued and multi-valued functions. Such terms are usually preceded
with the phrase binary-valued or multi-valued if the ambiguity can not be resolved from the

context.

2.1 Binary-valued Functions

2.1.1 Completely-specified Function
A completely specified function g with n inputs and m outputs is a mapping
g:B" - B™
where B = {0,1}, B" is called the domain and B™ is called the range of thé function.

3



4

If m = 1, g is called a completely-specified single-output ﬁmctio;z. If m > 1, the
functions is called a completely specified multiple-output function.

2.1.2 Incompletely-specified Function
An incompletely-specified function F with n inputs and m outputs is 2 mapping
h:B*—=Y™

where B = {0,1},and Y = {0,1,%}. B™ is called the domain and Y™ is called the range of
the function.

F is called an incompletely-specified single-output function if m = 1. It is called
an incompletely specified multiple-output function if m > 1.

A completely-specified function is a special case of an incompletely-specified func-
tion which occurs when no minterm in the domain of the incompletely-specified function is
mapped to *. The phrase completely-specified or incompletely-specified is usually omitted if
the meaning is clear from the context.

2.1.3 Tautology

An incompletely-specified function F: B® — Y™ is called a tautology if Vs € B",
F(s)={1}™.
2.1.4 Minterm

A point in the domain of a completely or incompletely specified function is called

a minterm of the function.

2.1.5 Onset, Don’t Care Set and Offset

An incompletely-specified function F: B® — Y maps each minterm to 0, 1, or *.

The onset f, don’t care set d and offset r of F are sets of minterms as defined below.

f = {s€B"F(s)=1)
d = {s€B"|F(s)=+}
r = {s€B"|F(s)=0}



Customarily, each one of these sets is represented by a completely-specified func-
tion that maps a minterm to 1 if and only if the minterm belongs to the set.

f, d, and r partition B®. A minterm in the don’t care set is allowed to have either
value 0 or 1. An incompletely-specified single-output function is often denoted by triplet
(f,d,r). A completely-specified single-output function can be thought of as a special case
of an incompletely-specified single-output function with d = 0.

2.1.6 Literal

A literal is a variable or its complement. A literal D( D) represents the set of all -
minterms for which variable D takes on value 1(0). D and D are complements of each

other.

2.1.7 Product Term or Cube

A product term is a product or conjunction of one or more literals. A product
term represents the intersection of sets of minterms represented by all of the literals in it.
A product term in B™ with [ literals is a hypercube of n — ! dimensions. Hence a product

terms is also called a cube.

2.1.8 Cube-representation

An incompletely-specified single-output function F = B® — Y can be represented
by a cube with n dimensions. Each vertex of the cube corresponds to a minterm of F. Since
each minterm is exactly in one of onset, don’t care set, or offset, the vertex corresponding

to the minterm is labeled as onset-vertex, don’t care-vertex or offset-vertex.

2.1.9 Universal Cube

If all vertices of the cube representing an incompletely-specified single-output func-
tion are labeled as onset-vertices then the cube is called a universal cube. The incompletely-

specified function in that case is a tautology.

EXAMPLE 2.1 :



Consider a function with 3 variables: z;, z; and z3. The product term z,%F.z3

represents

{(z1,2,23) € B3|z1 = 1} N {(z1,22,23) € B3|z = 0} N {(z1, Z2,23) € B3|z3 =1}

= {(z1,22,23) € B3|z; = 1 and 2, = 0 and z3 = 1}

The product term is a cube of dimension 0.

2.1.10 Containment of One Cube in Another

A cube c; contains ¢; (¢; C ¢3) if the set of minterms represented by c¢; is a subset
of that represented by c;. A minterm s € ¢; if s is in the set of minterms represented by c;.
A cube c is contained in a completely-specified single-output function b (¢ C k) if Vs € ¢,
h(s) = 1.
2.1.11 Prime Cube

A cube (product term) p is called a prime cube of 7 = (f,d,r)if pC fUd and
no other cube »’ exists such that p C p' C fud.
2.1.12 Implicant and Prime Implicant

Given a cube ¢ and an incompletely-specified function F = (f,d,r), c is called an
implicant of F if ¢ C fUd. I c is a prime cube of F then it is called a prime implicant.
2.1.13 Super Cube

g is the super cube of a set of cubes, S,if Vp € S, p C ¢ and ¢ C ¢’ for any other
cube ¢’ such that Vpe S, pC ¢'.
2.1.14 Overexpanded Cube

If S is the set of all prime cubes of F = (f,d,r) that contain cube p C f Ud then
the super cube of S is called the overexpanded cube of p. In other words, the overexpanded
is the smallest cube that contains all primes of F that contain p.



2.1.15 Distance between two Cubes

The distance between two cubes ¢; and c; denoted as dist(c;, ¢2) is the number of

literals in ¢; whose complements are present in ¢;. Also, dist(cy,cz) = dist(cz,c1).

EXAMPLE 2.2 :

1 = 217223

c2 = T2¥3Ts5%6

- The distance between ¢; and c¢; is 2 because there are two literals 7, and z3 in ¢; whose

complements z, and T3 are present in ¢a.

2.1.16 Orthogonality between two Cubes

Two cubes ¢; and c; are orthogonal to each other if dist(c1, ¢2) = dist(cz,¢1) > 0.

2.1.17 Intersection of two Cubes

If two cubes are ori:hogona.l to each other, their intersection or product is the null
cube. Otherwise, the intersection consists of the product of all literals that appear in either

cube.

2.1.18 Sume-of-products

A sum-of-products is a sum or disjunction of product terms. A sum-of-products
represents the union of sets of minterms represented by all the product-terms in it. It
also represents the completely-specified single-output function whose onset is that set of

minterms.

EXAMPLE 2.3 :
Consider a function with three variables z;, 2 and z3. The sum-of-products

F1Z3 + 273 represents

S = {(z1,%2,23) € B3|zy = 0 and z3 = 1} U {(z1,22,%3) € B3|z2 = 1 and 23 = 0}



v -

It also represents function f : B3 — B such that

f(8) = 1ifsesS

= 0 otherwise.

Each minterm can be represented by a product term with n literals. Hence any
S C B™ can be represented by a sum-of-products.

An incompletely-specified single-output function F = (f,d,r) is represented by
specifying completely-specified functions f, d and r which can be represented using sums-
of-products. Usually, only f and d are specified. If r is needed, it can be computed by
complementing fUd. Each output of a multiple-output function is a single-output function. .
A multiple-output function can be represented by its single-output functions using sums-

of-products.

2.1.19 Unate Function

Consider a pair of minterms (s’, ) of a completely-specified function g such that
8’ has literal F; and s is obtained from s’ by replacing literal F; by z;.

g is monotone increasing in variable z; if ¥(s', 3), g(s’) > g(s) for each output.

g is monotone decreasing in variable z; if V(s', 3), g(s) > g(s’) for each output.

g is unate in variable z; if it is either monotone increasing or monotone decreasing
in variable z;.

g is a unate function if it is unate in all of its input variables.

2.1.20 Unate Sum-of-products Representation

A sum-of-products f is unate if for every variable z in it, f contains either z or T
but not both.

EXAMPLE 24 :

AB+BC + AC
AB + AC

h
f2



fi is unate but f; is not unate because f, has both 4 and 4.

A function represented by a unate sum-of-products is unate. Every unate function
has at least one unate sum-of-products representation. However, the function represented

by a non-unate sum-of-products is not necessarily a non-unate function.

2.1.21 Cofactor

The cofactor of a sum-of-products f with respect to literal z;(Z;), denoted by
fz;(fz;), is obtained by substituting 1 (0) for z; in f.

EXAMPLE 2.5 :

f = AB+BC+AC
fa = B+ BC
f£ = BC+cC

2.1.22 Shannon’s Expansion

For a sum-of-products f with variable 2

f=zf: +Z%fz

2.2 Multi-valued Functions

This section presents definitions regarding multi-valued functions and their prop-
erties which will be used later. For simplicity, multi-valued will be abbreviated as mv- if
needed.

2.2.1 Mv-function

An mv-function with n inputs is defined as a mapping

F:PIXPoX o XPa—=Y



10

where P; = {0,1,...,p; — 1} and p; is the number of values that i*® variable may take on,
Y = {0,1,%}; Py X P; X - -+ X Py is called the domain of the function.

2.2.2 Minterm

A point in the domain of an mv-function f is called a minterm of f.

2.2.3 Onset, Don’t Care Set, and Offset

An incompletely-specified mv-function F maps each minterm to 0, 1, or *. The

onset f, don’t care set d and offset r of F are sets of minterms as defined below.

f {s € B"|F(s)=1}
d = {s€ B"|F(s)=+*}

r {s € B"|F(s) = 0}

A minterm in d is allowed to have either value 0 or 1. If d = 0 then F is a
completely-specified mv-function. An incompletely-specified mv-function is denoted by the
triplet (f,d,r).

2.2.4 Literal

If X; is the i*® variable of F and S; C P; then X is a literal. If j € S;, the
literal is said to have value j in it. X;* represents the set of minterms for which X; = j for
any value j € S;. If S; = P, the literal is called a full literal because the set of minterms
represented by it is the entire domain of the function. If S; = @, the literal is called an

empty literal.

2.2.5 Product Term or Cube

A product term is a product or conjunction of one or more literals. It represents the
intersection of the sets of minterms represented by literals in it. Without loss of generality,

a product term related to a function of n variables can be represented as

Xi‘»’: Xés’ .. .an



11

where some of the literals in it may be full literals. It is customary to leave full literals out
of the product terms. The product term p is said to depend on variable X; if X;.g" is not a
full literal. If the cube has a null literal then it is called a null cube.

EXAMPLE 2.8 :

Consider the product term

Xi{ogl}xz{l} Xéovl 12}

in the domain P; x P, X P; where p; = 3; p2 = 2; p3 = 3. The product term has a full
literal in variable X3. It can also be represented without the full literal as

Xfo'l}Xé[l}

This product term depends on variables X; and X; but not on variable Xj3.

A product term is also called a cube. However, it does not represent a hypercube
in the domain of the mv-function unlike a product term for a binary-valued function.

Let s be a minterm, ¢ be a cube, and 2 be a completely specified mv-function.
The definitions for s € ¢ and ¢ C h are identical to those in the binary-valued case.

The definitions of prime cube, super cube, overezpanded cube and sum-of-products
are also the same as for the binary-valued case. The properties discussed for binary sums-
of-products in the end of section 2.1.18 also hold for the multi-valued sums-of-products.

2.2.6 Containment of one Cube in another

Consider two cubes

a = XprX52e-X3e

2 = XhxP..xh

c2 contains ¢; (written as ¢; C ) if S; CT; for1 < i< n.
If neither c; nor ¢z is a null cube and if ¢; C ¢; then the set of minterms represented
by c; is a subset of that represented by c;. According to this definition, no null cube is

automatically contained in every cube as would be the case for binary-valued cubes.



12

2.2.7 Distance between two Cubes
Consider two cubes
4 = XJX52e.-X3n

2 = XhxP..x5h

¢1 and ¢ are said to conflict in variable X; forl1 < i < nif $;NT; = @. The distance between
c; and c; denoted as dist(cy,cz) is the number of variables in which ¢; and ¢z conflict. If

dist(c1,c2) > 0 then ¢; and c; are orthogonal to each other.

EXAMPLE 2.7 :

For ¢; and ¢, mentioned above, let n = 3, S; = {0,1}, S, = {1,4} and S3 = 0,
T = {2,3}, T2 = {1,3} and T3 = {0,1}.

Since $NTy =0, S2NTe = {1} # 0@ and S35 N T3 = @, dist(cy,c2) = 2.

2.2.8 Intersection of two Cubes

Consider two cubes

a X3 X5 X5

Xiﬁ Xg‘: v in

c2
The intersection of ¢; and c; is
aNecy = XN x50, .. xSanTn

If ¢; and c¢; are orthogonal to each other then ¢; N ¢; has at least one null literal.

2.2.9 Positional Notation

Letec= Xf‘ Xf’ -++ X3 be a product term. This product term can be represented
just by the sets S1,S52:-+S,. Since for 1 < i < n, S; C P; and P; are finite sets with usually
a small number of values p;, it is convenient to represent S; as bit vectors. Hence ¢ can be

represented by the following bit vector.

cgc{ .o .c?-lcgc% .. .cgl_l .o .cgc'l_‘ . "Cﬁ"-l



13

where cf = 1if j € S;, otherwise c{ = 0. This is called the positional cube notation.
ci=cdc}---cP ~1 represents the binary vector for S;. |c;| represents the number of 1’ in c;.
A sum-of-products is represented in positional notation as a matrix where each

row corresponds to a product term and each column to some c?.

2.2.10 Cover

A cover is a sum-of-products represented in positional notation [16]. A cover for
an incompletely specified function F = (f,d,r) is a sum-of-products in positional notation

that contains the entire f and possibly some part of d [2].

2.2.11 Weakly Unate Function

A completely-specified function f is weakly unate in variable X; if 35 € P; such
that changing the value of variable X; form j to any other value k € P; causes the function
value to change from 0 to 1, if it changes at all.

If it can be deduced that a minterm s with X; = j is in the onset of f, then so is
s’ obtained by replacing j by some other value k € P;.

If f is weakly unate in all of its variables then it is a weakly-unate function.

2.2.12 Weakly Unate Cover

A cover is weakly-unate in variable X; if there exists a j € P; such that all cubes
that depend on variable X; contain a 0 in the column corresponding to j. If the cover is
weakly unate in all of its variables then it is a weakly-unate cover.

A weakly-unate cover represents a weakly-unate function. However, a non-weakly-

unate cover may still be that of a weakly-unate function.

2.2.13 Strongly Unate Function

A completely-specified mv-function f is strongly unate in variable Xj; if the ele-
ments of P; can be totally ordered via < such that changing the value of variable X; from
value j to some value other value k, such that j X k, causes the function value to change
from 0 to 1 if it changes at all. If f is strongly unate in X; then it is also weakly unate in
X;. If f is strongly unate in all of its variables then f is a strongly-unate function.



14

.-

2.2.14 Cofactor

The cofactor of a product term S with respect to another product term T (St) is
empty if S and T are orthogonal. Otherwise, it is the product term X IS‘UT‘ nguﬁ e s X 5nUTn
where T; = {j € Pi|j ¢ T:}.

The cofactor of a sum-of-products g with respect to cube T’ (gr) is the sum of

cofactors of all the cubes in g with respect to T'.

2.2.15 Generalized Shannon’s Expansion

Let cg,c1,-*-ci-1 be product terms in the domain of a completely-specified mv-
function f such that Zg::f,'l ¢; =1 (i.e tautology) and cjex = 0 for j # k then

j=i-1

f= E cjfc,'
=0

A special case of generalized Shannon’s expansion takes place when c¢; = X,-{j} and ! = p;.

2.3 Factored-forms

2.3.1 Algebraic Division

The algebraic division of a binary-valued sum-of-products f by a cube ¢ ( f /c) is
the quotient of dividing f by ¢ while treating f as an algebraic polynomial. Each literal in

f is treated as an algebraic variable and c¢ as an algebraic term.

EXAMPLE 2.8 :

ABC + AC + ABD

AB
fle = C+D

“
n

6
[



15

2.3.2 Co-kernel and Kernel

A co-kernel ¢ of a binary-valued sum-of-products f is a cube such that f/c has at
least two cubes and there are no literals common to each cube in it. f/cis called the kernel
of f.

EXAMPLE 2.9 :

f=ABCE +4C + ABDE
c1 = AB is not a co-kernel because f/c; = CE + DE has literal E in each cube. However,
¢z = ABE is a co-kernel and f/c; = C + D is the corresponding kernel.

2.3.3 Factored-form

A factored-form is a sum-form or a product-form. A sum-form is a literal or a
sum of two or more product-forms. A product-form is a literal or a product of two or more

sum-forms.

EXAMPLE 2.10 :
AB+(B+C)E)+D

is a factored-form because it is a sum of two product-forms: A(B + (B + C)E) and D. The
first one is a product-form because it is a product of two sum-forms: A and B 4+ (B + C)E.
B + (B + C)E is sum of two product-forms: B and (B + C)E. The later is a product of
sum-forms: B + C and E.

2.3.4 Tree Representation of Factored From

A factored-form can be represented by a tree whose leafs represent literals that
appear in the factored-form and whose remaining nodes represent intermediate sum-forms
and product-forms. A node labeled (*) represents a product-form consisting of products
of sum-forms represented by its children nodes. Similarly, a node labeled (+) represents a

sum-form consisting of sum of product-forms represented by its children nodes.



16

EXAMPLE 2.11 :

The tree representation of the factored-form in in example 2.10 is shown in 2.3.4.

2.3.5 Factored-Form as Representation of a Completely-Specified Func-
tion

A factored from F contains a completely specified function f (f C F) if F evaluates
to 1 for any minterm in the onset of f. The factored-form F represents f if in addition, F

evaluates to 0 for any minterm in the offset of f.

2.3.6 Boolean Factored-form Minimization

Given a cover ! and the don’t care set d for an incompletely specified binary-valued
function F = (f,d,r) with single output, Boolean factored-form minimization attempts to
obtain a factored-form F with the minimum number of literals such that f C FF C fud.

2.4 Multi-level Network

A multi-level network is a Directed Acyclic Graph (DAG) that represents a completely-
specified multiple-output binary-valued function. The source nodes of the DAG corre-
spond to the inputs and the sink nodes correspond to the outputs of the function. Each
intermediate-node represents a completely-specified single-output binary-valued function
and corresponds to an intermediate variable that represents the function. If the function at
node A depends on the variable corresponding to the function at node B then there is an
edge from B to A in the DAG. For any input to the DAG, the outputs correspond to the
mapping of the input by the function.



Figure 2.1: Tree representation of a factored-form.

17



Chapter 3

Background and Contributions

Two-level logic minimization algorithms have been around for several decades.
Karnaugh and Veitch maps were among the earliest methods used. They are still discussed
in most elementary text books on Digital Circuit Design, e.g [15]. Such methods were
suitable for simplification by hand but were useful only for functions up to 5 variables.
Quine and McCluskey [13] developed an algorithm for exact minimization that can be
used for functions with larger number of variables. Their algorithm requires listing of all
the minterms in the onset. Since a function with n variables can have 2™ minterms, the
algorithm is not very useful for functions with even a moderate number of variables (around
20).

Quine and McCluskey’s algorithm generates all the prime implicants of the func-
tion then transforms the problem of obtaining the minimum subset of primes into that of
finding a minimum column cover of a matrix. The number of prime implicants of a function
with n variables can be as high as 3"/n. This is an obstacle in the way of applying the
algorithm for large problems. The problem of finding minimum column cover of a matrix is
NP-complete. This is another source of possibly large computation. Later, several methods
for exact minimization were developed but they all required computations of all the primes
and therefore had limited use.

With the introduction of Programmable Logic Arrays (PLA) and the advances in
Integrated Circuit Design, a need for minimization techniques that could handle functions
with a large number of inputs and outputs (typically around 50 inputs and 50 outputs)
became apparent. Many researchers resorted to heuristic minimization to handle large

functions. A typical operation done in heuristic minimization is called expansion of cubes

18



19

(product terms). This involves removing literals from cubes to make them prime. The cube
is said to be expanded as the literals are removed from it.

A literal can be removed from a cube only if the expanded cube is still an implicant
of the function. Two methods have emerged to test whether a given cube is an implicant of
a function. One uses tautology as done in PRESTO [7]. The other uses the offset which is
computed by complementing the union of the onset and the don’t care set. This is done in
MINI [10] and ESPRESSO [2]. An experiment done in ESPRESSO-I [2,3] concluded that
the technique using offset produced superior results in general and was usually faster than
using tautology.

A common criticism against using the offset is that there are many functions
which have reasonable size onsets and don’t care sets but the offsets are too big. A common
example of such a function is Achilles’ heel function [2] where the size of the offset is 3"
cubes if the onset has n cubes. ESPRESSO attempted to solve this problem by a technique
called output splitting [2]. The technique may give up some optimization in the interest
of keeping the offset small. Another approach to address this problem has been to develop
more efficient tautology-based algorithms [9,23].

Functions with large offsets occasionally occur in the traditional application of
Two-Level Minimization for reducing the size of PLAs. However, it has been found from
experience with MIS [5] that such functions arise commonly when two-level minimization is
used for simplification of functions at individual nodes within a multi-level network. Since
each node in the network has a variable and a function associated with it, the number of
variables in the network is large. The covers of most functions in the network are small but
the don’t care sets tend to be very large due to the network topology. If the full don’t care
set is passed to ESPRESSO it often runs out of memory or takes a long time to compute
the offset. Therefore, it is often necessary to compromise quality by deleting part of the
don’t care set before calling ESPRESSO.

A contribution of this thesis is formulation of a new concept called the reduced
offset for a cube. The reduced offset for a cube is never larger than the offset and is found
to be much smaller than the offset in practice. Yet, it can be used in the same way as the
offset during expansion of a cube. Consequently, quality of minimization is maintained. An
efficient algorithm for computing the reduced offset for a cube has been developed. The key
ingredient in the algorithm is that the exact offset of the function is never computed.

A new algorithm for obtaining the overezpanded cube was also discovered. The



20
overexpanded cube of a cube p is defined as the smallest cube containing all the implicants
of the function that contain p. The overexpanded cube consists of all the literals that cannot
be removed from the cube. An efficient algorithm for computing the overexpanded cube is
important in its own right. It is known that the overexpanded cube can be obtained by
tautology or by using the offset. The new algorithm is faster than using tautology and does
not use the offset. Hence, it is useful in tautology-based algorithms where knowledge of the
overexpanded cube beforehand can save time in expansion of the cube. In this research, the
overexpanded cube is used to speed up the computation of the reduced offset.

The algorithms for computing reduced offsets and overexpanded cube have been
implemented in ESPRESSO with an interface to the Multi-Level logic optimization inter-
active system MIS. The execution time for minimizing individual nodes has been greatly re- )
duced and it is now possible to minimize some nodes impossible to minimize with ESPRESS 0.

Since, the logic functions at internal nodes of a multi-level network are single-
output Boolean functions, the theory related to the reduced offset was initially developed
for Boolean functions with single outputs. A Boolean function is a special case of multi-
valued function. A multi-valued function is similar to a Boolean function except that each
variable z; in the function can take on any value from a finite set of values P;. For a
Boolean function, P; = {0,1} for every variable z; in the function. Therefore, the study of
multi-Valued minimization provides a larger view of the problem of minimization of Boolean
functions. The problem of minimizing a multiple-output Boolean function can be treated as
that of Multi-Valued minimization where all the outputs together are considered as a single
Multi-Valued variable [18]. This approach was taken in ESPRESSO-MV [16]. Finally, Two-
level Multi-Valued logic minimization has been found useful for optimal encoding of states
for Finite-State Machines [8). Offset is used in multi-valued minimization in the same way
as it is used in binary-valued minimization. A multi-valued function may have reasonable
size onset and don’t care set but unreasonably large offset, making it impossible to use the
offset for minimization. Hence, it was desirable to extend the theory of reduced offset to
multi-valued functions. The extension is also presented in this thesis. '

Another contribution of this thesis is related to factored-form mininiization. The
objective in factored-form minimization is to produce factored-forms with the minimum
number of literals for the given Boolean function. Traditionally this problem has been
tackled by using algebraic techniques [5], [6], [4]. First the sum-of-products representation

of the Boolean function is obtained usually by using a two-level logic minimizer. Then



21

this representation is treated as an algebraic polynomial. Each Boolean variable and its
complement are treated as two different algebraic variables. The factored-form obtained is
algebraically equivalent to the original sum-of-products representation. In other words, if
the algebraic factors are multiplied out, the resulting polynomial will be the same as the
original sum-of-products representation. However, any factored-form which is equivalent in
the Boolean sense is a valid factored-form. If a factored-form is algebraically equivalent to
a given sum-of-products expression then it is also equivalent to the same expression in the
Boolean sense but the converse is not true. As a result, when the algebraic factors are used,
only a subset of the valid solutions are available.

A heuristic algorithm is presented in this thesis for Boolean factored-form mini-
mization that makes use of the operations which are the basis of ESPRESSO. The algorithm
generates Boolean factored-forms and explores a much larger region of the solution space
than algebraic factoring operations. The quality of the factored-forms obtained is good.
However, the CPU time spent is higher than that for algebraic factored-form minimization.

The reduced offset for binary-valued function is presented in Chapter 3. The
extension of reduced offset to multi-valued minimization is presented in Chapter 4. The

algorithm for Boolean factored form minimization is presented in Chapter 5.



Chapter 4

Reduced Offsets for Minimization

of Binary-valued Functions

4.1 Introduction

A two level logic minimization problem is generally posed as minimization of a
boolean function given a cover of the function and a representation of its don’t care set.
The objective of minimization is generally to decrease the total number of cubes (product
terms) and the total number of literals in the cover. Generally, as an important sub-task,
the number of literals in each cube needs to be reduced, either to obtain a cube with the
minimum possible literals or a cube that contains as many other cubes in the cover as
possible. The expanded cube is then added to the cover and those cubes contained in the

expanded cube are removed.

Let g be the union of the onset f and don’t care set d of an incompletely specified
function F = (f,d,r). The expansion for a cube in the cover of F is valid only if the
expanded cube is contained in g. Two well-known methods exist to make this test. The
first uses tautology. The test if an expanded cube is covered By g can be posed as a
tautology test. This method is used by PRESTO ([7]. Testing if a function is a tautology
takes exponential time in the worst case. Also, several tautology tests may be necessary for

each cube.

The other method makes use of the simple fact that if the expanded cube is

contained in g, it must not intersect any cube in the offset r = §. If it is not given, the

22



23

computation of the offset is also expensive in the worst case but this needs to be done only
once for the entire run. Further, if the offset is used, usually the expansion can be done
quickly and in a more global way because it is easier to see effective directions of expansion.
For example, using the offset, it is easy to find the literals that can be removed without
affecting any other literal, or the literals that must be retained in the expanded cube. The
offset method is used by ESPRESSO (2] and MINI [10].

The problem with using the offset is that there are functions which have reasonable
size onset and don’t care set but the offset is unreasonably large. An example is the Achilles’
heel function with n cubes:

f=2z12223 4+ 24256 + * * * + T3n-2T3n-1%3n

The don’t care set is empty. The number of cubes in the minimum representation of the
offset of this function is 3". '

It was found from experience with MIS [5] that such functions arise commonly
when two level minimization is used as part of a multi-level minimization process. There,
two level minimization is used for simplification of functions at individual nodes within a
multilevel network. Each node in the network has a variable and a function associated
with it [1]. As a result the number of variables in the network is large. The cover of most
functions in the network is small but the don’t care sets tend to be very large due to the
network topology. If the full don’t care set is passed to ESPRESSO it often runs out of
memory or takes a long time to compute the offset. Therefore, it is often necessary to
compromise quality by deleting part of the don’t care set before calling ESPRESSO (17).

To solve this problem, the notion of the reduced offset of a cube is introduced. The
reduced offset for a cube is never larger than the entire offset of the function and in practice
has been found to be much smaller. Yet, it can be used in the same way as the complete
offset during expansion of the cube. Consequently, the quality of results is maintained.

If the reduced offset is computed for each cube that needs to be expanded, it may
be time consuming. Fortunately, it is possible to obtain a reduced offset for a set of cubes
which can be used to expand each cube in the set in the same way as the offset would be
used. Computation of the reduced offset for a set of cubes can be done without using the
offset. The size of the reduced offset for a set of cubes increases as the number of cubes in
the set increases but it is never larger than the entire offset.

The work on reduced offsets initially focussed on minimization of binary valued



24

functions with single output because these are the type of functions that correspond to
individual nodes in multi-level networks. This chapter presents the application of reduced
offsets for minimization of binary valued single output functions. The theory was later
extended to the domain of multi-valued logic minimization. It will be presented in a later
chapter.

In this chapter, an efficient algorithm will be presented for computing the reduced
offset for a cube without using the complete offset of the function. During the research
on reduced offsets, a new algorithm for obtaining the overexpanded cube for a cube was
discovered. For binary valued functions, the overexpanded cube consists of all the literals
that must remain in any valid expansion of the cube. An efficient algorithm for generation
of the overexpanded cube is important in its own right. The overexpanded cube can be
obtained by tautology or by using the offset. The algorithm presented here is more efficient
than using tautology and does not use the offset. Hence, it is useful in tautology based
algorithms where knowledge of the overexpanded cube beforehand can save time in expan-
sion of the cube. The overexpanded cube is of interest here because it is used to speed up
the computation of the reduced offset.

4.2 Reduced Offset for a Cube

To illustrate that the entire offset is not needed for expanding a cube, consider
the incompletely specified function F = (f,d,r) shown in figure 4.1. The clear vertices
represent minterms in the onset. The filled vertices represent the minterms in the offset.
The vertex with concentric circles represents the minterm in the don’t care set. Suppose
cube p = ABC is to be expanded. Because of the presence of AB, and AB in the offset, p
can not expand to cover the onset minterm ABC. As far as the expansion of p is concerned,
ABC could just as well be in the offset. If it is added to the offset, the offset is simplified.
It becomes A + B, which is all that is needed for correct expansion of p.

I now introduce the notion of the reduced offset for a cube and explain how the
reduced offset can be computed easily if the offset is available. Later an algorithm will be
presented that does not require the offset.

Note that a cube p in the cover can be expanded by removing one or more literals
provided the new cube is orthogonal to each of the cubes in the offset. For the example

of figure 4.1, consider the expansion of the cube p = A B in the cover and an offset cube



25

g = ABC. p does not intersect ¢ because p contains literals A and B whereas ¢ contains
complements of these literals. Literal C in g does not affect the orthogonality between
cubes p and g because literal C does not appear in p. Since an expansion of p is obtained
by removing some of the literals in p, the presence of C in g will not affect orthogonality
between g and any expansion of p. Hence, C can be removed from g. In general, removing
from an offset cube any literal that is not the complement of a literal in cube p, does not
result in any loss of information as far as the expansion of p is concerned. As a result of
removing literals, some cubes become larger and may subsume others, thus reducing the
size of the offset. For this example, removal of literals A, B, C and C from cubes in the
offset will result in A+ B + AB. Since AB is contained in A as well as B, it can be dropped
to obtain A + B.

A + B is in fact the reduced offset for p. It has only two cubes and two literal
whereas the exact offset has three cubes and six literals. The reduced offset is obtained by
removing all literals from the cubes of the offset except those that are the complements of
the literals in p. The reduced offset for a cube is a unate function and has a unique mini-
mum representation in sum-of-products form. This minimum representation is obtained by
removing any cube contained in some other cube in the reduced offset. Whatever represen-

tation is used for 7, the reduced offset for a cube has a unique minimum representation.

4.3 Reduced Offset for a Set of Cubes

To see how the concept of reduced offset fbr a cube can be extended to that
6f the reduced offset for a set of cubes, consider an incompletely specified function with
r=AB+ 4B + AC + CD and two cubes p; = ABCD and p, = ABC D to be expanded.
Expansion of p; will not be affected by the removal of literals 4, B, C and D. Similarly
removal of literals 4, B, C and D will not affect expansion of p;. Hence removal of literals
A and B will not affect either expansion of p; or p;. Removal of these literals from r gives
A+ B 4+ CD which is in fact the reduced offset for {p;, p;}. Reduced offset of a set of cubes
is obtained by removing those literals from the offset that will not affect the expansion of
any cube in the set. The reduced offset of a set of cubes is usually smaller than the offset
but larger than the reduced offset for any cube in the set. Unlike the reduced offset for
a cube, reduced offset for a set of cubes is not necessarily unate. Therefore, it does not

necessarily have a unique minimum.



f = ABC + ABC
d = ABC
r = AB+ AB + AC

Figure 4.1: Tllustrating reduced offset

26



27

I will next define the notion of a generalized cube which will be helpful in handling
the reduced offset for a set of cubes.

4.4 Generalized Cube

Definition 4.4.1 A generalized cube or a generalized product term is a product of
one or more literals (at most one literal of each variable). A literal can be an asserted literal

z, a complemented literal T, or a null literal £.

EXAMPLE 4.1 :
All of the following are generalized cubes: p, = ACE, p, = ACD, ps = ABC,
ps=CE, and ps = ACE

If the generalized cube does not have a null literal then it is just an ordinary cube.
On the other hand, if it has a null literal then it is a null cube. The set of minterms
represented by a null literal or a null cube is empty.

In the rest of the chapter, a cube will mean an ordinary (non-null) cube.
A generalized cube will mean that the cube may or may not be null.

A null cube can not occur in a sum-of-products but it can result from the inter-

section (product) of two or more generalized cubes.

Definition 4.4.2  is the product (intersection) of two generalized cubes; py and p, (written
as p = p1 p2) if for each variable z present in either cube, a literal for p in variable z is
obtained according to the table in figure 4.2.

If neither p; nor p; is a null cube then the above definition is equivalent to that
of the intersection of two cubes, presented in Chapter 2. If the product of n generalized
cubes is desired for n > 2, it is obtained by intersecting g,—1 with p, where g,—; is the

intersection of the first n — 1 generalized cubes.

EXAMPLE 4.2 : Consider the five cubes in Example 4.1. Let g; be the product of
first ¢ cubes and g be the product of all five cubes then ¢ = ACDE, g3 = ABCDE,
gs = ABCDE, and q = ¢s = ABCDE.



28

n
) 7 X NP
& ) z - z
T z T & T
D2
X z & b 4 b4
NP z z x NP

NP means variable z is not present.

Figure 4.2: Table for intersecting two generalized cubes

A null cube is not automatically contained in every other generalized cube. The

definition of one generalized cube containing another is given below:

Definition 4.4.3 A generalized cube p; contains another generalized cube p; (writ-
ten as p, C p1) if each variable in p, is present in p; and each literal in p; contains the

literal of the same variable in p,.

Definition 4.4.4 A literal contains another literal of the same variable if the set

of minterms represented by the former literal contains that represented by the later literal.

According to this definition £ is contained in z as well as in Z. It can be shown
that if § is the intersection of generalized cubes p;,p;---p, then p C p; for 1 < ¢ < n. Note

that ¢ in Example 4.2 is contained in every cube p; in Example 4.1.

EXAMPLE 4.3 : Let p, = ABC, p, = ABDE, p3 = ABD, and py = ABD. Then
p2 C p3 and p; C pg but p2 € ;. ‘



29

4.5 Reduction Operator R, and Reduced Offset

To facilitate the computation of the reduced offset, the notion of the reduction

operator R, is now introduced.

Definition 4.5.1 Let g be a sum-of-products and p be a generalized cube. The reduction
operator R,(g) removes all literals from the cubes of g ezcept those which are complements
of non-null literals in p.

Definition 4.5.2 Let p be a generalized cube and c be a non-null cube. Then |Ry(c)| is the
number of literals in Ry(c).

If p is not a null cube either, then |Ry(c)| = |Rc(p)| is the distance between cubes
pand c.
The reduced offset for a generalized cube can now be formally defined using the

reduction operator R,.

Definition 4.5.8 If r is the offset of a function and p is a generalized cube then R,(r) is
the reduced offset of r for p.

The reduced offset for a set of cubes is defined in terms of the reduced offset for a

cube as follows:

Definition 4.5.4 Let S be a set of cubes and p be the intersection of all the cubes in S
then the reduced offset for S is the reduced offset for p.

The usefulness of the offset r in expanding a cube p stems from the fact that an
expansion p’ of p is valid if and only if p’ is orthogonal to r. Whether a reduced offset is
for a cube or for a set of cubes, it can be used for expanding cubes in the same way as the
offset because both are sums-of-products and the following Theorem and Corollaries hold
which relate the orthogonality of p’ to r with that to the reduced offset.

Theorem 4.5.1 Let p be a generalized cube and p' be a (non-null) cube such that p C p'.
Let g be a sum-of-products. p is orthogonal to g if and only if it is orthogonal to g, = R,(g).

Proof: Since gp is obtained by removing literals from g, g C gp. Therefore, if p’ is orthog-

onal to g, (i.e no minterm is common to both p’ and g,) it is also orthogonal to g.



30

What remains to be shown is that if p’ is orthogonal to g, it is also orthogonal to
gp- Let.

g = atet o ten
Rp(ci) = ¢

Then

gp=ci+c++e,

Consider a minterm s € g,. 8 must be in one or more cubes in g,. Let ¢! be one such cube.

Without loss of generality suppose that

€ = T1T2°° " TmIm41°°"Tn

¢ = Ty
Thus p does not have literals T; or £; for m + 1 < ¢ < n. Since p C p/, p’ does not have
these literals either. If p’ is orthogonal to g, it is also orthogonal to ¢;. Hence it must have
a literal T; for some j between 1 and m. In that case p’ is also orthogonal to ¢} and s ¢ p'.

Since this is true for any minterm s € g,, p’ is orthogonal to g,. [ |

Corollary 4.5.2 Let F = (f,d,r) be an incompletely specified function. Let p be a gener-
alized cube and p' be a (non-null) cube such that p C p'. P’ is a valid ezpansion of p if and
only if p’ is orthogonal to the reduced offset for p.

Proof: p’is a valid expansion of p if and only if it is orthogonal to r. The corollary follows
from Theorem 4.5.1 with g = r. [ |

Corollary 4.8.3 Let F = (f,d,r) be an incompletely specified function and S be a set of
cubes, each of which is contained in fUd. Let ¢ € S and q' be an ezpansion of q. ¢’ is a
valid ezpansion of ¢ if and only if it is orthogonal to the reduced offset for S.

Proof: Let g be the intersection of cubes in S. Then the reduced offset for S is Rz(r): the
reduced offset for §.

Clearly § C ¢ C ¢’. Withp= ¢, p’ = ¢/, and ¢ = r in Theorem 4.5.1, it follows
that p' is orthogonal to r if and only if it is orthogonal to R 4(r), i.e the reduced offset for
S. ]



31

4.6 Properties of R,

The reduction operator has' following useful properties:
Property 4.6.1 Let f; and fa be two sums-of-products and p be a generalized cube then:

Ry(fi + f2) = Rp(f1) + Rp(f2)
Proof: Let
i = atet-+ea
f2. = bit+b+---+bm

Removing some literals from f; for { = 1,2 is the same as removing each of those literals

from each cube in f;.

Ry(fi) = Ryler) + Rp(cz) + -+ Ry(cn)
RP(fZ) = Rp(bl) + Rp(b2) +-o-t Rp(bn)

Hence

Ry(f1) + Rp(f2) = Rp(e1) + Rp(cz2) + « -+ + Rp(cn) + Rp(b1) + Rp(b2) + - - - + Rp(brm)

Now consider
fitfasea+ea+-Catbi+bot+:--bm

Therefore

Ro(fi + f2) Rp(e1) + Rp(c2) + - -+ + Rp(en) + Rp(b1) + Rp(b2) + - - - + Rp(bm)

Rp(f1) + Ry(f2)

Property 4.6.2 Let f; and f, be two sums-of-products and p be a generalized cube. Let
S1 be the set of literals of f1 and S, be the set of literals of f,. If for every literal z € S,
T ¢ Sz then:

Ry(f1f2) = Ry(f1)Ry(f2)



32

.

Proof: Let

fi = atetten
fa. = bi+be+--4+bn

Then o ™
Ry(f1) Rp(f2) = [T TI Ro(ei) Rp(b;)
i=1)=1
Also
ffs = TITI c;
=1 j5=1
Ry f2) = H H Ry(cibj)
i=1 j=1

Let Li and L] be the sets of literals in ¢; and b; forsomel <i<nand1<j< m
respectively. Let L, be the set of literals which are not removed by R,. From the definition
of Rp, LiN Ly is the set of literals in Rp(c;) and Li N L, is the set of literals in R,(b;).
Hence Rp(c;)Ry(b;) consists of literals in (Li N Lp) U (L N L,). The condition in the
statement ensures that c;b; # 0. In that case b;c; consists of literals in L U L} and
Ry(b; c;) consists of literals in L, N (LiU L{). But L, N (LLU Lf) = (Lpn L) U (L, N Lf).
Hence Ry(cib;) = Ry(c;) Rp(bj). Now from the above equation:

1T 1T Ro(es) Rolts)

i=1j=1

= Rp(f1i)Rp(f2)

Ry(fif2)

Property 4.6.3 Let p; and p; be two generalized cubes such that p C p; and g be a
sum-of-products. Then

Rpy(9) = Bpy(Bpy(9))

Proof: Let S; and S; be sets of literals which are removed by the application of R, and
Ry, respectively. Since py C pp, S; contains all literals in S;. Now consider Rp,(Rp,(9))-
Since any literal which is removed by R, would be removed by the subsequent application

of Ry, Rp,(Rp, )(9) = Rp,(9)- =

The next section presents some properties of the reduced offset.



33

4.7 Properties of the Reduced Offset

In addition to the fact that the reduced offset can be used in lieu of the offset for

expansion of cubes, it has the following properties that may be useful in some applications.
Property 4.7.1 The reduced offset for a (non-null) cube is a unate function.

Proof: Let p be a (non-null) cube and r, be the reduced offset for p. By definition r, =
Ry(r). If a variable is not present in p then rp does not have that variable. Let z be a
variable in p. p has either literal z or ¥ but not . Therefore r, will have literal Z or z but

not both. Hence r, = Ry(r) is a unate sum-of-products, and hence a unate function. |

Property 4.7.2 Let v, and ry be reduced offsets for generalized cubes p and g such that
P C q. Then rq = Ry(rp).

Proof: It follows from Property 4.6.3 of the reduction operator with p; = p, p» = ¢ and
g = r that

Ry(r) = Ro(Ry(r))
By the definition of the reduced offset:

g = Ry(rp)

This property is useful for obtaining the reduced offset for ¢ from the reduced
offset for pif p C q.

Property 4.7.3 Let F = (f,d,r) be an incompletely specified function. Let p be a gener-
alized cube contained in ¢ = f U d and r, be the reduced offset for p. Then a cube g is a
prime of 75 if and only if g is a prime of g and p C q.

Proof: If p can be expanded to ¢ then ¢ must be orthogonal to r, according to Corollary
4.5.2. Therefore g C Tp. Now consider any other cube ¢’ D ¢. If g is a primeof g = fUd
then ¢’ ¢ g; equivalently ¢’ is not orthogonal to r. Therefore ¢’ is not orthogonal to rp
according to Corollary 4.5.2. In that case ¢’ Z 7p. Hence ¢ is a prime of 7p.

If ¢ is a prime of 7, then ¢ is orthogonal to r,. According to Corollary 4.5.2, it

is also orthogonal to 7. Hence ¢ C g. Now consider a cube ¢’ D q. ¢’ € 7, because g is a



34

prime of r,. Therefore, ¢’ is not orthogonal to r,. Hence, according to Corollary 4.5.2, ¢’ is
not orthogonal to r; equivalently ¢’ € g. This proves that g is a prime of g. What remains
to be shown is that p C ¢. Assume for a contradiction that p € g. Then the following two

possibilities exist:

1. Some variable z is present in ¢ but not in p. It follows from the definition of r, that
variable z is not present in r,. If § is obtained by removing variable z from ¢ then
g is also orthogonal to rp,. Consequently, ¢ C § C 7p. But this can not be possible

because ¢ is a prime of r,.

2. Some literal z is present in ¢ and its complement T is present in p. By the definition
of rp, literal ¥ is not present in rp. If § is obtained by removing variable z from ¢ then
g is also orthogonal to r,. Consequently, g C § C 7p. But this can not be possible

because ¢ is a prime of rp.

Since none of the above two conditions can occur, it is concluded that p C q. ]

For a given cube p C f U d, it is sometimes necessary to find all the primes of
F = (f,d,r) that contain p. If p is a (non-null) cube then r, is unate. Therefore, 7, is
unate also. Based on a property of unate functions, if every cube in 7, that is contained
in some other cube in 7, is removed, then the remaining cubes are all the primes of 7p
[2]. I p is a null cube then r, is generally not unate. It is still possible to obtain all the
primes of 7p by first getting a product-of-sums representation for 7, by applying DeMorgan’s
complementation on 7, and then using Nelson’s Theorem [14]. The theorem states that if a
product-of-sums representation of 7, is available, then all primes of 7, are obtained by first
multiplying out the product-of-sums representation to get a sum-of-products representation
and then removing each cube from the sum-of-products representation that is contained in

any other cube.

Property 4.7.4 Let S be the set of all the cubes in the onset f of F = (f,d,r) and rs be
the reduced offset for S. Then rs is a cover for G = (r,d, f) i.e

rCrs Crud

Proof: Since rg is obtained by removing zero or more literals from r, r C rg.



35

Let p be the generalized cube obtained by the intersection of all the cubes in the
onset. Then by definition rs = r,. Any cube g in f is a valid expansion of p. Therefore g
is orthogonal to rs. Consequently f is orthogonal to rs. Hence, rs € f=rud. |

Having defined the reduction operator, the reduced offset and their properties, I
present an algorithm for generating the reduced offset for a cube p using the unate recursive

paradigm on f U d. Thus the offset r is not required.

4.8 Unate Recursive Algorithm for the Reduced Offset for
a Cube

The unate recursive paradigm has been used successfully for several logic opera-
tions including complementation of a function. Unate functions have many nice properties
which make it easier to operate on them. In a unate recursive paradigm, a non-unate func-
tion is broken down into its unate cofactors using Shannon’s expansion recursively. Then
the operation is applied to the unate cofactors rather than the original function and the
results are merged together. The unate recursive paradigm applied to the computation of
the reduced offset is given below. The reduced offset was defined earlier as produced by the
reduction operator acting on the offset but this requires knowing the offset. To be useful,
the algorithm for computing the reduced offset has to avoid computation of the offset.

Let p be a cube and F = (f,d,r) be a function whose reduced offset for p is
desired. Let the reduced offset be denoted by r,. By definition r, = R,(g) where g = fud.

From Shannon’s expansion,
g=z iyxg + 5.'?'5;"-

where z; is a binate (non-unate) variable in g. The complementation and cofactoring

operations commute. Hence,

9=z + Ti0m

Applying the reduction operator on both sides of the equation and using property
4.6.1 of the operator, we get

o = Ry(9) = Ry(27z;) + Rp(TiTz,)



36

Since g; and gz, are independent of z;, property 4.6.2 of R, gives:

rp = Ry(7) = Rp(z:)Ry(Tz;) + Rp(Zi) Rp(T%)
If either gz, or g is not unate, it can be decomposed further with respect to a binate
variable in it. The process continues until all cofactors become unate.

4.8.1 Applying Reduction Operator to Unate Sums-of-Products

The following Theorem can be used for obtaining the reduced offset for a cube

when a cover U is unate.

Theorem 4.8.1 Let U be a unate sum-of-products and p be a generalized cube. Then
Rp(?f) =V
where V is obtained from U by removing all cubes that don’t contain p.

Proof: Let q1,¢2,93°**qm be the cubes in U that don’t contain p. Since
U=Vq7" " Tm
Applying operator R, to both sides of the above equation.

Ry(U) = Ry(Vq1Tz  * Tm)

Since U is unate, for any variable z, either U is independent of z or it has only z
or T but not both. The literals in V, §;,§; - ., are only complements of the literals in U.
As a result, property 4.6.2 of R, can be used and thus

Ry(U) = Ry(V)Rp(G1)Rp(T2) - - * Rp(Tm)

Without loss of generality, suppose that ¢; = ;i -++2; for 1 < ¢ < m. Then
§; = Ty, + Ti, -+ T;;. Since ¢; does not contain p, at least one literal in g; is either the
complement of a non-null literal in p or it is of a variable not present in p. Let z ; be that
literal. In either case ¥; will be removed when R, acts on §;. Since Z; is a single literal
cube, the removal of Z; will result in making it a tautology. Therefore R ,(7;) is a tautology

and the above equation becomes

Ry(U) = Ry(V)



37

Now consider a literal z; present in V. Since V is unate, V is also unate and has
Z; but not z;. Since each cube in V contains p, p either has z; or #;. In either case R, will

not remove F; from V. Hence
Rp(.ﬁ) = RP(V) =V

The above Theorem is quite effective. On one hand it reduces the number of
cubes in the unate cofactor that must be complemented and on the other hand it reduces
the number of variables in the cofactor to a subset of those in p. As a result, complementing
V is much faster than complementing U. Also V is much smaller than T.

To illustrate the effectiveness of this Theorem, consider the Achilles’ heel function

f=2z12223+ 242526 + * * - + T3n—2T3n-1%3n

The don’t care set is empty. Suppose that pis the i*h cube in the function; p = z3;_223i_123;.
The reduced offset for p is Ry(f). f is unate therefore Theorem 4.8.1 can be applied to f.
Since no other cube in f contains p, V = p and V = P = F3i—2 + T3i—1 + T3i. Thus the

reduced offset contains only three cubes whereas the offset f has 3" cubes.

4.8.2 Merging

If h is a unate cofactor of g, R,(F) can be obtained from Theorem 4.8.1. Otherwise,
h has cofactors h, and hz with respect to variable z. First Rp(kz) and Ry(hz) are found.
Then R,(R) is obtained by the following equation:

Ry(R) = Ry(z)Ry(Rs) + Ry(Z)Rp(hz)

To keep the number of cubes in R,(%) small, the cubes contained in other cubes
can be dropped. The resulting sum-of-products is called minimal with respect to single cube
containment. This will involve testing every cube in R,(R) for containment in every other
cube in Ry(R). However, if each of Ry(h;) and R,(hz) is minimal with respect to single
cube containment, the minimal R,(%) can be obtained by dropping cubes from Ry(hz) and
Ry(hz) directly to obtain p; and pz such that Ry(z)p: + Rp(Z)pz gives R,(R) which is
minimal with respect to single cube containment. Depending on what literal of variable z

is present in p, this can be done by the following rules:



38

1. If p has £ then Ry(z) = =z and R,(F) = Z. No cube in zR, (%) may be contained in

any cube in ZR,(Rz) and vice versa. Therefore,
zps: + Tpz

where p, = Ry(R;) and pz = Ry(hz).

2. If p has 7 then Rp(z) = z and Ry(Z) = 1, Since Ry(k;) and R,(hz) are independent
of variable z, no cube in Ry(hz) may be contained in a cube of zR,(hz). Therefore,

zpz + pz

where pz = R,(hz) and p, is obtained by removing each cube from R,(h;) which is

contained in a cube in Ry(fz).

3. If p has literal z then the situation is the same as above with the roles of z and 7
switched.

4. If p is independent of variable z then Ry(z) = R,(Z) = 1. Therefore,

Pz+ Pz

where p is obtained by removing each cube from R,(%) which is contained in a cube

in Ry(hz) and pz is obtained by removing each cube from p, which is contained in a
cube in R,(k;)

In this scheme, only those cubes are eliminated which are contained in some other
cubes. A cube in R,(%) may be redundant even if it is not contained in some other cube.
A better scheme can be devised that would exclude any redundant cubes from Ry(k) but
at the cost of additional computation. If p does not have # and both Rp(k;) and Ry(hz)
are unate then the scheme shown above will provide a unate representation of R,(%) which
is minimal with respect to single cube containment. Therefore R,(R) has the minimum
number of product terms [2]. If p is not a null cube then it does not have any null literals.
In that case, this scheme gjives the minimum representation for every R,(%) and therefore
for the reduced offset.

Subroutine compute_ros() shown in Algorithm 4.1 contains pseudo-code for com-
puting the reduced offset. It makes use of subroutine merge() which is shown in Algorithm
4.2. A problem with Algorithm 4.1 is that every unate cofactor of g = f U d is considered



39

Algorithm 4.1
FEERRRRERREEEEERRRRRRRRRRETRRREEEREER R ERR RN R A RRRR TR R RAAERRTR AR KRR AR NS

Input: A cofactor h of g = f Ud and a generalized cube p.
Output: Ry(h).

computeros(h, p) {

If (h is unate) {
Obtain V by removing those cubes from h that don’t contain p.
Return(V')

} Else {
Choose a binate variable z in h.
Obtain cofactors hy and hz.
t; = compute_ros(hz, p)
t; = compute_ros(hz, p)
t = merge(p, z, t, t2)
Return(t)




Algorithm 4.2
FRERRERATR TR RAERRREERRRRERERREARERREREEEEERERFETEEEAEEREEEE R RRREERERE

Input: Cube p, splitting variable z, t; = R,(g.) and t; = Ry(Fz)
Output: tp = Ry(3)

merge(p, T, t, t2 )
{
If (p has £) {
Return(zt, + Tty)
} Else if (p has T) {
Remove each cube from t; which is contained in any cube of t2 to obtain p;.
Return(zpy + t2)
} Else if (p has z) {
Remove each cube from t which is contained in any cube of t; to obtain p;.
Return(t, + Tps)
} Else {
Remove each cube from t; which is contained in any cube of t; to obtain py.
Remove each cube from t; which is contained in any cube of p; to obtain p,.

Return(p + p2)




41

in compute_ros() which may be very time consuming if g has a very large number of unate
cofactors. The algorithm can be improved with the use of the overexpanded cube so that
many cofactors need not even be computed. The next section considers the relationship
between the overexpanded cube and the reduced offset and provides an efficient algorithm
for computing the overexpanded cube.

4.9 Overexpanded Cube

The definition of the overexpanded cube for a (non-null) cube was presented earlier.
The overexpanded cube is of interest because it will be used to improve Algorithm 4.1.
However, Algorithm 4.1 is for computing the reduced offset for a generalized cube. It is
therefore necessary to extend the notion of overexpanded cube to that of a generalized
cube. The generalized cube is a vehicle to handle reduced offset for a set of cubes.

Definition 4.9.1 Let F = (f,d,r) be an incompletely specified function and p be a gener-
alized cube such that p C p' C f Ud for some non-null cube p’. The overezpanded cube g,
of p is the super cube of all primes of F that contain p.

The requirement that p C p’ C fUd for some non-null cube p’ is to ensure that the
overexpanded cube is not a null cube. If that condition is not met then the overexpanded
cube is not defined. The generalized cube is a vehicle to handle reduced offset for a set of
cubes according to Definition 4.5.4. Therefore only those generalized cubes are of interest
which are formed by the intersection of two or more (non-null) cubes of f Ud. Any such
generalized cube satisfies this requirement because it is contained in every cube in the
intersection.

For a given incompletely specified function F = (f,d,r) and acube p C g = fud,
a literal z; present in p is in the overexpanded cube g, if and only if p' € g where p’ is
obtained from p by removing literal z; [2]. If p is a generalized cube then the problem of
finding g, becomes more difficult. One way to obtain the overexpanded cube for a null cube

is as follows:

1. Let P be a set of cubes obtained by replacing all null literals in p by asserted or
complemented literals. If p has m null literals then P has 2™ cubes.

2. Remove every cube from P that is not contained in ¢ = fuU d.



42

3. Let S be the set of overexpanded cubes of cubes in P.

4. The overexpanded cube of p is the super cube of S. If § = @ then its super cube is
not defined.

Any prime cube of F that contains p also contains some cube in P. The overex-
panded cube is the super cube (smallest cube containing) all such primes of F. Equivalently,
the overexpanded cube is the super cube of S.

The test of whether a non-null cube p’ is contained in g can be made using the
tautology or the offset. p’ C g if and only if the cofactor of g with respect to p is a tautology.
Equivalently, p’ C g if and only if p’ is orthogonal to the offset.

An algorithm for overexpanded cube that uses the offset is of no use here because
the overexpanded cube is needed to expedite finding the reduced offset and the reduced
offset is used to avoid computation of the offset. If tautology is to be used for finding the
overexpanded cube, several tautology tests are needed. Also, each tautology test may take
a long time. The algorithm presented here is more efficient compared with the one that
uses tautology. It finds all literals in the overexpanded cube simultaneously. The key to the
algorithm is the relationship between the overexpanded cube and the reduced offset which

is given by the following Theorem:

Theorem 4.9.1 Let F = (f,d,r) be an incompletely specified function. Let pC fU d be a
generalized cube, g, be its overezpanded cube and r, be the reduced offset for it. If a single

literal cube z; is present in rp, then g, has literal T;.

Proof: Let p’ be a prime cube of F such that p C p/. p’ must be orthogonal to rp,. If z; is
a cube in 7, then p’ must have literal Z; so that it is orthogonal to cube z;. Since any prime

of F containing p has literal Z;, so does gp: the smallest cube containing all such primes. m

If ¢ is the cube obtained by multiplying out the single literal cubes in r, then
gp C g. However, g, 2 q because the converse of this theorem is not true as shown in the

example below:

EXAMPLE 44 :

-~

&
Q



43

r, = A+BC+BC

It can be shown that the overexpanded cube of p is g, = AC. However, cube C is not

present 1n 7p.

Cube C does not appear in 7, in the above example. However, 7, can be re-written
as A + C. This shows that cube C is contained in rp. An obvious question to ask at this
point is whether a single literal cube z; is contained in r, if literal Z; is present in gp. The

following theorem provides the answer:

Theorem 4.9.2 Let p be a generalized cube, g, be its overezpanded cube, and rp, be the

reduced offset for p. If a literal F; is present in g, then rp contains cube z;.

Proof: Let p;,p2,---Pm be all primes of the underlying incompletely specified function
that contain p. Since gp has literal Z;, it is present in every p; for 1 < j < m. Hence
Pj = Tg; where g; is independent of variable z;.

Let

L = ptp2e-tpm
= Tila+a - +am)

= Tt
where
t=q+q-+dm
According to Property 4.7.3 of the reduced offset:
Tp= T= z; + i
Cube z; is contained in 7, because it appears in the above representation of r. [ |

In the special case when p is not a null cube, the following stronger theorem holds:

Theorem 4.9.3 Let F = (f,d,r) be an incompletely specified function. Letp C fud be
a (non-null) cube and gp be its overezpanded cube. Let fp be a representation of the reduced
offset for p consisting only of literals which are complements of literals in p. A literal z; is

in g, if and only if cube T; is present in 7).



44

Proof: Since a non-null cube is a generalized cube, ig follows from Theorem 4.9.3 that if
cube Z; is in p then gp has literal z;.

Now suppose that cube F; is not present in ,. Let p’ be a cube obtained from p
by removing z;. Since p’ differs p only in variable z;, p’ is automatically orthogonal to any
cube in 7, that is independent of variable z;. Any cube in r, with literal Z; has at least
one more literal z;. Since fp consists only of literals which are complements of literals in
p, p has literal Z;. Therefore, p’ also has literal Z;. As a result, p’ is orthogonal to 7,. p/
is a prime of F or is contained in a prime of F. In either case, there exists a prime of F
containing p that does not have literal z;. Hence, g, does not have literal z;. [ |

Theorem 4.9.3 reduces the problem of finding the overexpanded cube of a cube to
that of identifying the single literal cubes in the reduced offset. Once all the single literal
cubes in the reduced offset are known, the overexpanded cube can be obtained by the
product of their complements. However, the single literal cubes must be deduced without
computing the reduced offset. The rest of this section and the next section will be devoted
to describing algorithms for the overexpanded cube g, of a given cube p based on deducing
single literal cubes in r,. If p is a null cube, then these algorithms will provide some cube
g € gp according to Theorem 4.9.1. It will be explained in a latter section, how a cube
g C gp for a generalized cube p can be used to improve the algorithm for computing the
reduced offset for p. '

To see how the single literal cubes come about in the reduced offset, consider
the algorithm described in section 4.8 for the reduced offset. The recursive application
of Shannon’s expansion in the algorithm amounts to decomposing g = f U d into unate
cofactors such that

9= aU;
where U; is a cofactor of g with respect to cube ¢;, the ¢; are orthogonal cubes, and ) ¢; is

a tautology. It is known from the unate recursive algorithm for complementation that:
g= Z Ui
For a given generalized cube p, applying the reduction operator R, on both sides, we get:
Ry(9) = 3 Rp(ei) By(T)
Using Theorem 4.8.1 gives Ry(U;) = V. Therefore:

Ry(9) = Z Ry(c))V;



45

There are two possible ways of getting a single literal cube in R p(g):

1. A single literal cube z appears-in V; for some j and Ry(c;) is a tautology. z can be

present in V; if and only if literal ¥ is present in every cube of V.

2. Ry(c;) is a single literal cube for some j and V; is a tautology. This happens when
|Rp(e;)] = 1 and V; = @ i.e U; does not have any cube that contains p.

In the first case, the single literal cube in Ry(g) is z. In the second case, the single
literal cube is Ry(c;). In either case, the overexpanded cube has the complement of the
single literal cube present in Rp(g).

Subroutine find.oc() shown in Algorithm 4.3 computes the overexpanded cube
based on these observations. It is a recursive algorithm. For the first call to find.oc(),
gp=1,c=1and h = fUd. Only those cofactors with cofactoring cubes ¢ are looked at,
for which |Rp(c)| < 1.

It is interesting to note that many literals in the overexpanded cube can be obtained
simultaneously in find_oc_unate() if | Rp(c)| = 0. This is unlike a tautology based algorithm
where each literal in p is tested for inclusion in g, individually. It is also interesting to note
that no cube-specific information is used until find_oc_unate() is called. If the overexpanded
-cubes for several p’s are desired, then it is desirable to store at least part of the cofactoring
tree of f Ud so that the cofactors h, and hz in find_oc() need not be computed for each p.
h is a cofactor of f U d. This is another reason for the efficiency of this algorithm over the

tautology based one.

4.10 Improving Overexpanded Cube Computation

Algorithm 4.3 can be improved signiﬁcaﬁtly if some way can be found to drop
cubes from h during recursive Shannon cofactoring. This will help in getting to the unate

cofactors fast. Theorem 4.10.1 provides one way to drop cubes.

Theorem 4.10.1 Let p be a cube whose bverezpanded cube g, i3 needed and g a cube in
g= fud. If|Ry(q)| 2 2 then g can be removed for computing gp.

Proof: |Ry(q)| is the number of literals in Rp(g). Only those unate cofactors of g with

cofactoring cubes c; need be considered for which |Ry(c;)| < 1. Each cube in any unate



46

Algorithm 4.3
RRATKERARFE TR RREREETERERE KRR FTREE R FRIERFRREFERKEEEREEEEKTEEEEERRFEERR

Input: p, overezpanded cube g, 30 far, cofactor h of g = f U d, and cofactoring cube c
such that h = g..

Output: Updated overezpanded cube g, for p.

find_oc(p, gp, ¢, )
{
If (h is unate) {
find_oc_unate(p, ¢, qp, k)
} Else { /* h is not unate */
Choose a binate variable z in h.
If (1Rylc2)| < 1)
find_oc(p, q, cz, hz)
If (By(cT)| < 1)
find_oc(p, q, ¢ T, hz

find_oc_unate(p, ¢, gp, h)
{
If (1Rp(c)| = 0) {
Form V' from h by removing those cubes that don’t contain p.
For each literal z; present in every cube of V
9P =97
} Else { /*|Ry(c)| =1 */
If (no cube in h containsp) /*V =0 */

=9 sz‘-')




47

cofactor is the result of cofactoring a cube in g. Consider a unate cofactor U of g with
cofactoring cube ¢. Let s be a cube in U which is the result of cofactoring ¢ with respect to
c. If |Ry(c)| = 0 then [Rp(s)| > 2 and if |Ry(c)| = 1 then [Ry(s)| > 1. In either case, s does
not contain p because it is orthogonal to p. Therefore it can be dropped from U. Hence ¢
can be dropped from g. [ |

In addition to dropping some cubes in the beginning, it is possible to drop addi-

tional cubes during recursion according to the following theorem.

Theorem 4.10.2 Let p be a generalized cube to be ezpanded, h a non-unate cofactor of
fud and g a cube of h. If for some unate variable, z, of h, the literal of z in q does
not contain that in p, then g can be removed for computing either the reduced offset or the
overezpanded cube for p.

Proof: Since h is unate in z, during a recursive Shannon cofactoring of ,  will not be used
as a cofactoring variable. Each cube in the unate cofactors of h is the result of cofactoring
some cube in h. Let r be a cube that resulted from g. The literal of z in r does not contain
that in p. Hence, r does not contain p and will be removed according to Theorem 4.8.1.
Since any result of ¢ will ultimately be removed, thén g can be removed. ||

In order to get further improvement of algorithm 4.3, some cofactors & in find_oc()
can be dropped without any loss of information. Note that if |[R,(c)| = 0 in the subroutine
then only those variables can be added to g, by any unate cofactor of h which are present
in both h and p. Hence, if all variables in h and p are already in g, then there is no need
to pursue h. Any variable present in the cofactoring cube ¢ is not present in the cofactor A.
As a result, the number of variables left in h decreases as Shannon’s cofactoring goes on.

If |Ry(c)| = 1 for h in find.oc() then only the literal z = R,(c) can be added to
gp by calling find_oc() with h. If z is already in g¢p, there is no need to pursue h.

On the other hand, if z = mis not in g, then h can not be dropped. However,
some cubes in A may be dropped according to the following Theorem:

Theorem 4.10.8 Let h be a cofactor of f U d with cofactoring cube ¢, p a cube whose
overezpanded cube is desired. Let |Rp(c)| = 1 and p obtained by removing z = R,(c) from
p, and h;; the cofactor of h with respect to 5. Then z is added to g, by find_oc(p,c,gp, h) if
and only if it is added by find_oc(p,c,qp, h3).



48

Proof: Without loss of generality, suppose that p = 2 ;,z;, - - - z;,,, then p+F;, +Fi, + -+
Zi,, = 1. Hence

m
h= Ethci
J=0

where h; is a cofactor of h with cofactoring cube ¢;, co = p, and ¢; = T;forl1<j<m.
Each h; is a cofactor of g = f U d also with cofactoring cube cc;. z is added to g, by
find_oc(p, ¢,qp, h) if and only if a unate cofactor of some he; with [Rp(ccj)| = 1 exists
with no cube that contains p. Since z;; is a literal in p, |Rp(cej)l = 2for1 < j < m
therefore the only h; that can have such a unate cofactor is he, = hp. But in that case
find_oc(p, c, gp, h) will also add z to gp. n

Algorithms 4.4, 4.5 and 4.6 present improved subroutines to compute the overex-
panded cube. Initially, find.oc0() is called with gp = 1,c¢=1,and h = fUd. As soon as
| Rp(c)| becomes 1, find_ocO() calls find_oc1(). When h becomes unate in find.oc0(), it calls
find_oc_unate0(). Similarly, when h becomes unate in find_ocl(), it calls find_oc_uantel().
Subroutine find_oc0() is shown in algorithm 4.4. Subroutine find_ocl() is shown in algo-
rithm 4.5. Subroutines find_oc_unate0() and find_oc_unatel() are shown in 4.6.

4.11 TUsing the Overexpanded Cube for Computing the Re-
duced Offset

The algorithms presented in the last two sections compute the overexpanded cube
for a non-null cube exactly. However, for a null cube p, they only provide a cube g that
contains the overexpanded cube g,. This section describes how the knowledge of any cube
g 2 ¢p can be used to expedite computation of the reduced offset. This allows the possibility
of ¢ = gp. The key to the usefulness of q and gp is the following Lemma:

Lemma 4.11.1 Let p be a generalized cube, g, be its overezpanded cube and r, be the
reduced offset for it. If q is a cube such that g, C q then

rp=q+1]

where t] is the sum of cubes in rp, none of which is orthogonal to g.



49

Algorithm 4.4
e e e 3 e e e Ao e o e e e e e 3 e e e e 3k e 3k e e e e e e e 3¢ e Ao e 2 e e e 3 e e A e e e e e 3¢ Fe 3 e Ae e 3 e A e Ye e A e A e A e Ae A e A e e Fe ke ¥ %

Input: p, overezpanded cube g, so far, cofactor h of g = f U d, and cofactoring cube c
such that h = g. and |Ry(c)| = 0.
Output: Updated overezpanded cube g, for p.

find_oc0(p, gp, ¢, h) {
If (e =1){
Remove each cube from k for which |Ry(c)| > 1.
} Else {
Let S be the set of variables present in both p and h.
If (each variable in S is in gp)
return;
}
If (h is unate) {
find_oc_unateO(p, c, gp, h)
} Else { /* h is not unate */
Remove each cube from h that does not contain p in the unate variables.
Choose a binate variable z in p.
For (y=zand %) {
If (Ry(ew)l = 0) {
find_oc0(p, gp, cy, h)
} Else if (F not in gp) {
Obtain p by removing variable z from p.
hs = cofactor of h with respect to p.
find_ocl(p, gp, ¢, h)




50

Algorithm 4.5
FRRAARRFEEEFRRREEEERRRRRTTRERRRRARRRRRRRR TN TR RRRRFERFTRRRF AT TRERRAANN S

Input: p, overezpanded cube gp so far, cofactor h of g = f U d, and cofactoring cube c
such that h = g. and |Ry(c)| = 1.
Output: Updated overezpanded cube g, for p.

find_ocl(p,gp, ¢, k) {
If (h is unate) {
find_oc_unatel(p, ¢, qp, h)
} Else { /* h is not unate */

Remove each cube from h that does not contain p in the unate variables.

}

Choose a binate variable z in p.

If 1Rp(c2)| = 1) {

find_ocl(p, gp, cz,h)

}

If |{Ry(c%)| = 1) AND (Ry(c) not in gp) {
find_oc1(p, gp, €T, h)

}




	Copyright notice1989
	ERL-89-132

