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Digital Signal Processing

by
Gordon Merrill Jacobs

Abstract

As the clocking rates of large digital Integrated Circuits (ICs) continue to in-
crease, the global synchronization of the circuits becomes an increasingly difficult design
problem. While scaling the feature size of an IC technology has traditionally been the
method for obtaining increased performance, limitations in the wiring layers can pre-
vent taking full advantage of the faster devices used in the circuit. At the board level,
asynchronous interfaces have been introduced in places where synchronization becomes
problematic. A natural extension to this idea is to extend the use of asynchronous cir-
cuits to within an IC. Self-timed circuits are introduced as a means for implementing
asynchronous ICs. Self-timed circuits, in addition to performing computation, generate
completion information that can be used by appropriate interconnection blocks to oversee
the transfer of data between stages without the use of any global clock signal.

As a design example, a complete micro-processor based digital signal processor
(DSP) was designed and fabricated using self-timed circuits following a 4-cycle handshak-
ing protocol to provide fully asynchronous operation without a global clock. The DSP is
mask programmable and it was fabricated in 2um N-well CMOS in an active area of 6.6mm
x 4.7mm. The processor showed reliable operation at power supply voltages between 3.5V
and 7V, illustrating how self-timed circuitry adjusts to variations in environment (and
processing) while still operating correctly.

This report starts by introducing previous approaches to asynchronous processors

followed by an explanation why it is both necessary and feasible to implement them in



IC form. A survey of self-timed circuitry is then presented along with a description of a
synthesis method for generating the interconnection or “handshake” circuits required to
implement the correct handshaking protocol for data transfers. Details of the DSP design
are given along with experimental results. Finally, some conclusions about the work are

drawn.

Robert W. Brodersen

Chairman of Committee
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Chapter 1

Introduction

Since the inception of the Integrated Circuit (IC), the drive to shrink feature
sizes further has continued at a rapid pace. By reducing the size of the devices, a chip
with given complexity can be made smaller and less expensively, or a chip with a given
area can achieve greater functionality. The speed of the transistors also increases with
scaling so that more processing power is obtained. Accompanying the advances in digital
IC processing technology have been products that take full advantage of the greater speed
and complexity. The progress had been so rapid that (perhaps to the frustration of
computer owners) the life cycle of a digital chip may only be several years.

Currently, as gate lengths are breaking the 1uym mark, the ability to take ad-
vantage of the smaller, faster transistors is becoming endangered by limitations in the
means for interconnecting them. The delays associated with the wiring layers of an IC are
becoming significant with respect to the circuit delays. Additionally, the scaling process
for these layers has reached some fundamental limits. While the delay of a short wire
that connects local devices is still insignificant with respect to circuit speeds, a wire that
must traverse an entire IC can have appreciable delay. Most digital processors depend
on a global synchronizing signal or “clock” to function properly. All operations of the
circuit are initiated by the edges of the clock and their duration must be less than one
or multiple periods of the clock. For finer resolution in time, the clock is typically split
into several phases. Because all circuitry is synchronized with the clock, the clock signal
must be distributed over the entire area of the chip. In suitably regular structures such
as gate arrays, buffering trees can equalize the delay encountered by the clock signal to

different parts of the chip, however, this creates a problem with off-chip communication.



Cell based designs, which are becoming increasingly common, rarely have a regular clock
loading scheme and the control over the exact placement of the clock lines is often lim-
ited in automated chip assembly tools. Clock skews, i.e., a difference in time between
the edges of the same clock signal at different locations on the chip, are a result of the
timing distribution network and they require that either the logic circuits meet certain
latency requirements, or that the time between phases of a multi-phase clocked system be
increased. This negatively impacts the time available for computation. The scaling of IC
technology tends to aggravate the clock distribution problem. Smaller devices and larger
chip areas translates to a larger number of devices per chip, making the capacitive loading
on the clock lines the same or larger.

Self-timed circuits are introduced in this report as a means of synchronizing the
chip at a more local level. This alleviates problems associated with distributing a clock
signal over the entire face of the chip for synchronization. Many of the problems associated
with this type of design style have been studied and solved in this research. The results
as published thus far however, are quite controversial. While most designers agree that
‘asynchronous transfer of information (using some type of self-timed circuits) is required in
system design, the level at which it is required is a subject of intense debate. The approach
taken in this thesis was to bring self-timing onto the chip and all the way down to the
level of the individual gates of a digital circuit. The philosophy behind this approach is
based simply on the history of computer design. As speeds have increased, the level at
which asynchronous interfaces have been used has become increasingly local. Extending
this idea naturally brings self-timing onto the chips that perform the computation. So,
it is felt that while the technology of today may not necessitate this design approach,
time will compel its widespread usage. The circuits described in the later chapters show
the proof of concept in the design approach described. The technique however, is still in
its infancy. It is hoped that the reader will see the feasibility of the approach as well as
the good reasons for studying it, and then be able to make some decisions regarding its
potential for future a.pplicatioﬁs.

Digital Signal Processors (DSPs) represent a specialized form of high-speed com-
puter design. DSPs do not typically contain the high degree of flexibility seen in general
purpose micro-processors but the required level of performance is very high if real-time
applications are implemented. Because of this high-speed requirement, the interest in this

area held by the author, and the tremendous growth in the use of DSPs in recent years, a
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DSP design was chosen as the vehicle for testing the self-timed circuit design methodology
studied.

1. Definition of self-timed

In the literature, the terms synchronous, asynchronous, and self-timed can refer
to different things in different contexts. In this thesis, the term self-timed is used to

describe circuits that have an underlying method of operation. Formally,

Definition 1.1 Self-timed circuits are circuits which, in addition to performing compu-

tation, supply a completion signal to indicate when the computation is finished.

All of the cell designs described in later chapters are self-timed because they supply a
Data Valid (DV) signal which indicates when the signals at the output of the circuit are
valid. Depending on the implementation, self-timed circuits often require an Initialization
(I) signal to reset the outputs and DV signal. The I signal can either be a dedicated
connection to the logic, or a way of encoding the input data. In any case, the model of a
self-timed circuit is that of a logic functional block whose DV signal is asserted at a time
after initialization that is exactly the amount required to evaluate the function.

Synchronous and asynchronous will be used to refer to the timing of a system:

Definition 1.2 A Synchronous system is one where the transfer of information between

combinatorial blocks is performed in synchrony with a global clock signal.

Definition 1.3 An Asynchrénous system is one where the transfer of information be-
tween combinatorial blocks is not performed in synchrony with a global clock signal, but

rather at times determined by the latencies of the blocks themselves.

Therefore, the reliance of a synchronous system on a clock signal eliminates the need
for self-timed circuitry within. Conversely, asynchronous systems typically depend on
the existence of self-timed circuits for determining the correct times for communication
between stages. In the DSP design presented, interconnection or handshaking circuits
make use of the completion signals of the self-timed circuits. By enforcing a handshaking
protocol, the transfer of information is ensured to be error free and at the correct times.
In this thesis, the entire chip design utilizes self-timed cells, so the (asynchronous) system
is also called self-timed.



2. Background

Asynchronous processing has been studied for a long time as a way of designing
general purpose computers. The idea is simple and logical in that each task to be un-
dertaken is started at the moment the preceding task completes rather than starting only
at the edges of a global synchronization signal. The completion times of each task are
often dependent on both the type of task being performed and the data on which is being
operated. In the asynchronous scheme, the processing time approaches an average for all
tasks rather than being set by a clock period that is the worst-case completion time of all
tasks. This can provide a tremendous benefit in terms of processing times. Also, given
the local nature of the timing in an asynchronous system, extensibility is enhanced. There
is a large volume of literature describing asynchronous processing and related topics. In

this section, developments leading up to this work will be compared and contrasted.

2.1 Early Work

The design of asynchronous logic circuits, while studied in the past, has not been
very fruitful in terms of the actual circuitry being used. Often referred to as the Huffman
model{1], asynchronous circuits with bounded delay elements were first published in 1954.
The discussion was limited to combinatorial networks. If more than one signal in the

network was changed, an erroneous output or hazard[2, 5] could be generated.

Hazards

For an asynchronous combinatorial network to function properly, it must be
transient-free. In other words, a signal should not change temporarily when it is required
to remain fixed, or change more than once when it is required to change only once. A
circuit contains a hazard when, for some transient-free input change, there exists some
combination of stray delays for which the output contains a transient. For a combinatorial
function f, suppose I; and I, are two input states that are applied in succession. The
circuit has a static hazard if f(I;) = f(I,) and the input sequence I; I; can generate the
output sequence f(I;)f(I;)f(I). The circuit contains a dynamic hazard if f(I3) # f(I1)
and the input sequence I1]; can produce the output sequence f(I)f(l2)f(I1)f(I2) or

a longer sequence. A different type of hazard defined in [2] can occur in circuits with



unbounded delays and is denoted delay hazard. A circuit has a delay hazard if, for the

input sequence I [ I3, one of the following output sequences is produced:
1. f(R)f(12) F(12) f(I3), where f(I2) = f(I3)
2. f(h)f(I2)f(I3)f(I2)f(Is), where f(I2) # f(I3)

Delay hazards are usually caused by a mismatch in delays of different gates in the network.
For a certain input sequence, the outputs of the mismatching gates get in a “race” to the
network output causing an unpredictable result (if the delays are not known exactly in
advance). This phenomenon occurs in improperly designed synchronous circuits also and
it is called a race condition in contemporary literature.

By assuming bounded delays in the circuit elements, the hazards can be elimi-
nated by adding more gates in the circuit and restricting the inputs so that no more than
a single one changes at a time. For a sequential circuit[5, 6] or finite state machine, race
conditions can lead to steady state hazards due to the existence of feedback. While some
techniques were worked out to eliminate this type of problem, the design procedure is
error-prone and restricting the movement of inputs also restricts the applications of the
circuits themselves.

In the Huffman model, line and gate delays are assumed to be bounded and no
restrictions are placed on their relative magnitudes. In the Muller model[4], gate delays
are assumed to be unbounded but line delays are assumed to be zero. Using the Muller
model, a method of using data detectors or “spacers” to encode data lines for the purpose
of indicating valid outputs was published[2]. However, the process of encoding the data
lines in the design phase is cumbersome and it involves a large overhead in the required
hardware. In a pipelined architecture, the use of spacers reduces the hardware efficiency
to less than 25% [64]. As with many of the earlier schemes, the overhead in hardware,
difficulty of design and the relatively slower speed of logic circuits, where clock distribution
was not such a problem, caused asynchronous circuits to be impractical.

In the model for employing self-timed circuits in the processor design presented
in this work, the computation circuits are separated from the timing or handshaking
circuitry. The sequencing of operations is entirely determined by the handshaking circuits
and the computation stages, implemented as self-timed circuits, simply add latencies to the

handshaking signals. This differs from the early work in asynchronous design in that the



circuits are actually delay-insensitive. Properly designed handshaking circuitry displays
no hazards and it is shown that an algorithm can be used for automatically synthesizing

the handshaking logic, making the system design straightforward.

2.2 Arbiters and Metastability

Another problem that is often associated with asynchronous circuits is the metasta-
bility phenomena[19]. A bistable circuit can go into an unstable state in which the output is
not at a normal logic level, and stays that way for an indeterminable amount of time. It is
the setting of the inputs in a very particular way that causes the metastable state. Arbiters
or circuits which arbitrate multiple requests for a resource may suffer from the metasta-
bility problem if requests can occur at any time such as in an asynchronous system. There
has been a great effort in characterizing the problems associated with arbiters[14, 15]. In
circuits where arbiters are used however, the inevitability of a metastable state is usually
accepted and it must be considered in the overall operation.

In the signal processor circuits described in this work, the use of arbiters is
avoided completely. It is not the self-timed nature of the circuit operation that implic-
itly causes metastable problems. Rather, it is the architecture in which the circuits are
employed. If the architecture (or possible architectures) can be well defined early in the
design, requests for resources come from pre-defined places, eliminating non-deterministic
configurations of the circuitry that might require an arbiter. For example, in a datap-
ath containing three pipeline stages, each stage receives requests only from the preceding
stage. Further, the configuration of the circuit at the finest level of detail is known by the
instruction control signals coming from the program ROM. Thus, even when the configura-
tion changes slightly (say, changing the state of a MUX in the datapath), the information

is available beforehand.

2.3 Data Flow Computers

Data Flow architectures offer a possible solution to the problem of exploiting
concurrency of computation in a program or algorithm(7, 8, 9, 10]. While a data flow
computer can benefit from an asynchronous timing scheme, the overall architecture greatly
differs from the Von Neumann model often followed for computing. Instruction execution

is fundamentally different than traditional sequential execution. In a data flow computer,



an instruction is ready for execution when its operands have arrived. A consequence of
this is that many instructions of a data flow program may be available for execution at the
same time. Hence, concurrency of computation is natural. The operation of a data flow
computer follows that of a data flow graph describing the algorithm. A data flow graph may
be drawn directly from an algorithm or derived from a sequential programming language
using methods similar to those used in optimizing compilers for analyzing the paths of
data dependency. The data flow graph is made up of actors connected by arcs. The arcs
define paths over which values from one actor are conveyed by tokens to other actors. An
actor is enabled when it has tokens present on each input arc, and there must be no token
on any output arc of the actor. Any enabled actor may firei.e., perform its computation,
which removes one token from each of the inputs and places a token with the result values
on each of the outputs. This is sometimes referred to as “data-driven” computation. It
is evident that an interconnection of actors as specified in a data flow graph requires a
much different hardware architecture for implementation than a traditional computer. In
fact, the term data flow refers to these differences. The temporal aspects of the the phrase
“data-driven” and the description of an actor “firing” make “self-timed” or “asynchronous”
come to mind. The idea of timing the firing of actors at exactly the moment the inputs are
ready certainly fits the data flow model. However, “ready” is abstracted in data flow to
mean that time within the constraints of the hardware realization. For a clocked system,
this may be one or several clock cycles. In an asynchronous system, it may be closer to
the actual time. A self-timed circuit as defined above is similar to a hardware realization
of a data flow actor. Beyond that, there is nothing else that the Digital Signal Processor
described in this work has in common with a data flow computer. The techniques presented
are more general. So, while they were applied to the design of a DSP here, there is nothing
to prevent their use for designing a data flow machine.

To add to the confusion, the term Synchronous Data Flou(11] is often used to
describe a a data flow graph where the nodes consume and produce a pre-determined
amount of data at each input or output arc. In signal processing terminology, systems
with fixed or integer related sample rates can be specified as synchronous data flow graphs.
The “synchronous” part of synchronous data flow only refers to the relative rates of tokens
flowing between actors. It has no implication about the hardware implementation, which

could again be done with clocked or non-clocked circuitry.



2.4 Systolic Arrays

Systolic Arrays[13] consist of an array of modular processing elements with regu-
lar and (spatially) local interconnections. The data in the array are rhythmically computed
- as timed by a global clock - and passed through the network. The network configuration
and the numerous processing elements exploit the concurrency in an algorithm the same
way as a data flow model. The systolic nature of the timing i.e., the regular clocking and
the requirement for a global synchronization signal, prevents the operation from being
data-driven. Thus, with its synchronous timing and multi-processor architecture, it in no

way resembles resembles the DSP in this work.

2.5 Wavefront Arrays

The Wavefront Array[13] applies self-timing to a systolic array eliminating the
global clocking scheme and allowing its operation to be data-driven. If pipeline registers
are placed between elements, in the terminology of this work, it realizes an n-dimensional
self-timed pipeline. Depending on the implementation of the self-timing and communi-
cation between elements, a wavefront array might resemble the DSP described here. In
other words, the techniques for interconnecting processing elements in the DSP are directly
applicable to the wavefront array. The system architecture is just different.

In the coming chapters, the reader will become familiar with the differences
between the approach taken in this work and previous efforts. In the model used, the
handshaking circuits are both critical to the operation, and an addition over what is seen
in synchronous design. The overhead on an integrated circuit for the required handshaking

circuitry however, is considered negligible.

3. The Self-timed Model

The model that is followed in this report for a self-timed system, that is, an
asynchronous system made from self-timed circuits, is shown in Figure 1.1. The self-
timed circuit, which accepts an initialization signal (I) and generates a completion signal
when data is valid at its outputs (DV) is used in conjunction with a storage register
and interconnection or handshake circuit to form a complete stage. The storage register

holds input data while the computation proceeds. The handshake circuit is responsible



for enforcing a protocol on the communication signals between stages and the protocol
ensures that transfers only occur at the correct times. The DSP design shown in later
chapters can be abstracted as an interconnected group of the stages shown in the figure.
For bit-slice datapaths, a completion signal is often generated for each bit in the data
word. These individual completion signals must be used to form a single DV signal for

the entire stage in order to maintain data alignment.

data

_TI DV

Interconnect Interconnect
—_— CKT CKT -

J

handshaking signals

Figure 1.1: The model for a self-timed system.

4. Scope

Chapter 2 examines in detail some of the reasons for which the research of self-
timed integrated circuits was undertaken. These reasons include both technological and
design issues for future IC designs. In Chapter 3, the actual realization of integrated self-
timed circuits is discussed. One logic family, which provides both true and complement
outputs, allows by a simple extension of the gate design, the generation of a reliable
completion signal. There are several alternative styles for this logic family which, while
not used on the chip design presented here, are feasible for some applications. These
alternatives are surveyed. The synthesis of handshaking circuits which make use of the
completion signals to effect correct data transfers between stages is discussed in Chapter 4.
Some of the most common handshake circuits are presented. Since the c-element is a

component which is required in most handshaking circuits, and its design can affect the
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efficiency of operation of an asynchronous system, Chapter 5 was devoted to a survey of
c-element designs and performance. Chapter 6 shows the designs of some DSP macrocells
that are self-timed. Next, the design of a fully self-timed and programmable digital signal
processing chip is presented in Chapter 7. Test results from the DSP prototypes are given

in Chapter 8. Finally, in Chapter 9, a set of conclusions are drawn from the research.
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Chapter 2

Motivations for using Self-Timed

Techniques

As mentioned in Ché.pter 1, the main motivation behind employing self-timed
techniques in a high speed digital processor is to eliminate the requirement for a global
synchronization signal or “clock”. In this chapter, a more detailed analysis of the clock
distribution problem is presented in order to fortify the argument behind researching the
self-timed approach.

Motivation for developing a circuit technique that removes the need for a global
clock signal centers in two areas. The first has to do with the way the design process of
VLSI chips has evolved and how this affects the chip designer’s ability to control the way
the clock is physically distributed over the chip. The second is concerned with the trends
in scaling of the digital IC process and the physical effects they have on clock distribution

and skews.

1. Design Issues

Take it for now that limitations in the wiring layers of future IC processes cause
a difficulty in limiting clock skews in VLSI circuits. What does this do to the design
process? The designer, either of the circuit, or of the software that helps assemble the
chip, is faced with a global concern. The placement of clock wires in the layout now affects
the operation of the circuit in a critical way. The convenience of a hierarchical approach to

the circuit design is not adequate because the evaluation of the performance is not really
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possible until the layout is completed. This adds a tremendous burden on the designer,
who may not find out about fatal clock skews until the chip is fully designed, making
changes more difficult. Thus, the first reason for investigating a self-timed approach is
that by bringing the clocking signal generation to a local level (which is effectively what
self-timed circuitry accomplishes), the chip design of complex systems can be significantly
simplified since concerns over global synchronization are eliminated. This fits extremely
well in the hierarchical chip design paradigm that is the basis of many CAD methodologies
today. The designer is allowed to work at higher levels of description for a circuit and the
design cycle time is substantially reduced.

Currently, there is a strong trend towards increased use of application specific
ICs or ASICs which rely on the use of automated design tools. The tools characteristically
deal with a cell library designed to meet a wide variety of applications. While the designer
can easily manipulate basic logic cells to build up a circuit rapidly, there are some sacrifices
with this process however, because the underlying cell design, chip layout, and routing are
not entirely under the control of the designer. Therefore, the luxury of a finely tuned, hand
laid-out clock distribution system is usually not possible. Hence, clock skew problems may
not appear until the final circuit layout is complete.

In current synchronous chip designs, the sub-systems of the chip are made to
work during the appropriate clock phase periods and the designer depends on the edges
of those clock signals to be synchronized with the same clock signals fed to other parts of
the chip. Self-timed circuits restore this level of hierarchy to a chip design well after clock
skews become a problem in synchronous circuits since each sub-system on a chip may
operate in its own time frame. As long as the timing signals within a. block supervised by
a handshaking circuit are aligned enough to ensure the correct operation of that block,
the overall chip will operate correctly since those signals need not be synchronized with

other signals outside the block.

2. Scaling and Technological Reasons

In the last section, the reader was asked to accept that the wiring delays of future
IC processes limit the ability to distribute a global clock accurately. In this section, the

physical reasons behind this assumption are presented in detail.
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2.1 Scaling Laws

At the 2u to 6y level of design rules, scaling of the process could be performed
without significant consideration about exceeding the physical limits of the materials in-
volved. As scaling continues beyond the 1y level, there must be more concern for materials
limitations. For example, the higher electric field associated with a much thinner gate ox-
ide and a given power supply voltage can cause problems with pinholes in the oxide [17].
As an analytical tool, several scaling strategies are often discussed in the literature. These
strategies follow a set of simple rules on the scaling of dimensions and electrical parame-
ters and they allow for comparisons. The most common VLSI scaling laws are shown in

Table I. The scale factor a used in all entries in the table is assumed to be > 1.

TABLE I

Parameter Scaling Law
Constant | Constant | Quasi-Constant

Field Voltage Voltage
Vdd Vdd/a Vdd Vdd/\/o
Horiz. Dimensions 1/a 1l/a 1/a
Gate Oxide 1/a 1/va /e
Doping a a a
Coz aCoz \/C_!Coa: aCoz
C Cla Cl/Ja Cla
R Ra Ra Roa
RC RC aRC/\/[a RC

In Constant Field (CE) scaling, all vertical and horizontal dimensions and the
power supply voltage are scaled by the same factor . Since the voltage and dimensions
are scaled together, the internal electric fields remain unchanged. The scaling of the power
supply limits the size of a if compatibility with existing TTL circuits is a consideration.
CE scaling also significantly decreases the drain current of devices with channels shorter
than 1lum due to impurity scattering effects.

Constant Voltage (CV) scaling is done by scaling horizontal dimensions but leav-
ing the power supply voltage unchanged. The vertical dimension is scaled by a smaller
factor of \/a. This results in better current drive capability and compatibility with TTL

circuits. However, problems with shorter channel devices still exist due to the saturation
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of drift velocity. It is especially troublesome for sub-micron devices [17].
Quasi-Constant Voltage scaling (QCV) still shrinks horizontal and vertical di-
mensions by the scale factor & but the power supply is scaled by a smaller factor of Va.

In QCV, the drain current can increase down to sub-micron levels.

2.2 A real scaled process

The scaling laws above give some insight into future processes but it is rare
that a real IC process would be scaled according to such simple rules. Therefore, some
attempts were made to gather information about processes that are in design for the
future. Estimates from this information for a 0.3u design rule process are presented
alongside parameters for some current processes in Table II [18]. Assumptions behind the

figures in the table will be discussed in this section.

The power supply voltage is not likely to scale with each process for backward
compatibility reasons. It is also highly desirable to maintain the ability to interface with
standard TTL devices. Therefore, it is more likely that a new standardized supply voltage
will be used by many different manufacturers for their future digital processes. The choice
of 3.3V is logical since it can still drive TTL and it reduces the electric fields to a certain
degree.

The goal of scaling is usually twofold in that besides just obtaining smaller area
devices, the devices can be made faster. The g,, of the transistors will scale with the
increase in C,; of the gate oxide. Since the area of the device shrinks by the square of the
scale factor, an increase in speed can be obtained. This is shown in the entries for ¢,z and
Coz in the table. The problem of a scaled process then becomes ensuring that one can
take advantage of the added speed. This is where the characteristics of the interconnect

layers come into play.

2.3 Interconnect

The effect of scaling on interconnect wires has been studied extensively[16, 26,
27, 28, 30, 32, 33). If the horizontal and vertical dimensions of a process are scaled by the
factor c, the length, width, and cross sectional area of a conductor scale by ¢, a, and o?

respectively. The smaller cross sectional area combined with the shorter length of a given
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TABLE 11

1984 1986 1993 (est.)
|Parameter/Process— 3u 1.2p 0.3u Notes:
Less (1) 24 1.0 0.25
vdd 5V 5V 3.3V
tor (4°) 500 250  85-100
Coz (fF/u?) 0.68 1.40 3.90
tFoz-PoLY (1) 0.8 0.6 0.4
tFos—1 (1) 1.5 1.0 0.9
m; pitch (p) 4.5 1.5 0.7 (width/spacing)
my pitch (u) 6.0 2.0 1.0 (width/spacing)
m;-substr cap (fF/u?) 023 .035 .040
mg-substr cap (fF/u?) 014 .020 .020
m;-m; cap (fF/u?) .034 .040 .040
m;-m;4; cap NA NA .040 (All upper layers)
m; resistance (2/0) 0.038 0.17  .07-.17 (W - moly)
m, resistance (2/0) 0.026  0.025 0.075
gate resistance (2/0) 50 40 2.5 (silicide)
Td 1.2nec .32nsec 85psec (FI=FO=3)
Tiopr (ideal) 5.674 6.714 7.874
T10pF-min 6.7nsec 2.2nsec 0.66nsec
iICK 50mA 125mA  320mA TR~ 27,
Tck (est.) of DSP 150nsec 30nsec  7.5msec
Tnov 4¢ 10nsec 2.8nsec  l.4nsec (+ interconnect)
4Tnov/Tck 26% 37% 75%
Tcx
g L - TNOV J
<z
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wire in the circuit will cause the resistance of the wire to increase by a as shown in Table I
under QCV scaling. Similarly, the wire’s capacitance to the substrate will decrease by o
due to the smaller area of the wire combined with the larger unit area capacitance from the
smaller vertical dimensions. The combined RC time constant of a wire therefore remains
unchanged as listed in Table I. This has dire consequences for the speed of the entire
circuit. While transistors are able to switch faster, the wires carrying signals between
logic gates tend to have a more constant delay. In other words, the performance will be
limited by the wires themselves ultimately.

The design of the interconnect becomes more complicated as dimensions are
reduced for several other reasons that preclude the use of the simple scaling laws presented
above. Smaller wires have some other associated problems. If a two-dimensional model
is used to analyze the capacitance of a wire, it can be shown that the wire looks like a
cylindrical wire plus a flat wire with no fringing effects (see Figure 2.1) [29]. As the wire
is made thinner, the capacitance per length becomes asymptotic to that of the cylinder.
A graph of the relationship is shown in Figure 2.2 for a wire and field oxide thickness of
1lum. Therefore, despite the insulating layer thickness, scaling a wire size to reduce its

capacitance has limitations. The asymptote of the capacitance curve is roughly 1.5pf/cm.

Figure 2.1: Two-dimensional model of wire capacitance.

Electro-migration

Aluminum conductors which have a high current density exhibit a phenomenon
called electro-migration in which they tend to open over time because the molecules of
Aluminum actually migrate away from their original position[28, 16]. It is generally ac-

cepted that a current density value of J = 1mA/u? should not be exceeded in the interests
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of reliability[28]. Usually, the conductors carrying the power supply over the surface of
the chip are made wider to both avoid voltage drops and electro-migration. How does
scaling affect this problem? As the transistors are scaled down in size, the speed of the
circuits increases. For a signal such as a clock therefore, the slopes of the clock edges
must increase as the period of the signal decreases. Since the load on a clock line can be
quite large, the peak charging current in the line scales up with decreasing device sizes.
Figure 2.3 shows the charging current in a wire versus the capacitance of the wire. The
charging model used is a simple linear charging i = CV/T and the voltage and charging
time are the values of Vdd and ~ 27, taken from Table II. Using this conservative model,
it can be seen in the figure that a charging current icx of hundreds of mA is required for
the capacitance on a typical clock line, for example 10pF'.

Aluminum wires are usually made about lum thick and the rule followed to
avoid electro-migration is that the wire should be 1u/mA widg. Figure 2.4 shows the
capacitance of AL wires versus their length when the rule to avoid electro-migration is
followed. Clearly, AL is inappropriate for dynamic signal lines that have any appreciable
capacitance. Even when made wide enough to avoid electro-migration (using excessive
area), the wires then add so much capacitance that the delay time would be prohibitive.

The problems with AL conductors can be avoided by using different materials for
large current carrying wires. Some current processes employ molybdinem (moly) as one
of the metal layers. Tungsten is another likely choice for future processes. Both of these
materials avoid the electro-migration phenomena at the expense of a higher sheet resis-
tance. Where Aluminum has a typical sheet resistance of 0.0252/0, Tungsten and moly
are roughly 0.07Q2/0 and 0.17Q/0 respectively[30]. The higher resistance of Tungsten
and moly adversely affect the RC time constant of the wires and while electro-migration
is not a problem, wires with large peak currents still must be made wider to avoid severe
voltage drops (causing further delays) on signal edges. Figure 2.5 illustrates this. For a
Tungsten wire, the minimum width required to maintain a voltage drop of less than 1.5V
is shown for charging currents of 10mA4, 50mA, and 100mA. For a longer wire traversing
the surface of the chip, the width must still be large for Tungsten - again adding more
parasitic capacitance.

A more likely strategy for advanced IC processes will be to use a greater number
of interconnect layers as opposed to further scaling of the layers currently in use. The

design rules for the most compact interconnect layer will tend to stabilize at about 1um
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Figure 2.3: Charging current versus charging capacitance using a linear model.
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width and spacing. The upper layers may increase in size and thickness in order to handle
power distribution more effectively [23]. (Capacitance of layers distributing the power
supply is not really a factor. In fact, it actually helps because it acts as a supply bypass
capacitance) This scenario is shown in Table II, where the metal; width and spacing
are not scaled beyond 0.7um. An inter-layer capacitance of 0.04 fF/u? is shown for all
layers above metal;. This represents layers of field oxide that are approximately 100 times

greater in thickness that the gate oxide.

2.4 Clock Distribution

Now that we have a model for the interconnect layers of future processes, let’s
examine the effects that the interconnect has on clock distribution. The responsibility of a
clock distribution network on a synchronous IC is to send the timing signals to all parts of
the circuit without introducing a time difference between the signals at their destination.
The goal after all is to synchronize all operations in the system with the master clock. A
skew between clocks at different portions of the circuit can cause errors to occur in the
operation of the system. Typically, in a two or four-phase clocking scheme, the skews
are compensated for by adding a non-overlap or “dead” time between the clock phases.
If the non-overlap time is greater than the maximum clock skew time, then errors are
prevented by ensuring that all clock signals go Low before the next clock phase signal
goes HIGH . The non-overlap time directly subtracts from the time available to perform
useful computation during each clock period, therefore it is desirable to limit it to the
minimum amount needed. Figure 2.6 shows a model for a register based system. It is
denoted “Full Cycle Synchronous Pipeline” because data is transferred once per full cycle
of the clock. The lower drawing in the figure expands the registers themselves. Definitions
for the clock waveforms themselves are given in Figure 2.7. In a two-phase system, the
two clock lines ¢; and ¢, are separated the non-overlap time Tnyoy. In some systems,
only a single phase clock is distributed. In this case, the two phases used in the registers
become ¢ and ¢ and the inversion is done locally. Figure 2.7 shows a skewed ¢, waveform
also and the skew time Tsxgw subtracts from the nominal Tyov time. Note that it is
the skew between stages that is important. For a single clock system, the skew between ¢'
and ¢ in stage ¢ is well controlled by the designer. However, it is the skew between ¢* and

& that can cause problems when stage i communicates with stage j. Thus, the equations
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below apply to both a two-phase and single-phase system, the single-phase system being
the special case when Tivov is exactly equal to 0. For the skewed waveforms in Figure 2.8,

correct operation requires that

T 7

max

— T T 0

SKEW NOV -

Figure 2.8: A two-phase clock with skew.

Tskew < (TL)min + ITnov or (TL)min > Tskew — Tnov (2.1)

where T, is the time for a logic block output to reach the threshold voltage of a gate after
the input changes (typically less than 7, the propagation time). (TL)min is the minimum
Ty in the system. Referring to Figure 2.6 again, Equation 2.1 is intuitive. During ¢3, the
master latch of the registers is active reading the output of the preceding stage. If there
is skew such that ¢, of the preceding stage rises before ¢, drops as in Figure 2.8, then
the output of the preceding could change and wipe out the correct value that was in the

latch. Adding more Tyov alleviates the problem, but from Equation 2.1,

(TL)maz < 2Tpa + Tnov — TskEw (2.2)

In other words, the maximum time for computation in a stage is similarly reduced. Some
systems contain a finer partitioning of the logic blocks as shown in Figure 2.9 and denoted
“Half Cycle Synchronous Pipeline”. In this case, the constraint on Tskgw is identical
to the full cycle case as shown in Equation 2.1. The constraint on (T )mes is a bit more
complicated in the half cycle. A stage that computes during ¢, can actually take longer
than a single clock phase to complete. As long as its output becomes valid before ¢, falls,

the next stage will acquire the correct data. However, the next stage may not have a
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similarly long delay time since it does not have valid inputs until the end of ¢;. Thus, the
aggregate delay times of adjacent stages must not exceed a clock period. When a pipeline
is dominated by a single “slowest” stage which is usually the case, the (T )maz of that
stage must be less than shown in Equation 2.2.

Clock distribution is aggravated by such things as growing chip size, shrinking
feature sizes, interconnect time delays and any irregularity in the loading scheme. If
the time to get a signal from point “a” to point “b” on a chip is proportional to the
distance, then growing chip size implies more time for global signal distribution. The
clock distribution problem tends to be less important in certain regular structures. For
example, in gate array or sea-of-gates chips, the structure of the chip is very regular
and clock drivers can be designed in a tree fashion to equalize delays to all parts of the
circuit. [21] Also, in certain pipelined subsystems, where the clock skews can essentially
follow the data in the pipe, the clock distribution is less of a problem (75, 76] In both
of these cases however, synchronization with off-chip devices is still a serious problem.
One system approach to the synchronization problem that is more circuit intensive is to
construct phase-lock loops at the clock inputs to each stage (chip) in order to re-establish
synchronization at each boundary[77]. When a cell-based DSP design is employed, and a
general structure allowing feedback is allowed, then the loading and the layout structure
can easily become quite irregular causing the design of the clock distribution to be much
more difficult and dependent on global constraints.

The simplest form of clock distribution is to take the clock signal (generated on-
chip or supplied from an off-chip source) and buffer it so that it can supply the load of the

entire chip’s clock signal inputs. All the clock lines of the chip are tied together on a single
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electrical net and connected to the large buffer. The clock skew will be dependent solely
on the delays associated with the interconnect that ties all the clock inputs to the clock
buffer. Other forms of clock distribution depend on both wiring delays and internal buffer

delays. These will be discussed below after the delays due to wiring alone are quantified.

Wiring Delays

An analytical model for approximating wire delays in MOS integrated circuits
was published by Sakurai [31]. The basic model has a distributed RC line for the intercon-
nect wire with a driving MOSFET at one end and a capacitive load Cr, at the other end
as shown in Figure 2.10. Inductances are not considered a significant factor for on-chip
conductors compared to the other circuit parameters which dominate!. The wire length is
L and R is the total resistance of the wire (= r - L), where r is resistance per unit length.
Similarly, C is the total capacitance of the wire (= ¢ - L), where c is the capacitance per
unit length. The driving transistor can be replaced by an equivalent resistance R, and
the circuit is driven by a step for the analysis. Sakurai states that a good choice for Ry,
turns out to be 1/(maximum drain conductance) of the driving MOSFET. While this is
only an approximation, it is a good representation of a typical clock distribution circuit.
The driving resistance is the output impedance of the clock buffer and the load capaci-
tance is the sum of the capacitances which the clock buffer feeds. For this discussion, an
exact solution is not as important as getting a feel for what the basic limitations are when
sending a signal through wire on an IC.

Some other symbols used in the analysis are Cr = C/C, Rt = R /R, and
' = t/CR, all normalized values to the interconnect time constant. Also, s’ is the Laplace
transformed variable for ¢'.

When a voltage step is applied to the gate of the drive transistor, the response

at the load capacitance Cr, V2(s), is written as

Va(s') = 2 Tp(s) (2.3)

where Tp(s’) is the transfer function of the distributed RC interconnect wire. Denoting

the poles of Equation 2.3 as 0,0y, 03, - -, 0%, the response in the time domain v,(t’) can

10Of course, bonding wire inductances are quite significant for clock and power connections to the outside
world.
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interconnect

Figﬁre 2.10: Model for interconnect delay time.

be expanded in multi-exponential form as follows by using Heaviside’s expansion theorem:

= =1 C_ 43 24
v =Lt k§=x: ke (24)
where
2\/(1 + R%02)(1 + Co}
Cr = (-1)F. ‘/( 2 %) (2.5)

VOr{(1+ RZo2)(1 + C202) + (RT + Cr)(1 + RrCro%)}

from the transfer function Tp(s") of a distributed RC line. The o}s are the solutions to

the following equation:

_ 11— RqCroy
tan /ox = Er + Cr)J/or

- Equation 2.6 can be solved exactly only when Ct = R = 0. In other cases, the solution

(2.6)

must be numerical. It can be shown that an excellent approximation for Equation 2.4 is

‘vz(t')
Vad
Numerically calculated values for C; and o, can be found in [31]. Given that the accuracy

=1 + Cl .e” % ¢ (27)

of Equation 2.7 is high?, the 90% time delay between the input step function and the

voltage at the load capacitance Cy, is easily found from

2The magnitude of the next term at the time when v(#') is at the 90% level is less than 10~°.
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o= ;11-111 | 10C | (2.8)

When Equation 2.8 is plotted, the delay time is seen to be proportional to Ry or Cr when
they are large, the drive resistance or load capacitance dominating. When Rt and Cr are
small, the delay is almost constant, limited by the wire itself. In that case, there is an
almost linear dependence of tj g on both Ry and Cy. Sakurai wrote the equation for #5¢
with only linear terms as a 4+ bCt + bRr + cR7CT and calculated the constants a,b, and

¢ to minimize the error in the range R7,Ct < 1. The result was
tos/CR =1.02 + 2.21(RrCt + CT + RT) (2.9)

= too = 1.02RC + 2.21(RtrCL + RCL + RtrC) (2.10)

The relative error of the formula above was found to be less than 4 percent for any value of
Rt and C7. For evaluating quantities such as gate delays and clock skew, the 50% delay
time is a more useful measure3. Equation 2.7 is a simple exponential and therefore the
to.s time should be Equation 2.10 multiplied by In(2)/In(10) = 0.30. The value 0.32 was

actually used after some verification using the SPICE circuit simulator. So, the formula

to.5 = 0.33 BC + 0.71(Ri,CL + RCL + RixC) (2.11)

was plotted in the following graphs as an approximation for the 50% delay time associated
with an interconnect. wire driving a capacitive load. The following assumptions also apply

to the graphs:
1. Wire parasitics: Rq, = 0.07Q/0, C = 0.04fF/u?.
2. Ry = 1/gm of driver transistor in ohms.
3. Delay of driver transistor itself is not included.

Therefore, Equation 2.11 is the delay of the wire only since it does not include any time
for the driver transistor channel to form or for any of the buffer stages that precede the

driver transistor to switch.

3The 50% delay time is the time difference between the input and output waveforms reaching the gate
threshold value, typically Vaa/2 volts in a CMOS circuit
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Using the approximation described above, some common clock distribution schemes
can be studied to make a determination of the potential clock skews that would be en-
countered. As mentioned before, the simplest scheme would be to have a series of buffers
increasing in size so that the last buffer would be large enough to drive the capacitance
associated with all of the clock inputs and wires in the circuit. In this case, the value for
Cy is large. For chips that are 5-10mm on a side, the longest clock wire can easily reach
1-2cm. Figures 2.11 and 2.12 show the delay of a 1cm and 2cm wire when driving a 10pF
capacitive load. The delay is plotted for different size driver transistors (R:;) and versus

the width of the wire itself. There is an optimum wire width to use for a specific load
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Figure 2.11: Delay time associated with a lcm wire driving a 10pF capacitive load.

and wire length. The smaller wire widths increase the overall delay time due to the term
RC, dominating in Equation 2.11. If the wire is made too wide, the delay increases when
the term R;.C begins to dominate. The optimum width for this load is between 15-25u.
Even for an optimum width, the delay times are roughly 1nsec and 2nsec for a lcm and
2cm wires respectively.

In Table II, the entry Tigpr shows the minimum number of gate delays in which
the clock buffer driving a 10pF load could switch. It assumes the optimum sizing of each
stage of the buffer where the device lengths are made €!? larger than the previous stage.

The entry TigpF-min just multiplies by 74 to get the minimum delay time of a buffer
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Figure 2.12: Delay time associated with a 2cm wire driving a 10pF capacitive load versus

wire width.

driving 10pF.

A more common method of distributing the clock is shown in Figure 2.13. Rather
than driving the full clock load directly, a distributed buffer system is employed. By
having less of a load on the longest clock wire that originates from the clock generator,
there is less charging current and the wire can be smaller. In the hypothetical situation
suggested in Figure 2.13, the 10pF load has been split into ten 1pF loads, each having its
own buffer. The input capacitance to each of the distributed buffers is 0.1pF. therefore,
the long interconnect wire distributing the clock has a 1pF load. Figures 2.14 and 2.15
show the delay associated with a wire driving a 1pF load. The minimum delay occurs
for a less wide wire since the Cf, term is reduced. However, the delay still is significant.
Additionally, in spite of the reduced interconnect delay, the buffers driving each 1pF load
have a delay that would have to be taken into consideration if data were supplied off-chip
from one of the stages. This is illustrated in the figure. The buffers driving a 1pF load
have a minimum delay of 5.57y in a 0.3y process which is 0.46nsec. Therefore, the overall
delay which has to be compensated for with non-overlap time is still in the 1 — 2nsec
range. In fact, for comparison, it is interesting to look at the delay of the interconnect

wire when driving a relatively small 0.1pF capacitive load. Figures 2.16 and 2.17 show
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Figure 2.14: Delay time associated with a lcm wire driving a 1pF capacitive load versus

wire width.
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this. While the minimum delay for a 1cm wire shown in Figure 2.16 is about 0.25nsec,
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Figure 2.16: Delay time associated with a 1cm wire driving a 0.1pF capacitive load versus

wire width.
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Figure 2.17: Delay time associated with a 2cm wire driving a 0.1pF capacitive load versus

wire width.

note that the value of R, to obtain such a small delay is 50Q2. A transistor W/L of roughly
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100 would be required to obtain such a small drain resistance! The time required to buffer
the input to such a large device would be considerable. The graphs therefore demonstrate
that regardless of the way the load is distributed, the time required to transfer a clock
signal across the chip does not fall rapidly below a certain value. As Table II shows, as
the clock frequency is increased for future processes (T¢ck falls), the percentage of that
period required for non-overlap time to prevent clock skew problems increases dramatically,

leaving little time for actual computation.

3. Summary

The motivation for investigating self-timed circuitry for DSP designs comes from
two main areas. First, as the scaling of the digital IC process continues, the speed (and
layout) of circuit designs tends to become interconnect limited. The layers that connect
devices together do not scale as well as the devices themselves such that the RC time
constant delays of these layers dominate. Additionally, the trend towards an increased
number of interconnect layers makes the characterization of the parasitic loading on a
wire extremely difficult. Clock distribution in a cell based design therefore has associated
with it certain finite delays which can cause a skew in the clock waveform between different
parts of the circuit. Another reason for investigating self-timed circuitry is that CAD based
chip development systems are suited for hierarchical designs. As the digital process scales,
the problems of distributing the clock become more dependent on global conditions of the
chip. Clock skew problems may not even be characterizable until the layout of a chip
is completed. Self-timing allows the hierarchical design style that is currently used for
synchronous designs to be used in spite of process changes. By eliminating the global
clock distribution problem, highly developed CAD tools can be used and correct circuit

operation after layout is ensured.
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Chapter 3

Realization of Self-Timed Circuits

The minimum requirement of a self-timed circuit is that it generate some kind of
completion signal indicating that its outputs are valid. This is usually required each time
a new set of inputs is applied to the circuit. There are several approaches to designing a
circuit that supplies completion information and in this chapter, they will be examined.
One logic family, called DCVSL, provides a simple means for generating a completion
signal via a simple extension to the basic circuitry. This logic family is explained in
detail since it was chosen for the DSP design presented in the following chapters. Some

alternative structures that can supply completion information are also surveyed.

1. Completion Signals

A conceptually simple method for generating a completion signal for a block of
circuitry is to exploit the matching characteristics of an integrated circuit and duplicaté the
circuit block, using the duplicate copy solely for the purpose of generating the completion
signal. This is usually done by supplying the duplicate block with a known input signal
or vector. The output signal is then also known in advance and when it appears, it
should indicate that the circuit doing the actual computation has valid outputs. This
approach can work under certain conditions although it should be noted that it is not
strictly a self-timed circuit because it relies on the matching characteristics. The success
of using matching or “dummy” circuits to determine completion times depends on the
actual circuitry involved and the environment in which it is placed. For example, if the

circuitry has a delay that depends on the input data, the matching technique suffers since
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the circuit producing the completion signal always receives the same pre-determined input
data. While this might be chosen to yield the worst-case delay of the circuit, then the
system efficiency is hurt in the same way as in a synchronous design, where the clock
period must reflect the worst-case delay of the elements. Another risk is in a design where
the loading of the logic cells is not known in advance. In parameterizable logic cells, the
loading on logic cell outputs can vary over a wide range. Unless the dummy circuit exactly
duplicates the original, requiring a 100% area overhead, it may not accurately reflect the
delays. Another example is when the block is driving bus wires to other blocks. Again
the loading may not be determined until the chip layout is complete. Therefore, the use
of matching is best restricted to local, well defined pieces of logic where the matching is
indeed determined by the IC process rather than circuit loading and parameters.

Some asynchronous schemes have proposed the use of “spacers”(2] or multi-valued
circuits[3] as a way of encoding data lines so that data-detectors can detect valid outputs.
A spacer is a word that cannot normally appear in the data stream. It is placed at
the boundaries of valid data words so those boundaries can be detected. In a similar
way, multi-valued logic circuits use a value outside of the normal binary signal levels to
indicate the boundaries. The overhead of encoding the data with spacers severely limits
the practicality of the method. Similarly, the difficulty in implementing multi-valued logic
with good noise margins has limited its usage.

A more hardware-oriented method for encoding data lines is to use dual-rail
coding[19]. This is really a bit-wise extension to implement the multi-valued coding idea.
For a single bit of data, two wires are used to indicate its value. The HIGH value is
indicated by 10, the Low value is indicated by 01, and the value 00 is reserved for non-
valid or boundary states. Dual-rail coding can be implicit in the operation of certain
differential logic families. One logic family introduced a few years ago named Differential
Cascode Voltage Switch Logic or DCVSL [34, 35, 36, 37, 41, 42] follows a behavior that
makes the generation of a completion signal a very simple and efficient extension to the

basic circuitry.

2. DCVSL Description

Differential Cascode Voltage Switch Logic is a pre-charged (also called dynamic)

logic family that is very similar to a differential form of domino logic {49]. Domino logic
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and NORA logic [50] both gained popularity in recent years because they are typically less
area consuming than static CMOS logic due to the fact that they use mostly only one type
of device (NMOS or PMOsS ) to implement the logic function. This is contrasted to static

CMOS which has dual NMOs and PMOS device trees to implement a logic function. The

e R

A A
B B+—]
cq c+——]

out

domino CMOS static CMOS
Figure 3.1: A simple domino logic gate and its static CMOS counterpart.

speed of a domino gate is enhanced because the input capacitance of the gate is reduced
over a static CMOS gate since only NMOs devices are driven. Figure 3.1 shows a simple
domino AND gate along side a static CMOS version of the same gate. In the precharge
stage of operation, the clock signal phi is low and the internal node z is charged high
by PMOs device M1. When phi goes high, the evaluation stage is entered and node z
is discharged to ground only if A, B, and C inputs are high. The node labeled z must
be buffered in order to drive another domino gate and therefore domino logic gates are
non-inverting.

A generalized DCVSL gate is illustrated in Figure 3.2. The gate also has an
NMOs tree which implements the required logical function but there are two outputs.
Similar to domino logic, there is pre-charge phase (I high) where both nodes f and fbar
at the top of the NMOs tree are charged high by PMOs devices M1 and M2 respectively.
During evaluation however, only node f or fbar will be discharged causing one of the
two outputs to go high. The NMOs tree is designed in such a way that for valid input
signals (complementary), only a single output will become high. The pre-charge/evaluate
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Figure 3.2: A generalized DCVSL gate.

signal is labeled I in this figure for historical reasons; it is short for Initialize. As with
domino logic, the complementary outputs of one DCVSL gate can directly drive another
DCVSL gate 1. Unlike domino logic, a DCVSL can be inverting or non-inverting since
inversion is simply achieved by permuting the outputs. The NMOs tree in a DCVSL gate
does not always contain twice the number of devices as that of a single ended gate. In
fact, the area of the NMOS tree grows at a slower rate as the logical function becomes more
complicated. This will be shown in a following section but a simple explanation for this
is that by allowing connections between the two sides of the NMOS tree, transistors can
be shared so that the implementation of the logical function and its complement becomes
more efficient than just doubling the number of devices.

As with domino logic, there are constraints on the timing of the inputs to a
DCVSL gate. Improperly generated input signals can result in either an incorrect output
value or a disallowed output value i.e., both outputs being high. The constraints on the
inputs to a DCVSL gate are shown in Figure 3.3.

2.1 Completion Signal Generation in DCVSL

The key to exploiting DCVSL logic for self-timed circuits lies in the dual rail

coded nature of the output signals. During each pre-charge/evaluate cycle, the outputs

This is the origin of the term “domino” logic. When a cascade of domino gates is allowed to evaluate,
the outputs become valid in sequence, imitating the behavior of a row of falling dominos.
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Waveform Allowed? Comments

pre-charge evaluate
in or inbar
inbar or in Yes Stable before evaluate phase
in or inbar
Y One Transition, Low to High
es Both Inputs Low before evaluate
Transition on both inputs
No during evaluate phase
No Two Transitions
inbar No Glitch, two transitions
N Transition on both inputs
ror i 0 Both Inputs Low before evaluate

Figure 3.3: Constraints on the inputs to a DCVSL gate.
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of a DCVSL gate return to zero and then become complementary. By placing a single
OR gate across the two outputs of the gate as shown in Figure 3.4 a completion signal is
successfully generated. In this document, the label DV is used for completion signals and
it stands for “Data Valid.” The output of the OR gate in Figure 3.4 has dua.l. importance
since besides indicating when data is valid at the outputs, when low, it indicates that the

pre-charge is complete. Hence, it is labeled DV/PC™ in the figure.

I
outbar <"—"———°<}'—" "—{>°'"—"’ out
foar bi

. _:j NMOS Tree
ooz ;4?_“__?&
1 EL

high = Data Valid

low = Pre-Charge Valid

Figure 3.4: The generation of a completion signal on a DCVSL gate. DV denotes “data
valid” and PV denotes “pre-charge valid”.

In a combinatorial logic macrocell made up of a cascade of DCVSL gates, the
generation of a completion signal consists of OR ing the outputs of only the last gate in
the chain. This is an important point about processor design using self-timed methods.
Typically, partitioning is done at the pipeline stage boundaries and it is only at these
boundaries that a completion signal is required. Therefore, the overhead in circuitry for
generating DV is small.

For a multi-bit cell such as an ALU - often used in DSP datapaths, there is a

completion signal available for each bit of the data word. Strictly speaking, the correct
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completion signal for the entire cell, assuming an n-bit wide data word, is obtained by
feeding the n OR gate outputs from the last DCVSL gate into an n-input Muller C-
element?. As will be seen in later chapters however, this is not usually necessary for
several reasons. In the case where the logic delay through each bit slice of the cell is
nominally the same and the completion time is data independent, it is often sufficient
to use the completion signal for a single bit. This of course depends on the matching
characteristics of the integrated circuit. Matching at the local level has been exploited
both in analog and digital circuits since the inception of the IC. In a self-timed circuit it
can reduce the overhead in area required to generate the completion signal. This seems like
a viable approach but since it is process dependent, it must be evaluated by the designer
before a decision is made.

In the case where the completion time of a cell is data dependent such as for a
ripple carry adder, all bits must be examined for DV generation if the data dependency
is to be monitored. Since self-timed circuits can take advantage of this dependency and
achieve cycle times that are closer to the average delay of the elements, all bits are typically
used for such data dependent elements. Again however, it is rarely necessary to use a n-bit
C-element to generate DV because of the way DCVSL functions. The data dependent
nature of the completion time is typically the result of one gate that cannot evaluate
until another gate produces an output such as the ripple carry adder. During pre-charge
though, there is no such dependency and all gates generating a DV signal will pre-charge
in nominally the same amount of time. Therefore, rather than using an n-input C-element
to generate a completion signal, an n-input AND gate is sufficient. This also depends on
the matching characteristics of the IC but it is usually a low risk approach. The data
dependent macrocells described in this report use a tree of 4-input NAND /NOR gates to

generate a completion signal.

2.2 Charge-Sharing

Like domino logic, DCVSL gates can exhibit charge-sharing problems. Figure 3.3
showed the allowed input sequencing of a DCVSL gate for valid outputs. It is a “legal”
condition to have all of the inputs to the DCVSL gate low during pre-charge. The only

constraint on the inputs then is to have one wire of each input - either in; or inbar; -

2A Muller C-element is defined as a logical element whose output traverses high only after all of its
inputs are high and stays high until all of its inputs go low in which case it traverses low.
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eventually make a single transition from low to high to yield the correct output. Actually,
any DCVSL gate whose inputs are fed directly from the output of other DCVSL gates
will have those inputs (both true and complement) low during pre-charge simply because
during the pre-charge phase, all DCVSL outputs are low. When all of the inputs are low
during pre-charge, only the top two nodes of the NMOs tree of the gate are guaranteed to
be pre-charge high. After pre-charge, the charge on those two nodes can be shared with
nodes internal to the NMOS tree as transistors in the tree are subsequently turned “on”.
While one side of the tree will eventually be discharged to ground, the other side of the
tree must remain at a logical “1” to generate valid complementary outputs. Therefore,
charge sharing will cause incorrect operation if the parasitic capacitance associated with
the devices being turned “on” after pre-charge (usually dominated by the source and drain
diffusion capacitance of the NMOs transistors of the tree) roughly equals the capacitance
of the pre-charge node at the top of the NMOs tree. One circuit technique that is used
to improve the charge sharing situation of DCVSL gates is shown in Figure 3.5. Weak
p-channel devices are fed back around the output inverters to act as current sources when
the outputs of the gate are low. [35, 41] After the precharge phase, the current sources
continue to operate and if charge sharing causes a drop in the voltage at the top of the tree,
the voltage will be restored eventually to V3. The p-channel devices directly affect the
speed performance of the gate since the NMOs transistors that are supposed to discharge
one side of the tree must compete with the current source. Therefore, the p-channel
devices cannot be very large and they are limited in the speed which they can supply
charge to a node in the tree that is depleted by charge sharing. They tend to enhance the
static behavior of the gate since they ensure that the voltage on the high side of the NMOs
tree returns to Vyy instead of dropping below the threshold value of the output inverter
due to a combination of charge sharing and leakage on internal nodes. However, if there
is enough parasitic capacitance on the internal nodes and the inputs are brought high in
rapid succession (i.e., faster than the p-channels can restore the charge from each one),
then a problem will still exist.

If all of the inputs are set up before the I signal goes high for evaluation no
charge sharing will occur and therefore the weak p-channel devices should be eliminated
in the interests of speed and area consumption of the gate. However, in strictly static
applications, the p-channel devices must remain. In the case where the weak feedback

transistors are insufficient to prevent charge sharing from being a problem, then it is
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Figure 3.5: Alleviating charge sharing in a DCVSL gate.
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necessary to pre-charge s;)me or all of the internal nodes of the NMOs tree. The most
straightforward way of pre-charging more of the NMOs tree internal nodes is by adding
extra p-channel pre-charge devices connected between Vy4 and those internal nodes. This
technique, while ensuring that internal nodes are fully pre-charged, has accompanying
disadvantages of 1) requiring more p-channel devices, 2) adding capacitive load to the I
signal line and 3) slowing the gate switching speed by adding capacitance to the NMOs
tree nodes and also requiring all internal nodes to discharge fully from V4 to Ground. If
the order of the input switching is know a prior: then only nodes causing charge sharing
problems should be pre-charged. Another method for eliminating charge sharing problems
involves delaying the fall time of the DCVSL outputs at the start of pre-charge. By doing
50, the input devices that they in feed will in turn stay “on” longer allowing more charge
to enter the tree. [42] The more the internal nodes are charged before evaluation, the
less the output nodes will be lowered in voltage during evaluation. Another method for
alleviating charge sharing problems is to use NMOs devices in the tree to charge internal
nodes to Vyq — V;. [43, 45] This method reduces the routing required for the pre-charge
devices and since it does not charge the internal nodes fully to V4, the gate switching

time is faster.

2.3 Design and Layout Issues

The NMOs device tree

Readers familiar with the design of static CMOS logic may have noticed from
the description of DCVSL that the design of a typical gate is not as straightforward. The
first task involves mapping a desired logic function into the actual schematic for the NMOS
device tree. A systematic means for this is necessary and it must include the simplifications
possible by sharing the transistors between the two sides of the tree in order to yield the
smallest area for the gate. There are several methods for systematically generating the
NMOS tree for any arbitrary DCVSL gate. The chip designs described in later chapters
were done using a new ‘c’-language program written expressly for this purpose. Some
other simpler hand-design methods will also be described that can be used for gates with
a small number of inputs.

Ntreeis a DCVSL design program based upon representing the Boolean function

in terms of a directed acyclic graph which is then manipulated to reduce it to a canonical
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form for the original function. The branches of the graph directly represent the branches
of the NMOs tree (and therefore the n-channel transistors) for the DCVSL gate being
designed. Routines for manipulating the graph were developed by R. E. Bryant and full
deta.ils. of them can be found in [51]. Historically, many digital system designs have been
expressed as a sequence of operations on Boolean functions. Algorithms to efficiently
manipulate these Boolean functions symbolically are very useful, however some of the
common requirements of the algorithms, such as testing for satisfiability 3 or equivalence *
have NP-complete solutions which need computer time that grows exponentially with the
size of the problem. The computation problem occurs when Boolean functions are repre-
sented symbolically using some of the more classical techniques such as Karnaugh maps or
canonical sum-of-products forms. These representations are of size 2" for every function
of n arguments. More important is that none of the classical representations are canonical
| forms. In other words, a given function may have many different representations[51].
Bryant represents Boolean functions as directed acyclic graphs that resemble
binary decision diagrams [52]. By placing further restrictions on the ordering of decision
variables in the vertices, algorithms for manipulating the representations in a more efficient
manner could be developed. All symmetric functions can be represented by graphs where
the number of vertices grows at most as the square of the number of arguments. Also,
after the graphs are reduced, the representation is a canonical form. The disadvantage
of using this type of graphical representation is that the ordering of the inputs to the
Boolean function can dramatically affect the size of the graphical representation. In fact,
the problem of computing an ordering that minimizes the size of the graph is itself an
NP-complete problem. Bryant suggests that a small set of heuristics can be used to solve
this problem with satisfactory results.
To describe the graphical representation used for Boolean functions requires some

definitions. First, for the graph itself:

Definition 3.1 A function graph is a rooted, directed graph with verter set V' contain-
ing two types of vertices. A nonterminal vertez v has as atiributes an argument indez
indez(v) € {1,...,n} and two children low(v), high(v) € V. A terminal vertez v has as
attribute a value value(v) € {0,1}.

3A Boolean function is satisfiable if there exists an assignment of input variables which causes the
function to evaluate to 1.

“*Two Boolean expressions are equivalent if they denote the same function.
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Furthermore, for any non-terminal vertex v, if low(v) is also nonterminal, then it
must be that indez(v) < indez(low(v)). Similarly, if high(v) is nonterminal, then it must
be that index(v) < indez(high(v)). Function graphs form a proper subset of conventional
binary decision diagrams. The ordering restriction also implies that a function graph is

acyclic because the nonterminal vertices along any path have strictly increasing index
values.

Definition 3.2 A function graph G having root vertez v denotes a function f, defined

recursively as

1. Ifv is a terminal vertez:
(a) If value(v) =1, then f, = 1.
(b) If value(v) =0, then f, = 0.

2. If v is a nonterminal vertez with index(v) = i, then f, is the function

fu(-'l?l,---,zn) = ii'flow(v)(zlv-wmn)

+ 21 - fhigh(v)(T15 -+ -1 Zn) (3.1)

Another way of saying this is that a set of argument values z;,...,z, describes
a path in the graph starting from the root where, if some vertex v along the path has
indez(v) = i, then the path continues to the low child if z; = 0 and to the high child
if z; = 1. The value of the function of these arguments equals the value of the terminal
index at the end of the path. In the physical NMOs tree that is the analog of the graph,
the root is GROUND and the terminal vertices 0 and 1 correspond to the nodes fbar
and f in Figure 3.2.

Definition 3.3 Function graphs G and G’ are isomorphic if there exists a one-to-one
function ¢ from the vertices of G onto the vertices of G' such that for any vertez v, if
¢(v) = v/, then either both v and v’ are terminal vertices with value(v) = value(v'), or
both v and v’ are nonterminal vertices with indez(v) = indez(v'), ¢(low(v)) = low(v’),
and ¢(high(v)) = high(v").

Definition 3.4 For any vertez v in a function graph G, the subgraph rooted by v is defined

as the graph consisting of v and all of its descendants.
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A function graph can be reduced in size without changing the Boolean function
it represents by eliminating redundant vertices and duplicate subgraphs. The reduced

graph is the goal of the DCVSL NMOs tree design program.

Definition 3.5 A function graph G is reduced if it contains no vertez v with low(v) =
high(v), nor does it contain distinct vertices v and v’ such that the subgraphs rooted by v

and v' are isomorphic.

The following theorem is important in the use of this method for designing
DCVSL trees:

Theorem 3.1 For any Boolean function f, there is a unique (up to isomorphism) reduced

graph denoting f and any other function graph denoting f contains more vertices.

The proof of this theorem can be found in [51]). So, by defining the graphical
representation of an arbitrary Boolean function f as above, one can make use of effi-
cient computer routines for building and reducing the graph. The reduced graph is the
smallest graph that represents the function f, hence the corresponding DCVSL circuit

implementing f will contain the minimum number of devices.

Program Operation

The main program flow of ntree is shown below in pseudo-code:

main() {

Read input function from file;
Construct input parse tree;
for (each input ordering){

Build reduced graph;

if(graph smaller)

ave
else
Discard

Write output spice file;

}

The input format is LisP-like using parentheses to delineate primitive gate functions. The
program supports all of the primitives used to describe logic functions in the set F' €

{AND,OR,NOT,NAND,NOR,XOR,XNOR}. As an example, the input file below is shown:

47



# Example DCVSL gate description:

E 4-inputs

(example gate 1 (nand (or 1 2) 3 4))
t

The input parse tree for the example gate is shown in Figure 3.6. Since it is a binary tree,
the gate function for multiple input gates must be changed to avoid multiple inversions
(using associativity of the logic function). That is why the lower right node of the graph
is an AND gate rather than a NAND gate.

Figure 3.6: Input parse tree for example gate.

To build up the function graph a data structure is used for each vertex in the graph. It
has the following form: '

typedef struct vertex {

int index; /* indez from 1 to n+1 */
int value; /*-1,0,1 (-1 for non-terminal)*/
int id; /* identification number */
unsigned int mark; /* Boolean marker */
struct vertex *low; /¥ pointer to low child */
struct vertex *high; /* pointer to high child */

} VERTEX;

The structure contains all of the necessary information about each vertex including a
unique “id” number, an index entry, the value - showing 0 or 1 for terminal vertices and
-1 for non-terminal vertices, and a Boolean marker which is useful for indicating whether a

vertex has been visited when traversing a function graph. The pointers contain the address
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of the low and high children vertices in the graph. A general function for traversing the
graph by making use of the markerentry is shown below. Each time the graph is traversed,
the markers are set to all 0 or all 1. A version of this traversing function is used in several

parts of the algorithms.

Traverse(v) { /* vertex v = root of graph */
v.mark = noi(v.mark);
... do something to v...
if(v.index < n) { /* v is non-terminal */
if(v.mark # v.low.mark) Traverse(v.low);
if(v.mark # v.high.mark) Traverse(v.high);

}

To build up a function graph from the Boolean expression, the function Apply is used. It
takes graphs representing functions f; and f2, a Boolean operator and produces a reduced

graph representing the function f; < op > f; defined as

[fi <op> fo](z1y--+rZn) = fi(Z1,.--,Zn) < 0p > fo(Z1,...,25) (3.2)

The operation of the algorithm is based on the following recursion:

(A<op> fol =%i (filzi=0< 0P > fa |zi=0) + Zi - (f1 |lzi=a< 0D > fa |zi=1)  (3.3)

To apply the operator to functions represented by graphs with roots v; and v,, there are
several cases to consider. If both v; and v, are terminal vertices, then the result graph
has a terminal vertex having a value equal to value(v;) < op > value(vz). Otherwise, at
least one of the two vertices are nonterminal. If their indices are both equal to 7, then a
new vertex u is created having index i. The algorithm is applied recursively on low(v;)
and low(vs) to generate the subgraph whose root becomes low(u), and on high(v,) and
high(v;) to generate the subgraph whose root becomes high(u). If, on the other hand,
index(vy) = ¢ but either v, is a terminal vertex or index(vz) > ¢, then the function
represented by the graph with root v, is independenf of z; or f2 |z;=0= f2 |z;=1= f2- So, a
vertex u with index i is created and the algorithm is applied recursively on low(v;) and v,
to generate the subgraph whose root becomes low(), and on high(v;) and v, to generate
the subgraph whose root becomes high(u). The graph produced by the algorithm is not

in general reduced, so the function Reduce is applied to it before it is returned.
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Apply(vl,v2,0p) { /* v1,v2 vertices */
Initialize Table to NULL;
u = Apply_step(vl,v2);
return((Reduce(u));

/* Recursive function to implement Apply */
Apply_step(vl,v2) {
u = Table[vl.id,v2.id];
if(u == NULL) return(u);
u = new vertex; u.mark = false;
Table[vl.id,v2.id] = u;
u.value = vl.value op v2.value;
if(u.value != dontcare) /* create terminal vertex */
u.index = depth+1; u.low = NULL u.high = NULL;
else { /* create nonterminal and eval further down */
u.index = min(vl.index,v2.index);
if(vl.index == u.index)
viowl = vl.low; vhighl = v1.high;
else
viowl = v1; vhighl = v1;
if(v2.index == u.index)
vlow2 = v2.low; vhigh2 = v2.high;
else
viow2 = v2; vhigh2 = v2;
u.low = Apply_step(viowl viow2);
u.high = Apply_step(vhighl,vhigh2);

return(u);

The actual function implementation for Apply above contains some enhancements
to reduce the computation time of its application. A table is maintained containing entries
of the form (v, vy, u) indicating that the result of applying the algorithm to subgraphs
with roots v; and v, was a subgraph with root u. Before applying the algorithm to a pair
of vertices, the table is checked to see if it contains an entry for the pair. If so, they need
not be evaluated again and the result u is simply returned. If the function is called with
one of the vertices being a terminal vertex and it is a “controlling” value for the operator,
such as a 1 which controls an OR function - always returning a 1, then the appropriate
terminal vertex is just returned. ‘

The algorithm for Reduce works as follows: Proceeding from the terminal vertices
up to the root, a unique identifier number is assigned to each unique subgraph root. In
other words, each vertex v is assigned a label id(v) such that for two vertices v and u,
td(v) = id(u) if and only if f, = f, in the terminology of Definition 3.2. After the labeling
is completed, the algorithm then constructs a graph with only one vertex for each unique

label. By following the rules listed below, the correct labeling is ensured. Remember that
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for any index 7, vertices with an index greater than ¢ have been labeled since the algorithm

starts at the terminal vertices (index = n + 1).

1. Any two terminal vertices are assigned the same label as long as they have the same
value (€ {0,1}).

2. If id(low(v)) = id(high(v)), then vertex v is redundant, and id(v) is set to id(low(v)).

3. If there is some labeled vertex u with indez(z) = ¢ having id(low(u)) = id(low(v)),
and id(high(u)) = id(high(v)), then the reduced subgraphs rooted by these two
vertices will be isomorphic and id(v) is set to id(u)).

The pseudo-code for Reduce is shown next:

Reduce(v) { /* v is a vertex */
VERTEX subgraph[G);
LIST Q, viist{n+1];
Put each vertex v on vlist[v.index];
nextid = 0;
for(i = n+1 down to 1) {
Q = empty set;
for( each u in vlist[i]) {
if(u.index = n+1)
Add key to Q where key = u.value; /* terminal */
else if(u.low.id == u.high.id)
u.id = ulow.id; /* redundant vertex */
else
Add key to Q where key = (u.low.id,u.high.id);

}:
Sort Elements of Q by keys;
oldkey = (-1,-1) /* unmatchable key */
for each key in Q removed in order {
if(key = oldkey)
u.id = nextid;  /* matches existing vertex */
else { /* unique vertex */
nextid = nextid+1; u.id = nextid; subgraph[nextid]=u;
u.low = subgraph{u.low.id]; u.high = subgraph{u.high.id];
oldkey = key;
k
&

réturn(subgraph[v.id]);
The vertices are first collected in lists according to their indexes. The function Traverse can
be used for to do the collection. The lists are processed starting from the terminal vertices
and proceeding up to the root. For each vertex processed, a key is created that is either
the value for a terminal vertex or the pair < id(low(v)),id(high(v)) > for nonterminal
vertices. If the vertex has id(low(v)) = id(high(v)), then id(v) is immediately set to

id(low(v)). The remaining vertices are sorted according to their keys and to perform the
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reduction, a given label is assigned to all vertices having the same key. For each unique
label, a single vertex is selected and a pointer to it is stored so that the reduced version
can be built.

As shown in the pseudo-code for the main program operation, each input ordering
is tried when building function graphs. This is not very efficient in terms of computation
time since for an n-input gate design, n! graphs must be built. This places a practical
limitation on n to be n < 8 for most workstations, however for the gate designs described
in later chapters, the limitation was not severe. In fact, limiting the number of gate
inputs also limits the worst case number of series transistors in the NMOs tree design,
which is commonly done in the interests of speed performance. The program operation
could easily be enhanced to allow a greater number of inputs by the addition of some
heuristics for determining the input orderings to try. In ntree, each function graph is built
and then saved only if it is smaller than the previous graph (where smaller means having
less vertices). There is one tradeoff that is made in determining the final graph which is
selected for the tree design. A record is kept of both G, the number of vertices in a graph
and L, the number of series connected devices which can be determined by looking for the
longest path between Ground and a terminal vertex. Gy, is the number of vertices of the
smallest graph and Ly, is the number of series devices in the graph with the minimum
number of series devices. For the graph which has size Gin, the number of series devices
Lg,,, is also saved. Similarly, for the graph with Ly, its size is saved in Gg,,;,. A cost

is computed for each of the two graphs as follows:

COSTGmin = Gm"ﬂ + LGmin (3'4)
COSTy,.,,. = Lmin + GLpin (3.5)

In the interests of speed, a larger graph will be chosen if it has less series connected devices.

In other words,

If(COSTy,,, < COSTg,,,), chooseGraphy,,,, (3.6)

The size differences between a minimum size graph and one that contains the smallest
number of series devices is typically only one or two vertices. Therefore, it was felt that

this tradeoff was worthwhile.
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Besides heuristics that could be used to try less input orderings, there is another
area that could be addressed in future versions of the ntree. Given that there are multiple
graphs which have the same number of vertices, heuristics could be added to somehow
determine the best graph to choose for layout considerations. The location in the tree for
example of a device receiving a certain input signal can be important in the overall layout
of the circuit. More information is needed about the rest of the system however, before
choices of this nature can be made. Some CVSL design software that addresses the issue
of wirablilty has been described in the literature[54, 55, 56].

The program textual output for this example is shown below. The binary input
parse tree is printed along with the final input ordering and function graph. Indentation is
used to try to clarify the levels in the trees in the printout. Because most of the routines are
recursive in nature, there was some problems initially in memory management. Memory

statistics are printed out as a tool to check for problems of this sort.

CVSL Logic Minimization Program by Gordon Jacobs
Rev 1.1

Date: Sun Bov 13 15:00:03 1988

ssssssses INPUT LISTING sesessssssss Input File: exmpll sess
(example gate 1 (nand (or 1 2) 3 4))

]

t

Gate Nama: example gate 1
Number of unique inputs (depth) = 4

-------- -~ INPUT PARSE TREE :

nand O

with left side -~

]l eor O

| with left side --

I | IEPUT 1

| with right side --
| | INPUT 2

with right side --

| and O

| with left side --

| | 1IEPUT 3

| with right side --
I | IBPUT 4

INPUTS: 1 2 3 4
For indices: 1234 G6=6 L=4
G => number of vertices. L => number of series devices.
Gmin = 6/L = 4. Lmin = 4/G6 = 6
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--------------- FUECTION GRAPH:

=> INPUT ORDERING: 1 2 3 4

Vertex: INPUT 1 index =1 id =1
‘gith low(0) side ==~
Vertaox: IBPUT 2 index = 2 id = 2
‘with low(0) side ~--
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} [ ssess ZERD sssses

|
|
|
|
|
I
I
|
|
|
|
|
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|
3
I
Memory used:
Vertices used = 14
Lists used = 8
Trees used = 9

ses and s»e

A graphical representation of the function graph is shown in Figure 3.7.

For lack of a better circuit description, the corresponding spice file written by niree is:
WMOS Tree for (example gate 1 )

Logic Expression: (nand (or 1 2) 3 4)
This file generated by ntree on Sun Nov 13 15:00:03 1988

NODE ASSIGNMENTS:

GED = O Vdd = 100

Pbulk = 102 JFbulk = 101

(Complement of )Input Number 1 is node (11) 1
(Complement of )Input Number 2 is node (12) 2
(Complement of )Input Number 3 is node (13) 3
(Complement of )Input Number 4 is node (14) 4
F.OUT = 21 F_BAR_OUT = 20

LR BE K R BE BE BE BE BE R BE BN BE BN J

D G S B

24 11 0 101 HNOS
21 12 24 101 BNMOS
26 2 24 101 1HEMOS
21 13 26 101 HMOS
27 3 26 101 BMOS
21 14 27 101 HMOS
20 4 27 101 HMOS
26 1 0 101 HNMOS
sesgndens

255858822

The schematic drawing for the NMOs tree in the spice file is shown in Figure 3.8.
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Figure 3.7: Function graph for the example gate.
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Figure 3.8: NMOSs tree for the example gate.
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More information about ntree can be found in Appendix A.

Layout style

Once the schematic for the gate is determined, the layout must be performed in
a manner which helps to minimize the chip area and maximizes speed by keeping parasitic
capacitances low. The custom layouts employed in most of the gates described in later
chapters followed the basic style as illustrated in Figure 3.8. A stack of NMos differential
pairs is placed first. Diffusion is usnally required to make connections between device pairs
in a reasonable area, however it should be minimized for speed considerations. Vertical
running metal, was used for data inputs and connections between device pairs. Horiiontal
metal; was used for bussing control inputs and power. This style met with limited success
in being competitive with static gates in terms of overall area, however the author claims
no great talents with regards to layout ability.

More common among published circuits is a “sea-of-gates” style layout that is
comparable with an automatic tool for wiring the DCVSL gates[53, 54, 55, 56]. These
techniques have shown favorable comparisons with standard gate designs in terms of area.
Additionally the adaptability to automatic tools for layout make this approach advanta-

geous.

3. Alternatives to DCVSL

Since the introduction of DCVSL, there have been several similar logic structures
described in the literature. Most of these address the issues of speed or area efficiency of
DCVSL and offer improvements while maintaining basically the same functional operation.
As stated above, any logic family which can provide completion information is suitable
for self-timed circuit design ®. A brief survey of the recent developments in this sort
of logic design is presented here. It should also be mentioned that a large effort in the
development of single-ended Cascode Voltage Switch Logic, or just plain CVSL, has taken
place. [43, 38] While this can compare more favorably to static CMOS logic in terms of
area it does not provide means for generating an adequate completion signal.

The circuits described in this document all use the basic DCVSL architecture.
While performance was of concern in the DSP chips designed, DCVSL presented a slightly

*This almost certainly will be dependent on having complementary outputs available.
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more conservative approach in terms of design which was chosen in order to expediently

demonstrate self-timed circuits.

3.1 Sample-Set Differential Logic (SSDL)

SSDL logic addresses the speed issues of DCVSL gates as they become large.
While an arbitrary logic function can be implemented in an NMOS tree, the size of the
tree and the number of series connected devices will grow when the number of inputs or
complexity of the logic function increases. DCVSL literature notes that the delay is rela-
tively constant despite the logic function of the gate, a big improvement over normal gate
design. However, more series connected devices in the NMOs tree will cause a slowdown

of the discharge action of the tree and hence a slower switching time.

i E—
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X
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— e 9
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Figure 3.9: A generalized SSDL logic gate.

SSDL adds a sense amplifier to the basic DCVSL structure as shown in Figure 3.9.
The key to using this sense amplifier is changing the timing of the operation of the gate.
In what would normally be the pre-charge time of the gate, the inputs are assumed to be
valid and devices M1 — M3 are all “on”. Since there is a path from one of the output
nodes of the tree to ground, that node will be at a voltage less than Vyq4. This is called

the sample phase of the operation. When phi switches, the set phase of operation begins
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and the sense amplifier is activated. It detects which side of the NMOS tree was being
discharges and switches rapidly. The advantage to this approach is that the switching
time is independent of the complexity of the NMOS tree.

Since both outputs are still low during sample and they become complementary
during set, the generation of a completion signal is identical to DCVSL. The interface
between consecutive SSDL gates however requires different control circuitry from DCVSL
to work properly. Note that the inputs are required to be valid during the time when the
outputs of the gate are both low (sample phase). This precludes feeding the outputs to
another SSDL gate with the same clock signal. One SSDL gate can drive another directly
if the clock to the next gate is inverted with respect to the first gate. This still poses a
problem in a self-timed circuit as will be seen in the next chapter. One could envisage
generating a completion signal at the output of each gate in a cascade of SSDL gates and
using this to generate the required clock for the next stage. The added delay of doing
this might unfortunately cancel the benefits of using SSDL instead of a cascade of DCVSL
gates.

On the other hand, since SSDL lends itself to very complicated logic functions,
it would be entirely appropriate to any single stage self-timed macrocell that implements
a complex logic function. If the circuit can be partitioned this way, then the benefits of
using SSDL over DCVSL could be obtained in the form of higher performance. One might
replace a cascade of DCVSL gates with a single SSDL gate taking advantage of the fast
switching time that is independent of the NMOS tree size. Therefore, in some cases SSDL
may represent a real improvement.

The speed gains of SSDL come at the expense of adding the sense amplifier.
The disadvantage of this is that the sense amplifier design will tend to be more process
dependent. Also, the power consumption of a SSDL gate is higher than that of a DCVSL
gate because during the sample phase, when the inputs become valid, there is a path

between Vyg and Ground through the NMOS tree.

3.2 Enabled/disabled CMOS Differential Logic (EDCL)

A variation on SSDL logic as described above was published recently and it
attempts to eliminate the shortcomings of the SSDL style logic. EDCL works on a similar
principle to SSDL by using a bi-stable sense amplifier circuit for rapid switching times [47].
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Figure 3.10 shows the basic EDCL gate in both n-type and p-type configurations. The
circuit operation will be described in terms of the NMOS version in Figure 3.10a. Unlike
SSDL, the NMOs tree is not conducting during pre-charge so the power consumption is
reduced to that of a DCVSL style logic gate. Also, the output inverters were removed in
order to save area and increase speed. Therefore, when the clock phi is high, which is the
so-called pre-charge period, both outputs are shorted to ground by M1-M2 and the NMOs
tree and sense amplifier (M3 off) are disabled. On the falling edge of phi, the sense amp
is enabled and if the inputs are valid, then one side of the sense amp/bi-stable output
will be held lower than the other causing the appropriate switching of the outputs to the
correct complementary state.

The EDCL gate has the same advantage of taking the same switching time for
any complexity NMOS tree as does an SSDL gate. It also is fully static since once the
bi-stable element switches, it remains in the same state as long as it is enabled. The
gate design is however more dependent on its circuit connection with other gates since
the output nodes are not buffered. The size of the sense amp devices can be increased
for increased output drive however, this also adds more cai)acitance to the output nodes
and can affect the speed of the gate. The generation of a completion signal is identical to
DCVSL gates.

As with SSDL, the connection of several EDCL gates to form a more complicated
logic function or sequential function is not as straightforward as with DCVSL gates. The
switching of an EDCL gate occurs at the clock edge and the inputs must be valid before
this edge. The inventor of EDCL [47] suggests a method for connecting a cascade of the
gates by generating a “done” or completion signal for each gate as suggested in the last
section. This forces the operation of the cascaded gates to be sequential as they would be
in DCVSL or Domino logic. The proposed method involves connecting an inverter to the
drain of M3 in Figure 3.10a which detects when the sense amplifier is active. This is not
a fully reliable method because it assumes that the switching time of the sense amplifier
will match that of the added inverter under all conditions. A lower risk method would
involve using the actual gate complementary outputs as described for DCVSL. EDCL does
provide a method for implementing self-timed circuits without the power consumption of
an SSDL gate. Therefore, it is feasible for certain applications, especially where a complex

NMOS tree is required to generate a certain logic function.
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Figure 3.10: A generalized EDCL logic gate.
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3.3 Latched Domino CMOS Logic (Ldomino)

Another interesting variation on DCVSL logic is a kind of hybrid between stan-
dard domino logic and DCVSL logic. It is called Ldomino logic and while generating a
complementary output, it only requires a single ended NMOS tree to implement the logic
function [46]. While Ldomino logic was proposed to circumvent the problem of a lack of
inversion in a standard domino gate, the existence of a complementary output makes it
a candidate for making self-timed circuits. Additionally, Ldomino logic gates can possi-
bly serve as an interface between single ended and differential logic families which could
significantly reduce the area required for a complex piece of logic requiring a completion
signal output.

The circuit diagram for a generic Ldomino gate is shown in Figure 3.11. Con-
sisting of a standard domino gate and an unbalanced sense amplifier/bi-stable element, it
generates complementary outputs for the function implemented by the domino portion.
The sense amplifier is formed by devices M1,M2,M4, and M5. The two sides of the sense
amplifier are unbalanced by the larger capacitance present on the output node connected
to the domino NMOs tree. Device M4 can also be made wider to add to the imbalance.
After pre-charging, the clock is raised which enables the sense amplifier and NMOS tree of
the standard domino gate. If the NMOs tree provides a path to ground, then the drain of
M5 will be pulled down and the sense amp will switch such that that out will go high and
outbar will stay low. If however, there is no path from the drain of M5 to ground, then
the sense amp will switch into the other state where out is low and outbar is high. The
imbalance in the sense amplifier must cause the gate to reliably switch when the NMoOs
tree does not provide a path to ground at the drain of M5. With a few more transistors
than standard domino logic, complementary outputs are available.

The speed of Ldomino gates can be made higher than DCVSL and the area is
less than that required by DCVSL. Designing a Ldomino gate does however require more
care since there is a direct tradeoff between speed and noise margin when sizing the sense
amplifier transistors. An important limitation not mentioned in the literature [46], is the
loss of the “domino” action of a gate. In the absence of any valid inputs (i.e. all devices
in the NMOs tree disabled), the Ldomino gate will fire due to the imbalance of the sense
amplifier. This action precludes cascading several Ldomino gates to form a complicated

section of combinatorial logic. The inputs must be valid before the clocking signal rises
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Figure 3.11: A generalized Latched Domino logic gate.

so that the NMOs tree can discharge its side of the sense amplifier before the imbalance
discharges the other side of the amplifier. Therefore, in a series of Ldomino gates, all gates
would switch at approximately the same instant after the rising edge of the clock instead
of waiting for the results of the previous gate as in standard domino logic. One would like
to be able to.use single ended logic for area and speed benefits at all stages preceding the
one where completion information is required (the output or last stage). The only way
this could be done would be to somehow delay the clock of the Ldomino stage until the
inputé were valid. Ldomino would be appropriate in a self-timed block in which only a

single gate is necessary.

4. Summary

The first basic requirement of a self-timed circuit is that it generate completion
information when its outputs are valid. This requirement can be met by using a logic family
called DCVSL which generates both an output signal and its complement for any logic

function. By simply ORing together these complementary outputs, a reliable completion

62



signal is generated. During the pre-charge phase of operation of a DCVSL gate, both
outputs become low which ensures that the completion signal fully cycles for each distinct
operation.

The NMOs tree of a DCVSL gate can be designed in such a way that the two
sides of the tree “share” transistors which makes the gate design efficiency increase as
the logic function becomes more complicated. Automation of the NMOs tree design for
arbitrary logic functions has been demonstrated. Since differential logic signal must be
routed between DCVSL gates, the layout is more challenging than a single ended logic
family. A regular layout style allows automation of the gate layout although hand packing
was employed in the designs described in later chapters.

There are several variations on the DCVSL principle that have been introduced
to offer increased speed, smaller layout area, and maintain complementary outputs to
simplify logic over standard domino gate designs. These variations include SSDL, EDCL,
and Ldomino logic. The timing of these alternative logic fami]ies cause added complexity
for self-timed applications in some cases but almost all of the alternatives will work for self-
timed stages where a single complex logic gate will suffice. Thus, enhanced performance
is possible over using DCVSL at the expense of more sensitivity to design parameters and

the loss of generality in where the gates can be placed in a circuit.
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Chapter 4
Handshaking Circuit Synthesis

In the previous chapter, we examined the physical realization of a self-timed logic
family suited for integrated circuits. The completion information provided by a self-timed
logic block is one of two essential ingredients for composing a self-timed system, the other
ingredient being the logic which makes use of the information to manage the transfer of
data between stages. This chapter studies the synthesis and design of reliable handshake
circuits which handle the interstage communication. The term “handshake” describes
the local nature of the communication. In a synchronous system, all operations ideally
happen at precisely the same moments in time, synchronized by the system clock, just the
same as a school bell signals the class periods to all students at once. In an asynchronous
system, adjacent stages negotiate the transfers of data between them independent of what
is happening in other parts of the system. This is more like going from booth to booth
at an exhibition, where the spent at each booth depends only on you and the people
in the booth and not what is happening at other locations. Each transfer of data in a
asynchronous system follows a handshaking sequence which ensures that no loss of data
occurs. This consists of conversation between stages in which handshake signals are raised
and lowered to do the signalling.

Handshake signals are typically labeled Request and Acknowledge signals in the
literature. As is probably obvious, the request line usually signals that one stage is ready
to initiate a transfer while the acknowledge line signals that the transfer is complete.
The exact sequence which defines a transfer can vary between systems and it is called
the handshaking protocol. In the circuits described in later chapters, a 4-cycle protocol is

employed. The sequence of handshake signals for this protocol is given below.
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The reliable synthesis of handshaking circuits has been one of the major chal-
lenges of designing an asynchronous system. Given a sequence of operations, one must
synthesize a circuit which will follow the sequence but also take a minimum amount of
overhead time to do so as well as avoiding becoming deadlocked or causing some other er-
ror under any conditions. Additionally, the synthesis of such handshaking circuits should
be relatively simple, perhaps using a higher level language description, so that the design
process is not impeded. The design methodology described in this chapter attempts to

meet these goals and the results obtained have shown great promise.

1. Partitioning

Since handshake circuits oversee the transfer of data between stages, the parti-
tioning of the system into stages is the first task required in specifying a self-timed system.
No automatic way for doing this is being presented here. Rather, a few guidelines that
are related to physical constraints are discussed. The time required to complete a hand-
shaking “conversation” for each data transfer represents an overhead associated with the
self-timed approach which is undesirable. Therefore, while the methods described in the
Chapter 3 allow for self-timing all the way down to the individual gate level, this would
most likely be impractical for any large system. Another reason to avoid partitioning at
the gate level is the hardware overhead to generate a completion signal. While a data valid
signal can be generated by a single OR gate, the OR gate would be a prohibitive excess of
hardware if it were necessary on every gate in the system (100% overhead). Therefore, it
makes senée to partition the system into self-timed blocks as illustrated in Figure 4.1. The
DCVSL logic family is ideal for larger self-timed blocks because a collection of DCVSL
gates can be cascaded directly to form a larger combinatorial block. The completion signal
generation is only necessary on the last stage of the cascade.

Another way to look at the partitioning is that the handshake signals of a stage
in effect make up the local “clocks” of that stage. Clock distribution is typically not
troublesome on a local level. Therefore, one should envisage making the size of each self-
timed block large enough to minimize the completion circuit overhead and small enough
to avoid timing signal distribution difficulties. A logical choice for partitioning a DSP cell
based chip is at the macrocell level. A handshake stage often (although not strictly) can

be considered a pipeline stage so the partitioning might be done at the pipeline boundaries
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Figure 4.1: Block diagram of a self-timed system.

of a datapath for example.

Since interconnection or handshake circuits are separate from computation blocks,
the overall system timing is simply that of the set of handshake circuits used. The de-
lays of computation blocks just add a latency to handshake signals but the sequence of

operations is maintained.

2. STG’s for Describing Sequential Behavior

Once the system has been partitioned into self-timed blocks, an organized way
of describing the transfers between blocks is required to synthesize handshaking circuitry.
Both data and control signals must be described for correct timing of a block. Usually,
a certain sequence of events must be imposed on the block in order for proper operation.
For example, if a block has a single input and a single output, the correct sequence of
events for proper operation will be that the current output must be transferred to the
next stage before the next input is applied to the block. For a DCVSL logic stage, pre-
charging is required between computations. A series of timing diagrams of the input
and output signals of a block are sufficient to describe the required sequence but timing
diagrams can often be difficult to interpret or manipulate. Another way of representing
the information contained in timing diagrams is with Signal Transition Graphs (STGs)
[59, 60, 61, 62]. STGs give a concise representation of a desired sequence and they can

be manipulated to both check for timing problems and also synthesize speed-independent
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logic for implementing a handshake circuit.

In the past, Petri Nets have been utilized to model speed-independent asyn-
chronous circuits. One problem in employing Petri Nets however, is that while the mod-
eling may be accurate, using them as a synthesis tool often results in circuitry that is
overly complex[57]. Signal Transition Graphs are a form of Petri Nets restricted by a set
of axioms where transitions in nets are interpreted as signal transitions in a handshake cir-
cuit. The restrictions make STGs more amenable to analysis and manipulation for circuit
synthesis due to reduced complexity while maintaining enough expressiveness to describe
the behavior of almost all necessary handshake circuits for datapath applications.

An example of a simple STG is shown in Figure 4.2 for a circuit with the set
of signals J = {Req, Ack}. The set of signal transitions, denoted as T, is given by
J x {+,-}. The vertices of an STG represent events where one signal in the circuit
' makes a transition. The “*” denotes a rising edge while the “~” denotes a falling edge.
Arcs in the graph between transitions represent instances of the causal relation, denoted
by R, between transitions. The notation t; Rt; means “f; causes t3” and it represents a
constraint between the transitions such that the firing of ¢, brings the system into a state
in which ¢, is enabled to fire. Where two arcs come together (at their heads), an AND
construct is implied, meaning that both of the events originating the two arcs must occur

before the event to which they point is enabled. Formally a STG is defined as:

Figure 4.2: Simple signal transition graph.

Definition 4.1 A STG defined on a finite set of signals J is represented by £; = [T, R, Mo},
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where T = J x {+,-}, R C T x TandMp C R is the set of transitions which are enabled

in an initial state of the circuit.

Figure 4.2 shows a STG that represents a simple 4-cycle or reset-signalling handshake
protocol at the input or output of one stage. The sequence that occurs for each data
transfer is Reqt — Ack™ — Req~ — Acki~. This STG only shows the basic protocol at
the input or output of a stage. Since it does not include both input and output sequences,
it would not be useful in constructing any circuitry.

By representing the state of a handshake circuit as a binary number where each
bit represents one signal in the the STG, the underlying state graph can be constructed
from the signal transition graph. A circuit realization can then be determined from the
state graph using traditional state diagram techniques [70, 71] as is commonly done for
finite state machines. An important step however, is to manipulate the STG beforehand
to ensure that the operation of the synthesized circuit will be correct and not become
deadlocked. The simple rules to apply to a STG to ensure correct operation are described

next.

2.1 Synthesis using STGs

In order to explain the synthesis procedure for circuits described by STGs, some
definitions from speed-independent circuit theory are necessary [65, 66, 4]. Any handshake

circuit must be defined in terms of a finite number of states in the set S where

Definition 4.2 Each state a of S is represented by an m-tuple a= (z,,23,...,Tm) where

z1,%2,...,Zy, are signals in the circuit.

It is assumed here that binary signals are used to represent states and that implies
that the maximum number of states N = 2™. A set of sequences of states describes the

behavior of the circuit where each sequence in the set is called an allowed sequence.

Definition 4.3 A circuit is called speed independent if, for all allowed sequences start-

ing in one state, each sequence ends up in the same state.

If allowed sequences contain transitions of signals either sensed by or generated
by the outside world, then the definition above is not always strong enough to ensure speed

independence since different allowed sequences, while ending up in the same state, may not
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follow the desired sequence for correct interfacing to external signals. The definition below
provides a stronger condition for speed independency in (practical) circuits containing

inputs and outputs:

Definition 4.4 A circuit is semi-modular if once a signal transition in the circuit is

enabled, only firing of that signal transition can deactivate it.

This property is sometimes referred to as persistence in the literature[59, 60, 64].
The underlying circuit represented by a STG of a handshake operation must absolutely
meet the requirement of semi-modularity to function correctly under all conditions. An
example of this is shown in Figure 4.3. Here, the signal Regit enables both Acki* and
Rego* in the graph. The graph fails to meet the semi-modularity requirement since if the
loop on the left was implemented by faster circuitry than the loop on the right, the circuit
might make the state transitions Ackit — Reqi~ before Regot occurs. Another way
of stating the requirement is that when one signal enables another, the latter must fire
before the first signal changes again. Fortunately, an STG can be checked (and corrected)

for semi-modularity in an organized way.

Re&
Ac[i+ RT*

Regqi-

AcT+
Acki- Refo-
Acko-

Figure 4.3: STG not possessing the property of semi-modularity.

Handshake circuits must also possess the property of liveness to function prop-
erly. Simply stated, a circuit is live if it does not become deadlocked. A deadlocked

circuit will stay in one state and ignore requests for communication rendering it useless in
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a system. A test for liveness in a circuit represented by a STG is that for every signal in
the graph, there exists one simple loop which contains both the high and low transitions
of that signal. A simple form of an STG which represents a circuit which could become
deadlocked contains a branch which does not lead to any other transitions. Since no other
transitions are enabled, if the circuit enters that branch during operation, it ceases to

respond to any further stimulus.

2.2 4-cycle protocol

The 4-cycle handshake protocol mentioned above is used in all of the circuits
described. In the context of a typical computation stage, the protocol is defined here and
some comments about its importance when using DCVSL logic are also discussed.

A typical computation block has at least a single input port and a single output
port. The 4-cycle handshake sequence is used on each of these ports to control when
computed data is fed to the next stage and when new data is accepted. Thus, there are
commonly four handshake signals associated with a simple stage as shown in Figure 4.4.
They are Regi, Acki, Reqo, Acko. A single “cycle” of operation proceeds as follows: As-
sume that all four signals are initially low. When the preceding stage has valid data
ready, it will raise Reqi to request a data transfer. When this stage is ready for a new
data sample, it will latch the data and raise Acki, acknowledging the transfer. The Acki*
transition allows the preceding stage to reset Reqi (Regi~) which in turn causes Acki to
return low. When the computation of the stage is completed, Rego will go high to signal
to the next stage that data is valid. When the next stage latches in the new data, it
raises Acko. This in turn allows Reqo to be lowered which in turn should be followed by
the lowering of Acko. The term 4-cycle handshake is used to describe this protocol since
each of the four handshake signal completes a full cycle or high/low transition during each
transfer.

The choice of this protocol is based on constraints placed by the use of DCVSL
as computation blocks. In a 2-cycle protocol a single edge of a handshake signal (either
rising or falling) determines a data transfer. For example, if the Req and Ack signals
between two stages are both low, the a request for a transfer is signalled by Reg*. The
transfer is acknowledged by Acki*. The two handshake signals stay at the high level until
another transfer takes place which is signalled by the sequence Reqi~, Acki~. While this
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protocol can lead. to faster handshake circuits since less transitions are required for each
transfer, it is not compatible with DCVSL logic. The I signal of the DCVSL controls
whether the logic is pre-charging or computing. The level of I is important, i.e. the logic
family is level sensitive to its control signal. Since handshake signals control the DCVSL
operation, they must also be level generating. A 2-cycle handshake protocol would require
a prohibitive amount of extra circuitry to convert edges signalling data transfers to the
levels required by DCVSL logic.

When following the 4-cycle protocol, the input port handshake signals always
follow the sequence Reqit — Ackit — Regqi~ — Acki~ during a single cycle of opera-
tion. Similarly, the output port handshake signals always follow the sequence Rego* —
Ackot — Reqo~ — Acko~. These two loops therefore become part of any STG in order
to satisfy the 4-cycle protocol. The constraints added between the two loops to achieve
a simple data transfer are very important in determining both the efficiency of operation
and the correctness of operation of the stage. In the next section, the 4-cycle handshake

circuit for a single pipelining stage will be derived.

3. 4-cycle Handshake Circuit

Envisage constructing an n-stage pipeline. In a clocked system, the stages could
be all clocked by a single timing signal which would shift data down the pipe. Each
stage would contain a register which acts as a shift register and some computational logic
which must complete its task during the time taken.by a single clock period. For a self-
timed system, the datapath looks the same but rather than having a single global timing
signal, each stage is controlled by a handshake circuit. This provides the signal to clock
data into the register and it communicates with adjacent stages to negotiate transfers.
In this section, the handshake circuit to perform this function will be synthesized. The
4-cycle protocol will be followed and the synthesis procedure will be explained in great
detail to act as an example of the process. While an automated method for doing this is
discussed later, this example shows the underlying tasks that take place. The 4-cycle basic
handshake circuit or “HS4” is really the basic building block of many other handshake
circuits so it is an appropriate example to detail. A block diagram of the 4-cycle handshake
circuit is given in Figure 4.4. The computational block, when added to this circuit simply

represents an added unknown latency in the Reqo signal.
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Regi ™ HS4 —————> Regqo

(4-cycle

Acki < handshake)

—<Acko

Figure 4.4: Block diagram for 4-cycle handshake circuit.

Figure 4.5a shows the two loops of a signal transition graph where basic 4-cycle
handshake protocol is followed on the input and output ports. A condition linking the
operation of the two ports has been added to define the handshake circuit for the entire
stage. Conditions such as this are the essence of the timing of the stage. Too weak a
condition might cause samples to be lost while excessively strong conditions might result
in low hardware utilization due to long delays involved in waiting for the handshake signals
to reach a certain state.

Figure 4.5: STG’s for 4-cycle handshaking pipeline stage.

Accept for now that the condition shown in Figure 4.5a is the best choice. The
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STG shown however must be checked for liveness and persistency before a valid circuit
can be synthesized. Clearly, more arcs (constraints) must be added to satisfy the property
of semi-modularity. This is done recursively since each arc added can create a condition
in which persistence will be violated. Ackit enables Regqo™ and therefore Acki~ must
be be disallowed until Rego* actually occurs. The Regot — Acki~ arc is added to fix
this however, examining the STG again, a new condition violates persistency. Reqo™
enables Acki~ and therefore Reqo~ must be disallowed until Acki~ actually occurs. The
Acki~ — Reqo~ arc is added. This procedure is followed until persistency is satisfied and
the resulting completed STG is given in Figure 4.5b. The STG is live since there are no
“dangling” branches so it in now ready for circuit synthesis.

The state graph is now constructed from the completed signal transition graph

by performing state assignment on the graph. The state graph is formally defined as [59]:

Definition 4.5 A state graph of a STG X, is represented by &; = [S,T, 6, 30| where S
is @ set of states, so is the initial state corresponding to the initial marking of the STG.
Each s € S is a binary vector [s(a), s(b),.. ], where J = a,b,... i3 the set of signals in the
graph and s(j) denotes the value of signal j in state s. § : SXT — S is a partial function
called the transition function; if the firing of transition t in state s leads to state s’ then
i(s,t) = 5.

Thus, states are binary vectors representing the values of signals in the circuit, while
transitions are transitions of these signals. Only a single signal is allowed to change
between states. Using the state representation s = [Reqi Acki Rego Acko] for the example,
the state graph is constructed and shown in Figure 4.6. The graph represents every allowed
state of the signals in the STG. Where the STG splits into two arcs, the next state can
be one of two different states since either of the transitions pointed to by the two arcs in
the STG can occur first. No duplicate states occur in the stage graph of a STG which
satisfies semi-modularity.

The goal here is to synthesize the logic required to generate the two outputs of
the HS4 circuit: Acki and Rego. From the state graph, a Karnaugh map of the circuit
can be derived, however it is easier to use reduced state graphs for each of the outputs of

interest.
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s=[Reqi Acki Reqo Acko]

Figure 4.6: State Graph for the 4-cycle handshake circuit STG.
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Acki

If the STG is redrawn only with the signals that have arcs connected to the
signal Acki, then the reduced state graph can be derived for that signal. This is shown
in Figure 4.7. Transitions for signals not affecting Acki (né.mely Acko) are just “shorted”

Acki+

110
ReIH- Regi- Reqo+

Acki+

s = [Regi Acki Reqo]

Figure 4.7: Reduced STG and state graph for signal Ack:.

since they are unimportant for the timing of Acki. The reduced state graph for this new
STG is also given in the figure. The elimination of one signal makes the logic synthesis
more efficient. Figure 4.8 shows the Karnaugh map construction from the reduced state
graph for Acki. Starting at some initial state, the state graph is traversed. For each state,
the corresponding position in the Karnaugh map is filled with the value of the signal of
interest in the nezt state(s). The = denotes the initial state used in the example: 1 1 0.
A position not traversed in the Karnaugh map or a position which points to next state
values of both 0 and 1 should be filled with an X or “don’t care”. Using the grouping
shown with dotted lines in the figure, the logic for Acki is found:
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Reqo 00 01 11 10 PR 00 01
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Figure 4.8: Karnaugh map construction for Acks.

Acki = ReqiAcki+ ReqiReqo+ AckiReqo
= ReqiReqo+ Acki(Reqi + Reqo) (4.1)

Remembering that the logical equation for a SR-latch is
Q=5+QR
the logic can be expressed in the form of a single latch with several accompanying gates.
S = ReqiReqo (4.2)
= (Regi + Reqo) = RegiReqo (4.3)
Reqo

The same procedure is followed for Rego and the reduced graph and Karnaugh
map are shown in Figures 4.9 and 4.10 respectively. From the Karnaugh map grouping

shown, the logic for Rego is found:

Reqo = ReqoAcki+ ReqoAcko + AckiAcko

= AckiAcko + Reqo( Acki + Acko) (4.4)
S = AckiAcko (4.5)
= (Acki+ Acko) = AckiAcko (4.6)
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Rego+

110

s = [Acki Reqo Acko]

Figure 4.9: Reduced STG and state graph for signal Rego.

Rego Acko Rego Acko

Acki i

¢ 00 01 11 10 4K\ 00 01 11 10
0 00| 0{0]il}
=T | ; 1| 10 { 1 [1z

Figure 4.10: Karnaugh map construction for Reqo.
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The completed 4-cycle handshake circuit is shown in Figure 4.11. As labeled in
the figure, the S R-latches are simple transparent latches and not full registers. Careful

Reqi ! )__l )_] Rego
—q s Q B s e
)t )t
—C latch —C latch

Acki <€ < Acko

Figure 4.11: Drawing of 4-cycle handshake circuit.

inspection of the logic reveals that each section is really an implementation of a Muller c-
element where one input is inverted. Therefore, a simplified drawing of the H54 circuit can
be made as illustrated in Figure 4.12. C-elements are a basic building block of handshake
circuits and they will be used often in schematics presented. The actual design of the

c-element is further discussed in Chapter 5.

Regi” @ ) C —> Reqo

Acki € < Acko

Figure 4.12: Drawing of 4-cycle handshake circuit using Muller c-elements.

The connections between the HS4 circuit and a self-timed logic block are neces-
sary to complete the design of a pipeline stage. The signal Acki is acknowledging receipt
of data at the input to the stage so it is used to clock the actual data register of the stage.
The signal Reqo tells the next stage that valid data is ready. By connecting the self-timed
logic “compute” signal to Rego and then using the completion signal form the logic as
the request to the next stage, the communication waits the proper amount of time for the

logic to do its task. A typical self-timed DCVSL pipeline stage containing the HS4 circuit

79



is illustrated in Figure 4.13. The timing sequence of the circuit remains the same as the

data in data out
> p Q —
AQ
Regi > :‘ C ', : C) Reqo
Ackh € < Acko

Figure 4.13: Connection of a DCVSL logic block to the 4-cycle handshake circuit.

STG specification. There is a temporal difference in the signals however because of added
latency of the computational circuitry. This is ideal in that the time taken for each stage
is exactly that of the computation. In a cascade of these circuits, the throughput will be
limited by the slowest stage just as in a synchronous pipeline. There is also the overhead
of the handshaking circuit itself. The overhead for the whole pipeline for handshaking is
that of a single HS4 circuit. By adding symbolically the computation delays to the STG
of a stage, more evaluation can be done in terms of circuit efficiency. The computation
delays are assumed to be greater that the handshake circuit latch delays. In Figure 4.5¢
the STG has been modified to show the computation delays as shaded zig-zag lines. This

notation will be used in the next example to make a comparison of circuit efficiencies.

3.1 Other HS4 circuits

In the last subsection, you were asked to accept as optimum the starting specifi-
cation on the 4-cycle handshake stage STG, [Acki* — Rego™]. It was suggested however
that the choice of this specification is very important in determining the operation/design
of the circuit. By looking at some alternative specifications this can be revealed. For ex-
ample, the novice designer might construct the specification Reqi* — Regot as a starting
point. This sounds correct, at least at first. A request at the inputs enables a request
at the output (with computation in between). Using this specification and applying the

tests for persistency yields the STG shown in Figure 4.14a. The specification is shown
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Figure 4.14: STGs for the specification Regit — Rego™.

with a heavier line for the arc. Blindly applying the persistency tests has led to an initial
problem in that arcs have been added that enable Regt, which is an input to the circuit.
A distinction must be made between the inputs to the circuit and the outputs that the
circuit generates since there is no control over the sequencing of inputs. A modified STG
that also meets the persistency test and does not control circuit inputs is given in Fig-
ure 4.14b. The corresponding circuit diagram for the alternate HS4 circuit is shown in
Figure 4.15. For this specification, the data register of the stage would have to be clocked
by Regqi. Examining the STG for the circuit, one can find a simple! loop through the
graph which contains both computation delays. This means that the delay of the stage
could be as long as the computation times of two stages, i.e. a 50% hardware utilization.
This represents an obvious disadvantage to this specification which does not exist in the
STG shown in Figure 4.5. It makes sense to expect this behavior because the specification
states that a request at the input port initiates computation. The request signal for the
next sample may arrive well before the computation on the current sample is complete.
This implies every other stage must act to store the data while waiting for the next stage

computation to finish. The specification of the last section uses the Acki Signal to initiate

1A simple loop in a signal transition graph does not pass through any transition more than a single
time.
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Reqi Reqo

N

B
latch lazch

Acki ¢ ~ Acko

Figure 4.15: HS4 Circuit for the STG shown in Figure 4.14. The “*” means that the first
latch is set-dominant, i.e. if S and R are both HIGH , the output is set.

computation, taking full advantage of the data registers of each stage to allow every stage
to participate in concurrent computation. Similarly, the reader is left to try the specifica-
tion [Reqi*t N Acko~ — Reqo™], where N denotes the AND construct. This also leads to a
circuit which is less efficient [64].

3.2 Assumptions on Delay Matching

The circuit of Figure 4.13 makes several assumptions on element delay times.
The required specifications for the data input D-register are shown in TableIIl. Strictly
speaking, a self-timed circuit does not require its elements to meet any specific delay
constraints. However, in reality, making such a circuit would be difficult if not impossible
to design, expensive in terms of complexity and die area, and more important, unnecessary.
For example, making a D-register with a completion signal output and increasing the
complexity of the 4-cycle handshake circuit to monitor when data is valid at the output of
the register would remove the delay specification on the register itself. But this is overkill
as it is usually not difficult to ensure that the register meets the specifications shown
in the table. In fact, the same exercise must be performed when designing synchronous
clocked circuits. Simplifications such as this, in the interests of silicon efficiency and higher
performance, yield working circuits and require design criteria much the same as those
employed in synchronous designs.

Table III | D-register Specifications

Tsetup < TReqi+ — Acki+
Thold < TAckot — Reqo-
Tdelay < TAckit — I+
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4. Higher level description for synthesis

In the examples of the last section, a signal transition graph had to be con-
structed for each handshake circuit to be synthesized. Also, the choice of the starting
point or weakest conditions in the graph had a great effect on the circuit realization and
its efficiency during operation. It would be very desirable to automate the synthesis proce-
dure and dispense with the need to construct an entire STG for each design. Meng[64, 66)
studied this problem and found that a subset of Dijkstra’s[63] guarded commands formed
a good basis for describing handshake STG specifications. A guarded command is a state-
ment list prefixed by a Boolean expression. When the Boolean expression becomes true,
the statement list is enabled for execution. Only the subset of the guarded commands
that apply to deterministic conditions are presented since others involve metastable cir-
cuits which are not used for DSP applications. The list below describes the deterministic
guarded commands:

Basic Construct: [C — 5]
where C is a pre-condition and S is a

list of statements that are to be executed if C is true.

AND Construct: [C;NC2N---NCp — 5]
where C; is a pre-condition and S is to be executed if

all C; are true.

oR Construct: [C;UCU---UC, — §]
where C; is a pre-condition and S is to be executed if
any C; is true. For the purposes of determinism,

only one of the pre-conditions can be true at one time.

Sequential Construct: [C; — S1;C2 — S2]

where Ca can be tested only after S} has been executed.

Parallel Construct: [Cy — Sy || C2 — S3)
where two clauses C; — S; and C2 — S can

be processed concurrently.

Alternative Construct: [C; — S$1|C2 — Sa)
where S; is executed only after C; is true, but only one of

the pre-conditions can be true.
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Repetitive Construct: *[C — S]

where the clause [C — S] is to be repeatedly executed.

The first design of an HS4 circuit above used the guarded command specification
*[Acki* — Regqot]. Similarly, the second design used the guarded command specification
*[Regit — Regot] which is shown as the heavier line in the STGs of Figure 4.14. By
using this language description of a handshake specification, the designer can concentrate
on the most important part of the graph and try different conditions rapidly. Meng wrote a
program in the LISP programming language that reads a guarded command specification
and generates automatically the handshake circuit Boolean equations. This is done in
several steps. First, the 4-cycle loops in the STG are added and the STG is recursively
checked for semi-modularity until it is correct. Where conditions are added, they are
made not to affect input signals. After a correct STG is constructed, the logic synthesis

is performed using one of several standard techniques.
The use of the program to generate the circuit in Figure 4.15 is shown below:

The input specification of the guarded command must be given in a LIsP format.

;3 Guarded command specification for s[Reqi+ -> Reqo+]
(presyn ’((source (Reqi Acki)) (destination (Reqo Acko))
(condition nil) ((Reqi+) nil (Reqo+))))

The source and destination port signals are identified and then the guarded command
specification is given. A basic construct is used, so the conditions are nil. The session of
running the program is shown next.

ASYNC LOGIC SYNTHESIS: VERSION 0.0 (under Franz Lisp 43.1)

~> (load ‘£2.1)

[load £2.1]

signal_tranistion_graph

(t ((Reqi- Acki-) (Acki+ Reqi-) (Acki- Reqi+) (Reqo+ Acko+) (Reqo- Acko-) (Acko+
Reqo-) (Acko- Reqo+) (Reqit Acki+ Reqo+)))

semi-graph

(t ((Reqi- Acki-) (Acko+ Raqo-) (Acko- Reqo+) (Reqi+ Acki+ Raqo+) (Reqo+ Acko+ A
cki+) (Acki+ Reqi- Raqo~) (Reqo- Acko- Acki-) (Acki- Reqi+ Reqo+)))

t

-> (synthesis semi-graph ‘Acki)

Ackis*Reqit+Reqo

-> (quick_syn ‘Reqo)

“Ackis®~AckosReqi+~Acki®Reqo+Raeqo*~Acko

-> (quick_syn ‘Reqi)

“Acki

-> (quick_syn ‘Acko)

Reqo

-> (exit)
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The list signal transition_graph is the STG before being checked for semi-modularity.
Each list consists of a transition followed by all transitions enabled by it, i.e. the arcs
of the graph originating at that transition. The list semi-graph gives the semi-modular
STG. Then the logic to generate each signal is generated. As a check, the logic for input
signals Reqi and Acko was generated. Regqi is simply Acki as the 4-cycle handshake
defines. Similarly, Acko is just Rego. (These signals originate from adjacent stages)

The automation procedure substantially reduces the design time for reliable
handshake circuits. It also allows more experimentation to be performed when choos-
ing weakest conditions. This is important since in spite of the streamlining of the design
procedure, there can still be some uncertainty in defining the handshake conditions for a

datapath or system.

5. Other Common Handshake Circuits

Using the automated synthesis procedure, a library of common handshake circuits
can be built up for future use. A library of self-timed circuits has the advantage that it is
based on a behavior sequence alone. Therefore, the library can follow scaled technologies
without re-design. In this section, some of the more common handshake circuits are
shown along with their guarded command specifications. The HS4 circuit described above

of course is the most common circuit and it is used between any two pipeline stages.

5.1 Sequential HS circuit

The circuit of Figure 4.12 implements a sample delay pipeline stage when con-
nected to a computation block. In some cases, it is necessary to perform two functions
sequentially with a single pipeline delay. A sequential handshake circuit provides this
function. Using the guarded command *[Regi* — Rego'; Ackot — Ackit] ensures that
the next stage receives a request and performs its computation before an acknowledgment
signal is sent to the previous stage. Thus, two blocks compute in sequence with a single
pipeline delay. If we think of using DCVSL logic as the computation blocks, a trivial
connection to also provide this sequencing would be to just connect the Rego of the first
block (DV}) to the initialization signal I of the next block. While this provides the correct

sequencing during computation, it also imposes the same sequence during the pre-charge
g g P

85



state of the logic. The sequential handshake circuit provides means to concurrently? pre-
charge the two blocks while maintaining the sequenced operation during computation.
The completed signal transition graph from the guarded command specification and the

synthesized circuit for the sequential handshake are shown in Figure 4.16.
Rgai\l
Acki

Regi-

Acki-

.

aRr R

Acki € < Acko

‘ Figure 4.16: Sequential handshake STG and circuit from the specification *[Reqit —
Reqot; Acko* — Ackit).

5.2 2-Source, 1-destination HS circuit

When multiple inputs to a computational block originate from several sources,
handshaking must be completed with each source to make sure all the inputs are valid. The
guarded command specification for a block with two input sources is *[Acki} N Ackif —

Regqo™]. The synthesis procedure yields the circuit of Figure 4.17 for this function.

5.3 1-Source, 2-destinations HS circuit

Similarly, when a single computational block must feed outputs to several desti-
nation blocks the guarded command specification used is *[Ackit — Regoy, Rego]]. The

circuit for this handshaking operation is shown in Figure 4.18.

% Actually, the delay of the handshake circuit itself separates the pre-charge start times of the two blocks
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Regqil

Reqo
C C “
Ackil < < Acko
.
Reqi2
Acki2 <€

Figure 4.17: Handshake circuit for block with two input sources. The guarded command
is *[Acki] N Acki] — Regot].

Regqi * Regol
Acki < * < Acko!
Regol

< Ackol

Figure 4.18: Handshake circuit for block with two output destinations. The guarded

command is *[Ackit — Reqof, Rego¥].
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5.4 2-in Multiplexer HS circuit

Multiplexers often re-configure a datapath architecture for different types of pro-
cessor instructions. When a multiplexer is employed, its control signal determines both
the datapath architecture and the required handshaking architecture. When data from
an input of the MUX passes to the output, then handshaking must be completed with the
source feeding that input. A simple guarded command describing this (continuing to use
the 4-cycle protocol) is *[(Acki} N T)U (Ackif NT) — Regot)]. The LisP format input to

the synthesis for the guarded command is

i3 Guarded Command for 2 input MUX
333 with B0 controller handshaking.

Eééosyn '((source (Reqil Ackil) (Raeqi2 Acki2)) (destination (Reqo Acko))
(condition T) ((Ackil+) (T+) (Reqo+)) ((Acki2+) (T-) (Reqo+)) ))

The OR construct can be synthesized with semi-modular models with the con-
straint that only one side of the OR is true at a time. This will always be true in this case
since the control signal signal T and its complement T occupy the two sides of the OR .

Since the control signal determines the architecture of the handshake circuit itself, there

is a STG for each state of 7.

The output of the synthesis program shows the two STGs for the MUX handshake
circuit, denoted by the T+ and the T~ sections of the list semi-graph.

ASYNC LGGIC SYNTHESIS: VERSION 0.0 (under Franz Lisp 43.1)
-> (load ’mux_gc2)
[load mux_gc2.1]
signal_tranistion_graph
«T+)
((Raqi1+ Ackil+) (Reqil- Ackil~) (Ackiil- Reqil+) (Reqi2+ Acki2+)
(Reqi2- Acki2-) (Acki2+ Reqi2-) (Acki2- Reqi2+) (Reqo+ Acko+)
) (Reqo- Acko-) (Acko+ Reqo-) (Acko~ Reqo+) (Ackiil+ Reqil- Reqo+))
T=
((Reqit+ Ackii+) (Reqil~ Ackil-) (Ackii+ Reqil-) (Ackil- Reqii+)
(Reqi2+ Acki2+) (Reqi2- Acki2-) (Acki2-~ Reqi2+) (Reqo+ Acko+)

, (Reqo- Acko=) (Acko+ Reqo-) (Acko- Reqo+) (Acki2+ Reqi2- Raqo+))

semi-graph
(T+)

((Reqil+ Ackil+) (Reqil- Ackil-) (Reqi2+ Acki2+) (Reqi2- Acki2-)
(Acki2+ Roqi2-) (Acki2- Reqi2+) (Acko+ Reqo-) (Acko- Reqo+)
(Ackil+ Reqil~ Reqo+) (Rago+ Acko+ Ackil-) (Ackil- Reqii+ Reqo-)
(Reqo= Acko- Ackii+))

(T-)

((Reqii+ Ackil+) (Reqil- Ackit-~) (Ackii+ Reqil-) (Ackil- Reqil+)
(Reqi2+ Acki2+) (Reqi2- Acki2-) (Acko+ Reqo-) (Acko- Reqo+)
(Acki2+ Reqi2- Reqo+) (Reqo+ Acko+ Acki2-) (Acki2- Reqi2+ Reqo-)
(Reqo- Acko~ Acki2+))

t

=> (synthesis semi-graph ’Reqo)
Ackils*“~Acko*T+ReqosAckileT+"AckosAcki2# “T+Reqo*Acki2*~T+Reqo=-Acko
-> (quick_syn ?Ackil)

“ReqosAckilsT+ Reqo*Reqil+Ackil*Reqil+Reqil*“T
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=> (quick_syn ’Acki2)

“Reqo*Acki2¢~T+Reqi2#T+ Reqo*Roqi2+Acki2¢Reqi2
=> (quick_syn ’Acko)

Rego

=> (quick_syn ’Reqil)

“Ackit

=> (quick_syn ’'Reqi2)

“Acki2

=> (exit)

The circuit diagram of the MUX handshake is given in Figure 4.19 along with
a simplified c-element equivalent. The circuit and Boolean equations may seem a bit
confusing at first, but much of the logic implements MUXes in the handshake circuit itself
since the control signal T re-configures the circuit between two forms. This is shown
more clearly in the equivalent circuit. The rightmost MUX chooses which input port to
communicate with. The two MUXes on the left, connected to Regi; and Regqi; essentially
just make their respective c-elements transparent when their input is not in use. Note that
a c-element is a latching device. To make it transparent to an input signal, then that input
signal must be connected to all inputs of the c-element. It is equivalent to connecting all
inputs of an AND gate to one input signal in order to make that gate transparent. In the
STG for the case when T is HIGH , input port 1 is activated and the graph for input port
2 is a simple loop Reqi — Ackif — Reqi; — Ackiz. This is why the synthesized circuit
will pass Reqiy directly to Ackiz. It could be undesirable in a real circuit to have the
deselected input be transparent to requests because the handshake circuit acknowledges
data that is not being used. It is really a result of not specifying any conditions on the
unused port and ending up with a simple 4-cycle loop. There is not a convenient way for
expressing a condition that causes the unused input port to not acknowledge any requests
in the guarded command, however it is a trivial circuit change. By moving the left-hand
MUX inputs connected to the Regi signals to Ground (logical 0), the deselected port will
not receive an acknowledge. The c-element on the deselected input port stays in the Low
state if one input is held Low .

Since the control signal T re-configures the circuit, it is important to have in
a settled state before a new request. Depending on the system design, this may require
handshaking to the controller which generates T. An appropriate guarded command
specification is *[(Acki} N T N Acki}) U (Ackif N T N Ackif) — Rego*]. The circuit

complexity is increased by another c-element and several gates[64].

89



Reqil

T
Ackil
Rego S Q> Reqo
—_—
T

Y
=] =
o w»n

[e)

A

A

Acki2

~

Y

Regqi2

equivalent circuit

* > Reqo

< Acko

Figure 4.19: Handshake circuit for a 2-input MUX stage.
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5.5 2-out Demultiplexer HS circuit

A 2-output demultiplexer can be synthesized with the specification *[AckitNT —
Reqof || Ackit NT — Rego}]. The handshake circuit is shown in Figure 4.20. Similar
to the MUX circuit, the deselected port (now an output port) becomes transparent to
handshake signals. Again, by grounding the input to each right-hand MUX that is shown
connected to Acko,, the deselected output port will not pass handshake signals.

6. Summary

The synthesis of reliable handshaking circuits is a vital part of any self-timed
system design. The interconnection of handshake circuits defines the system timing. When
using a level sensitive logic family such as DCVSL to implement computation blocks
which provide a completion signal, the a.pﬁropriate handshaking protocol to use is the
4-cycle protocol. In order to design circuits that meet both the sequencing and 4-cycle
specifications of a stage, signal transition graphs can be used to describe the desired
behavior. Performing state assignment on a STG allows for the generation of the Boolean
equations that define the handshaking logic in traditional ways. While STGs are more
convenient than timing diagrams for describing the sequential behavior of a stage, they
still can be confusing and error prone. By using a subset of Dijkstra’s guarded commands,
the most significant portion of the handshaking specification can be expressed in a simple
and high level form. Automatic means for generating the handshake circuit directly from
a high level description language have been demonstrated. Using the synthesis program, a
library of common handshake circuits can be synthesized and used in many designs. Some

of the most common handshake circuits required were presented in this chapter.
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Figure 4.20: Handshake circuit for a 2-output DEMUX stage.
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Chapter 5

C-elements for Handshaking

Circuit Design

As seen in Chapter 4, a common component found in most handshake circuits is
the Muller c-element. Because the performance of a handshake circuit critically depends on
the c-element design, a detailed study was done on the design of such elements. A circuit
design for the self-timed DSP was chosen based on the study. This chapter presents the
design of several types of c-elements and gives a performance comparison between them.
In the last section, the placement of buffers in handshaking circuits, often a necessity at

the outputs of c-element driving large macrocells, is discussed.

1. C-element design

The Muller c-element is a basic building block of many useful handshake circuits.
In Chapter 4, when studying the signal transition graphs for describing a self-timed stage,
the assumption was made that the time for arcs representing computation was much longer
than the time for arcs representing handshake circuit state changes. This is normally the
case, however the time required for the handshake circuits to operate is finite and it
reduces the overall efficiency of the system. Therefore, while a self-timed system will
compensate for varying delays of computation blocks, the fixed overhead introduced by
the handshaking circuitry should be minimized if possible. This means applying effort to
the design of the c-element since it is so often required. In this section, the design of a

fast c-element is discussed.
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Figure 4.12 showed the basic 4-cycle protocol handshake circuit which requires
two c-elements. One logic implementation for the circuit was shown in Figure 4.11. The
most straightforward implementation of the c-element is to use cross-coupled NOR gates
for the latch as illustrated in Figure 5.1. The signal IN IT allows the latch to be reset for
initialization. In real applications, it is useful to be able to reset or set the latch for the
purpose of initializing the handshaking network to any particular state. However, there

are some ways around this which will be discussed in a later section. A static CMOS

A
A = -
S Q B o)
B | R Q
INTTO
A Q
B

YR
é
N/

Figure 5.1: Cross-coupled NOR c-element implementation.

design! for the c-element latch is shown in Figure 5.2. It combines the input AND gates
with the NOR gates making up the bistable element to make a single complex CMOS gate.
This design is reliable and easy to design, however it suffers from a lower speed than can
be achieved with other circuit techniques. Also, the device count is relatively high. In the
c-element of Figure 5.1, the time to Set the latch is effectively two gate delays because
the @ output must change before the Q output can change state. The dual cross-coupled
circuit avoids the extra delay for Setting the latch by using NAND gates as shown in
Figure 5.3. Adding initialization inputs to force the latch into a certain state adds several
more devices. Because of the complexity and ensuing slower speed of the basic CMOS
c-element designs in Figures 5.1 and 5.3, other designs were investigated.

A Muller c-element can be made by using a majority function gate, typically

used for the carry portion of a full adder[19]. The majority function is defined as:

f(A,B,C) = AB+BC + AC
= AB+C(A+B) (5.1)

! All schematics give device sizes in A as defined in the MAGIC layout editor. For a 2u process, A = 1u.
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Figure 5.2: CMOS circuit for cross-coupled NOR c-element implementation.
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Figure 5.3: Cross-coupled NAND c-element implementation.
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If the C input is taken from the output of the gate as shown in Figure 5.4, the equation

becomes the familiar equation for a latch:

S+QR
AB + Q(A+ B) (5.2)

Q
Q

where the Set function is AB and the Reset function is A + B = AB, precisely the logic

equation for a c-element. A single complex CMOS gate version of the majority function
A

;jD_

Q —_

. S © it

—Q )

B—:D IT

w |

Figure 5.4: Majority function gate implementation of a c-element.

c-element is given in Figure 5.5. It also has the problem of requiring an extra gate to
generate the True version of the output which adds to the delay.

A very simple dynamic version[67] of a Muller c-element can be made with the
same number of devices as a clocked inverter as shown in Figure 5.6. A version of the
dynamic c-element with a clear signal input for initialization is shown in Figure 5.7. It also
requires an extra inverter to generate Q from @, however the simplicity of the first gate
makes the speed high. The downside to using a dynamic c-element would be applications
in which the user exploits the self-timed behavior of the system to compensate for delays
that may not be defined ahead of time. An example is an I/O function. The system
could easily be designed to wait for an sample strobe signal before proceeding with the
execution of the signal processing prograni. If the interrupt was delayed by seconds, the
dynamic c-element would not be adequate. However, given the number of applications
where dynamic circuits are acceptable, the circuit of Figure 5.6 could prove very useful. A
variation of the dynamic gate shown in Figure 5.7 uses feedback to latch the initialization
state. Versions that initialize to a Reset @ output and a Set @ output are shown in

Figures 5.8 and 5.9 respectively.
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Figure 5.5: CMOS design for majority function c-element.
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Figure 5.6: CMOS design for dynamic c-element.
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Figure 5.7: CMOS design for dynamic c-element (with clear).
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Figure 5.8: CMOS design for dynamic c-element with different initialization scheme. Re-
sets on INITOQ.
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Figure 5.9: CMOS design for dynamic c-element with different initialization scheme. Sets
on INIT1.

A pseudo-NMOS or ratioed design for a bistable c-element[19] is given in Fig-
ure 5.10. It also has relatively few devices, so the area is smaller or the device widths can
be increased to improve speed without exceeding the area of a more complicated design
such as in Figure 5.2. The PMOs devices of the ratioed c-element act as current sources
which have to be overcome by the NMOs devices in the circuit for the latch to change
state. One disadvantage of the pseudo-NMOs design is that the output logic levels are
not as well defined as a true CMOS design. The current sources make the logic Low
level some voltage greater than 0V, degrading the noise margin. It was observed that the
current source connection on the ) output device was not really necessary. Figure 5.11
shows a modified ratioed c-element design where the @ output reaches full CMOS levels.
The remaining grounded gate PMOS device must remain to provide means for pulling the

@ node high when A and B go Low .

Performance Comparison

The choice of a c-element for use in the DSP was somewhat evolutionary, as the
naming convention of the clatches in the preceding figures might imply. The study of all
of the alternative designs was not done at the beginning of the research because it was
not clear at the time what the importance of the speed on overall performance would
be. Rather, clatch2 in Figure 5.2 was designed early on and used in several of the test

chips for datapath macrocells. When the search for alternative designs was undertaken, a
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Figure 5.10: CMOS design for ratioed c-element (with clear).
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Figure 5.11: CMOS design for ratioed c-element with a full CMOS @ output.
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decision was made to fit all new designs into an area that was the same or smaller than
that of clatch2. In this way, new designs could be substituted directly for an increase
in performance without extensive layout changes in existing circuits. Since some of the
alternative designs contain less devices, the devices were grown to enhance speed while
using available area.

The objectives of a c-element design as utilized in the handshake circuits pre-
sented thus far were also pa,rt of the study of new circuit designs. In many latch designs,
the Set or Reset times of the Q and Q outputs may be different, usually because one of
the two outputs is derived from the other (often via an inverter). This can be exploited to
a certain extent. In the basic 4-cycle handshake circuit of Figure 4.12, one input to each
c-element must be inverted. The inverted input usually comes from another c-element
output. In the design clatch3d shown in Figure 5.7, the Q output is derived by inverting
the @ output. If this is fed back to another c-element inverted input, then another inverter
~ would be necessary. The double inversion reduces the efficiency of the handshake circuit

and can be removed by re-drawing the circuit diagram as shown in Figure 5.12. In the

Y
)
=)

DCVSL

Figure 5.12: Diagram of 4-cycle handshake circuit that exploits both the True and Com-

plement outputs of the c-elements.

latter designs of c-elements presented above, the Q output is faster. Because @ and @ of
the c-elements are not in perfect sync, there is a potential for a timing error in the hand-

shaking circuit when using the two outputs. The potential however is nil in real circuits.

The handshake signals Acki and Acko originating from the ¢ output of the c-elements are

fed back to other c-elements. The difference in time between @ and @ must therefore be
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less than the Set or Reset time of the preceding c-element {) output to prevent an error.
As shown in the c-element performance table below, that particular circuit constraint is
quite easy to meet.

Table IV shows the performance for the different c-element designs discussed thus
far. Some notes about this table: All of the c-elements have the ability to be cleared or
reset for initialization. The times were taken from simulations using the SPICE simulator
The MAGIC extractor (style “ext2spice=1.0") and the program EXT2SPICE were used to
get device sizes and parasitic capacitances from the actual layouts. A capacitive load of
0.05pF was added to both the Q and Q outputs in the spice input file and rise and fall
times of 1nsec were used in the input pulse generators. Spice model cards were obtained
from measured parameters of an actual fabrication run. The MOSIS 2u, Nwell VTI? run
parameters (run M8CC) were used.

The overhead for the handshaking circuit can be analyzed by adding the appro-
priate delays to the STG of Figure 4.5c. Where there is a split in the arcs of the graph,
the mazimum time of any path to reach a point further in the graph must be used since
it will dominate. Lets look at the time between rising edges of the I signal in a 4-cycle
pipeline stage assuming it drives a DCVSL logic block. As might be expected considering
the protocol, the total time is the sum of the times for a Req and Ack signal pair to cycle
high and low. However, since the DCVSL block is in series with the Rego signal, the times

associated with it must also be added:

Teycle = TReqot + Tackot + T1- + TRego- + Tacko— + T1+ (5.3)

Translating these times to c-element delay times gives the following equation:

Tcycle = Tcom.pute + TQ+ + TQ- + Tpre—charge + TQ- + TQ+ (5~4)

where Q% and Q~ are used to denote the Set and Reset times of a c-element, and Teompute;
Tpre-charge Tepresent the computation and pre-charge delays of the DCVSL block respec-
tively. The overhead in time per cycle of operation caused by the c-elements in a 4-cycle

handshake circuit is therefore

Toverhead = 2TQ+ + 2TQ— (55)

2VTI - VLSI Technology, Inc. is one of the MOSIS prototyping facility’s vendors for 2p fab runs.
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Table IV C-element Performance Comparison

Version | Area | Tsgr | TreseT | Trotat | Notes:
A2 nsec nsec | nsec | (SPICE), 0.05pf load
clatch?2 | 5300 | Q*:3.0| Q—: 1.5 | 8.5 | B-input gets inverted in
Q:14{Q%: 26 this design. (Cross-coupled NORs)
clatch5 | 5200 | Q*: 25| @~: 21| 6.9 | Time doesn’t include inverter for
Q-:12|Q+: 11 B-input. (Majority function gate)
clatch3c | 3600 | Q*: 2.0 | @Q—: 1.6 | 6.0 | (Dynamic gate)
Q-:13|Q+: 1.1
clatch3d | 4300 [ @*: 1.3 | Q—: 1.4 | 4.5 | (Dynamic gate)
Q-:08|Q+: 1.0 Larger devices
clatchda | 5200 | Q*: 1.4 | Q—: 1.3 | 6.4 | (Feedback Dynamic gate)
Q:19|Q*: 1.8 Larger devices
clatch6b | 4300 | Q*: 1.5 | Q@~: 2.1 | 5.6 | (Ratioed logic)
Q-:08|Q*: 1.2
clatch8 | 4600 | Q*: 22| Q~:2.0| 6.5 | (Ratioed - Full CMOS @ Output)
Q-:08|Q*+: 1.3
clatch9d | 4600 | Q*: 1.2 | Q~: 1.6 | 4.6 | (Ratioed - Full CMOS @ Output)
Q:06|Q+: 1.2 Larger devices
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When the complementary output of the clatch is utilized as in Figure 5.12, Equation 5.5
must be changed to

Toverhead = To+Ty- + To- + T+ (5.6)
The time Trota; given in Table IV above is just the sum of the four delays shown for each
clatch, and it equals T,y erheqd as defined in Equation 5.6.

Examining Table IV, it can be seen that as the clatch designs were refined from
that of clatch2, the delay times decreased significantly while the area was not increased.
In the more simple designs, larger devices could be used in the given area to gain a
speedup. C-elements clatch3d and clatch9d were the fastest. Because of the way I/0O
was implemented on the DSP chips, unknown delay times could be encountered in the
program execution depending on the outside world connections. Therefore, the static
design clatch9d shown in Figure 5.11 was chosen. Two, three, and four input versions of
the design were used throughout.

In the early stages of the research, it was assumed that the Set time of the c-
elements was more important than the Reset time in determining overall performance.
The logic behind this assumption was as follows: Consider a faster stage preceding a slower
stage in a self-timed pipeline. The fast stage finishes and raises the Reqi of the slow stage.
When the slow stage finally finishes, it allows Ack¢ to rise, accepting a new sample. The
rising edge of Acki “does something”, by allowing new data into the input register of the
stage, while the falling edge does not affect the state of the register. Therefore, it was
assumed that the Set time was more important. The design and performance of clatch9d
reflects this. However, more careful analysis revealed that Equation 5.5 and Equation 5.6
are correct. The overall cycle time of the slow stage dominates the throughput of the
pipeline and Equation 5.4 gives that time. Thus, in terms of sheer speed performance,
the c-element design clatch3d should be chosen if the overall system design can tolerate

dynamic latches in the handshake circuitry.

2. Placement of Buffers in HS circuits

The output of each c-element in a handshake circuit is usually another handshake
signal. The handshake signals really act as the local “clocks” of a stage and therefore,

besides driving adjacent handshake circuits, they must be interfaced to the computational
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blocks. In Figure 5.12, Acki is used to clock the input register and the output of the
second c-element (I signal) drives the pre-charge devices of a DCVSL block. For an n-bit
wide datapath, the register and DCVSL blocks are also n bits wide and they present a
significant capacitive load to the handshake signals from which they are driven.

Buffers large enough to handle the capacitive load in the circuits must be added.
The location of the buffers also can greatly affect the overall cycle time and performance
of the system. A straightforward choice for the location of the buffers is directly in
series with the c-element outputs as shown in Figure 5.13. The delay of the buffers just
gets lumped in with the c-element delay and the correct operation in terms of timing is
guaranteed because the delay of the c-elements does not affect the sequence of operations
imposed on the handshake circuit by its specification. The efforts to design a fast c-
element presented in the last section are somewhat wasted though, since the delay of the

large buffer typically exceeds the delay of the clatch itself. Factoring in the buffer delays

> D Q DCVSL
/\ ; DV

L

Regqi P——@ Rego

Acki ¢ < Acko

—>- = buffer
.Figure 5.13: 4-cycle handshake circuit with buffers added to c-element outputs.

requires that Equation 5.6 be changed to

Toverhead = TQ+TQ— + TQ- + TQ+ + 4Tbuffer (5-7)

assuming that all the buffer delays are equal.

In the case of the rightmost c-element, it makes sense to lump the buffer delay
in with the delay of the DCVSL stage and not the c-element since the DCVSL represents
an added delay in the handshake signal itself. In the case of the leftmost c-element which

generates Acki, an assumption must be made to move the buffer to a position which
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enhances the efficiency. Figure 5.14 shows the new buffering scheme. In this case, the

> D Q DCVSL
A 1 DV
Regi ’w—; C —> Reqo
Acki * < Acko

Figure 5.14: 4-cycle handshake circuit with buffers added in a position which enhances
the efficiency.

overhead time is

Toverhead = TQ'l'TQ- + TQ- + TQ+ + 2Tbuffer (5’8)

however, the price for the reduced overhead is more sensitivity to the circuit design. By
placing the first buffers in a location which in effect can alter the sequence of signal
transitions, more care must be taken in controlling delay times. Two possible problems
exist. First, when the Acki* transition occurs, the previous stage is allowed to enter
the pre-charge state. The input register however must latch the new data sample before
it disappears during pre-charge. Assuming the previous stage contains a buffer on its I
signal, the delay of the Acki buffer must be Tackisbus < Tg- + T1sus + Tpre-charge- The pre-
charge time allows a fair amount of slack in the mismatch of the Ack: and I buffer delays.
The second constraint is more demanding. The other effect of the Acki: transition is to
enable I to rise and begin the computation for this stage. The outputs of the data register
must be settled before this so that the DCVSL logic has valid inputs. With no buffering,
this is still an important constraint and it requires that Tregister < T+, where T+ is the
delay of the second c-element. Adding buffers to both the Acki and I signals requires the
delays of the buffers to match closely so that Tackibus + Tregister < T+ + Trsuy. Typically,
the loading on the I signal is greater than that on Acki because of the larger (and greater

number of) devices necessary in the DCVSL to do the pre-charging making the constraint
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manageable. During the design of the DSP chips, no problems were encountered when
using the altered buffering scheme. With or without the buffers, the constraint on the
settling of the register outputs could be removed simply by employing a register that
generates a completion signal as shown in Figure 5.15. While a DCVSL register design is
not known, (the pre-charging destroys the necessary memory action required in a register)
a completion signal can be generated by using an extra “dummy” register or by comparing
the input and output signals of the register when the clock goes high. For the DSP design

however, this was not done and the matching was exploited.

v
o
o

DCVSL

Figure 5.15: 4-cycle handshake circuit interfaced to a DCVSL stage and register which
generates a completion signal.

The discussion above points out several difficulties in applying the theory for
handshake circuit synthesis to actual circuit implementations. For one, it may be unclear
at times how the handshake signals map to the actual circuit signals. The use of Acki to
clock the input register is not directed by anything in the handshaking circuit specification
although it makes sense. Doing so however, adds the constraint that the output of the
register settles before the DCVSL begins computation. Second, while the need for buffering
signals can be addressed by basically making higher output drive c-elements, the added
delay can reduce efficiency. The advantage of the self-timed approach is to make the
circuit adapt (slow down) to the added buffers. The inclination of the hardware designer
however, is to move the buffers so that they don’t add any unnecessary overhead. This
requires more careful analysis of circuit delays which can increase the risk of error-free

operation.
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Chapter 6

Self-Timed Macrocell Design

To construct a self-timed digital signal processor, a collection of self-timed macro-
cells that make up the datapath must be interconnected via the use of handshaking. In
this chapter, designs for the datapath computational elements used in the DSP chip are
described. Each cell has a generic interface to surrounding circuitry; they all look like a
simple block that accepts a compute signal input and supplies a DV completion signal
output. This fits the self-timed system paradigm as presented in previous chapters. Two
of the datapath cells are a cascade of DCVSL gates. The third more complicated cell is
actually a small self-timed sub-system in itself. The cell, an iterative multiplier, demon-
strates the hierarchical approach that can be taken even in the design of macrocells. The
adaption of standard RAM and ROM designs to allow self-timed operation is discussed
last. In the figures below, italicized cell names in the form name.mag denote the MAGIC
layout editor cell names for the cell in the database of the chips described. Device sizes
are given in . Further design details and schematics for cells not shown in this chapter

can be found in Appendix C.

1. Barrel Shifter

In a DSP datapath, the function of shifting is commonly required. In a control
operation, a shifter allows easy masking of certain bits in a word for identification of func-
tions. In a signal processing operation, the shifter provides fast multiplications/divisions
by powers of two. Often, when the time for a full multiplication is undesirable, bit-parallel

shift and adds are performed instead. Using canonical signed digits representation of co-
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efficients allows efficient and fast multiplications in a shorter time[72]. The barrel shifter
allows shifting in any amount between 0 and n places. The design described below is a
0 — 15 place left shifter. It accepts a 16-bit word input (typically in ¢.15 format) and
supplies a 32-bit word output (typically in ¢.30 format).

A block diagram of the shifter is shown in Figure 6.1. It is a logarithmic style
shifter which is essentially the cascade of four simple shifters. The first one shifts 0,1
place, the second 0,2 places, the third 0,4 places, and the fourth 0,8 places. Each of the
simple shifters is implemented with a 2:1 multiplexer (MUX) and a routing channel. The
multiplexer inputs are therefore bit; and bit;_, of the preceding row, where n = 1,2,4,8
depending on which of the four rows it resides. Cascading the four shifters allows shifting
by any amount between 0 and 2% — 1 places. A 4-bit binary coded control word selects the
shift amount. Due to the logarithmic style of this type of shifter, no decoding is necessary
on the control word input. Each bit of the control word just becomes the MUX control
signal of one row. A fifth control input allows selectable sign-extension on the output
data. When asserted, the most significant bit (MSB) or sign bit of the input word is fed
to bits 31 to 31 — (15 — n) of the output, where = is the shift amount. The sign-extension
(SE) control allows the user to select either logical shifts (no sign-extension) or normal
arithmetic shifts. When a word is shifted left, 0 bits fill the least significant bits (LSBs).

The DCVSL circuit for the 2:1 MUX is shown in Figure 6.2. In the implementa-
tion of this macrocell, several simplifications were made for efficiency. For one, since each
of the four rows in the barrel shifter consist of a DCVSL gate and routing only, they are
directly connected as would be done with domino logic gates. Therefore, the data signal
ripples through each row, consecutively firing the MUX gates. A 16-bit D-register is incor-
porated into the macrocell to hold data during pre-charge. As Figure 6.2 shows, the NMOs
device at the bottom of the NMOS tree in the 2:1 MUX was eliminated (see Figure 3.2 for
the general structure). This could be accomplished by adding two gates to the control
input for each row of MUXes. Since the MUX circuit cannot have valid complimentary
outputs unless either c or cbar is HIGH , the extra NMOS device at the bottom of the tree
can be eliminated by feeding the MUXes with ¢.I and cbar.I. In this way, the tree can
only be discharged during the evaluate stage as desired. The modification increased the
speed of the shifter by eliminating an extra series device in each gate (128 in all) at the
expense of the two AND gates per row. The circuit to buffer each control input is shown in

Figure 6.3 and it shows the extra gates used (actually NOR gates) to eliminate the bottom

110



SELF_TIMED SHIFTER BLOCK DIAGRAM
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Figure 6.1: Block diagram of the self-timed barrel shifter.
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Figure 6.2: DCVSL 2-input MUX used in barrel shifter.
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NMOs device of the 2-input MUX. The D flip-flop used in the data input register is shown
in Figure 6.4.

(cntl_in2.mag)
(end_biffer.mag) (gated_buffer.mag)
asn 152 102 102 102 C:ml
cbar— —O0< I j 7
202 uz 82 e "
c ——< _CQ CG—U
122
)
I
Figure 6.3: Control Input buffer for barrel shifter.
(dff2.bsh.mag) 0
CK CKbar
1 10/2 1 112 112
O O
D )—‘6,2 82 Qbar
an 4
- -7
CKbar 812 CK 82 82

Figure 6.4: D flip-flop used in the input register of the barrel shifter.

Finally, the symmetry of the shifter structure allowed for placing completion
signal circuitry (an OR gate tied to out and outbar of the last shifter) only on several key
gates of the last row of DCVSL MUZXes. This technique depends on the matching of delays
through identical logic gates in the shifter and it deserves some extra comments. In a n—bit
wide macrocell that strictly follows the self-timed paradigm, each bit provides a completion

signal. To generate the completion signal for the entire macrocell, the n completion signals
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from the bits should be applied to an n-input c-element. The added hardware required
and the associated delay and overhead of this type of completion circuit is significant and
surely undesirable. There are several reasons however that make it unnecessary in most
applications. Firstly, while data computation in a combinatorial network may take place
in a collection of series and parallel connected gates, the pre-charge operation takes place
in all of the gates simultaneously. Therefore, the pre-charge time of a large DCVSL block
is constant for all bits to within the local delay time of the pre-charge signal. Since the
individual bit DV signals may rise at different times but will fall during pre-charge at the
same time, an n-input AND gate can replace the n-input c-element to generate the final
completion signal. Secondly, some macrocells are very regular in their structure and the
completion time of each bit is not data-dependent. For such a cell, the completion signal
for a single bit is valid for the entire cell to within the delay matching of the circuitry
for each bit. As with any integrated circuit, the local matching of circuit parameters is
excellent and circuitry depending on the matching is low-risk. In the barrel shifter, the
delay time is data-independent although the worst case delay for a particular bit depends
on the amount of the shifting. For the shifter described above only several out of the 32
bits were used to generate a DV signal, exploiting the matching characteristics. The block
diagram in Figure 6.1 illustrates this by having only two “DV” cells in the last row. The
signal outputs from those gates are AND ’d together to form the final completion signal in

the control slice on the right.

2. ALU

A 32-bit ALU was designed for the datapath so that full precision could be
maintained in the accumulator values. The ALU design however, is bit-sliced so that any
multiple of four bits can be constructed. The functions supported by the ALU include
addition, subtraction, AND , OR , XOR , NOT logic functions as well as the ability to zero
either input for clearing/loading the accumulator. Figure 6.5 shows a block diagram of
the ALU and a single bit-slice. The accumulator is built into the ALU although it is
clocked by a separate input signal. By incorporating the accumulator into the ALU, more
efficient routing is achieved over having it reside elsewhere as a separate block. For the
same reason, the A-input register is also built into the ALU (the B-input register is the

accumulator).
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ALU BLOCK DIAGRAM
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Figure 6.5: Block diagram of the self-timed ALU.
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The logical functions and the addition are performed by separate DCVSL gates,
the outputs of which are fed to a 2:1 MUX. Depending on the desired ALU function,
one of the two gate outputs is passed to the accumulator. Since the completion time for
addition is dependent on the length of the carry propagation, all bits are examined to
form the ALU data valid completion signal. In this way, the completion time of the ALU
will be data dependent in addition or subtraction modes while it is constant during the
performance of logical functions. The ALU also provides a Carry output and a "Branch
on Zero” output that can be used to control branching in a signal processor.

The full adder was designed as two DCVSL gates, one for sum and the other for
carry. The niree program described in Chapter 3 was used. Below, the input and output '

files for each gate are shown:

Input file for SUM

# FULL ADDER SUM stage (3-way xor circuit)
2

(sum (xor 1 2 3))

t

Output file for SUM
AMOS Tree for (sum )
Logic Expression: (xor 1 2 3)
This file generated by ntree on Sun Jul § 22:29:06 1987

NODE ASSIGHNMENTS:

GED = 0 Vdd = 100

Pbulk = 102 Nbulk = 101

(Complement of )Input Number 1 is node (11) 1
(Complement of )Input Number 2 is node (12) 2
(Complement of )Input Number 3 is node (13) 3
F_OUT = 21 F_BAR_OUT = 20

P G 8 B

24 12 0 101 1EMOS
25 13 24 101 NMOS
20 11 25 101 BNMOS
21 1 25 101 HNMOS
28 3 24 101 HMOS
mé6 21 11 28 101 HMOS
m7 20 1 28 101 HMOS
m8 29 2 0 101 NNMOS
m9 28 13 29 101 HMOS
m10 25 3 29 101 BNMOS
ssxgndess

H B #8588 8888488280

N

&3
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Input file for CARRY

t

# FULL ADDER carry stage (majority gate)

2

(carry_out 100 (or (and 1 2) (and 1 3) (and 2 3)))
E

Output file for CARRY

EMOS Tree for (carry_out 100 )
.
* Logic Expression: (or (and 1 2) (and 1 3) (and 2 3))
3
* This file generated by ntree on Tue Mar 10 11:24:16 1987

NODE ASSIGEMENTS:

GED = O Vdd = 100

Pbulk = 102 Fbulk = 101

(Complement of )Input Number 1 is node (11) 1
(Complement of )Input Number 2 is node (12) 2
(Complement of )Input Bumber 3 is node (13) 3
F.OUT = 21 F_BAR_OUT = 20

D (1} S B

24 11 0 101 1ENOS
20 12 24 101 1EMOS
26 2 24 101 BENMOS
20 13 26 101 BEMOS
21 3 26 101 BEMOS
28 1 0 101 BENMOS
26 12 28 101 1WMOS
21 2 28 101 1WNMOS
ssondess

gz%a%a&a..l.ﬂl...'

»

The schematics for the full adder gates are shown in Figure 6.6. One important note about
the adder is that the completion time is dependent on the permutation of the inputs for

the carry gate. The logical equation for the carry gate is

Cout = AB + Ban + AC;n (6-1)

While the logical result is independent of the ordering of the inputs, the firing of the
DCVSL implementation of the gate is not. The completion time for a full adder depends
on the number of stages through which the carry must propagate. If either the A or B
inputs (but not both) are high, then the C,,; result depends on the C;, input, hence the
carry propagation. If, however both the A and B inputs are high, then a carry is generated
for that bit regardless of the C;, input. As drawn in Figure 6.6, the carry gate output
becomes valid if both A and B are high as desired. If a different ordering was used, (i.e.,
Cin placed on one of the lower transistor pairs) then the gate output will not become valid
until C;, is valid. Because each bit waits for the previous bit’s carry result, the completion

time for the adder is the worst-case, which is the carry propagation time for the full 32
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bits. Some of the early adder test chips built contained the different ordering and showed
a constant worst-case completion time. The technique could be used if data-dependency
is not desired in an adder.

The logical functions are performed in a single complex DCVSL gate. It demon-
strates the advantage of being able to perform a collection of logical operations with a
single gate in DCVSL. The niree input file for the logical block is:
Input file for LOGICAL

# ALU logic circuits
Complementation is accomplished by muxes on input
choosing between 1, 1%, 2, 2¢
. Inputs: 1,2
Control: 3,4 ~> binary coded:
not-used

or

t
t
t 4
$0
$1
$2 and
$3

2
s

(logic outputs
(or
(and 3 (not 4) (or 1 2))
(and (not 3) 4 (and 1 2))
, (and 3 4 (xor 1 2))

)
s

The schematic for the DCVSL gate for performing the logical operations is shown in
Figure 6.7. The 2:1 MUX circuits are very similar to the version used in the barrel shifter
and their schematics along with the schematics of miscellaneous other cells used in the

ALU can be found in the appendix.

Completion Signal Generation

In the ALU, the completion signal generation must use all of the bits of the
output word because of the data dependency of the addition operation. A 32-bit AND
gate is implemented to do this but in the interests of speed and keeping the architecture
in bit-sliced form, the large gate is implemented as a tree of 4-input gates. Figure 6.8
shows the schematic for the Data Valid signal generation circuitry which spans each 4 bits
in the ALU. (This cell design constrains the wordlength of the ALU to be a multiple of 4
bits) The top row of 4 NOR gates simply forms the DV signal for each bit from the true
and complement outputs of the last DCVSL stage in the ALU gates. Those four signals
are fed to a 4-input NOR gate which makes up the first level in the tree structure. The NOR

output is “dvA” which is a completion signal for the four bits spanned by each DV.mag
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Figure 6.6: Schematics for DCVSL full adder used in the ALU.
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Figure 6.7: Schematic for the DCVSL gate performing logical functions in the ALU.
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cell. At the bottom are devices and metal lines which are used to make up a NAND gate
for the dvA signals. The “X”s show optional connections which are made depending on
the wordlength of the ALU. The dvB and dvC busses are meant to each span 16 bits,
that which causes the NAND gate to have four inputs. The maximum size of the ALU is
limited to 32 bits. The dvB and dvC signals are sent to a 2-input NOR gate in the control
slice of the ALU to generate the final DV signal.

The following table provides a complete description of the ALU functionality in
terms of its control inputs. Note that the B-input of the ALU is the accumulator output.
Also, since the functions of control bits CO and C1 are just to zero the A-input and
B-input of the ALU respectively, there is some redundancy in the mapping of control bits
versus function in the table. The symbol ~ denotes a one’s complement inversion while
the symbol — denotes a full two’s complement inversion (negation of a signed quantity).

A, V, ® mean AND , OR , and XOR .
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Figure 6.8: Schematic for the Data Valid signal generation circuitry in the ALU.
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ALU Function vs. Control Inputs

INV C0 C1 C2 C3| Function
0 0 0 0 0 A+ B
0 0o 0 0 1 AANB
0 0o 0 1 0 AVB
0 0o 0 1 1 A® B
0 0 1 0 O A
0 0 1 0 1 0
0 0 1 1 0 A
0 0 1 1 1 A
0 1 0 0 0 B
0 1 0 0 1 0
0 1 0 1 0 B
0 1 0 1 1 B
0 1 1 0 0 0
0 1 1 0 1 0
0 1 1 1 0 0
6o 1 1 1 1 0
1 o 0 o0 o0 A-B
1 0 0 0 1|(~A)AB
1 0 0 1 0 |(~A)VEB
1 0o o0 1 1 |(~A)®B
1 0 1 0 0 -A
1 0 1 0 1 0
1 0 1 1 0 ~A
1 0 1 1 1 ~A
1 1 0 0 0 B
1 1 0 0 1 B
1 1 0 1 0 B
1 1 0 1 1 B
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 0

3. Iterative Multiplier

For a multiplier, the repetitive nature of the computation allows a single piece
of hardware (Booth decoder and carry-save adder) to be used repeatedly to form each
partial product [78]. The iterations are controlled by two additional internal handshaking
circuits.

The multiplier block diagram shown in Figure 6.9 illustrates the self-timed system
model on a smaller scale. The multiplication operation is broken down into three stages:

When new operands X,Y are ready, the partial products are each calculated by forming
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ITERATIVE MULTIPLIER BLOCK DIAGRAM

Iu’ IU’ * <Acki
Xreg Lo
(ehif reg) EN
Booth |4 L product |-
Recoder | counter
Register <—¢ In donel
\ / D Q
1 D
CS Adder N > Q
(2) Reg 4
done2
—<Imult
\/
CP Adder [ 4
= > DVmult

Figure 6.9: Block Diagram of the iterative self-timed multiplier chip.
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a Booth coefficient and performing a carry save (CS) addition. Then a final product is
formed by assimilating the carries in the carry-propagate (CP) adder. The three stages
are all self-timed sub-blocks. Remembering that to the external world, the multiplier
just appears as another DCVSL block, it accepts the standard I signal and generates
a DV signal. The I signal enables the final CP adder from which DV is generated.
Both I'mult and and Acki as shown on the block diagram are assumed to originate from
some external handshake circuit that controls the multiplier. Acki latches new operands
as usual. Between the time that the new operands are latched and the final addition is
performed however, the I signal for the CP adder is held low so that the internal self-timed
system for calculating the partial products can do its work. For each partial product, HSa
enables the Booth Recoder to compute a new Booth coefficient. Upon completion of this
task, HSa informs HSb that it is ready and HSb enables the next stage to perform the
Booth encoding of the multiplicand and the carry save addition. The result of the carry
save addition is stored in two sets of registers (one for carry and one for sum) for the
next partial product. All of the handshake circuits are basically the 4-cycle type that was
shown in Figure 4.12.

A partial product counter indicates when all the partial products are calculated
and this allows the final adder to operate. With the Booth algorithm, m = n/2 partial
products are required for a n-bit multiplier (» must be a multiple of two). The count
that generates a “done” signal in the partial product counter is programmable via the
tiling of the counter. cells. The counter is 5 bits wide allowing support for up to 251
partial products. Since the stages are in effect pipelined, note that it is necessary to
add a two-stage delay line between the partial product counter “donel” output and the
“done2” signal feeding the AND gate controlling Imult. This demonstrates how self-timed
systems naturally follow a so-called Data Stationary architecture. Because the actual time
of data transfers is not controlled, moving the control signals along with the data (via the
same handshake interface circuits) ensures proper operation. More about this type of
architecture for a full processor will be explained in the next chapter.

The internal system for calculating partial products is really just a free running
self-timed pipeline. By connecting the Reqo to the Acko of HSb, and the Reqi to the
Acki of HSa, the pipeline free runs. Some means of controlling it is required however
for initialization of new multiplications and for assuring that data fed to the CP adder

is valid. When the partial product counter raises its done signal output, the NOR gate
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above HSa disables new requests so that the pipeline stops. The multiplier Acki signal is
used for initialization. Upon the assertion of the Acki signal, the partial product counter
is cleared (as well as the two D flip-flops that delay the counter done signal). This in
turn lowers the counter done output. The Acki signal itself however is also fed to the
NOR gate so that the partial product calculations do not begin until it goes Low . This
is necessary because the Acki signal holds the partial product counter cleared until it is
lowered. Another enable signal (EN) can also be used to prevent the internal pipeline
from operating. This is useful when the multiplier must be fully disabled in spite of the
state of the Acki signal which can cycle if it also controls other blocks. A more detailed
explanation will be presented in the next chapter about this.

The core of the multiplier is bit-sliced, although multiplicand wordlengths must
be a multiple of four due to the way completion signal circuitry is spread across four bits
in the layout. For the DSP chip described in Chapter 7, a single precision 16-bit product
is generated for 16-bit multiplier and multiplicand inputs.

3.1 Booth Algorithm

The Booth algorithm for multiplication takes an n-bit 2’s complement multiplier
Y = (¥n-1,"»¥1,%) (MSB = y,_1) and an j-bit 2’s complement multiplicand X =
(%j-1,-++,%1,Z0) and generates a product (of up to n + j bits) in m = n/2 cycles where
each cycle represents the calculation of a single partial product. The multiplier is recoded
into a radix-4 multiplier z = y by a triplet scanning method using the modified Booth
algorithm: '

zZ= (zm—l,'”azl,zO)a z€ {"27"’1,0’112} (6'2)
where
Zi = Yoit1 + Y2i — 242i-r for 1=0,1,---,m— 1. (6.3)

and y_; = 0. The product is obtained by the following recursion:

P(k+1)=i(P(k)+X-zk) k=01, m—1 (6.4)

where P(k) is the k** partial product and P(0) = 0. Carry-save adders save the partial
products so each one is represented by a pair of bit-vectors < C(k), S(k) > where C(k) is

the carry word and S(k) is the sum word.

126



The register which holds the multiplier Y loads in parallel fashion at the start
of a new multiplication. It then shifts two bits to the right per partial product. The
three LSBs are fed to the Booth Recoder which implements Equation 6.3. The actual
implementation of Equation 6.3 depends on the specific hardware which makes use of the
Booth coefficient. The three-bit window input to the recoding circuitry defines a coefficient
z; € {-2,-1,0,1,2}. In this design, the coefficient is expressed in the form of a new three
bit signal vector B; = [1z,2z,inv]. Each bit denotes the following:

1x: Pass multiplicand unshifted
2x: Pass multiplicand shifted (left) by 1 bit
inv: Invert multiplicand

If 1x and 2x are both low, then the multiplicand is zeroed. The description
above for the bit functions is actually what takes place in the Booth encoding of the
multiplicand in each bit slice. The logic to perform this is shown in Figure 6.10. The
recoding logic which maps the three bit multiplier windows into the bit vector B; is shown

in Figure 6.11. It resides in a control slice adjacent to the multiplier bit slices.

3.2 Multiplier Cell Design

The layout for the iterative multiplier consists of a MSB slice, a series of bit slices,
and a control slice. The control slice contains all of the handshaking circuits, the partial
product timer, and the Booth recoding circuitry. A block diagram of the bit slices (minus
the carry propagate adder) is shown in Figure 6.12. The slice covers 2 bits since the shift
register has even and odd cell types due to the shift-by-two nature of Y input register.
A normal register stores the X input bits. The X bits are fed through Booth encoding
circuitry (see Figure 6.10) which consists of a single DCVSL gate. The schematic for the
Booth encoding DCVSL gate is shown in Figure 6.13. The carry save adder is implemented
as two DCVSL gates, one for sum and the other for carry, just as in the ALU. Register
cells hold the partial product results of the CS addition. The required shifting of two bits
(multiply by 1/4) between partial products is implemented by routing between the slices.

Schematics for multiplier cells not shown in this chapter appear in the abpendix.
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Figure 6.10: Logic to encode the multiplicand from the three Booth control signals.
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Figure 6.11: Booth Recoding logic.
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MULTIPLIER BIT SLICE
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Figure 6.12: Bit slice of multiplier minus carry propagé,tion adder section.
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Figure 6.13: Booth encoder DCVSL gate used in the multiplier.
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4. ROM

In the self timed paradigm, every stage must generate a completion signal. This
applies also to ROMs used for program storage or coefficient storage. A DCVSL style
ROM could have been designed from scratch, however it was felt that an existing library
design with a small design modification would be sufficient, saving the rather long time
required for layout in new designs. The existing library cell[74] ROM (also suitable for
PLAs) consists of a core that is programmed by the presence or absence of one NMOs
transistor per bit. A diagram illustrating the ROM operation is shown in Figure 6.14.
During a pre-charge time, the bitlines are pre-charged high. The input address is typically
decoded to select a single word in ROM during this time also. The bitline buffers are
inverting so all of the outputs go Low . During the evaluate time, the core transistors
discharge the bitlines which read a logical 1 (NMOs transistor present) to Ground and do
not affect the bitlines which read a logical 0 (NMOs transistor not present). The buffered
outputs then change accordingly HIGH and LOW respectively.

The scheme to generate a DV or completion signal for the standard ROM was as
follows: Presuming that the time to generate a 1 at an output is longer because it involves
changing the state of the bitline from its pre-charge state by discharging it through an
NMOS transistor, an extra bit can be added to each word which is always programmed to
generate a 1 and that bit can be used for DV . This involves adding a “dummy” column to
the ROM so that for an n-bit wide ROM, there is always at least n+ 1 outputs. The extra
bi't} always is programmed to a 1. The one danger in the completion signal scheme is that,
like other schemes which rely on matching, the delay time for all output bits to become
valid must be less than or equal to the time for the extra DV bit. The library ROM design
contains shorting metal busses which equalize the delay of the bits, reducing the danger.
Also, since a DV signal itself must pass through at least one gate (in the handshaking
circuitry) before causing any action to occur, the gate delay can alleviate problems due to
mismatching in the delays between bits. However, caution must be exercised if the ROM
outputs feed a register for example, because the set-up time requirements for the register

may consume any margin given by the handshaking circuitry!
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Figure 6.14: Diagram of the ROM adapted for self-timed applications.
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5. RAM

Like the ROM described above, a RAM was adapted from an existing library
cell[74]. The library RAM has separate Read and Write address and data ports. The
storage core itself is made up of 3-T RAM cells and the bitlines for read and write are kept
separate to support the two data ports. A block diagram of the self-timed version of the
RAM is shown in Figure 6.15. The Read and Write address lines feed separate decoders
and the internal read select and write select signals are effectively AND ’d together with an
Iread and Twrite signal. In the DSP design described next chapter, the RAM is read and
written at the same time so the “I” signals are connected together. When Iread is low,
the read bitlines are pre-charged, making the operation very similar to a DCVSL gate.

The generation of a completion signal is performed again (as with the ROM) by
adding a special extra bit for each word. The bit always reads a logical 1 which is ensured
by connecting the storage node of the 3-T cell not to the write bitline, but rather to
Vaa. During pre-charge, the bitline is charged HIGH , so the inverted DV signal output is
LOW as required. Thus, the self-timed RAM appears to the outside world as just another
DCVSL stage.

Again, since DCVSL techniques are not strictly used in the RAM design, match-
ing must guarantee that the Read time of the DV cell is at least as long as the Write
time of the normal cells if DV is to indeed indicate when both reading and writing are
complete. It is the case in most RAM designs that the Read time exceeds the Write time
giving this approach a low risk factor.

6. Summary

The designs of some common datapath macrocells have been presented that
meet the criteria of self-timed circuits. In all cases, the cells generate a completion signal
that can be utilized by handshaking circuits to oversee data transfers. In most cases,
a macrocell can be made by combining a set of DCVSL logic gates, the last of which
contains completion signal hardware. The completion signal generation on a n-bit wide
macrocell strictly requires an n-input c-element to examine all bits. However, due to the
ability to closely match the pre-charge times of the gates, an n-input AND gate usually

suffices. Further, for a macrocell in which the completion time is not data dependent,
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Figure 6.15: Diagram of the RAM adapted for self-timed applications.
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circuit matching characteristics can be exploited to a greater extent allowing even fewer
bits for the generation of a completion signal.

A barrel shifter and ALU were presented which are basically a cascade of DCVSL
gates. The design of an iterative multiplier was shown in which the control of the cal-
culation of the intermediate partial products was handled by a self-timed sub-system.
Self-timed versions of a RAM and ROM were made by modifying existing synchronous
designs. These contain a small overhead for the generation of a completion signal, however

they depend on some circuit delay time matching to work properly.
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Chapter 7

The Design of a Self-Timed DSP

The discussions in the last four chapters have covered how self-timed circuits
are implemented, the synthesis of reliable handshaking circuits, c-element design, and
the design of the macrocells that make up common datapaths. In this chapter, all of the
techniques described are combined to design a fully self-timed programmable digital signal
processing IC. The architecture of the DSP chip is presented along with the system timing.
The resulting instruction set is given and an assembler for generating ROM code from the

assembly code is discussed. Finally, details of the overall chip design are presented.

1. History of Signal Processing Applications and DSPs

If one examines the signal processing applications products produced in the last
decade, there is strong competition between digital techniques and sampled data tech-
niques. In fact, the introduction of sampled data techniques in the mid 1970’s really
revolutionized the integration of signal processing tasks. Switched capacitor integrated
circuits have dominated until only recently. Ironically, it was the fact that sampled data
filters could be integrated on a standard digital fabrication process that gave them credi-
bility. Despite their huge success, sampled data circuits were targeted for extinction since
many people in the design community still had their sights set on digital processing for
many of the traditional reasons (ease of design, long term stability, re-programmability,
more applicable to CAD based design). They promised that scaling of the digital process
would soon eliminate the competition by switched capacitors.

In reality, the analog designers, while a minority, have been able to improve their
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skills and take advantage of the scaling of technology remarkably well. It is only quite
recently that digital signal processors have begun to take hold of the market for signal
processing products. The analog designers hit some fundamental limitations on the scaling
of sampled data circuits while the digital processes have been scaled down sufficiently to
allow a very high level of processing power. Also coupled to this is the complexity of the
systems that are being developed on silicon. As the design rules have been reduced, more
functionality has been introduced. In the past for example, a chip containing 40 poles
of filtering that could be used as the front end of 2 modem was a viable product using
switched capacitors. Currently however, the level of integration has grown to the point
where the entire modem is on a single chip. Since many telecommunications products rely
on signal processing algorithms suited for the digital domain such as adaptive filters and
echo cancellers, most chips (or systems) on the market now are at least hybrids of digital
and sampled data techniques. Also, the growth of general purpose digital signal processing
circuits has been very steep in the last several years as the power of the digital processors
has reached a usable level in terms of algorithm requirements.

The introduction of general purpose digital signal processing ICs such as the
TMS320 series from Texas Instruments, DSP56000 from Motorola, and the DSP32 from
AT&T made the technology widely available and suitable for many different applications.
These DSPs provide an architecture that is powerful enough to fit a wide variety of al-
gorithms along with being programmable by the user (either with off-chip program ROM
or by mask programming). The success of these products and the products in which
they are utilized has driven the industry to continue to pursue advancements in power
and performance of such devices so that they will proliferate even more. Advancements in
analog-to-digital conversion have also fueled the interest in digital signal processors. Using
oversampling techniques, much of the A/D converter can be shifted into the digital do-
main. Of course, it is the continued scaling of the digital IC process which has made these
developments possible. The traditional reasons for using digital techniques for signal pro-
cessing system include long term stability, rapid modifications through re-programming,
and the reliable prediction of behavior and noise performance.

Digital signal processors represent some of the highest performing micro-computers
because of the incredible rates of computation they achieve as required by many real time
systems. The speed of operation and the functionality offered are key aspects to their suc-

cess. As the IC process technology is advanced, DSP chips strive to offer even more power
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in terms of the system they may implement and greater speed of operation. This typically
is achieved by using smaller and faster transistors and placing more of the transistors on a
chip to extend the functionality. General purpose DSPs on the market now run in the 10-
30MHz range for each instruction. As continued scaling of the digital IC process proceeds,
these clock rates will extend well beyond 100MHz. Even so, only a subset of the desired
applications can actually be handled. For example, the general purpose DSPs mentioned
above fall way short of the speed requirements for doing video signal processing. Thus,

the motivation to obtain more speed in DSPs is will continue to be very great.

2. System Description

The goal of this research has been to apply the principles of self-timed circuit
design to make a general purpose DSP. Given the magnitude of this undertaking, a rela-
tively simple architecture for the chip was chosen. It resembles the datapath architecture
for a Tezas Instruments TMS320210 without the address arithmetic capability. Figure 7.1
shows a diagram of the datapath. Dotted lines denote pipelining stage boundaries and
shaded rectangles represent registers. The challenges of making the datapath self-timed
include the existence of feedback and the programmability of the architecture (via the

different types of instructions). The operations in each stage of the pipeline are detailed
below:

Stage 1

The first pipeline stage in the datapath contains the memory. A RAM supplies
a temporary storage area and it is both read and written to during the first pipeline
cycle!. RAM values which are read are supplied to the datapath cells of the next stage
as well as another pipeline that is used to store words that are to be written back into
RAM for the purposes of moving data. Due to the pipelining delays, data read from the
RAM is specified in the current instruction, while data written to RAM was specified two
instructions earlier. The three registers in the feedback path around the RAM emulate
the delays seen through the rest of the datapath to make the constraint for writing the

RAM consistent for instructions that move data through the datapath or just around the

1 Actually, the first pipeline stage of the entire system is the instruction fetch described in the controller
section. )
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feedback path. The source for writing the RAM can be either the Accumulator, the RAM
feedback delay line, or the Input register. The feedback path is used mainly for “data
move” instructions such as shifting data down a filter shift register implemented by RAM.
A coefficient ROM (CROM) also exists in the first stage for implementing fixed coefficient
digital filters efficiently. The CROM is read concurrently with the RAM.

Stage 2

The second pipelining stage of the datapath contains the barrel shifter and the
multiplier. These two cells are essentially in parallel which allows using either of them
in an instruction but not both since they are preceded and followed by MUX circuits
working in unison. The input to the shifter comes from the RAM. The multiplier can
be configured to multiply a variable read from RAM by a fixed coefficient from CROM
or it can multiply two variables from RAM. The Y input to the multiplier is taken from
the CROM or the RAM feedback delay line as determined by a MUX, and this allows

multiplying two variables from RAM which are read on consecutive instructions.

Stage 3

The last stage of the pipeline contains the ALU and Accumulator. A MUX
selects the ALU A-input from either the shifter or multiplier. The B-input to the ALU is
the Accumulator. Since the RAM is 16-bits wide while the ALU/Accumulator is 32-bits
wide, provisions are made to write either the high or low byte of the Accumulator back
into RAM. The feedback around the entire datapath allows values from the Accumulator
to be written back into RAM or to the Output Port.

2.1 Data Stationary Architecture

In micro-coded digital signal processors, one encounters mainly two types of
architectures. The most common is Time Stationary (TS), where a single micro-coded
instruction contains the control signals that indicate what each element in the processor
will do at a given time, or more precisely, the time during a given instruction cycle.
Figure 7.2 illustrates this. The microcode in the program ROM output register indicates
what each block does at ¢,. The corresponding assembly code typically has separate fields

per instruction, again to specify what happens at each stage of the datapath. The data
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Figure 7.1: Block Diagram of datapath.
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referred to in each field however, is different with the existence of pipelining. That is to
say, in the figure, if the data is read from the RAM at ¢;, then the data that has moved
into the shifter is that read at ¢;_; and the data in the ALU is that read at tiz. The
assembly code can be fairly confusing under the circumstances. For a three stage pipelined
datapath, each instruction must refer to three pieces of data.

Another processor architecture is called Data Stationary (DS), and as the name
implies, the assembly code is written to describe what happens to a single data word as
it proceeds through the pipeline. The bottom of Figure 7.2 shows that program ROM
micro-code is passed though its own pipeline registers which mirror the movement of data
words though the datapath. In this wa.y; the control signals supplied to a block for a
certain data word reach the block at the same time as the data. The assembly code is
more coherent since each instruction now contains the information about what happens to -
a single data word as it moves through each stage of the pipeline. The hardware cost for
implementing a DS processor is the extra registers for the micro-code. Also, the simplicity
of the instructions breaks down for control oriented branching instructions where a test
on a the accumulator (say ACC < 0) determines whether a branch should occur. In a
DS processor as shown in the figure, the test is actually made on data read two cycles
earlier. A commercial example of a TS processor is the Motorola DSP56000 while the
AT8T DSP-32is a DS processor architecture.

For a self-timed processor, the Data Stationary architecture makes sense for
reasons beyond those described above. While a sequence of operations is imposed on
the datapath macrocells, the exact temporal information about the operations is not
obtainable since it is process and data dependent. For a certain series of instructions,
we may know that a word of data will be read from RAM, then shifted three places
left by the barrel shifter, and then added to the Accumulator. If the data transfers
are self-timed however, one would have to to make sure that all transfers are completed
before allowing the control signals (micro-code) to be updated for a new instruction if a
TS architecture is employed. To do so would require communication lines between the
controller and all of the datapath stages as shown in Figure 7.3. It is exactly that sort of
global communication which is a problem for synchronous designs (in the form of the clock
signal). A DS architecture more naturally fits the self-timed paradigm because because
communication for both the data and control signals takes place only between adjacent

stages. The controller itself only communicates with the first stage of the datapath pipeline
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as illustrated in Figure 7.4. If one envisages controlling the instruction pipeline with the
same handshake signals that control the data transfers, everything is synchronized. As a
data word moves from one stage to the next, the control signals that affect computation on
that data word follow along. For this reason, a Data Stationary architecture was employed

in the self-timed DSP described in this chapter.

2.2 Instruction Set

Given a choice for the datapath architecture and basic functionality of a DSP,
the instruction set can be derived. The architectural choice is often based on many things
related to the applications of the chip. The most optimum choice for an architecture is
another active research area which includes the study of parallelism in signal processing
algorithms and the job of scheduling tasks when multiple processors are utilized. For the
self-timed DSP, the architecture of Figure 7.1 was chosen since it is suitable for general
purpose use.

An instruction set should be easy to read and write to be the most useful. Data
Stationary architectures tend to simplify the instruction set by making the instructions
look more like an equation operating on a single data word. The math instruction set
for the self-timed datapath is given in Figure 7.5. There are basically two types of math
instructions: those using the barrel shifter and those using the hardware multiplier. The
multiplier instructions are split into two sets also depending on whether the multiplier Y-
input originates from the CROM or the RAM delay line. The output of the first register
" in the RAM feedback delay line is referred to as the “T” register, a name that parallels
the multiplier input register of a Tezas Instruments TMS32010. A final sub-division of
the instructions is made to differentiate where the data is directed. The “Z” field of an
instruction is either a write location in RAM or the output port. The Z = ACC construct
directs a word in the Accumulator to the output port or back into RAM. Similarly, the
Z = X construct directs a word read from RAM to the same destinations. This is typically
used for data moves in RAM.

There are a few additional instructions used specifically for control operations in
the datapath. These are shown below:

The GOTO instruction just causes the program counter to jump to the instruction denoted

by label in the program. Similarly, the conditional branch only executes the GOTO when
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Math Instructions for Self-timed Datapath

KEY: ‘

X = RAM Read Location

Z = RAM Write Location or OUT (output register)

T = MULTIPLIER Y Input Register = LAST RAM VALUE READ

B = Accumulatoror “0 "

ACC = ACC (Accumulator bits 15-30) or LLACC (Accumulator bits 0-15)
C = Coefficient ROM Location

~ "= one's complement
0P=+'—l Il&i~

() = required field
[ ] = optional field.

DATAPATH MATH INSTRUCTIONS

Set Accumulator to Zero or
Accumulator (NOP).

[Z= JACC = B oP [~]X[<<0-15];  Add,Subtract RAM to Accumulator,[0]
with optional shift. Qutput to Z.

ACC = B op [~][Z= X][<<0-15];  Add,Subtract RAM to Accumulator,[0]
with optional shift. Data Move.

[Z=]JACC=Bor [~]X*T, Multiply, accumulate [invert], Y
input to mult is RAM location read
on last instruction. Output to Z.

[Z=]JACC = B;

[Z=]ACC=Bor [~]X* Multiply, accumulate [invert], Y
input to mult is CROM location
Output to Z.

ACC=Bor [~][Z=X] * T; Multiply, load ACC [inverted],
Data move.

ACC=Bor [~][Z= X] * C Multiply, load ACC [inverted],
Data move.

any above, (Ram = IN); Any of the above instructions

can have an INPUT to RAM
specification as long as
Z is not a RAM write location.

Notes:
Substituting “<< =" for “<<" turns off sign extension in the barrel shifter.

If Z not specified, Write Location of RAM will be the
same as a specified Read Location.

If no Read Location specified, Write is DISABLED except
on an INPUT specification.

All Writes to memory including INPUT instructions have
a latency of three instructions.

Figure 7.5: Math Instruction Set for datapath.
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Control Instructions for Self-timed Datapath

GOTO label; Unconditional Branch to
instruction line with label.
BRANCH label: Unconditional Branch to

instruction line with label.
(same as above)

if(ce) GOTO label; Conditional Branch.
cc is condition code selected.

Figure 7.6: Datapath Control Instructions.

the condition is satisfied. The four condition codes implemented in the self-timed DSP

are:

1. UC Unconditional Tied to Vyg4.

2. BZ Branch on Zero High when ACC = 0.
3. BNZ  Branch not Zero High when ACC # 0.
4. SGN  Branch on sign High when ACC > 0.

The mnemonics such as BNZ are symbolic only. The instructions must refer to the number
of the condition code unless a label is assigned to them, in which case the mnemonic can

be any arbitrary string. The assignment of labels is discussed in the next section on the

assembler.

2.3 Assembler

The main purpose for an assembler is to translate the higher level assembly code
of a processor into the actual program ROM bits. In that respect, an assembler is mainly
a parsing program. Other enhancements to assemblers are usually provided in order to
make-the assembly code more easily written and read. For example, EQUuate statements
allow the user to equate strings to constants so that more meaningful labels can be used.
A filter coefficient may be stored in CROM location 8, and it is necessary to multiply it

by the input sample stored in RAM location 1f. Rather than writing the instruction

ACC = ACC + 1f * §;
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by using two EQUate statements, the same instruction can be written more clearly as

ACC = ACC + input * coeffl;

Text labels for line numbers also make branch statements clearer.

Another task of many commercially available assemblers is to check for errors in
the input assembly code file. The errors can range from syntax errors to timing errors
or warnings. An example of this is a branch instruction. In a data stationary processor,
the branch may key off a data word read several instructions previous to the current
instruction. The assembler can spot situations where the programmer may have overlooked
this latency and issue a warning.

An assembler was written for the Instruction Set presented above so that pro-
gramming the self-timed datapath could be more efficiently completed for a variety of
applications. The program, named asm, was written in C language using the UNIX 2
utilities LEX and YAcC , which were written expressly for constructing parsers quickly.
The program LEX recognizes lexical structures in the input stream and then either takes
actions or passes the structures, called “tokens” to YAcC . The YACC program accepts a
special grammar language input to specify the correct grammar expected between tokens.
It reports errors automatically and generates a C program that gets compiled into your
main program (YACC stands for “Yet Another Compiler Compiler”). A diagram of the
structure of asm is shown in Figure 7.7.

Valid assembly code consists of the following: 1) A declarations section which
contains a number of EQUate statements that equate character strings to constants, and
2) a code section which contains the actual instructions. Instructions are terminated by
a semi-colon and comments are allowed either after the semi-colon of any instruction (up
to the carriage return) or in C language style using “/*” and “*/” to begin and end the
comment. The declarations section is begun by the word DECL at the beginning of a
line. The declarations section is ended and code section is begun by the word START at
the beginning of a line. The code section must contain instructions of the form presented
above, however any integer constant may be replaced by a string if it appears in the
declarations section. Valid labels are a character string followed by a colon (such as

Label:). The set of valid keywords and operators that make up instructions is:

2UNIX is a trademark of AT&T
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Assembly Code

J Swscwral |
(lex) (yw_-')
| ——>Emors
DataBase
Labels Instructions
{046
800324
#AcfSS

Figure 7.7: Diagram of the assembler written for the self-time DSP.

Keywords € {ACC,L_ACC,0OUT,IN,GOTO,BRANCH,T,IF}
Ope'l'ators G {+, — I, &) - ? <<7 <<_1 *1~ }

The keywords may be in all upper case or all lower case letters, however not a mixture.
Labels on the other hand, are read literally and may contain any mixture of upper and
lower case letters. The lexical analyzer recognizes digits as any combination of numbers
from 0 to 9 and words as any combination of letters and numbers that follows a leading
letter. As mentioned, a label is a word followed by a colon. White space is ignored in the
input. An example of assembly code is shown next to clarify these rules. The assembly

code for an IIR filter implemented on the DSP chip is shown below:

/*  iir2.asm s/

/e
* FILTER ASSEMBLY CODE FOR 8 pole BPF in file “iir_design®
. (using multiplier)
-
=/
/# e
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DECL

START

INIT:

sample:

/# Filter State variable registers s/
EQU delt 0

EQU del2 1
EQU del3 2
EQU del4d 3
EQU dels 4
EQU delé S
EQU del?7 6
EQU del8 7
EQU del9 8
EQU dell0 9

/* others s/

EQU top 10

EQU input 11

EQU tmp2 12

/e filter coefficients in CRON s/

EQU  at 8
EQU a2 9
EQU b1 10

EQU alb 11
EQU a2b 12
EQU bidb 13
EQU alc 14
EQU a2c 15
EQU bic 16
EQU ald 17
EQU a2d 18
EQU bid 19

acc =2 0;

/* clear all state registers to zero */
(dell=acc)=0;

(del2=acc)=0;

(del3=acc)=0;

(del4=acc)=0;

(delS=acc)=0;

(del6=acc)=0;

(del7=acc)=0;

(del8=acc)=0;

(del9=acc)=0;

(del10=acc)=0;

/* done, begin filter program */

acc = 0 | del2 » a2, (input=in); read input sample
acc = acc + (tmp=dell)<<i§; coeff al > 1
acc = acc + dell * ai; fractional part of al
(delimacc) = acc + input<<i§;

acc = acc + del2<<15;

/* acc = acc + tmp<<1§; coeff b1 > 1 #/
acc = acc + (del2stmp) * bl;

/* acc is output of first section #/

/* saction 2 &/

(tmp=acc) = acc;

acc = 0 | del4<<is;

acc = acc - del3<<15;

acc = acc + (del4=del3) » bib; data move
ace = acc + (del3=tmp)<<15;

(tmp2=ace) = acc;

acc = 0 | del6 * a2b;

acc = acc + (tmp=delS5) * alb;

(delS=acc) = acc + tmp2<<i4; scala by 0.5
acc = acc + del6<<15;

acc = acc ~ (del6=tmp)<<15;

acc = acc + tmp * bic;

uu

acc = acc + del8 * a2c;
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acc = acc + (tmp=del7)<<15;
(del7=macc) = acc + del7 #* alc;

acec = 0 | del8<<13; scale by 1/4
acc = acc + (del8=tmp) * bid;
acc = acc + del7 << 13;

acc = acc + dell0 = a2d;

acc = acc + (del10=del9)<<15;

(del9=macc) = acc + del9 * aid;

(out=acc) = acc; send result out
goto sample;

The IIR filter code uses a combination of multiplies and shift/adds so it is a good example.
Notice that the math is performed in the upper Accumulator bits for this program. There-
fore, if a number from RAM is to be added to the Accumulator, but divided by 2 first with
the shifter, then the shift amount should be 14 places. A shift of 15 places left justifies
the number in the Accumulator assuming ¢.15 format in RAM and ¢.30 (double precision)
format in the ALU. The network diagram of the filter is given later in Section 6.5.

The assembler automatically checks for syntax error in the input file because the
grammar must comply to the grammar rules given to YACC . Beyond that, error checking
exists to ensure that the user does not exceed hardware limitations such as writing to a
RAM address that is too high or shifting more than 15 places. The assembler writes two
ROM code output files that interface directly to the system simulator THOR that was used
to test the architecture. Those output files can then be converted to a proper parameter
file for the LAGER layout system [72, 73] used to complete the chip design by running the
program ROMconvert. The assembler also writes an output file that gives more complete
information about each instruction such as the program counter value and the condition

of all of the control signals. Therefore, the command

asm code

uses/generates the following files:
1. Reads assembly code from file code.asm.
2. Generates output file code.out.
3. Generates THOR Hex ROM-code file code.ROM_L (lower 32 bits).
4. Generates THOR Hex ROM-code file code.ROM_H (upper 8 bits).

The THOR simulator is limited to 32-bit values so two ROM-code files must be generated
to simulate the 40-bit wide control word of the system. More information about the

assembler can be found in Appendix B.
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3. System Timing

The datapath drawing in Figure 7.1 has an implicit idea of timing in it by the
way the macrocells are interconnected, the location of pipeline registers, and the resulting
data flow. However, the actual system timing is something that the designer imposes
on the circuit blocks and in a self-timed system, this is done via the interconnection of
a set of handshaking circuits. In fact, the system design is really just the design of the
handshaking circuits since the datapath macrocells simply act as latencies added to the
handshake signals between stages. Knowing what we’d like to have the datapath do at
this stage of the design, a rough sketch of the control/handshaking circuitry can be made.
From the desifed data flow in Figure 7.1 and the decision to employ a Data Stationary
architecture, the drawing of the control and handshake circuits for the datapath was
formed and it is shown in Figure 7.8. The core of the controller is the familiar micro-
coded control store consisting of a program ROM (PROM) and program counter (PC).
The PC increments for each instruction and its output addresses the PROM. The actual
timing of the controller is done with a free running 4-cycle handshake circuit. Provisions
for branching are also present. A high-level view of the controller is really that of a self-
timed signal generator. The signal is the micro-code and the timing consists of a series of
requests which occur as each instruction is fetched from PROM.

The requests from the controller are fed to the datapath handshaking circuitry.
There is one handshake circuit for each of the datapath pipeline stages as shown. The
first stage RAM/CROM HS circuit is the most complicated since it must handle requests
from the controller, the ALU (bottom of the datapath), and the I/O circuitry. Because
the multiplier and barrel shifter are configured in a parallel fashion, there are two sets of
handshake signals between the second and third pipeline stages. In effect, the Req and
Ack signals from the first stage are de-multiplexed to drive the multiplier/barrel shifter,
and then multipliexed to drive the ALU.

An instruction pipeline mirrors the datapath stages as required by the choice of
a Data Stationary architecture. Control signals for the datapath cells are tapped off at
appropriate points and they are shown in Figure 7.8 as dotted lines. Note that since the
write operation in the RAM coincides with data coming out of the bottom of the datapath,
the write address (Waddr) comes from the last stage in the instruction pipeline (ctl-D).

The clocking of the instruction pipeline is done by the same signals which clock data
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Figure 7.8: Handshaking and Control circuitry block diagram for the self-timed DSP.
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through the datapath. Thus, the instruction control signals follow along with the data.
Names have been added to the diagram to begin the important process of clearly labeling
the signal names of the DSP. Handshake signals have a post-fix of “A,B,C” respectively
for the first, second and third pipeline stages. The design of the handshake circuits shown
in Figure 7.8 is critical to the system timing and performance. The next section discusses

these handshake circuits in detail.

4. Datapath Handshaking

In this section, the specification and design for the datapath handshaking are

presented.

4.1 Controller

The program store for the self-timed DSP contains horizontal micro-code which
eliminates the necessity for an instruction decoder. The controller consists basically of
a program counter (PC) and program ROM (PROM) as shown in the block diagram of
Figure 7.9. Of course, rather than using a global clock to increment the PC, a free-running
handshake circuit acts as a timing generator so that the controller issues instructions at
exactly the rate at which the datapath demands. The enable signal ENrom allows the
generator to be switched off or stepped for the purposes of testing. Given that ENrom
is high, the HS4 circuit free runs because its Regq: signal is just Acki. The rate at which
it receives acknowledge signals at the output port therefore determines the rate at which
the handshake circuit runs. Each new cycle of the Rego (= Irom) signal from the HS4
block enables the PROM to read an instruction. The falling edge of Irom increments
the program counter to the next instruction address. As with any DCVSL stage, the
completion signal from the PROM becomes the Rego signal sent to the next stage. It is
reqi-A on the diagram of Figure 7.8. Similarly, Acko is acki-A in Figure 7.8.

The branching instructions for the processor require that the controller be a bit
more sophisticated than shown in Figure 7.9. A program branch implies that the program
counter must be loaded with a new address. One bit of the micro-code instruction output
acts as a “branch bit”, signalling a branch instruction. The necessary sequence of events for
executing a branch includes sensing this bit and in the case of it being asserted, loading

the program counter with an address derived from the instruction itself. Conditional
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Figure 7.9: Block diagram of the controller used for the DSP chip.
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branches perform the loading based on the state of signals originating from other parts
of the datapath (usually the ALU). The sense/branch operations could be performed in
another stage following the basic controller, however the tasks are small and should be
included in the basic PROM cycle to avoid another stage of pipelining. The branch bit
however is not valid until the the DV rom signal goes high.

A sequential handshake circuit was employed to impose the sequence of Read
PROM/branch operations during each cycle without any more pipelining. The guarded

command for a sequential HS circuit is:

*[Regqit — Regqo'; Ackot — Ackit] (7.1)

The Acki signal waits until Acko* which implies that the next circuit has completed.
Therefore a sequence of two operations occur in a single handshake “cycle”. The sequential

handshake circuit is shown in Figure 7.10.

ot D A H—
R R

Acki € L < Acko

(o]

Figure 7.10: Sequential handshake circuit.

Figure 7.11 shows a more detailed block diagram of the chip controller incorporat-
ing the branch circuitry. The DV rom signal acts as the Regi of the sequential handshake
circuit. The Rego of the sequential handshake circuit clocks a register which stores the
branch bit from the PROM micro-code output. When a branch instruction occurs, the
cycle in which it occurs is used to load the PC with the branch address. No output request
is sent from the controller until the next non-branch instruction is read. This scheme is
required because the branch address bits in the micro-code are shared with other control
bits used in normal instructions. Also, the branch instruction is stand-alone; no data-
path operations are specified in the assembly code on a branch instruction. Therefore,

the datapath performs no operation during a branch which can be achieved by simply
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not supplying a request to it. The output of the branch register (labeled “branch” in
the figure) controls a 1:2 demultiplexer which routes the Rego of the controller either to
the datapath as the reqi_A signal, or back to the controller Acko signal. The de-selected
output of the demultiplexer stays LowW . The operations of the controller can be described

in pseudo computer source code as follows:

controller() {
while(TRUE) {
Read Program ROM;
Latch Branch bit;
if(branch bit == 1) {

Acko = 1;
if(condition code == 1)
Load PC with Branch Address;
else {
Reqo = 1;

Increment PC;
while(Acko == 0)
wait;

Pre-charge Program ROM;

The sequential handshake circuit ensures that the branch bit is not latched until the pro-
gram ROM is read first. The block labeled “Reg/demux” containing a DV signal output
is a delay block that duplicates the circuitry of the branch register and demultiplexer in
order to generate a Data Valid signal which indicates when the output request is ready.
The lack of a register with completion information and the use of a standard CMOS de-
mux circuit necessitates the delay. In Figure 7.11, the HS block at the output and the
register which latches the micro-code instruction constitute the beginning of the instruc-
tion pipeline and they are included for clarity. The HS circuit corresponds to the RAM
HS block in Figure 7.1. A master RESET signal clears the PC to zero and initializes the

handshake circuits.

4.2 Instruction Pipeline

In Section 2.1, the Data Stationary architecture was presented for use in self-
timed DSPs. A requirement for having a DS architecture is a pipeline for storing instruc-
tions as they proceed through the datapath. In a Time Stationary processor, a controller,

or a collection of controllers, must send signals to each stage in the datapath for every
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Figure 7.11: Detailed diagram of chip controller circuit.
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instruction cycle. A self-timed version of the scheme would most likely contain handshak-
ing between the controller and each datapath stage since the completion of any stage is
not synchronized with a global clock. As mentioned before, the elegance of using a DS
architecture is that the control signals can follow along with the data as determined by the
handshaking existing inside the datapath. A difficulty arises however for control signals
that actually re-configure the datapath and therefore the associated handshake circuitry.
An example is shown below in Figure 7.12. In a MUX or DEMUX stage, a control signal
routes the handshake signals to their proper places. Figures 4.19 and 4.20 illustrated this.
The control signal in a DS type processor emerges from the instruction pipeline. If the
pipeline is clocked by the same handshaking signals as the datapath as in Figure 7.12, then
there is a potential race condition between the Acki signal and the CTL signal affecting
the circuit state. In the figure, Acki may pass through the DEMUX before the CT L signal
is able to change the DEMUX state. The synthesis of the handshake circuit constrained

/C\ > Regol
[ < Ackol
——— Reqol C > Reqo2
u
X% Reqo2
< Acko2

Figure 7.12: An simple example of a control signal which affects the state of a handshake

circuit.

the CTL signal to be in a given state. The most obvious way around the race condition
is to have the instruction pipeline timing separate from that of the datapath. Each stage

would have its individual HS4 circuit. The register for a stage would be clocked on the

160



Acki signal and the Rego signal (normally controlling computation) would be sent to the
datapath stage that uses the control signals from the register. In that way, the datapath is
ensured of receiving valid control signals from the instruction pipeline by the handshaking
operation.

The overhead in hardware required to use handshaking between the instruction
pipeline and the datapath is undesirable. Also it was felt that since the control signals
are available in the pipeline before they are needed (i.e. they are in a register further up
the pipe), enough information was there to avoid the use of controller handshaking. Thus,
the DSP chip design presented in this chapter does not use any special handshaking for
control signals. In the few cases where a requirement as shown in Figure 7.12 arises, the
notion of a register completion signal is employed for the instruction register. Figure 7.13
shows the same handshaking with a small amount of extra circuitry added to alleviate
the race problem. The technique relies on circuit matching by using a “dummy” register
circuit delay in series with the Ack: signal before it is supplied to the DEMUX. The Reg
delay block must be designed so as to have enough delay to compensate for the settling
time of the instruction register as well as delays associated with the signal lines between
the register and handshake circuitry. This solution is only required in several places on
the chip and they will surface in the description of the handshaking blocks below.

The allocation of bits in- the control word for the DSP is shown in Table V. A
maximum of 128 locations are allowed in the RAM and CROM with the number of bits
shown. A 40-bit wide ROM is required to store the program instructions.

Since control signals are used in each stage of the datapath, a shrinking number
of the entire set needs to be forwarded down the instruction pipeline after each register. In
order to reduce the area and routing required for the pipeline, the register size is reduced
after each stage. Figure 7.14 shows a detail of the bits for each stage of the instruction
pipe.

4.3 I/0O Scheme

A method for getting data into and out of the DSP chip was chosen that takes
full advantage of the self-timing characteristics. The input register feeds a MUX which can
select it as the write input to the RAM. The output register is driven from the feedback

path around the datapath. Thus, as shown in Figure 7.1, it can send either data words
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Figure 7.13: Using a register delay to ensure that a control signal is utilized properly in
the handshaking circuit.

from the Accumulator or the RAM (via the 3-register delay line around the RAM) to the
outside world. The times when an input word would be read or an output word would
be sent are the same as a RAM operation and therefore the I/O handshaking is part of
the RAM handshaking circuit. In an early design of the I/O block, a single register was
employed to store the input word during the RAM operation. By designing the RAM
handshaking to wait for a request from the input port during an input instruction, the
timing constraints are satisfied. Similarly, the handshaking can be designed to wait for
an acknowledgment signal from the outside world before proceeding during an output
instruction. With this scheme however, the timing of the external signals which serve as
handshaking signals for I/O operations can strongly influence the program operation. It is
more desirable to have the capability of writing (reading) the output (input) register and
then proceeding immediately with the program operation. While the external circuitry
must consume (supply) the data word before the next I/O operation, the timing is less
critical.

A FIFO type of register was substituted for the single register in each of the I/O
paths to obtain the greater flexibility. The input register (i-reg) and the output register
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Table V. Processor CONTROL WORD

Bit(s) | Mnemonic | Description:

39 NC No-Connection

38-32 Caddr CROM Coefficient address

31 ACCL Select Accumulator LOW byte

30 Branch Branch Bit

29 OUT Enable Output Port

28 WE Write Enable for RAM

27 IN Enable Input Port

26 ALUSEL | Select Multiplier to ALU

25 TSEL Select CROM to MULT Y-input

24-20 alu_ctl ALU function select bits

19 SE Enable sign-extension in Shifter

18-15 bsh_ctl Shifter amount

14 WRSEL | Write RAM from Accumulator

13-7 Waddr RAM Write Address

6-0 Raddr RAM Read Address
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Instruction Pipeline

ROM 40 bits
3938 3130
N.C. aaa Brancl
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Figure 7.14: Detail of the instruction pipeline registers.

164



(o-reg) in the block diagram are actually two stage shift registers. The outer-most register
in the FIFO is controlled by its own simple 4-cycle handshake circuit which talks to the

outside world. Each of the input and output operations will now be examined in detail.

Input Instruction

On an input instruction, the input register acts as the source for data on the
RAM write port. Therefore, as stated above, the input port handshaking must work in
conjunction with the RAM handshaking. Figure 7.15 shows a simplified drawing of the
input FIFO and associated handshaking. The upper two c-elements make up the RAM
handshaking. When the ALU completes an operation, it asserts the reqi_ACC signal.
Assuming that the controller has another instruction ready, the RAM handshake circuit
will raise acki-ACC, clocking the Accumulator itself - which is normally the RAM input
register. The circuit of Figure 7.15 is configured for an input instruction. Therefore, the
RAM handshaking circuit must wait for a request from the input FIFO (the third input
to the c-element) before proceeding. The input FIFO is actually a self-timed pipeline,
the output of which feeds the RAM handshaking input. There are several timing cases
to consider: If the off-chip source requests an input transfer at some point before the
impending processor input instruction, the Regi_IN signal is raised. Assuming the last
data input was successfully transferred to the second FIFO register, then Acki IN will
be raised and the new data word will be stored in the first FIFO register. If the last
data input is still in the first register, the FIFO is full (implying that the request is two
input instructions early) and the Acki_IN signal remains low until there is space. When
Acki_IN is raised, then the reqi_IN P signal is raised to signal the RAM handshake circuit
that new input data is ready. During the actual input instruction, acki_IN P is then raised
clocking the data into the second FIFO register which feeds the RAM.

In the case where the processor reaches an input instruction before there has
been a request on the input port, the acki-ACC signal stays low in the absence of the
reqi IN P signal. When the off-chip source finally raises Reqi [N, the input data will
ripple through the FIFO, raising reqi_IN P and allowing the processor to proceed. This
in turn raises acki_ACC and clocks the data into the second FIFO register where it is
supplied to the RAM input. The FIFO arrangement allows an input generator to run

out of phase with the processor input instructions which consume the input data. In the
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actual circuit, the configuration of the RAM handshake circuit must be changed during

normal instructions so that it does not wait for input port requests before proceeding.

Iram DVram
RAM a v
HS

acki_ACC €

regi ACC > i
YC\ @ql —> reqi B

< acki B
(chip boundary) reqi_INP
Regi IN >
HS4
Acki IN <
- acki_INP

N
0> M
y / WRITE input MUX

Figure 7.15: Simplified drawing of the Input Port.

Output Instruction

The output instruction timing is the dual of the input timing described above
and a simplified drawing of the FIFO and associated handshaking is shown in Figure 7.16.
Where the input port acts as another source to the RAM, fhe output port works in parallel
with the RAM itself, sending out a data word during a RAM operation. The parallelism
comes from the fact that the sources for writing into the RAM are the same for writing
off-chip. When the acki_ACC signal rises at the beginning of an output instruction, valid
data is ready at the inputs to the RAM and output FIFO. The right-most c-element
of the RAM handshaking is then triggered to initiate a RAM operation. During an
output instruction, another c-element is placed in parallel with the RAM handshaking
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to simultaneously trigger the output FIFQ. Analogous to the Iram signal, the rego_oreg
clocks data into the first FIFO register. It also sends a request to the HS4 circuit associated
with the second FIFO register. Assuming that the off-chip destination is ready to receive
another data word, Reqo.OUT is raised and the second FIFO register is clocked. The
first c-element of the RAM handshaking circuit waits for both the Iram signal and the
reqo.-oreg signal before proceeding, a requirement of the output port and RAM working
in parallel. The skeletal circuit for the RAM handshaking during an output instruction is
really identical to the handshaking circuit for a stage with two destinations as shown in
Figure 4.18. As with the input port, the FIFO allows the output destination circuitry to

operate out of phase with the output instructions in the DSP program.

 Fro ——

/ OUT_BUS
< \//////////////////////////
(chip baundary)
reqo_orz{
Rego_OUT —
HS4 acko oreg
Acko_OUT >
A
acki_ACC ¢
regi_ACC >

C @" regi_ B

< acki B

L RAM J
HS

Figure 7.16: Simplified drawing of the OQutput Port.
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FIFO Delays

There is a danger in the FIFO connections shown for the input and output ports.
Along with the accompanying HS4 circuit, the input and output registers form a single
stage in a self-timed pipeline. The absence of a completion signal on a simple D-register
necessitates the use of some other method for ensuring that the register outputs are valid.
In the DSP design, a “dummy” register (regDV) delay is used in several locations. This
was shown in Figure 7.13 where is was used in lew of a completion signal on control signal
registers.

Referring again to Figure 7.15, the input FIFO is like a self-timed stage containing
no computation (DCVSL) logic. The first register is clocked on Acki_IN and its function is
the same as the input register on any self-timed stage. In the absence of any computation,
the output of the second c-element of the HS4 circuit is sent directly out as the output
request rather than the I signal for a DCVSL circuit. Because the second register in the
FIFO is clocked by the output acknowledge signal, one must ensure that the first register
outputs are settled before clocking the second register. Placing a regDV cell in series with
the regi_INP signal accomplishes this.

For the output port in Figure 7.16, the output registers in the FIFO correspond to
computation circuits in a normal self-timed stage. The first register oreg; works in parallel
with the RAM and the signal rego.oreg is its “I” signal. To ensure that its outputs are
settled a regDV circuit is placed in series with rego_oreg to generate a completion signal
for the register. Finally, since oregs is clocked by Reqo-OUT, and the request signals when
data is valid on the output pins, another regDV is placed in series with it to ensure that

the register outputs are settled before an off-chip device latches the data.

4.4 RAM Handshaking

As shown in the last sub-section, the I/O handshaking is integrated with the
RAM (or first stage of the datapath pipeline) handshaking. The combination of the
different functions makes the RAM handshake circuit (RAMHS) the most complicated in
the DSP. A diagram showing the complete circuit is given in Figure 7.17. The task of
properly initializing the circuitry complicates things slightly and that is discussed below.
The figure combines the simplified drawings for the input and output ports. However,

there is means for selecting whether the I/O circuitry is activated or not. Also, there is a
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4-cycle handshake interface to the controller.

In its simplest configuration the RAMHS circuit receives a request from the
controller via regi_A and performs a RAM operation when the datapath is ready. The
RAM is written from the feedback registers from the read port. Typically however, the
RAM is written from the Accumulator in which case the reqi_A CC must be examined also.
The configuration is controlled by the WRSEL?2 signal in the diagram.

The OUT"’ signal is asserted when the output port is active and the IN’ signal
is asserted when the input port is active. When the signals are Low , the processor just
continues with a normal RAM operation without waiting for the ports. The method of
de-selecting an input to a c-element is a little different than a typical logic gate. For
example, to make a two-input OR gate transparent to one input, the other input is just
set Low . For a two-input c-element however, to make the output follow one input, the
other input must always be the same state as the first input. Examining the input port
connection, the first c-element receives reqi_ACC, Tread, and regi_INP. If the instruction is
not inputting data, (IN’ Low ) then a MUX switches the regi_INP input to the c-element
to reqi_ACC. That shorts two of the c-element inputs which effectively just collapses them
into a single input. Similarly, on the output port side, one of the c-element inputs is driven
by either Tego-oreg or reqi-ACC depending on the state of the OUT” signal.

RAM Input MUXes

The RAM input MUXes choose whether the RAM is written from the local
feedback loop, the Accumulator, or the Input port. The location of these MUXes however,
is such that it violates the model for a typical self-timed system as shown in Figure 4.1.
Specifically, the MUXes are between the storage register for the stage and the computation
block. The RAM is the computation block and the storage register is actually split between
several locations (hence the MUXes). One assumption made for the datapath self-timed
blocks is that the outputé of the the storage register for a stage are settled before the stage
begins computation, as dictated by the DCVSL logic. The RAM input registers reside at
various locations on the chip and they are separated from the RAM by long wiring busses
and the MUXes themselves. In order to accommodate this architecture, the acki_ ACC
signal is passed through all of the RAM input MUXes so that it sees the same delay as the
data from the registers. This is shown symbolically in Figure 7.17. In the actual circuit,
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an extra MUX cell is placed on each MUX with its two inputs shorted together so that
the output follows the input in spite of the MUX control signal. The acki_ACC signal is
routed through the cascade of extra MUX cells and the signal at the end of the chain is
denoted DVace.

The RAM and CROM are operated concurrently to generate both a variable
and constant for the multiplier in the next pipeline stage. Therefore, the Iyeqq and Ierom
signals are identical. The WE signal enables the write operation in the RAM (It is always
read). To form the completion signal for the stage, the DV signals from both the RAM
and CROM are fed to a c-element.

Initialization

'The existence of both pipelining and feedback in the datapath requires that
initialization of the handshaking circuits be performed in a special way. In the section
describing different c-element designs, it was stated that the ability to either set or reset
a c-element output was desirable for initialization. The ability to set a c-element output
HIGH or LOW during Reset, allows the designer to place the set of handshaking stages
in a processor into a specific state. For a simple asynchronous pipeline, it is normally
sufficient to just clear all of the c-elements. Upon start-up, the pipeline will get filled - the
later stages just waiting for an ini)ut request before doing anything. In the DSP design
presented in this chapter however, there is a feedback path from the Accumulator to the
RAM. If the initial state chosen for all of the handshake stages was such that they were
all cleared, then the operation of the chip would get “stuck” at the RAM because it would
wait for a request from the Accumulator before proceeding (and there is no data that far
down in the pipeline upon initialization). The proper initialization involves selecting a
state that prevents the lockup. By initially setting acknowledge signals HIGH in stages of
the pipeline that follow the RAM, the data will fill the pipeline normally.

In the early stages of the design of the DSP, a full set of c-elements that could be
initialized HIGH or LOW was not available. Therefore, a different but equivalent approach
was taken for performing the correct initialization of the datapath handshaking circuits.
Referring again to Figure 7.17, the circuit configuration was actually made alterable.
Rather than setting a specific state upon initialization, all of the c-elements on the chip
are cleared with the Reset pulse. In the schematic, the register generating WRSEL’ is also
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cleared. This in turn sets WRSEL2 Low which changes the position of two MUXes in
the circuit. When WRSEL2 is Low , the RAM handshake circuits ignores requests from
the Accumulator (remember, shorting two c-element inputs collapses them into a single
input) and also allows the acki_ACC signal to follow the reqi_ ACC signal. After the first
handshake cycle in the Accumulator stage, the WRSEL?2 signal gets set HIGH and remains
that way until the chip is powered down. With WRSEL2 HIGH , the circuit is configured

normally as explained in the sections above.

Control Signal Interface

The absence of handshaking between the instruction pipeline and the datapath
handshake circuits requires the control signals to be interfaced more carefully. The IN
and OUT control signals shown in Figure 7.17 determine the configuration of the circuit
for input and output instructions. For the handshaking to oﬁera.te correctly, the circuit
must be configured between instructions. If the IN and OUT signals are taken from
ctl_D in the instruction pipeline (clocked by acki_ACC), the re-configuration would be
too late since the RAM handshake circuit would have already received an input request.
The IN,0UT signals are taken therefore from the preceding stage, ctl.C in the pipeline.
Taken from there however, they could change state while the RAM handshaking is still
active in a handshake cycle. Therefore, several latches are added as shown at the bottom
of the schematic. The IN,OUT signals are fed to latches which are clocked by CTL_CK
which rises at the end a any given handshake cycle in the RAM. This occurs when both
acki_ACC and DVacc have gone LOW . by strobing the control signals at a time between
handshake cycles, the circuit configuration can be changed without causing any spurious
signal generation.

Note that the OR gate generating WRSEL2 in the schematic is a holdover from a
previous design and while it exists in the circuit, its function is extraneous since WRSEL’

is always HIGH after initialization.

4.5 Multiplier,Shifter Handshaking

The second stage of the datapath pipeline contains the multiplier and barrel
shifter. Either one of the cells may be used during and instruction but not both. Since one
of two destinations is chosen from a single source (the RAM and CROM), the handshaking
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circuit is essentially that for a demultiplexer stage as shown in Figure 4.20. The control
signal T in the figure determines which destination is chosen and in effect, it re-configures
the handshake circuit into one of two states. When T is HIGH , the multiplier is selected.
A more detailed schematic of the actual circuit (hs_demuz.mag) is shown in Figure 7.18.
MAGIC subcell names are shown. Signal names ending in “buf”, are just buffered outputs
that are sent out to pads for testing. They are not integral to the functioning of the DSP.
The table below maps the signal label names in the handshaking cell to the names used
in the block diagram of the DSP.

hs.demux | Corresponding

label Signal

reqi reqi B

acki acki_B
T ALUSEL
IA Ibsh
IB Imult

ackoAbar acki.Clbar
ackoBbar acki.C2bar
acki2 clock for ctl.B reg.

The delay in the hs.demuz circuit is necessary again because there is no handshaking
with the controller. The acki signal of the circuit clocks the B-register the output of
which is the ALUSEL signal that determines the state of the MUXes in the latter part of
the handshake circuit. Since the control register generates no completion signal, the delay

ensures that the state of the MUXes is determined before the request propagates to them.

4.6 ALU Handshaking

After the data is split and applied to either the barrel shifter or the multiplier,
it is sent to the ALU. The corresponding handshake circuit must deal with requests from
either the shifter or multiplier depending on the value of the ALUSEL control signal.
Similarly, the data outputs from the shifter and multiplier are sent to a 2-input MUX, the
output of which feeds the ALU input. Nominally, the 2-input MUX handshaking should
be used here and it was shown in Figure 4.19. In the actual implementation, a question
arises about what node should be interpreted as the Acki signal. Having two sources of

requests, there are two individual acknowledge signals. The output of the MUX feeding
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Figure 7.18: Detailed drawing of the handshake circuit used for the multiplier and barrel
shifter.
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the second c-element and parenthetically labeled ack: in Figure 4.19 was originally chosen
as the acknowledge signal for the ALU stage, clocking the control C-register.

The absence of handshaking for the control signals again caused a problem to
arise in the ALU handshaking circuit. When the circuit of Figure 4.19 was employed
and the ack? signal taken from the node described above, there were situations where a
double acknowledgment pulse was generated. The T signal (ALUSEL) was taken from
the output of the B-register in the control pipeline. This was done so that its state would
be determined and the MUXes in the handshaking circuit settled before requests came to
the input. In the case where the acko signal is delayed for some reason (such as during an
input or output instruction),'a,n input request will be queued in the MUX handshaking
circuit. After the delay time, there can be an acki pulse, followed by a change in the
ALUSEL signal, followed by a duplicate acki pulse. The effect comes from changing the
state of the MUXes in the handshaking circuit at the incorrect time. If the ALUSEL
signal was controlled by handshaking, then the MUXes could be set up properly to avoid
the problem, although the efficiency of the circuit would suffer because ALUSEL would
have to settle before any da.ta,path handshaking could occur.

It was observed that the de-selected cell in the second stage of the datapath (either
the shifter or multiplier), sits in pre-charge state while waiting for its next operation. This
translates to having a Low DV signal and therefore no request to the ALU handshaking.
Under the condition that only a single request of the pair is HIGH at any time, the ALU
handshaking circuit can be simplified. The detailed diagram of the actual circuitry used
is shown in Figure 7.19. Again, signal names ending in “buf”, are just buffered outputs
that are sent out to pads for testing. Rather than having separate c-elements for each
request form the preceding stage, the two are collapsed into a single c-element having the
input request multiplexed. The two acki signals are now the same node and there is no
ambiguity in its generation or labeling. Note that the simplification depends on having
only one of the input requests cycling at a time. The original circuit allowed the de-
selected request to cycle by making its c-element transparent. The actual circuit is closer
to a simple HS4 circuit with two requests multiplexed at the input. The table below maps

the signal label names in the handshaking cell to the names used in the block diagram of
the DSP.
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hs_mux Corresponding
label Signal
reqiA req:.C'1 (DVbsh)
regiB | reqi-.C2 (DVmult)
ackiAbar acki_Clbar
ackiBbar acki_C2bar

ackz ackialu
T ALUSEL
I Ialu

acko acki_ ACC

For clarification, a diagram showing the combined handshaking circuitry of the
shifter, multiplier and ALU is shown in Figure 7.20 with the global signal labels.

5. Global Placement and Routing

The construction of the DSP chip contains macrocells as described in Chapter 6
along with the handshaking circuits discussed above. Each handshake circuit was made
as a separate cell and the global routing and placement was performed with interactive
floorplanning tool of the LAGER system [72, 73, 74]. Chip size not being an large factor in
the experimental DSP design, little attention was paid to doing efficient floorplanning. In
fact, there was some interest in having a poor floorplan in order to exploit the self-timed
behavior and elimination of clock signals that might be corrupted in a bad layout. While
the handshake signal wires were controlled more carefully (to avoid extra loading that can
occur when signal wires are routed completely automatically), no other attention was paid
to wire lengths or cell placement other than to avoid a gross chip size.

The first trial layout indicated that a layout problem was present. In Chapter 4,
an assumption was made that the Acki signal, which clocks the data input register to
a self-timed stage, caused the data at the output of the register to be valid before the
corresponding I signal of that stage went HIGH to allow the DCVSL logic to evaluate.
The placement of the handshaking circuits was done in a way that they were in proximity
to the datapath macrocells that they control, however the original floorplan had all of
the control signal pipeline registers in one secti;)n that was far from the datapath. In the
DSP design, the same acknowledgment signal that clocks the data registers between stages
clocks the instruction pipeline registers. The assumption above was not adhered to in the
original floorplan because the delay of the long wires between the handshake circuits and

the instruction pipeline registers caused the control signals to arrive late. Again, the use
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Figure 7.19: Detailed drawing of the handshake circuit used for the ALU.
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of handshaking between the control registers and the datapath cells would have eliminated
the problem although the long delays would degrade the overall efficiency of the circuit.

The interactive nature of the floorplanning tool along with the automatic routing
of the system allowed a change to the original floorplan within hours of observing the
problem. It did point out however that assumptions made about the operation of a
self-timed circuit must be followed at all levels of the circuit and layout of the chip. In
the second and final floorplan, the control registers were distributed around the chip so
that they were in closer proximity to the actual datapath macrocells. Because the data
input registers of each stage are built into the datapath macrocells, there was no problem
meeting the assumption on their settling in time.

The RAM write-input MUXes are each a separate (tilable) macrocell as are the
registers for the instruction pipeline and RAM feedback path. The overall chip area would
have been smaller if these had been assembled as a datapath to cut down on the large
amount of routing required between them. The floorplan of the DSP chip is shown in

Figure 7.21. A micro-photograph of the actual chip is shown in Figure 7.22.

6. Chip Level Simulation

The system level simulations for the DSP chip took place in two parts. Before
transistor level design began and during its early stages, the THOR behavioral simulator
was used to perform timing analysis and verification on the self-timed DSP. A model
was written for each of the datapath macrocells and for smaller elements making up the
handshaking circuits - such as c-elements,MUXes,gates, etc. The THOR simulator models
the latency of a cell as a bulk delay at the output of the cell. This was not accurate
for the macrocells because the pre-charge time for a cell is typically much shorter than
the evaluate time. A small modification to the program was made so that the self-shed()
function could be used for any model. Typically used for a generator of some sort, the
function allows the model to be placed into the event schedule so that it is called again
after a certain number of time units. Using the function and several state variables in the
model that served as flags, different pre-charge and evaluate delays could be implemented.
The THOR simulations were able to verify the basic timing of the system however, the
modeling was not accurately representing any of the wiring delays of an actual layout

and hence it did not catch some of the problems encountered at a later stage such as the
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Figure 7.21: Plot of the DSP chip floorplan.
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Figure 7.22: Micro-photograph of the DSP chip.
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proximity problem of the instruction pipeline registers mentioned in the last section.
After layout, the IRSIM simulator was employed for chip level simulations. This
simulator uses a simple RC model for each transistor and includes wiring delays. It should
be stated that due to the existence of feedback in self-timed handshaking circuits, some
switch level simulators are unusable. Without timing information, a simulator will iterate
forever trying to reach a settled circuit state in this type of circuitry. Results from some

of the simulations are compared to measured results in the next chapter.

7. Summary

Using the self-timed datapath macrocells described in Chapter 6, and handshak-
ing realized with the methods presented in Chapter 4, a complete signal processor was
constructed. The processor contains three levels of pipelining, each controlled by a sepa-
rate handshake circuit. The Data Stationary architecture was employed because it more
closely fits the self-timed paradigm where control signals move along with the data. The
instruction pipeline was clocked by the same acknowledge signals as the data registers in
the datapath, however there was no completion information generated by the instruction
registers. The absence of handshaking between the control signal registers and the datap-
ath cells caused several timing problems to appear, however they were eliminated by the
use of several extra delay circuits and the matching characteristics of the IC. An interac-
tive floorplanner was used to do the final assembly of the cells and perform routing. Chip
level simulations were performed on the extracted chip with an event driven simulator

which also is able to model the delay of each device using a simple RC model.
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Chapter 8

Experimental Results

In the last chapter, the design of a complete asynchronous programmable Dig- .
ital Signal Processor chip was presented. The chip can be programmed via the internal
program ROM masks. By using the assembler described, several test programs were de-
veloped. In order to observe experimental results, a total of three versions of the DSP chip
were fabricated, each with a different program and functionality. This chapter discusses
the functionality of the three programs and presents experimental results from the actual
chips.

1. DSP Test Chips

Each of the three test chips described below differ only in the program ROM
contents. Two of the chips implement filtering functions, while the third chip runs through
an “exerciser” program which tests all of the different datapath and control functions of
the DSP. The coefficient CROM contents were specified so as to contain the constants

necessary for all three chips.

1.1 CHIP1

The program contained in CHIP1 implements a simple 16-tap FIR filter as shown
in the 2-domain network in Figure 8.1. The filter was designed with an equal-ripple lowpass
response where the passband ripple is 0.25dB, the stopband rejection is nominally —40dB,
and the transition band is between 0.175f; and 0.300f;. The FILSYN program was utilized
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to calculate the coefficients of the filter as shown below. (A 20kHz sample rate was

nominally chosen.)

del del 1 del 15
-1 -1 -1 -1 -1 -

cls

> out

Figure 8.1: Network for 16-tap FIR filter implemented in CHIP1.

finite impulse response (fir)
linear phase digital filter design

LowPass Filter Design for CHIP1 testchip
remez exchange algorithm
bandpass filter
filter length = 15
filter length determined by approximation
ssss3 impulse response ssses

sampling rate = 2.0000000d+04 hz

function no. O

decimal octal
h( 1) = -9.8465988d-03 = h( 15) = -0.005025164100
h( 2) = 1.5204853d-02 = h( 14) = 0.007621670700
h( 3) = 3.5358451d-02 = h( 13) = 0.022065003000
h( 4) = -1.8399691d-02 = h( 12) = -0.011327274600
h( 5) = -8.4882788d-02 = h( 11) = -0.053353407000
h( 6) = 2.5237037d-02 = h( 10) = 0.014727571600
h( 7) = 3.1088129d-01 = h( 9) = 0.237127524000
h( 8) = 4.7269809d-01 = h( 8) = 0.362012760000
vish to see this plotted: y/n
>n
band 1 band 2 band
lower band edge 0. 0.300000012
upper band edge 0.174999997 0.500000000
desired value 1.000000000 0.
weighting 1.000000000 1.439011693
deviation 0.019803245 0.013761698
deviation in db 0.344062835 -37.226558685
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The filter synthesis produced a 15-tap filter and the impulse response is symmet-

rical to achieve linear phase. When the filter was coded in DSP assembly code, a mistake

was made where the number of taps was actually written to be 16, with the 8th coefficient
repeated. The coefficients were truncated to 16-bits so that they would fit into the CROM

and they are shown below in 2’s complement hexidecimal format:

Coefficients for fir filter as described in “fir_design2”
(scaled and truncated to 16bits)

LovwPass Filter Design for CHIP1 testchip

cl
c2
c3
c4
cSs
c6
c7
c8

= Oxfec4 = ci16
= 0x01e8 = cib
= 0x0470 = ci4
= Oxfdbi = c13
= O0xf569 = c12
= 0x032a = ecil
= 0x2705 = c10
=z 0x3b54 = c9

The error in the frequency response caused by repeating the largest tap weight

was large and the responses of the original filter (length 15) and the length 16 filter are

shown in Figure 8.2. In both cases, the coefficient truncation effects from having a 16-bit
wordlength in the CROM are included.

The program for the FIR filter written in DSP assembly code is shown next:

/*

s FILTER ASSEMBLY CODE FOR FIR Filter in "“fir_design2"
* (using multiplier)

.

./

/

Input is stored in RAM location O1.
A1l Coefficients are in CROM.

State Variables: Ram Location 0-15 are locations for delay line
Coefficients: CROM locations 0-7 are eight required coefficients.
Since the filter is linear phase, the impulse response is mirrored.

DECL
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

del_O
del_1
del_.2
del_3
del_4
del_5
del_6
del 7
del_8
del_ 9
del_10
del_11

= O
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FIR Filter Responsas
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Figure 8.2: Frequency Responses of the original design 15-tap FIR filter and the 16-tap

version after coefficient truncation to 16 bits.
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EQU del_12 12
EQU del_13 13
EQU del_ 14 14
EQU del_15 15

EQU el o
EQU c2 1
EQU c3 2
EQU ca 3
EQU c5 4
EQU c6 5
EQU <7 8
EQU c8 7

START

init: acc = 0;
(del_O=acc) = 0;
(del_1=acc) = 0;
(del_2=acc) = 0;
(del_3=acc) = 0;
(del_4=acc) = 0;
(del_Ssacc) = 0;
(del_6=acc) = 0;
(del_7=acc) = 0;
(del_8=acec) = 0;
(del_9=acc) = 0;
(del_10=acc) = 0;
(del_1i=acc) = 0;
(del_12=acc) = 0;
(del_13=acc) = 0;
(del_14=acc) = 0;
(del_15=acc) = 0;
ace = acc;
acc 3 acc;

sample: acc = 0 | del_1Ssc1, (del_O0 = in);

acc = acc + (del_15=del_14)*c2;
acc = acc + (del_1i4=del_13)sc3;
acec = acc + (del_13=del_12)*c4;
acc = acc + (del_12=del_11)sc5;
acc a2 acc + (del_1i=del_10)%c6;
acc = acc + (del_10=del_9)*c7;
acc = acc + (del_9=del_8)#c8;
acc = acc + (del_8=del_7)=c8;
acc = acc + (del_7=del_6)scT7;
acc = acc + (del_6=del_5)=c6;
acc = acc + (del_5=del_4)=c5;
acc = acc + (del_4=del_3)=*c4;
acc = acc + (del_3=del_2)*c3;
acc = acc + (del_2=del_1)sc2;
acc = acc + (del_i=del_0)s*cl;
(out=acec) = acc;

goto sample;

Each instruction in the core of the program implements a multiplication, addi-
tion, and data move in order to do a single tap of the filter. The code above the label
“sample:” performs initialization by clearing the delay line. It is executed only a once.
The last instruction of the loop is a NOP provided just to send the Accumulator value to
the output port.
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1.2 CHIP2

The program contained in CHIP2 implements a 8-pole bandpass IIR filter as
shown in the z-domain network in Figure 8.3. The filter was designed with an equal-
ripple bandpass response where the passband ripple is 0.25d B, the stopband rejection is
nominally —30dB, the upper transition band is between 0.15f, and 0.225f;, and the lower
transition band is from 0.0025f, to 0.015f,. The FILSYN program was used to calculate

the poles/zeros of the filter as shown below. (A 20k H z sample rate was nominally chosen)

general filter synthesis program

IIR Bandpass Filter Design for CHIP2 (0.25dB ripple)

band-pass filter
equal ripple pass band
bandedge loss

preshifted lower passband edge frequency =
lower passband edge frequency
upper passband edge frequency

sampling frequency

equal minima stop band with edge frequency
equal minima stop band with edge frequency

required stop band loss

multiplicity of zero at zero
multiplicity of zero at infinity

number of finite transmission zero pairs

overall filter degree
>
command :
> scal
12: 1 or 100: 2 scaling
>1
command :
> trun

do you want truncation: O or rounding: 1

> 1

enter $ of significant bits
> 16

command :

> pri

digital filter transfer function
IIR Bandpass Filter Design for CHIP2 (0.25dB ripple)

(bilinear z transform used)
filter type : bandpass

sampling frequency =z  2.0000000d+04 hz.
passband edge frequency = 3.0000000d+02 hz.
passband edge frequency = 3.0000000d+03 hz.

0.2500 db.
2.7766309d+02 hz.
3.00000004+02 hz.
3.0000000d+03 hz.
2.0000000d+04 hz.
1.38754444d+02 hz.
5.0286832d+03 hz.
30.00 db.

. MO O

h(z) in factored form. coefficients of z++(~1) and z#*(-2) printed

*ss* numerator ssss multiplier = 5.6539917d-01

-1.9030762d-01
-1.99942024+00
~1.99720764+00

1.2055817d+00

sesss denominator ss*s

=1.1237183d+00
-9.91073614-01
-1.83671574+00
~-1.9683633d+00

-

O m~N»

.0000000d+00
.00000004+00
.0000000d+00
.00000004+00

.5388794d-01
.9769897d-01
.5334778d-01
.7622681d-01
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scale factors

3.4770203d-01
9.44488534-01
9.4606018d-01
1.9398499d-01

8-Pole IIR Filter

Out

Z-l
_F {8 Idlo
Figure 8.3: Network for 8-pole IIR filter implemented in CHIP1.

The exact coefficients used for the filter are shown in Table VI. Coefficients
greater in magnitude than 1.0 are implemented as an addition plus the multiplication by
the fractional part. Binary values of “n.a.” mean that the coefficient can be implemented
exactly with a single addition and shift (using the barrel shifter).

The frequency response of the IIR filter was calculated using a digital network
analysis program and the result is shown in Figure 8.4. The passband of the filter is shown
in further detail in Figure 8.5.

The assembly code for the IIR filter was given as an example in Chapter 7 in the

section describing the assembler (Section 7.1.3). Some further scaling and re-arrangement
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Table VI Coefficients for IIR Filter

on CHIP2
Stage | Coefficient | Decimal | 16-bit Binary
1 al 0.50000 n.a.
1 al 1.12371 | 1 + 0x0fd6
1 a2 -0.45389 OxcHe8
1 bl -0.19031 Oxe7ad
1 b2 1.00000 n.a.
2 blb -1.99942 | -1 - 0x8013
2 b2b’ 1.00000 n.a.
2 a0b 0.50000 n.a.
2 alb 0.99107 0x7edb
2 a2b -0.79770 0x99e6
3 blc -1.99721 | -1 - 0x805¢c
3 b2c 1.00000 n.a.
3 alc | 1.83672 | 1+ 0x6b19
3 a2c -0.85335 0x92c6
4 b0d 0.25000 n.a.
4 bld 0.30140 0x2694
4 b2d 0.25000 n.a.
4 ald 1.96835 | 1 + 0x7bf3
4

a2d -0.97623 0x8306
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Figure 8.4: Frequency Response of 8-pole Bandpass IIR filter.
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Figure 8.5: Passband of 8-pole Bandpass IIR filter.
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of the stages was done to try to maximize the dynamic range of the filter. When scaling
is done by a power of two, then simple shifting was used in the assembly code rather than
multiplication. The program timing is interesting beca,us;e, since the datapath operations
switch back and forth between shifts and multiplies, the instruction cycle times switch

between short and long periods since a multiplication requires more time.

1.3 CHIP3

The program in CHIP3 runs through a series of calculations that test the various
functions available in the datapath and controller. Besides testing all of the mathematical
functions, the program reads in several numbers from the input port and performs tests on
them to determine when a branch condition is met. This simulates the control functionality
of the DSP. The assembly code for the program is shown below. Numbers have been added
to the instructions for easier referencing.

/* Exerciser program for datapathi */

DECL
/* locations in ram =/
EQU zZero (o]
EQU one 1
EQU mask 2
EQU raml 3
EQU ram2 4
EQU ram3 5
EQU ramé4 6
EQU ram§ 7
EQU ramé 8
EQU ram? 9
EQU ram8 10
EQU onebar 16
/* locations in crom =/
EQU crom0 20 /s 3/4 +/
EQU cromli 21 /* -3/4 «/
EQU crom2 22 /+ 5/8 ¢/
EQU crom3 23 /s -11/16 s/
/% condition codes */
EQU uncond O
EQU BZ 1
EQU BZ_bar 2
EQU sign 3
START
1 IRIT: ACC = 03
/* clear ram locations #/
2 (zero=acc) = 0;
3 (rami=acc) = 0;
4 (ram2=acc) = 0;
[ (ram3=acc) = 0;
6 (ram4=acec) = 0;
7 (ramS=acc) = 0;
8 (ramé=acc) = 0;
9 (ram7=acc) = 0;
10 (ram8=acc) = 0;
/* load constants into ram from input port */
11 LOAD: acc = acc,(one=in);
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12
14
15
16

18
19

20
21
22

24
25
26
27
28
29
30
31
32

36
37

39

41
42
13
414
45
46
47
48
49
50

begin:
/*

acc = acc, (mask=in);
acc = acc | rami;
(onabar=1_acc) = 0 | ~one;

acc = 0;

counting, adding */

acc = acc + one;

acc = acc + one,(ram2=in);
acc = acc + one;
(ramisl_acc) = acc + one;

/* masking and control ¢/

printi:
skipi:

print2:
skip2:

print3:
skip3:

print4:

acc = 0 | ram2;

acc = acc & ona;

acc = acc;

if(BZ) goto printi;

acc = 0 | (out=onebar);
goto skipi;

acc = 0 | (out=one);
acc = 0 | ram2;

acc = acc & one<<i;

acc = acc;

acc = acc;

if(BZ) goto print2;
(out=1_acc) = 0 | onebar;
goto skip2; .
(out=1_acc) = 0 | ona;
acc = 0 | ram2;

acc = acc & one<<2;

acc = acc;

acc = acc;

if(BZ) goto print3;
(out=1_acc) = 0 | onebar;
goto skip3;

(out=1l_acc) = 0 | one;
acc = 0 | ram2;

acec = acc & ona<<3;

ace = acc;

acc = acc;

if(BZ) goto print4;
(out=1_acc) = 0 | onebar;
goto skip4;

(out=1_acc) = 0 | one;

/* branch on zero */

skip4:

again:

skipb:

acc = acc,(ramd=in);

acc = acc;

acc = acc;

acc = 0 | ramq;
(out=1_acc) = acc ~ one;
acc = acc;

acc = acc;

if(BZ) goto skipS;

goto again;

(out=1_acc) = 0 | onebar;

/* branch on sign */

again2:

skip6:

acc = acc,{ramd=in);

acc = acc;

acc = ace;

acc = 0 | ramd<<1§;
(out=acc) = acc - one<<is;
if(sign) goto skip6;

goto again2;

acec = 0 | (out=onebar);

/* logical functions s/

(out=1_acc) = 0 + one;
(out=1_acc) = acc | raml;
(out=1_acc) = 0 + “one;
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72 (out=l_acc) = 0 | one;

73 (out=1_acc) = acc | onebar;
74 (out=1_acc) = acc * one;
75 (out=1_acc) = acc & one;

/* multiply */

76 acc = 0;

77 acc = acc, (ram6=in);

78 acc = acc,(ram7=in);

79 acc = acc;

80 ace = 0 | (ram8=ram6)<<15;
81 (out=acc) = 0 + ram7 » T;

82 (outmacc) = 0 + ram? » crom0;
83 (out=acc) = 0 + ram8<<15;

84 goto begin;

The functions that this test program performs will now be described in more
detail. The first instructions following the initialization code (starting with Instruction
11) load in several constants to memory. The RAM location one receives the first constant
which is supposed to be the value 0x0001 supplied by the user. The-second value written
to mask is not used in this version of the program so it is not relevant. After reading the
constants, the 1’s complement of the constant one is formed and stored in location onebar.
The correct value is Oxfffe. The constant one is used for masking bits in the control section
of the program. Both one and onebar are used as a crude signalling mechanism for when
the program detects certain conditions. Thus, in the code that follows, often one is sent
to the output port when a condition code is TRUE and onebar is sent to the output port
when the same code is FALSE.

After the label “begin”, some simple addition is performed. The accumulator is
cleared and then one is added four times. The result is stored in RAM location ram4.
During the counting, another input is read from the user into position ram2. This is
meant to be an arbitrary number whose 4 LSB’s are examined in the following test.

The masking and control section test uses the test value in ram2. The idea
behind this section of code is the following: Examine the test number bit by bit and
output onebar if the bit is a 1 and one if the bit is a 0. The constant one is used as a mask
and the barrel shifter is employed to shift the single 1 in one to the desired bit location.

For each bit test, the following instructions are executed:
1. Load Accumulator with test input.
2. AND Accumulator with mask. (one shifted left by n places)

3. Wait two instruction cycles for ACC to be valid.
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4. if(ACC == 0) send out one, else send out onebar.

As an example, if tﬁe test input is 0x0004 ( 0100 in binary), then the output port values
should consecutively be 0x0001, 0x0001, Oxfffe, 0x0001 from the four bit tests. The code
actually contains a mistake however. Note that there is only a single NOP instruction in
the section testing the first bit. Instruction 22 should be followed by another NOP before
the Accumulator condition is checked. The two NOPs are necessary due to the pipeline
delays in the datapath and the way the Data Stationary code is written. The effect of
the missing NOP is that the masking is not performed. Instead, the test input value itself
determines whether the BZ (Branch on Zero) condition is met. If the test input has any
bit which is non-zero, then the condition is not met and the value Oxfffe is sent out.

The next section of code begins with Instruction 51. This section tests branching
also. A test value is read into location ram4 and then it is decremented until the BZ
(branch on zero) condition is met. Then the program branches out of the loop and
sends onebar to the output port. After each decrement, the output port receives the
value in the accumulator. Notice that for the test to be correct, two NOPs are inserted
between the decrement instruction and the BZ test to compensate for the pipeline delays
of the datapath. For an input number n read into ram4, the correct outputs will be
n—-1,n-2,---,0, fffe, where the last number is onebar which signals that the branch
has occurred.

The next section of code begins with instruction 61. This tests the branch on
sign condition. As with the last section, a test input number is read into ram4. The value
is loaded into the accumulator (high order bits this time). The number is decremented
until it becomes negative, satisfying the branch condition and causing onebar to be sent
out. This section contains an intentional programming error and it is shown here again

for convenience:

/* branch on sign s/

61 acc = acc, (ramd=in);

62 acc = acc;

63 acc = acc;

64 acc = 0 | ram4<<1S; -

65 again2: (out=acc) = acc - ona<<15;
66 if(sign) goto skip6;

67 goto again2;

68 skip6: acc = 0 | (out=onebar);

Notice that the test to branch on sign is performed in the instruction immediately

following the decrement. This violates the rule that branch condition codes become
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valid two cycles following the instruction which reads data for the test. Enhancements
to the assembler would include warnings of this sort of mistake. As it is, the code
causes two extra decrements to occur before the fact that the Accumulator has become
negative is realized. Therefore, the correct outputs for a test input number of n are
n—-1,n-2,---,0,ffff, fffe, fffd, fffe. The number decrements until it reaches the
value fffd where it is finally recognized by the branch on sign test and the number onebar
is sent out as a signal that the condition has been met.

The section of code beginning with Instruction 69 tests the various logical func-
tions available. First, the value one (0x0001) is added into the Accumulator. It is then
OR ’d with the value in raml which is 0x0004 from the incrementing performed earlier
in Instructions 16-19. The correct result is 0x0005. The next instruction is written to
load the 1’s complement of one into the Accumulator. However, rather than using the
oR function to load the Accumulator, addition is used. This is generally not advisable
because the adder. portion of the ALU is slower than the logical section. Additionally, this
instruction caught a small bug in the assembly language/ALU implementation. Whenever
the A-input to the ALU is inverted, the C;, of the adder is set to a 1. The purpose is to
correctly implement 2’s complement subtraction. Since Instruction 71 uses the adder and
the 1’s complement function, the result is actually the same as subtraction. Therefore,
the 2’s complement of one or OxfIff is the result. The following instruction just loads the
Accumulator again with one. The Accumulator is the OR ’d with onebar to give the result
Oxffff. The Accumulator is next XOR ’d with one which has the effect of toggling the LSB
to 0 resulting in Oxfffe. Finally, the Accumulator is AND ’d with one which has the result
0x0000.

The section of code beginning with Instruction 76 tests the multiplier and data
move operations. First, two test inputs are read in from the input port. The are stored in
ram6 and ram7 locations. Instruction 80, performs a data move between locations ramé
and ram8. The next instruction multiplies ram7 with the last location read from RAM,
namely ram6. Thus, the output is the product of the two test inputs. The next output is
the product of ram7 and a coefficient from the CROM. The last instruction loads ram8
to the Accumulator and sends it to the output port. If the data move instruction works

properly, the output is identical to the first test input which was stored in ram6.
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2. Laboratory Measurements

The three DSP chips were fabricated in MOSIS 2um N-well CMOS technology.
In the design of each of the handshake circuits, extra buffers were added on the handshake
signals so that the signals could be brought out to pads without degrading the perfor-
mance. Thus, all of the handshake signals between stages of the pipeline were available
for observation. The names of the signals have a suffix “buf” added to them.

For testing the mathematical or logical operations of the chips, they were con-
nected to a digital test system that is able to both supply arbitrary input vectors and
acquire words from the output port. The acquisitions were triggered by the output port
Request. The input port Request line was driven by an external clock that ran with a
period greater than the time required for computation between samples. With this setup,
the chips run at a slower sample rate than is possible with full handshaking at the I/O
ports, but the internal computation rate is still full speed since it is completely self-timed.
Between the time that a sample is computed and the next input request comes, the chip .
just waits. (See the section in the last chapter on the RAM handshaking for a more
complete description.)

To observe timing signals and measure speed, an oscilloscope or digital signal

analyzer was used.

2.1 CHIP1 Measurements
Logical

The logical outputs from CHIP1 are shown in Table VII for a full scale (0x7fff)
input impulse. The ideal values are just the original impulse response of the FIR filter. The
discrepancy between the ideal values and the measured outputs is predicted by the chip
level simulations. In fact it is simply a consequence of the multiplier being single precision.
Since it has only a 16-bit output (for a 16x16 input), there is a finite probability that the
LSB will be in error. For the coefficients of this particular FIR filter, exactly 10 of the
multiplications have the LSB error. Hence, each of the output values are low by an amount
of 10 LSBs. The error causes a very minor shift in the frequency response. This is shown

in Figure 8.6 where the ideal and measured frequency responses are plotted.
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Table VII Impulse Response of CHIP1

Sample | Ideal | Measured

Oxfecd Oxteba
0x01e8 | 0x0lde
0x0470 { 0x0466
0xidbl | Oxida7 |
0xf559 0xf54f
0x032a | 0x0320
0x2705 | 0x26fb |
0x3b54 | 0x3b4a
0x3b54 | 0x3bda
10 | 0x2705 | 0x26fb
11 | 0x032a | 0x0320
12 | 0xt559 0xf541
13 | 0xfdbl Oxfda?
14 | 0x0470 | 0x0466
15 | 0x01e8 | Ox0lde
16 | Oxfecd Oxfeba
>16 | 0x0000 0xftt6

@W\IJQO‘&‘:&NH

Timing

The timing signals of CHIP1 matched the simulations well. Since the program
does a series of multiplications, the instruction rate follows the multiplication rate for all
but the last NOP instruction. This is shown in the oscilloscope trace in Figure 8.7. The
_processor is shown waiting for the Regqi IN signal to drop. The program itself is at the
first instruction (which reads the input port for a new sample) during the wait. After
Regqi_IN falls, the program begins and the various handshake signals shown pulse at the
rate determined by the throughput of the iterative multiplier. Since the multiplier takes
much longer than shift or add operation, it is will be referred to as a “slow” instruction.

At the end of the 16 multiplies that perform the FIR filtering, the last NOP
instruction just sends the result to the output port. The NOP of course is a “fast”
instruction and Figure 8.8 shows how the processor speeds up. As a comparison, the
IRSIM chip simulation results in Figure 8.9 show the same signals that are shown in the
scope traces of Figure 8.8.

The times for the fast (shift) and slow (multiplier) instructions were measured for

the entire batch of chips and average times are shown in Table VIIL. Times were measured
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Figure 8.6: Passband of 8-pole Bandpass IIR filter.
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Figure 8.7: Oscilloscope trace showing handshake signals in CHIP1 just after a new sample
arrives.
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Figure 8.8: Oscilloscope trace showing handshake signals in CHIP1 at the end of the
program loop. The fast instruction is a NOP.
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Figure 8.9: Simulation results showing the same handshake signals as measured in the
previous figure.
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at different supply voltages. Because of the compensating nature of self-timed circuitry,
the processor continues to operate at different supply voltages, however the speed changes.
The handshaking guarantees the correct sequence of events. Beyond that, the chip will

run as fast as the circuits can compute given any set of data or supply voltage.

Table VIII Average Processor Instruction Periods
MOSIS 2um N-well CMOS

Vad Shift | Multiply
3.6V | 105nsec | 440nsec
5.0V | 73nsec | 33Tnsec
7.0V | 55nsec | 260nsec

2.2 CHIP2 Measurements
Logical

As with CHIP1, the filter impulse response was measured for the IIR filter imple-
mented on CHIP2. An input pulse of 0x4000 (decimal 0.5) was used. Due to the existence
of feedback in an IIR filter, the impulse response length is infinite to within the precision
of the processor. Table IX shows the measured results of the first sixteen samples. Again
due to the multiplier LSB error, the measured values differ slightly from the ideal. Beyond
the 7th sample, the measured response starts to deviate further from the ideal. The result
was not predicted by simulation because of the limitations in the program for running
such a long time simulation. It is suspected that a form of limit-cycle behavior occurs for
the latter samples causing them to deviate from the ideal response. This is supported by
data measured further out in time from the impulse. This behavior is likely due to the

finite precision errors introduced by the multiplier.
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Table IX Impulse Response of CHIP2

Sample [ Ideal | Simulated | Measured
T [ 0x0800 | 0x071id 0x07fd__
2| 0x1782 | 0x1778 0x1778
3 0x20f4 | 0x29dd 0x29dd
4 | 0x2ef7 | 0x2e52 0x2e52
5| 0x1d23 | 0Ox1cdS8 0x1cd8
6 | Oxire2 0xf76e
7 | 0xd238 0xd190
8 | 0xc25a 0xc121
9 | Oxceb9 Oxcd7d
10 | Oxe9eb 0xe848
11 | 0xffld 0xtd0a
12 | 0x02c6 0x002¢
13 | 0xf924 0xf5e9
14 | Oxef72 Oxeb7c
15 | 0xef99 Oxeac9
16 | 0xi91b 0x1353

Timing

Figure 8.10 shows timing signals measured from CHIP2 just after a new input
sample. The timing of CHIP2 is much more interesting than for the FIR filter because the
program switches back and forth between using the multiplier and shifter. The beginning
of the IIR filter program on CHIP2 is repeated below with program counter addresses for
convenience. The scope trace shows the span between instructions 0x0d and 0x1f. Note
that all input/output instructions are executed after the last pipeline .sta.ge of the datap-
ath. The delay is necessary to output the correct Accumulator values when desired. For
consistency, the input instructions are also performed after the last pipeline stage. There-
fore, in the program below, while the assembly code shows an input instruction occurring
first, when the PC = 0x0b, the actual IN control signal (see the RAM handshaking cir-
cuit) emerges from the last stage of the instruction pipeline causing the input to be read
two instructions later. The PC value increments to 0x0d before the processor enters a
wait state for the Req_IN signal. So, the first multiplication instruction is completed
(data in ALU) and the second shift instruction is in progress (valid data sitting at shifter
output). When the Reqi_IN signal arrives, the second instruction data enters the ALU
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Figure 8.10: Oscilloscope trace showing the shifter, multiplier compute signals and
reqi-ACC in CHIP2 just after a new sample arrives.
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and the third multiply instruction will begin at the falling edge of Reqi.IN. The scope
trace picks up the action at this point. The signal Ibsh or Imult is asserted when the
instruction uses the shifter or multiplier respectively. The reqi_ACC of course cycles once

per instruction.

/#sesse beginning of IIR filter program on CHIP2 sssssse/
PC  START

00 INIT: acc = 0;
initialization code...

Ob sample: acc = 0 | del2 » a2,(input=in);

Oc acc = acc + (tmp=dell)<<i5; coeff al > 1
od acc = acc + dell = al; fractional part of al
Oe (dell=acc) = acc + input<<iS§;

of acc = acc + del2<«15;

10 acc = acc + (del2=tmp) * bl;

11 (tmpmacc) = acc;

12 acc = 0 | del4<<15;

13 acc = acc - del3<<15;

14 acc = acc + (del4=del3) * bib;

15 acc = acc + (del3=tmp)<<i§;

16 (tmp2=acc) = acc;

17 acc = 0 | del6 * a2b;

18 acc = acc + (tmp=delS) * aib;

19 (delS=acc) = acc + tmp2<<14;

1a acc = acc + del6<<is;

ib acc = acc - (dol6=tmp)<<15;

ic acc = acc + tmp * bic;

id acc = acc + del8 * a2c;

e acc = acc + (tmp=del7)<<i5;

1f (del7=acc) = acc + del7 * alc;

Figure 8.11 shows the IRSIM output from the same time span as in Figure 8.10.
Note that the program counter value leads the current instruction values of Ibsh and
Imult by two. This is because 1) in the controller, the PC value is incremented when the
current instruction ROM code becomes valid and 2) there is one pipeline delay between
the controller and shifter/multiplier. Some of the other pipeline handshaking signals are
shown in the oscilloscope trace of Figure 8.12 for the same section of code at the beginning

of a new sample period.
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Figure 8.11: Simulation results showing the same handshake signals as measured in the

previous figure.
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Figure 8.12: Oscilloscope trace showing other handshake signals in CHIP2 just after a
new sample arrives.
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2.3 CHIP3 Measurements
Logical

The digital test system was programmed to supply the required test input num-
bers for the program in CHIP3 and the outputs were acquired. In the test setup, the output
port Acknowledge signal is tied to the output Request. The output data is strobed into
the tester on the rising edge of the two signals. The input data was sent in at a constant
rate determined by a setting on the tester. The time between input samples was just cho-
sen to exceed the longest time required for the processor to do its computation between
input instructions.

All of the predicted results of the tests were observed‘ at the output port. The
mistakes in the assembly code mentioned above caused branch conditions to occur late
due to pipelining effects as predicted (This showed up in the chip simulations also). The
multiplication tests showed a single LSB error as predicted by the simulation also.

3. Interface to the Outside World

Clearly, interfacing the DSP input or output port to another self-timed device
is very simple. The handshake signals are just connected. For external clocked devices
however, a different strategy is needed. Figure 8.13 shows one way of making the con-
nections. At the input side, for a signal processing application, there is typically samples
that arrive synchronized to some sample clock. The clock is fixed for real time processors.
Connecting this clock to the Reqi_IN signal causes the transfers to occur in sync with the
sample clock, and there is no checking done to ensure that the processor is ready since the
Acki_IN signal is ignored. The user must ensure that the program execution time between
input instructions is shorter than the period ‘of the sample clock. The output port could
be hooked to a host processor which accepts interrupt signals. The Reqo-OUT signal is
tied to the interrupt pin and the acknowledge signal from the host clocks in data and is
connected to Acko.OUT. Alternately, the same sample clock could be used to clock the
register in the external device because having the FIFOs present on the DSP chip makes |
the exact time of the transfer of data after an I/O instruction unimportant as long as it
occurs before the end of a sample period. As the figure shows, there is no timing clock
required for the DSP.
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The question often arises about how to evaluate the execution time of a DSP
program when the exact instruction cycle times are not known in advance. This can be
problem in both clocked and self-timed systems when the program is data-dependent. For
example, in a signal processing program, the convergence of an adaptive filter might trigger
some other event. Since the convergence time is not known a priori, the execution time is
also unknown. For a self-timed processor, there is added uncertainty due to the different
times of instructions and their data dependency. The data dependency helps in achieving
an average execution time but it is by no means a requirement of the design. A self-timed
adder cell can easily be made to generate a data valid signal always after the worst-case
carry propagation time (the time required for using the adder in a clocked situation). As
far as the different instruction times, the user can always set an upper bound by using
worst case times for the various instructions. So, the conservative estimate for a self-timed
DSP execution time essentially matches that of a clocked processor. Beyond that, the user

may take advantage of the average times in a manner suitable to the application.

external device external device

reset

Input Output

Pont Port
o Regqi_IN
sample clock Reqo_OUT >—! Interrupt
] Acki_IN
Acko_OUT¢ Acknowledge

)-8

Figure 8.13: Interfacing the self-timed DSP to external devices.
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4. Summary

Three programs were written to test the operation of the self-timed programmable
signal processor chip. The first was a simple FIR filter which makes extensive use of the
multiplier. The second program implements an IIR filter and it combines shift and mul-
tiply operations. The third program tests various other functions of the DSP including
branch operations. The single precision output of the multiplier causes minor errors in the
response of the filter chips, however these were predicted by simulations. The IIR filter
exhibits some limit-cycle behavior which was not originally known due to limitations of
running the chip level simulator for a large number of cycles. The third chip functions
agreed with the simulations exactly.

The timing signal outputs of the self-timed DSP illustrate the differences be-
tween this type of circuit and normal clocked systems. Depending on whether a shift or
multiply operation is performed, the cycle time adjusts to the speed of the hardware being
utilized. The DSP also functions properly over a wide range of power supply voltages, the
instruction speed varying with the supply, revealing the self-compensating nature of the

circuit operation.
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Chapter 9

Conclusion

1. DSP Design

This work has demonstrated the design of a general purpose programmable Dig-
ital Signal Processing integrated circuit that has asynchronous operation via the use of
self-timed circuitry. After examining the motivation for pursuing a design of this type, the
DCVSL logic family was presented as a way of generating completion information in each
circuit. Using Signal Transition Graphs to describe the timing of each stage, handshaking
circuitry can be synthesized to ensure that timing sequence. DCVSL gates were assem-
bled to make standard datapath macrocells while handshake circuits were synthesized to
interconnect the cells for a particular DSP architecture. Finally, three versions of the
programmable DSP were fabricated and measured in the laboratory.

When this project was begun, there was virtually no previous work on self-timed
programmable circuits. While several self-timed datapath cells such as a multiplier or
divider[83] were presented, there was no circuitry that contained feedback. Additionally,
many of the procedures for synthesizing handshake circuitry that were published contained
errors or incorrect assumptions. Therefore, a great effort went into just understanding the
problems of designing a self-timed DSP. The choice for partitioning the circuitry at the
macrocell level was made on the basis that the board-level timing problems of today will
be the chip-level timing problems of tomorrow. While the DSP chip discussed eventually
worked correctly in the laboratory, it is instructive at this point to look back and examine
the parts of the design that presented the greatest challenge and perhaps make some

decisions about certain aspects of the design itself.

213



1.1 Handshaking Logié Design

In the early versions of the DSP, extremely unreliable operation was observed.
Certain parts would function correctly for several seconds and then just stop, being locked
in a certain state. Any fluctuation in the power supply voltage also caused the lock-up to
occur. This was disappointing behavior for a circuit that is supposed to be more tolerable
of processing and supply variations. By analyzing the handshaking signals during lock-
up, the state was defined and simulations were performed to try and re-create the events
leading to that state. The lock-up did not appear in any of the system simulations prior
to fabrication.

The source of the lock-up condition was isolated to a single latch design in the
controller handshaking circuit (ROMHS). It is part of the sequential handshake circuit
shown in Figure 7.10. The latch schematic is given in Appendix C in Figure C.87. The
pseudo-NMOS style SR-latch (with built in AND gate on the S input, S = A.B) has the
characteristic that if A, B and R inputs are all BIGH , then both @ and Q will go Low
. Normally, the situation where all inputs are KIGH should not occur. However, on the
actual chip, the situation did occur due to some transient and caused the problem. In later
versions, only the Q output of the latch was used and a separate inverter was inserted to
derive Q from Q. The lock-up state disa.ppéa.red and the operation of the DSP became
extremely reliable. In fact, the supply voltage could be continuously varied between 3.5V
and 7V without any interruption in the operation of the DSP.

‘The problem described above makes an important point about the design of asyn-
chronous circuits. The logical equations that are obtained from the handshake synthesis
must be ezactly implemented for all conditions of the inputs of the circuit. The comple-
mentary outputs of the SR-latch in the controller handshaking became non-complementary
under a single condition which violated their desired relationship (@ = NoT Q). However
unlikely a certain input state may seem, the logic must be designed to function prop-
erly for that state. The designer may get caught is a trap trying to meet several goals.
The desirability of having efficient, high-speed handshake circuits makes it tempting to
use shortcuts or circuits which are less rigorous in following the logic equations under all
conditions. However, since the handshake circuit elements are used in many places of
an asynchronous system and their operation is critical to the correct functioning of the

system, they should be designed to be “bullet-proof”.
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1.2 Delay Matching

The use of circuit delay matching in place of true self-timed operation had mixed

results and several conclusions can be drawn:

Macrocell Design

As explained in Chapter 6, there were places in the macrocell design where the
matching of circuit delays on an IC was exploited to reduce the circuitry required for
generating completion signals. This approach was observed to be safe since the delay
matching is done on a local level and the loading on the circuits being matched is well
defined within the macrocell. No problems were encountered in macrocells that used the

approach such as the barrel shifter.

Between Macrocells

At locations outside of a macrocell, some delay matching was done to avoid the
use of handshaking between the instruction pipeline and the datapath handshake circuits
as explained in Chapter 7. The use of delay matching between macrocells is seen as a
risky alternative to implementing correct handshaking. While it can be made to work, the
required delay time depends on the loading seen by the signals, which in turn depends on
the global routing of the chip. One of the assumptions made in the model of a self-timed
stage was that the registers which store information (data or control) be in proximity to the
computational block so that their outputs are stable before the computation is initiated.
The registers of the datapath macrocells were designed directly inside the cell boundary
resulting in a well defined loading and delay. The instruction pipeline registers however
were kept separate from the datapath. In an early layout floorplan for the DSP, all of the
instruction pipeline registers were placed in one portion of the chip layout. Wires from the
pipeline to the different datapath stages varied greatly in length. This caused the DSP
to operate incorrectly because of the long delays between the instruction pipeline and the
datapath cells using the control signals (The delays were gross and the error was caught
in chip simulations). While the layout was modified to match the original assumption
by placing each instruction pipeline register near the cells which it feeds, the loading is
still not easily known in advance. Therefore, delay matching techniques that compensate

for these wiring delays have to be quite conservative to work. A long chain of inverters
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might be necessary to ensure that the delay is long enough, and of course the efficiency of
operation is reduced by the conservative approach.

The conclusion for avoiding delay matching between cells that are connected by
the global routing is related to the next section. In fact, by making more rigorous use of
handshaking, the problems mentioned above can be completely avoided. A register giving

completion information may be required in some cases.

1.3 Register Completion

In the initial phase of the DSP design, the lack of a self-timed circuit for a
register was not seen as a handicap. A plan was adopted where the handshake circuits
for the datapath would also control the instruction pipeline. Handshaking between the
registers in the instruction pipeline and datapath was not used. This in fact did cause
several problems to appear in the early versions of the chip. While the problems could
be overcome by adding some delay circuits, the solution is not as reliable and it is more

sensitive to the global routing as explained above.

Instruction Pipeline

The instruction pipeline registers are clocked by the Acki signals from each stage
in the datapath pipeline. In the model followed by the chip design, a register clocked by
Acki is assumed to have valid outputs before the next operation (usually raising the I signal
to initiate computation in the logic block) begins. In the case of a control signal affecting
the handshake circuit configuration itself, a potential race condition exists as was shown
in Figure 7.12. The solution used on the DSP design was shown in Figure 7.13, where a
delay was added between the Acki signal and the part of the handshaking circuit that is
affected by the control signal emerging from the instruction pipeline register clocked by
Acki. This was made to work, but the risk in such a design procedure is greater due to the
uncertainty in the loading on the control signal from routing wires. The design of the Reg
Delay block in the figure can include the clock buffer for the register being matched along
with an actual register cell. However, in the actual instruction register being matched,
there are a number of register cells placing a load on the clock lines along with the load
from the routing wires between the outputs and their destinations. The routing wires are

created at the end of the design process. Thus, the risk involves correctly predicting the
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loading and delay seen by the control signals.

The prediction of loading and delay from routing wires is precisely the kind of
activity that self-timing is supposed to eliminate. Therefore, the more rigorous way to
approach the problem with the control signals is simply to use handshaking between the
datapath and the control pipeline. A slight increase in the amount of circuitry required
for handshaking is necessary to handle a completion signal from the instruction pipeline
register. This would most likely be smaller than the Reg delay cell. The method however
demands a completion signal from the instruction register. A completion signal can be
generated at the register itself by using a “dummy” register cell, but of course it still
suffers from the unknown delay between the register and the rest of the circuitry. Delay
matching of this sort is a safer approach if the completion signal generated by the dummy
cell is routed to the same location as the control signal, equalizing the wiring delays for
the pair.

Another way of generating a completion signal for a register is to compare the
input and output of the register. When they are the same while the clock is high, then
the output is assumed to be valid[66]. However, the comparison might be necessary for
each bit of the register, depending on the application. For a single control signal affecting
the state of a MUX such as in the DSP datapath, the method is appropriate. There
is currently research being done to examine the effects of combining the handshaking
circuitry and the register into a single circuit, thus eliminating the need for a register with
completion[69].

I/0 FIFO problem

In both the Input Port FIFO (Figure 7.15) and Output Port FIFO (Figure 7.16),
two registers are cascaded, the timing of which are controlled by a simple HS4 circuit. The
registers form a self-timed pipeline. In the normal connection for a self-timed stage, the
Reqo signal is fed to the DCVSL I input and the DV is then used as the new Rego signal.
For a FIFO, there is no computation circuitry, just the registers themselves. For this
connection, once again a form of delay matching was employed. The first FIFO register
outputs must be settled before the second FIFO register is clocked (plus the set-up time
of the second register). On some versions of the DSP, errors in the input port values were

observed because some the bits in the FIFO register were not settling in time. The use of
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fast c-elements, which normally are chosen to increase the efficiency of the handshaking
circuitry, actually caused a problem in the FIFOs because they were so much faster than
the registers themselves.

To alleviate the problem, dummy register delays were placed in series with the
Reqo signal from the HS4 circuit to match the “computation” delay of the FIFO registers
as shown in Figure 7.17. The loading between the two registers in the FIFO is small
since they are in a common layout cell. The loading on the output of the second register

however, is subject to global routing constraints which makes it more uncertain.

1.4 Simulation Environment

The design of an asynchronous circuit typically places more demands on the
simulation environment than a synchronous circuit. The circuit operation is made to
follow a desired sequence but the actual speed of that sequence is not controlled. Unlike
a synchronous circuit where data a,i'e transferred only at clock edges, the operation of an
asynchronous circuit more like the carry chain of an adder. Within the constraints of
the handshaking protocol, the data ripples through the circuit at full speed. This gives
the operation more of an analog flavor. An absolute requirement for system simulation is
an event-driven simulator. The existence of feedback in the handshaking circuits causes
infinite loops to occur in a simulator where the node voltages are calculated until no further
changes are observed. The IRSIM simulator was useful because it combined event-driven
behavior with a pseudo-analog simulation of the actual devices and wire capacitances.
An RC model for each device is constructed from its sizing information and the layout
extracted capacitances. While this allowed system level simulations, several shortcomings
of the program were still apparent (when non-working chips arrived!). First, it did not
handle set-up time violations well on registers. Second, the accuracy of the timing itself
is not high due to the simple model used for each device.

Using a simulator such as SPICE for an entire chip design is not possible currently
due to the computation requirements. However, since it is really only the handshaking
circuits, whose operations are critical to the chip performance, a good simulation envi-
ronment for asynchronous chip design would have a “mixed-mode” capability. The large
macrocells in the datapath of the DSP only introduce a delay in the handshaking signals.

It would be useful to be able to describe them behaviorally and do a detailed simulation
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of only the handshaking circuitry.

2. Future Work

This work has shown promising results from the application of self-timed circuits
in digital integrated circuits. Much future work is necessary however for asynchronous
chips to take hold in the design community. Given the resources available, the fabrication
of the DSP presented here was done on a fairly standard 2um process. Since the problems
associated with global synchronization are really expected to occur at feature sizes below
lum, more data is necessary from asynchronous designs fabricated in the very latest
technologies. A good sign was that the speed of the processor built in 2um CMOS was
comparable to clocked designs in the same process. So, while there may be no great
benefit for using self-timed circuits with current chip technology, there was no apparent
disadvantage in terms of processing power. This helps support the theory that when the
clock skews begin to dominate a clocked design, a superior asynchronous version can be
made which takes full advantage of the raw device speed.

In terms of the design methodology, a great deal of progress has been made in
defining a reliable path from system specifications to asynchronous circuits. More work
is needed however in the means for describing a desired series of operations for that
appropriate handshake circuit synthesis. It can still be a confusing process to describe
what one wants the circuit to do in terms of either a signal transition graph or guarded
command. Further, taking the generated logic and actually connecting in the rest of the
circuit with appropriate buffers, etc. can be error prone depending on the assumptions that
are made beforehand. A more streamlined method for this part of the design methodology
would be welcomed.

As with any new discipline, it takes time to become used to the idea of doing
things in the new way and experience to make the tasks easier. It is felt that, with the
great deal of research activity in the area of asynchronous circuit design currently taking

place, this design style will become very natural to future chip designers.
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3. Speed Comparisons

A natural question that arises in the study of asynchronous circuits is, “What
is the speed advantage?” By avoiding the need for distributing a global clock, the design
methodology is simplified at the chip level and the time delays incurred by a global clock
can be used for computation. Additionally, an average versus worst-case instruction cycle
is achievable. Obviously, quantifying the actual improvement is very much circuit design
and application dependent. As an exercise though, some assumptions will be made in this
section in order to try to get an idea of the improvement when using self-timed circuits.

Our hypothetical processor is designed in a 3u process and it is roughly lem
on a side. The instruction cycle rate is nominally 100M H z, so the instruction period is
10nsec. For a self-timed macrocell connected to a handshaking circuit as explained in
Chapter 5, the overhead time for the each evaluation cycle is equal to 4 c-element delays
and 2 buffer delays (Equation 5.8), where the buffers are used to increase the drive between
the handshake circuit output and the DCVSL I signal inputs. A 1pF load is assumed for
the buffer which means that 7,r = 0.5nsec for a buffer that uses a cascade of gates, each
sized e larger than the previous (optimum). Using data from Table II in Chapter 2, one
gate delay is 85psec. Assuming a c-element can switch in a single gate delay, the total
overhead time for handshaking is 0.5nsec for the buffer time plus 4 gate delays of 85psec,
or 0.84nsec. The efficiency of the system is 91.6% when the overhead is subtracted from
the clock period.

For a synchronous system, the clock non-overlap time is what subtracts from 'the
time to do computation. From Table II, it is estimated that 1.4nsec will be required for
non-overlap time for each clock phase. The efficiency ranges from 44% to 72% depending
on whether a two or four phase clock is used.

Therefore, an initial estimate based on comparing these efficiencies is that the
asynchronous system will be 30 to 100% faster. Taking into account the ability to exploit
data dependencies on circuit delay times in self-timed circuits implies that for some appli-
cations the advantage over synchronous circuits will be even greater. For real comparisons,

time will tell as designs of both styles emerge from the manufacturing community.
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Appendix A

ntree Program Documents

1.

Manual Page

The manual page for the niree program is provided below for reference.

NTREE(1)

ntree - is a program that aids in the design of logic gates that are implemented
using the Differential Cascode Voltage Switch Logic topology. This topology
generates both the logic function and its complement. It expects complemen-
tary inputs, i.e. inputs coming from another dcvsl stage. The two output nodes
are precharged using P-channel devices and then a tree of N-channel devices
performs the actual logical operation. Ntree generates the tree of N-channel
transistors.

SYNOPSIS

ntree inputfile

DESCRIPTION

Ntree reads a logical function expression from the input file and generates
a spice file output that contains the necessary transistors to implement that
expression in DCVSL technology. The format of the input file is discussed
below. Ntree forms a directed graph representing the logic function and then
reduces the graph so that it contains the minimum number of vertices (and
therefore transistors). Since the ordering of the inputs in the logic expression
affects the number of vertices in the graph for certain logic functions, ntree
tries all of the different orderings and chooses the graph with the least number
of vertices. This exhaustive search technique is not adequate for a large number
of inputs, so the number of independent input variables allowed in the logic
expression is limited to 8. This is consistent with CMOS design, where a large
number of transistors in series can cause speed degradation. The output file
contains the transistors of the NMOS tree for a DCVSL gate. The pre-charge
devices, output inverters, and optional feedback devices for static gates must
be added by the user after ntree is run.
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INPUT FILE FORMAT

For lack of a sophisticated parser, the input format does not match that of
programs such as eqntott. Instead, the logic operations are specified in a lisp-
like format. Each operation must be surrounded by parentheses. The number
of inputs for each operation is unrestricted and all inputs must be numerical
and greater than zero. Empty lines are ignored in the input file and comments
are any lines that begin with the character '#’. An example of an input file
for ntree is shown below:

# This is a comment
(example gate 1 (or (and 1 2 3) (nor 3 4) (xor 1 3) (not 2)))

The allowed logical operations are: and, or, nand, nor, zor, znor, and not.
Only the not operation may have less than two operands. The information
between the first and second left parenthesis in the input can be whatever the
user desires to describe the gate.

OUTPUT FILES

The SPICE output file is written to filename.spi. It contains the logic ex-
pression being implemented, a mapping of the input numbers to circuit node
numbers, and finally a series of MOSFET lines with the actual transistors in
the tree. Ntree writes information to the standard output also. (Use re-
directed I/O to save this information to a file.) The logical function expression
is echoed to the output along with the number of unique inputs (depth). The
program prints out the number of vertices in the graph along with the number
of series connected devices in the tree for the best input orderings. Program
heuristics will choose trees with slightly more vertices in preference to those
that contain less vertices, but more transistors in series, as a speed considera-
tion. The program also prints to the standard output a textual representation
of the final function graph using tabbing to indicate branches.

REFERENCES

“Graph Based Algorithms for Boolean Function Manipulation”, by Randal E. -
Bryant, IEEFE Transactions on Computers, Vol. C-35, No. 8, August 1986.

AUTHOR

Gordon Jacobs.
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2. Example

Below is an example of running ntree.
Input file

# ALU logic circuits

# Complemantation is accomplished by muxes on input
# choosing betweon 1, 1%, 2, 2s

$ Inputs: 1,2

# Control: 3,4 -> binary coded:

0 not-used

1 or
2 and
3 xor

logic outputs

(or
(and 3 (not 4) (or 1 2))
(and (not 3) 4 (and 1 2))
(and 3 4 (xor 1 2))

s
s
s
]
]
s
(

SPICE Output File created

WHOS Tree for (logic outputs )
.
* Logic Expression: (or (and 3 (not 4) (or 1 2))
(and (not 3) 4 (and 1 2)) (and 3 4 (xor t 2)) )
-

This file generated by ntree on Tue Jul 14 14:34:57 1987

]
L]
+ NODE ASSIGEMEETS:

*« GED = O Vdd = 100

¢ Pbulk = 102 Nbulk = 101

* (Complement of )Input Number 1 is node (11) 1
* (Complement of )Input Number 2 is node (12) 2
* (Complement of )Input Number 3 is node (13) 3
s (Complement of )Input Number 4 is node (14) 4
« F OUT =21 F_BAR_OUT = 20

.

L J

D ¢ 8 B

mi 24 11 O 101 NMOS
m2 20 12 24 101 HMOS
m3 26 2 24 101 WNMOS
m4 20 13 26 101 NMOS
m6 21 3 26 101 NMOS
m6 28 1 O 101 BNMOS
m7 26 14 28 101 HMOS
m8 29 4 28 101 HMOS
m9 26 12 29 101 XNMOS
mi0 30 2 29 101 BNKOS
mii 21 13 30 101 NMOS
mi2 20 3 30 101 HMOS
sssandsss
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Information sent to stdout
CVSL Logic Minimization Program by Gordon Jacobs
Rev 1.0
Date: Tue Jul 14 14:34:57 1987
ssssssess INPUT LISTIEG sssssessness Input File: alub sses

(logic outputs

(or
(and 3 (not 4) (or 1 2))
(and (not 3) 4 (and 1 2))
(and 3 4 (xor 1 2))

)

)

Gate Name: logic outputs
Bumber of unique inputs (depth) = 4

INPUTS: 3412

For indices: 1234 ¢6=210 L=4
For indices: 1324 G=9 L=4
For indices: 2314 G=9 L=3
For indices: 4213 G=8 L=3

G => number of vertices. L => number of series devices.
Gmin = 8/L = 3. Lmin=3/G = 8

=======mmemeu-- FUECTION GRAPH:

-> INPUT ORDERING: 1 4 2 3

Vertex: IBPUT 1 index =1 id =1
‘with low(0) side -~
Vertex: INPUT 2 index =3 id = 2
‘with 1low(0) side --
|  sasss ZERD sesss
‘gith high(1) side --
| Vertex: INPUT 3 index =4 id = 4
| ‘with low(0) side -~
| | sssss ZERD sesase
| ‘with high(1) side --
| | ®ssas ONE ssssas’
with high(1) side --
Vertex: INPUT 4 index = 2 id =6
¢gith 1low(0) side --
| Vertex: IBPUT 3 index = 4 id = 4
‘gith high(1) side --
Vortex: INPUT 2 index = 3 id = 7
‘with low(0) side --
| Vertex: INPUT 3 index = 4 id = 4
‘with high(1) side --
Vertex: INPUT 3 index =2 4 id = 8
|  ‘with low(0) side =--
} [} ssx9s ONE ssssnn
| “with high(1) side --
| | sssss ZERQ ssass

Memory used:
Vertices used = 18
Lists used = 8
Trees used = 32

5% and e==

232



3. Program Source Code

The ntree program source code is too lengthy for inclusion in this document. The
code can however be obtained by contacting:

Professor Robert W. Brodersen

University of California, Berkeley

Department of EECS, Cory Hall
Berkeley, California 94720
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Appendix B

Assembler Program Documents

1. Manual Page for asm

The manual page for the esm program is provided below for reference.

ASM(1)

NAME

asm - convert asynchronous processor assembly code into program ROM data
for THOR simulations.

SYNOPSIS
asm [-dsh] file

DESCRIPTION

asm is a program that converts an asm file (file.asm) written for the asyn-
chronous digital signal processor datapath into program ROM code that is
used by the THOR simulator for simulating the signal processing program on
a model of the actual hardware. A total of three output files are created. The
file file.out contains general information about the assembler actions. For each
instruction, the assigned program counter address is shown along with a table
of the various control signals that the horizontal micro-code for the instruction
contains. The RAM Read and Write addresses are given first with an empty
Write address meaning that the write is disabled for that instruction cycle.
Next, the number of bits that the barrel shifter shifts left is shown. If the
number is followed by a '." (period), then sign extension is indicated. The
next entry of the table is the OP code which shows which logical or arithmetic
operation the ALU performs along with the state of the two signals which zero
the A-input (zA) and the B-input (zB) of the ALU. The B-input is from the
Accumulator. The IN and OUT table entries indicate whether that instruction
will read from/write to the input/output ports respectively. The WRSEL field
tells whether the RAM is written from the low order Accumulator bits(2), the
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high order Accumulator bits(1) or the local feedback path(0). The MULT?
field tells when the multiplier is selected in place of the barrel shifter for the
second stage of the datapath. Finally, the CROM entry gives the address of
the coefficient ROM that is used for a multiplication if it exists.

At the bottom of the file.out file, is a listing of the hash table entries for the
assembler. These are filled in by the assembler for all EQUate statements and
labels. They give the final address of the labels and symbolic names.

The two output files file. ROM_L and file. ROM_H are each intended to be read
by the THOR simulator for the asynchronous processor. Because the Program
ROM is 40-bits wide and THOR can only work with 32-bit numbers, two
files are created. file. ROM_L contains the lower 32-bits of the program ROM
entries in Hexidecimal format. file. ROM_H contains the upper 8-bits of the
program ROM entries. Each file begins with a line of the form:

%num

where num is the number of instructions to follow.

OPTIONS

The command line switches are:

Ger;g'a.te debug information. Usually should not be used by normal users.
Set .tshe warnings flag. Prints out extra warnings about the assembly code.
Prix-l?s out usage.

SEE ALSO

ROMconvert(1)

BUGS

Warnings not implemented yet.

AUTHOR

Gordon Jacobs, University of California, Berkeley (jac@zion.berkeley.edu)
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2. Manual Page for ROMconvert

ROMconvert(1)

NAME

ROMCconvert - convert THOR simulator files of Program ROM code for the
asynchronous processor into a Lager parameter file that can be used to generate
the physical ROM.

SYNOPSIS
ROMconvert file [.asm]

DESCRIPTION

ROMconvert is a.program that converts the THOR simulation files contain-
ing program ROM code for the asynchronous processor into parameter files
that the Lager system can use to generate the actual physical program ROM.
The input file name file [.asm] is used as a root for the files that are actually
read, which are produced with asm. The files file. ROM_L and file. ROM_H are
read and the parameter file for Lager is written to the standard output.

OPTIONS

No command line options.

SEE ALSO

asm(1), LagerIV documentation Manuals.

BUGS

None to my knowledge.

AUTHOR
Gordon Jacobs, University of California, Berkeley (jac@zion.berkeley.edu)
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3. Example

Below is an example of running the assembler:
Input file

/®
* FILTER ASSEMBLY CODE FOR FIR Filter in “fir_design2®
» (using multiplier)
[
»/
/

Input is stored in RAN location Ot.
All Coefficients are in CROM.

State Variables: Raw Location 0-15 are locations for delay line
Coafficients: CROR locations 0-7 are eight required coefficients.
Since the filter is linear phase, the impulse response is mirrored.

EQU del_10 10
EQU del_11 11
EQU del_12 12
EQU del_13 13
EQU del_14 14
EQU del_15 15
EQU c1 O

EQU c2 1

EQU c3 2

EQU c4 3

EQU c5 4

EQU c6 §

EQU c7 6

EQU c8 7
START

init: acc = 0;

(del_O=acc) = 0;
(del_i=acec) = 0;
(del_2=acc) = 0;
(del_3sacc) = 0;
(del_d=ace) = 0;
(del_6=acc) = 0;
(del_6=aacc) = 0;
(del_7=acc) = 0;
(del_8=acc) = 0;
(del_9=acc) = 0;
(del_10=acc) = 0;
(del_1i=acc) = 0;

(del_13=acc) = 0
(del_14=acc) = 0;
(del_15=acc) = O
acc = acc;
acc = acc;

sample: acc = 0 | del_15#c1, (del_0 = in);
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ace
ace
acc
ace
ace
acc
ace
acec
ace
ace
ace
acce
acce
ace
acce

acc
ace
acc
ace
acce
acc
ace
acec
acc
ace
ace
ace
acce
ace
ace

+ (del_15=del_14)¢c2;
+ (del_14=del_13)%c3;
+ (del_13=del_12)*c4;
+ (del_12adel_11)*c5;
+ (del_11=adel_10)#cS;
+ (del_10=del_9)sc7;
(del_9=del_8)#*c8;
(del_8=del_7)=c8;
(del_ 7=del_B8)*cT;
(del_6=del_5)*c6;
(del_56=del_4)%cS5;
(del_4mdel_3)ec4;
(del_3=del_2)*c3;
(del_2=del_1)#*c2;
+ (del_1indel_O)=*ci;

LK 2K 2K BE 2K 2 2% 4

(out=acc) = acc;
goto sample;
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Output File created (file.out)

ASSEMBLER OUTPUT

PC Raddr Waddr shift OP IN OUT WRSEL NULT? CROM

0: 0 O +zAzB 0 0 O ¥

1: 0 O O +zAzB 0 0 1 X

22 0 1 O +2zAzB 0 O 1 X

3: 0 2 O <+2zAz2B 0 0 1 ¥

4: 0 3 0 +zAzB 0 O 1 B

8: 0 4 O +2zAzB 0 0 1 ¥

6: 0 S5 O +zAzB 0 0 1 X

7: 0 6 0 +zAzB 0 0 1 ¥

8: 0 7 O +zAzB 0 0 { &

9: 0 8 O +zAzB 0 0 1 ¥

10: 0 9 O +zAzB 0 0 1 ¥

11: 0 10 O <+ zAzB 0 0 1 1%

12: O 11 O <+ zAzB 0 0 1 1§

13: 0 12 O +zAzB 0 0 1 ¥

14: 0O 13 O +zAzB 0 0 1 %

1§: 0 14 O <+ zAzB 0 O 1  §

16: O 15 O +zAzB 0 0 t B

17: 0 O +zA 0O 0 O &

18: 0 O + zA 0 0 O &

19: 15 o o | z &1t 0 O Y O
20: 14 1S O + 0O 0 0 Y 1
21: 13 14 0 + o0 0 Y 2
22: 12 13 0 + 00 0 Y 3
23: 11 12 0 <+ 00 0 Y 4
24: 10 11 O + 0O 0 0 Y S5

PC Raddr Waddr shift OP IN OUT WRSEL NULT? CROM

28: 9 10 O + 00 0 Y 8
26: 8 9 0 <+ o0 0 Y 7
27: 7 8 O + o0 0 Y 7
280 6 7 0O + 00 0 Y 6
29: § 6 0 + 00 0 Y S
30: 4 § 0 <+ o0 O Y 4
31: 3 4 0 <+ o0 0 Y 3
32: 2 3 O + o0 0 Y 2
33: 1 2 0 + o0 O Y 1
34: 0 1 0O + o0 0 Y O
3: 0 0 + 2zA o1 t+ ¥

36: Branch to (19)

Notes: Blank Waddr means Write Enable OFF
*.* a> shifter sign extension 0N
»-" 3> one’s complement on ALU A-input
“zB" => zero B (accumulator) input to ALU
"zA" => zero A (RAM) input to ALU
WRSEL=2 => Write LOW order bits of accumulator

------- HASH TABLE ENTRIES ~======-
Location 80: FHame = init Value = O
Location 96: Hame = del_0 Value = 0
Location 97: Name = del_1 Value =1
Location 98: Hame = del_2 Value = 2
Location 99: Name = del_3 Value = 3
Location 100: Bame = del_4 Value = 4
Location 101: Name = del_5 Value = §
Location 102: Hame = del_6 Value = 6
Location 103: Hame = del_ 7 Value =7
Location 104: Hame = del_8 Value = 8
Location 10S: Hame = del_ 9 Value = 9
Location 145:  Name = del_10 Value = 10
Location 146: Name = del_11 Value = 11
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Location 147:
Location 148:
Location 149:
Location 150:
Location 151:
Location 152:
Location 153:
Location 154:
Location 155:
Location 156:
Location 157:
Location 158:
Location 286:

Name = del_12 Value
Name = del_13 Value
Name = del_14 Value
Name = del_15 Value
Name = ¢1 Value = 0
Name = ¢2 Value = 1
Hame = ¢3 Value = 2
Name 2 ¢4 Value = 3
Name = ¢5 Value = 4
Bame = ¢c6 Value = §
Name = ¢c7 Value = 6
Name = ¢8 Value = 7
Name = sample Value

19
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ROM Code File created (file. ROM_L)

ROM CODE FROM FILE: fir2.asm
%37
00300000
10304000
10304080
10304100
10304180
10304200
10304280
10304300
10304380
10304400
10304480
10304500
10304680
10304600
10304680
10304700
10304780 A
00100000
00100000
1e60000t
1600078e
16000704
1600068¢c

1600058a
16000509
16000488
16000407
16000386
16000305
16000284
16000203
16000182
16000101
16000080
20104000
50000013
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Result of running ROMeconvert:

::: Parameter File for Pi-ogran ROM of fir2.asm

e
R

(minterms 37)

(outwidth 40)

(inwidth 8)

(in-plane

(
00000000
*00000001*
*00000010*
*00000011"
*00000100*
*00000101"
*00000110"
“00000111"
*00001000"
*00001001"
*00001010"
»00001011"
*00001100"
*00001101*
*00001110*
"00001111"
*00010000"
00010001
*00010010"
*00010011"
*00010100"
*00010101*
00010110
*00010111*
*00011000*
#00011001"
*00011010"
*00011011"
*00011100"
*00011101"
*00011110*
"00011111"
*00100000"
*00100001"
*00100010"
*00100011"
*00100100"

)
)
(out-plane

*0¢000000000000000001 100000000000000000000*
**0000000000010000001100000100000000000000"
*0000000000010000001 10000010000001 0000000
*¢0000000000100000011000¢00100600100006000"
**0000000000010000001 100000100000110000000"
*0000000000010000001 1000001 00001000000000"
*0000000000010000001 100000100001010000000" .
*0000000000010000001 100000100601 100000000" -
**0000000000010000001 100000100001 110000000
+0000000000010000001 100000100010000000000"
**0000000000010000001 100000100010010000000"
**0000000000010060001100000100010100000000"
**0000000000010000001100000100010110000000"
*0000000000010000001 100000100011000000000"
*0000000000010000001100000100011010000000"
*'0000000000010000001 100000100011100000000"
000000000001 0000001 100000100011110000000"
*0000000000000000000100000000000000000000"
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*0000000000000000000100000000000000000000*
*0000000000011110011000000006000000001111"
*0000000100010110000000000000011110001110"
#0000001000010110000000000000011100001101 "
0000001 1000101 10000000000000011010001100*
*0000010000010110000006000000011000001011"
*0000010100010110000000000000010110001010"
*0000011000010110000000000000010100001001**
#0000011100010110000000000000010010001000"
*0000011100010110000000000000010000000111"
*0000011000010110000000000000001110000110"
*0000010100010110000000000000001100000101"*
*0000010000010110000000000006001010000100"
0000001 10001011000000000000000100000001 1"
©0000001000010110000000000000000110000010*
*0000000100010110000000000:000000100000001 "
'*00000000000101 10000000000000000010000000"
00000000001 00000000100000100000000000000*
+000000000101000000000000000000000001001 1

A d

4. Program Source Code

The asm and ROMconvert program source code is too lengthy for mclusxon in
this document. The code can however be obtained by contacting:

Professor Robert W. Brodersen
University of California, Berkeley
Department of EECS, Cory Hall

Berkeley, California 94720
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Appendix C
Circuit Detail

1. Barrel Shifter

1.1 Floorplan

The floorplan for the barrel shifter is described below. The tiling starts from the
bottom-left side of the shifter as shown in Figure 6.1 and proceeds to the right for each
new cell and to the top for each new row.

Place bshi fter.le ft.mag

Add-right DV c.mag, (26) DVa.mag, (3) DVb.mag
Add-right bshi ft.ctldpl.mag

New Row: (32) buf fer.bsh.mag

New Row: (32) 2inmuz2.mag

New Row: (4) bch0 — 8.mag

New Row: (32) 2inmuz2.mag

New Row: (8) bch0 — 4.mag

New Row: (32) 2inmuz2.mag

10. New Row: (16) bch0 — 2.mag

11. New Row: (32) 2inmuz2.mag

12. New Row: (32) bch0 — 1.mag

13. New Row: (16) df f2.bsh.mag, bshi fter.top3.mag

NI RBOE

1.2 Miscellaneous Cells

The figures below show schematic diagrams for miscellaneous cells that make up
the barrel shifter and were not shown in Chapter 6. Transistor sizes are in A.

A block diagram for the shifter control slice is shown in Figure C.1. It contains
the gated buffers for the shifter control inputs and several other buffers. The names of

magic subcells are shown. Each control signal is gated by the Ibsh signal input so

that the DCVSL 2:1 MUX circuits used in the shifter core can be simplified as explained

in Chapter 5. Figure C.2 shows the schematic for a control input cntlin2.mag which
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Bshifter Ctl Slice

N SE
(to bshifter.top)
o0t Gated Buffer co
cObar ¢——
(cntl_in2.mag)
ol € Gated Buffer cl
clbay €
(cntl_in2.mag)
2 Gated Buffer c2
2bar €
(cntl_in2.mag)
11
Dual Buffer |~
, |2
Ibsh
(dual_buffer2.bsh.mag)
3¢ Gated Buffer !,_ C3
c3bar ¢——
(cntl_in2.mag)
dvinl —% nor buffer
—> DVbsh
dvin2 ————

(2in_nor.bsh.mag) (buffer2.bsh.mag)

Figure C.1: Block diagram of control slice of barrel shifter.
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(cntl_in2.mag)

cbar <ol gate
Ibar in Cnd
cntl_buffer. mag  inl gated_buffer.mag In
¢ €—loul ] in2
I
a5

152 inl ate
char <
<{ 112
272 1122 122
_‘[>° n
4512 1512 in2 s
¢ —°< } in
112 82

212

Figure C.2: Control input schematic for barrel shifter.

contains two subcells. Data Valid signals from several bits of the shifter are brought

to the control slice where the final DV signal is produced. The signals dvinl and dvin2
shown in Figure C.1 are active low. A simple NOR gate is used to generate DV and the
result is buffered before being made available to the outside world. The schematics for the
NOR gate and buffer are shown below in Figures C.3 and C.4. The Ibsh signal is buffered

2in_nor.bsh.mag

—| 1312
inl >

- ,_._l r @ out

Figure C.3: 2-input NOR gate used in the barrel shifter control slice (bshift.ctldp1.mag).

by two parallel buffers each of which drives one half of the shifter MUXes. The schematic
for the buffer is shown in Figure C.5. The data bit outputs of the shifter are buffered by

the circuit shown in Figure C.6. Several cells are used to derive the completion signal for
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buffer2.bsh.mag

>

> out

182 4812 4812
in owtbar
1212 3672 36/2

Figure C.4: Buffer cell used in the barrel shifter control slice to buffer DV bsh.

dual_buffer2.bsh.mag

182 EEy) ) %8
in outl
102 202 282 6412 @
) 982
out2
2802 6412 an

Figure C.5: Buffer circuit used in the barrel shifter control slice to drive Ibsh.
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the shifter. As explained in Chapter 6, not all outputs are examined for the data valid
condition due to the symmetry of the shifter circuitry. The DVb.mag cell is used to NOR
the complementary outputs of a DCVSL MUX in the last row, generating a DV signal for
that particular bit. The schematic for the cell is given in Figure C.8. For bits which not
used in determining DV, the cell DVa.mag is placed and it contains only a routing wire to
pass the data output to the edge of the shifter layout. Figure C.7 shows this symbolically.
Finally, the cell DVe.mag is used for a bit far from the control slice. It contains an extra -
buffer to drive the capacitance of the long wire spanning the shifter feeding its output to
the control slice. The output of a single DVb cell and a single DVe¢ cell become the dvinl
and dvin2 signals of the control slice which are sent to the NOR gate generating the final
data valid signal. The bshifter.top3.mag cell contains a buffer for the Acki signal which

buffer.bsh.mag

1812 2612
in out
112 202

Figure C.6: Buffer circuit used in the barrel shifter at the data outputs.

DVa.mag

|_1

(Routing Only)

Figure C.7: Routing cell for shifter output bits which are not used in determining the DV
signal. '

must drive the input data register cells. It also contains the sign extension logic. When
the SE control signal is asserted, then the upper 16-bits of the shifter input must be set
to the value of the sign bit of the data input. This is accomplished with an AND gate

and buffer as shown in Figure C.10. The transistor schematics for and.buffer.bsh.mag and
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o> | > out

obar >—"—| mn -I

Figure C.8: NOR gate used to derive the completion signal for a single bit in the shifter.

DVb_bar

DVc.mag
02 » out2
(routing)
o3 > out3
— 1072
ol > outl
[| 1272 4202
T DVb_bar
obar > " 92 36/2

Figure C.9: NOR gate with buffer used to derive the completion signal for a single bit in
the shifter.
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clkdrv8.bsh.mag are shown in Figures C.11 and C.12. The routing between the MUX

(bshifter.top3.mag)
SE
CK <—|out . .
Inf15] —\inl in2 ° infe————— Acki
(and_buffer bsh.mag) (clkdrv3 .bsh.mag)
out outbar CKbar € outbar

| l to Dreg’s
to In[16-31]

out ¢
) 9512 9512 282
:-:éutbar in
5612 56/2 172

Figure C.10: Block diagram and schematics for bshifter.top cell.

owt outbar

and_buffer.bsh.mag
)

D 29/2 95/2 95/2

inl ___} outbar

1772 56/2 56/2

|
1

> out

—1

in2 >

Figure C.11: AND gate with buffer used in the bshifter top cell for sign extension logic.

rows of the barrel shifter is accomplished by four cells. These contain routing wires only

as symbolically represented in the next four figures. The number of rows over which the
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clkdrv3.bsh.mag

ey Y5777 4

2812 é%fl "‘ 9512
in owtbar
1712 ljiﬁ/z "‘ 5612

Figure C.12: Clock driver circuit used in barrel shifter top cell to buffer input register

clocks.

routing extends is the last number in the name of the cell. So, for example, 32 of the
bch0-1.mag cells are required but only 16 of the bch0-2.mag cells are required for the 32
bit wide shifter.

bch0-1.mag
(Routing Only)

Figure C.13: Routing cell between input register and row 1 of the MUXes in the barrel
shifter.

bch0-2.mag

i

(Routing Only)

Figure C.14: Routing cell between MUX rows 1 and 2 in the barrel shifter.
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bch0-4.mag

(Routing Only)

Figure C.15: Routing cell between MUX rows 2 and 3 in the barrel shifter.

bch0-8.mag

(Routing Only)

Figure C.16: Routi.ng cell between MUX rows 3 and 4 in the barrel shifter.

2. ALU

The figures below show schematic diagrams for miscellaneous cells that make up

the ALU and were not shown in Chapter 6. Transistor sizes are in A.

2.1 Bitslice

The block diagram of the ALU bitslice is shown in Figure C.17. Subcell names
are given in the figure. The A-input of the ALU is stored in a register during computation.
The register output can be held low to clear the A-input. Figure C.18 shows the schematic
for the flip-flop used in the register. The function to invert the A-input of the ALU is
performed with a DCVSL 2:1 MUX which selects either A or Abar to be fed to the following
circuitry. The schematic for the MUX is shown in Figure C.19. The schematics for both
the full adder (adder5.mag) and the gate performing the logical functions (logic2.mag)
were shown in Chapter 6. Depending on whether the ALU is doing an addition or logical
operation, the output of one of these two gates is passed on to the Accumulator. The
selection is made by another DCVSL MUX circuit which is shown in Figure C.20. The
Accumulator is incorporated into the ALU and the flip-flop which is used for it is shown in

Figure C.21. Data outputs are buffered by the buffer shown in Figure C.22. The B-input

. 253



ALU BIT SLICE

Input Register

Clear allows zeroing Ain

Select Ain or Ain®

Addition

(magic cell name)

AND, OR,XOR

Select Adder or Logic

Data Valid

Register

AND gate
Output to Bin

(alubitd.mag)

lAin

D flipflop /
ZeroA

2:1 mux

CVs
Full

Adder
|__(gdderS.mag)

(2inmux6.mag)

< Acki

(df.alumag) [~ CO

— INV

¢—— Cin

Control Signals

CVSs
Logic
Functions
(logic2.mag)

— C2

— C3

2:1 mux

Completion
Signal /
Branch

(DV.mag)

(2inmux5a.mag)

e— (C2 +C3)*

— DV

— BNZ

Accumulator

ZeroB

Buffer

(dff10.alu.mag)

(cvs_and.mag)

<4— Acko

«— C1

ACCout

Figure C.17: Diagram of the ALU bitslice with MAGIC subcell names.
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dff9.alu.mag

— Q

CK || é; CKbar I E ne
O [¢)
‘ Qbar

)
—
b R |
p—
@ % e U 0w

an
1

CLR >

—_
CKbar

Figure C.18: D flip-flop used for A-input register in the ALU bitslice.

2inmux6.mag

& fo

oo S o

6/2

in'l [—iz_] l‘inbét- in-I 6/2 l‘inbar
invbar-l E 92 inv*{ 92

H vn

Figure C.19: Schematic of 2:1 MUX used to select A or Abar input in the ALU bitslice.
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2inmux5a.mag

3/6 I 'I ET I ETIZIZ 3/6
612
out * s outbar

612

Ao e H\}eghw
CObar‘”: 92 CD‘H: 972

| ‘I 1472

Figure C.20: Schematic of 2:1 MUX used to select logical or addition function in the ALU
bitslice.

is zeroed by the use of a DCVSL AND gate which is shown in Figure C.23. Note that the
routing of the Accumulator output (which is the B-input to the ALU) to the bitslice gate

inputs is done internally to each bit.

2.2 Control Slice

The ALU control slice contains buffering and logic required to interface the bit
slices to the control signal inputs. A block diagram of the control slice is shown in Fig-
ure C.24. The buffers used on each control input are shown in Figures C.25 and C.26.

The buffers used for the Ack: and I signal inputs are shownin Figures C.27
and C.28. The SEL control signal which selects the output from the adder or the logical

gate is derived from control signal inputs C2 and C3. The gates to do this are shown in
Figure C.29. The completion signal busses dvB and dvC must be fed to one final NOR
gate and buffered to form the DValu signal fed to the outside world. The schematics for
the gates doing this are shown in Figures C.30 and C.31. The gates shown in Figures C.32

and C.33 are also used in the ALU control slice.
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dff10.alu.mag

Q

c CKb
& vy R 17712 1012

[®] o b

D >——4,2 a2 Qbar
— e
. 6 1 6

CKbar /2 cK r2 /2

Figure C.21: D flip-flop used for Accumulator register in the ALU bitslice.

buffer.alu.mag
182 212
n P out
ue 2012

Figure C.22: Buffer cell used in ALU control slice.

cvs_and.mag

§ B
1272

out ’—'| >°—outbar

112

. in-l 12 inbar‘{ E‘UZ C‘I EVZ

Cbar'{ n

l‘{ 1472

Figure C.23: DCVSL AND gate used to zero the B-input of the ALU in the bitslice.
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ALU CONTROL SLICE

alu.ctl.dpl .mag
cka «——] Bt |
LKA Buffer Acki
CLKAbar €] (buffer2.alu)
to input registers
Buffer
[ —— —— Jalu
(buffer2a.alu)
to DCVSL (buffer.alu)
Buffer NOR
(bulfer§) (nand_nor)
select a@r For) c3
or logic SEL «—
C3 —— Buffer — CNTL3
logic (buffers,6a.alu)
functions Buffer |
C2 «— CNTL2
Buffer
CLRB=C1 ¢— <—— CNTL1
(zero B)
Buffer
CLRA=C0 € — CNTLO
(zero A)
Buffer
(invertA) inv €— — INV
=Cin)
CLKB ‘—'l
Acko
(accumulator) *
Buffer Buffer
/Register >BZ
(buflerS) Gigbuifaly) | > BNZ
(from completion ckt) (branch on zero)
dvB ""_’ Buffer Buffer
dvC (nor2.alu) —> Cout
(bigbuf.alu) (buffer.alu)
»DValu

Figure C.24: Block diagram of ALU control slice showing subcell names.
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buffer6.alu.mag

> outl

9572 '! 9572
inl ‘ our2
54/2 "I 5412

in2 >

Figure C.25: Buffer used in ALU control slice.

buffer6a.alu.mag

(e re—— Q
122 1972 1912
D Qbar
mn 112 112

Figure C.26: Buffer used in ALU control slice.

buffer2.alu.mag out
2802 l—' 9072 90/2
in v outbar
172 I-‘ 5612 5612

Figure C.27: Buffer cell used in ALU control slice.
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buffer2a.alu.mag

332 160/2
in out
272 8472

Figure C.28: Buffer cell used in ALU control slice.

nand_nor.alu.mag

] [
a nand_out
c>
6/2
nor_out
b> lj_ d>——| 42 ui

Figure C.29: NAND and NOR gate cell used in the ALU control slice.

nor2.alu.mag

——| 2012
I

inl > |

in2 >—"_* 1212

Figure C.30: NOR gate cell used in the ALU control slice.

out

P —
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bigbuff.alu.mag
2012 5012
in out
142 3812
Figure C.31: Big buffer cell used in ALU control slice.
and.alu.mag
16/2 'I 54/2
inl out
122 3072
e

Figure C.32: AND gate used in ALU control slice.

buffer5.alu.mag

w02 P 1002
' in out
6412 6472

Figure C.33: Buffer cell used in ALU control slice.
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2.3 LSB Slice

The ALU least significant bit slice contains a Ground bus that feeds all of the
cells and a single inverter which drives the adder carry input high when the inv control
signal is high. When the ALU is set to subtract two numbers, the A-input is only 1’s
complement inverted and the extra “one” at the carry input is required to implement a
true 2’s complement inversion. One side effect is that there is no discrimination between
logical operations and addition when setting the carry input. Therefore the syntax for
1’s complementing a number in the assembly code does not work if the ALU is using
the adder. Instead, a full 2’s complement inversion is performed. In other words, the

instruction

ACC = ACC + raml;

actually performs the operation

ACC = ACC - raml;

For logical operations, the 1’s complement operator works correctly.

3. Multiplier

This section contains a more detailed explanation of the multiplier timing and
partitioning as well as schematics for all cells not shown in Chapter 6. A more detailed
block diagram of the multiplier containing node names and MAGIC subcell names is given
in Figure C.34. The shaded portion is all gates contained in the recoder4.mult.mag subcell

of the control slice.

3.1 Bitslice

The individual bit slices contain the input registers, booth encoding circuitry,
and carry save adders as diagrammed in Figure 6.12. Because the shift register for the
Y-input shifts two bits per cycle, even and odd cells are required. These are shown in
Figure C.35. The X-input register is a simple D flip-flop and its schematic is given in
Figure C.36. The booth encoding DCVSL gate was shown in Figure 6.13. The carry save
adder is implemented as two DCVSL gates as was done in the ALU full adder. Two inputs

to the adder come from the sum and carry storage registers and the third input comes
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recoderd.mult

initmult ——Acki

)
Xreg Acki_ub
<EN
CLR partial
product |-
counter
I donel
D
\\/ P Q

bitd mult t 3 "S3Z~ L
mu

u’"“’“

(
_G_] Acko3 Reqo3 done2 )
{ H)—‘Imult

\/
CP Adder L Ip
cpaddt DY > DVimult

Figure C.34: Detailed block diagram of the iterative self-timed multiplier.
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Shift Register

E IN N ;
i . aven odd
I—LOADbar l—x.om)bar
-| o] |— LOAD -l o |- LOAD
P L L ;
\ 1% O '
even bits ¥ ><‘ﬁ DC 1
E T ‘ T E
E CK CKbar E
1 L ‘
1 (9] (O] \
s — >0 o
- - 5
CKbar cK ;
shiftreg2.e.mag shiftreg2.omag |

Figure C.35: Schematics for the shift register cells making up the multiplier Y-input

register.
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from the encoder gate. The schematics for the sum and carry DCVSL gates are given
in Figures C.37 and C.38 respectively. Routing between the bitslices gives the two-bit
shift required between partial product calculations. Thus, the input to the sum gate of

bit; actually comes from the sum storage register of bit;_o. The storage registers for

dff3.mult.mag

———)Q
»
_C.K_ 82 Exn_ 12 12
1 O ) %] .
b>n l—l an 2
— —_
oK (73 oK /] 82

CLR’_I 42

Figure C.36: D flip-flop used for the X-input register of the multiplier bit slices.

the carry save adder are implemented by the cells dff8.mult.mag and dff9.muit.mag for
the carry and sum values respectively. The schematics for the two flip-flops are given in
Figures C.39 and C.40.

The carry propagate adder that computes the final product in the multiplier is
another DCVSL adder similar to the one used in the ALU. The adder is made from the
cell cpaddf.mag which is four bits wide to accommodate the completion signal scheme
which is a tree of gates on the sum outputs as shown in Figure C.41. The full adder cell
cpadd2.mag is shown in Figure C.42. It has a completion signal output as well as the sum

and carry outputs.

3.2 Control Slice

The control slice for the multiplier is rather complicated, containing the Booth
recoder, handshake circuits, and the partial product counter. A block diagram of the
complete control slice is shown with MAGIC subcell names in Figure C.43. The multiplier
is a self-timed subsystem and the Acki signal which clocks the input registers, is used to
synchronize the beginning of a new multiplication. The multiplier internal handshaking

circuits must wait for the falling edge of the the Acki signal before proceeding with a
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sum3.mag

I
1312 { l } 132
8/2
out 52 out*
Cin-I /73 12 | Cin*
Cin* ‘I /7] n |Fcin
Bin-{| 12 2 || Bin*
Bin* | 12 2 || Bin
in} 172 ' 12 |Finr

1 _ |
I-| 1712

Figure C.37: Schematic for the DCVSL gate performing the sum operation of the carry

save adder.
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1
132 I l l 132
Y

out* _I 62 out

cine4| 2 . 1 |Fcin

Bine-| 2 2 || Bin

Bin| 2 ' 2 || Bin*

Ain® ~| 1z 12 | ai

L _ [
[l

Figure C.38: Schematic for the DCVSL gate performing the carry operation of the carry
save adder.

dff8.mult.mag
——-) Q
L]
C'K 82 CK. 12 1022
(&) O
b an e
T 62 ' 82 6r”
CK* cK
feedl (routing only)
Sfeed2
B
B.

Figure C.39: Flip-flop used for storing the carry result of the carry save adder in the
multiplier bitslice.
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CK| . 612 CKl (73 2

Figure C.40: Flip-flop used for storing the sum result of the carry save adder in the
multiplier bitslice.

new multiplication. An additional signal denoted “EN” is present over a simple DCVSL
macrocell. In the signal processor design, the multiplier is located in parallel with the
barrel shifter within the datapath. Because the Acki signal may toggle during use of the
shifter, and the Imult signal does not change until some time after the Acki signal, the
EN input allows for disabling the multiplier. The master reset signal of the DSP chip
is also fed to the multiplier to clear the handshake circuits. It is denoted INIT in the
diagram. The recoder subcell of the control slice will be examined first since it contains
the first stage of the internal multiplier pipeline. Dropping down one more level in the
hierarchy, the recoder{.mult.mag cell block diagram is shown in Figure C.44. MAGIC subcell
names are shown in the figure also. When the multiplier is running, the Acki signal of
the first handshaking circuit (hsia) is fed around to its Req: input. The NOR gate in
3in_nor2.mult.mag is used to stop the pipeline when the partial products are computed
and to inhibit the pipeline from starting until the Ackil signal falls. The schematic for the
NOR gate cell is shown in Figure C.45. The EN signal function is made with a single AND
gate in series with the Reqi2 signal as shown. The schematic for the AND gate is given
in Figure C.46. For each partial product calculation, an appropriate Booth coefficient
must be computed. The coefficient is a mapping of the three least significant bits of the
Y-input shift register. These three bits are shifted by the shifireg2.lsb.mag cell shown
in Figure C.47. The three bits are fed to the recoder gates which were shown logically
in Figure 6.11. The schematics for the three required gates are shown in Figure C.48,

Figure C.49, and Figure C.50. The conipletion signal for the recoding stage is formed

by an OR gate that is fed by the 2z and 2zbar signals. The schematic for the or gate is
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Figure C.41: Carry propagate adder cell used in the multiplier.
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Figure C.42: Full adder subcell used in the carry propagate adder.
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Figure C.43: Block diagram of the multiplier control slice.
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Figure C.44: Booth recoder and associated handshaking circuits contained in the multi-

plier control slice.
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Figure C.45: 3-input NOR gate used in the Multiplier control slice.

and.mult.mag

)
: P 8/2 'I 82
inl ] > out
5/2 6/2

1

Figure C.46: 2-input AND gate used in the Multiplier control slice.
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Figure C.47: Three least significant bits of the Y-input shift register in the multiplier.
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Figure C.48: Inverter cell used in the Booth recoder.
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Figure C.49: DCVSL gate used in the Booth recoder for generating the “1x” signal of the

Booth coefficient.
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Figure C.50: DCVSL gate used in the Booth recoder for generating the “2x” signal of the
Booth coefficient.
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given in Figure C.51. The Booth coefficient is stored a register made up of dff5b.mult cells.

2in_or.mult.mag
_l 92 1472
inl ™
out
in2 ——{[ 52 122

Figure C.51: 2-input NOR gate used in the Multiplier control slice.

The register has larger output devices for driving the bitslices. (The coefficient signals go
to the bitslice Booth encoder (enc3.mag cell)) The schematic for the flip-flop is given in

Figure C.52.
an |————<CLRbar

cK
. T 132 a2 512
D >— o] O
an an o
o 1222 o 82 272 2%

Figure C.52: Flip-flop cell used to store the Booth coefficient in the recoder stage.

dff5b.mult.mag

The handshaking of the recoder stage is handled by the subcell hsla.mult.mag.
This is a simple 4-cycle handshake circuit made up of 2 clatches as shown in Figure C.53..
The schematic for the clatch was given in Figure 5.11. Moving back up the hierarchy
again from the recoder cell into the control slice, (refer to Figure C.43) the Acki signal
is fed to a special cell that is used for initialization of the multiplier. The schematic for
the init.mult.mag cell is shown in Figure C.54. The initialization circuit keeps Ackil high
between the time that the chip reset is high and the first acknowledge signal is sent to the
multiplier. If this were not done, the multiplier would run once before being ever being

called after the chip was reset. The Acki signal sent to multiplier clears the partial product
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hsla.mult.mag

(clatch9d.mag) (clatch9d.mag)
. Ai Ai
Regqi - C 0 = C 2 2
Bin Qbar Bin Qbar
Acki € < Acko*
INIT INIT

Figure C.53: Handshake circuit used in the recoder stage of the multiplier control slice.

counter and is buffered by buffer2.mult.mag before being sent to the input registers to load
new data. The buffered signal, denoted LD in the drawings also is applied to a OR gate
which causes the carry save adder storage registers to be clocked by the Ack: signal. This
loads them with zeros which is required before a new multiplication begins. The buffer

and OR gate schematics are shown in Figures C.55 and C.51.

init.mult.mag

5n I——'(INITbar
612

4

a2 2112

3012 . |
acki o ackibar . 1412

142 » Ackibar_ub
> Acki_ub

Figure C.54: Initialization circuit for Acki signal of multiplier.

The delay line for the “done” signal of the partial product counter is constructed
from dff6.mult.mag cells, for which the shematic is shown in Figure C.56. The I'mult signal
is not applied to the carry propagate adder until the partial products are calculated. An
AND gate is used for this function and it is shown in Figure C.57. The handshake cell

for the carry-save stage of operation is hs3a.mult.mag. It contains a 4-cycle handshake
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buffer2.mult.mag

————> out
2812 9072 9072
in outbar
172 56/2 56/2

Figure C.55: Buffer circuit used in the Multiplier control slice.

circuit and an OR gate which drives the storage register clocks. The OR gate actually is
redundant with the operation of the 2in_or.mult.mag. A schematic for the hs3a cell is
shown in Figure C.58. The schematic for the subcell buffer3a.mult.mag which was not

given earlier is in Figure C.59.

dff6.mult.mag
a2 |———'<CLRbar
CKbar
C|K 62 I 82
O O
D »— ‘ Q
an 4r
- -
CKbar 4 CK 62

Figure C.56: Flip-flop used for the dome signal delay line in the multiplier control slice.

3.3 MSB Slice

Because the B;,oth coefficient can have a value of 2, an extra bit on the MSB
side of the multiplier is required. The MSB slice contains the carry-save circuitry for the
extra bit. Additionally, it contains circuitry which generates the completion signal for
the carry-save operation. Symmetry is exploited in the completion circuit. Since all the
bits have the same carry-save circuitry and the carry-save addition operation is not data

dependent, a single adder circuit is used to generate the completion signal for all bits. As
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Figure C.57: AND gate and buffer used for the I signal of the carry propagate adder.
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Figure C.58: Handshake circuit for the carry-save stage of the multiplier.
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Figure C.59: Buffer inside of hs3a.mult.

shown in Figure C.60, the output of the Booth encoder, is fed to a “dummy” sum circuit,
which generates the DV 3 signal.

4, Parameterized Cells

The LAGER system that was used for assembling the DSP chip allows for param-
eterized macrocell generation. The designer supplies a set of the lower level cells (called
“leafcells”) and a tiling routine that specifies how the cells should be placed together. The
tiling can depend on parameters specified in the design files for the chip.

In the DSP design, there were several places that used the same type of macrocell.
For example, the RAM feedback path uses three registers that are 16-bits wide. In the
datapath, several MUXes of different wordlength are required. These cells were made
using parameterized macrocell generation. The description of the circuits for the tilable
cells is given in this section. The tiling routines are written in ‘c’-language syntax using
several library functions to do the tiling. The “sdl” file gives the names of the connectors

on the cell boundary and the parameters. For a full description of these file formats, the
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Figure C.60: MSB bitslice used in the multiplier.
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reader is directed to the LAGER system documentation[74].

4.1 Dregister

The dreg cell is used in the instruction pipeline, RAM feedback path, and the
I/0 FIFO’s. The sdl file for the cell is shown below:

..............................................................................

;i Name : dreg.sdl

;+: Purpose : D-Register w/clr
;33 Author : Gordon Jacobs
;3 Date : 5/30/88

(parent-cell dreg)
(layout-generator TimLager)

(parameters width buffered)

..............................................................................

..............................................................................

(net out (NETWIDTH width) ((parent out)))
(net in (NETWIDTH width) ((parent in)))
(net CK ((parent CK)))

(net clr ((parent clr)))

(net Vdd (NETTYPE SUPPLY) ((parent Vdd)))
(net GND (NETTYPE GRCUND) ((parent GND)))

(end-sdl)

There are two parameters that are specified in the assembly of a register. The width is
the number of flip-flops or the wordlength of the register. The buf fered parameter is a
binary valued parameter which specifies which leafcells to use. If it is non-zero, then a
buffered cell is used that contains larger output drive. The cell regcell.mag is the flip-flop
used in the normal register and its schematic is given in Figure C.61. The reg.left.mag
clock buffer cell for the normal register is shown in Figure C.62. The cell reg.right.mag
contains only an extension of the metal Vdd and GND lines to the cell boundary.

The buffered version of the register has the same floorplan, however it uses dif-
ferent leafcells. The schematics for the buffered version leafcells are shown in Figures C.63
and C.64.

The tiling routine for these cells in given below:

/+ dreg.c =/

/ /
/* TimLager routine for row of D flip-flops (register) w/clr
/* . s LR T /

#include "TimLager.h*

dreg()
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regcell.mag
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Figure C.61: Dynamic flip-flop cell used in parameterized register for DSP chip.
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Figure C.62: Clock buffer cell used in parameterized register for DSP chip.
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Figure C.63: Buffered output flip-flop cell used in parameterized register for DSP chip.
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Figure C.64: Clock buffer cell for buffered version of parameterized register for DSP chip.

v

int 1,j;
int vord_length;
int buffered;

void-length = Getparam("width");
buffered = Getparam("buffered");

Open_newcell (Read(“name")) ;
/* Add blocks */

if(!buffered) {
Addright(“reg.left” ,LEFT,TD,"CK",ALIAS,"CK",
TD,"CKbar",ALIAS, "CKbar",
TD,"clr” ,ALIAS,"clc",
TD,*“clrbar" ,ALIAS,"clrbar”,
END);

Addright("regcell"” ,TOP|BOTTOM,0FFSETY,~2,TD,"D",ALIAS,"in",INDEX,0,
TD,"out",ALIAS,"out" ,INDEX,0,
EHD);
for(i=1; i < word_length; i++) {
Addright(“regcell”,TOP|BOTTOM,TD,"D",ALIAS,"in" ,IBDEX,i,
TD,"out" ,ALIAS,"“out* ,INDEX,i,
ESD);

}
Addright(“reg.right" ,RIGHT ,0FFSETY,2,ERD);

else { /+ use bigger buffered reg cells... */
Addright("bufreg.left",LEFT,TD,"CK" ,ALIAS,"CK",
TD,"CKbar",ALIAS,CKbar", -
TD,"clr* ,ALIAS,"clr",
TD,"clrbar” ,ALIAS,"clrbar”,
EBD);

Addright(“bufreg",TOP|BOTTOM,OFFSETY,-3,TD, D" ,ALIAS,"in" ,INDEX,0,
TD,"out" ,ALIAS,"out",INDEX,O,
EHD);
for(i=1; i < word_length; i++) {
Addright (“bufreg" ,TOP|BOTTOM,TD,"D",ALIAS,"in",INDEX, i,
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TD,"out" ,ALIAS ,"out" ,INDEX,i,
END);

}
Addright (“bufreg.right" ,RIGHT ,0FFSETY,2,EBD);

Closae_newcell();

}
4.2 Dlatch
The dlatch cell is used in the controller. The sdl file for the cell is shown below:
;;;"’;;”":"d’i;t'étl.:;&i;;‘;’D"D"l’ll’llllI",”""”')D’P”’l’!"'ll'll’.’

;3; Purpose : N-bit Transparent D-Latch w/clr
;33 Author : Gordon Jacobs
;33 Date : 5/31/88

HHH : 2/22/89 Dynamic version of latch, requires clrbar, clkbar
] : 2/27/89 Clock buffer added. Only CK and clr signals

HH required now as in static version but due to

HHH presence of clock buffer, signals can only

HHH come into one side of latch now.

----------- R R R R R N N R R I N I I I N N N R R
PSPPI IINI NP I SI PN NN I PRI NI BN BRI PRI NI NI I NI IR IRNIIN PP IINIIIIIININIININNIIDNIIIIY

(parent-call dlatch)

(layout-generator TimLager)

(parameters width inverted)

;;; If "inverted" parameter is made non-zero, output is inverted
A from input. If "inverted" == 0, then there is no inversion

from input to output. Non-inverted version of this latch
is slightly larger and slower since it has extra inverter on top.

..............................................................................

;43 NETS

..............................................................................

(net out (NETWIDTH width) ((paremnt out)))
(net in (NETWIDTH width) ((parent in)))
(net CK ((parent CK)))

(net clr ((parent clr)))

(net Vdd (NETTYPE SUPPLY) ((parent Vdd)))
(net GHD (NETTYPE GROUED) ((parent GHD)))

(end-sdl)

There are two parameters that are specified in the assembly of a latch. The width is the
number of latch cells or the wordlength of the assembled latch. The inverted parameter is
a binary valued parameter which specifies which leafcells to use. If it is non-zero, then only
the single latchcell.mag is used and it inverts the signal. If inverted is made zero, then
an additional cell latch.inv.mag is added so that the signal is does not see an inversion.
The schematic for latchcell.mag is given in Figure C.65. The reg.right.mag clock buffer
cell is shown in Figure C.66. When the inverter cell is added, the dlatch becomes taller,

so different end cells must be used. For a non-inverting dlatch, the cell latch.right2.mag
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is used, but its schematic is identical to the latch.right.mag cell. The cells latch.le ft.mag
and latch.le ft2.mag contain only an extension of the metal Vdd and GND lines to the

cell boundary.

latchcell. mag

clrbar”>

‘-\ 7
clkbar 1up
. (o)
D— - [{ out
pm—
clk 52

Figure C.65: Latch cell used in parameterized D-Latch for DSP chip.
A
|J1 H an

latch.right.mag
latch.right2.mag

Figure C.66: Clock buffer cell used in parameterized D-Latch for DSP chip.

v

The tiling routine for these cells in given below:
/+ dlatch.c */
/

/* TimLager routine for row of D latches (register) w/clr
/

#include "TimLager.h"

dlatch()

{
int i,j;
int word_length;
int inverted;
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/s

latch.inv.mag

102

Figure C.67: Inverter cell used in parameterized D-Latch for DSP chip.

word_length = Getparam(“width");
inverted = Getparam(“inverted");

Open_nowcell(Read(“name"));
Add blocks ¢/

if(inverted)
Addright(“latch.left” ,LEFT,EED);
alse
Addright(“latch.leftZ".LEFT,EID);

if(inverted)
Addright(“latchcell" ,TOP|BOTTOM,0VERLAP,
TD,"D" ,ALIAS,"in", INDEX,O,
TD,"out" ,ALIAS,"out" ,INDEX,0, END);
else
Addright(“latchcell" ,BOTTOM,OVERLAP,
TD,"out",ALIAS,"out" , INDEX,0, END);

if(inverted)
for(i=t; i < word_length; i++)
Addright(“latchcell”,TOP|BOTTON,TD,"D" ,ALIAS,"in" ,INDEX,],
TD,"out",ALIAS,"out" ,INDEX,i, END);
else
for(i=1; i < word_lemgth; i++) {
Addright(”latchcell“,BOTTOH,TD,”out",ALIAS,"ont",IHDEX.i, ESD) ;

if(inverted)
Addright("latch.right" ,RIGHT ,OVERLAP,
TD,"clk” ,ALIAS,"CK",
TD,"clr",ALIAS,"clr*, EBD);
else
Addright (“latch.right2" RIGHT,OVERLAP,
TD,"clk” ,ALIAS,"CK",
TD,"clr" ,ALIAS,"clr*, END);
if(tinverted) {
Addup("latch.inv",TOP,0FFSETX,9,0FFSETY,-38,
TD,"D" ,ALIAS,"in" ,INDEX,0, END);
for(i=1;i < word_length; i++)
Addright(“latch.inv",TOP,TD,"D",ALIAS,"in",INDEX,i, EED);
} ;

Close_newcell();

288



4.3 2inMUX

The muz cell is used in the datapath at the RAM write input port, the Y-input
to the multiplier, and the ALU input. The sdl file for the cell is shown below:

..............................................................................

i3; Name : mux.sdl

;i; Purpose : N-bit wide 2-Input MUX with or without register on Control Imput
;+: Author : Gorden Jacobs

i+ Date : §/30/88

(parent-cell mux)
(layout-generator TimLager)

(parameters width clocked)

..............................................................................

..............................................................................

(net Ain (BETVWIDTH width) ((parent Ain)))
(net Bin (NETWIDTH width) ((parent Bin)))
(net out (NETWIDTH width) ((pareat out)))
;3 oelectrically the same as out

(net outb (NETWIDTH width) ((parent outb)))
(net CTL ((parent CTL)))

(net CK ((pareat CK)))

(net clr ((parent clr)))

(net Vdd (NETTYPE SUPPLY) ((parent Vdd)))
(net GED (NETTYPE GROUND) ((parent GHD)))

(end=-sdl)

There are two parameters that are specified in the assembly of a latch. The width is
the number of MUX cells or the wordlength of the assembled MUX. The schematic for
muzcell.mag is given in Figure C.68. The clocked parameter is a binary valued parameter
which specifies which leafcells to use. If it is zero, then the control input to the assembled
MUX is applied directly to the MUX cells through the buffer circuit muz.le ft2.mag shown
in Figure C.70. If clocked is made non-zero, then the cell muz.leftl.mag is used instead
and it contains a flip-flop which can store the control input. The schematic is shown in
Figure C.69. The cells muz.top2.mag and muz.bot2.mag contain only an extension of the
metal lines to the cell boundary. The bottom cell has two contacts for the (same) output

of the MUX which were required to work around a bug in the routing tool.

The tiling routine for the 2-Input MUX is given below:

/* mux.c s/

[EREREEBERRRRERAEEELEASAESESLSEESE S0 ES /
/* TimLager routine for row of 2-Input muxes
/essn SERRRERIRRNS L s/

#include "TimLager.h"
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Figure C.68: 2-Input MUX cell used in parameterized MUX for DSP chip.

(static D-register)
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outbar
0/2 6/2

dr
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2 _ mux.leftl .mag
CcK CKbar
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Figure C.69: Control input buffer for the parameterized MUX.
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Figure C.70: Second control input buffer containing a flip-flop that is used in the param-
eterized MUX.

mux()

int i,j;
int word_length;
int clocked;

word_length = Getparam(“width");
clocked = Getparam(“clocked");

Open_newcell (Read(“name")) ;
/* Add blocks */

if(clocked)
Addright(”mux.leftl",LEFT,TD,"CK".ALIIS,“CK“,
TD,"CTL" ,ALIAS,"CTL",TD,"clr" ,ALIAS,"clr" ,END);
alse
Addright("mux.left?”,LEFT,TD,"CK",ALIAS,“CK".
TD,"CTL",ALIAS,"CTL",TD,"clr" ,ALIAS,"clr" ,END);

for(iz0; i < word_length; i++) {
Addright("mux.bot2",BOTTOH,OVERLAP.TD,"out",ALIAS,“out",IﬂDEX,i,
TD,"outb” ,ALIAS,"outb”,INDEX,i,END);
}
if(clocked)
Addup("muxcell”,BONB,DVBRLAP,R270,0FFSETX.217,0FFSETY,-7B,EHD);
else
Addup("muxcoll“,BOEE,OVERLAP,BZ70,UFFSETX,90,UFFSETY,-78,EHD);

for(i=1; i < word_length; i++) {
Addright(“muxcell",B0NE,R270,EHD) ;

if(clocked)
Addup("mux.top2",TOP,0VERLAP,0FFSETX,217,0FFSETY,-9,
TD,"ain* ,ALIAS,"Ain* , INDEX,O,
TD,"bin* ,ALIAS,"Bin",IBDEX,0,END);
else
Addup (“mux.top?2"”,TOP,0VERLAP,0FFSETX,90,0FFSETY,-9,
TD,**ain" ,ALIAS,"Ain",IBDEX,O,
TD,"bin",ALIAS,"Bin",INDEX,0,END);
for(i=1; i < word_length; i++) {
Addright ("mux.top2",TOP,0VERLAP,
TD,"ain" ,ALIAS,"Ain" ,INDEX,1i,
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TD,"bin*,ALIAS,"Bin", IFDEX,i,EHD) ;
}

Close_newcell();

44 LPC

The Ipc cell is used in the controller and acts as a program counter, generating
the address for reading the Program ROM. The counter was adapted from the LAGER cell
library [74]. The sdl file for the cell is shown below:

.........................................................................

lpc.sdl
(vas counter_p.sdl)
TimLager module generation file for a loadable program counter

Modified by Gordon Jacobs, 6/2/88
Counter Top caell changed (added buffers) and some signal
names changed. Otherwise, cells are same as in LagerIV/cellib

.........................................................................

Gautam Doshi, 11-12-87 H

(parent-cell 1lpc)
(parameters width)
(layout-generator TimLager)

; LOADin is the input bus used to load the counter on reset
(net LOADin (BETWIDTH width) ((pareat load_in)))

; “..L" and *..R" represent the side of the counter

; COUET is the output of the counter

(net COUNT_L (NETWIDTH width) ((parent count_l)))

(net COUNT_L_BAR (NETWIDTH width) ((parent count_l_inv)))
(net COUNT_R (HETWIDTH width) ((parent count_r)))

(net COUNT_R_BAR (BETWIDTH width) ((parent count.r_inv)))

; CLOCKA and CLOCKB are the two nonoverlapping clocks
(net CLOCKA ((parent clkbar)))

(net CLOCKB1 ((parent clkB1)))

(net CLOCKB2 ((parent cl1kB2)))

; RESET is active high
; removed...(net EOB ((parent eob)))

; CHT is the counter increment signal (active high)
(net LOADbar ((parent loadbar)))

(net Vdd (HETTYPE SUPPLY) ((parent Vdd)))
(net GAD (NETTYPE GROUND) ((parent GED)))

(terminal Vdd (TERMTYPE SUPPLY))
(terminal GED (TERMTYPE GROUED))

(end-sdl)

The only parameter for the counter is the wordlength of the output. This deter-
mines how many of the actual counter cells are placed in the layout. The cells {pc.Xo0.mag

and Ipc_X e.mag contain the counter circuitry which is made from a half adder and a latch.
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The two types are used alternately in the layout, the suffixes denoting “even” and “odd”.
The Ipctop.mag cell contains clock buffering and several gates which control counting and
loading. The cells are shown in Figure C.71. Since the cell was adapted from a LAGER
cell, the names are a little confusing. The way the counter is hooked up in the DSP is

shown in Figure C.72. The Ipc_bot.mag cell contains routing only.

The tiling routine for the program counter is shown below.

/ /
/* TimLager module generation file for a programmable counter =/
/* s/
A Khalid Azim, 6-10-87 s/
/s Gautam Doshi, 11-12-87 ./
/ /

#include "TimLager.h"
int width,i,j,k,1;

1pc() {
width = Getparam(“width"); /# the bit width of the counter */
/% On reset: count is loaded from external input (“"load_in")s/
Open_nevcall(Bead(*name”));
Addup(*1pc_bot" ,NONE,OFFSETX,28,E¥D) ;

for (i=0; i<width; i++) {
it (i%2)
Addup("1lpc_Xo* ,LEFTIRIGHT,
TD,%in",ALIAS,"load_in",INDEX,i,
TD,"sum_1",ALIAS,"count_1",IBDEX,i,
TD,"sum_1_inv" ,ALIAS,"count_1_inv", INDEX,i,
TD,"sum_r* ,ALIAS ,"count_r*,IBDEX,i,
TD,"sum_r_inv",ALIAS,"count_r_inv*,INDEX,i,END);
alse
Addup("1pc_Xe" ,LEFT|RIGHT,
TD,"in",ALIAS,"load_in",INDEX,i,
TD,"sum_1",ALIAS,"count_1", INDEX,i,
TD,"sum_1_inv* ALIAS,"count_1_inv",INDEX,i,
TD,"sum_r* ,ALIAS,"count_r",IBDEX,i,
y TD,"sum_r_inv",ALIAS,"count_r_inv",INDEX,i,END);

Addup("1pc_top",TOP|LEFT|RIGHT,

/* TD,"cout” ,ALIAS,"cout",
TD ,"phA" ,ALIAS ’upmu ,
TD,"phAinv*' ,ALIAS,"phAinv",
TD,"phB", ALIAS,"phB",
TD,"phBinv" ,ALIAS,"phBinv*",
TD,"rst",ALIAS,"rst",
TD,"rstinv" ,ALIAS ,"rstinv",
TD,"cnt* ,ALIAS,"cnt*,
TD,"cntinv* ,ALIAS,"cntinv"

=/
/% TD,"aeob" ,ALIAS,"eob", removed */
TD,"incr" ,ALIAS,"loadbar”,
TD,"clkBi" ,ALIAS,"clkB1",
TD,"clkB2" ,ALIAS,"clkB2",
TD,"clkA" ,ALIAS,"clkbar",
EHND);

Close_newcell();
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Ipc.top.mag

clkA cikB2 eob

Ipc (loop counter)

inc clkBl

Y

3@1
Y Kjv

Vdd GND

phA p_hft ;h_.B phB inc_cnir

rst_cntr

Ipc_Xe.mag
cout (from msb only) lp C—Xo’mag
Load in
rst_cntr phA phB
Half ’_g
- -——->o—
Adder

inc_cntr

Figure C.71: Schematics for cells making
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Connection of lpc.mag in DSP

inc Load
- Counter — our
clkBl (changes on clkB)
eob enable
A
' .
cliA clkB2

e Connect clkB1 and clkB2 to clk
o Connect clkA to clkbar
s Connect eob to Vdd (always enable)
® Connect inc to loadbar
(Loads counter on clkB.inc)

Figure C.72: The connection-of signals to the counter.

5. Handshake Std. Cells

. The handshake circuits for the DSP shown in Chapter 7 were all assembled from
a set of gates resembling standard cells. The gates have the same height and power
supply bus locations so that they can be placed in rows and interconnected with routing
channels. The layout in the DSP was done manually due to lack of a tool that recognized
these particular cells. The schematics for the cells are shown in this section. The names

match those subcell names shown in the handshake circuit figures in Chapter 7.

5.1 Simple Gates

The schematics for a 2-input NAND gate and a 2-input NOR gate used in the
handshake circuits are shown in Figures C.73 and C.74. A three input NOR gate is shown
in Figure C.77.

295



Figure C.73: Schematic for 2-input NAND gate used in the handshake circuits.

2in_nor.mag

—| 142
]
I

AT

Figure C.74: Schematic for 2-input NOR 'ga,—te used in the handshake circuits.

—> out
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A 3-input NOR gate is shown in Figure C.77. In the handshaking circuits for the datapath,
control signals re-configure the circuit. The use of a MUX and DEMUX was necessary
for the switching of the circuit function. The schematics for a 2-input MUX and 2-output
DEMUX are shown in Figures C.75 and C.76.

mux.mag
ctlbar
—_—
bin )
ctl 1 out
ain )
ctlbar

Figure C.75: Schematic for 2-input MUX used in the handshake circuits.

demux.mag
ctlbar 4 Ved
1
- b
> out
82 ?
— ]

> outa
82
M
ctlbar *E’i

Figure C.76: Schematic for 2-output DEMUX used in the handshake circuits.

Several buffers were used to drive long lines between cells or to the pads. The schematic
for outbu f f.mag is shown in Figure C.78 and the schematic for bigbu f f.mag is shown in
Figure C.79. The inverter ct/bu f f.mag was used mainly to invert control signals, providing
the complementary inputs required in the MUX and DEMUX circuits to drive the CMOS
switches. Its schematic is given in Figure C.80. An inverter to drive larger loads in shown

in Figure C.81. It is used in the RAM and controller handshaking circuits.
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_| 3in_nor.mag

o —‘ i
L

Figure C.77: Schematic for 3-input NOR gate used in the handshake circuits.

outbuff. mag

E}n -

- Oba' A -

in P owt
’ 5/2 2012

Figure C.78: Schematic for output buffer used in the handshake circuits.

bigbuff. mag

2072 46/2
. obar .
in > out
‘ 1312 3672

Figure C.79: Schematic for large buffer used in the handshake circuits.
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ctlbuff mag

112
in out
m

Figure C.80: Schematic for simple inverter used in the handshake circuits.

outinv.mag

2572
in out
1712

Figure C.81: Schematic for output inverter used in the handshake circuits.

5.2 C-elements

The c-elements used in the handshaking circuits are all derived from the c-element
shown in Figure 5.11. Clatch9e.mag is shown in Figure C.82 and it is used in the HS4
circuits as well as the RAM and PROM handshake circuits. A three input c-element is
clatch10.mag and it is shown in Figure C.83. A four input c-element used in the RAM

handshake circuit is shown in Figure C.84.

5.3 Miscellaneous

In the controller handshaking, the four condition code signals from the datapath

are brought in through a 4:1 MUX circuit. The instruction signals which condition code
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Figure C.82: Schematic for 2-input c-element used in the handshake circuits.

G e

c—[ a4 __Ig wn]}—c ;I_B clatch10.mag

Figure C.83: Schematic for 3-input c-element used in the handshake circuits.
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clatchll.mag

Figure C.84: Schematic for 4-input c-element used in the handshake circuits.

to select for a particular branch. The 4:1 MUX circuit used is shown in Figure C.85 and

a decoder that drives its control inputs is shown in Figure C.86.

In the controller handshaking, the sequential handshake circuit that was shown in Fig-
ure 7.10 was constructed with two special SR latches which have built in AND ing action

on their set inputs. The schematics for the latches are shown in Figures C.87 and C.88.

Finally, in the I/O handshake circuits a delay is used to simulate the delays of the FIFO
registers. The cell to do this is named regDV.mag and it is shown in Figure C.89. The
placement of the regDV.mag cell is illustrated in Figure 7.17.
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52 ,_T_____L_ 4tolmux.mag
(¢

Figure C.85: Schematic for 4:1 MUX circuit which selects condition code fromthe datapath
in the controller handshaking (RO M hs.mag).

2toddec.mag

112
T outl

1012

112
in0 %—DO-Q—{>C

772 ¢

inl >——'{>O-ﬂ—{>0——*

outl

out2

17T

out

Figure C.86: Schematic for 2-to-4 decoder circuit used to drive the 4:1 MUX above.
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srlatch2a.mag

e TE

Qbar Q
A—| 152 15;_2;“——><:»—H;tn. 12 i-R 12 I'INIT

Figure C.87: Schematic for SR latch used in the sequential handshake circuit in the

controller. Latch is set by raising both A and B inputs.

srlatch3a.mag

a3 e
Qbar ¢ o
A e T
2072

S=ABC

c—i| 20m

Figure C.88: Schematic for SR latch used in the sequential handshake circuit in the
controller. Latch is set by raising A, B, and C inputs.
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regDV.mag

182 "\ 32 N2 232

T

clock buffer of D-register slave latch buffer

Figure C.89: Schematic register delay cell used in the Input/Output handshake circuits.
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