

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SELF-TIMED INTEGRATED CIRCUITS

FOR DIGITAL SIGNAL PROCESSING

Copyright © 1989

by

Gordon Merrill Jacobs

Memorandum No. UCB/ERL M89/128

30 November 1989

SELF-TIMED INTEGRATED CIRCUITS

FOR DIGITAL SIGNAL PROCESSING

Copyright © 1989

by

Gordon Merrill Jacobs

Memorandum No. UCB/ERL M89/128

30 November 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

SELF-TIMED INTEGRATED CIRCUITS

FOR DIGITAL SIGNAL PROCESSING

Copyright © 1989

by

Gordon Merrill Jacobs

Memorandum No. UCB/ERL M89/128

30 November 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Self-Timed Integrated Circuits for

Digital Signal Processing

by

Gordon Merrill Jacobs

Abstract

As the clocking rates of large digital Integrated Circuits (ICs) continue to in

crease, the global synchronization of the circuits becomes an increasingly difficult design

problem. While scaling the feature size of an IC technology has traditionally been the

method for obtaining increased performance, limitations in the wiring layers can pre

vent taking full advantage of the faster devices used in the circuit. At the board level,

asynchronous interfaces have been introduced in places where synchronization becomes

problematic. A natural extension to this idea is to extend the use of asynchronous cir

cuits to within an IC. Self-timed circuits are introduced as a means for implementing

asynchronous ICs. Self-timed circuits, in addition to performing computation, generate

completion information that can be used by appropriate interconnection blocks to oversee

the transfer of data between stages without the use of any global clock signal.

As a design example, a complete micro-processor based digital signal processor

(DSP) was designed and fabricated using self-timed circuits following a 4-cycle handshak

ing protocol to provide fully asynchronous operation without a global clock. The DSP is

mask programmable and it was fabricated in 2\im N-well CMOS in an active area of 6.6mm

x 4.7mm. The processor showed reliable operation at power supply voltages between 3.5V

and 7V, illustrating how self-timed circuitry adjusts to variations in environment (and

processing) while still operating correctly.

This report starts by introducing previous approaches to asynchronous processors

followed by an explanation why it is both necessary and feasible to implement them in

IC form. A survey of self-timed circuitry is then presented along with a description of a

synthesis method for generating the interconnection or "handshake" circuits required to

implement the correct handshaking protocol for data transfers. Details of the DSP design

are given along with experimental results. Finally, some conclusions about the work are

drawn.

T&GhaJkccliUcu^'

Robert W. Brodersen

Chairman of Committee

Acknowledgments

I'd like to express my deepest gratitude to Professor Bob Brodersen who has done

so much for me since we met way back in 1976. Throughout both my Masters and Ph.D.

research, Bob has been a source for many good ideas, financial support and counseling.

Without his friendship, the work would not have been nearly as enjoyable.

The collective group of students under Prof. Brodersen known as "bobsgroup"

provided much help to me throughout my research. I thank them for all of the useful

discussions. Outside of our immediate group, Professor David Messerschmitt and Teresa

Meng contributed many interesting ideas and developed for the most part, the synthesis

program used for the handshaking circuits. Thanks to the CAD group for helping me

learn programming.

Thanks also to Professors Paul Gray and David Hodges who have made me feel

more like a peer than a lowly grad student since my return to school.

The guys at Teknekron CSD also deserve a big thanks for giving me support over

the years. It has been a pleasure working with Amine Haoui, Nan-Sheng Lin, and Roger

Strauch in parallel with my research at UCB.

Last, but not least, thanks to Mom and Dad for encouraging me to do what I

want to do in life, and for absorbing all of the complaints along the way. To the boys in

Chicago, and you know who you are, your faith in my abilities on and off campus beats

all.

Contents

Acknowledgments i

Table of Contents iii

List of Figures vii

1 Introduction 1

1. Definition of self-timed 3
2. Background 4

2.1 Early Work 4
2.2 Arbiters and Metastability 6
2.3 Data Flow Computers 6
2.4 Systolic Arrays 8
2.5 Wavefront Arrays 8

3. The Self-timed Model 8
4. Scope 9

2 Motivations for using Self-Timed Techniques 11
1. Design Issues 11
2. Scaling and Technological Reasons 12

2.1 Scaling Laws 13
2.2 A real scaled process 14
2.3 Interconnect 14
2.4 Clock Distribution 21

3. Summary 33

3 Realization of Self-Timed Circuits 35
1. Completion Signals 35
2. DCVSL Description 36

2.1 Completion Signal Generation in DCVSL 38
2.2 Charge-Sharing 41
2.3' Design and Layout Issues 44

3. Alternatives to DCVSL 56
3.1 Sample-Set Differential Logic (SSDL) 57
3.2 Enabled/disabled CMOS Differential Logic (EDCL) 58
3.3 Latched Domino CMOS Logic (Ldomino) 61

4. Summary 62

iii

4 Handshaking Circuit Synthesis 65
1. Partitioning 66
2. STG's for Describing Sequential Behavior 67

2.1 Synthesis using STGs 69
2.2 4-cycle protocol 71

3. 4-cycle Handshake Circuit 72
3.1 Other HS4 circuits 80
3.2 Assumptions on Delay Matching 82

4. Higher level description for synthesis 83
5. Other Common Handshake Circuits 85

5.1 Sequential HS circuit 85
5.2 2-Source, 1-destination HS circuit 86
5.3 1-Source, 2-destinations HS circuit 86
5.4 2-in Multiplexer HS circuit 88
5.5 2-out Demultiplexer HS circuit 91

6. Summary 91

5 C-elements for Handshaking Circuit Design 93
1. C-element design 93
2. Placement of Buffers in HS circuits 104

6 Self-Timed MacroceU Design 109
1. Barrel Shifter 109
2. ALU 114

3. Iterative Multiplier 123
3.1 Booth Algorithm 126
3.2 Multiplier Cell Design 127

4. ROM 131

5. RAM 133

6. Summary 133

7 The Design of a Self-Timed DSP 137
1. History of Signal Processing Applications and DSPs 137
2. System Description 139

2.1 Data Stationary Architecture 140
2.2 Instruction Set 144

2.3 Assembler 148

3. System Timing 153
4. Datapath Handshaking 155

4.1 Controller 155

4.2 Instruction Pipeline 158
4.3 I/O Scheme 161
4.4 RAM Handshaking 168
4.5 Multiplier,Shifter Handshaking 172
4.6 ALU Handshaking 173

5. Global Placement and Routing 176
6. Chip Level Simulation 179
7. Summary 182

iv

8 Experimental Results 183
1. DSP Test Chips 183

1.1 CHIP1 183

1.2 CHIP2 188

1.3 CHIP3 193
2. Laboratory Measurements 198

2.1 CHIP1 Measurements 198

2.2 CHIP2 Measurements 204

2.3 CHIP3 Measurements 210
3. Interface to the Outside World 210
4. Summary 212

9 Conclusion 213

1. DSP Design 213
1.1 Handshaking Logic Design 214
1.2 Delay Matching 215
1.3 Register Completion 216
1.4 Simulation Environment 218

2. Future Work 219
3. Speed Comparisons 220

Bibliography 221

A ntree Program Documents 229
1. Manual Page 229
2. Example 231
3. Program Source Code 233

B Assembler Program Documents 235
1. Manual Page for asm 235
2. Manual Page for ROMconvert 237
3. Example 238
4. Program Source Code 244

C Circuit Detail 245
1. Barrel Shifter 245

1.1 Floorplan 245
1.2 Miscellaneous Cells 245

2. ALU 253
2.1 Bitslice 253
2.2 Control Slice 256
2.3 LSB Slice 262

3. Multiplier 262
3.1 Bitslice 262
3.2 Control Slice 265
3.3 MSB Slice 279

4. Parameterized Cells 281
4.1 Dregister 283
4.2 Diatch 286
4.3 2inMUX 289

4.4 LPC 292
5. Handshake Std. Cells 295

5.1 Simple Gates 295
5.2 C-elements 299
5.3 Miscellaneous 299

VI

List of Figures

1.1 The model for a self-timed system 9

2.1 Two-dimensional model of wire capacitance 16
2.2 Capacitance of wire/unit length when two-dimensional effects are included. 17
2.3 Charging current versus charging capacitance using a linear model 19
2.4 Capacitance of AL wire versus length when lfi/mA rule is followed. Charg

ing currents are shown for each line 20
2.5 Minimum width of a Tungsten wire required to keep a voltage drop of less

than 1.5V versus length and charging current 20
2.6 Full Cycle Synchronous Pipeline model 22
2.7 Clock waveform definitions 22
2.8 A two-phase clock with skew 23
2.9 Half Cycle Synchronous Pipeline model 24
2.10 Model for interconnect delay time 26
2.11 Delay time associated with a 1cm wire driving a lOpF capacitive load. ... 28
2.12 Delay time associated with a 2cm wire driving a lOpF capacitive load versus

wire width 29
2.13 Distributed buffer clock distribution scheme 30
2.14 Delay time associated with a 1cm wire driving a IpF capacitive load versus

wire width 31
2.15 Delay time associated with a 2cm wire driving a IpF capacitive load versus

wire width 31
2.16 Delay time associated with a 1cm wire driving a O.lpF capacitive load versus

wire width 32
2.17 Delay time associated with a 2cm wire driving a O.lpF capacitive load versus

wire width 32

3.1 A simple domino logic gate and its static CMOS counterpart 37
3.2 A generalized DCVSL gate 38
3.3 Constraints on the inputs to a DCVSL gate 39
3.4 The generation of a completion signal on a DCVSL gate. DV denotes "data

valid" and PV denotes "pre-charge valid" 40
3.5 Alleviating charge sharing in a DCVSL gate 43
3.6 Input parse tree for example gate 48
3.7 Function graph for the example gate 55
3.8 NMOS tree for the example gate 55
3.9 A generalized SSDL logic gate 57

vii

3.10 A generalized EDCL logic gate 60
3.11 A generalized Latched Domino logic gate 62

4.1 Block diagram of a self-timed system 67
4.2 Simple signal transition graph 68
4.3 STG not possessing the property of semi-modularity 70
4.4 Block diagram for 4-cycle handshake circuit 73
4.5 STG's for 4-cycle handshaking pipeline stage 73
4.6 State Graph for the 4-cycle handshake circuit STG 75
4.7 Reduced STG and state graph for signal Acki 76
4.8 Karnaugh map construction for Acki 77
4.9 Reduced STG and state graph for signal Reqo 78
4.10 Karnaugh map construction for Reqo 78
4.11 Drawing of 4-cycle handshake circuit 79
4.12 Drawing of 4-cycle handshake circuit using Muller c-elements 79
4.13 Connection of a DCVSL logic block to the 4-cycle handshake circuit 80
4.14 STGs for the specification Reqi+ —• Reqo+ 81
4.15 HS4 Circuit for the STG shown in Figure 4.14. The "*" means that the

first latch is set-dominant, i.e. if S and R are both HIGH , the output is set. 82
4.16 Sequential handshake STG and circuit from the specification m[Reqi+ —•

Reqo+;Acko+ ->• Acki+] 86
4.17 Handshake circuit for block with two input sources. The guarded command

is m[Ackif fl Ack%2 -+ Reqo+] 87
4.18 Handshake circuit for block with two output destinations. The guarded

command is *[Acki+ -* Reqc%, Reqo$] 87
4.19 Handshake circuit for a 2-input MUX stage 90
4.20 Handshake circuit for a 2-output DEMUX stage 92

5.1 Cross-coupled NOR c-element implementation 94
5.2 CMOS circuit for cross-coupled NOR c-element implementation 95
5.3 Cross-coupled NAND c-element implementation 95
5.4 Majority function gate implementation of a c-element 96
5.5 CMOS design for majority function c-element 97
5.6 CMOS design for dynamic c-element 97
5.7 CMOS design for dynamic c-element (with clear) 98
5.8 CMOS design for dynamic c-element with different initialization scheme.

Resets on INIT0 98
5.9 CMOS design for dynamic c-element with different initialization scheme.

Sets on INITl 99

5.10 CMOS design for ratioed c-element (with clear) 100
5.11 CMOS design for ratioed c-element with a full CMOS Q output 100
5.12 Diagram of 4-cycle handshake circuit that exploits both the True and Com

plement outputs of the c-elements 101
5.13 4-cycle handshake circuit with buffers added to c-element outputs 105
5.14 4-cycle handshake circuit with buffers added in a position which enhances

the efficiency 106
5.15 4-cycle handshake circuit interfaced to a DCVSL stage and register which

generates a completion signal 107

6.1 Block diagram of the self-timed barrel shifter Ill

viii

6.2 DCVSL 2-input MUX used in barrel shifter 112
6.3 Control Input buffer for barrel shifter 113
6.4 D flip-flop used in the input register of the barrel shifter 113
6.5 Block diagram of the self-timed ALU 115
6.6 Schematics for DCVSL full adder used in the ALU 119

6.7 Schematic for the DCVSL gate performing logical functions in the ALU. . . 120
6.8 Schematic for the Data Valid signal generation circuitry in the ALU 122
6.9 Block Diagram of the iterative self-timed multiplier chip 124
6.10 Logic to encode the multiplicand from the three Booth control signals. . . . 128
6.11 Booth Recoding logic 128
6.12 Bit slice of multiplier minus carry propagation adder section 129
6.13 Booth encoder DCVSL gate used in the multiplier 130
6.14 Diagram of the ROM adapted for self-timed applications 132
6.15 Diagram of the RAM adapted for self-timed applications 134

7.1 Block Diagram of datapath 141
7.2 Data Stationary and Time Stationary processor architectures 143
7.3 Time Stationary processor communication 145
7.4 Data Stationary processor communication 146
7.5 Math Instruction Set for datapath 147
7.6 Datapath Control Instructions 148
7.7 Diagram of the assembler written for the self-time DSP 150
7.8 Handshaking and Control circuitry block diagram for the self-timed DSP. . 154
7.9 Block diagram of the controller used for the DSP chip 156
7.10 Sequential handshake circuit 157
7.11 Detailed diagram of chip controller circuit 159
7.12 An simple example of a control signal which affects the state of a handshake

circuit 160
7.13 Using a register delay to ensure that a control signal is utilized properly in

the handshaking circuit 162
7.14 Detail of the instruction pipeline registers 164
7.15 Simplified drawing of the Input Port 166
7.16 Simplified drawing of the Output Port 167
7.17 Complete drawing of the RAM and I/O handshaking. The I/O registers

are included for clarity. : 171
7.18 Detailed drawing of the handshake circuit used for the multiplier and barrel

shifter 174
7.19 Detailed drawing of the handshake circuit used for the ALU 177
7.20 Combined handshake circuits for the second and third stages of the datap

ath pipeline 178
7.21 Plot of the DSP chip floorplan 180
7.22 Micro-photograph of the DSP chip 181

8.1 Network for 16-tap FIR filter implemented in CHIP1 184
8.2 Frequency Responses of the original design 15-tap FIR filter and the 16-tap

version after coefficient truncation to 16 bits 186
8.3 Network for 8-pole IIR filter implemented in CHIP1 189
8.4 Frequency Response of 8-pole Bandpass IIR filter 191
8.5 Passband of 8-pole Bandpass IIR filter 192
8.6 Passband of 8-pole Bandpass IIR filter 200

ix

8.7 Oscilloscope trace showing handshake signals in CHIP1 just after a new
sample arrives 201

8.8 Oscilloscope trace showing handshake signals in CHIP1 at the end of the
program loop. The fast instruction is a NOP 202

8.9 Simulation results showing the same handshake signals as measured in the
previous figure 203

8.10 Oscilloscope traceshowing the shifter, multiplier computesignals and reqi-ACC
in CHIP2 just after a new sample arrives 206

8.11 Simulation results showing the same handshake signals as measured in the
previous figure 208

8.12 Oscilloscope trace showing other handshake signals in CHIP2 just after a
new sample arrives 209

8.13 Interfacing the self-timed DSP to external devices 211

C.l Block diagram of control slice of barrel shifter. 246
C.2 Control input schematic for barrel shifter 247
C.3 2-input nor gate used in the barrel shifter control slice (bshift.ctldpl.mag). 247
C.4 Buffer cell used in the barrel shifter control slice to buffer DVbsh 248
C.5 Buffer circuit used in the barrel shifter control slice to drive Ibsh 248
C.6 Buffer circuit used in the barrel shifter at the data outputs 249
C.7 Routing cell for shifter output bits which are not used in determining the

DV signal 249
C.8 NOR gate used to derive the completion signal for a single bit in the shifter. 250
C.9 NOR gate with buffer used to derive the completion signal for a single bit

in the shifter 250
C.10 Block diagram and schematics for bshifter.top cell 251
C.ll AND gate with buffer used in the bshifter top cell for sign extension logic. . 251
C.12 Clock driver circuit used in barrel shifter top cell to buffer input register

clocks 252

C.13 Routing cell between input register and row 1 of the MUXes in the barrel
shifter 252

C.14 Routing cell between MUX rows 1 and 2 in the barrel shifter 252
C.15 Routing cell between MUX rows 2 and 3 in the barrel shifter 253
C.16 Routing cell between MUX rows 3 and 4 in the barrel shifter 253
C.17 Diagram of the ALU bitslice with magic subcell names 254
C.18 D flip-flop used for A-input register in the ALU bitslice 255
C.19 Schematic of 2:1 MUX used to select A or Abar input in the ALU bitslice. . 255
C.20 Schematic of 2:1 MUX used to select logical or addition function in the

ALU bitslice 256

C.21 D flip-flop used for Accumulator register in the ALU bitslice 257
C.22 Buffer cell used in ALU control slice 257

C.23 DCVSL AND gate used to zero the B-input of the ALU in the bitslice. . . . 257
C.24 Block diagram of ALU control slice showing subcell names 258
C.25 Buffer used in ALU control slice 259

C.26 Buffer used in ALU control slice 259

C.27 Buffer cell used in ALU control slice 259

C.28 Buffer cell used in ALU control slice 260

C.29 NAND and NOR gate cell used in the ALU control slice 260
C.30 NOR gate cell used in the ALU control slice 260

C.31 Big buffer cell used in ALU control slice 261
C.32 and gate used in ALU control slice 261
C.33 Buffer cell used in ALU control slice 261

C.34 Detailed block diagram of the iterative self-timed multiplier 263
C.35 Schematics for the shift register cells making up the multiplier Y-input

register 264
C.36 D flip-flop used for the X-input register of the multiplier bit slices 265
C.37 Schematic for the DCVSL gate performing the sum operation of the carry

save adder 266

C.38 Schematic for the DCVSL gate performing the carry operation of the carry
save adder 267

C.39 Flip-flop used for storing the carry result of the carry save adder in the
multiplier bitslice 267

C.40 Flip-flop used for storing the sum result of the carry save adder in the
multiplier bitslice. 268

C.41 Carry propagate adder cell used in the multiplier 269
C.42 Full adder subcell used in the carry propagate adder 270
C.43 Block diagram of the multiplier control slice 271
C.44 Booth recoder and associated handshaking circuits contained in the multi

plier control slice 272
C.45 3-input NOR gate used in the Multiplier control slice 273
C.46 2-input and gate used in the Multiplier control slice 273
C.47 Three least significant bits of the Y-input shift register in the multiplier. . . 274
C.48 Inverter cell used in the Booth recoder 275
C.49 DCVSL gate used in the Booth recoder for generating the "lx" signal of

the Booth coefficient 275
C.50 DCVSL gate used in the Booth recoder for generating the "2x" signal of

the Booth coefficient 276
C.51 2-input nor gate used in the Multiplier control slice 277
C.52 Flip-flop cell used to store the Booth coefficient in the recoder stage 277
C.53 Handshake circuit used in the recoder stage of the multiplier control slice. . 278
C.54 Initialization circuit for Acki signal of multiplier 278
C.55 Buffer circuit used in the Multiplier control slice 279
C.56 Flip-flop used for the done signal delay line in the multiplier control slice. . 279
C.57 AND gate and buffer used for the I signal of the carry propagate adder. . . . 280
C.58 Handshake circuit for the carry-save stage of the multiplier 280
C.59 Buffer inside of hs3a.mult 281
C.60 MSB bitslice used in the multiplier 282
C.61 Dynamic flip-flop cell used in parameterized register for DSP chip 284
C.62 Clock buffer cell used in parameterized register for DSP chip 284
C.63 Buffered output flip-flop cell used in parameterized register for DSP chip. . 284
C.64 Clock buffer cell for buffered version of parameterized register for DSP chip. 285
C.65 Latch cell used in parameterized D-Latch for DSP chip 287
C.66 Clock buffer cell used in parameterized D-Latch for DSP chip 287
C.67 Inverter cell used in parameterized D-Latch for DSP chip 288
C.68 2-Input MUX cell used in parameterized MUX for DSP chip 290
C.69 Control input buffer for the parameterized MUX 290
C.70 Second control input buffer containing a flip-flop that is used in the param

eterized MUX 291

XI

C.71 Schematics for cells making up the counter in the DSP controller 294
C.72 The connection of signals to the counter 295
C.73 Schematic for 2-input nand gate used in the handshake circuits 296
C.74 Schematic for 2-input nor gate used in the handshake circuits 296
C.75 Schematic for 2-input MUX used in the handshake circuits 297
C.76 Schematic for 2-output DEMUX used in the handshake circuits 297
C.77 Schematic for 3-input nor gate used in the handshake circuits 298
C.78 Schematic for output buffer used in the handshake circuits 298
C.79 Schematic for large buffer used in the handshake circuits 298
C.80 Schematic for simple inverter used in the handshake circuits 299
C.81 Schematic for output inverter used in the handshake circuits 299
C.82 Schematic for 2-input c-element used in the handshake circuits 300
C.83 Schematic for 3-input c-element used in the handshake circuits 300
C.84 Schematic for 4-input c-element used in the handshake circuits 301
C.85 Schematic for 4:1 MUX circuit which selects condition code fromthe data

path in the controller handshaking (ROMhs.mag) 302
C.86 Schematic for 2-to-4 decoder circuit used to drive the 4:1 MUX above. . . . 302
C.87 Schematic for SR latch used in the sequential handshake circuit in the

controller. Latch is set by raising both A and B inputs 303
C.88 Schematic for SR latch used in the sequential handshake circuit in the

controller. Latch is set by raising A, B, and C inputs 303
C.89 Schematic register delay cell used in the Input/Output handshake circuits. . 304

xn

Chapter 1

Introduction

Since the inception of the Integrated Circuit (IC), the drive to shrink feature

sizes further has continued at a rapid pace. By reducing the size of the devices, a chip

with given complexity can be made smaller and less expensively, or a chip with a given

area can achieve greater functionality. The speed of the transistors also increases with

scaling so that more processing power is obtained. Accompanying the advances in digital

IC processing technology havebeen products that take full advantage of the greater speed

and complexity. The progress had been so rapid that (perhaps to the frustration of

computer owners) the life cycle of a digital chip may only be several years.

Currently, as gate lengths are breaking the 1/xm mark, the ability to take ad

vantage of the smaller, faster transistors is becoming endangered by limitations in the

means for interconnecting them. The delays associated with the wiring layers of an IC are

becoming significant with respect to the circuit delays. Additionally, the scaling process

for these layers has reached some fundamental limits. While the delay of a short wire

that connects local devices is still insignificant with respect to circuit speeds, a wire that

must traverse an entire IC can have appreciable delay. Most digital processors depend

on a global synchronizing signal or "clock" to function properly. All operations of the

circuit are initiated by the edges of the clock and their duration must be less than one

or multiple periods of the clock. For finer resolution in time, the clock is typically split

into several phases. Because all circuitry is synchronized with the clock, the clock signal

must be distributed over the entire area of the chip. In suitably regular structures such

as gate arrays, buffering trees can equalize the delay encountered by the clock signal to

different parts of the chip, however, this creates a problem with off-chip communication.

Cell based designs, which are becoming increasingly common, rarely have a regular clock

loading scheme and the control over the exact placement of the clock lines is often lim

ited in automated chip assembly tools. Clock skews, i.e., a difference in time between

the edges of the same clock signal at different locations on the chip, are a result of the

timing distribution network and they require that either the logic circuits meet certain

latency requirements, or that the time between phases of a multi-phase clocked system be

increased. This negatively impacts the time available for computation. The scaling of IC

technology tends to aggravate the clock distribution problem. Smaller devices and larger

chip areas translates to a larger number of devices per chip, making the capacitive loading

on the clock lines the same or larger.

Self-timed circuits are introduced in this report as a means of synchronizing the

chip at a more local level. This alleviates problems associated with distributing a clock

signal over the entire face of the chip for synchronization. Many of the problems associated

with this type of design style have been studied and solved in this research. The results

as published thus far however, are quite controversial. While most designers agree that

asynchronous transfer of information (using some type of self-timed circuits) is required in

system design, the level at which it is required is a subject of intense debate. The approach

taken in this thesis was to bring self-timing onto the chip and all the way down to the

level of the individual gates of a digital circuit. The philosophy behind this approach is

based simply on the history of computer design. As speeds have increased, the level at

which asynchronous interfaces have been used has become increasingly local. Extending

this idea naturally brings self-timing onto the chips that perform the computation. So,

it is felt that while the technology of today may not necessitate this design approach,

time will compel its widespread usage. The circuits described in the later chapters show

the proof of concept in the design approach described. The technique however, is still in

its infancy. It is hoped that the reader will see the feasibility of the approach as well as

the good reasons for studying it, and then be able to make some decisions regarding its

potential for future applications.

Digital Signal Processors (DSPs) represent a specialized form of high-speed com

puter design. DSPs do not typically contain the high degree of flexibility seen in general

purpose micro-processors but the required level of performance is very high if real-time

applications are implemented. Because of this high-speed requirement, the interest in this

area held by the author, and the tremendous growth in the use of DSPs in recent years, a

DSP design was chosen as the vehicle for testing the self-timed circuit design methodology

studied.

1. Definition of self-timed

In the literature, the terms synchronous, asynchronous, and self-timed can refer

to different things in different contexts. In this thesis, the term self-timed is used to

describe circuits that have an underlying method of operation. Formally,

Definition 1.1 Self-timed circuits are circuits which, in addition to performing compu

tation, supply a completion signal to indicate when the computation is finished.

All of the cell designs described in later chapters are self-timed because they supply a

Data Valid (DV) signal which indicates when the signals at the output of the circuit are

valid. Depending on the implementation, self-timed circuits often require an Initialization

(I) signal to reset the outputs and DV signal. The I signal can either be a dedicated

connection to the logic, or a way of encoding the input data. In any case, the model of a

self-timed circuit is that of a logic functional block whose DV signal is asserted at a time

after initialization that is exactly the amount required to evaluate the function.

Synchronous and asynchronous will be used to refer to the timing of a system:

Definition 1.2 A Synchronous system is one where the transfer of information between

combinatorial blocks is performed in synchrony with a global clock signal.

Definition 1.3 An Asynchronous system is one where the transfer of information be

tween combinatorial blocks is not performed in synchrony with a global clock signal, but

rather at times determined by the latencies of the blocks themselves.

Therefore, the reliance of a synchronous system on a clock signal eliminates the need

for self-timed circuitry within. Conversely, asynchronous systems typically depend on

the existence of self-timed circuits for determining the correct times for communication

between stages. In the DSP design presented, interconnection or handshaking circuits

make use of the completion signals of the self-timed circuits. By enforcing a handshaking

protocol, the transfer of information is ensured to be error free and at the correct times.

In this thesis, the entire chip design utilizes self-timed cells, so the (asynchronous) system

is also called self-timed.

2. Background

Asynchronous processing has been studied for a long time as a way of designing

general purpose computers. The idea is simple and logical in that each task to be un

dertaken is started at the moment the preceding task completes rather than starting only

at the edges of a global synchronization signal. The completion times of each task are

often dependent on both the type of task being performed and the data on which is being

operated. In the asynchronous scheme, the processing time approaches an average for all

tasks rather than being set by a clock period that is the worst-case completion time of all

tasks. This can provide a tremendous benefit in terms of processing times. Also, given

the local nature of the timing in an asynchronous system, extensibility is enhanced. There

is a large volume of literature describing asynchronous processing and related topics. In

this section, developments leading up to this work will be compared and contrasted.

2.1 Early Work

The design of asynchronous logic circuits, while studied in the past, has not been

very fruitful in terms of the actual circuitry being used. Often referred to as the Huffman

model[l], asynchronous circuits with bounded delay elements were first published in 1954.

The discussion was limited to combinatorial networks. If more than one signal in the

network was changed, an erroneous output or hazara\2, 5] could be generated.

Hazards

For an asynchronous combinatorial network to function properly, it must be

transient-free. In other words, a signal should not change temporarily when it is required

to remain fixed, or change more than once when it is required to change only once. A

circuit contains a hazard when, for some transient-free input change, there exists some

combination of stray delays for which the output contains a transient. For a combinatorial

function /, suppose I\ and I2 are two input states that are applied in succession. The

circuit has a static hazard if f(I2) —f(I\) and the input sequence I\I2 can generate the

output sequence f{I\)f(I\)f(I\). The circuit contains a dynamic hazard if f(I2) ^ f(h)

and the input sequence I\I2 can produce the output sequence f{I\)f(I2)f(I\)f(I2) or

a longer sequence. A different type of hazard defined in [2] can occur in circuits with

unbounded delays and is denoted delay hazard. A circuit has a delay hazard if, for the

input sequence I\I2Iz, one of the following output sequences is produced:

1- f(h)f(h)Kh)f(h), where f(I2) = f(I3)

2. /(/i)/(la)/(/«)/(Ji)/tfs), where /(/,) ,f /(/3)

Delay hazards are usually caused by a mismatch in delays of different gates in the network.

For a certain input sequence, the outputs of the mismatching gates get in a "race" to the

network output causing an unpredictable result (if the delays are not known exactly in

advance). This phenomenon occurs in improperly designed synchronous circuits also and

it is called a race condition in contemporary literature.

By assuming bounded delays in the circuit elements, the hazards can be elimi

nated by adding more gates in the circuit and restricting the inputs so that no more than

a single one changes at a time. For a sequential circuit[5, 6] or finite state machine, race

conditions can lead to steady state hazards due to the existence of feedback. While some

techniques were worked out to eliminate this type of problem, the design procedure is

error-prone and restricting the movement of inputs also restricts the applications of the

circuits themselves.

In the Huffman model, line and gate delays are assumed to be bounded and no

restrictions are placed on their relative magnitudes. In the Muller model[4], gate delays

are assumed to be unbounded but line delays are assumed to be zero. Using the Muller

model, a method of using data detectors or "spacers" to encode data lines for the purpose

of indicating valid outputs was published[2]. However, the process of encoding the data

lines in the design phase is cumbersome and it involves a large overhead in the required

hardware. In a pipelined architecture, the use of spacers reduces the hardware efficiency

to less than 25% [64]. As with many of the earlier schemes, the overhead in hardware,

difficulty of design and the relatively slower speed of logic circuits, where clock distribution

was not such a problem, caused asynchronous circuits to be impractical.

In the model for employing self-timed circuits in the processor design presented

in this work, the computation circuits are separated from the timing or handshaking

circuitry. The sequencing of operations is entirely determined by the handshaking circuits

and the computation stages, implemented as self-timed circuits, simply add latencies to the

handshaking signals. This differs from the early work in asynchronous design in that the

circuits are actually delay-insensitive. Properly designed handshaking circuitry displays

no hazards and it is shown that an algorithm can be used for automatically synthesizing

the handshaking logic, making the system design straightforward.

2.2 Arbiters and Metastability

Another problem that is often associated with asynchronous circuits is the metasta-

bility phenomena[19]. A bistable circuit can go into an unstable state in which the output is

not at a normal logic level, and stays that way for an indeterminable amount of time. It is

the setting of the inputs in a very particular way that causes the metastable state. Arbiters

or circuits which arbitrate multiple requests for a resource may suffer from the metasta-

bility problem if requests can occur at any time such as in an asynchronous system. There

has been a great effort in characterizing the problems associated with arbiters[14,15]. In

circuits where arbiters are used however, the inevitability of a metastable state is usually

accepted and it must be considered in the overall operation.

In the signal processor circuits described in this work, the use of arbiters is

avoided completely. It is not the self-timed nature of the circuit operation that implic

itly causes metastable problems. Rather, it is the architecture in which the circuits are

employed. If the architecture (or possible architectures) can be well defined early in the

design, requests for resources come from pre-defined places, eliminating non-deterministic

configurations of the circuitry that might require an arbiter. For example, in a datap

ath containing three pipeline stages, each stage receives requests only from the preceding

stage. Further, the configuration of the circuit at the finest level of detail is known by the

instruction control signals coming from the program ROM. Thus, even when the configura

tion changes slightly (say, changing the state of a MUX in the datapath), the information

is available beforehand.

2.3 Data Flow Computers

Data Flow architectures offer a possible solution to the problem of exploiting

concurrency of computation in a program or algorithm[7, 8, 9, 10]. While a data flow

computer can benefit from an asynchronous timing scheme, the overall architecture greatly

differs from the Von Neumann model often followed for computing. Instruction execution

is fundamentally different than traditional sequential execution. In a data flow computer,

an instruction is ready for execution when its operands have arrived. A consequence of

this is that many instructions of a data flow program may be available for execution at the

same time. Hence, concurrency of computation is natural. The operation of a data flow

computer follows that of a data flow graph describing the algorithm. A data flow graph may

be drawn directly from an algorithm or derived from a sequential programming language

using methods similar to those used in optimizing compilers for analyzing the paths of

data dependency. The data flow graph is made up of actors connected by arcs. The arcs

define paths over which values from one actor are conveyed by tokens to other actors. An

actor is enabled when it has tokens present on each input arc, and there must be no token

on any output arc of the actor. Any enabled actor may fire i.e., perform its computation,

which removes one token from each of the inputs and places a token with the result values

on each of the outputs. This is sometimes referred to as "data-driven" computation. It

is evident that an interconnection of actors as specified in a data flow graph requires a

much different hardware architecture for implementation than a traditional computer. In

fact, the term dataflow refers to these differences. The temporal aspects of the the phrase

"data-driven" and the description of an actor "firing" make "self-timed" or "asynchronous"

come to mind. The idea of timing the firing of actors at exactly the moment the inputs are

ready certainly fits the data flow model. However, "ready" is abstracted in data flow to

mean that time within the constraints of the hardware realization. For a clocked system,

this may be one or several clock cycles. In an asynchronous system, it may be closer to

the actual time. A self-timed circuit as defined above is similar to a hardware realization

of a data flow actor. Beyond that, there is nothing else that the Digital Signal Processor

described in this work has in common with a data flow computer. The techniquespresented

are moregeneral. So, while they were applied to the design of a DSP here, there is nothing

to prevent their use for designing a data flow machine.

To add to the confusion, the term Synchronous Data Flow[H] is often used to

describe a a data flow graph where the nodes consume and produce a pre-determined

amount of data at each input or output arc. In signal processing terminology, systems

with fixed or integer related sample rates can be specified as synchronous data flow graphs.

The "synchronous" part of synchronous data flow only refers to the relative rates of tokens

flowing between actors. It has no implication about the hardware implementation, which

could again be done with clocked or non-clocked circuitry.

2.4 Systolic Arrays

Systolic Arrays[l2>] consist of an arrayof modular processing elements with regu

lar and (spatially) local interconnections. Thedata in the arrayare rhythmically computed

- as timed by a global clock - and passed through the network. The network configuration

and the numerous processing elements exploit the concurrency in an algorithm the same

way as a data flow model. The systolic nature of the timing i.e., the regular clocking and

the requirement for a global synchronization signal, prevents the operation from being

data-driven. Thus, with its synchronous timing and multi-processor architecture, it in no

way resembles resembles the DSP in this work.

2.5 Wavefront Arrays

The Wavefront Array[lZ] applies self-timing to a systolic array eliminating the

global clocking scheme and allowing its operation to be data-driven. If pipeline registers

are placed between elements, in the terminology of this work, it realizes an 7i-dimensional

self-timed pipeline. Depending on the implementation of the self-timing and communi

cation between elements, a wavefront array might resemble the DSP described here. In

other words, the techniques for interconnecting processing elements in the DSP are directly

applicable to the wavefront array. The system architecture is just different.

In the coming chapters, the reader will become familiar with the differences

between the approach taken in this work and previous efforts. In the model used, the

handshaking circuits are both critical to the operation, and an addition over what is seen

in synchronous design. The overhead on an integrated circuit for the required handshaking

circuitry however, is considered negligible.

3. The Self-timed Model

The model that is followed in this report for a self-timed system, that is, an

asynchronous system made from self-timed circuits, is shown in Figure 1.1. The self-

timed circuit, which accepts an initialization signal (I) and generates a completion signal

when data is valid at its outputs (DV) is used in conjunction with a storage register

and interconnection or handshake circuit to form a complete stage. The storage register

holds input data while the computation proceeds. The handshake circuit is responsible

for enforcing a protocol on the communication signals between stages and the protocol

ensures that transfers only occur at the correct times. The DSP design shown in later

chapters can be abstracted as an interconnected group of the stages shown in the figure.

For bit-slice datapaths, a completion signal is often generated for each bit in the data

word. These individual completion signals must be used to form a single DV signal for

the entire stage in order to maintain data alignment.

data
lee

Self-
Wq

Self- \

1 Timed
Logic

y Timed
Logic

>

*y

s

>

I DV I DV

Interconnect Interconnect

PITT

handshakingsignals

Figure 1.1: The model for a self-timed system.

4. Scope

Chapter 2 examines in detail some of the reasons for which the research of self-

timed integrated circuits was undertaken. These reasons include both technological and

design issues for future IC designs. In Chapter 3, the actual realization of integrated self-

timed circuits is discussed. One logic family, which provides both true and complement

outputs, allows by a simple extension of the gate design, the generation of a reliable

completion signal. There are several alternative styles for this logic family which, while

not used on the chip design presented here, are feasible for some applications. These

alternatives are surveyed. The synthesis of handshaking circuits which make use of the

completion signals to effect correct data transfers between stagesis discussed in Chapter 4.

Some of the most common handshake circuits are presented. Since the c-element is a

component which is required in most handshaking circuits, and its design can affect the

efficiency of operation of an asynchronous system, Chapter 5 was devoted to a survey of

c-element designs and performance. Chapter 6 shows the designs of some DSP macrocells

that are self-timed. Next, the design of a fully self-timed and programmable digital signal

processing chip is presented in Chapter 7. Test results from the DSP prototypes are given

in Chapter 8. Finally, in Chapter 9, a set of conclusions are drawn from the research.

10

Chapter 2

Motivations for using Self-Timed

Techniques

As mentioned in Chapter 1, the main motivation behind employing self-timed

techniques in a high speed digital processor is to eliminate the requirement for a global

synchronization signal or "clock". In this chapter, a more detailed analysis of the clock

distribution problem is presented in order to fortify the argument behind researching the

self-timed approach.

Motivation for developing a circuit technique that removes the need for a global

clock signal centers in two areas. The first has to do with the way the design process of

VLSI chips has evolved and how this affects the chip designer's ability to control the way

the clock is physically distributed over the chip. The second is concerned with the trends

in scaling of the digital IC process and the physical effects they have on clock distribution

and skews.

1. Design Issues

Take it for now that limitations in the wiring layers of future IC processes cause

a difficulty in limiting clock skews in VLSI circuits. What does this do to the design

process? The designer, either of the circuit, or of the software that helps assemble the

chip, is faced with a global concern. The placement of clock wires in the layout now affects

the operation of the circuit in a critical way. The convenience of a hierarchical approach to

the circuit design is not adequate because the evaluation of the performance is not really

11

possible until the layout is completed. This adds a tremendous burden on the designer,

who may not find out about fatal clock skews until the chip is fully designed, making

changes more difficult. Thus, the first reason for investigating a self-timed approach is

that by bringing the clocking signal generation to a local level (which is effectively what

self-timed circuitry accomplishes), the chip design of complex systems canbe significantly

simplified since concerns over global synchronization are eliminated. This fits extremely

well in the hierarchical chip design paradigm that is the basis of many CAD methodologies

today. The designer is allowed to work at higher levels of description for a circuit and the

design cycle time is substantially reduced.

Currently, there is a strong trend towards increased use of application specific

ICs or ASICs which rely on the use of automated design tools. The tools characteristically

deal with a cell library designed to meet a wide variety of applications. While the designer

can easily manipulate basic logic cells to build up a circuit rapidly, there are some sacrifices

with this process however, because the underlying cell design, chip layout, and routing are

not entirely under the control of the designer. Therefore, the luxury of a finely tuned, hand

laid-out clock distribution system is usually not possible. Hence, clock skew problems may

not appear until the final circuit layout is complete.

In current synchronous chip designs, the sub-systems of the chip are made to

work during the appropriate clock phase periods and the designer depends on the edges

of those clock signals to be synchronized with the same clock signals fed to other parts of

the chip. Self-timed circuits restore this level of hierarchy to a chip design well after clock

skews become a problem in synchronous circuits since each sub-system on a chip may

operate in its own time frame. As long as the timing signals within a.block supervised by

a handshaking circuit are aligned enough to ensure the correct operation of that block,

the overall chip will operate correctly since those signals need not be synchronized with

other signals outside the block.

2. Scaling and Technological Reasons

In the last section, the reader was asked to accept that the wiring delays of future

IC processes limit the ability to distribute a global clock accurately. In this section, the

physical reasons behind this assumption are presented in detail.

12

2.1 Scaling Laws

At the 2/4 to 6/4 level of design rules, scaling of the process could be performed

without significant consideration about exceeding the physical limits of the materials in

volved. As scaling continues beyond the 1/4 level, there must be more concern for materials

limitations. For example, the higher electric field associated with a much thinner gate ox

ide and a given power supply voltage can cause problems with pinholes in the oxide [17].

As an analytical tool, several scaling strategies are often discussed in the literature. These

strategies follow a set of simple rules on the scaling of dimensions and electrical parame

ters and they allow for comparisons. The most common VLSI scaling laws are shown in

Table I. The scale factor a used in all entries in the table is assumed to be > 1.

TABLE I

Parameter Scaling Law
Constant

Field

Constant

Voltage
Quasi-Constant

Voltage

Vdd

Horiz. Dimensions

Gate Oxide

Doping

Vdd/a
l/a
l/a

a

Vdd

l/a
1/y/S

a

Vdd/y/a
l/a
l/a

a

L>ox

c

R

RC

a(^>ox

C/a
Ra

RC

y/aL>0x

c/vz
Ra

aRC/y/a

aisox

C/a
Ra

RC

In Constant Field (CE) scaling, all vertical and horizontal dimensions and the

power supply voltage are scaled by the same factor a. Since the voltage and dimensions

are scaled together, the internal electric fields remain unchanged. The scaling of the power

supply limits the size of a if compatibility with existing TTL circuits is a consideration.

CE scaling also significantly decreases the drain current of devices with channels shorter

than l/im due to impurity scattering effects.

Constant Voltage (CV) scaling is done by scaling horizontal dimensions but leav

ing the power supply voltage unchanged. The vertical dimension is scaled by a smaller

factor of y/a. This results in better current drive capability and compatibility with TTL

circuits. However, problems with shorter channel devices still exist due to the saturation

13

of drift velocity. It is especially troublesome for sub-micron devices [17].
Quasi-Constant Voltage scaling (QCV) still shrinks horizontal and vertical di

mensions by the scale factor a but the power supply is scaled by a smaller factor of y/a.
In QCV, the drain current can increase down to sub-micron levels.

2.2 A real scaled process

The scaling laws above give some insight into future processes but it is rare

that a real IC process would be scaled according to such simple rules. Therefore, some

attempts were made to gather information about processes that are in design for the

future. Estimates from this information for a 0.3/4 design rule process are presented

alongside parameters for some current processes in Table II [18]. Assumptions behind the

figures in the table will be discussed in this section.

The power supply voltage is not likely to scale with each process for backward

compatibility reasons. It is also highly desirable to maintain the ability to interface with

standard TTL devices. Therefore, it is more likely that a new standardized supply voltage

will be used by many different manufacturers for their future digital processes. The choice

of 3.3V is logical since it can still drive TTL and it reduces the electric fields to a certain

degree.

The goal of scaling is usually twofold in that besides just obtaining smaller area

devices, the devices can be made faster. The gm of the transistors will scale with the

increase in Cox of the gate oxide. Since the area of the device shrinks by the square of the

scale factor, an increase in speed can be obtained. This is shown in the entries for tox and

Cox in the table. The problem of a scaled process then becomes ensuring that one can

take advantage of the added speed. This is where the characteristics of the interconnect

layers come into play.

2.3 Interconnect

The effect of scaling on interconnect wires has been studied extensively[16, 26,

27, 28, 30, 32, 33]. If the horizontal and vertical dimensions of a process are scaled by the

factor a, the length, width, and cross sectional area of a conductor scale by a, a, and a2

respectively. The smaller cross sectional area combined with the shorter length of a given

14

TABLE H

1984 1986 1993 (est.)

^Parameter/Process-* 3/4 1.2/4 0.3/4 Notes:

Leff W 2.4 1.0 0.25

Vdd 5V 5V 3.3V

tox \A) 500 250 85-100

Cox (fF/fJi2) 0.68 1.40 3.90

tFox-POLY (/*) 0.8 0.6 0.4

tFox-Ml (A*) 1.5 1.0 0.9

mi pitch (/t) 4.5 1.5 0.7 (width/spacing)

m2 pitch (/4) 6.0 2.0 1.0 (width/spacing)

mi-substr cap (/F//42) .023 .035 .040

ni2-substr cap (/F//t2) .014 .020 .020

mi-m2 cap (fF/fj,2) .034 .040 .040

m.i-m.i+i cap NA NA .040 (All upper layers)

mi resistance (ft/E) 0.038 0.17 .07-.17 (W - moly)

m2 resistance (H/D) 0.026 0.025 0.075

gate resistance (ft/E) 50 40 2.5 (silicide)

7-rf 1.2nec .32nsec 85psec (FI=FO=3)

nopF (ideal) 5.6r<* 6.7rd 7.8rd

TiOpF-min 6.7nsec 2.2nsec 0.66nsec

icK 50mA 125mA 320mA TR « lTg

TCk (est.) of DSP 150nsec 30nsec 7.5nsec

Tpiov 4<f> lOnsec 2.8nsec 1.4nsec (+ interconnect)

4Tnov/Tck 26% 37% 75%

CK

0. J T
NOV

0.

15

wire in the circuit will cause the resistance of the wire to increase by a as shown in Table I

under QCV scaling. Similarly, the wire's capacitance to the substrate will decrease by a

due to the smallerareaof the wire combined with the larger unit areacapacitance from the

smaller vertical dimensions. The combined RC time constant of a wire therefore remains

unchanged as listed in Table I. This has dire consequences for the speed of the entire

circuit. While transistors are able to switch faster, the wires carrying signals between

logic gates tend to have a more constant delay. In other words, the performance will be

limited by the wires themselves ultimately.

The design of the interconnect becomes more complicated as dimensions are

reduced for several other reasons that preclude the use of the simple scaling laws presented

above. Smaller wires have some other associated problems. If a two-dimensional model

is used to analyze the capacitance of a wire, it can be shown that the wire looks like a

cylindrical wire plus a flat wire with no fringing effects (see Figure 2.1) [29]. As the wire

is made thinner, the capacitance per length becomes asymptotic to that of the cylinder.

A graph of the relationship is shown in Figure 2.2 for a wire and field oxide thickness of

l/4m. Therefore, despite the insulating layer thickness, scaling a wire size to reduce its

capacitance has limitations. The asymptote of the capacitance curve is roughly l.5pf/cm.

W

T ; i i i i i i i i i J
IOX ,V .lose »!r * .V «V «t .!r * w>,y ,y,y ,y ,y .y ,y .y .y .y .y ,,

t ////////////////////////

\^M

mm' •h
.y .y .r,y ,y ,y ,y

////////////////////////

Figure 2.1: Two-dimensional model of wire capacitance.

Electro-migration

Aluminum conductors which have a high current density exhibit a phenomenon

called electro-migration in which they tend to open over time because the molecules of

Aluminum actually migrate away from their original position[28, 16]. It is generally ac

cepted that a current density value of J = 1mA/fi2 should not be exceeded in the interests

16

Capacitance of Wire vs. Width including Fringing

4 5 6 7 8 910
Width in u

tox = twire = lum

30 40 50

Figure 2.2: Capacitance of wire/unit length when two-dimensional effects are included.

17

of reliability[28]. Usually, the conductors carrying the power supply over the surface of

the chip are made wider to both avoid voltage drops and electro-migration. How does

scaling affect this problem? As the transistors are scaled down in size, the speed of the

circuits increases. For a signal such as a clock therefore, the slopes of the clock edges

must increase as the period of the signal decreases. Since the load on a clock line can be

quite large, the peak charging current in the line scales up with decreasing device sizes.

Figure 2.3 shows the charging current in a wire versus the capacitance of the wire. The

charging model used is a simple linear charging i = CV/T and the voltage and charging

time are the values of Vdd and * 2rj taken from Table II. Using this conservative model,

it can be seen in the figure that a charging current icK of hundreds of mA is required for

the capacitance on a typical clock line, for example lOpF.

Aluminum wires are usually made about l\im thick and the rule followed to

avoid electro-migration is that the wire should be l\i/mA wide. Figure 2.4 shows the

capacitance of AL wires versus their length when the rule to avoid electro-migration is

followed. Clearly, AL is inappropriate for dynamic signal lines that have any appreciable

capacitance. Even when made wide enough to avoid electro-migration (using excessive

area), the wires then add so much capacitance that the delay time would be prohibitive.

The problems with AL conductors can be avoided by using different materials for

large current carrying wires. Some current processes employ molybdinem (moly) as one

of the metal layers. Tungsten is another likely choice for future processes. Both of these

materials avoid the electro-migration phenomena at the expense of a higher sheet resis

tance. Where Aluminum has a typical sheet resistance of 0.02512/D, Tungsten and moly

are roughly 0.0712/0 and 0.17ft/O respectively[30j. The higher resistance of Tungsten

and moly adversely affect the RC time constant of the wires and while electro-migration

is not a problem, wires with large peak currents still must be made wider to avoid severe

voltage drops (causing further delays) on signal edges. Figure 2.5 illustrates this. For a

Tungsten wire, the minimum width required to maintain a voltage drop of less than 1.5V

is shown for charging currents of 10mA, 50mA, and 100mA. For a longer wire traversing

the surface of the chip, the width must still be large for Tungsten - again adding more

parasitic capacitance.

A more likely strategy for advanced IC processes will be to use a greater number

of interconnect layers as opposed to further scaling of the layers currently in use. The

design rules for the most compact interconnect layer will tend to stabilize at about lfim

18

Wire Current vs. Charging Capacitance
1000

*

s

L= =0 3ui(

*

].::nse<^3.3

*
*

*
*

..'•'

y

s
Su ()Snsec,5\

4 •

*

*

*

,s\
.*"

3,1'• 2*Onsec,5Y

*

•

*

,.♦"

s'

.♦'

.-•*'
•''

f. •'

500

100

50

<

10

5

0.5
0.2 0.3 0.5 0.70.9 2 3 4 5 6789

pF
20 30 4050

Figure 2.3: Charging current versus charging capacitance using a linear model.

19

80

60

L40

Capacitanceof AL wire vs. Length

4 6
nun

Cini=0.04fF/u**2, AL^lmA/u

W=200jj £00mA)

W=100u ^lOOmA)"

Figure 2.4: Capacitance of AL wire versus length when 1/t/mA rule is followed. Charging

currents are shown for each line.

501

101

Width of Tungsten Wire vs. Length

Icharge= •\QQmK'

Icharge =50mA'

4 6
mm

rsh=0.07ohm/sq, Vdrop=1.5V

10

Figure 2.5: Minimum width of a Tungsten wire required to keep a voltage drop of less

than 1.5V versus length and charging current.

20

width and spacing. The upper layers may increase in size and thickness in order to handle

power distribution more effectively [23]. (Capacitance of layers distributing the power

supply is not really a factor. In fact, it actually helps because it acts as a supply bypass

capacitance) This scenario is shown in Table II, where the metali width and spacing

are not scaled beyond 0.7/zm. An inter-layer capacitance of 0.04/ir//t2 is shown for all

layers above metali. This represents layers of field oxide that are approximately 100 times

greater in thickness that the gate oxide.

2.4 Clock Distribution

Now that we have a model for the interconnect layers of future processes, let's

examine the effects that the interconnect has on clock distribution. The responsibility of a

clock distribution network on a synchronous IC is to send the timing signals to all parts of

the circuit without introducing a time difference between the signals at their destination.

The goal after all is to synchronize all operations in the system with the master clock. A

skew between clocks at different portions of the circuit can cause errors to occur in the

operation of the system. Typically, in a two or four-phase clocking scheme, the skews

are compensated for by adding a non-overlap or "dead" time between the clock phases.

If the non-overlap time is greater than the maximum clock skew time, then errors are

prevented by ensuring that all clock signals go low before the next clock phase signal

goes HIGH . The non-overlap time directly subtracts from the time available to perform

useful computation during each clock period, therefore it is desirable to limit it to the

minimum amount needed. Figure 2.6 shows a model for a register based system. It is

denoted "Full Cycle Synchronous Pipeline" because data is transferred once per full cycle

of the clock. The lower drawing in the figure expands the registers themselves. Definitions

for the clock waveforms themselves are given in Figure 2.7. In a two-phase system, the

two clock lines <j>\ and <j>2 are separated the non-overlap time T^ov- In some systems,

only a single phase clock is distributed. In this case, the two phases used in the registers

become <j> and 4> and the inversion is done locally. Figure 2.7 shows a skewed <j>2 waveform

also and the skew time Tskew subtracts from the nominal Tnov time. Note that it is

the skew between stages that is important. For a single clock system, the skew between <f>*

and 4>l in stage i is well controlled by the designer. However, it is the skew between <f>x and

ft that can cause problems when stage i communicates with stage j. Thus, the equations

21

Figure 2.6: Full Cycle Synchronous Pipeline model.

CK £K

0 <* 0 ~* T^ ^

0 or 0

0

2

/

2 T /
NOV

|i i<_SKEW

**-

Figure 2.7: Clock waveform definitions.

22

below apply to both a two-phase and single-phase system, the single-phase system being

the special case when Tnov is exactly equal to 0. For the skewed waveformsin Figure 2.8,

correct operation requires that

0.

0
/

(T) /
L max

SKEW T =0NOV v

Figure 2.8: A two-phase clock with skew.

TsKEW < (Tljmin + TpfOV OT (T£,)m,„ > TsKEW - TpfOV (2.1)

where Tl is the time for a logic block output to reach the threshold voltage of a gate after

the input changes (typically less than rp, the propagation time). (Ti,)m,n is the minimum

Tl in the system. Referring to Figure 2.6 again, Equation 2.1 is intuitive. During <f>2, the

master latch of the registers is active reading the output of the preceding stage. If there

is skew such that <fo of the preceding stage rises before <f>2 drops as in Figure 2.8, then

the output of the preceding could change and wipe out the correct value that was in the

latch. Adding more T^ov alleviates the problem, but from Equation 2.1,

(Trfmax < ITpH + TnOV ~ TsKEW (2.2)

In other words, the maximum time for computation in a stage is similarly reduced. Some

systems contain a finer partitioning of the logic blocks as shown in Figure 2.9 and denoted

"Half Cycle Synchronous Pipeline". In this case, the constraint on Tskew is identical

to the full cycle case as shown in Equation 2.1. The constraint on (Ti)max is a bit more

complicated in the half cycle. A stage that computes during <f>\ can actually take longer

than a single clock phase to complete. As long as its output becomes valid before <f>2 falls,

the next stage will acquire the correct data. However, the next stage may not have a

23

Half Cycle Pipeline

Figure 2.9: Half Cycle Synchronous Pipeline model.

similarly long delay time since it does not have valid inputs until the end of <f>2. Thus, the

aggregate delay times of adjacent stages must not exceed a clock period. When a pipeline

is dominated by a single "slowest" stage which is usually the case, the (Ti)max of that

stage must be less than shown in Equation 2.2.

Clock distribution is aggravated by such things as growing chip size, shrinking

feature sizes, interconnect time delays and any irregularity in the loading scheme. If

the time to get a signal from point "a" to point "b" on a chip is proportional to the

distance, then growing chip size implies more time for global signal distribution. The

clock distribution problem tends to be less important in certain regular structures. For

example, in gate array or sea-of-gates chips, the structure of the chip is very regular

and clock drivers can be designed in a tree fashion to equalize delays to all parts of the

circuit. [21] Also, in certain pipelined subsystems, where the clock skews can essentially

follow the data in the pipe, the clock distribution is less of a problem [75, 76] In both

of these cases however, synchronization with off-chip devices is still a serious problem.

One system approach to the synchronization problem that is more circuit intensive is to

construct phase-lock loops at the clock inputs to each stage (chip) in order to re-establish

synchronization at each boundary[77]. When a cell-based DSP design is employed, and a

general structure allowing feedback is allowed, then the loading and the layout structure

can easily become quite irregular causing the design of the clock distribution to be much

more difficult and dependent on global constraints.

The simplest form of clock distribution is to take the clock signal (generated on-

chip or supplied from an off-chip source) and buffer it so that it can supply the load of the

entire chip's clock signal inputs. All the clock lines of the chip are tied together on a single

24

electrical net and connected to the large buffer. The clock skew will be dependent solely

on the delays associated with the interconnect that ties all the clock inputs to the clock

buffer. Other forms of clock distribution depend on both wiring delays and internal buffer

delays. These will be discussed below after the delays due to wiring alone are quantified.

Wiring Delays

An analytical model for approximating wire delays in MOS integrated circuits

was published by Sakurai [31]. The basic modelhas a distributed RC line for the intercon

nect wire with a driving MOSFET at one end and a capacitive load Cl at the other end

as shown in Figure 2.10. Inductances are not considered a significant factor for on-chip

conductors compared to the other circuit parameters which dominate1. The wire length is

L and R is the total resistance of the wire (= r •L), where r is resistance per unit length.

Similarly, C is the total capacitance of the wire (= c •L), where c is the capacitance per

unit length. The driving transistor can be replaced by an equivalent resistance Rtr and

the circuit is driven by a step for the analysis. Sakurai states that a good choice for Rtr

turns out to be l/(maximum drain conductance) of the driving MOSFET. While this is

only an approximation, it is a good representation of a typical clock distribution circuit.

The driving resistance is the output impedance of the clock buffer and the load capaci

tance is the sum of the capacitances which the clock buffer feeds. For this discussion, an

exact solution is not as important as getting a feel for what the basic limitations are when

sending a signal through wire on an IC.

Some other symbols used in the analysis are Ct = Cl/C, Rt = Rtr/R, and

t' •= t/CR, all normalized values to the interconnect time constant. Also, s' is the Laplace

transformed variable for t'.

When a voltage step is applied to the gate of the drive transistor, the response

at the load capacitance Cl-, V2{s')> is written as

V2(s') =^ TD(s') (2.3)
o

where Td(s') is the transfer function of the distributed RC interconnect wire. Denoting

the poles of Equation 2.3 as Coi,^,---,^, the response in the time domain v2(t') can

1Of course, bonding wire inductances are quite significant forclock and powerconnections to the outside
world.

25

interconnect

driver

load

\y

_n
Rtr

R

^V\A VW
=|=CL

Figure 2.10: Model for interconnect delay time.

be expanded in multi-exponential form as follows by using Heaviside's expansion theorem:

^ =l+f;C*e-"<' (2.4)
Vdd k=l

where

*" * ' ' y/*k{(l +Bfrl)(l +Cfal) +(Rt +CT)(1 +RtCtvi*)} K' J
from the transfer function Td(s') of a distributed RC line. The o'ks are the solutions to

the following equation:

tanyfo^ = J-— (2.6)
(RT + Cr)v^Jfe

Equation 2.6 can be solved exactly only when Ct = Rt —0. In other cases, the solution

must be numerical. It can be shown that an excellent approximation for Equation 2.4 is

^i =1+C1.e-'' (2.7)
Vdd

Numerically calculated values for C\ and a\ can be found in [31]. Given that the accuracy

of Equation 2.7 is high2, the 90% time delay between the input step function and the

voltage at the load capacitance Cl is easily found from

*The magnitude of the next term at the time when vi(t') is at the 90% level is less than 10'

26

f09=—ln|10Ci| (2.8)
^1

When Equation 2.8 is plotted, the delay time is seen to be proportional to Rt or Ct when

they arelarge, the drive resistance or load capacitance dominating. When Rt and Ct are

small, the delay is almost constant, limited by the wire itself. In that case, there is an

almost linear dependence of t'Q 9 on both Rt and Ct- Sakurai wrote the equation for t'09
with only linear terms asa + 6Cr + bRT+ cRtCt and calculated the constants a, b, and

c to minimize the error in the range i£r, Ct < 1- The result was

t0.9/CR = 1.02 + 2.21{RTCT -rCT + Rt) (2.9)

=> t0.9 = 1-02 RC + 2.2l(RtTCL + RCL + RtvC) (2.10)

The relative error of the formula above was found to be less than 4 percent for any value of

Rt and Cy. For evaluating quantities such as gate delays and clock skew, the 50% delay

time is a more useful measure3. Equation 2.7 is a simple exponential and therefore the

<o.5 time should be Equation 2.10 multiplied by ln(2)/ln(10) = 0.30. The value 0.32 was

actually used after some verification using the SPICE circuit simulator. So, the formula

*0>5 = 0.33 RC + 0.7l(RtrCL + RCL + RtrC) (2.11)

was plotted in the following graphs as an approximation for the 50% delay time associated

with an interconnect wire driving a capacitiveload. The following assumptions also apply

to the graphs:

1. Wire parasitics: Rsh = 0.07ft/D, C = 0.04/F/m2.

2. RtT = l/<7m of driver transistor in ohms.

3. Delay of driver transistor itself is not included.

Therefore, Equation 2.11 is the delay of the wire only since it does not include any time

for the driver transistor channel to form or for any of the buffer stages that precede the

driver transistor to switch.

3The 50% delay time is the time difference between the input and output waveforms reaching the gate
threshold value, typically Vdd/2 volts in a CMOS circuit

27

Using the approximation described above, somecommon clockdistribution schemes

can be studied to make a determination of the potential clock skews that would be en

countered. As mentioned before, the simplest scheme would be to have a series of buffers

increasing in size so that the last buffer would be large enough to drive the capacitance

associated with all of the clock inputs and wires in the circuit. In this case, the value for

Cl is large. For chips that are 5-10mm on a side, the longest clock wire can easily reach

l-2cm. Figures 2.11 and 2.12 show the delay of a 1cm and 2cm wire when driving a lOpF

capacitive load. The delay is plotted for different size driver transistors (Rtr) and versus

the width of the wire itself. There is an optimum wire width to use for a specific load

50% Delay: CL= lOpF 1cm Wire

3 4 5 6789 20 30 40 50 70 90
Width in u

Figure 2.11: Delay time associated with a 1cm wire driving a lOpF capacitive load.

and wire length. The smaller wire widths increase the overall delay time due to the term

RCl dominating in Equation 2.11. If the wire is made too wide, the delay increases when

the term RtrC begins to dominate. The optimum width for this load is between 15-25/z.

Even for an optimum width, the delay times are roughly lnsec and 2nsec for a 1cm and

2cm wires respectively.

In Table II, the entry t\qpf shows the minimum number of gate delays in which

the clock buffer driving a lOpF load could switch. It assumes the optimum sizing of each

stage of the buffer where the device lengths are made c1,0 larger than the previous stage.

The entry T\QPF-min just multiplies by rj to get the minimum delay time of a buffer

28

50% Delay: CL= lOpF 2cm Wire Rfe
K

6

4

oJ
0.6

0.4
0.3

02

8iH= ^
;. •>- •

ss

HH....II'

2 3 4 5 6789 20 30 40 50 70
Width in u

"Rip 500

Rtr=250

5^100

"Rt?:50

90

Figure 2.12: Delay time associated with a 2cm wire driving a lOpF capacitive load versus

wire width.

driving lOpF.

A more common method of distributing the clock is shown in Figure 2.13. Rather

than driving the full clock load directly, a distributed buffer system is employed. By

having less of a load on the longest clock wire that originates from the clock generator,

there is less charging current and the wire can be smaller. In the hypothetical situation

suggested in Figure 2.13, the lOpF load has been split into ten IpF loads, each having its

own buffer. The input capacitance to each of the distributed buffers is O.lpF. therefore,

the long interconnect wire distributing the clock has a IpF load. Figures 2.14 and 2.15

show the delay associated with a wire driving a IpF load. The minimum delay occurs

for a less wide wire since the Cl term is reduced. However, the delay still is significant.

Additionally, in spite of the reduced interconnect delay, the buffers driving each IpF load

have a delay that would have to be taken into consideration if data were supplied off-chip

from one of the stages. This is illustrated in the figure. The buffers driving a IpF load

have a minimum delay of 5.5r<f in a 0.3/x process which is OAQnsec. Therefore, the overall

delay which has to be compensated for with non-overlap time is still in the 1 —2nsec

range. In fact, for comparison, it is interesting to look at the delay of the interconnect

wire when driving a relatively small O.lpF capacitive load. Figures 2.16 and 2.17 show

29

D-out CLKOUT £"1

AA CLKGEN

<U/>F

\/b1 \/B2 \/BB3 ••« \/bio
IpF IpF IpF IpF

(macrocells)

Figure 2.13: Distributed buffer clock distribution scheme.

30

c *

0,'
0.6

0.4
03

02

=^=

50% Delay: CL= IpF 1cm Wire

zz

JSlC:lK

Rti=500

250

RieIOO

Rtr =50

^

2 3 4 5 6789 20 30 40 50 70
Width in u

90

Figure 2.14: Delay time associated with a 1cm wire driving a IpF capacitive load versus

wire width.

6

4

£2

oJ
0.6

0.4
0.3

0.2

50% Delay: CL= IpF 2cm Wire
sr

Rlr=lK
7"

:»--

•^1

2 3 4 5 6789 20 30 40 50 70 90
Width in u

£1e5O0

Rti=250

35S100

Rtr =50

Figure 2.15: Delay time associated with a 2cm wire driving a IpF capacitive load versus

wire width.

31

this. While the minimum delay for a 1cm wire shown in Figure 2.16 is about Q.25nsec,

50% Delay: <X=O.lpF 1cmWire

2 3 4 5 6789 20 30 40 50 70
Width in u

Figure 2.16: Delay time associated with a 1cmwiredriving a O.lpF capacitive load versus

wire width.

0.6

0.4
03

0.2

50% Delay: CL= O.lpF 2cm Wire
£

2 3 4 5 6789 20 30 40 50 70
Width in u

Rti=lK

J&IE500

Rt^250

TOp 100

_Btt:50

90

Figure 2.17: Delay time associated with a 2cm wire driving a O.lpF capacitive load versus

wire width.

note that the value of Rtr to obtain such a small delay is 50Q. A transistor W/L of roughly

32

100 would be required to obtain such a small drain resistance! The time required to buffer

the input to such a large device would be considerable. The graphs therefore demonstrate

that regardless of the way the load is distributed, the time required to transfer a clock

signal across the chip does not fall rapidly below a certain value. As Table II shows, as

the clock frequency is increased for future processes (Tck falls), the percentage of that

period required for non-overlap time to prevent clock skew problems increases dramatically,

leaving little time for actual computation.

3. Summary

The motivation for investigating self-timed circuitry for DSP designs comes from

two main areas. First, as the scaling of the digital IC process continues, the speed (and

layout) of circuit designs tends to become interconnect limited. The layers that connect

devices together do not scale as well as the devices themselves such that the RC time

constant delays of these layers dominate. Additionally, the trend towards an increased

number of interconnect layers makes the characterization of the parasitic loading on a

wire extremely difficult. Clock distribution in a cell based design therefore has associated

with it certain finite delays which can cause a skew in the clock waveform between different

parts of the circuit. Another reason for investigating self-timed circuitry is that CAD based

chip development systems are suited for hierarchical designs. As the digital process scales,

the problems of distributing the clock become more dependent on global conditions of the

chip. Clock skew problems may not even be characterizable until the layout of a chip

is completed. Self-timing allows the hierarchical design style that is currently used for

synchronous designs to be used in spite of process changes. By eliminating the global

clock distribution problem, highly developed CAD tools can be used and correct circuit

operation after layout is ensured.

33

Chapter 3

Realization of Self-Timed Circuits

The minimum requirement of a self-timed circuit is that it generate some kind of

completion signal indicating that its outputs are valid. This is usually required each time

a new set of inputs is applied to the circuit. There are several approaches to designing a

circuit that supplies completion information and in this chapter, they will be examined.

One logic family, called DCVSL, provides a simple means for generating a completion

signal via a simple extension to the basic circuitry. This logic family is explained in

detail since it was chosen for the DSP design presented in the following chapters. Some

alternative structures that can supply completion information are also surveyed.

1. Completion Signals

A conceptually simple method for generating a completion signal for a block of

circuitry is to exploit the matching characteristics of an integrated circuit and duplicate the

circuit block, using the duplicate copy solely for the purpose of generating the completion

signal. This is usually done by supplying the duplicate block with a known input signal

or vector. The output signal is then also known in advance and when it appears, it

should indicate that the circuit doing the actual computation has valid outputs. This

approach can work under certain conditions although it should be noted that it is not

strictly a self-timed circuit because it relies on the matching characteristics. The success

of using matching or "dummy" circuits to determine completion times depends on the

actual circuitry involved and the environment in which it is placed. For example, if the

circuitry has a delay that depends on the input data, the matching technique suffers since

35

the circuit producing the completion signal always receives the same pre-determined input

data. While this might be chosen to yield the worst-case delay of the circuit, then the

system efficiency is hurt in the same way as in a synchronous design, where the clock

period must reflect the worst-case delay of the elements. Another risk is in a design where

the loading of the logic cells is not known in advance. In parameterizable logic cells, the

loading on logic celloutputs can vary overa wide range. Unless the dummy circuit exactly

duplicates the original, requiring a 100% areaoverhead, it may not accurately reflect the

delays. Another example is when the block is driving bus wires to other blocks. Again

the loading may not be determined until the chip layout is complete. Therefore, the use

of matching is best restricted to local, well defined pieces of logic where the matching is

indeed determined by the IC process rather than circuit loading and parameters.

Some asynchronous schemes have proposed the use of "spacers" [2] or multi-valued

circuits[3] as a way of encoding data lines so that data-detectors can detect valid outputs.

A spacer is a word that cannot normally appear in the data stream. It is placed at

the boundaries of valid data words so those boundaries can be detected. In a similar

way, multi-valued logic circuits use a value outside of the normal binary signal levels to

indicate the boundaries. The overhead of encoding the data with spacers severely limits

the practicality of the method. Similarly, the difficulty in implementing multi-valued logic

with good noise margins has limited its usage.

A more hardware-oriented method for encoding data lines is to use dual-rail

coding[l9]. This is really a bit-wise extension to implement the multi-valued coding idea.

For a single bit of data, two wires are used to indicate its value. The HIGH value is

indicated by 10, the LOW value is indicated by 01, and the value 00 is reserved for non-

valid or boundary states. Dual-rail coding can be implicit in the operation of certain

differential logic families. One logic family introduced a few years ago named Differential

Cascode Voltage Switch Logic or DCVSL [34, 35, 36, 37, 41, 42] follows a behavior that

makes the generation of a completion signal a very simple and efficient extension to the

basic circuitry.

2. DCVSL Description

Differential Cascode Voltage Switch Logic is a pre-charged (also called dynamic)

logic family that is very similar to a differential form of domino logic [49]. Domino logic

36

and NORA logic [50] both gained popularity in recent years because they are typically less

area consuming than static CMOS logic due to the fact that they use mostly only one type

of device (nmos or pmos) to implement the logic function. This is contrasted to static

CMOS which has dual nmos and pmos device trees to implement a logic function. The

'̂ ^>°—out
out

domino CMOS static CMOS

Figure 3.1: A simple domino logic gate and its static CMOS counterpart.

speed of a domino gate is enhanced because the input capacitance of the gate is reduced

over a static CMOS gate since only NMOS devices are driven. Figure 3.1 shows a simple

domino AND gate along side a static CMOS version of the same gate. In the precharge

stage of operation, the clock signal phi is low and the internal node x is charged high

by PMOS device Ml. When phi goes high, the evaluation stage is entered and node x

is discharged to ground only if A, B, and C inputs are high. The node labeled x must

be buffered in order to drive another domino gate and therefore domino logic gates are

non-inverting.

A generalized DCVSL gate is illustrated in Figure 3.2. The gate also has an

nmos tree which implements the required logical function but there are two outputs.

Similar to domino logic, there is pre-charge phase (/ high) where both nodes / and fbar

at the top of the nmos tree are charged high by pmos devices Ml and M2 respectively.

During evaluation however, only node / or fbar will be discharged causing one of the

two outputs to go high. The nmos tree is designed in such a way that for valid input

signals (complementary), only a single output will become high. The pre-charge/evaluate

37

t_
M2 C

outbar*—<XCJ—''

in, \

inbar ' y-

I

J
3 Ml

_#£. /

NMOS Tree

0~

x

our

Hi / /<w= pre-charge

I high = evaluate

Figure 3.2: A generalized DCVSL gate.

signal is labeled I in this figure for historical reasons; it is short for Initialize. As with

domino logic, the complementary outputs of one DCVSL gate can directly drive another

DCVSL gate 1. Unlike domino logic, a DCVSL can be inverting or non-inverting since

inversion is simply achieved by permuting the outputs. The NMOS tree in a DCVSL gate

does not always contain twice the number of devices as that of a single ended gate. In

fact, the area of the NMOS tree grows at a slower rate as the logical function becomes more

complicated. This will be shown in a following section but a simple explanation for this

is that by allowing connections between the two sides of the nmos tree, transistors can

be shared so that the implementation of the logical function and its complement becomes

more efficient than just doubling the number of devices.

As with domino logic, there are constraints on the timing of the inputs to a

DCVSL gate. Improperly generated input signals can result in either an incorrect output

value or a disallowed output value i.e., both outputs being high. The constraints on the

inputs to a DCVSL gate are shown in Figure 3.3.

2.1 Completion Signal Generation in DCVSL

The key to exploiting DCVSL logic for self-timed circuits lies in the dual rail

coded nature of the output signals. During each pre-charge/evaluate cycle, the outputs

^his is the origin of the term "domino" logic. When a cascade of domino gates is allowed to evaluate,
the outputs become valid in sequence, imitating the behavior of a row of falling dominos.

38

Waveform

pre-charge evaluate

_/C
in or inbar

inbar or in

in or inbar:

X

X

inbar

in or inbar

inbar or in

Allowed?

Yes

Yes

No

No

No

No

Comments

Stable before evaluate phase

One Transition, Low to High

Both Inputs Low before evaluate

Transition on both inputs
during evaluate phase

Two Transitions

Glitch, two transitions

Transition on both inputs

Both Inputs Low before evaluate

Figure 3.3: Constraints on the inputs to a DCVSL gate.

39

of a DCVSL gate return to zero and then become complementary. By placing a single

OR gate across the two outputs of the gate as shown in Figure 3.4 a completion signal is

successfully generated. In this document, the label DV is used for completion signals and

it stands for "Data Valid." The output of the or gate in Figure 3.4 has dual importance

since besides indicating when data is valid at the outputs, when low, it indicates that the

pre-charge is complete. Hence, it is labeled DV/PC* in the figure.

outbar*-

M2_3 —T— E_M1

fbar f

fri AM,

inbar

NMOS Tree

X

Hi

out

high = Data Valid

low = Pre-Charge Valid

Figure 3.4: The generation of a completion signal on a DCVSL gate. DV denotes "data

valid" and PV denotes "pre-charge valid".

In a combinatorial logic macrocell made up of a cascade of DCVSL gates, the

generation of a completion signal consists of OR ing the outputs of only the last gate in

the chain. This is an important point about processor design using self-timed methods.

Typically, partitioning is done at the pipeline stage boundaries and it is only at these

boundaries that a completion signal is required. Therefore, the overhead in circuitry for

generating DV" is small.

For a multi-bit cell such as an ALU - often used in DSP datapaths, there is a

completion signal available for each bit of the data word. Strictly speaking, the correct

40

completion signal for the entire cell, assuming an n-bit wide data word, is obtained by

feeding the n or gate outputs from the last DCVSL gate into an n-input Muller C-

element2. As will be seen in later chapters however, this is not usually necessary for

several reasons. In the case where the logic delay through each bit slice of the cell is

nominally the same and the completion time is data independent, it is often sufficient

to use the completion signal for a single bit. This of course depends on the matching

characteristics of the integrated circuit. Matching at the local level has been exploited

both in analog and digital circuits since the inception of the IC. In a self-timed circuit it

can reduce the overheadin arearequired to generate the completion signal. This seems like

a viable approach but since it is process dependent, it must be evaluated by the designer

before a decision is made.

In the case where the completion time of a cell is data dependent such as for a

ripple carry adder, all bits must be examined for DV generation if the data dependency

is to be monitored. Since self-timed circuits can take advantage of this dependency and

achieve cycle times that arecloser to the average delay of the elements, all bits are typically

used for such data dependent elements. Again however,it is rarely necessary to use a n-bit

C-element to generate DV because of the way DCVSL functions. The data dependent

nature of the completion time is typically the result of one gate that cannot evaluate

until another gate produces an output such as the ripple carry adder. During pre-charge

though, there is no such dependency and all gates generating a DV signal will pre-charge

in nominally the same amount of time. Therefore, rather than using an n-input C-element

to generate a completion signal, an n-input and gate is sufficient. This also depends on

the matching characteristics of the IC but it is usually a low risk approach. The data

dependent macrocells described in this report use a tree of 4-input NAND /NOR gates to

generate a completion signal.

2.2 Charge-Sharing

Like domino logic, DCVSL gates can exhibit charge-sharing problems. Figure 3.3

showed the allowed input sequencing of a DCVSL gate for valid outputs. It is a "legal"

condition to have all of the inputs to the DCVSL gate low during pre-charge. The only

constraint on the inputs then is to have one wire of each input - either inx or inbarx -

2A Muller C-element is defined as a logical element whose output traverses high only after all of its
inputs are high and stays high until all of its inputs go low in which case it traverses low.

41

eventually make a single transition from low to high to yield the correct output. Actually,

any DCVSL gate whose inputs are fed directly from the output of other DCVSL gates

will have those inputs (both true and complement) low during pre-charge simply because

during the pre-charge phase, all DCVSL outputs are low. When all of the inputs are low

during pre-charge, only the top two nodes of the nmos tree of the gate are guaranteed to

be pre-charge high. After pre-charge, the charge on those two nodes can be shared with

nodes internal to the NMOS tree as transistors in the tree are subsequently turned "on".

While one side of the tree will eventually be discharged to ground, the other side of the

tree must remain at a logical "1" to generate valid complementary outputs. Therefore,

charge sharing will cause incorrect operation if the parasitic capacitance associated with

the devices being turned "on" after pre-charge (usually dominated by the source and drain

diffusion capacitance of the nmos transistors of the tree) roughly equals the capacitance

of the pre-charge node at the top of the nmos tree. One circuit technique that is used

to improve the charge sharing situation of DCVSL gates is shown in Figure 3.5. Weak

p-channel devices are fed back around the output inverters to act as current sources when

the outputs of the gate are low. [35, 41] After the precharge phase, the current sources

continue to operate and if charge sharing causes a drop in the voltage at the top of the tree,

the voltage will be restored eventually to Vdd- The p-channel devices directly affect the

speed performance of the gate since the nmos transistors that are supposed to discharge

one side of the tree must compete with the current source. Therefore, the p-channel

devices cannot be very large and they are limited in the speed which they can supply

charge to a node in the tree that is depleted by charge sharing. They tend to enhance the

static behaviorof the gate since they ensure that the voltage on the high side of the nmos

tree returns to Vm instead of dropping below the threshold value of the output inverter

due to a combination of charge sharing and leakage on internal nodes. However, if there

is enough parasitic capacitance on the internal nodes and the inputs are brought high in

rapid succession (i.e., faster than the p-channels can restore the charge from each one),

then a problem will still exist.

If all of the inputs are set up before the I signal goes high for evaluation no

charge sharing will occur and therefore the weak p-channel devices should be eliminated

in the interests of speed and area consumption of the gate. However, in strictly static

applications, the p-channel devices must remain. In the case where the weak feedback

transistors are insufficient to prevent charge sharing from being a problem, then it is

42

OUT
< *•

B

il31- 3 ±
weak

<}

HCX

H
B -t

r^€

V B

wtfat

{>
I— A

k

< >
H! a e b e c

B

Figure 3.5: Alleviating charge sharing in a DCVSL gate.

43

OUT
* >

necessary to pre-charge some or all of the internal nodes of the NMOS tree. The most

straightforward way of pre-charging more of the nmos tree internal nodes is by adding

extra p-channel pre-charge devices connected between Vdd and those internal nodes. This

technique, while ensuring that internal nodes are fully pre-charged, has accompanying

disadvantages of 1) requiring more p-channel devices, 2) adding capacitive load to the /

signal line and 3) slowing the gate switching speed by adding capacitance to the NMOS

tree nodes and also requiring all internal nodes to discharge fully from Vdd to Ground. If

the order of the input switching is know a priori then only nodes causing charge sharing

problems should be pre-charged. Another method for eliminating charge sharing problems

involves delaying the fall time of the DCVSL outputs at the start of pre-charge. By doing

so, the input devices that they in feed will in turn stay "on" longer allowing more charge

to enter the tree. [42] The more the internal nodes are charged before evaluation, the

less the output nodes will be lowered in voltage during evaluation. Another method for

alleviating charge sharing problems is to use nmos devices in the tree to charge internal

nodes to Vdd - Vt. [43, 45] This method reduces the routing required for the pre-charge

devices and since it does not charge the internal nodes fully to Vdd, the gate switching

time is faster.

2.3 Design and Layout Issues

The nmos device tree

Readers familiar with the design of static CMOS logic may have noticed from

the description of DCVSL that the design of a typical gate is not as straightforward. The

first task involves mapping a desired logic function into the actual schematic for the NMOS

device tree. A systematic means for this is necessary and it must include the simplifications

possible by sharing the transistors between the two sides of the tree in order to yield the

smallest area for the gate. There are several methods for systematically generating the

nmos tree for any arbitrary DCVSL gate. The chip designs described in later chapters

were done using a new 'c'-language program written expressly for this purpose. Some

other simpler hand-design methods will also be described that can be used for gates with

a small number of inputs.

Ntree is a DCVSL design program based upon representing the Boolean function

in terms of a directed acyclic graph which is then manipulated to reduce it to a canonical

44

form for the original function. The branches of the graph directly represent the branches

of the NMOS tree (and therefore the n-channel transistors) for the DCVSL gate being

designed. Routines for manipulating the graph were developed by R. E. Bryant and full

details of them can be found in [51]. Historically, many digital system designs have been

expressed as a sequence of operations on Boolean functions. Algorithms to efficiently

manipulate these Boolean functions symbolically are very useful, however some of the

common requirements of the algorithms, such as testing for satisfiability 3or equivalence 4

have NP-complete solutions which need computer time that grows exponentially with the

size of the problem. The computation problem occurs when Boolean functions are repre

sented symbolically using some of the more classical techniques such as Karnaugh maps or

canonical sum-of-products forms. These representations are of size 2n for every function

of n arguments. Moreimportant is that none of the classical representations are canonical

forms. In other words, a given function may have many different representations^1].

Bryant represents Boolean functions as directed acyclic graphs that resemble

binary decision diagrams [52]. By placing further restrictions on the ordering of decision

variables in the vertices, algorithms for manipulating the representations in a more efficient

manner could be developed. All symmetric functions can be represented by graphs where

the number of vertices grows at most as the square of the number of arguments. Also,

after the graphs are reduced, the representation is a canonical form. The disadvantage

of using this type of graphical representation is that the ordering of the inputs to the

Boolean function can dramatically affect the size of the graphical representation. In fact,

the problem of computing an ordering that minimizes the size of the graph is itself an

NP-complete problem. Bryant suggests that a small set of heuristics can be used to solve

this problem with satisfactory results.

To describe the graphical representation used for Boolean functions requires some

definitions. First, for the graph itself:

Definition 3.1 A function graph is a rooted, directed graph with vertex set V contain

ing two types of vertices. A nonterminal vertex v has as attributes an argument index

index(v) 6 {l,...,n} and two children low(v), high(v) 6 V. A terminal vertex v has as

attribute a value value(v) € {0,1}.

3A Boolean function is satisfiable if there exists an assignment of input variables which causes the
function to evaluate to 1.

4Two Boolean expressions are equivalent if they denote the same function.

45

Furthermore, for any non-terminal vertex v, if low(v) is also nonterminal, then it

must be that index(v) < index(low(v)). Similarly, if high(v) is nonterminal, then it must

be that index(v) < index(high(v)). Function graphs form a proper subset of conventional

binary decision diagrams. The ordering restriction also implies that a function graph is

acyclic because the nonterminal vertices along any path have strictly increasing index

values.

Definition 3.2 A function graph G having root vertex v denotes a function fv defined

recursively as

1. If v is a terminal vertex:

(a) Ifvalue(v) = 1, then fv = 1.

(b) Ifvalue(v) = 0, then fv = 0.

2. If v is a nonterminal vertex with index(v) = i, then fv is the function

fv(xi,...,Xn) = X{- flow(v)(xi,...,Xn)

+*1 *fhigh{v)(xl, •••>xn) (3.1)

Another way of saying this is that a set of argument values x,-,..., xn describes

a path in the graph starting from the root where, if some vertex v along the path has

index(v) = t, then the path continues to the low child if X{ = 0 and to the high child

if Xi = 1. The value of the function of these arguments equals the value of the terminal

index at the end of the path. In the physical nmos tree that is the analog of the graph,

the root is GROUND and the terminal vertices 0 and 1 correspond to the nodes fbar

and / in Figure 3.2.

Definition 3.3 Function graphs G and G' are isomorphic if there exists a one-to-one

function <j> from the vertices of G onto the vertices of G' such that for any vertex v, if

<j>(v) = vl', then either both v and v' are terminal vertices with value(v) = value(v'), or

both v and v' are nonterminal vertices with index(v) = index(v'), <f>(low(v)) —low(v'),

and <f>(high(v)) = high(v').

Definition 3.4 For any vertexv in a function graph G, the subgraph rooted by vis defined

as the graph consisting of v and all of its descendants.

46

A function graph can be reduced in size without changing the Boolean function

it represents by eliminating redundant vertices and duplicate subgraphs. The reduced

graph is the goal of the DCVSL nmos tree design program.

Definition 3.5 A function graph G is reduced if it contains no vertex v with low(v) =

high(v), nor does it contain distinct vertices v and v' such that the subgraphs rooted by v

and v' are isomorphic.

The following theorem is important in the use of this method for designing

DCVSL trees:

Theorem 3.1 For any Booleanfunction f, there is a unique (up to isomorphism) reduced

graph denoting f and any other function graph denoting f contains more vertices.

The proof of this theorem can be found in [51]. So, by defining the graphical

representation of an arbitrary Boolean function / as above, one can make use of effi

cient computer routines for building and reducing the graph. The reduced graph is the

smallest graph that represents the function /, hence the corresponding DCVSL circuit

implementing / will contain the minimum number of devices.

Program Operation

The main program flow of ntree is shown below in pseudo-code:

main() {
Read input function from file;
Construct input parse tree;
for (each input ordering){

Build reduced graph;
if(graph smaller)

Save
else

Discard

} .
Write output spice file;

}

The input format is LlSP-like using parentheses to delineate primitive gate functions. The

program supports all of the primitives used to describe logic functions in the set F €

{and,or,not,NAND,NOR,xor,xnor}. As an example, the input file below is shown:

47

t Example DCVSL gate description:
t 4-inputs
(example gate 1 (nand (or 1 2) 3 4))
f

f

The input parse tree for the example gate is shown in Figure 3.6. Since it is a binary tree,

the gate function for multiple input gates must be changed to avoid multiple inversions

(using associativity of the logic function). That is why the lower right node of the graph

is an and gate rather than a nand gate.

root

Figure 3.6: Input parse tree for example gate.

To build up the function graph a data structure is used for each vertex in the graph. It
has the following form:

typedef struct vertex {
int index;
int value;
int id;
unsigned int mark;
struct vertex *low;
struct vertex *high;

} VERTEX;

/* index from 1 to n+1 */
/* -1,0,1 (-1 for non-terminal)*/
/* identification number */
/* Boolean marker */
/* pointer to low child */
/* pointer to high child */

The structure contains all of the necessary information about each vertex including a

unique "id" number, an index entry, the value - showing 0 or 1 for terminal vertices and

-1 for non-terminal vertices, and a Boolean marker which is useful for indicating whether a

vertex has been visited when traversing a function graph. The pointers contain the address

48

of the low and high children vertices in the graph. A general function for traversing the

graph by making use of the marker entry is shown below. Each time the graph is traversed,

the markers are set to all 0 or all 1. A version of this traversing function is used in several

parts of the algorithms.

Traverse(v) { /* vertex v = root of graph */
v.mark = noi(v.mark);
... do something to v...
if(v.index < n) { /* v is non-terminal */

iffv.mark ^ v.low.mark) Traverse(v.low);
if(v.mark ^ v.high.mark) Traverse(v.high);

}

To build up a function graph from the Boolean expression, the function Apply is used. It

takes graphs representing functions f\ and fit a Boolean operator and produces a reduced

graph representing the function f\ < op > f2 defined as

[/l < op > f2](xx, •••, xn) = fi(xi, •••, xn) < op > f2(xu ...,xn) (3.2)

The operation of the algorithm is based on the following recursion:

[/l < op > f2\ = Xi • (/i |X|.=0< op > h |x.=0) + *«• • (/i U=i< op > f2 U,=i) (3.3)

To apply the operator to functions represented by graphs with roots vi and v2, there are

several cases to consider. If both vi and v2 are terminal vertices, then the result graph

has a terminal vertex having a value equal to value(v{) < op > value(v2). Otherwise, at

least one of the two vertices are nonterminal. If their indices are both equal to i, then a

new vertex u is created having index i. The algorithm is applied recursively on low(v\)

and low(v2) to generate the subgraph whose root becomes low(u), and on high(v\) and

high(v2) to generate the subgraph whose root becomes high(u). If, on the other hand,

index(v\) = i but either v2 is a terminal vertex or index(v2) > i, then the function

represented by the graph with root v2 is independent of a;,- or f2 1^=0= f2 \xi=i= h- So, a

vertex u with index i is created and the algorithm is applied recursively on low(v\) and v2

to generate the subgraph whose root becomes low(u), and on high(vi) and v2 to generate

the subgraph whose root becomes high(u). The graph produced by the algorithm is not

in general reduced, so the function Reduce is applied to it before it is returned.

49

Apply(vl,v2,op) { /* vl,v2 vertices */
Initialize Table to NULL;
u = Apply_step(vl,v2);
return((Reduce(u));

}

/* Recursive function to implement Apply */
ApplyLsiep(vl,v2) {

u = Table[vl.id,v2.id];
if(u == NULL) return(u);
u = new vertex; u.mark = false;
Table[vl.id,v2.id] = u;
u.value = vl.value op v2.value;
if(u.value != dontcare) /* create terminal vertex */

u.index = depth+1; u.iow = NULL u.high = NULL;
else { /* create nonterminal and eval further down */

u.index = mm(vl.index,v2.index);
if(vl.index == u.index)

viowl = vl.low; vhighl = vl.high;
else

viowl = vl; vhighl = vl;
if(v2.index == u.index)

vlow2 = v2.low; vhigh2 = v2.high;
else

vlow2 = v2; vhigh2 = v2;
u.low = Apply_step(vlowl,vlow2);
u.high = Apply_step(vhighl,vhigh2);

return(u);

The actual function implementation for Apply above contains some enhancements

to reduce the computation time of its application. A table is maintained containing entries

of the form (v\,v2,u) indicating that the result of applying the algorithm to subgraphs

with roots v\ and v2 was a subgraph with root u. Before applying the algorithm to a pair

of vertices, the table is checked to see if it contains an entry for the pair. If so, they need

not be evaluated again and the result u is simply returned. If the function is called with

one of the vertices being a terminal vertex and it is a "controlling" value for the operator,

such as a 1 which controls an OR function - always returning a 1, then the appropriate

terminal vertex is just returned.

The algorithm for Reduce works as follows: Proceeding from the terminal vertices

up to the root, a unique identifier number is assigned to each unique subgraph root. In

other words, each vertex v is assigned a label id(v) such that for two vertices v and u,

id(v) = id(u) if and only if /„ = fu in the terminology of Definition 3.2. After the labeling

is completed, the algorithm then constructs a graph with only one vertex for each unique

label. By following the rules listed below, the correct labeling is ensured. Remember that

50

for any index i, vertices with an index greater than i have been labeled since the algorithm

starts at the terminal vertices (index = n + 1).

1. Any two terminal vertices are assigned the same label as long as they have the same
value (€ {0,1}).

2. If id(low(v)) = id(high(v)), then vertex v is redundant, and id(v)is set to id(low(v)).

3. If there is some labeled vertex u with index(u) = i having id(low(u)) = id(low(v)),
and id(high(u)) = id(high(v)), then the reduced subgraphs rooted by these two
vertices will be isomorphic and id(v) is set to id(u)).

The pseudo-code for Reduce is shown next:

Reduce(v) { /* v is a vertex */
VERTEX subgraph[G];
LIST Q, vlistjn+1];
Put each vertex v on vlist[v.index];
nextid = 0;
for(i = n+1 down to 1) {

Q = empty set;
for(each u in vlistp]) {

if(u.index = n+1)
Add key to Q where key = u.value; /* terminal */

else if(u.low.id == u.high.id)
u.id = u.low.id; /* redundant vertex */

else
Add key to Q where key = (u.low.id,u.high.id);

}:
Sort Elements of Q by keys;
oldkey = (-1,-1) /* unmatchable key */
for each key in Q removed in order {

if(key = oldkey)
u.id = nextid; /* matches existing vertex */

else { /* unique vertex */
nextid = nextid+1; u.id = nextid; subgraph[nextid]=u;
u.low = subgraph[u.low.id]; u.high = subgraph[u.high.id];
oldkey = key;

};
};

};
return(subgraph[v.id]);

/'

The vertices are first collected in lists according to their indexes. The function Traversecan

be used for to do the collection. The lists are processed starting from the terminal vertices

and proceeding up to the root. For each vertex processed, a key is created that is either

the value for a terminal vertex or the pair < id(low(v)),id(high(v)) > for nonterminal

vertices. If the vertex has id(low(v)) = id(high(v)), then id(v) is immediately set to

id(low(v)). The remaining vertices are sorted according to their keys and to perform the

51

reduction, a given label is assigned to all vertices having the same key. For each unique

label, a single vertex is selected and a pointer to it is stored so that the reduced version

can be built.

As shown in the pseudo-code for the main program operation, each input ordering

is tried when building function graphs. This is not very efficient in terms of computation

time since for an n-input gate design, n! graphs must be built. This places a practical

limitation on n to be n < 8 for most workstations, however for the gate designs described

in later chapters, the limitation was not severe. In fact, limiting the number of gate

inputs also limits the worst case number of series transistors in the nmos tree design,

which is commonly done in the interests of speed performance. The program operation

could easily be enhanced to allow a greater number of inputs by the addition of some

heuristics for determining the input orderings to try. In ntree,each function graph is built

and then saved only if it is smaller than the previous graph (where smaller means having

less vertices). There is one tradeoff that is made in determining the final graph which is

selected for the tree design. A record is kept of both G, the number of vertices in a graph

and L, the number of series connected devices which can be determined by looking for the

longest path between Ground and a terminal vertex. Gmin is the number of vertices of the

smallest graph and Xmin is the number of series devices in the graph with the minimum

number of series devices. For the graph which has size Gm,-n, the number of series devices

Lomin is also saved. Similarly, for the graph with £m,n, its size is saved in GLmin. A cost

is computed for each of the two graphs as follows:

COSTamin = Gmin + LGmin (3.4)

COSTLmin = Lmin + GLmin (3.5)

In the interests of speed, a largergraph will be chosen if it has less series connected devices.

In other words,

If(COSTLmin < COSTGmin), chooseGraphLmin (3.6)

The size differences between a minimum size graph and one that contains the smallest

number of series devices is typically only one or two vertices. Therefore, it was felt that

this tradeoff was worthwhile.

52

Besides heuristics that could be used to try less input orderings, there is another

area that could be addressed in future versions of the ntree. Given that there are multiple

graphs which have the same number of vertices, heuristics could be added to somehow

determine the best graph to choose for layout considerations. The location in the tree for

example of a device receiving a certain input signal can be important in the overall layout

of the circuit. More information is needed about the rest of the system however, before

choices of this nature can be made. Some CVSL design software that addresses the issue

of wirablilty has been described in the literature[54, 55, 56].

The program textual output for this example is shown below. The binary input

parse tree is printed along with the final input ordering and function graph. Indentation is

used to try to clarify the levels in the trees in the printout. Because most of the routines are

recursive in nature, there was some problems initially in memory management. Memory

statistics are printed out as a tool to check for problems of this sort.

CVSL Logic Minimization Program by Gordon Jacobs
Rev 1.1

Date: Son lov 13 15:00:03 1988

********* IIPUT LISTIIG ************ Input File: exmpll ***•

(example gate 1 (nand (or 1 2) 3 4))
t

t

Gate lame: example gate 1
lumber of unique inputs (depth) = 4

IIPUT PARSE TREE :

nand 0

with left side —

or 0

with left side —

I IIPUT 1
with right side —
I IIPUT 2

with right side —
and 0

with left side —

I IIPUT 3
with right side —
I IIPUT 4

IIPUTS: 12 3 4

For indices: 1234 G = 6 L = 4

G => number of vertices. L => number of series devices.

Gmin = 6/L = 4. Lrain = 4/G = 6

53

FUICTIOI GRAPH:

-> IIPUT OROERIIG: 12 3 4

Vertex: IIPUT 1 index » 1 id a 1

'with low(O) side —
Vertex: IIPUT 2 index • 2 id • 2

♦with low(O) side —
***** oie ******

with high(l) side —
Vertex: IIPUT 3 index -3 id » 4

'with low(O) side —
| ••**• OIE ******

'with high(l) side ~
I Vertex: IIPUT 4 index • 4 id a 5
I 'with low(O) side ~
I I ***** OIE ******

I 'with high(l) side —
J I ***** ZERO *****

with high(l) side —
Vertex: IIPUT 3 index

with low(O) side —
***** OIE ******

with high(l) side —
Vertex: IIPUT 4 index » 4 id = 5

'with low(O) side —
I ***** OIE ******

'with high(l) side —
I ***** ZERO *****

Memory used:
Vertices used =

Lists used • 8

Trees used = 9

*** end ***

14

» 3 id a 4

A graphical representation of the function graph is shown in Figure 3.7.

For lack of a better circuit description, the corresponding spice file written by ntree is:
IHOS Tree for (example gate 1)

Logic Expression: (nand (or 1 2) 3 4)

This file generated by ntree on Sun lov 13 15:00:03 1988

* I0DE ASSIGIHEITS:

* GID • 0 Vdd - 100

* Pbulk » 102 Ibulk = 101

* (Complement of)Input lumber 1 is node (11) 1
* (Complement of)Input lumber 2 is node (12) 2
* (Complement of)Input lumber 3 is node (13) 3
* (Complement of)Input lumber 4 is node (14) 4
* F.OUT » 21 F.BAR.OUT • 20

ml

ra2

ra3

m4

m5

ra6

m7

m8

D

24

21

26

21

27

21

20

26

G

11

12

2

13

3

14

4

1

***end**»

S

0

24

24

26

26

27

27

0

B

101

101

101

101

101

101

101

101

IHOS

IHOS

IHOS

IHOS

IHOS

IHOS

HMOS

HMOS

The schematic drawing for the NMOS tree in the spice file is shown in Figure 3.8.

54

Figure 3.7: Function graph for the example gate.

/ T

*1

2-

1

©_ ||-4

®Jh>

:'24!
v3"

GND

h*

-1

Figure 3.8: NMOS tree for the example gate.

55

More information about ntree can be found in Appendix A.

Layout style

Once the schematic for the gate is determined, the layout must be performed in

a manner which helps to minimize the chip area and maximizes speed by keeping parasitic

capacitances low. The custom layouts employed in most of the gates described in later

chapters followed the basic style as illustrated in Figure 3.8. A stack of nmos differential

pairs is placed first. Diffusion is usually required to make connections between device pairs

in a reasonable area, however it should be minimized for speed considerations. Vertical

running metal2 was used for data inputs and connections between device pairs. Horizontal

metal\ was used for bussing control inputs and power. This style met with limited success

in being competitive with static gates in terms of overall area, however the author claims

no great talents with regards to layout ability.

More common among published circuits is a "sea-of-gates" style layout that is

comparable with an automatic tool for wiring the DCVSL gates[53, 54, 55, 56]. These

techniques have shown favorable comparisons with standard gate designs in terms of area.

Additionally the adaptability to automatic tools for layout make this approach advanta

geous.

3. Alternatives to DCVSL

Since the introduction of DCVSL, there have been several similar logic structures

described in the literature. Most of these address the issues of speed or area efficiency of

DCVSL and offer improvements while maintaining basically the same functional operation.

As stated above, any logic family which can provide completion information is suitable

for self-timed circuit design 5. A brief survey of the recent developments in this sort

of logic design is presented here. It should also be mentioned that a large effort in the

development of single-ended Cascode Voltage Switch Logic, or just plain CVSL, has taken

place. [43, 38] While this can compare more favorably to static CMOS logic in terms of

area it does not provide means for generating an adequate completion signal.

The circuits described in this document all use the basic DCVSL architecture.

While performance was of concern in the DSP chips designed, DCVSL presented a slightly

5This almost certainly will be dependent on having complementary outputs available.

56

more conservative approach in terms of design which was chosen in order to expediently

demonstrate self-timed circuits.

3.1 Sample-Set Differential Logic (SSDL)

SSDL logic addresses the speed issues of DCVSL gates as they become large.

While an arbitrary logic function can be implemented in an nmos tree, the size of the

tree and the number of series connected devices will grow when the number of inputs or

complexity of the logic function increases. DCVSL literature notes that the delay is rela

tively constant despite the logic function of the gate, a big improvement over normal gate

design. However, more series connected devices in the nmos tree will cause a slowdown

of the discharge action of the tree and hence a slower switching time.

outbar*—<XCJ D>~ out

Figure 3.9: A generalized SSDL logic gate.

SSDL adds a sense amplifier to the basic DCVSL structure as shown in Figure 3.9.

The key to using this sense amplifier is changing the timing of the operation of the gate.

In what would normally be the pre-charge time of the gate, the inputs are assumed to be

valid and devices Ml —MZ are all "on". Since there is a path from one of the output

nodes of the tree to ground, that node will be at a voltage less than Vdd- This is called

the sample phase of the operation. When phi switches, the set phase of operation begins

57

and the sense amplifier is activated. It detects which side of the NMOS tree was being

discharges and switches rapidly. The advantage to this approach is that the switching

time is independent of the complexity of the nmos tree.

Since both outputs are still low during sample and they become complementary

during set, the generation of a completion signal is identical to DCVSL. The interface

between consecutive SSDL gates however requires different control circuitry from DCVSL

to work properly. Note that the inputs are required to be valid during the time when the

outputs of the gate are both low (sample phase). This precludes feeding the outputs to

another SSDL gate with the same clock signal. One SSDL gate candrive another directly

if the clock to the next gate is inverted with respect to the first gate. This still poses a

problem in a self-timed circuit as will be seen in the next chapter. One could envisage

generating a completion signal at the output of each gate in a cascade of SSDL gates and

using this to generate the required clock for the next stage. The added delay of doing

this might unfortunately cancel the benefits of using SSDL instead of a cascade of DCVSL

gates.

On the other hand, since SSDL lends itself to very complicated logic functions,

it would be entirely appropriate to any single stage self-timed macrocell that implements

a complex logic function. If the circuit can be partitioned this way, then the benefits of

using SSDL over DCVSL could be obtained in the form of higher performance. One might

replace a cascade of DCVSL gates with a single SSDL gate taking advantage of the fast

switching time that is independent of the NMOS tree size. Therefore, in some cases SSDL

may represent a real improvement.

The speed gains of SSDL come at the expense of adding the sense amplifier.

The disadvantage of this is that the sense amplifier design will tend to be more process

dependent. Also, the power consumption of a SSDL gate is higher than that of a DCVSL

gate because during the sample phase, when the inputs become valid, there is a path

between Vdd and Ground through the nmos tree.

3.2 Enabled/disabled CMOS Differential Logic (EDCL)

A variation on SSDL logic as described above was published recently and it

attempts to eliminate the shortcomings of the SSDL style logic. EDCL works on a similar

principle to SSDL by using a bi-stablesense amplifier circuit for rapid switching times [47].

58

Figure 3.10 shows the basic EDCL gate in both n-type and p-type configurations. The

circuit operation will be described in terms of the NMOS version in Figure 3.10a. Unlike

SSDL, the nmos tree is not conducting during pre-charge so the power consumption is

reduced to that of a DCVSL style logic gate. Also, the output inverters were removed in

order to save area and increase speed. Therefore, when the clock phi is high, which is the

so-called pre-charge period, both outputs are shorted to ground by M1-M2 and the nmos

tree and sense amplifier (M3 off) are disabled. On the falling edge of phi, the sense amp

is enabled and if the inputs are valid, then one side of the sense amp/bi-stable output

will be held lower than the other causing the appropriate switching of the outputs to the

correct complementary state.

The EDCL gate has the same advantage of taking the same switching time for

any complexity nmos tree as does an SSDL gate. It also is fully static since once the

bi-stable element switches, it remains in the same state as long as it is enabled. The

gate design is however more dependent on its circuit connection with other gates since

the output nodes are not buffered. The size of the sense amp devices can be increased

for increased output drive however, this also adds more capacitance to the output nodes

and can affect the speed of the gate. The generation of a completion signal is identical to

DCVSL gates.

As with SSDL, the connection of several EDCL gates to form a more complicated

logic function or sequential function is not as straightforward as with DCVSL gates. The

switching of an EDCL gate occurs at the clock edge and the inputs must be valid before

this edge. The inventor of EDCL [47] suggests a method for connecting a cascade of the

gates by generating a "done" or completion signal for each gate as suggested in the last

section. This forces the operation of the cascaded gates to be sequential as they would be

in DCVSL or Domino logic. The proposed method involves connecting an inverter to the

drain of M3 in Figure 3.10a which detects when the sense amplifier is active. This is not

a fully reliable method because it assumes that the switching time of the sense amplifier

will match that of the added inverter under all conditions. A lower risk method would

involve using the actual gate complementary outputs as described for DCVSL. EDCL does

provide a method for implementing self-timed circuits without the power consumption of

an SSDL gate. Therefore, it is feasible for certain applications, especially where a complex

nmos tree is required to generate a certain logic function.

59

(a)

(b)

Figure 3.10: A generalized EDCL logic gate.

60

3.3 Latched Domino CMOS Logic (Ldomino)

Another interesting variation on DCVSL logic is a kind of hybrid between stan

dard domino logic and DCVSL logic. It is called Ldomino logic and while generating a

complementary output, it only requires a single ended NMOS tree to implement the logic

function [46]. While Ldomino logic was proposed to circumvent the problem of a lack of

inversion in a standard domino gate, the existence of a complementary output makes it

a candidate for making self-timed circuits. Additionally, Ldomino logic gates can possi

bly serve as an interface between single ended and differential logic families which could

significantly reduce the area required for a complex piece of logic requiring a completion

signal output.

The circuit diagram for a generic Ldomino gate is shown in Figure 3.11. Con

sisting of a standard domino gate and an unbalanced sense amplifier/bi-stable element, it

generates complementary outputs for the function implemented by the domino portion.

The sense amplifier is formed by devices M1,M2,M4, and M5. The two sides of the sense

amplifier are unbalanced by the larger capacitance present on the output node connected

to the domino NMOS tree. Device M4 can also be made wider to add to the imbalance.

After pre-charging, the clock is raised which enables the sense amplifier and NMOS tree of

the standard domino gate. If the NMOS tree provides a path to ground, then the drain of

M5 will be pulled down and the sense amp will switch such that that out will go high and

outbar will stay low. If however, there is no path from the drain of M5 to ground, then

the sense amp will switch into the other state where out is low and outbar is high. The

imbalance in the sense amplifier must cause the gate to reliably switch when the NMOS

tree does not provide a path to ground at the drain of M5. With a few more transistors

than standard domino logic, complementary outputs are available.

The speed of Ldomino gates can be made higher than DCVSL and the area is

less than that required by DCVSL. Designing a Ldomino gate does however require more

care since there is a direct tradeoff between speed and noise margin when sizing the sense

amplifier transistors. An important limitation not mentioned in the literature [46], is the

loss of the "domino" action of a gate. In the absence of any valid inputs (i.e. all devices

in the NMOS tree disabled), the Ldomino gate will fire due to the imbalance of the sense

amplifier. This action precludes cascading several Ldomino gates to form a complicated

section of combinatorial logic. The inputs must be valid before the clocking signal rises

61

Std. Domino

outbar+—°<^} Or out

cue •

Figure 3.11: A generalized Latched Domino logic gate.

so that the NMOS tree can discharge its side of the sense amplifier before the imbalance

discharges the other side of the amplifier. Therefore, in a seriesof Ldomino gates, all gates

would switch at approximately the same instant after the rising edge of the clock instead

of waiting for the results of the previous gate as in standard domino logic. One would like

to be able to.use single ended logic for area and speed benefits at all stages preceding the

one where completion information is required (the output or last stage). The only way

this could be done would be to somehow delay the clock of the Ldomino stage until the

inputs were valid. Ldomino would be appropriate in a self-timed block in which only a

single gate is necessary.

4. Summary

The first basic requirement of a self-timed circuit is that it generate completion

information when its outputs are valid. This requirement can be met by using a logic family

called DCVSL which generates both an output signal and its complement for any logic

function. By simply ORing together these complementary outputs, a reliable completion

62

signal is generated. During the pre-charge phase of operation of a DCVSL gate, both

outputs become low which ensures that the completion signal fully cycles for each distinct

operation.

The nmos tree of a DCVSL gate can be designed in such a way that the two

sides of the tree "share" transistors which makes the gate design efficiency increase as

the logic function becomes more compUcated. Automation of the nmos tree design for

arbitrary logic functions has been demonstrated. Since differential logic signal must be

routed between DCVSL gates, the layout is more challenging than a single ended logic

family. A regular layout style allows automation of the gate layout although hand packing

was employed in the designs described in later chapters.

There are several variations on the DCVSL principle that have been introduced

to offer increased speed, smaller layout area, and maintain complementary outputs to

simplify logic over standard domino gate designs. These variations include SSDL, EDCL,

and Ldomino logic. The timing of these alternative logic families cause added complexity

for self-timed applications in some cases but almost all of the alternatives will work for self-

timed stages where a single complex logic gate will suffice. Thus, enhanced performance

is possible over using DCVSL at the expense of more sensitivity to design parameters and

the loss of generality in where the gates can be placed in a circuit.

63

Chapter 4

Handshaking Circuit Synthesis

In the previous chapter, we examined the physical realization of a self-timed logic

family suited for integrated circuits. The completion information provided by a self-timed

logic block is one of two essential ingredients for composing a self-timed system, the other

ingredient being the logic which makes use of the information to manage the transfer of

data between stages. This chapter studies the synthesis and design of reliable handshake

circuits which handle the interstage communication. The term "handshake" describes

the local nature of the communication. In a synchronous system, all operations ideally

happen at precisely the same moments in time, synchronized by the system clock, just the

same as a school bell signals the class periods to all students at once. In an asynchronous

system, adjacent stages negotiate the transfers of data between them independent of what

is happening in other parts of the system. This is more like going from booth to booth

at an exhibition, where the spent at each booth depends only on you and the people

in the booth and not what is happening at other locations. Each transfer of data in a

asynchronous system follows a handshaking sequence which ensures that no loss of data

occurs. This consists of conversation between stages in which handshake signals are raised

and lowered to do the signalling.

Handshake signals are typically labeled Request and Acknowledge signals in the

literature. As is probably obvious, the request line usually signals that one stage is ready

to initiate a transfer while the acknowledge line signals that the transfer is complete.

The exact sequence which defines a transfer can vary between systems and it is called

the handshaking protocol. In the circuits described in later chapters, a 4-cycle protocol is

employed. The sequence of handshake signals for this protocol is given below.

65

The reliable synthesis of handshaking circuits has been one of the major chal

lenges of designing an asynchronous system. Given a sequence of operations, one must

synthesize a circuit which will follow the sequence but also take a minimum amount of

overhead time to do so as well as avoiding becoming deadlocked or causing some other er

ror under any conditions. Additionally, the synthesis of such handshaking circuits should

be relatively simple, perhaps using a higher level language description, so that the design

process is not impeded. The design methodology described in this chapter attempts to

meet these goals and the results obtained have shown great promise.

1. Partitioning

Since handshake circuits oversee the transfer of data between stages, the parti

tioning of the system into stages is the first task required in specifying a self-timed system.

No automatic way for doing this is being presented here. Rather, a few guidelines that

are related to physical constraints are discussed. The time required to complete a hand

shaking "conversation" for each data transfer represents an overhead associated with the

self-timed approach which is undesirable. Therefore, while the methods described in the

Chapter 3 allow for self-timing all the way down to the individual gate level, this would

most likely be impractical for any large system. Another reason to avoid partitioning at

the gate level is the hardware overhead to generate a completion signal. While a data valid

signal can be generated by a single OR gate, the OR gate would be a prohibitive excess of

hardware if it were necessary on every gate in the system (100% overhead). Therefore, it

makes sense to partition the system into self-timed blocks as illustrated in Figure 4.1. The

DCVSL logic family is ideal for larger self-timed blocks because a collection of DCVSL

gates can be cascaded directly to form a larger combinatorial block. The completion signal

generation is only necessary on the last stage of the cascade.

Another way to look at the partitioning is that the handshake signals of a stage

in effect make up the local "clocks" of that stage. Clock distribution is typically not

troublesome on a local level. Therefore, one should envisage making the size of each self-

timed block large enough to minimize the completion circuit overhead and small enough

to avoid timing signal distribution difficulties. A logical choice for partitioning a DSP cell

based chip is at the macrocell level. A handshake stage often (although not strictly) can

be considered a pipeline stage so the partitioning might be done at the pipeline boundaries

66

data

d Q DCVSL

LOGIC

Interconnect

CKT

DV

handshaking signals

D Q DCVSL

H LOGIC

Interconnect

CKT

DV

d Q

-^1
Z)CT5L

LOGIC

Interconnect

CKT

DV

Figure 4.1: Block diagram of a self-timed system.

of a datapath for example.

Since interconnection or handshake circuits are separate from computation blocks,

the overall system timing is simply that of the set of handshake circuits used. The de

lays of computation blocks just add a latency to handshake signals but the sequence of

operations is maintained.

2. STG's for Describing Sequential Behavior

Once the system has been partitioned into self-timed blocks, an organized way

of describing the transfers between blocks is required to synthesize handshaking circuitry.

Both data and control signals must be described for correct timing of a block. Usually,

a certain sequence of events must be imposed on the block in order for proper operation.

For example, if a block has a single input and a single output, the correct sequence of

events for proper operation will be that the current output must be transferred to the

next stage before the next input is applied to the block. For a DCVSL logic stage, pre-

charging is required between computations. A series of timing diagrams of the input

and output signals of a block are sufficient to describe the required sequence but timing

diagrams can often be difficult to interpret or manipulate. Another way of representing

the information contained in timing diagrams is with Signal Transition Graphs (STGs)

[59, 60, 61, 62]. STGs give a concise representation of a desired sequence and they can

be manipulated to both check for timing problems and also synthesize speed-independent

67

logic for implementing a handshake circuit.

In the past, Petri Nets have been utilized to model speed-independent asyn

chronous circuits. One problem in employing Petri Nets however, is that while the mod

eling may be accurate, using them as a synthesis tool often results in circuitry that is

overly complex[57]. Signal Transition Graphs are a form of Petri Nets restricted by a set

of axioms where transitions in nets are interpreted as signal transitions in a handshake cir

cuit. The restrictions make STGs more amenable to analysis and manipulation for circuit

synthesis due to reduced complexity while maintaining enough expressiveness to describe

the behavior of almost all necessary handshake circuits for datapath applications.

An example of a simple STG is shown in Figure 4.2 for a circuit with the set

of signals J — {Req, Ack}. The set of signal transitions, denoted as T, is given by

J x {+,—}. The vertices of an STG represent events where one signal in the circuit

makes a transition. The tt+" denotes a rising edge while the "~" denotes a falling edge.

Arcs in the graph between transitions represent instances of the causal relation, denoted

by R, between transitions. The notation t\Rt2 means "*i causes t2n and it represents a

constraint between the transitions such that the firing of t\ brings the system into a state

in which t2 is enabled to fire. Where two arcs come together (at their heads), an AND

construct is implied, meaning that both of the events originating the two arcs must occur

before the event to which they point is enabled. Formally a STG is defined as:

Req+

Ack+

Figure 4.2: Simple signal transition graph.

Definition 4.1 A STG defined on a finite set of signalsJ is represented by Sj = [T,R, Mo],

68

where T = J x {+,-},RCT x TandMo C R is the set of transitions which are enabled

in an initial state of the circuit.

Figure 4.2 shows a STG that represents a simple 4-cycle or reset-signalling handshake

protocol at the input or output of one stage. The sequence that occurs for each data

transfer is Req+ -»• Ack+ -*• Req~ -* Acki". This STG only shows the basic protocol at

the input or output of a stage. Since it does not include both input and output sequences,

it would not be useful in constructing any circuitry.

By representing the state of a handshake circuit as a binary number where each

bit represents one signal in the the STG, the underlying state graph can be constructed

from the signal transition graph. A circuit realization can then be determined from the

state graph using traditional state diagram techniques [70, 71] as is commonly done for

finite state machines. An important step however, is to manipulate the STG beforehand

to ensure that the operation of the synthesized circuit will be correct and not become

deadlocked. The simple rules to apply to a STG to ensure correct operation are described

next.

2.1 Synthesis using STGs

In order to explain the synthesis procedure for circuits described by STGs, some

definitions from speed-independent circuit theory are necessary [65, 66, 4]. Any handshake

circuit must be defined in terms of a finite number of states in the set S where

Definition 4.2 Each state a of S is represented by an m-tuple a= (x\,x2,..., xm) where

X\,x2,...,xm are signals in the circuit.

It is assumed here that binary signals areused to represent states and that implies

that the maximum number of states N = 2m. A set of sequences of states describes the

behavior of the circuit where each sequence in the set is called an allowed sequence.

Definition 4.3 A circuit is called speed independent if for all allowed sequences start

ing in one state, each sequence ends up in the same state.

If allowed sequences contain transitions of signals either sensed by or generated

by the outside world, then the definition above is not always strong enough to ensure speed

independence since different allowed sequences, while ending up in the same state, may not

69

follow the desired sequence for correct interfacing to external signals. The definition below

provides a stronger condition for speed independency in (practical) circuits containing

inputs and outputs:

Definition 4.4 A circuit is semi-modular if once a signal transition in the circuit is

enabled, only firing of that signal transition can deactivate it.

This property is sometimes referred to as persistence in the literature[59, 60, 64].

The underlying circuit represented by a STG of a handshake operation must absolutely

meet the requirement of semi-modularity to function correctly under all conditions. An

example of this is shown in Figure 4.3. Here, the signal Reqi+ enables both Acki+ and

Reqo+ in the graph. The graph fails to meet the semi-modularity requirement since if the

loop on the left was implemented by faster circuitry than the loop on the right, the circuit

might make the state transitions Acki+ —• Reqi" before Reqo+ occurs. Another way

of stating the requirement is that when one signal enables another, the latter must fire

before the first signal changes again. Fortunately, an STG can be checked (and corrected)

for semi-modularity in an organized way.

Figure 4.3: STG not possessing the property of semi-modularity.

Handshake circuits must also possess the property of liveness to function prop

erly. Simply stated, a circuit is live if it does not become deadlocked. A deadlocked

circuit will stay in one state and ignore requests for communication rendering it useless in

70

a system. A test for liveness in a circuit represented by a STG is that for every signal in

the graph, there exists one simple loop which contains both the high and low transitions

of that signal. A simple form of an STG which represents a circuit which could become

deadlocked contains a branch which does not lead to any other transitions. Since no other

transitions are enabled, if the circuit enters that branch during operation, it ceases to

respond to any further stimulus.

2.2 4-cycle protocol

The 4-cycle handshake protocol mentioned above is used in all of the circuits

described. In the context of a typical computation stage, the protocol is defined here and

some comments about its importance when using DCVSL logic are also discussed.

A typical computation block has at least a single input port and a single output

port. The 4-cycle handshake sequence is used on each of these ports to control when

computed data is fed to the next stage and when new data is accepted. Thus, there are

commonly four handshake signals associated with a simple stage as shown in Figure 4.4.

They are Reqi, Acki, Reqo, Acko. A single "cycle" of operation proceeds as follows: As

sume that all four signals are initially low. When the preceding stage has valid data

ready, it will raise Reqi to request a data transfer. When this stage is ready for a new

data sample, it will latch the data and raise Acki, acknowledging the transfer. The Acki+

transition allows the preceding stage to reset Reqi (Reqi~) which in turn causes Acki to

return low. When the computation of the stage is completed, Reqo will go high to signal

to the next stage that data is valid. When the next stage latches in the new data, it

raises Acko. This in turn allows Reqo to be lowered which in turn should be followed by

the lowering of Acko. The term 4-cycle handshake is used to describe this protocol since

each of the four handshake signal completes a full cycleor high/low transition during each

transfer.

The choice of this protocol is based on constraints placed by the use of DCVSL

as computation blocks. In a 2-cycle protocol a single edge of a handshake signal (either

rising or falling) determines a data transfer. For example, if the Req and Ack signals

between two stages are both low, the a request for a transfer is signalled by Req+. The

transfer is acknowledged by Acki+. The two handshake signals stay at the high level until

another transfer takes place which is signalled by the sequence Reqi~, Acki~. While this

71

protocol can lead to faster handshake circuits since less transitions are required for each

transfer, it is not compatible with DCVSL logic. The I signal of the DCVSL controls

whether the logic is pre-charging or computing. The level of I is important, i.e. the logic

family is level sensitive to its control signal. Since handshake signals control the DCVSL

operation, they must also be level generating. A 2-cyclehandshake protocol would require

a prohibitive amount of extra circuitry to convert edges signalling data transfers to the

levels required by DCVSL logic.

When following the 4-cycle protocol, the input port handshake signals always

follow the sequence Reqi+ -*• Acki+ -*• Reqi~ -*• Acki~ during a single cycle of opera

tion. Similarly, the output port handshake signals always follow the sequence Reqo* -»•

Acko+ -r Reqo" -+ Acko". These two loops therefore become part of any STG in order

to satisfy the 4-cycle protocol. The constraints added between the two loops to achieve

a simple data transfer are very important in determining both the efficiency of operation

and the correctness of operation of the stage. In the next section, the 4-cycle handshake

circuit for a single pipelining stage will be derived.

3. 4-cycle Handshake Circuit

Envisage constructing an n-stage pipeline. In a clocked system, the stages could

be all clocked by a single timing signal which would shift data down the pipe. Each

stage would contain a register which acts as a shift register and some computational logic

which must complete its task during the time taken.by a single clock period. For a self-

timed system, the datapath looks the same but rather than having a single global timing

signal, each stage is controlled by a handshake circuit. This provides the signal to clock

data into the register and it communicates with adjacent stages to negotiate transfers.

In this section, the handshake circuit to perform this function will be synthesized. The

4-cycle protocol will be followed and the synthesis procedure will be explained in great

detail to act as an example of the process. While an automated method for doing this is

discussed later, this example shows the underlying tasks that take place. The 4-cycle basic

handshake circuit or "HS4" is really the basic building block of many other handshake

circuits so it is an appropriate example to detail. A block diagram of the 4-cycle handshake

circuit is given in Figure 4.4. The computational block, when added to this circuit simply

represents an added unknown latency in the Reqo signal.

72

Reqi

AcH +

HS4

(4-cycle

handshake)

Reqo

•<Acko

Figure 4.4: Block diagram for 4-cycle handshake circuit.

Figure 4.5a shows the two loops of a signal transition graph where basic 4-cycle

handshake protocol is followed on the input and output ports. A condition linking the

operation of the two ports has been added to define the handshake circuit for the entire

stage. Conditions such as this are the essence of the timing of the stage. Too weak a

condition might cause samples to be lost while excessively strong conditions might result

in low hardware utilization due to long delays involved in waiting for the handshake signals

to reach a certain state.

Figure 4.5: STG's for 4-cycle handshaking pipeline stage.

Accept for now that the condition shown in Figure 4.5a is the best choice. The

73

STG shown however must be checked for liveness and persistency before a valid circuit

can be synthesized. Clearly, more arcs (constraints) must be added to satisfy the property

of semi-modularity. This is done recursively since each arc added can create a condition

in which persistence will be violated. Acki+ enables Reqo+ and therefore Acki" must

be be disallowed until Reqo* actually occurs. The Reqo+ —• Acki" arc is added to fix

this however, examining the STG again, a new condition violates persistency. Reqo+
enables Acki" and therefore Reqo" must be disallowed until Acki" actually occurs. The

Acki" —• Reqo" arc is added. This procedure is followed until persistency is satisfied and

the resulting completed STG is given in Figure 4.5b. The STG is live since there are no

"dangling" branches so it in now ready for circuit synthesis.

The state graph is now constructed from the completed signal transition graph

by performing state assignment on the graph. The state graph is formally defined as [59]:

Definition 4.5 A state graph of a STG Sj is represented by $ j = [S,T, S, so] where S

is a set of states, so is the initial state corresponding to the initial marking of the STG.

Eachs € S is a binary vector [s(a), s(b),...], where J = a, 6,... is the set of signalsin the

graph and s(j) denotes the value of signalj in state s. 6 : SXT -*• S is a partialfunction

called the transition function; if the firing of transition t in state s leads to state s' then

6(s,t) = sf.

Thus, states are binary vectors representing the values of signals in the circuit, while

transitions are transitions of these signals. Only a single signal is allowed to change

between states. Using the state representation s = [Reqi Acki Reqo Acko] for the example,

the state graph is constructed and shownin Figure 4.6. The graph represents every allowed

state of the signals in the STG. Where the STG splits into two arcs, the next state can

be one of two different states since either of the transitions pointed to by the two arcs in

the STG can occur first. No duplicate states occur in the stage graph of a STG which

satisfies semi-modularity.

The goal here is to synthesize the logic required to generate the two outputs of

the HS4 circuit: Acki and Reqo. From the state graph, a Karnaugh map of the circuit

can be derived, however it is easier to use reduced state graphs for each of the outputs of

interest.

74

s = [Reqi Acki Reqo Acko]

Figure 4.6: State Graph for the 4-cycle handshake circuit STG.

75

Acki

If the STG is redrawn only with the signals that have arcs connected to the

signal Acki, then the reduced state graph can be derived for that signal. This is shown

in Figure 4.7. Transitions for signals not affecting Acki (namely Acko) are just "shorted"

Acki-

s = [Reqi Acki Reqo]

Figure 4.7: Reduced STG and state graph for signal Acki.

since they are unimportant for the timing of Acki. The reduced state graph for this new

STG is also given in the figure. The elimination of one signal makes the logic synthesis

more efficient. Figure 4.8 shows the Karnaugh map construction from the reduced state

graph for Acki. Starting at some initial state, the state graph is traversed. For each state,

the corresponding position in the Karnaugh map is filled with the value of the signal of

interest in the next state(s). The x denotes the initial state used in the example: 110.

A position not traversed in the Karnaugh map or a position which points to next state

values of both 0 and 1 should be filled with an X or "don't care". Using the grouping

shown with dotted lines in the figure, the logic for Acki is found:

76

Reqo

Reqi Acki

00 01 11

Reqi Acki

00 01 11 1010
Reqo

0
X

0

0

•:. 1

0

1 11)
-i *

1/

1)

0

Figure 4.8: Karnaugh map construction for Acki.

Acki = ReqiAcki + ReqiReqo + AckiReqo

= ReqiReqo + Acki(Reqi + Reqo) (4.1)

Remembering that the logical equation for a 5.R-latch is

Q=S+QR

the logic can be expressed in the form of a single latch with several accompanying gates.

(4.2)

(4.3)

S = ReqiReqo

R = (Reqi + Reqo) = ReqiReqo

Reqo

The same procedure is followed for Reqo and the reduced graph and Karnaugh

map are shown in Figures 4.9 and 4.10 respectively. From the Karnaugh map grouping

shown, the logic for Reqo is found:

Reqo = ReqoAcki + ReqoAcko + AckiAcko

= AckiAcko + Reqo(Acki + Acko)

S = AckiAcko

R = (Acki + Acko) = AckiAcko

77

(4.4)

(4.5)

(4.6)

Acki

Reap*

noj^
KM-/ \Acko+

oioj)

onJ)

C inJ)

Rtqo-

Acto+y/
001J)

\sAch>'

101^

100^)

CoooJ)

Acko]

Figure 4.9: Reduced STG and state graph for signal Reqo.

Reqo Acko Reqo Acko

Acki

0

00 01 11 10

f f 1

x

00 01 11 10

0 0 0 0
/ \

/ M
1

1 0 1 '• 1 .')

Figure 4.10: Karnaugh map construction for Reqo.

78

The completed 4-cycle handshake circuit is shown in Figure 4.11. As labeled in

the figure, the 5-ft-latches are simple transparent latches and not full registers. Careful

Reqi
1 S I S Q -HI

latch

Acki <"

s Q

R

latch

Reqo

•< Acko

Figure 4.11: Drawing of 4-cycle handshake circuit.

inspection of the logic reveals that each section is really an implementation of a Muller c-
element where oneinput is inverted. Therefore, a simplified drawing of the HS4 circuit can

be made as illustrated in Figure 4.12. C-elements are a basic building block of handshake

circuits and they will be used often in schematics presented. The actual design of the

c-element is further discussed in Chapter 5.

Reqo

Acki* < Acko

Figure 4.12: Drawing of 4-cycle handshake circuit using Muller c-elements.

The connections between the HS4 circuit and a self-timed logic block are neces

sary to complete the design ofa pipeline stage. The signal Acki is acknowledging receipt
of data at the input to the stage so it is used to clock the actual data register of the stage.

The signal Reqo tells the next stage that valid data is ready. By connecting the self-timed
logic "compute" signal to Reqo and then using the completion signal form the logic as
the request to the next stage, the communication waits the proper amount of time for the
logic to do its task. A typical self-timed DCVSL pipeline stage containing the HS4 circuit

79

is illustrated in Figure 4.13. The timing sequence of the circuit remains the same as the

Reqo

Acki * *Acko

Figure 4.13: Connection of a DCVSL logic block to the 4-cycle handshake circuit.

STG specification. There is a temporal difference in the signals however because of added

latency of the computational circuitry. This is ideal in that the time taken for each stage

is exactly that of the computation. In a cascade of these circuits, the throughput will be

limited by the slowest stage just as in a synchronous pipeline. There is also the overhead

of the handshaking circuit itself. The overhead for the whole pipeline for handshaking is

that of a single HS4 circuit. By adding symbolically the computation delays to the STG

of a stage, more evaluation can be done in terms of circuit efficiency. The computation

delays are assumed to be greater that the handshake circuit latch delays. In Figure 4.5c

the STG has been modified to show the computation delays as shaded zig-zag lines. This

notation will be used in the next example to make a comparison of circuit efficiencies.

3.1 Other HS4 circuits

In the last subsection, you were asked to accept as optimum the starting specifi

cation on the 4-cycle handshake stage STG, [Acki* -*. Reqo+]. It was suggested however

that the choice of this specification is very important in determining the operation/design

of the circuit. By looking at some alternative specifications this can be revealed. For ex

ample, the novice designer might construct the specification Reqi+ —• Reqo+ as a starting

point. This sounds correct, at least at first. A request at the inputs enables a request

at the output (with computation in between). Using this specification and applying the

tests for persistency yields the STG shown in Figure 4.14a. The specification is shown

80

Figure 4.14: STGs for the specification Reqi+ -• Reqo+.

with a heavier line for the arc. Blindly applying the persistency tests has led to an initial

problem in that arcs have been added that enable Reqi, which is an input to the circuit.

A distinction must be made between the inputs to the circuit and the outputs that the

circuit generates since there is no control over the sequencing of inputs. A modified STG

that also meets the persistency test and does not control circuit inputs is given in Fig

ure 4.14b. The corresponding circuit diagram for the alternate HS4 circuit is shown in

Figure 4.15. For this specification, the data register of the stage would have to be clocked
by Reqi. Examining the STG for the circuit, one can find a simple1 loop through the
graph which contains both computation delays. This means that the delay of the stage
could be as long as the computation times of two stages, i.e. a 50% hardware utilization.

This represents an obvious disadvantage to this specification which does not exist in the
STG shown in Figure 4.5. It makes sense to expect this behavior because the specification

states that a request at the input port initiates computation. The request signal for the
next sample may arrive well before the computation on the current sample is complete.

This implies every other stage must act to store the data while waiting for the next stage

computation to finish. The specification of the last section uses the Acki Signal to initiate

*A simple loop in a signal transition graph does not pass through any transition more than a single
time.

81

Reqi Reqo

Acki * < Acko

Figure 4.15: HS4 Circuit for the STG shown in Figure 4.14. The "*" means that the first

latch is set-dominant, i.e. if S and R are both HIGH , the output is set.

computation, taking full advantage of the data registers of each stage to allow every stage

to participate in concurrent computation. Similarly, the reader is left to try the specifica

tion [Reqi+ fl Acko" —• Reqo+], where fl denotes the and construct. This also leads to a

circuit which is less efficient [64].

3.2 Assumptions on Delay Matching

The circuit of Figure 4.13 makes several assumptions on element delay times.

The required specifications for the data input D-register are shown in Tablelll. Strictly

speaking, a self-timed circuit does not require its elements to meet any specific delay

constraints. However, in reality, making such a circuit would be difficult if not impossible

to design, expensive in terms of complexity and die area, and more important, unnecessary.

For example, making a D-register with a completion signal output and increasing the

complexity of the 4-cycle handshake circuit to monitor when data is valid at the output of

the register would remove the delay specification on the register itself. But this is overkill

as it is usually not difficult to ensure that the register meets the specifications shown

in the table. In fact, the same exercise must be performed when designing synchronous

clocked circuits. Simplifications such as this, in the interests of silicon efficiency and higher

performance, yield working circuits and require design criteria much the same as those

employed in synchronous designs.

Table III

Tseiup

Thold

Tie/ay

D-register Specifications

< TReqi+ —Acki+
^ TAcfco+ —* Reqo-
< TAcki+-*I+

82

4. Higher level description for synthesis

In the examples of the last section, a signal transition graph had to be con

structed for each handshake circuit to be synthesized. Also, the choice of the starting

point or weakest conditions in the graph had a great effect on the circuit realization and

its efficiency during operation. It would be very desirable to automate the synthesis proce

dure and dispense with the need to construct an entire STG for each design. Meng[64, 66]

studied this problem and found that a subset of Dijkstra's[63] guarded commands formed
a good basis for describing handshake STG specifications. A guarded command is a state

ment list prefixed by a Boolean expression. When the Boolean expression becomes true,

the statement list is enabled for execution. Only the subset of the guarded commands

that apply to deterministic conditions are presented since others involve metastable cir

cuits which are not used for DSP applications. The list below describes the deterministic

guarded commands:

Basic Construct: [C —• S]

where C is a pre-condition and 5 is a

list of statements that are to be executed if C is true.

and Construct: [Ci C\ C2 C\ •••DC„ -* 5]

where d is a pre-condition and S is to be executed if

all Ci are true.

or Construct: [Ci UC2 U•••UC„ —5]

where d is a pre-condition and S is to be executed if

any d is true. For the purposes of determinism,

only one of the pre-conditions can be true at one time.

Sequential Construct: [C\ —•> S\',C2 —*• S2]
where C2 can be tested only after Si has been executed.

Parallel Construct: [C\ -* Si || C2 —52]

where two clauses Ci —*• Si and C2 —• S2 can

be processed concurrently.

Alternative Construct: [C\ —+ S1IC2 —•• Sn]
where Si is executed only after d is true, but only one of

the pre-conditions can be true.

83

Repetitive Construct: *[C -+ S\

where the clause [C -• S\ is to be repeatedly executed.

The first design of an HS4 circuit above used the guarded command specification

m[Acki+ -* Reqo+]. Similarly, the second design used the guarded command specification

m[Reqi+ -»> Reqo+] which is shown as the heavier line in the STGs of Figure 4.14. By

using this language description of a handshake specification, the designer can concentrate

on the most important part of the graph and try different conditions rapidly. Meng wrote a

program in the lisp programming language that reads a guarded command specification

and generates automatically the handshake circuit Boolean equations. This is done in

several steps. First, the 4-cycle loops in the STG are added and the STG is recursively

checked for semi-modularity until it is correct. Where conditions are added, they are

made not to affect input signals. After a correct STG is constructed, the logic synthesis

is performed using one of several standard techniques.

The use of the program to generate the circuit in Figure 4.15 is shown below:

The input specification of the guarded command must be given in a LISP format.

;;; Guarded command specification for *[Reqi+ -> Reqo+]
(presyn '((source (Reqi Acki)) (destination (Reqo Acko))
(condition nil) ((Reqi+) nil (Reqo+))))

The source and destination port signals are identified and then the guarded command
specification is given. A basic construct is used, so the conditions are nil. The session of
running the program is shown next.

ASYIC LOGIC SYITHESIS: VERSIOI 0.0 (under Franz Lisp 43.1)
-> (load «f2.1)
[load f2.1]
signal.tranistion_graph
(t ((Reqi- Acki-) (Acki-*- Reqi-) (Acki- Reqi+) (Reqo+ Acko+) (Reqo- Acko-) (Acko+
Reqo-) (Acko- Reqo+) (Reqi+ Acki+ Reqo+)))
semi-graph
(t ((Reqi- Acki-) (Acko+ Reqo-) (Acko- Reqo+) (Reqi+ Acki+ Reqo+) (Reqo+ Acko* A
cki+) (Acki+ Reqi- Reqo-) (Reqo- Acko- Acki-) (Acki- Reqi+ Reqo+)))
t

-> (synthesis semi-graph 'Acki)
Acki*Reqi+Reqo
-> (quick.syn 'Reqo)
~Acki*~Acko*Reqi+~Acki«Reqo+Reqo*~Acko
-> (quick.syn 'Reqi)
"Acki

-> (quick.syn 'Acko)
Reqo
-> (exit)

84

The list signal_transition_graph is the STG before being checked for semi-modularity.

Each list consists of a transition followed by all transitions enabled by it, i.e. the arcs

of the graph originating at that transition. The list semi-graph gives the semi-modular

STG. Then the logic to generate each signal is generated. As a check, the logic for input

signals Reqi and Acko was generated. Reqi is simply Acki as the 4-cycle handshake

defines. Similarly, Acko is just Reqo. (These signals originate from adjacent stages)

The automation procedure substantially reduces the design time for reliable

handshake circuits. It also allows more experimentation to be performed when choos

ing weakest conditions. This is important since in spite of the streamlining of the design

procedure, there can still be some uncertainty in defining the handshake conditions for a

datapath or system.

5. Other Common Handshake Circuits

Using the automatedsynthesis procedure, a libraryofcommon handshake circuits

can be built up for future use. A library of self-timed circuits has the advantage that it is

based on a behavior sequence alone. Therefore, the library can follow scaled technologies

without re-design. In this section, some of the more common handshake circuits are

shown along with their guarded command specifications. The HS4 circuit described above

of course is the most common circuit and it is used between any two pipeline stages.

5.1 Sequential HS circuit

The circuit of Figure 4.12 implements a sample delay pipeline stage when con

nected to a computation block. In some cases, it is necessary to perform two functions

sequentially with a single pipeline delay. A sequential handshake circuit provides this
function. Using the guarded command *[Reqi+ -*• Reqo+;Acko+ -* Acki+] ensures that
thenext stage receives a request and performs its computation before an acknowledgment
signal is sent to the previous stage. Thus, two blocks compute in sequence with a single
pipeline delay. If we think of using DCVSL logic as the computation blocks, a trivial
connection to also provide this sequencing would be to just connect the Reqo of the first

block (DVx) to theinitialization signal I ofthenext block. While this provides thecorrect
sequencing during computation, it also imposes the same sequence during the pre-charge

85

state of the logic. The sequential handshake circuit provides means to concurrently2 pre-
charge the two blocks while maintaining the sequenced operation during computation.

The completed signal transition graph from the guarded command specification and the

synthesized circuit for the sequential handshake are shown in Figure 4.16.

Reqi Uy-n
CR

Add <-

XH S Q

R

"> Reqo

•<Acko

Figure 4.16: Sequential handshake STG and circuit from the specification *[Reqi+ —•

Reqo+; Acko+ —• Acki+].

5.2 2-Source, 1-destination HS circuit

When multiple inputs to a computational block originate from several sources,

handshaking must be completed with each source to make sure all the inputs are valid. The

guarded command specification for a block with two input sources is *[Ackif DAcki} —•
Reqo+], The synthesis procedure yields the circuit of Figure 4.17 for this function.

5.3 1-Source, 2-destinations HS circuit

Similarly, when a single computational block must feed outputs to several desti

nation blocks the guarded command specification used is m[Acki+ —• Reqo}, Reqo}]. The

circuit for this handshaking operation is shown in Figure 4.18.

Actually, the delay of the handshake circuit itself separates the pre-charge start times of the two blocks

86

Reqil Reqo

Ackil * < Acko

Reqil

Acki2 «

Figure 4.17: Handshake circuit for block with two input sources. The guarded command

is m[Acki} DAcki} —• Reqo+],

Reqi Reqol

Acki < < Ackol

Reqol

< Ackol

Figure 4.18: Handshake circuit for block with two output destinations. The guarded

command is *[Acki+ -* Reqo}, Reqo}].

87

5.4 2-in Multiplexer HS circuit

Multiplexers often re-configure a datapath architecture for different types ofpro

cessor instructions. When a multiplexer is employed, its control signal determines both

the datapath architecture and the required handshaking architecture. When data from

an input of the MUX passes to the output, then handshaking must be completed with the

source feeding that input. A simple guarded command describing this (continuing to use

the 4-cycle protocol) is *[(Acki} C\T)U(Acki} C\ f) -+ Reqo+]. The LISP format input to

the synthesis for the guarded command is

;;; Guarded Command for 2 input MUX
;;; with 10 controller handshaking.
•»i

(presyn '((source (Reqil Ackil) (Reqi2 Acki2)) (destination (Reqo Acko))
(condition T) ((Ackil*) (T*> (Reqo*)) ((Acki2+) (T-) (Reqo+))))

The or construct can be synthesized with semi-modular models with the con

straint that only one side of the OR is true at a time. This will always be true in this case

since the control signal signal T and its complement f occupy the two sides of the OR .

Since the control signal determines the architecture of the handshake circuit itself, there

is a STG for each state of T.
The output of the synthesis program shows the two STGs for the MUX handshake

circuit, denoted by the T+ and the T~ sections of the list semi-graph.

ASYIC LOGIC SYITHESIS: VERSIOI 0.0 (under Franz Lisp 43.1)
-> (load >mux_gc2)
[load nux_gc2.1]
signal_tranistion_graph
((T*)

((Reqil* Ackil+) (Reqil- Ackil-) (Ackil- Reqil+) (Reqi2* Acki2+)
(Reqi2- Acki2-) (Acki2+ Reqi2-) (Acki2- Reqi2+) (Reqo+ Acko*)
(Reqo- Acko-) (Acko-*- Reqo-) (Acko- Reqo*) (Ackil+ Reqil- Reqo*))

(T-)

((Reqil* Ackil-*-) (Reqil- Ackil-) (Ackil* Reqil-) (Ackil- Reqil-*-)
(Reqi2+ Acki2+) (Reqi2- Acki2-) (Acki2- Reqi2+) (Reqo+ Acko-*-)
(Reqo- Acko-) (Acko-*- Reqo-) (Acko- Reqo-*-) (Acki2+ Reqi2- Reqo-*-))

semi-graph
((T+)

((Reqil-*- Ackil-*-) (Reqil- Ackil-) (Reqi2+ Acki2+) (Reqi2- Acki2-)
(Acki2+ Reqi2-) (Acki2- Reqi2-*-) (Acko+ Reqo-) (Acko- Reqo+)
(Ackil-*- Reqil- Reqo+) (Reqo+ Acko+ Ackil-) (Ackil- Reqil-*- Reqo-)
(Reqo- Acko- Ackil-*-))

(T-)

((Reqil-*- Ackil*) (Reqil- Ackil-) (Ackil* Reqil-) (Ackil- Reqil*)
(Reqi2+ Acki2+) (Reqi2- Acki2-) (Acko* Reqo-) (Acko- Reqo*)
(Acki2* Reqi2- Reqo*) (Reqo* Acko* Acki2-) (Acki2- Reqi2+ Reqo-)
(Reqo- Acko- Acki2+))

)

t

-> (synthesis semi-graph 'Reqo)
Ackil*"Acko*T+Reqo*Ackil*T+-Acko*Acki2*_T+Reqo*Acki2*"T+Reqo*"Acko
-> (quick.syn 'Ackil)
"Reqo*Ackil»T+"Reqo*Reqil+Ackil*Reqil+Reqil*~T

88

-> (quick.syn >Acki2)
~Reqo*Acki2*~T*Reqi2*T+~Reqo*Reqi2+Acki2*Reqi2
-> (quick.syn 'Acko)
Reqo
-> (quick.syn 'Reqil)
"Ackil

-> (quick.syn 'Reqi2)
~Acki2

-> (exit)

The circuit diagram of the MUX handshake is given in Figure 4.19 along with

a simplified c-element equivalent. The circuit and Boolean equations may seem a bit

confusing at first, but much of the logic implements MUXes in the handshake circuit itself

since the control signal T re-configures the circuit between two forms. This is shown

more clearly in the equivalent circuit. The rightmost MUX chooses which input port to

communicate with. The two MUXes on the left, connected to Reqi\ and Reqi2 essentially

just make their respective c-elements transparent when their input is not in use. Note that

a c-element is a latching device. To make it transparent to aninput signal, then that input

signal must be connected to all inputs of the c-element. It is equivalent to connecting all
inputs of an AND gate to one input signal in order to make that gate transparent. In the
STG for the case when T is high , input port 1 is activated and the graph for input port

2 is a simple loop Reqi} -• Acki} -* Reqi2 -+ Acki^. This is why thesynthesized circuit
will pass Reqi2 directly to Acki2. It could be undesirable in a real circuit to have the
deselected input be transparent to requests because the handshake circuit acknowledges
data that is not being used. It is really a result of not specifying any conditions on the
unused port and ending up with a simple 4-cycle loop. There is not a convenient way for
expressing a condition that causes the unused input port to not acknowledge any requests
in the guarded command, however it is a trivial circuit change. By moving the left-hand
MUX inputs connected to the Reqi signals to Ground (logical 0), the deselected port will
not receive an acknowledge. The c-element on the deselected input port stays in the LOW

state if one input is held LOW .

Since the control signal T re-configures the circuit, it is important to have in

a settled state before a new request. Depending on the system design, this may require

handshaking to the controller which generates T. An appropriate guarded command
specification is *[(Acki} fl T n Acki%) U(Acki} n f n Acki},) - Reqo+]. The circuit
complexity is increased by another c-element and several gates[64].

89

Reqil >-"

Ackil «-

Reqil >•

Acki2 <r

Reqil >-

D^U

X

U

X

equivalent circuit

1 .

t>&;

<1

<

Figure 4.19: Handshake circuit for a 2-input MUX stage.

90

> Reqo

< Acko

•> /?«?*

•<Acko

5.5 2-out Demultiplexer HS circuit

A 2-output demultiplexer can be synthesized with the specification m[Acki+C\T —*•

Reqo} || Acki+ 0 T —• Reqo}]. The handshake circuit is shown in Figure 4.20. Similar
to the MUX circuit, the deselected port (now an output port) becomes transparent to

handshake signals. Again, by grounding the input to each right-hand MUX that is shown

connected to Ackoni the deselected output port will not pass handshake signals.

6. Summary

The synthesis of reliable handshaking circuits is a vital part of any self-timed

system design. The interconnection of handshake circuits defines the system timing. When

using a level sensitive logic family such as DCVSL to implement computation blocks

which provide a completion signal, the appropriate handshaking protocol to use is the

4-cycle protocol. In order to design circuits that meet both the sequencing and 4-cycle

specifications of a stage, signal transition graphs can be used to describe the desired

behavior. Performing state assignment on a STG allows for the generation of the Boolean

equations that define the handshaking logic in traditional ways. While STGs are more

convenient than timing diagrams for describing the sequential behavior of a stage, they

still can be confusing and error prone. By using a subset ofDijkstra's guarded commands,

the most significant portion of the handshaking specification can be expressed in a simple

and high level form. Automatic means for generating the handshake circuit directly from
a high level description language have been demonstrated. Using the synthesis program, a

library ofcommon handshake circuits can besynthesized and used in many designs. Some

of the most common handshake circuits required were presented in this chapter.

91

Reqi >-

Acki +

Reqi>-

Acki «-

Demux HS circuit

^XS Q

:=CHii

equivalent circuit

1 .

1CH

Ji> ^ti$

1
« Rtqol

Rtqo2

M

U

*lx

<l

<]

S Q

R

Figure 4.20: Handshake circuit for a 2-output DEMUX stage.

92

•^ Reqol

-+ Ackol

-> Reqol

•+Ackol

•> Reqol

•< Ackol

-> Ae4o2

-< Ackol

Chapter 5

C-elements for Handshaking

Circuit Design

As seen in Chapter 4, a common component found in most handshake circuits is

the Muller c-element. Because the performance of a handshake circuit critically depends on

the c-element design, a detailed study was done on the design of such elements. A circuit

design for the self-timed DSP was chosen based on the study. This chapter presents the

design of several types of c-elements and gives a performance comparison between them.

In the last section, the placement of buffers in handshaking circuits, often a necessity at

the outputs of c-element driving large macrocells, is discussed.

1. C-element design

The Muller c-element is a basic building block of many useful handshake circuits.

In Chapter 4, when studying the signal transition graphs for describing a self-timed stage,

the assumption was made that the time for arcs representing computation was much longer

than the time for arcs representing handshake circuit state changes. This is normally the

case, however the time required for the handshake circuits to operate is finite and it

reduces the overall efficiency of the system. Therefore, while a self-timed system will

compensate for varying delays of computation blocks, the fixed overhead introduced by

the handshaking circuitry should be minimized if possible. This means applying effort to

the design of the c-element since it is so often required. In this section, the design of a

fast c-element is discussed.

93

Figure 4.12 showed the basic 4-cycle protocol handshake circuit which requires

two c-elements. One logic implementation for the circuit was shown in Figure 4.11. The

most straightforward implementation of the c-element is to use cross-coupled NOR gates

for the latch as illustrated in Figure 5.1. The signal INIT0 allows the latch to be reset for

initialization. In real applications, it is useful to be able to reset or set the latch for the

purpose of initializing the handshaking network to any particular state. However, there

are some ways around this which will be discussed in a later section. A static CMOS

;0-

^C^

Figure 5.1: Cross-coupled NOR c-element implementation.

design1 for the c-element latch is shown in Figure 5.2. It combines the input AND gates

with the nor gates making up the bistableelement to make a single complex CMOS gate.

This design is reliable and easy to design, however it suffers from a lower speed than can

be achieved with other circuit techniques. Also, the device count is relatively high. In the

c-element of Figure 5.1, the time to Set the latch is effectively two gate delays because

the Q output must change before the Q output can change state. The dual cross-coupled

circuit avoids the extra delay for Setting the latch by using NAND gates as shown in

Figure 5.3. Adding initialization inputs to force the latch into a certain state adds several

more devices. Because of the complexity and ensuing slower speed of the basic CMOS

c-element designs in Figures 5.1 and 5.3, other designs were investigated.

A Muller c-element can be made by using a majority function gate, typically

used for the carry portion of a full adder[19]. The majority function is defined as:

f(A,B,C) = AB + BC + AC

= AB + C(A + B) (5.1)

xAll schematics give device sizes in Aas defined in the MAGIClayout editor. For a 2ft process, A= 1/t.

94

(ciatchljnag)

A^Pll/2 B"|b

H—I MTO-j 8/2

«1 1

—r>o—a b—r>>—•
^4*

Figure 5.2: CMOS circuit for cross-coupled NOR c-element implementation.

A .

JD-

B

Figure 5.3: Cross-coupled nand c-element implementation.

95

If the C input is taken from the output of the gate as shown in Figure 5.4, the equation

becomes the familiar equation for a latch:

Q = S + QR

Q = AB + Q(A+B) (5.2)

where the Set function is AB and the Reset function is A + B = AB, precisely the logic

equation for a c-element. A single complex CMOS gate version of the majority function

Arf>
Q A

— Q__ 1 cY
Q ~~ F Q

Figure 5.4: Majority function gate implementation of a c-element.

c-element is given in Figure 5.5. It also has the problem of requiring an extra gate to

generate the True version of the output which adds to the delay.

A very simple dynamic version[67] of a Muller c-element can be made with the

same number of devices as a clocked inverter as shown in Figure 5.6. A version of the

dynamic c-element with a clear signal input for initialization is shown in Figure 5.7. It also

requires an extra inverter to generate Q from Q, however the simplicity of the first gate

makes the speed high. The downside to using a dynamic c-element would be applications

in which the user exploits the self-timed behavior of the system to compensate for delays

that may not be defined ahead of time. An example is an I/O function. The system

could easily be designed to wait for an sample strobe signal before proceeding with the

execution of the signal processing program. If the interrupt was delayed by seconds, the

dynamic c-element would not be adequate. However, given the number of applications

where dynamic circuits are acceptable, the circuit of Figure 5.6 could prove very useful. A

variation of the dynamic gate shown in Figure 5.7 uses feedback to latch the initialization

state. Versions that initialize to a Reset Q output and a Set Q output are shown in

Figures 5.8 and 5.9 respectively.

96

<\AH 6/2

HBH 6/2

BHP12/2 A-j b 12/2 B-^Pl2/2
—¥ ' INTT

3 12/2

6/2

A-N 6/2 BH| 6/2

8/2

—>>-•

, 8/2

1—4/2

(clatchS.mag)

Figure 5.5: CMOS design for majority function c-element.

Qbar

A>-

B>-

>-« = i=0 •c

Figure 5.6: CMOS design for dynamic c-element.

97

Qbar

Figure 5.7: CMOS design for dynamic c-element (with clear).

A*

B>-

18/2

318/2

114/2

14/2

ZL

»2\

INITO

I l>-^Qbar
^14/2

G
14/2

(clatch4a.mag)

Figure 5.8: CMOS design for dynamic c-element with different initialization scheme. Re

sets on INITO.

98

INTTl

s.18/2

^>°—*Qbar

14/2

(clatch4b.mag)

Q

Figure 5.9: CMOS design for dynamic c-element with different initialization scheme. Sets

on INIT1.

A pseudo-NMOS or ratioed design for a bistable c-element[19] is given in Fig

ure 5.10. It also has relatively few devices, so the area is smaller or the device widths can

be increased to improve speed without exceeding the area of a more complicated design

such as in Figure 5.2. The pmos devices of the ratioed c-element act as current sources

which have to be overcome by the nmos devices in the circuit for the latch to change

state. One disadvantage of the pseudo-NMOS design is that the output logic levels are

not as well defined as a true CMOS design. The current sources make the logic low

level some voltage greater than 0V, degrading the noise margin. It was observed that the

current source connection on the Q output device was not really necessary. Figure 5.11

shows a modified ratioed c-element design where the Q output reaches full CMOS levels.

The remaining grounded gate pmos device must remain to provide means for pulling the

Q node high when A and B go LOW .

Performance Comparison

The choice of a c-element for use in the DSP was somewhat evolutionary, as the

naming convention of the clatches in the preceding figures might imply. The study of all

of the alternative designs was not done at the beginning of the research because it was

not clear at the time what the importance of the speed on overall performance would

be. Rather, clatch2 in Figure 5.2 was designed early on and used in several of the test

chips for datapath macrocells. When the search for alternative designs was undertaken, a

99

vb_ £~C44/2

nd
Qbar

A —i \ w 10/2 M-

5 —I Q« A—I \jn 9/2JI—

B—£?—B4/2

6/2 6/2 | j-iNrr

B (clatch6b.mag)

Figure 5.10: CMOS design for ratioed c-element (with clear).

vhL

ndA—\\ W/2 21/2 I

£

p 14/2

15/2 15/2 h

ZL _L7

—J Q»/2 a—I [20/2 20/2J J— b (clatch9d.mag)

iNrr

Figure 5.11: CMOS design for ratioed c-element with a full CMOS Q output.

100

decision was made to fit all new designs into an area that was the same or smaller than

that of clatch2. In this way, new designs could be substituted directly for an increase

in performance without extensive layout changes in existing circuits. Since some of the

alternative designs contain less devices, the devices were grown to enhance speed while

using available area.

The objectives of a c-element design as utilized in the handshake circuits pre

sented thus far were also part of the study of new circuit designs. In many latch designs,

the Set or Reset times of the Q and Q outputs may be different, usually because one of

the two outputs is derived from the other (often via an inverter). This can be exploited to

a certain extent. In the basic 4-cycle handshake circuit of Figure 4.12, one input to each

c-element must be inverted. The inverted input usually comes from another c-element

output. In the design clatchZd shown in Figure 5.7, the Q output is derived by inverting

the Q output. If this is fed back to another c-element inverted input, then another inverter

would be necessary. The double inversion reduces the efficiency of the handshake circuit

and can be removed by re-drawing the circuit diagram as shown in Figure 5.12. In the

Reqi Reqo

Acki* KAcko

Figure 5.12: Diagram of 4-cycle handshake circuit that exploits both the True and Com

plement outputs of the c-elements.

latter designs of c-elements presented above, the Q output is faster. Because Q and Q of

the c-elements are not in perfect sync, there is a potential for a timing error in the hand

shaking circuit when using the two outputs. The potential however is nil in real circuits.

The handshake signals Acki and Ackooriginating from the Q output of the c-elements are

fed back to other c-elements. The difference in time between Q and Q must therefore be

101

less than the Set or Reset time of the preceding c-element Q output to prevent an error.

As shown in the c-element performance table below, that particular circuit constraint is

quite easy to meet.

Table IV shows the performance for the different c-element designs discussed thus

far. Some notes about this table: All of the c-elements have the ability to be cleared or

reset for initialization. The times were taken from simulations using the spice simulator

The MAGIC extractor (style "ext2spice=1.0") and the program EXT2SPICE were used to

get device sizes and parasitic capacitances from the actual layouts. A capacitive load of
O.ObpF was added to both the Q and Q outputs in the spice input file and rise and fall

times of Insec were used in the input pulse generators. Spice model cards were obtained

from measured parameters of an actual fabrication run. The MOSIS 2/u, Nwell VTI2 run

parameters (run M8CC) were used.

The overhead for the handshaking circuit can be analyzed by adding the appro

priate delays to the STG of Figure 4.5c. Where there is a split in the arcs of the graph,

the maximum time of any path to reach a point further in the graph must be used since

it will dominate. Lets look at the time between rising edges of the I signal in a 4-cycle

pipeline stage assuming it drives a DCVSL logic block. As might be expected considering

the protocol, the total time is the sum of the times for a Req and Ack signal pair to cycle

high andlow. However, since the DCVSL block is in series with the Reqo signal, the times

associated with it must also be added:

Tcyde = rRe90+ + TAcko+ -r T\- +TReqo- +TAcko- -fT/+ (5.3)

Translating these times to c-element delay times gives the following equation:

Tcyde —Tcomjmte + Tq+ +Tq- + Tpre-Charge + Tq- + Tq+ (5.4)

where Q+ and Q~ are used to denote the Set and Reset times of a c-element, and Tcompute,

Tpre-charge represent the computation and pre-charge delays of the DCVSL block respec

tively. The overhead in time per cycle of operation caused by the c-elements in a 4-cycle

handshake circuit is therefore

TOVerhead = 2Tq+ + 2Tq- (5.5)

JVTI - VLSI Technology, Inc. is one of the MOSIS prototyping facility's vendors for 2fi fab runs.

102

Table IV C-element Performance Comparison

Version Area TsET Treset ^Tota/ Notes:

A2 nsec nsec nsec (SPICE), 0.05pf load

clatch2 5300 Q+: 3.0 Q-: 1.5 8.5 B-input gets inverted in

Q~: 1.4 g+: 2.6 this design. (Cross-coupled NORs)

clatch5 5200 Q+: 2.5 Q-: 2.1 6.9 Time doesn't include inverter for

Q". 1.2 Q+: 1.1 B-input. (Majority function gate)

clatch3c 3600 g+: 2.0

Q~: 1.3

Q-: 1.6

Q+: 1.1

6.0 (Dynamic gate)

clatch3d 4300 Q+: 1.3 Q~: 1.4 4.5 (Dynamic gate)

Q-: 0.8 g+: 1.0 Larger devices

clatch4a 5200 Q+: 1.4 g~: 1.3 6.4 (Feedback Dynamic gate)

Q-: 1.9 g+: 1.8 Larger devices

clatch6b 4300 Q+: 1.5

g~: 0.8

g~: 2.1

<5+: 1.2

5.6 (Ratioed logic)

clatch8 4600 Q+: 2.2

Q-: 0.8

Q-: 2.0

g+: 1.3

6.5 (Ratioed - FuU CMOS Q Output)

clatch9d 4600 Q+: 1.2 g~: 1.6 4.6 (Ratioed - Full CMOS Q Output)

| g-: 0.6 g+: 1.2 Larger devices

103

When the complementary output of the clatch is utilized as in Figure 5.12, Equation 5.5

must be changed to

Toverhead = Tq+Tq- +Tq- +Tq+ (5.6)

The time Txotal given in Table IV aboveis just the sum of the four delays shown for each

clatch, and it equals Toverhead as defined in Equation 5.6.

Examining Table IV, it can be seen that as the clatch designs were refined from

that of clatch2, the delay times decreased significantly while the area was not increased.

In the more simple designs, larger devices could be used in the given area to gain a

speedup. C-elements clatchZd and clatch9d were the fastest. Because of the way I/O

was implemented on the DSP chips, unknown delay times could be encountered in the

program execution depending on the outside world connections. Therefore, the static

design clatch9d shown in Figure 5.11 was chosen. Two, three, and four input versions of

the design were used throughout.

In the early stages of the research, it was assumed that the Set time of the c-

elements was more important than the Reset time in determining overall performance.

The logic behind this assumption was as follows: Consider a faster stage precedinga slower

stage in a self-timed pipeline. The fast stage finishes and raises the Reqi of the slow stage.

When the slow stage finally finishes, it allows Acki to rise, accepting a new sample. The

rising edge of Acki "does something", by allowing new data into the input register of the

stage, while the falling edge does not affect the state of the register. Therefore, it was

assumed that the Set time was more important. The design and performance of clatch9d

reflects this. However, more careful analysis revealed that Equation 5.5 and Equation 5.6

are correct. The overall cycle time of the slow stage dominates the throughput of the

pipeline and Equation 5.4 gives that time. Thus, in terms of sheer speed performance,

the c-element design clatch3d should be chosen if the overall system design can tolerate

dynamic latches in the handshake circuitry.

2. Placement of Buffers in HS circuits

The output of each c-element in a handshake circuit is usually another handshake

signal. The handshake signals really act as the local "clocks" of a stage and therefore,

besides driving adjacent handshake circuits, they must be interfaced to the computational

104

blocks. In Figure 5.12, Acki is used to clock the input register and the output of the

second c-element (I signal) drives the pre-charge devices of a DCVSL block. For an n-bit

wide datapath, the register and DCVSL blocks are also n bits wide and they present a

significant capacitive load to the handshake signals from which they are driven.

Buffers large enough to handle the capacitive load in the circuits must be added.

The location of the buffers also can greatly affect the overall cycle time and performance

of the system. A straightforward choice for the location of the buffers is directly in

series with the c-element outputs as shown in Figure 5.13. The delay of the buffers just

gets lumped in with the c-element delay and the correct operation in terms of timing is

guaranteed because the delay of the c-elements does not affect the sequence of operations

imposed on the handshake circuit by its specification. The efforts to design a fast c-

element presented in the last section are somewhat wasted though, since the delay of the

large buffer typically exceeds the delay of the clatch itself. Factoring in the buffer delays

D Q

A

DCVSL

I DV

Acki'* ' ' tAcko

-{>- = buffer

Figure 5.13: 4-cycle handshake circuit with buffers added to c-element outputs,

requires that Equation 5.6 be changed to

Toverhead = Tq+Tq- +Tq- +Tq+ + 4T&u//cr (5.7)

assuming that all the buffer delays are equal.

In the case of the rightmost c-element, it makes sense to lump the buffer delay

in with the delay of the DCVSL stage and not the c-element since the DCVSL represents

an added delay in the handshake signal itself. In the case of the leftmost c-element which

generates Acki, an assumption must be made to move the buffer to a position which

105

enhances the efficiency. Figure 5.14 shows the new buffering scheme. In this case, the

Reqi Reqo

Acki* <Acko

Figure 5.14: 4-cycle handshake circuit with buffers added in a position which enhances

the efficiency.

overhead time is

Toverhead = Tq+Tq- +Tq- + Tq+ + 2Touffer (5.8)

however, the price for the reduced overhead is more sensitivity to the circuit design. By

placing the first buffers in a location which in effect can alter the sequence of signal

transitions, more care must be taken in controlling delay times. Two possible problems

exist. First, when the Acki+ transition occurs, the previous stage is allowed to enter

the pre-charge state. The input register however must latch the new data sample before

it disappears during pre-charge. Assuming the previous stage contains a buffer on its I

signal, the delay of the Acki buffer must be TAckibuf < Tq- + Tjbuf + Tpre-charge' The pre-

charge time allows a fair amount of slack in the mismatch of the Acki and I buffer delays.

The second constraint is more demanding. The other effect of the Acki transition is to

enable I to rise and begin the computation for this stage. The outputs of the data register

must be settled before this so that the DCVSL logic has valid inputs. With no buffering,

this is still an important constraint and it requires that Tregi3ter < Tq+ , where Tq+ is the

delay of the second c-element. Adding buffers to both the Acki and I signals requires the

delays of the buffers to match closely so that TAckibuf + Tregi3ter < Tq+ + T/&tt/. Typically,

the loading on the I signal is greater than that on Acki because of the larger (and greater

number of) devices necessary in the DCVSL to do the pre-charging making the constraint

106

manageable. During the design of the DSP chips, no problems were encountered when

using the altered buffering scheme. With or without the buffers, the constraint on the

settling of the register outputs could be removed simply by employing a register that

generates a completion signal as shown in Figure 5.15. While a DCVSL register design is

not known, (the pre-charging destroys the necessary memory action required in a register)

a completion signal can be generated by using an extra "dummy" registeror by comparing

the input and output signals of the register when the clock goes high. For the DSP design

however, this was not done and the matching was exploited.

Reqo

Acki « < Acko

Figure 5.15: 4-cycle handshake circuit interfaced to a DCVSL stage and register which

generates a completion signal.

The discussion above points out several difficulties in applying the theory for

handshake circuit synthesis to actual circuit implementations. For one, it may be unclear

at times how the handshake signals map to the actual circuit signals. The use of Acki to

clock the input register is not directed by anything in the handshaking circuit specification

although it makes sense. Doing so however, adds the constraint that the output of the

register settles before the DCVSL begins computation. Second, while the need for buffering

signals can be addressed by basically making higher output drive c-elements, the added

delay can reduce efficiency. The advantage of the self-timed approach is to make the

circuit adapt (slow down) to the added buffers. The inclination of the hardware designer

however, is to move the buffers so that they don't add any unnecessary overhead. This

requires more careful analysis of circuit delays which can increase the risk of error-free

operation.

107

Chapter 6

Self-Timed Macrocell Design

To construct a self-timed digital signal processor, a collection of self-timed macro-

cells that make up the datapath must be interconnected via the use of handshaking. In

this chapter, designs for the datapath computational elements used in the DSP chip are

described. Each cell has a generic interface to surrounding circuitry; they all look like a

simple block that accepts a compute signal input and supplies a DV completion signal

output. This fits the self-timed system paradigm as presented in previous chapters. Two

of the datapath cells are a cascade of DCVSL gates. The third more complicated cell is

actually a small self-timed sub-system in itself. The cell, an iterative multiplier, demon

strates the hierarchical approach that can be taken even in the design of macrocells. The

adaption of standard RAM and ROM designs to allow self-timed operation is discussed

last. In the figures below, italicized cell names in the form name.mag denote the magic

layout editor cell names for the cell in the database of the chips described. Device sizes

are given in A. Further design details and schematics for cells not shown in this chapter

can be found in Appendix C.

1. Barrel Shifter

In a DSP datapath, the function of shifting is commonly required. In a control

operation, a shifter allows easy masking of certain bits in a word for identification of func

tions. In a signal processing operation, the shifter provides fast multiplications/divisions

by powersof two. Often, when the time for a full multiplication is undesirable, bit-parallel

shift and adds are performed instead. Using canonical signed digits representation of co-

109

efficients allows efficient and fast multiplications in a shorter time[72]. The barrel shifter

allows shifting in any amount between 0 and n places. The design described below is a

0-15 place left shifter. It accepts a 16-bit word input (typically in q.15 format) and

supplies a 32-bit word output (typically in g.30 format).

A block diagram of the shifter is shown in Figure 6.1. It is a logarithmic style

shifter which is essentially the cascade of four simple shifters. The first one shifts 0,1

place, the second 0,2 places, the third 0,4 places, and the fourth 0,8 places. Each of the

simple shifters is implemented with a 2:1 multiplexer (MUX) and a routing channel. The

multiplexer inputs are therefore biti and &#t*_n of the preceding row, where n = 1,2,4,8

depending on which of the four rows it resides. Cascading the four shifters allows shifting

by any amount between 0 and 24 —1 places. A 4-bit binary coded control word selects the

shift amount. Due to the logarithmic style of this type of shifter, no decoding is necessary

on the control word input. Each bit of the control word just becomes the MUX control

signal of one row. A fifth control input allows selectable sign-extension on the output

data. When asserted, the most significant bit (MSB) or sign bit of the input word is fed

to bits 31 to 31 —(15 - n) of the output, where n is the shift amount. The sign-extension

(SE) control allows the user to select either logical shifts (no sign-extension) or normal

arithmetic shifts. When a word is shifted left, 0 bits fill the least significant bits (LSBs).

The DCVSL circuit for the 2:1 MUX is shown in Figure 6.2. In the implementa

tion of this macrocell, several simplifications were made for efficiency. For one, since each

of the four rows in the barrel shifter consist of a DCVSL gate and routing only, they are

directly connected as would be done with domino logic gates. Therefore, the data signal

ripples through each row, consecutively firing the MUX gates. A 16-bit D-register is incor

porated into the macrocell to hold data during pre-charge. As Figure 6.2 shows, the NMOS

device at the bottom of the NMOS tree in the 2:1 MUX was eliminated (see Figure 3.2 for

the general structure). This could be accomplished by adding two gates to the control

input for each row of MUXes. Since the MUX circuit cannot have valid complimentary

outputs unless either c or cbar is HIGH , the extra NMOS device at the bottom of the tree

can be eliminated by feeding the MUXes with c.I and cbar.I. In this way, the tree can

only be discharged during the evaluate stage as desired. The modification increased the

speed of the shifter by eliminating an extra series device in each gate (128 in all) at the

expense of the two and gates per row. The circuit to buffer each control input is shown in

Figure 6.3 and it shows the extra gates used (actually nor gates) to eliminate the bottom

110

SELFTIMED SHIFTER BLOCK DIAGRAM

DATA

Data InputRegister! \^

DCVSL MUX

0:8

Dreg Dreg Dreg Dreg

2:1 2:1 2:1 2:1

routing

2:1 2:1 2:1 2:1

routing

2:1 2:1 2:1 2:1

routing

2:1 2:1 2:1 2:1

DV

W

sign extension

2:1 2:1

2:1 2:1

2:1 2:1

2:1 2:1

DV

cntl

buff

cntl

buff

end

buff

buff

cntl

buff

Figure 6.1: Block diagram of the self-timed barrel shifter.

Ill

SE

CO

CI

CONTROL

CI

Ibsh

C3

—>DVbsh

J
I-

^

cbar^

5/2
—at

7/2

2inmux2.mag

out

r- inbar shifijnbar -j

j
D 13/2

H

5/2
—a

7/2

12/2

outbar

8/2

- shiftJn

Figure 6.2: DCVSL 2-input MUX used in barrel shifter.

112

NMOS device of the 2-input MUX. The D flip-flop used in the data input register is shown

in Figure 6.4.

cbarm

(cnd_bufferjnag)

KH ^ 15/2

(cntlJn2.mag)

(gaud_bufferjnag)

10/2 ^ 10/210/2 , v"t,^[lur ^1

<7— ^^T^AJi—I 8/2 ^ m

Figure 6.3: Control Input buffer for barrel shifter.

CK
J

(dff2.bsh.mag)

CKbar
3 10/2 i

TT

J
r D n/2

*G

t
3 11/2

>6/2
1

O

4/2
1

D>
6/2

!_! 4/2
8/2

* <» " >Qbar

CKbar CK
8/2 8/2

1

Cntl

Figure 6.4: D flip-flop used in the input register of the barrel shifter.

Finally, the symmetry of the shifter structure allowed for placing completion

signal circuitry (an OR gate tied to out and outbar of the last shifter) only on several key

gates of the last row of DCVSL MUXes. This technique depends on the matching of delays

through identical logic gates in the shifter and it deserves some extra comments. In a n—bit

wide macrocell that strictly follows the self-timed paradigm, each bit provides a completion

signal. To generate the completion signal for the entire macrocell, the n completion signals

113

from the bits should be applied to an n-input c-element. The added hardware required

and the associated delay and overhead of this type of completion circuit is significant and

surely undesirable. There are several reasons however that make it unnecessary in most

applications. Firstly, while data computation in a combinatorial network may take place

in a collection of series and parallel connected gates, the pre-charge operation takes place

in all of the gates simultaneously. Therefore, the pre-charge time of a large DCVSL block

is constant for all bits to within the local delay time of the pre-charge signal. Since the

individual bit DV signals may rise at different times but will fall during pre-charge at the

same time, an n-input AND gate can replace the n-input c-element to generate the final

completion signal. Secondly, some macrocells are very regular in their structure and the

completion time of each bit is not data-dependent. For such a cell, the completion signal

for a single bit is valid for the entire cell to within the delay matching of the circuitry

for each bit. As with any integrated circuit, the local matching of circuit parameters is

excellent and circuitry depending on the matching is low-risk. In the barrel shifter, the

delay time is data-independent although the worst case delay for a particular bit depends

on the amount of the shifting. For the shifter described above only several out of the 32

bits wereused to generate a DV signal, exploiting the matching characteristics. The block

diagram in Figure 6.1 illustrates this by having only two UDV" cells in the last row. The

signal outputs from those gates are and 'd together to form the final completion signal in

the control slice on the right.

2. ALU

A 32-bit ALU was designed for the datapath so that full precision could be

maintained in the accumulator values. The ALU design however, is bit-sliced so that any

multiple of four bits can be constructed. The functions supported by the ALU include

addition, subtraction, AND , OR , XOR , not logic functions as well as the ability to zero

either input for clearing/loading the accumulator. Figure 6.5 shows a block diagram of

the ALU and a single bit-slice. The accumulator is built into the ALU although it is

clocked by a separate input signal. By incorporating the accumulator into the ALU, more

efficient routing is achieved over having it reside elsewhere as a separate block. For the

same reason, the A-input register is also built into the ALU (the B-input register is the

accumulator).

114

Cout£ZBNZ<-

ALU BLOCK DIAGRAM

-f 32

A-Input

32

ACC

ALUout

CO (zeraA)

CI (zeroB)

C0-C3JNV

lain

>DValu

Figure 6.5: Block diagram of the self-timed ALU.

115

The logical functions and the addition are performed by separate DCVSL gates,

the outputs of which are fed to a 2:1 MUX. Depending on the desired ALU function,

one of the two gate outputs is passed to the accumulator. Since the completion time for

addition is dependent on the length of the carry propagation, all bits are examined to

form the ALU data valid completion signal. In this way, the completion time of the ALU

will be data dependent in addition or subtraction modes while it is constant during the

performance of logical functions. The ALU also provides a Carry output and a "Branch

on Zero" output that can be used to control branching in a signal processor.

The full adder was designed as two DCVSL gates, one for sum and the other for

carry. The ntree program described in Chapter 3 was used. Below, the input and output

files for each gate are shown:

Input file for SUM

FULL ADDER SUM stage (3-way xor circuit)
t

(sum (xor 12 3))

t

Output file for SUM

IHOS Tree for (sun)

Logic Expression: (xor 12 3)

This file generated by ntree on Sun Jul 5 22:29:06 1987

I0DE ASSIGIHEITS:

GID aO Vdd » 100

Pbulk • 102 Ibulk » 101

(Complement of)Input lumber 1 is node (11) 1
(Complement of)Input lumber 2 is node (12) 2
(Complement of)Input lumber 3 is node (13) 3
F.OUT a 21 F.BAR.0UT » 20

D 6 s B

ml 24 12 0 101 IHOS

m2 25 13 24 101 IHOS

m3 20 11 25 101 IHOS

m4 21 1 25 101 IHOS

raS 28 3 24 101 IHOS

m6 21 11 28 101 IHOS

m7 20 1 28 101 IHOS

tn8 29 2 0 101 IHOS

m9 28 13 29 101 IHOS

mlO 25 3 29 101 IHOS

end

116

Input file for CARRY

t

t FULL ADDER carry stage (majority gate)
t

(carry.out 100 (or (and 1 2) (and 1 3) (and 2 3)))
t

Output file for CARRY

IHOS Tree for (carry.out 100)

Logic Expression: (or (and 1 2) (and 1 3) (and 2 3))

This file generated by ntree on Tue Har 10 11:24:16 1987

I0DE ASSIGIHEITS:

GID a o Vdd • 100

Pbulk » 102 Ibulk » 101

(Complement of)Input lumber 1 is node (11) 1
(Complement of)Input lumber 2 is node (12) 2
(Complement of)Input lumber 3 is node (13) 3
F.OUT = 21 F.BAR.OUT » 20

D 0 S B

ml 24 11 0 101 IHOS

m2 20 12 24 101 IHOS

m3 26 2 24 101 IHOS

m4 20 13 26 101 IHOS

m5 21 3 26 101 IHOS

m6 28 1 0 101 IHOS

m7 26 12 28 101 IHOS

m8 21 2 28 101 IHOS

•**end**»

The schematics for the full adder gates are shownin Figure 6.6. One important note about

the adder is that the completion time is dependent on the permutation of the inputs for

the carry gate. The logical equation for the carry gate is

Cout = AB + BCin -r ACin (6.1)

While the logical result is independent of the ordering of the inputs, the firing of the

DCVSL implementation of the gate is not. The completion time for a full adder depends

on the number of stages through which the carry must propagate. If either the A or B

inputs (but not both) are high, then the Cout result depends on the C,n input, hence the

carry propagation. If, however both the A and B inputs are high, then a carry is generated

for that bit regardless of the Ctn input. As drawn in Figure 6.6, the carry gate output

becomes valid if both A and B are high as desired. If a different ordering was used, (i.e.,

dn placed on one of the lower transistor pairs) then the gate output will not become valid

until dn is valid. Because each bit waits for the previous bit's carry result, the completion

time for the adder is the worst-case, which is the carry propagation time for the full 32

117

bits. Some of the early adder test chips built contained the different ordering and showed

a constant worst-case completion time. The technique could be used if data-dependency

is not desired in an adder.

The logical functions are performedin a single complex DCVSL gate. It demon

strates the advantage of being able to perform a collection of logical operations with a

single gate in DCVSL. The ntree input file for the logical block is:

Input file for LOGICAL

f ALU logic circuits
t Complementation is accomplished by muxes on input
t choosing between 1, 1*, 2, 2*
t. Inputs: 1,2
t Control: 3,4 -> binary coded:
t 0 not-used

• 1 or

t 2 and

t 3 xor

t

t

(logic outputs
(or

(and 3 (not 4) (or 1 2))
(and (not 3) 4 (and 1 2))
(and 3 4 (xor 1 2))

)

)
•

The schematic for the DCVSL gate for performing the logical operations is shown in

Figure 6.7. The 2:1 MUX circuits are very similar to the version used in the barrel shifter

and their schematics along with the schematics of miscellaneous other cells used in the

ALU can be found in the appendix.

Completion Signal Generation

In the ALU, the completion signal generation must use all of the bits of the

output word because of the data dependency of the addition operation. A 32-bit and

gate is implemented to do this but in the interests of speed and keeping the architecture

in bit-sliced form, the large gate is implemented as a tree of 4-input gates. Figure 6.8

shows the schematic for the Data Valid signal generation circuitry which spans each 4 bits

in the ALU. (This cell design constrains the wordlength of the ALU to be a multiple of 4

bits) The top row of 4 NOR gates simply forms the DV signal for each bit from the true

and complement outputs of the last DCVSL stage in the ALU gates. Those four signals

are fed to a 4-input nor gate which makes up the first level in the tree structure. The nor

output is "dvA" which is a completion signal for the four bits spanned by each DV.mag

118

lU

TU^^s

I —' -\

^JT^-i-nS

^
©0

r —

Figure 6.6: Schematics for DCVSL full adder used in the ALU.

119

logic!.mag

P 3/6

t.

outbar^ Fbar

-IGOWwrH 7/2

CO- 7/2

HiM 11/2

HCl-\\ 8/2

Bbar- 10/2

HMAarH 11/2

J
D 14/2 3/65

dh7/2 h CO

7/2 - COJw

10/2 FBfczr

10/2 -Clbar

10/2 -fl

h11/2 hA

8/2

6/2

out

Figure 6.7: Schematic for the DCVSL gate performing logical functions in the ALU.

120

cell. At the bottom are devices and metal lines which are used to make up a nand gate

for the dvA signals. The "X"s show optional connections which are made depending on

the wordlength of the ALU. The dvB and dvC busses are meant to each span 16 bits,

that which causes the nand gate to have four inputs. The maximum size of the ALU is

limited to 32 bits. The dvB and dvC signals are sent to a 2-input NOR gate in the control

slice of the ALU to generate the final DV signal.

The following table provides a complete description of the ALU functionality in

terms of its control inputs. Note that the B-input of the ALU is the accumulator output.

Also, since the functions of control bits CO and Cl are just to zero the A-input and

B-input of the ALU respectively, there is some redundancy in the mapping of control bits

versus function in the table. The symbol ~ denotes a one's complement inversion while

the symbol —denotes a full two's complement inversion (negation of a signed quantity).

A, V, © mean AND , OR , and xor .

121

00

s

9*~, 8 fJ
S S-jOlJ

T=H H

1

Figure 6.8: Schematic for the Data Valid signal generation circuitry in the ALU.

122

ALU Function vs. Control Inputs

INV CO Cl C2 C3 Function

0 0 0 0 0 A + B
0 0 0 0 1 AAB

0 0 0 1 0 AvB

0 0 0 1 1 A®B
0 0 1 0 0 A

0 0 1 0 1 0

0 0 1 1 0 A

0 0 1 1 1 A

0 0 0 0 B

0 0 0 1 0

0 0 1 0 B

0 0 1 1 B

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

0 0 0 0 A-B

0 0 0 1 (~A) A B
0 0 1 0 (~A) V B
0 0 1 1 (~A) 0 B
0 1 0 0 -A

0 1 0 1 0

0 1 1 0 ~A

0 1 1 1 -A

0 0 0 B

0 0 1 B

0 1 0 B

0 1 1 B

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

3. Iterative Multiplier

For a multiplier, the repetitive nature of the computation allows a single piece

of hardware (Booth decoder and carry-save adder) to be used repeatedly to form each

partial product [78]. The iterations arecontrolled by two additional internal handshaking

circuits.

The multiplier block diagram shown in Figure 6.9 illustrates the self-timed system

model on a smaller scale. The multiplication operation is broken down into three stages:

When new operands X, Y are ready, the partial products are each calculated by forming

123

ITERATIVE MULTIPLIER BLOCK DIAGRAM

u>

Xreg
^ SPCK

Yreg <|-i
-A-

(shiftreg)

V

Encode <

CS Adder

(2) Reg <

\Z

CP Adder

Iz

Booth

Recoder

Register <-<i

Acki jReq

Ack Req

CLR partial
> product |—^

counter

D

D

>Q

done2

<AcH

•<EN

donel

^Imult

+DVmult

Figure 6.9: Block Diagram of the iterative self-timed multiplier chip.

124

a Booth coefficient and performing a carry save (CS) addition. Then a final product is

formed by assimilating the carries in the carry-propagate (CP) adder. The three stages

are all self-timed sub-blocks. Remembering that to the external world, the multiplier

just appears as another DCVSL block, it accepts the standard I signal and generates

a DV signal. The I signal enables the final CP adder from which DV is generated.

Both Imult and and Acki as shown on the block diagram are assumed to originate from

some external handshake circuit that controls the multiplier. Acki latches new operands

as usual. Between the time that the new operands are latched and the final addition is

performedhowever, the I signalfor the CP adder is held lowso that the internal self-timed

system for calculating the partial products can do its work. For each partial product, HSa

enables the Booth Recoder to compute a new Booth coefficient. Upon completion of this

task, HSa informs HSb that it is ready and HSb enables the next stage to perform the

Booth encoding of the multiplicand and the carry save addition. The result of the carry

save addition is stored in two sets of registers (one for carry and one for sum) for the

next partial product. All of the handshake circuits are basically the 4-cycle type that was

shown in Figure 4.12.

A partial product counter indicates when all the partial products are calculated

and this allows the final adder to operate. With the Booth algorithm, m = n/2 partial

products are required for a n-bit multiplier (n must be a multiple of two). The count

that generates a "done" signal in the partial product counter is programmable via the

tiling of the counter cells. The counter is 5 bits wide allowing support for up to 25 - 1
partial products. Since the stages are in effect pipelined, note that it is necessary to

add a two-stage delay line between the partial product counter "donel" output and the

ttdone2" signal feeding the and gate controlling Imult. This demonstrates how self-timed

systems naturally follow a so-called Data Stationary architecture. Because the actual time

of data transfers is not controlled, moving the control signals along with the data (via the

same handshake interface circuits) ensures proper operation. More about this type of

architecture for a full processor will be explained in the next chapter.

The internal system for calculating partial products is really just a free running

self-timed pipeline. By connecting the Reqo to the Acko of HSb, and the Reqi to the

Acki of HSa, the pipeline free runs. Some means of controlling it is required however

for initialization of new multiplications and for assuring that data fed to the CP adder

is valid. When the partial product counter raises its done signal output, the NOR gate

125

above HSa disables new requests so that the pipeline stops. The multiplier Acki signal is

used for initialization. Upon the assertion of the Acki signal, the partial product counter

is cleared (as well as the two D flip-flops that delay the counter done signal). This in

turn lowers the counter done output. The Acki signal itself however is also fed to the

nor gate so that the partial product calculations do not begin until it goes low . This

is necessary because the Acki signal holds the partial product counter cleared until it is

lowered. Another enable signal (EN) can also be used to prevent the internal pipeline

from operating. This is useful when the multiplier must be fully disabled in spite of the

state of the Acki signal which can cycle if it also controls other blocks. A more detailed

explanation will be presented in the next chapter about this.

The core of the multiplier is bit-sliced, although multiplicand wordlengths must

be a multiple of four due to the way completion signal circuitry is spread across four bits

in the layout. For the DSP chip described in Chapter 7, a single precision 16-bit product

is generated for 16-bit multiplier and multiplicand inputs.

3.1 Booth Algorithm

The Booth algorithm for multiplication takes an ra-bit 2's complement multiplier

Y = (yn-i,-**»2/i,2fo) (MSB = yn-i) and an j-bit 2's complement multiplicand X =

(xj-ii' —iXuXo) and generates a product (ofup to n + j bits) in m = n/2 cycles where
each cycle represents the calculation of a single partial product. The multiplier is recoded

into a radix-4 multiplier z = y by a triplet scanning method using the modified Booth

algorithm:

* = (*m-i,---,*i,a<0, *€ {-2,-1,0,1,2} (6.2)

where

Zi = 2/2t+i + V2i - 2y2i_i for i = 0,1, •••,m - 1. (6.3)

and y_i = 0. The product is obtained by the following recursion:

P(* +l) =i(P(fe)+ *.**) *=0,l,...,m-l (6.4)
where P(k) is the kth partial product and P(0) = 0. Carry-save adders save the partial

products so each one is represented by a pair of bit-vectors < C(k),S(k) > where C(k) is

the carry word and S(k) is the sum word.

126

The register which holds the multiplier Y loads in parallel fashion at the start

of a new multiplication. It then shifts two bits to the right per partial product. The

three LSBs are fed to the Booth Recoder which implements Equation 6.3. The actual

implementation of Equation 6.3 depends on the specific hardware which makes use of the

Booth coefficient. The three-bit windowinput to the recoding circuitry defines a coefficient

Zi € {-2, -1,0,1,2}. In this design, the coefficient is expressed in the form of a new three

bit signal vector Bi = [Is, 2a:, inv]. Each bit denotes the following:

lx: Pass multiplicand unshifted

2x: Pass multiplicand shifted (left) by 1 bit

inv: Invert multiplicand

If lx and 2x are both low, then the multiplicand is zeroed. The description

above for the bit functions is actually what takes place in the Booth encoding of the

multipUcand in each bit slice. The logic to perform this is shown in Figure 6.10. The

recoding logic which maps the three bit multiplier windows into the bit vector Bi is shown

in Figure 6.11. It resides in a control slice adjacent to the multiplier bit slices.

3.2 Multiplier Cell Design

The layout for the iterative multiplier consists of a MSB slice, a series of bit slices,

and a control slice. The control slice contains all of the handshaking circuits, the partial

product timer, and the Booth recoding circuitry. A block diagram of the bit slices (minus

the carry propagate adder) is shown in Figure 6.12. The slice covers 2 bits since the shift

register has even and odd cell types due to the shift-by-two nature of Y input register.

A normal register stores the X input bits. The X bits are fed through Booth encoding

circuitry (see Figure 6.10) which consists of a single DCVSL gate. The schematic for the

Booth encoding DCVSL gate is shown in Figure6.13. The carry saveadder is implemented

as two DCVSL gates, one for sum and the other for carry, just as in the ALU. Register

cells hold the partial product results of the CS addition. The required shifting of two bits

(multiply by 1/4) between partial products is implemented by routing between the slices.

Schematics for multiplier cells not shown in this chapter appear in the appendix.

127

Booth Encoder
bit i bitj-l

(encJ.mag)

lx
Y

A

inv 2x
Y

V

<2 9
i

out I

Figure 6.10: Logic to encode the multiplicand from the three Booth control signals.

Y0>

Yl >•

Y2>-

ffi>

II !

Booth Recoder

(declx.mag)

O

£E^ (declx.mag)

\>~>

(inv.mult.mag)

Figure 6.11: Booth Recoding logic.

128

•> lx

•> 2x

inv

^(icodaac)

MULTIPLIER BIT SLICE
(bit4.mult.mag)

YO XO

11
Shift

Register

(skiftreg2j)jnag)

Register

(dff3jnuUjnag)

Booth

Encoder

(enc3.mag)

Carry

(carryBjnag)

Register

(dffSjmltjnag)

Sum

(sum3jnag)

Register

(dfPjimltjnag)

Tl

Yl XI

Shift

Register

(shtftreg2^jiuxg)

Register

(4ff3jnuttjnag)

Booth

Encoder

(enc3jnag)

Carry

(carryS.mag)

Register

(dffSjnultjnag)

Sum

(sum3jnag)

Register

(d09.multjnog)

t~~f
sumO carryO suml cairyl

— ackti

o

— Acki

— Acki

— lx

— 2x

i inv

Control Signals

DV3

DV3

Figure 6.12: Bit slice of multiplier minus carry propagation adder section.

129

out

p 4/3 10/2 d

^o u F

2x 10/2

Xi-7 10/2

Xi-lbar 11/2

11/2

invbar 11/2

invbar 11/2

Xi 12/2

lx 11/2

enc3.mag

i

—i—

H 21/2

b 10/2 4/3 d

Fbtr"

10/2 2xftar

10/2 JK>ifar

10/2 «-/

11/2

11/2

11/2 tnvfar

9/2 -Xflw

11/2 h/xfar

is. Sfl

4/2

outbar

Figure 6.13: Booth encoder DCVSL gate used in the multiplier.

130

4. ROM

In the self timed paradigm, every stage must generate a completion signal. This

applies also to ROMs used for program storage or coefficient storage. A DCVSL style

ROM could have been designed from scratch, however it was felt that an existing library

design with a small design modification would be sufficient, saving the rather long time

required for layout in new designs. The existing library cell[74] ROM (also suitable for

PLAs) consists of a core that is programmed by the presence or absence of one NMOS

transistor per bit. A diagram illustrating the ROM operation is shown in Figure 6.14.

During a pre-charge time, the bitlines are pre-charged high. The input address is typically

decoded to select a single word in ROM during this time also. The bitline buffers are

inverting so all of the outputs go LOW . During the evaluate time, the core transistors

discharge the bitlines which read a logical 1 (nmos transistor present) to Ground and do

not affect the bitlines which read a logical 0 (nmos transistor not present). The buffered

outputs then change accordingly high and LOW respectively.

The scheme to generate a DV or completion signal for the standard ROM was as

follows: Presuming that the time to generate a 1 at an output is longer because it involves

changing the state of the bitline from its pre-charge state by discharging it through an

NMOS transistor, an extra bit can be added to each word which is always programmed to

generate a 1 and that bit can be used for DV . This involves adding a "dummy" column to

the ROM so that for an n-bit wide ROM, there is always at least n + l outputs. The extra

bit always is programmed to a 1. The one danger in the completion signal scheme is that,

like other schemes which rely on matching, the delay time for all output bits to become

valid must be less than or equal to the time for the extra DV bit. The library ROM design

contains shorting metal busses which equalize the delay of the bits, reducing the danger.

Also, since a DV signal itself must pass through at least one gate (in the handshaking

circuitry) before causing any action to occur, the gate delay can alleviate problems due to

mismatching in the delays between bits. However, caution must be exercised if the ROM

outputs feed a register for example, because the set-up time requirements for the register

may consume any margin given by the handshaking circuitry!

131

ROM
OUT IN

A

Irom °" »ti

programming device

^•^^

V-Irom
1 h

T •

Output Plane Input Plane

bitline

Figure 6.14: Diagram of the ROM adapted for self-timed applications.

132

•LQJ-'

T

5. RAM

Like the ROM described above, a RAM was adapted from an existing library

cell[74]. The library RAM has separate Read and Write address and data ports. The

storage core itselfis made up of 3-T RAM cells and the bitlines for read and write are kept

separate to support the two data ports. A block diagram of the self-timed version of the

RAM is shown in Figure 6.15. The Read and Write address lines feed separate decoders

and the internal read select and write select signals are effectively and 'd together with an

Iread and Iwrite signal. In the DSP design described next chapter, the RAM is read and

written at the same time so the "F signals are connected together. When Iread is low,

the read bitlines are pre-charged, making the operation very similar to a DCVSL gate.

The generation of a completion signal is performed again (as with the ROM) by

adding a special extra bit for each word. The bit always reads a logical 1 which is ensured

by connecting the storage node of the 3-T cell not to the write bitline, but rather to

Vdd- During pre-charge, the bitline is charged HIGH , so the inverted DV signal output is

low as required. Thus, the self-timed RAM appears to the outside world as just another

DCVSL stage.

Again, since DCVSL techniques are not strictly used in the RAM design, match

ing must guarantee that the Read time of the DV cell is at least as long as the Write

time of the normal cells if DV is to indeed indicate when both reading and writing are

complete. It is the case in most RAM designs that the Read time exceeds the Write time

giving this approach a low risk factor.

6. Summary

The designs of some common datapath macrocells have been presented that

meet the criteria of self-timed circuits. In all cases, the cells generate a completion signal

that can be utilized by handshaking circuits to oversee data transfers. In most cases,

a macrocell can be made by combining a set of DCVSL logic gates, the last of which

contains completion signal hardware. The completion signal generation on a n-bit wide

macrocell strictly requires an n-input c-element to examine all bits. However, due to the

ability to closely match the pre-charge times of the gates, an n-input and gate usually

suffices. Further, for a macrocell in which the completion time is not data dependent,

133

SELF-TIMED RAM BLOCK DIAGRAM

\
Read

Address

Decode

/
Radar

Iread>

pre-charge
3-TCell

DVram<-

Iwrite>~

\
Write

Address

Decode

/
Waddr

^
RDSEL

pre-charge

Completion

Signal
3-TCril

(one per word)

D WRSEL

Figure 6.15: Diagram of the RAM adapted for self-timed applications.

134

circuit matching characteristics can be exploited to a greater extent allowing even fewer

bits for the generation of a completion signal.

A barrel shifter and ALU were presented which are basically a cascade of DCVSL

gates. The design of an iterative multiplier was shown in which the control of the cal

culation of the intermediate partial products was handled by a self-timed sub-system.

Self-timed versions of a RAM and ROM were made by modifying existing synchronous

designs. These contain a smalloverhead for the generation of a completion signal, however

they depend on some circuit delay time matching to work properly.

135

Chapter 7

The Design of a Self-Timed DSP

The discussions in the last four chapters have covered how self-timed circuits

are implemented, the synthesis of reliable handshaking circuits, c-element design, and

the design of the macrocells that make up common datapaths. In this chapter, all of the

techniques described are combined to design a fully self-timed programmable digital signal

processing IC. The architecture of the DSP chip is presented along with the system timing.

The resultinginstruction set is given and an assembler for generating ROM code from the

assembly code is discussed. Finally, details of the overall chip design are presented.

1. History of Signal Processing Applications and DSPs

If one examines the signal processing applications products produced in the last

decade, there is strong competition between digital techniques and sampled data tech

niques. In fact, the introduction of sampled data techniques in the mid 1970's really

revolutionized the integration of signal processing tasks. Switched capacitor integrated

circuits have dominated until only recently. Ironically, it was the fact that sampled data

filters could be integrated on a standard digital fabrication process that gave them credi

bility. Despite their huge success, sampled data circuits were targeted for extinction since

many people in the design community still had their sights set on digital processing for

many of the traditional reasons (ease of design, long term stability, re-programmability,

more applicable to CAD based design). They promised that scaling of the digital process

would soon eliminate the competition by switched capacitors.

In reality, the analog designers, while a minority, have been able to improve their

137

skills and take advantage of the scaling of technology remarkably well. It is only quite

recently that digital signal processors have begun to take hold of the market for signal

processing products. The analog designers hit some fundamental limitations on the scaling

of sampled data circuits while the digital processes have been scaled down sufficiently to

allow a very high level of processing power. Also coupled to this is the complexity of the

systems that are being developed on silicon. As the design rules have been reduced, more

functionality has been introduced. In the past for example, a chip containing 40 poles

of filtering that could be used as the front end of a modem was a viable product using

switched capacitors. Currently however, the level of integration has grown to the point

where the entire modem is on a single chip. Since many telecommunications products rely

on signal processing algorithms suited for the digital domain such as adaptive filters and

echo cancellers, most chips (or systems) on the market now are at least hybrids of digital

and sampled data techniques. Also, the growth of general purpose digital signal processing

circuits has been very steep in the last several years as the power of the digital processors

has reached a usable level in terms of algorithm requirements.

The introduction of general purpose digital signal processing ICs such as the

TMS320 series from Texas Instruments, DSP56000 from Motorola, and the DSP32 from

AT&T made the technology widely available and suitable for many different applications.

These DSPs provide an architecture that is powerful enough to fit a wide variety of al

gorithms along with being programmable by the user (either with off-chip program ROM

or by mask programming). The success of these products and the products in which

they are utilized has driven the industry to continue to pursue advancements in power

and performance of such devices so that they will proliferate even more. Advancements in

analog-to-digital conversion have also fueled the interest in digital signal processors. Using

oversampling techniques, much of the A/D converter can be shifted into the digital do

main. Of course, it is the continued scaling of the digital IC process which has made these

developments possible. The traditional reasons for using digital techniques for signal pro

cessing system include long term stability, rapid modifications through re-programming,

and the reliable prediction of behavior and noise performance.

Digital signal processors represent some of the highest performing micro-computers

because of the incredible rates of computation they achieve as required by many real time

systems. The speed of operation and the functionality offered are key aspects to their suc

cess. As the IC process technology is advanced, DSP chips strive to offer even more power

138

in terms of the system they may implement and greater speed of operation. This typically

is achieved by using smaller and faster transistors and placing more of the transistors on a

chip to extend the functionality. General purpose DSPs on the market now run in the 10-

30MHz range for each instruction. As continued scaling of the digital IC process proceeds,

these clock rates will extend well beyond 100MHz. Even so, only a subset of the desired

applications can actually be handled. For example, the general purpose DSPs mentioned

above fall way short of the speed requirements for doing video signal processing. Thus,

the motivation to obtain more speed in DSPs is will continue to be very great.

2. System Description

The goal of this research has been to apply the principles of self-timed circuit

design to make a general purpose DSP. Given the magnitude of this undertaking, a rela

tively simple architecture for the chip was chosen. It resembles the datapath architecture

for a Texas Instruments TMS320210 without the address arithmetic capability. Figure 7.1

shows a diagram of the datapath. Dotted lines denote pipelining stage boundaries and

shaded rectangles represent registers. The challenges of making the datapath self-timed

include the existence of feedback and the programmability of the architecture (via the

different types of instructions). The operations in each stage of the pipeline are detailed

below:

Stage 1

The first pipeline stage in the datapath contains the memory. A RAM supplies

a temporary storage area and it is both read and written to during the first pipeline

cycle1. RAM values which are read are supplied to the datapath cells of the next stage

as well as another pipeline that is used to store words that are to be written back into

RAM for the purposes of moving data. Due to the pipelining delays, data read from the

RAM is specified in the current instruction, while data written to RAM was specified two

instructions earlier. The three registers in the feedback path around the RAM emulate

the delays seen through the rest of the datapath to make the constraint for writing the

RAM consistent for instructions that move data through the datapath or just around the

1Actually, the first pipeline stage of the entire systemis the instruction fetch described in the controller
section.

139

feedback path. The source for writing the RAM can beeither the Accumulator, the RAM

feedback delay line, or the Input register. The feedback path is used mainly for "data

move" instructions such as shifting data down a filter shift register implemented by RAM.

A coefficient ROM (CROM) also exists in the first stage for implementing fixed coefficient

digital filters efficiently. The CROM is read concurrently with the RAM.

Stage 2

The second pipelining stage of the datapath contains the barrel shifter and the

multiplier. These two cells are essentially in parallel which allows using either of them

in an instruction but not both since they are preceded and followed by MUX circuits

working in unison. The input to the shifter comes from the RAM. The multiplier can

be configured to multiply a variable read from RAM by a fixed coefficient from CROM

or it can multiply two variables from RAM. The Y input to the multiplier is taken from

the CROM or the RAM feedback delay line as determined by a MUX, and this allows

multiplying two variables from RAM which are read on consecutive instructions.

Stage 3

The last stage of the pipeline contains the ALU and Accumulator. A MUX

selects the ALU A-input from either the shifter or multiplier. The B-input to the ALU is

the Accumulator. Since the RAM is 16-bits wide while the ALU/Accumulator is 32-bits

wide, provisions are made to write either the high or low byte of the Accumulator back

into RAM. The feedback around the entire datapath allows values from the Accumulator

to be written back into RAM or to the Output Port.

2.1 Data Stationary Architecture

In micro-coded digital signal processors, one encounters mainly two types of

architectures. The most common is Time Stationary (TS), where a single micro-coded

instruction contains the control signals that indicate what each element in the processor

will do at a given time, or more precisely, the time during a given instruction cycle.

Figure 7.2 illustrates this. The microcode in the program ROM output register indicates

what each block does at ti. The corresponding assembly code typically has separate fields

per instruction, again to specify what happens at each stage of the datapath. The data

140

IN BUS

OUT BUS

11111111= Register

Figure 7.1: Block Diagram of datapath.

141

referred to in each field however, is different with the existence of pipelining. That is to

say, in the figure, if the data is read from the RAM at *,-, then the data that has moved

into the shifter is that read at t«_i and the data in the ALU is that read at it_2- The

assembly code canbe fairly confusing under the circumstances. For a three stage pipelined

datapath, each instruction must refer to three pieces of data.

Another processor architecture is called Data Stationary (DS), and as the name

implies, the assembly code is written to describe what happens to a single data word as

it proceeds through the pipeline. The bottom of Figure 7.2 shows that program ROM

micro-code is passed though its own pipeline registers which mirror the movement of data

words though the datapath. In this way, the control signals supplied to a block for a

certain data word reach the block at the same time as the data. The assembly code is

more coherent since each instruction now contains the information about what happens to

a single data word as it moves through each stage of the pipeline. The hardware cost for

implementing a DS processoris the extra registers for the micro-code. Also, the simplicity

of the instructions breaks down for control oriented branching instructions where a test

on a the accumulator (say ACC < 0) determines whether a branch should occur. In a

DS processor as shown in the figure, the test is actually made on data read two cycles

earlier. A commercial example of a TS processor is the Motorola DSP56000 while the

AT&T DSP-32 is a DS processor architecture.

For a self-timed processor, the Data Stationary architecture makes sense for

reasons beyond those described above. While a sequence of operations is imposed on

the datapath macrocells, the exact temporal information about the operations is not

obtainable since it is process and data dependent. For a certain series of instructions,

we may know that a word of data will be read from RAM, then shifted three places

left by the barrel shifter, and then added to the Accumulator. If the data transfers

are self-timed however, one would have to to make sure that all transfers are completed

before allowing the control signals (micro-code) to be updated for a new instruction if a

TS architecture is employed. To do so would require communication lines between the

controller and all of the datapath stages as shown in Figure 7.3. It is exactly that sort of

global communication which is a problem for synchronous designs (in the form of the clock

signal). A DS architecture more naturally fits the self-timed paradigm because because

communication for both the data and control signals takes place only between adjacent

stages. The controller itself only communicates with the first stage of the datapath pipeline

142

PROCESSOR ARCHITECTURES

TIME

STATIONARY

READ(D1)

READ(D2)>D1«5

READ(D3),D2«1,ACC=ACC+D1

DATA

STATIONARY

READ(D1),D1«5,ACC=ACC+D1

REAJXD2)4)2«1,ACC=ACC-D2

RAM <'

SHIFT *

ALU

ACC

RAM

•IT

SHIFT

ALU
i ,%

ACC

ROM

u-code

ROM

u-code

l=i

t=l

1=2

t=3

Figure 7.2: Data Stationary and Time Stationary processor architectures.

143

as illustrated in Figure 7.4. If one envisages controlling the instruction pipeline with the
same handshake signals that control the data transfers, everything is synchronized. As a
dataword moves from one stage to the next, the control signals that affect computation on

thatdata word follow along. For this reason, a Data Stationary architecture was employed

in the self-timed DSP described in this chapter.

2.2 Instruction Set

Given a choice for the datapath architecture and basic functionality of a DSP,

the instruction set can be derived. The architectural choice is often based on many things

related to the applications of the chip. The most optimum choice for an architecture is

another active research area which includes the study of parallelism in signal processing

algorithms and the job of scheduling tasks when multiple processors are utilized. For the

self-timed DSP, the architecture of Figure 7.1 was chosen since it is suitable for general

purpose use.

An instruction set should be easy to read and write to be the most useful. Data

Stationary architectures tend to simplify the instruction set by making the instructions

look more like an equation operating on a single data word. The math instruction set

for the self-timed datapath is given in Figure 7.5. There are basically two types of math

instructions: those using the barrel shifter and those using the hardware multiplier. The

multiplier instructions are split into two sets also depending on whether the multiplier Y-

input originates from the CROM or the RAM delay line. The output of the first register

in the RAM feedback delay line is referred to as the "T" register, a name that parallels

the multiplier input register of a Texas Instruments TMS32010. A final sub-division of

the instructions is made to differentiate where the data is directed. The "Z" field of an

instruction is either a write location in RAM or the output port. The Z = ACC construct

directs a word in the Accumulator to the output port or back into RAM. Similarly, the

Z —X construct directs a word read from RAM to the same destinations. This is typically

used for data moves in RAM.

There are a few additional instructions used specifically for control operations in

the datapath. These are shown below:

The GOTO instruction just causes the program counter to jump to the instruction denoted

by label in the program. Similarly, the conditional branch only executes the GOTO when

144

Time Stationary Processor Communication

Controller

Datapath

data Control

Figure 7.3: Time Stationary processor communication.

145

Data Stationary Processor Communication

data

Figure 7.4: Data Stationary processor communication.

146

Math Instructions for Self-timed Datapath

KEY:

X = RAM Read Location

Z = RAM Write Location or OUT (output register)
T = MULTIPLIER Y Input Register = LAST RAM VALUE READ
B = Accumulator or "0 "

ACC = ACC (Accumulator bits 15-30) or LJVCC (Accumulator bits 0-15)
C = Coefficient ROM Location

"~ "= one's complement

OP = +, -, |, &, *

() = required field
[] = optional field

DATAPATH MATH INSTRUCTIONS

[Z=]ACC = B;

[Z=]ACC = B op [~]X[«0-15];

ACC= B op [~][Z= X][«0-15];

[Z=]ACC = B op [~]X * T;

[Z=]ACC = B op [~]X * C;

ACC= B op HP= X] * T;

ACC = B op [~P= X] * C;

any above, (Ram = IN);

Notes:

Set Accumulator to Zero or
Accumulator (NOP).

Add,Subtract RAM to Accumulator,[0]
with optional shift. Output to Z.

Add.Subtract RAM to Accumulator,[0]
with optional shift. Data Move.

Multiply, accumulate [invert], Y
input to mult is RAM location read
on last instruction. Output to Z.

Multiply, accumulate [invert], Y
input to mult is CROM location
Output to Z.

Multiply, load ACC [inverted],
Data move.

Multiply, load ACC [inverted],
Data move.

Any of the above instructions
can have an INPUT to RAM
specification as long as
Z is not a RAM write location.

Substituting "« -" for "«" turns off sign extension in the barrel shifter.

If Z not specified, Write Location of RAM will be the
same as a specified Read Location.

If no Read Location specified, Write is DISABLED except
on an INPUT specification.

All Writes to memory including INPUT instructions have
a latency of three instructions.

Figure 7.5: Math Instruction Set for datapath.

147

Control Instructions for Self-timed Datapath

GOTO label, Unconditional Branch to
instruction line with label.

BRANCH label; Unconditional Branch to
instruction line with label.
(same as above)

if(cc) GOTO label; Conditional Branch.
cc is condition code selected.

Figure 7.6: Datapath Control Instructions.

the condition is satisfied. The four condition codes implemented in the self-timed DSP

are:

1. UC Unconditional Tied to Vdd-

2. BZ Branch on Zero High when ACC - 0.

3. BNZ Branch not Zero High when ACC ^ 0.

4. SGN Branch on sign High when ACC > 0.

The mnemonics such as BNZ are symbolic only. The instructions must refer to the number

of the condition code unless a label is assigned to them, in which case the mnemonic can

be any arbitrary string. The assignment of labels is discussed in the next section on the

assembler.

2.3 Assembler

The main purpose for an assembler is to translate the higher level assembly code

of a processor into the actual program ROM bits. In that respect, an assembler is mainly

a parsing program. Other enhancements to assemblers are usually provided in order to

make-the assembly code more easily written and read. For example, EQUuate statements

allow the user to equate strings to constants so that more meaningful labels can be used.

A filter coefficient may be stored in CROM location 8, and it is necessary to multiply it

by the input sample stored in RAM location If. Rather than writing the instruction

ACC = ACC + If * 8;

148

by using two EQUate statements, the same instruction can be written more clearly as

ACC = ACC + input * coeffl;

Text labels for line numbers also make branch statements clearer.

Another task of many commercially available assemblers is to check for errors in

the input assembly code file. The errors can range from syntax errors to timing errors

or warnings. An example of this is a branch instruction. In a data stationary processor,

the branch may key off a data word read several instructions previous to the current

instruction. The assembler can spot situations where the programmer may have overlooked

this latency and issue a warning.

An assembler was written for the Instruction Set presented above so that pro

gramming the self-timed datapath could be more efficiently completed for a variety of

applications. The program, named asm, was written in c language using the unix 2
utilities LEX and YACC , which were written expressly for constructing parsers quickly.

The program LEX recognizes lexical structures in the input stream and then either takes

actions or passes the structures, called "tokens" to YACC . The YACC program accepts a

special grammar language input to specify the correct grammar expected between tokens.

It reports errors automatically and generates a c program that gets compiled into your

main program (yacc stands for "Yet Another Compiler Compiler"). A diagram of the

structure of asm is shown in Figure 7.7.

Valid assembly code consists of the following: 1) A declarations section which

contains a number of EQUate statements that equate character strings to constants, and

2) a code section which contains the actual instructions. Instructions are terminated by

a semi-colon and comments are allowed either after the semi-colon of any instruction (up

to the carriage return) or in c language style using "/*" and "*/" to begin and end the

comment. The declarations section is begun by the word DECL at the beginning of a

line. The declarations section is ended and code section is begun by the word START at

the beginning of a line. The code section must contain instructions of the form presented

above, however any integer constant may be replaced by a string if it appears in the

declarations section. Valid labels are a character string followed by a colon (such as

Label:). The set of valid keywords and operators that make up instructions is:

2UNIX is a trademark of AT&T

149

> Errors

Assembly Code

>r
Structural

Analyzer

s i

Lexical Analyzer

(lex) (yacc)

\ t

I DataBase
I Labels Instructions

> r

fOtatf

800324

•fcfSS

a

a I ROMCode

Figure 7.7: Diagram of the assembler written for the self-time DSP.

Keywords € {ACC,L.ACC,OUT,IN,GOTO,BRANCH,T,IF}

Operators € {+,-,!,&,%«,«-,*,"}

The keywords may be in all upper case or all lower case letters, however not a mixture.

Labels on the other hand, are read literally and may contain any mixture of upper and

lower case letters. The lexical analyzer recognizes digits as any combination of numbers

from 0 to 9 and words as any combination of letters and numbers that follows a leading

letter. As mentioned, a label is a word followed by a colon. White space is ignored in the

input. An example of assembly code is shown next to clarify these rules. The assembly

code for an IIR filter implemented on the DSP chip is shown below:

/* iir2.asm */
/*

* FILTER ASSEMBLY CODE FOR 8 pole BPF in file "iir.design"
• (using multiplier)
*

150

DECL

/* Filter State variable registers */
EQU dell 0

EQU del2 1

EQU del3 2

EQU del4 3

EQU dolS 4

EQU del6 S

EQU del7 6

EQU del8 7

EQU del9 8

EQU dellO 9

/• others */
EQU trap 10

EQU input 11

EQU tmp2 12

/• filter coef:fici<
EQU al 8

EQU a2 9

EQU bl 10

EQU alb 11

EQU a2b 12

EQU Mb 13

EQU ale 14

EQU a2c 15

EQU blc 16

EQU aid 17

EQU a2d 18

EQU bid 19

START

HIT: ace = 0;
/* clear all state registers to zero */
(dell=acc)»0;
(del2aacc)sO;
(del3=acc>=0;
(del4=acc)=0;
(del5=acc)=0;
(del6=acc)=0;
(del7»acc)«0;
(del8=acc)=0;
(del9=acc)*»0;
(dell0=acc)=O;
/• done, begin filter program */

sample: ace = 0 I del2 * a2,(input=in); read input sample
ace = ace + (tmp»dell)«15; coeff al > 1
ace = ace + dell * al; fractional part of al
(dellsacc) » ace + input«lS;
ace a ace + del2«15;

/* ace =• ace + tmp«15; coeff bl > 1 */
ace a ace + (del2°tmp) • bl;
/* ace is output of first section •/

/• section 2 */
(tmps>acc) = ace;
ace • 0 I del4«15;
ace = ace - del3«15;
ace = ace + (del4=del3) * bib; data move
ace s ace + (del3=tmp)<<15;
<trap2=acc) = ace;

ace = 0 | del6 * a2b;
ace = ace + (tmp=del5) • alb;
(del5=>acc) = ace + tmp2«14; scale by 0.5
ace = ace + del6«15;

ace = ace - (del6=trap)«15;
ace » ace ♦ tmp * blc;

ace = ace + del8 * a2c;

151

ace • ace + (tmp»del7)«15;
(del7»acc) <• ace + del7 * ale;

ace s 0 I del8«13; scale by 1/4
ace = ace + (del8=trap) * bid;
ace * aec + del7 « 13;

ace • aec + dellO * a2d;
ace • ace + (dell0«del9)«15;
(del9*acc) • ace + del9 * aid;
(outpace) • ace; send result out
goto sample;

The IIR filter code uses a combination of multiplies and shift/adds so it is a good example.

Notice that the math is performed in the upper Accumulator bits for this program. There

fore, if a number from RAM is to be added to the Accumulator, but divided by 2 first with

the shifter, then the shift amount should be 14 places. A shift of 15 places left justifies

the number in the Accumulator assuming q.15 format in RAM and g.30 (double precision)

format in the ALU. The network diagram of the filter is given later in Section 6.5.

The assembler automatically checks for syntax error in the input file because the

grammar must comply to the grammar rules given to YACC . Beyond that, error checking

exists to ensure that the user does not exceed hardware limitations such as writing to a

RAM address that is too high or shifting more than 15 places. The assembler writes two

ROM code output files that interface directly to the system simulator thor that was used

to test the architecture. Those output files can then be converted to a proper parameter

file for the LAGER layout system [72, 73] used to complete the chip design by running the

program ROMconvert. The assembler also writes an output file that gives more complete

information about each instruction such as the program counter value and the condition

of all of the control signals. Therefore, the command

asm code

uses/generates the following files:

1. Reads assembly code from file code.asm.

2. Generates output file code.out.

3. Generates THOR Hex ROM-code file code. ROMJ, (lower 32 bits).

4. Generates thor Hex ROM-code file code.R0M_H (upper 8 bits).

The thor simulator is limited to 32-bit values so two ROM-code files must be generated

to simulate the 40-bit wide control word of the system. More information about the

assembler can be found in Appendix B.

152

3. System Timing

The datapath drawing in Figure 7.1 has an implicit idea of timing in it by the

way the macrocells are interconnected, the location of pipeline registers, and the resulting

data flow. However, the actual system timing is something that the designer imposes

on the circuit blocks and in a self-timed system, this is done via the interconnection of

a set of handshaking circuits. In fact, the system design is really just the design of the

handshaking circuits since the datapath macrocells simply act as latencies added to the

handshake signals between stages. Knowing what we'd like to have the datapath do at

this stageof the design, a rough sketchof the control/handshaking circuitry can be made.

From the desired data flow in Figure 7.1 and the decision to employ a Data Stationary

architecture, the drawing of the control and handshake circuits for the datapath was

formed and it is shown in Figure 7.8. The core of the controller is the familiar micro-

coded control store consisting of a program ROM (PROM) and program counter (PC).

The PC increments for each instruction and its output addresses the PROM. The actual

timing of the controller is done with a free running 4-cycle handshake circuit. Provisions

for branching are also present. A high-level view of the controller is really that of a self-

timed signal generator. The signal is the micro-code and the timing consists of a series of

requests which occur as each instruction is fetched from PROM.

The requests from the controller are fed to the datapath handshaking circuitry.

There is one handshake circuit for each of the datapath pipeline stages as shown. The

first stage RAM/CROM HS circuit is the most complicated since it must handle requests

from the controller, the ALU (bottom of the datapath), and the I/O circuitry. Because

the multiplier and barrel shifter are configured in a parallel fashion, there are two sets of

handshake signals between the second and third pipeline stages. In effect, the Req and

Ack signals from the first stage are de-multiplexed to drive the multiplier/barrel shifter,

and then multipliexed to drive the ALU.

An instruction pipeline mirrors the datapath stages as required by the choice of

a Data Stationary architecture. Control signals for the datapath cells are tapped off at

appropriate points and they are shown in Figure 7.8 as dotted lines. Note that since the

write operationin the RAM coincides with data comingout of the bottom of the datapath,

the write address (Waddr) comes from the last stage in the instruction pipeline (ctLD).

The clocking of the instruction pipeline is done by the same signals which clock data

153

AckiJN ReqiJN ^.OW" Acko OUT

DPI HANDSHAKING & CTL

Figure 7.8: Handshaking and Control circuitry block diagram for the self-timed DSP.

154

through the datapath. Thus, the instruction control signals follow along with the data.

Names have been added to the diagram to begin the important process of clearly labeling

the signal names of the DSP. Handshake signals have a post-fix of "A,B,C" respectively

for the first, second and third pipeline stages. The design of the handshake circuits shown

in Figure 7.8 is critical to the system timing and performance. The next section discusses

these handshake circuits in detail.

4. Datapath Handshaking

In this section, the specification and design for the datapath handshaking are

presented.

4.1 Controller

The program store for the self-timed DSP contains horizontal micro-code which

eliminates the necessity for an instruction decoder. The controller consists basically of

a program counter (PC) and program ROM (PROM) as shown in the block diagram of

Figure 7.9. Of course, rather than using a global clock to increment the PC, a free-running

handshake circuit acts as a timing generator so that the controller issues instructions at

exactly the rate at which the datapath demands. The enable signal ENrom allows the

generator to be switched off or stepped for the purposes of testing. Given that ENrom

is high, the HS4 circuit free runs because its Reqi signal is just Acki. The rate at which

it receives acknowledge signals at the output port therefore determines the rate at which

the handshake circuit runs. Each new cycle of the Reqo (= Irom) signal from the HS4

block enables the PROM to read an instruction. The falling edge of Irom increments

the program counter to the next instruction address. As with any DCVSL stage, the

completion signal from the PROM becomes the Reqo signal sent to the next stage. It is

reqi-A on the diagram of Figure 7.8. Similarly, Acko is acki-A in Figure 7.8.

The branching instructions for the processor require that the controller be a bit

more sophisticated than shown in Figure 7.9. A program branch implies that the program

counter must be loaded with a new address. One bit of the micro-code instruction output

acts as a "branch bit", signallinga branch instruction. The necessary sequenceof events for

executing a branch includes sensing this bit and in the case of it being asserted, loading

the program counter with an address derived from the instruction itself. Conditional

155

A

ENrom

> PC

\4-

address latch

P ROM

micro-code

Irom DV rom

>

Reqo

-*Acko

RESET

O Address Latch is transparentwhenits clock is HIGH

Figure 7.9: Block diagram of the controller used for the DSP chip.

156

branches perform the loading based on the state of signals originating from other parts

of the datapath (usually the ALU). The sense/branch operations could be performed in

another stage following the basic controller, however the tasks are small and should be

included in the basic PROM cycle to avoid another stage of pipelining. The branch bit

however is not valid until the the DVrom signal goes high.

A sequential handshake circuit was employed to impose the sequence of Read

PROM/branch operations during each cycle without any more pipelining. The guarded

command for a sequential HS circuit is:

[Reqi+ -+ Reqo+;Acko+ - Acki+] (7.1)

The Acki signal waits until Acko+ which implies that the next circuit has completed.

Therefore a sequence of two operations occur in a single handshake "cycle". The sequential

handshake circuit is shown in Figure 7.10.

Reqi > Reqo

Acki < < Acko

Figure 7.10: Sequential handshake circuit.

Figure 7.11 shows a more detailed block diagram of the chip controller incorporat

ing the branch circuitry. The DVrom signal acts as the Reqi of the sequential handshake

circuit. The Reqo of the sequential handshake circuit clocks a register which stores the

branch bit from the PROM micro-code output. When a branch instruction occurs, the

cycle in which it occurs is used to load the PC with the branch address. No output request

is sent from the controller until the next non-branch instruction is read. This scheme is

required because the branch address bits in the micro-code are shared with other control

bits used in normal instructions. Also, the branch instruction is stand-alone; no data

path operations are specified in the assembly code on a branch instruction. Therefore,

the datapath performs no operation during a branch which can be achieved by simply

157

not supplying a request to it. The output of the branch register (labeled "branch" in
the figure) controls a 1:2 demultiplexer which routes the Reqo of the controller either to
the datapath as the reqi-A signal, or back to the controller Acko signal. The de-selected
output of the demultiplexer stays low . The operations of the controller can be described

in pseudo computer source code as follows:

controller() {
while(TRUE) {

Read Program ROM;
Latch Branch bit;
if(branch bit == 1) {

Acko = 1;
if(condition code == 1)

Load PC with Branch Address;

}
else {

Reqo = 1;
Increment PC;
while(Acko == 0)

wait;

}
Pre-charge Program ROM;

}
}

The sequential handshake circuit ensures that the branch bit is not latched until the pro

gram ROM is read first. The block labeled "Reg/demux" containing a DV signal output

is a delay block that duplicates the circuitry of the branch register and demultiplexer in

order to generate a Data Valid signal which indicates when the output request is ready.

The lack of a register with completion information and the use of a standard CMOS de

mux circuit necessitates the delay. In Figure 7.11, the HS block at the output and the

register which latches the micro-code instruction constitute the beginning of the instruc

tion pipeline and they are included for clarity. The HS circuit corresponds to the RAM

HS block in Figure 7.1. A master RESET signal clears the PC to zero and initializes the

handshake circuits.

4.2 Instruction Pipeline

In Section 2.1, the Data Stationary architecture was presented for use in self-

timed DSPs. A requirement for having a DS architecture is a pipeline for storing instruc

tions as they proceed through the datapath. In a Time Stationary processor, a controller,

or a collection of controllers, must send signals to each stage in the datapath for every

158

7 " (unconditional)

condition codes

RESET

ENrom

RESET

Figure 7.11: Detailed diagram of chip controller circuit.

159

instruction cycle. A self-timed version of the scheme would most likely contain handshak
ing between the controller and each datapath stage since the completion of any stage is
not synchronized with a global clock. As mentioned before, the elegance of using a DS
architecture is that the control signals can follow along with the dataas determined by the

handshaking existing inside the datapath. A difficulty arises however for control signals

that actually re-configure the datapath and therefore the associated handshake circuitry.

An example is shown below in Figure 7.12. In a MUX or DEMUX stage, a control signal

routes the handshake signals to their proper places. Figures 4.19 and 4.20 illustrated this.

The control signal in a DS type processor emerges from the instruction pipeline. If the

pipeline is clocked by the samehandshaking signals as the datapath as in Figure 7.12,then

there is a potential race condition between the Acki signal and the CTL signal affecting

the circuit state. In the figure, Acki may pass through the DEMUX before the CTL signal

is able to change the DEMUX state. The synthesis of the handshake circuit constrained

Reqi >

-> Reqol

•< Ackol

Acki «

-> Reqol

-< Ackol

Figure 7.12: An simple example of a control signal which affects the state of a handshake

circuit.

the CTL signal to be in a given state. The most obvious way around the race condition

is to have the instruction pipeline timing separate from that of the datapath. Each stage

would have its individual HS4 circuit. The register for a stage would be clocked on the

160

Acki signal and the Reqo signal (normally controlling computation) would be sent to the

datapath stage that uses the control signals from the register. In that way, the datapath is

ensuredof receiving valid controlsignals from the instruction pipeline by the handshaking

operation.

The overhead in hardware required to use handshaking between the instruction

pipeline and the datapath is undesirable. Also it was felt that since the control signals

are available in the pipeline before they are needed (i.e. they are in a register further up

the pipe), enough information was there to avoid the useof controller handshaking. Thus,

the DSP chip design presented in this chapter does not use any special handshaking for

control signals. In the few cases where a requirement as shown in Figure 7.12 arises, the

notion of a register completion signal is employed for the instruction register. Figure 7.13

shows the same handshaking with a small amount of extra circuitry added to alleviate

the race problem. The technique relies on circuit matching by using a "dummy" register

circuit delay in series with the Acki signal before it is supplied to the DEMUX. The Reg

delay block must be designed so as to have enough delay to compensate for the settling

time of the instruction register as well as delays associated with the signal lines between

the register and handshake circuitry. This solution is only required in several places on

the chip and they will surface in the description of the handshaking blocks below.

The allocation of bits in the control word for the DSP is shown in Table V. A

maximum of 128 locations are allowed in the RAM and CROM with the number of bits

shown. A 40-bit wide ROM is required to store the program instructions.

Since control signals are used in each stage of the datapath, a shrinking number

of the entire set needs to be forwarded down the instruction pipeline after each register. In

order to reduce the area and routing required for the pipeline, the register size is reduced

after each stage. Figure 7.14 shows a detail of the bits for each stage of the instruction

pipe.

4.3 I/O Scheme

A method for getting data into and out of the DSP chip was chosen that takes

full advantage of the self-timing characteristics. The input register feeds a MUX which can

select it as the write input to the RAM. The output register is driven from the feedback

path around the datapath. Thus, as shown in Figure 7.1, it can send either data words

161

Rcqi >-

Add 4-

pipeline

yy-

M*1 Reqol
U

v < Rtao2VT1_

ii » Reg delay

CTL

£> •* Reqol

DV
-<Ackol

Si> -• Reqo2

-<Aeko2

Figure 7.13: Using a register delay to ensure that a control signal is utilized properly i

the handshaking circuit.

in

from the Accumulator or the RAM (via the 3-register delay line around the RAM) to the

outside world. The times when an input word would be read or an output word would

be sent are the same as a RAM operation and therefore the I/O handshaking is part of

the RAM handshaking circuit. In an early design of the I/O block, a single register was

employed to store the input word during the RAM operation. By designing the RAM

handshaking to wait for a request from the input port during an input instruction, the

timing constraints are satisfied. Similarly, the handshaking can be designed to wait for

an acknowledgment signal from the outside world before proceeding during an output

instruction. With this scheme however, the timing of the external signals which serve as

handshaking signals for I/O operations can strongly influence the program operation. It is

more desirable to have the capability of writing (reading) the output (input) register and

then proceeding immediately with the program operation. While the external circuitry

must consume (supply) the data word before the next I/O operation, the timing is less

critical.

A FIFO type of register was substituted for the single register in each of the I/O

paths to obtain the greater flexibility. The input register (i-reg) and the output register

162

Table V. Processor CONTROL WORD

Bit(s) Mnemonic Description:

39 NC No-Connection

38-32 Caddr CROM Coefficient address

31 ACCL Select Accumulator LOW byte

30 Branch Branch Bit

29 OUT Enable Output Port

28 WE Write Enable for RAM

27 IN Enable Input Port

26 ALUSEL Select Multiplier to ALU

25 TSEL Select CROM to MULT Y-input

24-20 alu-ctl ALU function select bits

19 SE Enable sign-extension in Shifter

18-15 bsh_ctl Shifter amount

14 WRSEL Write RAM from Accumulator

13-7 Waddr RAM Write Address

6-0 Raddr RAM Read Address

163

Instruction Pipeline

ROM
39 38 3130

N.C. Brand

37 30 23 AREG IS

Gtddi(31-37) TSEL

(25)

Raddi(0-6)

22

16

ALUSEL

(18)

IS BREG 8 7

SE bsh.cd

(12) (8-11)

CREG

ACCL-

(16)
our

(15)

IN INV ilu.cd

(13) (12) (8-11)

(9) W-D
(8)

9 8

ACCL delayed by on* in ACCJ4UX

DREG 7 6

WRSEL WtddKO-6)

(7)

Figure 7.14: Detail of the instruction pipeline registers.

164

40 bits

o 38 bits

ctl A

23 bits

ctl B

17 bits

ctl C

10 bits

cti D

(o-reg) in the block diagram are actually two stageshift registers. The outer-most register

in the FIFO is controlled by its own simple 4-cycle handshake circuit which talks to the

outside world. Each of the input and output operations will now be examined in detail.

Input Instruction

On an input instruction, the input register acts as the source for data on the

RAM write port. Therefore, as stated above, the input port handshaking must work in

conjunction with the RAM handshaking. Figure 7.15 shows a simplified drawing of the

input FIFO and associated handshaking. The upper two c-elements make up the RAM

handshaking. When the ALU completes an operation, it asserts the reqi-ACC signal.

Assuming that the controller has another instruction ready, the RAM handshake circuit

will raise acki-ACC, clocking the Accumulator itself - which is normally the RAM input

register. The circuit of Figure 7.15 is configured for an input instruction. Therefore, the

RAM handshaking circuit must wait for a request from the input FIFO (the third input

to the c-element) before proceeding. The input FIFO is actually a self-timed pipeline,

the output of which feeds the RAM handshaking input. There are several timing cases

to consider: If the off-chip source requests an input transfer at some point before the

impending processor input instruction, the ReqiJN signal is raised. Assuming the last

data input was successfully transferred to the second FIFO register, then AckiJN will

be raised and the new data word will be stored in the first FIFO register. If the last

data input is still in the first register, the FIFO is full (implying that the request is two

input instructions early) and the AckiJN signal remains low until there is space. When

AckiJN is raised, then the reqiJNP signal is raised to signal the RAM handshake circuit

that new input data is ready. During the actual input instruction, ackiJNP is then raised

clocking the data into the second FIFO register which feeds the RAM.

In the case where the processor reaches an input instruction before there has

been a request on the input port, the acki-ACC signal stays low in the absence of the

reqiJNP signal. When the off-chip source finally raises ReqiJN, the input data will

ripple through the FIFO, raising reqiJNP and allowing the processor to proceed. This

in turn raises acki-ACC and clocks the data into the second FIFO register where it is

supplied to the RAM input. The FIFO arrangement allows an input generator to run

out of phase with the processor input instructions which consume the input data. In the

165

actual circuit, the configuration of the RAM handshake circuit must be changed during

normal instructions so that it does not wait for input port requests before proceeding.

addACC 4

reqi_ACC >

(chip boundary)

ReqiJN >

Acki IN <-

ziig>!|
m
m

2^

iregj:lk

FIFO

Iram DVram

7^7/////////////////////////////,

*» reqi_B

<acki B

to RAM

WRITE input MUX

Figure 7.15: Simplified drawing of the Input Port.

Output Instruction

The output instruction timing is the dual of the input timing described above

and a simplified drawing of the FIFO and associated handshaking is shown in Figure 7.16.

Where the input port acts as another source to the RAM, the output port works in parallel

with the RAM itself, sending out a data word during a RAM operation. The parallelism

comes from the fact that the sources for writing into the RAM are the same for writing

off-chip. When the acki-ACC signal rises at the beginning of an output instruction, valid

data is ready at the inputs to the RAM and output FIFO. The right-most c-element

of the RAM handshaking is then triggered to initiate a RAM operation. During an

output instruction, another c-element is placed in parallel with the RAM handshaking

166

to simultaneously trigger the output FIFO. Analogous to the Iram signal, the reqo-oreg

clocks data into the first FIFO register. It also sends a request to the HS4 circuit associated

with the second FIFO register. Assuming that the off-chip destination is ready to receive

another data word, Reqo-OUT is raised and the second FIFO register is clocked. The

first c-element of the RAM handshaking circuit waits for both the Iram signal and the

reqojoreg signal before proceeding, a requirement of the output port and RAM working

in parallel. The skeletal circuit for the RAM handshaking during an output instruction is

really identical to the handshaking circuit for a stage with two destinations as shown in

Figure 4.18. As with the input port, the FIFO allows the output destination circuitry to

operate out of phase with the output instructions in the DSP program.

FIFO

y i OUT.BUS
71 ////////////////ZVfromACC

(chip boundary)

Reqo_OUT *—•
HS4

Acko OUT*

acki ACC <-

reqi_ACC >•

reqo_ore^

<

acko oreg
—»-=

oreg_clk

RAM

HS

Iram DVram

Figure 7.16: Simplified drawing of the Output Port.

167

reqi_B

-<acki B

FIFO Delays

There is a danger in the FIFO connections shown for the input and output ports.

Along with the accompanying HS4 circuit, the input and output registers form a single

stage in a self-timed pipeline. The absence of a completion signal on a simple D-register

necessitates the use of some other method for ensuring that the register outputs are valid.

In the DSP design, a "dummy" register (regDV) delay is used in several locations. This

wasshown in Figure 7.13 where is was used in lew of a completion signal on control signal

registers.

Referring againto Figure 7.15, the input FIFOis like a self-timed stagecontaining

no computation (DCVSL) logic. Thefirst register is clocked on AckiJN and its function is

the sameas the input registeron any self-timed stage. In the absence of any computation,

the output of the second c-element of the HS4 circuit is sent directly out as the output

request rather than the I signal for a DCVSL circuit. Because the second register in the

FIFO is clocked by the output acknowledge signal, one must ensure that the first register

outputs are settled before clocking the second register. Placing a regrDVcell in series with

the reqiJNP signal accomplishes this.

For the output port in Figure7.16, the output registers in the FIFO correspond to

computationcircuits in a normalself-timed stage. The first register oreg\ works in parallel

with the RAM and the signal reqo-oreg is its "I" signal. To ensure that its outputs are

settled a regDV circuit is placed in series with reqo-oreg to generate a completion signal

for the register. Finally, since oregi is clocked by Reqo.OUT, and the request signals when

data is valid on the output pins, another regDV is placed in series with it to ensure that

the register outputs are settled before an off-chip device latches the data.

4.4 RAM Handshaking

As shown in the last sub-section, the I/O handshaking is integrated with the

RAM (or first stage of the datapath pipeline) handshaking. The combination of the

different functions makes the RAM handshake circuit (RAMHS) the most complicated in

the DSP. A diagram showing the complete circuit is given in Figure 7.17. The task of

properly initializing the circuitry complicates things slightly and that is discussed below.

The figure combines the simplified drawings for the input and output ports. However,

there is means for selecting whether the I/O circuitry is activated or not. Also, there is a

168

4-cycle handshake interface to the controller.

In its simplest configuration the RAMHS circuit receives a request from the

controller via reqi-A and performs a RAM operation when the datapath is ready. The

RAM is written from the feedback registers from the read port. Typically however, the

RAM is written from the Accumulator in which case the reqi-ACCmust be examined also.

The configuration is controlled by the WRSEL2 signal in the diagram.

The OUT* signal is asserted when the output port is active and the IN' signal

is asserted when the input port is active. When the signals are LOW , the processor just

continues with a normal RAM operation without waiting for the ports. The method of

de-selecting an input to a c-element is a little different than a typical logic gate. For

example, to make a two-input OR gate transparent to one input, the other input is just

set low . For a two-input c-element however, to make the output follow one input, the

other input must always be the same state as the first input. Examining the input port

connection, the first c-element receives reqi-ACC,I read, and reqiJNP. If the instruction is

not inputting data, (IN* LOW) then a MUX switches the reqiJNP input to the c-element

to reqLACC. That shorts two of the c-element inputs which effectively just collapses them

into a single input. Similarly, on the output port side, one of the c-element inputs is driven

by either reqo-oreg or reqi-ACC depending on the state of the OUT' signal.

RAM Input MUXes

The RAM input MUXes choose whether the RAM is written from the local

feedback loop, the Accumulator, or the Input port. The location of these MUXes however,

is such that it violates the model for a typical self-timed system as shown in Figure 4.1.

Specifically, the MUXes are between the storage register for the stage and the computation

block. The RAM is the computation block and the storage register is actually split between

several locations (hence the MUXes). One assumption made for the datapath self-timed

blocks is that the outputs of the the storage register for a stage are settled before the stage

begins computation, as dictated by the DCVSL logic. The RAM input registers reside at

various locations on the chip and they are separated from the RAM by long wiring busses

and the MUXes themselves. In order to accommodate this architecture, the acki-ACC

signal is passed through all of the RAM input MUXes so that it sees the same delay as the

data from the registers. This is shown symbolically in Figure 7.17. In the actual circuit,

169

an extra MUX cell is placed on each MUX with its two inputs shorted together so that

the output follows the input in spite of the MUX control signal. The acH-ACC signal is

routed through the cascade of extra MUX cells and the signal at the end of the chain is

denoted DVacc.

The RAM and CROM are operated concurrently to generate both a variable

and constant for the multiplier in the next pipeline stage. Therefore, the Iread and Ia-om

signals areidentical. The WE signal enables the writeoperation in the RAM (It is always

read). To form the completion signal for the stage, the DV signals from both the RAM

and CROM are fed to a c-element.

Initialization

The existence of both pipelining and feedback in the datapath requires that

initialization of the handshaking circuits be performed in a special way. In the section

describing different c-element designs, it was stated that the ability to either set or reset

a c-element output was desirable for initialization. The ability to set a c-element output

high or LOW during Reset, allows the designer to place the set of handshaking stages

in a processor into a specific state. For a simple asynchronous pipeline, it is normally

sufficient to just clear all of the c-elements. Upon start-up, the pipeline will get filled - the

later stages just waiting for an input request before doing anything. In the DSP design

presented in this chapter however, there is a feedback path from the Accumulator to the

RAM. If the initial state chosen for all of the handshake stages was such that they were

all cleared, then the operation of the chip would get "stuck" at the RAM because it would

wait for a request from the Accumulator before proceeding (and there is no data that far

down in the pipeline upon initialization). The proper initialization involves selecting a

state that prevents the lockup. By initially setting acknowledge signals HIGH in stages of

the pipeline that follow the RAM, the data will fill the pipeline normally.

In the early stages of the design of the DSP, a full set of c-elements that could be

initialized HIGH or low was not available. Therefore, a different but equivalent approach

was taken for performing the correct initialization of the datapath handshaking circuits.

Referring again to Figure 7.17, the circuit configuration was actually made alterable.

Rather than setting a specific state upon initialization, all of the c-elements on the chip

are cleared with the Reset pulse. In the schematic, the register generating WRSEL' is also

170

Z.
OUT.BUS

^ orn ACC

add A *• oregdk

reqi_A >• ^Z
our

0 it-t
our

[ackooreg
addACC +•

reqi_ACC >~P\
ENacc>~L~S

>

r*J

-Acrr3f
nr_zn
k^MUXjS

4JM
U

X

E
T

\r*2

WRSEL2

!«—r

w

Kji1:

_z*qLlNP

ReqiJN >•

RAMHS6

(with Input/Output

Registers added)

regDV
BS4

* Reqo_OUT

-<Acbt> OUT

I_writc I_rcsd

= chip boundary

other required logic

Add IN +
HS4

addlNP WRSEL

IN':u£>-WRSEL2 OUT"

IN-

•our

IN BUS ^

ireg_clk

to RAM

WRITE inputMUX>
Vdd—

(iiriiidiiaio*)

addACC
DVaee^>—

P^I:—• WRSEL*
CTLCK

reqi_B

<add B

Figure 7.17: Complete drawing of the RAM and I/O handshaking. The I/O registers are

included for clarity.

171

cleared. This in turn sets WRSEL2 low which changes the position of two MUXes in

the circuit. When WRSEL2 is low , the RAM handshake circuits ignores requests from

the Accumulator (remember, shorting two c-element inputs collapses them into a single

input) and also allows the acki-ACC signal to follow the reqi-ACC signal. After the first

handshake cyclein the Accumulator stage, the WRSEL2 signal gets set HIGH and remains

that way until the chip is powered down. With WRSEL2 HIGH , the circuit is configured

normally as explained in the sections above.

Control Signal Interface

The absence of handshaking between the instruction pipeline and the datapath

handshake circuits requires the control signals to be interfaced more carefully. The IN

and OUT control signals shown in Figure 7.17 determine the configuration of the circuit

for input and output instructions. For the handshaking to operate correctly, the circuit

must be configured between instructions. If the IN and OUT signals are taken from

ctl-D in the instruction pipeline (clocked by acki-ACC), the re-configuration would be

too late since the RAM handshake circuit would have already received an input request.

The INjOUT signals are taken therefore from the preceding stage, ctLC in the pipeline.

Taken from there however, they could change state while the RAM handshaking is still

active in a handshake cycle. Therefore, several latches are added as shown at the bottom

of the schematic. The IN,OUT signals are fed to latches which are clocked by CTL.CK

which rises at the end a any given handshake cycle in the RAM. This occurs when both

acki-ACC and DVacc have gone LOW . by strobing the control signals at a time between

handshake cycles, the circuit configuration can be changed without causing any spurious

signal generation.

Note that the OR gate generating WRSEL2 in the schematic is a holdover from a

previous design and while it exists in the circuit, its function is extraneous since WRSEL'

is always HIGH after initialization.

4.5 Multiplier,Shifter Handshaking

The second stage of the datapath pipeline contains the multiplier and barrel

shifter. Either one of the cells may be used during and instruction but not both. Since one

of two destinations is chosen from a single source (the RAM and CROM), the handshaking

172

circuit is essentially that for a demultiplexer stage as shown in Figure 4.20. The control

signal T in the figure determines which destination is chosen and in effect, it re-configures

the handshake circuit into one of two states. When T is high , the multiplier is selected.

A more detailed schematic of the actual circuit (hsjdemux.mag) is shown in Figure 7.18.

MAGIC subcell names are shown. Signal names ending in "buf", are just buffered outputs

that are sent out to pads for testing. They are not integral to the functioning of the DSP.

The table below maps the signal label names in the handshaking cell to the names used

in the block diagram of the DSP.

hs.demux Corresponding
label Signal
reqi reqiJB
acki acki-B

T ALUSEL

IA Ibsh

IB Imult

ackoAbar acki-Clbar

ackoBbar acki-C2bar

acki2 clock for ctl-B reg.

The delay in the hs-demux circuit is necessary again because there is no handshaking

with the controller. The acki signal of the circuit clocks the B-register the output of

which is the ALUSEL signal that determines the state of the MUXes in the latter part of

the handshake circuit. Since the control register generates no completion signal, the delay

ensures that the state of the MUXes is determined before the request propagates to them.

4.6 ALU Handshaking

After the data is split and applied to either the barrel shifter or the multiplier,

it is sent to the ALU. The corresponding handshake circuit must deal with requests from

either the shifter or multiplier depending on the value of the ALUSEL control signal.

Similarly, the data outputs from the shifter and multiplier are sent to a 2-input MUX, the

output of which feeds the ALU input. Nominally, the 2-input MUX handshaking should

be used here and it was shown in Figure 4.19. In the actual implementation, a question

arises about what node should be interpreted as the Acki signal. Having two sources of

requests, there are two individual acknowledge signals. The output of the MUX feeding

173

hsjtemwcmag

outbuffjnag

reqibuf**^^ ~

clatch9e.mag

reqi

^TDi H
bigbuff.mai

acki < f-^CT

ibuf+<^ackibuf

ach2 <

where

mux.mag

ctlbuff.mag

iH>Tt>

latch b.mag . ,*.i—«_:—£. outbuff.mag

Figure 7.18: Detailed drawing of the handshake circuit used for the multiplier and barrel

shifter.

174

the second c-element and parenthetically labeled acki in Figure 4.19 was originally chosen

as the acknowledge signal for the ALU stage, clocking the control C-register.

The absence of handshaking for the control signals again caused a problem to

arise in the ALU handshaking circuit. When the circuit of Figure 4.19 was employed

and the acki signal taken from the node described above, there were situations where a

double acknowledgment pulse was generated. The T signal (ALUSEL) was taken from

the output of the B-register in the control pipeline. This was done so that its state would

be determined and the MUXes in the handshaking circuit settled before requests came to

the input. In the case where the acko signal is delayed for some reason (such as during an

input or output instruction), an input request will be queued in the MUX handshaking

circuit. After the delay time, there can be an acki pulse, followed by a change in the

ALUSEL signal, followed by a duplicate acki pulse. The effect comes from changing the

state of the MUXes in the handshaking circuit at the incorrect time. If the ALUSEL

signal was controlled by handshaking, then the MUXes could be set up properly to avoid

the problem, although the efficiency of the circuit would suffer because ALUSEL would

have to settle before any datapath handshaking could occur.

It was observed that the de-selectedcell in the second stage of the datapath (either

the shifter or multiplier), sits in pre-charge state while waiting for its next operation. This

translates to having a low DV signal and therefore no request to the ALU handshaking.

Under the condition that only a single request of the pair is high at any time, the ALU

handshaking circuit can be simplified. The detailed diagram of the actual circuitry used

is shown in Figure 7.19. Again, signal names ending in "buf", are just buffered outputs

that are sent out to pads for testing. Rather than having separate c-elements for each

request form the preceding stage, the two are collapsed into a single c-element having the

input request multiplexed. The two acki signals are now the same node and there is no

ambiguity in its generation or labeling. Note that the simplification depends on having

only one of the input requests cycling at a time. The original circuit allowed the de

selected request to cycle by making its c-element transparent. The actual circuit is closer

to a simple HS4 circuit with two requests multiplexed at the input. The table below maps

the signal label names in the handshaking cell to the names used in the block diagram of

the DSP.

175

hs-imix Corresponding
label Signal
reqiA reqi-Cl (DVbsh)
reqiB reqi-C2 (DVmult)

ackiAbar acki-Clbar
ackiB bar acki-C2bar

acki ackijalu

T ALUSEL

I lain

acko acki-ACC

For clarification, a diagram showing the combined handshaking circuitry of the

shifter, multiplier and ALU is shown in Figure 7.20 with the global signal labels.

5. Global Placement and Routing

The construction of the DSP chip contains macrocells as described in Chapter 6

along with the handshaking circuits discussed above. Each handshake circuit was made

as a separate cell and the global routing and placement was performed with interactive

floorplanning tool of the lager system [72, 73, 74]. Chip size not being an large factor in

the experimental DSP design, little attention was paid to doing efficient floorplanning. In

fact, there was some interest in having a poor floorplan in order to exploit the self-timed

behavior and elimination of clock signals that might be corrupted in a bad layout. While

the handshake signal wires were controlled more carefully (to avoid extra loading that can

occur when signal wires are routed completely automatically), no other attention was paid

to wire lengths or cell placement other than to avoid a gross chip size.

The first trial layout indicated that a layout problem was present. In Chapter 4,

an assumption was made that the Acki signal, which clocks the data input register to

a self-timed stage, caused the data at the output of the register to be valid before the

corresponding I signal of that stage went high to allow the DCVSL logic to evaluate.

The placement of the handshaking circuits was done in a way that they were in proximity

to the datapath macrocells that they control, however the original floorplan had all of

the control signal pipeline registers in one section that was far from the datapath. In the

DSP design, the same acknowledgment signal that clocks the data registers between stages

clocks the instruction pipeline registers. The assumption above was not adhered to in the

original floorplan because the delay of the long wires between the handshake circuits and

the instruction pipeline registers caused the control signals to arrive late. Again, the use

176

all

outbuff.mag

ackiAbar <

ackiAbarbuf

reqiAbuf

ackiBbar < f

ackiBbarbuf

hsjnux.mag

outbuff.mag

^> >ackibuf

bigbuff.mag

v

acki

Figure 7.19: Detailed drawing of the handshake circuit used for the ALU.

177

Ibuf

acko

3*-

•3+-

8 §
8" 1

V

m

m
Sax

'•of «t

->->

Z.
7

$T]ja
Jk at

qbi s ax S 3 X

V

.> CQOiWO

Figure 7.20: Combined handshake circuits for the second and third stages of the datapath

pipeline.

178

of handshaking between the control registers and the datapath cells would have eliminated

the problem although the long delays would degrade the overall efficiency of the circuit.

The interactive nature of the floorplanning tool along with the automatic routing

of the system allowed a change to the original floorplan within hours of observing the

problem. It did point out however that assumptions made about the operation of a

self-timed circuit must be followed at all levels of the circuit and layout of the chip. In

the second and final floorplan, the control registers were distributed around the chip so

that they were in closer proximity to the actual datapath macrocells. Because the data

input registers of each stage are built into the datapath macrocells, there was no problem

meeting the assumption on their settling in time.

The RAM tyrite-input MUXes areeach a separate (tilable) macrocell as are the

registers for the instruction pipeline and RAM feedback path. The overall chip area would

have been smaller if these had been assembled as a datapath to cut down on the large

amount of routing required between them. The floorplan of the DSP chip is shown in

Figure 7.21. A micro-photograph of the actual chip is shown in Figure 7.22.

6. Chip Level Simulation

The system level simulations for the DSP chip took place in two parts. Before

transistor level design began and during its early stages, the thor behavioral simulator

was used to perform timing analysis and verification on the self-timed DSP. A model

was written for each of the datapath macrocells and for smaller elements making up the

handshaking circuits - such as c-elements,MUXes,gates, etc. The THOR simulator models

the latency of a cell as a bulk delay at the output of the cell. This was not accurate

for the macrocells because the pre-charge time for a cell is typically much shorter than

the evaluate time. A small modification to the program was made so that the self-skedQ

function could be used for any model. Typically used for a generator of some sort, the

function allows the model to be placed into the event schedule so that it is called again

after a certain number of time units. Using the function and several state variables in the

model that served as flags, different pre-charge and evaluate delays could be implemented.

The THOR simulations were able to verify the basic timing of the system however, the

modeling was not accurately representing any of the wiring delays of an actual layout

and hence it did not catch some of the problems encountered at a later stage such as the

179

Figure 7.21: Plot of the DSP chip floorplan.

180

iH^aSgaL •«••«• raj
Controller

[JsaL

I

Figure 7.22: Micro-photograph of the DSP chip.

181

proximity problem of the instruction pipeline registers mentioned in the last section.

After layout, the irsim simulator was employed for chip level simulations. This

simulator uses a simple RC model for each transistor andincludes wiring delays. It should

be stated that due to the existence of feedback in self-timed handshaking circuits, some

switch level simulators are unusable. Without timing information, a simulator will iterate

forever trying to reach a settled circuit state in this type of circuitry. Results from some

of the simulations are compared to measured results in the next chapter.

7. Summary

Using the self-timed datapath macrocells described in Chapter 6, and handshak

ing realized with the methods presented in Chapter 4, a complete signal processor was

constructed. The processor contains three levels of pipelining, each controlled by a sepa

rate handshake circuit. The Data Stationary architecture was employed because it more

closely fits the self-timed paradigm where control signals move along with the data. The

instruction pipeline was clocked by the same acknowledge signals as the data registers in

the datapath, however there was no completion information generated by the instruction

registers. The absence of handshaking between the control signal registers and the datap

ath cells caused several timing problems to appear, however they were eliminated by the

use of several extra delay circuits and the matching characteristics of the IC. An interac

tive floorplanner was used to do the final assembly of the cells and perform routing. Chip

level simulations were performed on the extracted chip with an event driven simulator

which also is able to model the delay of each device using a simple RC model.

182

Chapter 8

Experimental Results

In the last chapter, the design of a complete asynchronous programmable Dig

ital Signal Processor chip was presented. The chip can be programmed via the internal

program ROM masks. By using the assembler described, several test programs were de

veloped. In order to observe experimental results, a total of three versions of the DSP chip

were fabricated, each with a different program and functionality. This chapter discusses

the functionality of the three programs and presents experimental results from the actual

chips.

1. DSP Test Chips

Each of the three test chips described below differ only in the program ROM

contents. Twoof the chips implement filtering functions, while the third chip runs through

an "exerciser" program which tests all of the different datapath and control functions of

the DSP. The coefficient CROM contents were specified so as to contain the constants

necessary for all three chips.

1.1 CHIP1

The program containedin CHIP1 implements a simple 16-tap FIR filter as shown

in the z-domain networkin Figure 8.1. The filter wasdesigned with an equal-ripple lowpass

response where the passband ripple is 0.25dB, the stopband rejection is nominally -40dB,

and the transition band is between 0.175/s and 0.300/5. The filsyn program was utilized

183

to calculate the coefficients of the filter as shown below. (A 20kHz sample rate was

nominally chosen.)

del 0 del del 15

in

\7c0 \7cl \7c2 \7cl4 \7cl5

* out

Figure 8.1: Network for 16-tap FIR filter implemented in CHIPl.

**

finite impulse response (fir)
linear phase digital filter design

LovPass Filter Design for CHIPl testchip

remez exchange algorithm
bandpass filter
filter length » 15
filter length determined by approximation
***** impulse response *****

sampling rate * 2.00000004+04 hz

function no. 0

decimal octal

h(i) 3 -9.846S988d-03 = h(IS) a -0.005025164100

h(2) a l.S2048S3d-02 = h(14) a 0.007621670700

h< 3) a 3.5358451d-02 = h(13) s 0.022065003000

h(4) a -1.8399691d-02 * h< 12) a -0.011327274600

h(5) a -8.4882788d-02 » h(11) a -0.053353407000

h(6) a 2.S237037d-02 = h(10) a 0.014727571600

h(7) a 3.1088129d-01 a h(9) a 0.237127524000

h(8) a 4.7269809d-01 = h(8) s 0.362012760000

wish to see this plotted: y/n
> n

lover band edge
upper band edge
desired value

weighting
deviation

deviation in db

band 1 band 2

0. 0.300000012

0.174999997 0.500000000

1.000000000 0.

1.000000000 1.439011693

0.019803245 0.013761698

0.344062835 -37.226558685

band

**

184

The filter synthesis produced a 15-tap filter and the impulse response is symmet

rical to achieve linear phase. When the filter was coded in DSP assembly code, a mistake

was made where the number of taps was actually written to be 16, with the 8th coefficient

repeated. The coefficients were truncated to 16-bits so that they would fit into the CROM

and they are shown below in 2's complement hexidecimal format:

Coefficients for fir filter as described in "fir_design2"
(scaled and truncated to 16bits)

LovPass Filter Design for CHIPl testchip

cl a 0xfec4 a cl6

c2 a 0x01e8 a CIS

c3 a 0x0470 a cl4

c4 a Oxfdbl a cl3

c5 a 0xf559 a cl2

c6 a 0x032a a ell

c7 a 0x2705 a clO

c8 a 0x3b54 3 c9

The error in the frequency response caused by repeating the largest tap weight

was large and the responses of the original filter (length 15) and the length 16 filter are

shown in Figure 8.2. In both cases, the coefficient truncation effects from having a 16-bit

wordlength in the CROM are included.

The program for the FIR filter written in DSP assembly code is shown next:

/*
* FILTER ASSEMBLY CODE FOR FIR Filter in "fir_design2"
* (using multiplier)
*

*/

/*********•*•*•*•******•**••*•**********•***•*••*•**•***•*•****•***•***

Input is stored in RAN location 01.
All Coefficients are in CROM.

State Variables: Ram Location 0-15 are locations for delay line
Coefficients: CROM locations 0-7 are eight required coefficients.
Since the filter is linear phase, the impulse response is mirrored.

********************•***/

DECL

EQU del.O 0

EQU del.l 1

EQU dol_2 2

Equ del_3 3

Equ del.4 4

EQU del_5 5

EQU del_6 6

EQU del_7 7

EQU del_8 8

Equ del_9 9

Equ del.10 10

Equ del.ll 11

185

s.oo

o.oo

-s.oo

-10.00

-40.00

-43.00

-SO.00

-55.00

FIR Filter Responses

-? T

Longth 15

Length 16

Figure 8.2: Frequency Responses of the original design 15-tap FIR filter and the 16-tap

version after coefficient truncation to 16 bits.

186

START

init:

sample:

Equ del.12 12

Equ del.13 13

Equ del.14 14

Equ del.15 15

Equ el 0

Equ c2 1

Equ c3 2

Equ c4 3

squ c5 4

Equ c6 5

Equ c7 6

Equ c8 7

ace * 0;
(del_0=acc) » 0;

(del_JLaacc) » 0;
(del.2»acc) a 0;
(del_3»acc) » 0;

(del_4»acc) » 0;

(del.!Saacc) a 0;
(del_6»acc) » 0;

(del_7aacc) - 0;
(del_8»acc) - 0;

(del_9»acc) • 0;
(del.lO«acc!1 > 0;

(del.:1laacc!• a 0;

(del.:12aacc!> a 0;
(del.:13»acc) a 0;
(del.:14aacc!> a 0;
(del. 1Saacc!) a 0;

ace = ace;

ace s ace;

ace a 0 | del.lS*cl, (del.O a in);
ace a ace ♦ (del_15adel_14)*c2;
ace a ace + (del.l4adel.l3)*c3;
ace = ace ♦ (del.l3adel.l2)*c4;
ace a ace + (del.l2adel_ll)*c5;
ace a ace + (del_lladel_10)*c6;
ace a ace ♦ (del_10adel_9)*c7;
ace a ace + (del_9adel.8)*c8;
ace a ace + (del_8adel.7)*c8;
ace a ace ♦ (del_7adel_6)*c7;
ace a ace ♦ (del.6adel.5)*c6;
ace a ace + (del.Sadel_4)*c5;
ace a ace + (del.4adel_3)*c4;
ace a ace + (del_3adel.2)*c3;
ace a ace + (del.2adel_l)*c2;
ace a ace + (del_ladel_0)«cl;
(oUtaace) a ace;

goto ,sample 9

Each instruction in the core of the program implements a multiplication, addi

tion, and data move in order to do a single tap of the filter. The code above the label

"sample:" performs initialization by clearing the delay line. It is executed only a once.

The last instruction of the loop is a NOP provided just to send the Accumulator value to

the output port.

187

1.2 CHIP2

The program contained in CHIP2 implements a 8-pole bandpass IIR filter as

shown in the z-domain network in Figure 8.3. The filter was designed with an equal-

ripple bandpass response where the passband ripple is 0.25dB, the stopband rejection is

nominally —30dB, the upper transition band is between 0.15/a and 0.225/5, and the lower

transition band is from 0.0025/, to 0.015/,. The FILSYN program was used to calculate

the poles/zeros of the filter as shown below. (A20kHz sample rate was nominally chosen)

general filter synthesis program

IIR Bandpass Filter Design for CHIP2 (0.25dB ripple)
band-pass filter

equal ripple pass band
bandedge loss a 0.2500 db.
preshifted lower passband edge frequency a 2.7766309d+02 hz.
loser passband edge frequency a 3.0000000d+02 hz.
upper passband edge frequency • 3.0000000d+03 hz.
sampling frequency a 2.0000000d+04 hz.

equal minima stop band with edge frequency a l.3875444d+02 hz.
equal minima stop band with edge frequency a 5.0286832d+03 hz.

required stop band loss =• 30.00 db.
multiplicity of zero at zero = 0
multiplicity of zero at infinity a o
number of finite transmission zero pairs a 4
overall filter degree a 8

>

COBD&Au •

> seal

12: 1 or 100: 2 scaling
> 1

command:

> trun

do you want truncation: 0 or rounding: 1
> 1

enter t of significant bits
> 16

command:

> pri

digital filter transfer function
IIR Bandpass Filter Design for CHIP2 (0.25dB ripple)

(bilinear z transform used)
filter type : bandpass

sampling frequency a 2.0000000d+04 hz.
passband edge frequency a 3.0000000d+02 hz.
passband edge frequency a 3.0000000d+03 hz.

h(z) in factored form, coefficients of z**(-l) and z**(-2) printed

*•** numerator ***» multiplier a 5.6539917d-01

-1.9030762d-01 1.00OOO00d+O0

-1.9994202d+O0 1.0000000d+00

-1.9972O76d+O0 1.0000000d+00

1.2055817d+00 1.0000000d+O0

*•** denominator ****

-1.1237183d+00 4.5388794d-01

-9.9107361d-01 7.9769897d-01

-1.8367157d+00 8.S334778d-01

-1.9683533d+00 9.7622681d-01

188

scale factors

3.4770203d-01

9.4448853d-01

9.4606018d-01

1.9398499d-01

aOb

J

A/"

alb\-

—i 1—

r

AA

Jblc

alb

z1
ttt

1

r

z1
66

blc

8-Pole IIR Filter

bOc

ale

ale \—i yO-J bid

<ss

bid old

> OutV" i—
2J

ald\-

>*

z1

z1
dl 1

Figure 8.3: Network for 8-pole IIR filter implemented in CHIPl.

The exact coefficients used for the filter are shown in Table VI. Coefficients

greater in magnitude than 1.0 are implemented as an addition plus the multiplication by

the fractional part. Binary values of "n.a." mean that the coefficient can be implemented

exactly with a single addition and shift (using the barrel shifter).

The frequency response of the IIR filter was calculated using a digital network

analysis program and the result is shown in Figure 8.4. The passband of the filter is shown

in further detail in Figure 8.5.

The assembly code for the IIR filter was given as an example in Chapter 7 in the

section describing the assembler (Section 7.1.3). Some further scaling and re-arrangement

189

Table VI Coefficients for IIR Filter

on uuurz

Stage Coefficient Decimal 16-bit Binary

aO 0.50000 n.a.

al 1.12371 1 + 0x0fd6

a2 -0.45389 0xc5e8

bl -0.19031 0xe7a5

b2 1.00000 n.a.

2 bib -1.99942 -1 - 0x8013

2 b2b 1.00000 n.a.

2 aOb 0.50000 n.a.

2 alb 0.99107 0x7edb

2 a2b -0.79770 0x99e6

3 blc -1.99721 -1 - 0x805c

3 b2c 1.00000 n.a.

3 ale 1.83672 1 + 0x6bl9

3 a2c -0.85335 0x92c6

4 bOd 0.25000 n.a.

4 bid 0.30140 0x2694

4 b2d 0.25000 n.a.

4 aid 1.96835 1 + 0x7bf3

4 a2d -0.97623 0x8306

190

0.00

-5.00

-10.00

-15.00

-20.00

-25.00

-30.00

-35.00

-40.00

-45.00

-50.00

-55.00

-CO.00

-C5.00

-70.00

-75.00

-80.00

IIR Filter Rosponsa

--

0.00 1.00 2.00 3.00 4.00 S.OO

llx.rsp

Figure 8.4: Frequency Response of 8-pole Bandpass IIR filter.

191

1.00

-1.00

IIR Filter Passband

*%
....

; *w'
\

^,.*"* **»..

*— " \tBz

Figure 8.5: Passband of 8-pole Bandpass IIR filter.

192

ilr.rsp

of the stages was done to try to maximize the dynamic range of the filter. When scaling

is done by a power of two, then simple shifting was used in the assembly code rather than

multiplication. The program timing is interesting because, since the datapath operations

switch back and forth between shifts and multiplies, the instruction cycle times switch

between short and long periods since a multiplication requires more time.

1.3 CHIP3

The program in CHIP3 runs through a series of calculations that test the various

functions available in the datapath and controller. Besides testing all of the mathematical

functions, the program reads in severalnumbers from the input port and performs tests on

them to determine when a branch condition is met. This simulates the control functionality

of the DSP. The assembly code for the program is shown below. Numbers have been added

to the instructions for easier referencing.

/* Exerciser program for datapathl */

DECL

/* locations in ram */

Equ zero 0

EQU one 1

EQU nask 2

squ rami 3

EQU ram2 4

EQU ram3 S

EQU ran>4 6

EQU ramS 7

EQU ram6 8

Equ ram7 9

Equ ram8 10

Equ onebar 16

/* locations in crom */
Equ croraO 20 /* 3/4 */
squ croml 21 /* -3/4 */
Equ crom2 22 /* 5/8 */
Equ crora3 23 /* -11/16 */
/* condition codes */
Equ uncond 0

Equ BZ 1

Equ BZ.bar 2

EQU sign 3

START

1 IBIT: ACC = 0;

/* clear ram locations */
2 (zeroaacc) » 0;
3 (raml=acc) = 0;
4 (ram2=acc) = 0;
5 (ram3aacc) = 0;
6 (rara4=acc) a 0;
7 (ram5=acc) = 0;
8 (ram6=acc) = 0;
9 (ram7=acc) = 0;
10 (ram8=acc) = 0;

/* load constants into ram from input port */
11 LOAD: ace =» ace,(one=in);

193

12 ace a acc,(mask=in);
13 ace a ace I rami;
14 (onebar=l_acc) = 0 I "one;

15 begin: ace = 0;
/* counting, adding */

16 ace a ace + one;

17 ace a ace + one,(ram2=in);
18 ace » ace + one;

19 (ramlsl.acc) » ace + one;

/• masking and control */
20 ace » 0 I ram2;
21 ace a ace ft one;

22 ace » ace;
23 if(BZ) goto printl;
24 ace = 0 I (out=onebar);
25 goto skipl;
26 printl: ace a 0 I (outgone);
27 skipl: ace = 0 I ram2;
28 ace » ace ft one«l;
29 ace a ace;

30 ace a ace;

31 if(BZ) goto print2;
32 (out»l_acc) • 0 I onebar;
33 goto skip2; •
34 print2: (out=l_acc) a 0 | one;
35 skip2: ace a 0 I ram2;
36 ace a ace ft one«2;
37 ace a ace;
38 ace a ace;

39 if(BZ) goto print3;
40 (out=l_acc) = 0 | onebar;
41 goto skip3;
42 print3: (out=l_acc) a 0 I one;
43 skip3: ace a o I ram2;
44 ace a ace ft one«3;
45 ace a ace;

46 ace a ace;
47 if(BZ) goto print4;
48 (out=l_acc) a 0 I onebar;
49 goto skip4;
50 print4: (out=l_acc) a 0 I one;

/* branch on zero */
51 skip4: ace a acc,(ram4=in);
52 ace = ace;
53 ace a acc;

54 acc a o I ram4;
55 again: (out=l_acc) a acc - one;
56 acc a acc;
57 acc a acc;
58 if(BZ) goto skipS;
59 goto again;
60 skip5: (out=l_acc) a o I onebar;

/* branch on sign */
61 acc a acc,<ram4=in);
62 acc a acc;
63 acc a acc;
64 acc a o I ram4«15;
65 again2: (out=acc) a acc - one«15;
66 if(sign) goto skip6;
67 goto again2;
68 skip6: acc a o I (out=onebar);

/* logical functions */
69 (outal_acc) a o + one;
70 (out=l_acc) a acc I rami;
71 (out=l_acc) a o + "one;

194

72 (out«l.acc) a o I one;
73 (out=l_acc) a acc I onebar;
74 (out=l_acc) a acc ~ one;
75 (out=l_acc) a acc ft one;

/* multiply */
76 acc » 0;
77 acc a acct(ram6ain);
78 acc a acc,(ram7ain);
79 acc a acc;
80 acc * 0 | (ram8aram6)«15;
81 (outaacc) a o + ran7 • T;
82 (outaacc) a o + ram7 * cromO;
83 (outaacc) a o + ram8«15;
84 goto begin;

The functions that this test program performs will now be described in more

detail. The first instructions following the initialization code (starting with Instruction

11) load in several constants to memory. The RAM location one receives the first constant

which is supposed to be the value 0x0001 supplied by the user. The second value written

to mask is not used in this version of the program so it is not relevant. After reading the

constants, the l's complement of the constant one is formed and stored in location onebar.

The correct value is Oxfffe. The constant one is used for masking bits in the control section

of the program. Both one and onebar are used as a crude signalling mechanism for when

the program detects certain conditions. Thus, in the code that follows, often one is sent

to the output port when a condition code is TRUE and onebar is sent to the output port

when the same code is FALSE.

After the label "begin", some simple addition is performed. The accumulator is

cleared and then one is added four times. The result is stored in RAM location ramA.

During the counting, another input is read from the user into position ram2. This is

meant to be an arbitrary number whose 4 LSB's are examined in the following test.

The masking and control section test uses the test value in ram2. The idea

behind this section of code is the following: Examine the test number bit by bit and

output onebar if the bit is a 1 and one if the bit is a 0. The constant one is used as a mask

and the barrel shifter is employed to shift the single 1 in one to the desired bit location.

For each bit test, the following instructions are executed:

1. Load Accumulator with test input.

2. and Accumulator with mask, (one shifted left by n places)

3. Wait two instruction cycles for ACC to be valid.

195

4. if(ACC == 0) send out one, else send out onebar.

As an example, if the test input is 0x0004 (0100 in binary), then the output port values

should consecutively be 0x0001, 0x0001, Oxfffe, 0x0001 from the four bit tests. The code

actually contains a mistake however. Note that there is only a single NOP instruction in

the section testing the first bit. Instruction 22 should be followed by another NOP before

the Accumulator condition is checked. The two NOPs are necessary due to the pipeline

delays in the datapath and the way the Data Stationary code is written. The effect of

the missing NOP is that the masking is not performed. Instead, the test input value itself

determines whether the BZ (Branch on Zero) condition is met. If the test input has any

bit which is non-zero, then the condition is not met and the value Oxfffe is sent out.

The next section of code begins with Instruction 51. This section tests branching

also. A test value is read into location ram4 and then it is decremented until the BZ

(branch on zero) condition is met. Then the program branches out of the loop and

sends onebar to the output port. After each decrement, the output port receives the

value in the accumulator. Notice that for the test to be correct, two NOPs are inserted

between the decrement instruction and the BZ test to compensate for the pipeline delays

of the datapath. For an input number n read into ramA, the correct outputs will be

n - 1, n —2, •••, 0, fffe, where the last number is onebar which signals that the branch

has occurred.

The next section of code begins with instruction 61. This tests the branch on

sign condition. As with the last section, a test input number is read into ramA. The value

is loaded into the accumulator (high order bits this time). The number is decremented

until it becomes negative, satisfying the branch condition and causing onebar to be sent

out. This section contains an intentional programming error and it is shown here again

for convenience:

/* branch on sign */
61 acc a acc,(ram4ain);
62 acc a acc;
63 acc a acc;

64 acc a 0 | ram4«15; '
65 again2: (outaacc) a acc - one«15;
66 if(sign) goto skip6;
67 goto again2;
68 skip6: acc a o I (out=onebar);

Notice that the test to branch on sign is performed in the instruction immediately

following the decrement. This violates the rule that branch condition codes become

196

valid two cycles following the instruction which reads data for the test. Enhancements

to the assembler would include warnings of this sort of mistake. As it is, the code

causes two extra decrements to occur before the fact that the Accumulator has become

negative is realized. Therefore, the correct outputs for a test input number of n are

n —1, to —2, • • •, 0, ////, fffe, fffd, fffe. The number decrements until it reaches the

value fffd where it is finally recognized by the branch on sign test and the number onebar

is sent out as a signal that the condition has been met.

The section of code beginning with Instruction 69 tests the various logical func

tions available. First, the value one (0x0001) is added into the Accumulator. It is then

or 'd with the value in rami which is 0x0004 from the incrementing performed earlier

in Instructions 16-19. The correct result is 0x0005. The next instruction is written to

load the l's complement of one into the Accumulator. However, rather than using the

OR function to load the Accumulator, addition is used. This is generally not advisable

because the adder portion of the ALU is slower than the logical section. Additionally, this

instruction caught a small bug in the assembly language/ALU implementation. Whenever

the A-input to the ALU is inverted, the Ctn of the adder is set to a 1. The purpose is to

correctly implement 2's complement subtraction. Since Instruction 71 uses the adder and

the l's complement function, the result is actually the same as subtraction. Therefore,

the 2's complement of one or Oxffff is the result. The following instruction just loads the

Accumulator again with one. The Accumulator is the OR 'd with onebar to give the result

Oxffff. The Accumulator is next xor 'd with one which has the effect of toggling the LSB

to 0 resulting in Oxfffe. Finally, the Accumulator is and 'd with one which has the result

0x0000.

The section of code beginning with Instruction 76 tests the multiplier and data

move operations. First, two test inputs are read in from the input port. The are stored in

ram6 and rami locations. Instruction 80, performs a data move between locations ram6

and ram8. The next instruction multiplies rami with the last location read from RAM,

namely rom6. Thus, the output is the product of the two test inputs. The next output is

the product of rami and a coefficient from the CROM. The last instruction loads ramS

to the Accumulator and sends it to the output port. If the data move instruction works

properly, the output is identical to the first test input which was stored in ram6.

197

2. Laboratory Measurements

The three DSP chips were fabricated in MOSIS 2\im N-well CMOS technology.

In thedesign ofeach ofthe handshake circuits, extra buffers were added on thehandshake
signals so that the signals could be brought out to pads without degrading the perfor
mance. Thus, all of the handshake signals between stages of the pipeline were available

for observation. The names of the signals have a suffix "buf" added to them.

For testing the mathematical or logical operations of the chips, they were con

nected to a digital test system that is able to both supply arbitrary input vectors and
acquire words from the output port. The acquisitions were triggered by the output port

Request. The input port Request line was driven by an external clock that ran with a

period greater than the time required for computation between samples. With this setup,

the chips run at a slower sample rate than is possible with full handshaking at the I/O
ports, but the internal computation rate is still full speed since it is completely self-timed.

Between the time that a sample is computed and the next input request comes, the chip

just waits. (See the section in the last chapter on the RAM handshaking for a more

complete description.)

To observe timing signals and measure speed, an oscilloscope or digital signal

analyzer was used.

2.1 CHIPl Measurements

Logical

The logical outputs from CHIPl are shown in Table VII for a full scale (0x7fff)

input impulse. The idealvalues are just the original impulse response of the FIR filter. The

discrepancy between the ideal values and the measured outputs is predicted by the chip

levelsimulations. In fact it is simply a consequence of the multiplier being single precision.

Since it has only a 16-bit output (for a 16x16 input), there is a finite probability that the

LSB will be in error. For the coefficients of this particular FIR filter, exactly 10 of the

multiplications have the LSB error. Hence, eachof the output values are low by an amount

of 10 LSBs. The error causes a very minor shift in the frequency response. This is shown

in Figure 8.6 where the ideal and measured frequency responses are plotted.

198

Table VII Impulse Response of CHIPl

Sample Ideal Measured

1 0xfec4 Oxfeba

2 0x01e8 OxOlde

3 0x0470 0x0466

4 Oxfdbl 0xfda7

5 0xf559 0xf54f

6 0x032a 0x0320

7 0x2705 0x26fb

8 0x3b54 0x3b4a

9 0x3b54 0x3b4a

10 0x2705 0x26fb

11 0x032a 0x0320

12 0xf559 0xf54f

13 Oxfdbl 0xfda7

14 0x0470 0x0466

15 0x01e8 OxOlde

16 0xfec4 Oxfeba

>16 0x0000 0xfff6

Timing

The timing signals of CHIPl matched the simulations well. Since the program

does a series of multiplications, the instruction rate follows the multiplication rate for all

but the last NOP instruction. This is shown in the oscilloscope trace in Figure 8.7. The

processor is shown waiting for the ReqiJN signal to drop. The program itself is at the

first instruction (which reads the input port for a new sample) during the wait. After

ReqiJN falls, the program begins and the various handshake signals shown pulse at the

rate determined by the throughput of the iterative multiplier. Since the multiplier takes

much longer than shift or add operation, it is will be referred to as a "slow" instruction.

At the end of the 16 multiplies that perform the FIR filtering, the last NOP

instruction just sends the result to the output port. The NOP of course is a "fast"

instruction and Figure 8.8 shows how the processor speeds up. As a comparison, the

irsim chip simulation results in Figure 8.9 show the same signals that are shown in the

scope traces of Figure 8.8.

The times for the fast (shift) and slow (multiplier) instructions were measured for

the entire batch of chips and average times are shown in Table VIII. Times were measured

199

Measured vs. Idaal FIR

8.00 10.00

chlpl.xap

firTraplii

Figure 8.6: Passband of 8-pole Bandpass IIR filter.

200

DSA 602 OOmZtNO SIGNAL ANALYZER

date 16-JUL49 Ham: 17:4227

wiwunmnw—»pMMwwMWrt mfriiiji—**i'iinn»w—0M* mwi» n

• MK-Mvy/v h h
«dd_B

Mjfrj^tyA/V*** »' '•'•«• *v+ $lf*>^+*m '»• • "» IHMjvA^w^.

to ffl- (VI
acM_ACC

J|v Ijlw^ ^ lv^AA,M"^*'«''nY»Wjyu]•*- ^^»^^•

13

Figure 8.7: Oscilloscope trace showing handshake signals in CHIPl just after a new sample

arrives.

201

DSA 602 DIGITIZING StGNAL ANALYZER

<**•: 1frJUL49kn« 173053

- fwjlF**.*

Figure 8.8: Oscilloscope trace showing handshake signals in CHIPl at the end of the

program loop. The fast instruction is a NOP.

202

PC

I
(ItcOOOO

R«*JN

req|_AtKtt

roql_Bbuf

raqftjCZbuf

I8M4 au

I
IRbSOOO

u

1 stir

fflbpooo

u
If

mm mi : oooo

7a* t«M imi iou i7w»

00009000

I
R5d0OOO oooooopo

una tana

Figure 8.9: Simulation results showing the same handshake signals as measured in the

previous figure.

203

at different supply voltages. Because of the compensating nature of self-timed circuitry,

the processor continues to operate at different supply voltages, however the speed changes.

The handshaking guarantees the correct sequence of events. Beyond that, the chip will

run as fast as the circuits can compute given any set of data or supply voltage.

Table VIII Average Processor Instruction Periods

MOSIS 2iim N-well CMOS

Vdd Shift Multiply

3.6V lObnsec AAOnsec

5.0V IZnsec ZZ7nsec

7.0V 55nsec 260nsec

2.2 CHIP2 Measurements

Logical

As with CHIPl, the filter impulse response was measured for the IIR filter imple

mented on CHIP2. An input pulse of 0x4000 (decimal 0.5) wasused. Due to the existence

of feedback in an IIR filter, the impulse response length is infinite to within the precision

of the processor. Table IX shows the measured results of the first sixteen samples. Again

due to the multiplier LSB error, the measuredvalues differ slightly from the ideal. Beyond

the 7th sample, the measured response starts to deviate further from the ideal. The result

was not predicted by simulation because of the limitations in the program for running

such a long time simulation. It is suspected that a form of limit-cycle behavior occurs for

the latter samples causing them to deviate from the ideal response. This is supported by

data measured further out in time from the impulse. This behavior is likely due to the

finite precision errors introduced by the multiplier.

204

Table IX Impulse Response of CHIP2

Sample Ideal Simulated Measured

1 0x0800 0x07fd 0x07fd

2 0x1782 0x1778 0x1778

3 0x29f4 0x29dd 0x29dd

4 0x2ef7 0x2e52 0x2e52

5 0xld23 0xlcd8 0xlcd8

6 0xf7e2 0xf76e

7 0xd238 0xdl90

8 0xc25a 0xcl71

9 0xceb9 0xcd7d

10 0xe9e6 0xe848

11 Oxffld OxfdOa

12 0x02c6 0x002c

13 0xf924 0xf5e9

14 0xef72 0xeb7c

15 0xef99 0xeac9

16 0xf91b 0xf353

Timing

Figure 8.10 shows timing signals measured from CHIP2 just after a new input

sample. The timing of CHIP2 is much more interesting than for the FIR filter because the

program switches back and forth between using the multiplier and shifter. The beginning

of the IIR filter program on CHIP2 is repeated below with program counter addresses for

convenience. The scope trace shows the span between instructions OxOd and Oxlf. Note

that all input/output instructions are executed after the last pipeline stage of the datap

ath. The delay is necessary to output the correct Accumulator values when desired. For

consistency, the input instructions are also performed after the last pipeline stage. There

fore, in the program below, while the assembly code shows an input instruction occurring

first, when the PC = 0x0b, the actual IN control signal (see the RAM handshaking cir

cuit) emerges from the last stage of the instruction pipeline causing the input to be read

two instructions later. The PC value increments to OxOd before the processor enters a

wait state for the ReqJN signal. So, the first multiplication instruction is completed

(data in ALU) and the second shift instruction is in progress (valid data sitting at shifter

output). When the ReqiJN signal arrives, the second instruction data enters the ALU

205

DSA 602 DIGITIZINGSIGNAL ANALYZER

data: 18-JUL-69 Urns: 1637:09

500mV

Jr
R*qL>N

500mV

/dtv

u,.. yfiu i Vf^J

-4.5V

•232m

i I i i >-*-! i i i i I i i 1111 >-»-♦
' 11™ r^

i i i l| ' ' 'I'M''

Imutt H» ifiv m.

r**^^B P

raqiJVCC

400na/«fiv o

ih-

m

P*1 '"1 jataM^

3.766,5

Figure 8.10: Oscilloscope trace showing the shifter, multiplier compute signals and

reqi-ACC in CHIP2 just after a new sample arrives.

206

and the third multiply instruction will begin at the falling edge of ReqiJN. The scope

trace picks up the action at this point. The signal Ibsh or Ixnult is asserted when the

instruction uses the shifter or multiplier respectively. The reqi-ACC of course cycles once

per instruction.

/****** beginning of HE filter program on CHIP2 ******/
PC START

00 HIT: acc » 0;

initialization code...

Ob sample: acc • 0 I dol2 * a2,(input=in);
Oc acc > acc + (tmp=dell)«15; coeff al > 1
Od acc = acc + dell * al; fractional part of al
Oe (dell=acc) a acc + input«15;
Of acc • acc + d«12«15;
10 acc a acc + (del2=tmp) * bl;
11 (trapaacc) = acc;
12 acc <» 0 I del4«15;
13 acc > acc - del3«15;

14 acc a acc + (del4=del3) * bib;
15 acc a acc + (del3=trap)«15;
16 (tmp2»acc) a acc;
17 acc » 0 | del6 * a2b;
18 acc a acc + (tnpadelS) * alb;
19 (del5aacc) a acc + trap2«14;
la acc a acc + del6«15;
lb acc a acc - (del6=trap)«lS;
lc acc a acc + trap « blc;
Id acc a acc + del8 • a2c;
le acc a acc + (trap»del7)«15;
If (del7aacc) = acc + del7 * ale;

Figure 8.11 shows the irsim output from the same time span as in Figure 8.10.

Note that the program counter value leads the current instruction values of Ibsh and

Imult by two. This is because 1) in the controller, the PC value is incremented when the

current instruction ROM code becomes valid and 2) there is one pipeline delay between

the controller and shifter/multiplier. Some of the other pipeline handshaking signals are

shown in the oscilloscope trace of Figure 8.12 for the same section of code at the beginning

of a new sample period.

207

PC

bth

mwxjoutjM

fa<*JN

reqljCtbuf

RnNbut

bnutttxif

16 111 «

im n sitt

no—nr

IF 0000 I
UI I 1UUL1I RO 3111: p f 1 3flt

0000 0000 3ffl 9000 3ffll 7«db : 0000

1
1RI8000 rtRtSOOO

1
u

1C 1«

n 11 0000 t

31tf OOOO • 92ce

I

noo taou \uaa iana au nw tsuo <oau «esfl hdoo

0000

E

aooas tsoao

Figure 8.11: Simulation results showing the same handshake signals as measured in the

previous figure.

208

OSA 602 DIGITIZING SIGNAL ANALYZER

date: ifrJUUStfnw: 18*734

y-
FtoqyN

r ' • r f i i i 11 fun iiin'i Hi" uf /[• tr l *i* T *" T* *—r"—'

5V

/tfv

ED

tttftf

-10V

.•y

*

i > l | l i l l |
ackl_Cb*r

Y
addACC

>ft l M<

Ntnfv^pi^pMnw

I' * *' i»

I l 111

-SSra 200ra/cSv El

HflU|l mn—+

1.942.a

Figure 8.12: Oscilloscope trace showing other handshake signals in CHIP2 just after a

new sample arrives.

209

2.3 CHIP3 Measurements

Logical

The digital test system was programmed to supply the required test input num

bers for the program in CHIP3 and the outputs wereacquired. In the test setup, the output

port Acknowledge signal is tied to the output Request. The output data is strobed into

the tester on the rising edge of the two signals. The input data was sent in at a constant

rate determined by a setting on the tester. The time between input samples was just cho

sen to exceed the longest time required for the processor to do its computation between

input instructions.

All of the predicted results of the tests were observed at the output port. The

mistakes in the assembly code mentioned above caused branch conditions to occur late

due to pipelining effects as predicted (This showed up in the chip simulations also). The

multiplication tests showed a single LSB error as predicted by the simulation also.

3. Interface to the Outside World

Clearly, interfacing the DSP input or output port to another self-timed device

is very simple. The handshake signals are just connected. For external clocked devices

however, a diiferent strategy is needed. Figure 8.13 shows one way of making the con

nections. At the input side, for a signal processing application, there is typically samples

that arrive synchronized to some sample clock. The clock is fixed for real time processors.

Connecting this clock to the ReqiJN signal causes the transfers to occur in sync with the

sample clock, and there is no checking done to ensure that the processor is ready since the

AckiJN signal is ignored. The user must ensure that the program execution time between

input instructions is shorter than the period of the sample clock. The output port could

be hooked to a host processor which accepts interrupt signals. The Reqo-OUT signal is

tied to the interrupt pin and the acknowledge signal from the host clocks in data and is

connected to Acko-OUT. Alternately, the same sample clock could be used to clock the

register in the external device because having the FIFOs present on the DSP chip makes

the exact time of the transfer of data after an I/O instruction unimportant as long as it

occurs before the end of a sample period. As the figure shows, there is no timing clock

required for the DSP.

210

The question often arises about how to evaluate the execution time of a DSP

program when the exact instruction cycle times are not known in advance. This can be

problem in both clocked and self-timed systems when the program is data-dependent. For

example, in a signal processing program, the convergenceof an adaptive filter might trigger

some other event. Since the convergence time is not known a priori, the execution time is

also unknown. For a self-timed processor, there is added uncertainty due to the different

times of instructions and their data dependency. The data dependency helps in achieving

an average execution time but it is by no means a requirement of the design. A self-timed

adder cell can easily be made to generate a data valid signal always after the worst-case

carry propagation time (the time required for using the adder in a clocked situation). As

far as the different instruction times, the user can always set an upper bound by using

worst case times for the various instructions. So, the conservative estimate for a self-timed

DSP execution time essentially matches that of a clocked processor. Beyond that, the user

may take advantage of the average times in a manner suitable to the application.

external device I

sample clock

external device

Interrupt

Acknowledge

Figure 8.13: Interfacing the self-timed DSP to external devices.

211

4. Summary

Three programs were written to test the operation of the self-timed programmable

signal processor chip. The first was a simple FIR filter which makes extensive use of the

multiplier. The second program implements an IIR filter and it combines shift and mul

tiply operations. The third program tests various other functions of the DSP including

branch operations. The single precision output of the multiplier causes minor errors in the

response of the filter chips, however these were predicted by simulations. The IIR filter

exhibits some limit-cycle behavior which was not originally known due to limitations of

running the chip level simulator for a large number of cycles. The third chip functions

agreed with the simulations exactly.

The timing signal outputs of the self-timed DSP illustrate the differences be

tween this type of circuit and normal clocked systems. Depending on whether a shift or

multiply operation is performed, the cycle time adjusts to the speed of the hardwarebeing

utilized. The DSP also functions properly over a wide range of power supply voltages, the

instruction speed varying with the supply, revealing the self-compensating nature of the

circuit operation.

212

Chapter 9

Conclusion

1. DSP Design

This work has demonstrated the design of a general purpose programmable Dig

ital Signal Processing integrated circuit that has asynchronous operation via the use of

self-timed circuitry. After examining the motivation for pursuing a design of this type, the

DCVSLlogic family was presented as a way of generating completion information in each

circuit. Using Signal Transition Graphs to describe the timing of each stage, handshaking

circuitry can be synthesized to ensure that timing sequence. DCVSL gates were assem

bled to make standard datapath macrocells while handshake circuits were synthesized to

interconnect the cells for a particular DSP architecture. Finally, three versions of the

programmable DSP were fabricated and measured in the laboratory.

When this project was begun, there was virtually no previous work on self-timed

programmable circuits. While several self-timed datapath cells such as a multiplier or

divider[83] were presented, there was no circuitry that contained feedback. Additionally,

many of the procedures for synthesizing handshake circuitry that were published contained

errors or incorrect assumptions. Therefore, a great effort went into just understanding the

problems of designing a self-timed DSP. The choice for partitioning the circuitry at the

macrocell level was made on the basis that the board-level timing problems of today will

be the chip-level timing problems of tomorrow. While the DSP chip discussed eventually

worked correctly in the laboratory, it is instructive at this point to look back and examine

the parts of the design that presented the greatest challenge and perhaps make some

decisions about certain aspects of the design itself.

213

1.1 Handshaking Logic Design

In the early versions of the DSP, extremely unreliable operation was observed.

Certain parts would function correctly for several seconds and then just stop, being locked

in a certain state. Any fluctuation in the power supply voltage also caused the lock-up to

occur. This was disappointing behavior for a circuit that is supposed to be more tolerable

of processing and supply variations. By analyzing the handshaking signals during lock

up, the state was defined and simulations were performed to try and re-create the events

leading to that state. The lock-up did not appear in any of the system simulations prior

to fabrication.

The source of the lock-up condition was isolated to a single latch design in the

controller handshaking circuit (ROMHS). It is part of the sequential handshake circuit

shown in Figure 7.10. The latch schematic is given in Appendix C in Figure C.87. The

pseudo-NMOS style SR-latch (with built in and gate on the S input, S = A.B) has the

characteristic that if A, B and R inputs are all high , then both Q and Q will go low

. Normally, the situation where all inputs are high should not occur. However, on the

actual chip, the situation did occurdue to some transient and caused the problem. In later

versions, only the Q output of the latch was used and a separate inverter was inserted to

derive Q from Q. The lock-up state disappeared and the operation of the DSP became

extremely reliable. In fact, the supply voltage could be continuously varied between 3.5V

and 7V without any interruption in the operation of the DSP.

The problem described above makes an important point about the design of asyn

chronous circuits. The logical equations that are obtained from the handshake synthesis

must be exactly implemented for all conditions of the inputs of the circuit. The comple

mentary outputs of the SR-latch in the controller handshaking became non-complementary

under a single condition which violated their desired relationship (Q = NOT Q). However

unlikely a certain input state may seem, the logic must be designed to function prop

erly for that state. The designer may get caught is a trap trying to meet several goals.

The desirability of having efficient, high-speed handshake circuits makes it tempting to

use shortcuts or circuits which are less rigorous in following the logic equations under all

conditions. However, since the handshake circuit elements are used in many places of

an asynchronous system and their operation is critical to the correct functioning of the

system, they should be designed to be "bullet-proof".

214

1.2 Delay Matching

The use of circuit delay matching in place of true self-timed operation had mixed

results and several conclusions can be drawn:

Macrocell Design

As explained in Chapter 6, there were places in the macrocell design where the

matching of circuit delays on an IC was exploited to reduce the circuitry required for

generating completion signals. This approach was observed to be safe since the delay

matching is done on a local level and the loading on the circuits being matched is well

defined within the macrocell. No problems were encountered in macrocells that used the

approach such as the barrel shifter.

Bet-ween Macrocells

At locations outside of a macrocell, some delay matching was done to avoid the

use of handshaking between the instruction pipeline and the datapath handshake circuits

as explained in Chapter 7. The use of delay matching between macrocells is seen as a

risky alternative to implementing correct handshaking. While it can be made to work, the

required delay time depends on the loading seen by the signals, which in turn depends on

the global routing of the chip. One of the assumptions made in the model of a self-timed

stage was that the registers which store information (data or control) be in proximity to the

computational block so that their outputs are stable before the computation is initiated.

The registers of the datapath macrocells were designed directly inside the cell boundary

resulting in a well defined loading and delay. The instruction pipeline registers however

were kept separate from the datapath. In an early layout floorplan for the DSP, all of the

instruction pipeline registers were placed in one portion of the chip layout. Wires from the

pipeline to the different datapath stages varied greatly in length. This caused the DSP

to operate incorrectly because of the long delays between the instruction pipeline and the

datapath cells using the control signals (The delays were gross and the error was caught

in chip simulations). While the layout was modified to match the original assumption

by placing each instruction pipeline register near the cells which it feeds, the loading is

still not easily known in advance. Therefore, delay matching techniques that compensate

for these wiring delays have to be quite conservative to work. A long chain of inverters

215

might be necessary to ensure that the delay is long enough, and of course the efficiency of

operation is reduced by the conservative approach.

The conclusion for avoiding delay matching between cells that are connected by

the global routing is related to the next section. In fact, by making more rigorous use of

handshaking, the problems mentioned above can be completely avoided. A register giving

completion information may be required in some cases.

1.3 Register Completion

In the initial phase of the DSP design, the lack of a self-timed circuit for a

register was not seen as a handicap. A plan was adopted where the handshake circuits

for the datapath would also control the instruction pipeline. Handshaking between the

registers in the instruction pipeline and datapath was not used. This in fact did cause

several problems to appear in the early versions of the chip. While the problems could

be overcome by adding some delay circuits, the solution is not as reliable and it is more

sensitive to the global routing as explained above.

Instruction Pipeline

The instruction pipeline registers are clocked by the Acki signals from each stage

in the datapath pipeline. In the model followed by the chip design, a register clocked by

Acki is assumed to have valid outputs before the next operation (usually raising the I signal

to initiate computation in the logic block) begins. In the case of a control signal affecting

the handshake circuit configuration itself, a potential race condition exists as was shown

in Figure 7.12. The solution used on the DSP design was shown in Figure 7.13, where a

delay was added between the Acki signal and the part of the handshaking circuit that is

affected by the control signal emerging from the instruction pipeline register clocked by

Acki. This was made to work, but the risk in such a design procedure is greater due to the

uncertainty in the loading on the control signal from routing wires. The design of the Reg

Delayblock in the figure can include the clock buffer for the register being matched along

with an actual register cell. However, in the actual instruction register being matched,

there are a number of register cells placing a load on the clock lines along with the load

from the routing wires between the outputs and their destinations. The routing wires are

created at the end of the design process. Thus, the risk involves correctly predicting the

216

loading and delay seen by the control signals.

The prediction of loading and delay from routing wires is precisely the kind of

activity that self-timing is supposed to eliminate. Therefore, the more rigorous way to

approach the problem with the control signals is simply to use handshaking between the

datapath and the control pipeline. A slight increase in the amount of circuitry required

for handshaking is necessary to handle a completion signal from the instruction pipeline

register. This would most likely be smaller than the Reg delay cell. The method however

demands a completion signal from the instruction register. A completion signal can be

generated at the register itself by using a "dummy" register cell, but of course it still

suffers from the unknown delay between the register and the rest of the circuitry. Delay

matching of this sort is a safer approach if the completion signal generated by the dummy

cell is routed to the same location as the control signal, equalizing the wiring delays for

the pair.

Another way of generating a completion signal for a register is to compare the

input and output of the register. When they are the same while the clock is high, then

the output is assumed to be valid[66]. However, the comparison might be necessary for

each bit of the register, depending on the application. For a single control signal affecting

the state of a MUX such as in the DSP datapath, the method is appropriate. There

is currently research being done to examine the effects of combining the handshaking

circuitry and the register into a single circuit, thus eliminating the need for a register with

completion[69].

I/O FIFO problem

In both the Input Port FIFO (Figure 7.15) and Output Port FIFO (Figure 7.16),

two registers are cascaded, the timing of which are controlled by a simple HS4circuit. The

registers form a self-timed pipeline. In the normal connection for a self-timed stage, the

Reqo signal is fed to the DCVSL I input and the DV is then used as the new Reqo signal.

For a FIFO, there is no computation circuitry, just the registers themselves. For this

connection, once again a form of delay matching was employed. The first FIFO register

outputs must be settled before the second FIFO register is clocked (plus the set-up time

of the second register). On some versions of the DSP, errors in the input port values were

observed because some the bits in the FIFO register were not settling in time. The use of

217

fast c-elements, which normally are chosen to increase the efficiency of the handshaking

circuitry, actually caused a problem in the FIFOs because they were so much faster than

the registers themselves.

To alleviate the problem, dummy register delays were placed in series with the

Reqo signal from the HS4 circuit to match the "computation" delay of the FIFO registers

as shown in Figure 7.17. The loading between the two registers in the FIFO is small

since they are in a common layout cell. The loading on the output of the second register

however, is subject to global routing constraints which makes it more uncertain.

1.4 Simulation Environment

The design of an asynchronous circuit typically places more demands on the

simulation environment than a synchronous circuit. The circuit operation is made to

follow a desired sequence but the actual speed of that sequence is not controlled. Unlike

a synchronous circuit where data are transferred only at clock edges, the operation of an

asynchronous circuit more like the carry chain of an adder. Within the constraints of

the handshaking protocol, the data ripples through the circuit at full speed. This gives

the operation more of an analog flavor. An absolute requirement for system simulation is

an event-driven simulator. The existence of feedback in the handshaking circuits causes

infinite loopsto occur in a simulatorwhere the nodevoltages are calculateduntil no further

changes are observed. The irsim simulator was useful because it combined event-driven

behavior with a pseudo-analog simulation of the actual devices and wire capacitances.

An RC model for each device is constructed from its sizing information and the layout

extracted capacitances. While this allowed system level simulations, several shortcomings

of the program were still apparent (when non-working chips arrived!). First, it did not

handle set-up time violations well on registers. Second, the accuracy of the timing itself

is not high due to the simple model used for each device.

Using a simulator such as spice for an entire chip design is not possible currently

due to the computation requirements. However, since it is really only the handshaking

circuits, whose operations are critical to the chip performance, a good simulation envi

ronment for asynchronous chip design would have a "mixed-mode" capability. The large

macrocells in the datapath of the DSP only introduce a delay in the handshaking signals.

It would be useful to be able to describe them behaviorally and do a detailed simulation

218

of only the handshaking circuitry.

2. Future Work

This work has shown promising results from the application of self-timed circuits

in digital integrated circuits. Much future work is necessary however for asynchronous

chips to take hold in the design community. Given the resources available, the fabrication

of the DSP presented here was done on a fairly standard 2/zm process. Since the problems

associated with global synchronization are really expected to occur at feature sizes below

Iftm, more data is necessary from asynchronous designs fabricated in the very latest

technologies. A good sign was that the speed of the processor built in 2\im CMOS was

comparable to clocked designs in the same process. So, while there may be no great

benefit for using self-timed circuits with current chip technology, there was no apparent

disadvantage in terms of processing power. This helps support the theory that when the

clock skews begin to dominate a clocked design, a superior asynchronous version can be

made which takes full advantage of the raw device speed.

In terms of the design methodology, a great deal of progress has been made in

defining a reliable path from system specifications to asynchronous circuits. More work

is needed however in the means for describing a desired series of operations for that

appropriate handshake circuit synthesis. It can still be a confusing process to describe

what one wants the circuit to do in terms of either a signal transition graph or guarded

command. Further, taking the generated logic and actually connecting in the rest of the

circuit with appropriate buffers, etc. can be error prone depending on the assumptions that

are made beforehand. A more streamlined method for this part of the design methodology

would be welcomed.

As with any new discipline, it takes time to become used to the idea of doing

things in the new way and experience to make the tasks easier. It is felt that, with the

great deal of research activity in the area of asynchronous circuit design currently taking

place, this design style will become very natural to future chip designers.

219

3. Speed Comparisons

A natural question that arises in the study of asynchronous circuits is, "What

is the speed advantage?" By avoiding the need for distributing a global clock, the design

methodology is simplified at the chip level and the time delays incurred by a global clock

can be used for computation. Additionally, an average versus worst-case instruction cycle

is achievable. Obviously, quantifying the actual improvement is very much circuit design

and application dependent. As an exercise though, some assumptions will be made in this

section in order to try to get an idea of the improvement when using self-timed circuits.

Our hypothetical processor is designed in a 3/z process and it is roughly 1cm

on a side. The instruction cycle rate is nominally 100MHz, so the instruction period is

lOnsec. For a self-timed macrocell connected to a handshaking circuit as explained in

Chapter 5, the overhead time for the each evaluation cycle is equal to 4 c-element delays

and 2 buffer delays (Equation 5.8), where the buffersareused to increase the drive between

the handshake circuit output and the DCVSL I signal inputs. A IpF load is assumed for

the buffer which means that T\pp = O.hnsec for a buffer that uses a cascade of gates,each

sized e larger than the previous (optimum). Using data from Table II in Chapter 2, one

gate delay is SSpsec. Assuming a c-element can switch in a single gate delay, the total

overhead time for handshaking is 0.5nsec for the buffer time plus 4 gate delays of S5psec,

or 0.84nsec. The efficiency of the system is 91.6% when the overhead is subtracted from

the clock period.

For a synchronous system, the clock non-overlap time is what subtracts from the

time to do computation. From Table II, it is estimated that 1.4nsec will be required for

non-overlap time for each clock phase. The efficiency ranges from 44% to 72% depending

on whether a two or four phase clock is used.

Therefore, an initial estimate based on comparing these efficiencies is that the

asynchronous system will be 30 to 100% faster. Taking into account the ability to exploit

data dependencies on circuit delay times in self-timed circuits implies that for some appli

cations the advantage over synchronous circuits will be even greater. Forreal comparisons,

time will tell as designs of both styles emerge from the manufacturing community.

220

Bibliography

[1] D.A. Huffman, "The Synthesis of Sequential Switching Circuits", J.Franklin Insti

tutes, March and April 1954, pp.161-190,275-303.

[2] D.B. Armstrong, A.D. Friedman, and P.R. Menon, "Design of Asynchronous Circuits

Assuming Unbounded Gate Delays", IEEE Trans, on Computers, vol. C-18, no. 12,

December 1969.

[3] A.S. Wojcik and K.-Y. Fang, "On the Design of Three-Valued Asynchronous Mod

ules", IEEE Trans, on Computers, vol. C-29, no. 10, October 1980.

[4] R.E. Miller, Switching Theory, John Wiley and Sons, Inc., New York (1965).

[5] Stephen H. Unger, Asynchronous Sequential Switching Circuits, John Wiley and Sons,

New York (1969).

[6] Gyula Mago, "Realization Methods for Asynchronous Sequential Circuits", IEEE

Trans, on Computers, vol. C-20, no. 12, March 1971.

[7] Jack B. Dennis, "Data Flow Supercomputers", Computer, November 1980, pp. 48-56.

[8] J.B. Dennis, G.A. Boughton and C.K.C. Leung, "Building Blocks for Data Flow

Prototypes", Proc. 1th Annual Symposium on Computer Architecture, May 1980, pp.

1-8.

[9] Robert G. Babb II, "Parallel Processing with Large-Grain Data Flow Techniques",

Computer, July 1984, pp. 55-61.

[10] I. Hartimo, K. Kronlof, 0. Simula, and J. Skytta, "DFSP: A Data Flow Signal Pro

cessor", IEEE Trans, on Computers, Vol. C-35, No. 1, January 1986, pp. 23-32.

221

[11] Edward A. Lee, "A Coupled Hardware and Software Architecture for Programmable
Digital Signal Processors", Ph.D. Thesis, University of California, Berkeley, UCB-

ERL Memorandum No. M86/54, June 18, 1986.

[12] Daniel M. Chapiro, "Globally-Asynchronous Locally-Synchronous Systems", Ph.D.

Thesis, Stanford University, October 1984.

[13] S.Y. Kung, "On Supercomputing with Systolic/Wavefront Array Processors", Pro

ceedings of the IEEE, Vol. 72, No. 7, July 1984, pp. 867-884.

[14] Kostas N. Oikonomou, "Ideal Arbiters: Analysisand Design", AT&T Technical Jour

nal, Vol. 66, Issue 2, March/April 1987, pp. 78-96.

[15] J. Hohl, W. Larsen, and L. Schooley, "Prediction of Error Porobability for Integrated

Digital Synchronizers", IEEE J. of Solid State Circuits, Vol. SC-19, no. 2, February

1982.

TECHNOLOGY SCALING:

[16] A. Reisman, "Device, Circuit, and Technology Scaling to Micron and Submicron

Dimensions", Proceedings of the IEEE, Vol. 71, No. 5, May 1983.

[17] C.K. Wang, "Switched Capacitor Signal Processing Circuits in Scaled Technolo

gies", ERL Memorandum, University of California, Berkeley, No. UCB/ERL M86/84,

November 3, 1986.

[18] Ping Ko, Private Communication, University of California, Berkeley, September 1987.

SYSTEM TIMING

[19] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley Publishers

(1980), Chapter 7.

[20] Motorola 68000 series Data books, Motorola, Inc. 1986.

[21] Peter Ruetz, Private Communication, November 1988.

INTERCONNECT AND TECHNOLOGY LIMITATIONS:

[22] J.D. Meindl and H.B. Bakoglu, "Optimal Interconnect Circuits for VLSI", Proceedings

of IEEE Intl. Solid State Circuits Conference, San Francisco, CA, February 1984, p.

164.

222

[23] W.S. Song and L.A. Glasser, "Power Distribution Techniques for VLSI Circuits", as

submitted to IEEE J. of Solid State Circuits, May 1985.

[24] W.R. Heller, W.F. Mikhail, and W.E. Donath, "Prediction of Wiring Space Require

ments for LSI", Journal of Design Automation & Fault Tolerant Computing, Vol. 2,

No. 2, May 1978, pp. 117-143.

[25] W. E. Donath, "Placement and Average Interconnection Lengths of Computer Logic",

IEEE Transactions on Circuits and Systems, Vol. CAS-26, No. 4, April 1979, pp. 272-

277.

[26] Y. Pauleau, "Interconnect Materials for VLSI Circuits - Part I", Solid State Technol

ogy, February 1987, pp. 61-67.

[27] Y. Pauleau, "Interconnect Materials for VLSI Circuits - Part II", Solid State Tech

nology, April 1987, pp. 155-162.

[28] Y. Pauleau, "Interconnect Materials for VLSI Circuits - Part III", Solid State Tech

nology, June 1987, pp. 101-105.

[29] H.B. Bakoglu, "Circuit and System Performance Limits on ULSI: Interconnections

and Packaging", Ph.D. Thesis, Technical Report No. G541-4, Stanford Electronics

Laboratories, Stanford University, October 1986.

[30] K.C. Saraswat and F. Mohammadi, "Effect of Scaling of Interconnections on the Time

Delay of VLSI Circuits", IEEE J. Solid State Circuits, Vol. SC-17, No. 2, April 1982,

pp. 275-280.

[31] Takayasu Sakurai, Approximation of Wiring Delay in MOSFET LSI, IEEE J. Solid

State Circuits, Vol. SC-18, No. 4, August 1983, pp. 418-426.

[32] P.W. Cook, S.E. Schuster, J.T. Parrish, V. DiLonardo, and D.R. Freedman, "1-

um MOSFET VLSI Technology: Part III - Logic Circuit Design Methodology and

Applications", IEEE J. Solid State Circuits, Vol. SC-14, No. 2, April 1979, pp. 255-

268.

[33] B.L. Crowder and S. Zirinsky, "1-um MOSFET VLSI Technology: Part IV - Metal

Silicide Interconnection Technology - A Future Perspective", IEEE J. Solid State

Circuits, Vol. SC-14, No. 2, April 1979, pp. 291-293.

223

DCVSL REFERENCES:

[34] W.R. Griffin, L.G. Heller, and J.A. HUtebeitel, "True/Complement NMOS-Rich

CMOS Logic Circuit", IBM Technical Disclosure Bulletin, Vol. 25, No. 11B, April

1983, pp. 6060.

[35] L.G. Heller, W.R. Griffin, "Cascode Voltage Switch Logic: A Differential CMOS

Logic Family", ISSCC Digest of Technical Papers, International Solid State Circuits

Conference, New York, February 1984.

[36] W.J. Craig, W.R. Griffin, and L.G. Heller, "CVS Logic Circuit with Decoupled Out

puts", IBM Technical Disclosure Bulletin, Vol. 27, No. IB, June 1984, pp. 657-658.

[37] W.J. Craig, J. A. HUtebeitel, "High Speed Cascode Voltage Switch Logic Circuit",

IBM Technical Disclosure Bulletin, Vol. 27, No. IB, June 1984, pp. 667-668.

[38] C.K. Erdelyi, W.R. Griffin, and Ralph D. Kilmoyer, "Cascode Voltage Switch Logic

Design", VLSI Design, Volume V., No 10, October 1984, pp. 78-86.

[39] C.K. Erdelyi, "Random Logic Design Utilizing Single-ended Cascode Voltage Switch

Circuit in NMOS", Proc. IEEE Custom Integrated Circuits Conf, Rochester, New

York, 1984, pp. 145-149.

[40] "Cascode Voltage Switch Logic", IBM Technical Disclosure Bulletin, Vol. 27, No.

10B, March 1985, pp. 6007.

[41] "Stabilizing Cascode Voltage Switch Logic", IBM Technical Disclosure Bulletin, Vol.

27, No. 10B, March 1985, pp. 6015.

[42] "Clocked Differential Cascode Voltage Switch Logic Circuit", IBM Technical Disclo

sure Bulletin, Vol. 27, No. 11, April 1985, pp. 6779.

[43] "Single Ended Cascode Voltage Switch Logic Circuit", IBM Technical Disclosure

Bulletin, Vol. 27, No. 11, April 1985, pp. 6789.

[44] "Pseudo-Clocked Cascode Voltage Switch Logic System", IBM Technical Disclosure

Bulletin, Vol. 28, No. 6, November 1985, pp. 2536.

224

[45] William R. Griffin, Private Communication, October 1988.

OTHER LOGIC FAMILIES

[46] J.A. Pretorious, A.S. Shubat, and C.A.T.Salama, "Latched Domino CMOS Logic",

IEEE J. Solid State Circuits, Vol. SC-21, No. 4, August 1986, pp. 514-522.

[47] Shih-Lien Lu, "Implementation of Iterative Networks with CMOS Differential Logic",

IEEE J. Solid State Circuits, Vol. 23, No. 4, August 1988, pp. 1013-1017.

[48] Timothy A. Grotjohn and Bernd Hoefflinger, "Sample-Set Differential Logic (SSDL)

for Complex High-Speed VLSI", IEEE J. Solid State Circuits, Vol. SC-21, No. 2,

AprU 1986, pp. 367-369.

[49] R.H. Krambeck, CM. Lee, and H.S. Law, "High-Speed Compact Circuits with

CMOS", IEEE J. Solid State Circuits, Vol. SC-17, No. 3, June 1982, pp. 614-619.

[50] N.F. Goncalves, and H.J. De Man, "NORA: A racefree Dynamic CMOS Technique

for Pipelined Logic Structures", IEEEJ. Solid State Circuits, Vol. SC-18, No. 3, June

1983, pp. 261-266.

DCVSL SYNTHESIS PROGRAM ("ntree" reference)

[51] Randal E. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation",

IEEE Transactions on Computers, Vol. C-35, No. 8, August 1986, pp. 677-691.

[52] C Y. Lee, "Representation of switching circuits by binary-decision programs", Bell.

Syst. Tech Journal, Vol. 38, July 1959, pp. 985-999.

DESIGN AND LAYOUT OF DCVSL:

[53] Kan M. Chu and David I. Pulfrey, "Design Procedures for Differential Cascode Volt

age Switch Logic", IEEE J. Solid State Circuits, Vol. SC-21, No. 6, December 1986,

pp. 1082-1087.

[54] P. S. Hauge, M. Schlag, C. K. Wong, and E. J. Yoffa, "Method for Improving Cascode-

Switch Macro Wirability", IBM Technical Disclosure Bulletin, Vol. 27, No. 9, Febru

ary 1985, pp. 5235-5239.

225

[55] M. D. F. Schlag, E. J. Yoffa, P. S. Hauge, and C K. Wong, "A Method for Improving
Cascode-Switch Macro Wirability", IEEE Trans, on Computer-Aided Design, Vol.

CAD-4, No. 2, April 1985, pp. 150-155.

[56] Peter S. Hauge and EUen J. Yoffa, "ACORN: A system for CVS macro design by tree

placement and tree customization", IBM J. Research and Development, Vol. 28, No.

5, September 1984, pp. 596-602.

ASYNCHRONOUS DESIGN

[57] David Misunas, "Petri Nets and Speed Independent Design", Communications of the

ACM, Volume 16, Number 8, August 1973, pp. 474-481.

[58] S.Y. Kung, R.J.Gal-Ezer, "Synchronous versus Asynchronous Computation in Very

Large Scale Integrated (VLSI) Array Processors", SPIE, Real Time Signal Process

ing^! 341, 1982, pp. 53-64.

[59] Tam-Anh Chu, "Synthesis of Self-Timed VLSI Circuits from Graph-theoretic Speci

fications", Proceedings of ICCD, 1987.

[60] Tam-Anh Chu, "Synthesis of Self-Timed VLSI Circuits from Graph-theoretic Spec

ifications", Ph.D. Thesis, Dept. of EECS, Massachusetts Institute of Technology,

MIT/LCS/TR-393,June 1987.

[61] Tam-Anh Chu, "Design of VLSI Asynchronous FIFO Queues for Packet Communica

tion Networks", Proceedings of the International Conference on Parallel Processing,

1986, pp. 397-400.

[62] Tam-Anh Chu, Lance A. Glasser, "Synthesis of Self-timed Control Circuits from

Graphs: An Example", Proc. IEEE 1986 ICCD, October 1986, pp. 565-571.

[63] E.W. Dijkstra, "Guarded Commands, Nondeterminancy and Formal Derivation of

Programs", Communications of the ACM IS(8), August 1975, pp. 453-457.

[64] T. Meng, R.W. Brodersen, and D.G. Messerschmitt, "Asynchronous Logic Synthesis

for Signal Processing from High Level Specifications", IEEE ICCAD 81 Digest of

Technical Papers, November 1987.

226

[65] T. Meng, G.M. Jacobs, R.W. Brodersen, and D.G. Messerschmitt, "Asynchronous

Processor Design for Digital Signal Processing", presented at IEEE ICASSP 1988,

New York, New York, April 1988.

[66] T. Meng, "Asynchronous Processor Design for Digital Signal Processing", Ph.D. The

sis, University of California, Berkeley, December 1988.

[67] M. R. Greenstreet, J. Straunstrup, and T. E. Williams, "Designing Iterative Self-

Timed Circuits", IEEE Transactions on Computers, 1988.

[68] G.M. Jacobs, "Self-Timed Integrated Circuits for Digital Signal Processing Appli

cations", presented at IEEE VLSI Workshop 1988, Monterey, California, November

1988. (also pubUshed in VLSI Signal Processing, Vol III, IEEE Press, New York

(1988))

[69] Anton Stoelzle, Private Communication, University of California, Berkeley, Septem

ber 1989.

STATE GRAPH TO LOGIC CIRCUITS

[70] R. K. Brayton, G. Hachtel, C T. McMuUen and A. L. Sangiovanni-VincenteUi, Logic

Minimization Algorithms for VLSI Synthesis, Kluwer Acedemic Publishers, 1984.

[71] R. K. Brayton, R. L. RudeU, A. L. Sangiovanni-VincenteUi and A. Wang, "MIS : A

Multi-Level Logic Synthesis System", IEEE Trans, on Computer Automated Design,

1987.

LAGER, MACROCELL BASED DESIGN TOOLS

[72] Stephen P. Pope, "Automatic Generation of Signal Processing Integrated Circuits",

Ph.D. Thesis, University of California, Berkeley, UCB/ERL Memorandum No.

M85/11, February 22, 1985.

[73] P.A. Ruetz, R. Jain, C.-S. Shung, J.M. Rabaey, G.M. Jacobs, and R.W. Brodersen,

"Automatic Layout Generation of Real-Time Digital Image Processing Circuits", pre

sented at the IEEE Custom Integrated Circuits Conference, Rochester, NY, May 1986.

[74] R.W. Brodersen et. al., "LagerlV CeU Library Documentation", Electronics Research

Laboratory, University of California, Berkeley, June 23, 1988.

227

CLOCK SKEW AND DISTRIBUTION

[75] Mehdi Hatamian and Glenn L. Cash, "High Speed Signal Processing, PipeUneing,

and VLSI", Proceedings of IEEE Int. Conference on Acoustics, Speech, and Signal

Processing, Tokyo, Japan, AprU 1986, pp. 1173-1176.

[76] Mehdi Hatamian and Glenn L. Cash, " A 70MHz 8-bit X 8-bit Parallel PipeUned

MultipUer in 2.5-um CMOS", IEEE J. Solid State Circuits, Vol. SC-24, No. 4, August

1986, pp 505-513.

[77] D.K. Jeong, G. BorrieUo, D.A. Hodges, and R.H.Katz, "Design of PLL-Based Clock

Generation Circuits", IEEEJ. SolidState Circuits, Vol. SC-22, No. 2, AprU 1987, pp

255-261.

MULTIPLIERS

[78] M.D. Ercegovac and J.G. Nash, "An Area-Time Efficient VLSI Design of a Radix-

4 MultipUer", Proceedings of IEEE International Conference on Computer Design,

1983, pp 684-687.

[79] J.Y. Lee, H.L. Garvin, and CW.Slayman, "A High-Speed High-Density SUicon 8x8-

bit Parallel MultipUer", IEEE J. Solid State Circuits, Vol. SC-22, No. 1, February

1987, pp. 35-40.

[80] T.G. NoU, D. Schmitt-Landsiedel, H. Klar, and G. Enders, "A PipeUned 330-MHz

MultipUer", IEEE J. Solid State Circuits, Vol. SC-21, No. 3, June 1986, pp. 411-417.

[81] D.A. HenUn, M.T.Fertsch, M. Mazin, and E.T. Lewis, "A 16-bit X 16-bit PipeUned

MultipUer MacroceU", IEEE J. Solid State Circuits, Vol. SC-20, No. 2, April 1985,

pp. 542-547.

[82] Luc De Vos, "Architectuur en Circuit-Ontwerp Van Arithmetische Bouwblokken voor

Hoge-Snelheid Digitale Signaalverwerking", Masters Thesis, KathoUkek Universiteit

Leuven, Belgium, 1984-85.

SELF-TIMED MACROCELLS

[83] T.E. WiUiams, M.Horowitz, R.L. Alverson, and T.S. Yang, "A Self-Timed Chip for

Division", Advanced Research in VLSI, Proc. of 1981 Stanford Conference, March

1987, pp. 75-96.

228

Appendix A

ntree Program Documents

1. Manual Page

The manual page for the ntree program is provided below for reference.

NTREE(l)

ntree - is a program that aids in the design of logic gates that are implemented
using the Differential Cascode Voltage Switch Logic topology. This topology
generates both the logic function and its complement. It expects complemen
tary inputs, i.e. inputs coming from another dcvsl stage. The twooutput nodes
are precharged using P-channel devices and then a tree of N-channel devices
performs the actual logical operation. Ntree generates the tree of N-channel
transistors.

SYNOPSIS

ntree inputfile

DESCRIPTION

Ntree reads a logical function expression from the input file and generates
a spice file output that contains the necessary transistors to implement that
expression in DCVSL technology. The format of the input file is discussed
below. Ntree forms a directed graph representing the logic function and then
reduces the graph so that it contains the minimum number of vertices (and
therefore transistors). Since the ordering of the inputs in the logic expression
affects the number of vertices in the graph for certain logic functions, ntree
tries allof the different orderings and chooses the graph with the least number
of vertices. This exhaustive search technique is not adequate for a large number
of inputs, so the number of independent input variables allowed in the logic
expression is Umited to 8. This is consistent with CMOS design, where a large
number of transistors in series can cause speed degradation. The output file
contains the transistors of the NMOS tree for a DCVSL gate. The pre-charge
devices, output inverters, and optional feedback devices for static gates must
be added by the user after ntree is run.

229

INPUT FILE FORMAT

For lack of a sophisticated parser, the input format does not match that of
programs such as eqntott. Instead, the logic operations are specified in a Usp-
Uke format. Each operation must be surrounded by parentheses. The number
of inputs for each operation is unrestricted and all inputs must be numerical
and greater than zero. Empty Unes are ignored in the input file and comments
are any Unes that begin with the character '#'. An example of an input file
for ntree is shown below:

This is a comment
(example gate 1 (or (and 12 3) (nor 3 4) (xor 1 3) (not 2)))

The allowed logical operations are: and, or, nand, nor, xor, xnor, and not.
Only the not operation may have less than two operands. The information
between the first and second left parenthesis in the input can be whatever the
user desires to describe the gate.

OUTPUT FILES

The SPICE output file is written to filename.spt. It contains the logic ex
pression being implemented, a mapping of the input numbers to circuit node
numbers, and finally a series of MOSFET Unes with the actual transistors in
the tree. Ntree writes information to the standard output also. (Use re
directed I/O to save this information to a file.) The logical function expression
is echoed to the output along with the number of unique inputs (depth). The
program prints out the number of vertices in the graph along with the number
of series connected devices in the tree for the best input orderings. Program
heuristics wiU choose trees with sUghtly more vertices in preference to those
that contain less vertices, but more transistors in series, as a speed considera
tion. The program also prints to the standard output a textual representation
of the final function graph using tabbing to indicate branches.

REFERENCES

"Graph Based Algorithms for Boolean Function Manipulation", by Randal E.
Bryant, IEEE Transactions on Computers, Vol. C-35, No. 8, August 1986.

AUTHOR

Gordon Jacobs.

230

2. Example

Below is an example of running ntree.
Input file

• ALU logic circuits
t Complementation is accomplished by muxes on input
f choosing betveen 1, 1*. 2, 2*
t Inputs: 1,2
f Control: 3,4 -> binary coded:
f 0 not-used

t 1 or

t 2 and

t 3 xor

t

t

(logic outputs
(or

(and 3 (not 4) (or 1 2))
(and (not 3) 4 (and 1 2))
(and 3 4 (xor 1 2))

)

)
f

SPICE Output File created

IHOS Tree for (logic outputs)

« Logic Expression: (or (and 3 (not 4) (or 12))
(and (not 3) 4 (and 1 2)) (and 3 4 (xor 12)))
*

* This file generated by ntree on Tue Jul 14 14:34:57 1987
*

* IQDE ASSIGIHEITS:

* GID » 0 Vdd » 100

* Pbulk = 102 Ibulk » 101

* (Complement of)Input lumber 1 is node (11) 1
* (Complement of)Input lumber 2 is node (12) 2
* (Complement of)Input lumber 3 is node (13) 3
* (Complement of)Input lumber 4 is node (14) 4
* F.OOT » 21 F_BAR_0UT » 20
•

* D G S B

ml 24 11 0 101 IHOS

m2 20 12 24 101 IHOS

m3 26 2 24 101 IHOS

m4 20 13 26 101 IHOS

m5 21 3 26 101 IHOS

m6 28 1 0 101 IHOS

m7 26 14 28 101 IHOS

m8 29 4 28 101 IHOS

m9 26 12 29 101 IHOS

mlO 30 2 29 101 IHOS

mil 21 13 30 101 IHOS

ml2 20 3 30 101 IHOS

end

231

Information sent to stdout

CVSL Logic Hinimization Program by Gordon Jacobs
Rev 1.0

Date: Tue Jul 14 14:34:57 1987

********* IIPUT LISTIIG ************ Input File: alu5 ****

(logic outputs
(or

(and 3 (not 4) (or 1 2))
(and (not 3) 4 (and 1 2))
(and 3 4 (xor 1 2))

)

)

Gate lame: logic outputs
•umber of unique inputs (depth) a 4

IIPUTS: 3 4 12

a 4For indices: 12 3 4 G » 10 L a <

For indices: 13 2 4 G a 9 L a 4

For indices: 2 3 14 G a 9 L a 3

For indices: 4 2 13 G a 8 L a 3

G a> number of vertices. L «> number of series devices.

Gmin a 8/L a 3. Lmin a 3/G a 8

FUICTIOI GRAPH:

-> IIPUT ORDERIIG: 14 2 3

Vertex: IIPUT 1 index * 1 id a i

'with low<0) side —
Vertex: IIPUT 2 index a 3 id a 2

'with low<0) side —
I ***** ZERO *****
'with high(l) side --
I Vertex: IIPUT 3 index a 4 id a 4
I 'with loo(0) side ~
J I ***** ZERO *****
I 'with high(l) side —
I I ***** OIE ******

with high(l) side —
Vertex: IIPUT 4 index » 2 id a 6

'with low(O) side —

I Vertex: IIPUT 3 index a 4 id a 4
'with high(l) side —

Memory used:
Vertices used a

Lists used = 8

Trees used a 32

*** end ***

18

Vertex: IIPUT 2 index a 3 id

'with low(O) side —

Vertex: IIPUT 3 index

with high(l) side —
Vertex: IIPUT 3 index

'with low(O) side ~
| ***** OIE ******
'with high(l) side —
I ***** ZERO *****

a 4 id a 4

4 id

232

3. Program Source Code

The ntree program source code is too lengthy for inclusion in this document. The
code can however be obtained by contacting:

Professor Robert W. Brodersen

University of California, Berkeley
Department of EECS, Cory Hall

Berkeley, California 94720

233

Appendix B

Assembler Program Documents

1. Manual Page for asm

The manual page for the asm program is provided below for reference.

ASM(l)

NAME

asm - convert asynchronous processor assembly code into program ROM data
for THOR simulations.

SYNOPSIS

asm [-dsh] file

DESCRIPTION

asm is a program that converts an asm file (fUe.asm) written for the asyn
chronous digital signal processor datapath into program ROM code that is
used by the THOR simulator for simulating the signal processing program on
a model of the actual hardware. A total of three output files are created. The
file file,out contains general information about the assembler actions. For each
instruction, the assigned program counter address is shown along with a table
of the various control signals that the horizontal micro-code for the instruction
contains. The RAM Read and Write addresses are given first with an empty
Write address meaning that the write is disabled for that instruction cycle.
Next, the number of bits that the barrel shifter shifts left is shown. If the
number is followed by a V (period), then sign extension is indicated. The
next entry of the table is the OP code which shows which logical or arithmetic
operation the ALU performs along with the state of the two signals which zero
the A-input (zA) and the B-input (zB) of the ALU. The B-input is from the
Accumulator. The IN and OUT table entries indicate whether that instruction
will read from/write to the input/output ports respectively. The WRSEL field
tells whether the RAM is written from the low order Accumulator bits(2), the

235

high order Accumulator bits(l) or the local feedback path(O). The MULT?
field tells when the multiplier is selected in place of the barrel shifter for the
second stage of the datapath. Finally, the CROM entry gives the address of
the coefficient ROM that is used for a multiplication if it exists.

At the bottom of the JUe.out file, is a listing of the hash table entries for the
assembler. These are filled in by the assembler for all EQUate statements and
labels. They give the final address of the labels and symbolic names.

The twooutput files file.ROMJ, and file.ROMS are each intended to be read
by the THOR simulator for the asynchronous processor. Because the Program
ROM is 40-bits wide and THOR can only work with 32-bit numbers, two
files are created. file.ROMJL contains the lower 32-bits of the program ROM
entries in Hexidecimal format. file.ROMJS contains the upper 8-bits of the
program ROM entries. Each file begins with a line of the form:

%num

where num is the number of instructions to follow.

OPTIONS

The command line switches are:

-d
Generate debug information. Usually should not be used by normal users.

-s

Set the warnings flag. Prints out extra warnings about the assembly code.
-h

Prints out usage.

SEE ALSO

ROMconvert(l)

BUGS

Warnings not implemented yet.

AUTHOR

Gordon Jacobs, University of California, Berkeley (jac@zion.berkeley.edu)

236

2. Manual Page for ROMconvert

ROMconvert(l)

NAME

ROMconvert - convert THOR simulator files of Program ROM code for the
asynchronous processor into a Lager parameter file that can be used to generate
the physical ROM.

SYNOPSIS

ROMconvert file [.asm]

DESCRIPTION

ROMconvert is a program that converts the THOR simulation files contain
ing- program ROM code for the asynchronous processor into parameter files
that the Lager system can use to generate the actual physical program ROM.
The input file name file [.asm] is used as a root for the files that are actually
read, which are produced with asm. The files file.ROM-L and file.ROMS are
read and the parameter file for Lager is written to the standard output.

OPTIONS

No command line options.

SEE ALSO

asm(l), LagerlV documentation Manuals.

BUGS

None to my knowledge.

AUTHOR

Gordon Jacobs, University of California, Berkeley (jac@zion.berkeley.edu)

237

3. Example

Below is an example of running the assembler:
Input file

/*
* FILTER ASSEMBLY CODE FOR FIR Filter in "fir_design2"
* (using multiplier)
*

*/

/•♦*******•****»♦•*»****♦******♦*******•••****♦**•»*•»**************#**

Inpnt is stored in RAH location 01.
All Coefficients are in CROM.

State Variables: Ra» Location 0-15 are locations for delay line
Coefficients: CROR locations 0-7 are eight required coefficients.
Since the filter is linear phase, the impulse response is mirrored.

••ft***/

EQU del.0 0
EQU del_l 1
EQQ del.2 2
EQU dol_3 3
EQU del_4 4
EQU del_S S
EQU del.6 6
EQU del.7 7
EQU del_8 8
EQU del.9 9
EQU del.10 10
EQU del.11 11
EQU del_12 12
EQU del.13 13
EQU del_14 14
EQU del.15 15

EQU cl 0
EQU c2 1
EQU c3 2
EqU c4 3
EQU c5 4

EQU c6 5

EQU c7 6
EQU c8 7

START

init: ace » 0;;

(del_0»acc) » 0;

(del.loe.ee) » 0;
(del_2*acc) » 0;
(del_3»acc) » 0;
(del_4aace) = 0;
(del_5=acc) «* 0;
(del_6=acc) =» 0;
(del_7=acc) » 0;
(del_8=acc) = 0;

(del_9*acc) = 0;
(del_10=acc) :* 0;
(del_ll=acc) == 0;
(del_12«=acc) == 0;
(del_13=acc) '= 0;
(del_14=acc) •= 0;
(dol_15=acc) •* 0;
aec = ace;

aec = ace;

sample: ace = 0 I del_15*cl, (del.0 = in)

238

(del.l5adel.l4)*c2;
(del.l4adel_13)*c3;
(del_13adel.l2)*c4;
(del.l2adel.ll)*c5;
(del.lladel.l0)*c6;
(del_10=del.9)*c7;
(del_9adel_8)*c8;
(del.8adel.7)*c8;
(del.7adel.6)*c7;
(del.6adel_5)*c6;
(del_5adel.4)*c5;
(del_4»del_3)*c4;
(del.3adel.2)*c3;
(del.2adel.l)*c2;
(del_l»del_0)*el;
ace;

ace a ace + i

ace a ace ♦ <

ace a ace ♦ '

ace a ace + <

ace a ace + <

ace a ace +

aec a aec ♦ '

ace a ace ♦ '

ace a ace +

ace a ace ♦

ace a aec +

aec a aec +

aec a aec +

aec a ace +•

aec a ace ♦

(outajace) a ;
goto 1sample;

239

Output File created (file.out)

ASSEMBLER OUTPUT

PC Raddr Uaddr shift OP II OUT URSEL HULT? CROH

0: 0 0 + zAzB 0 0 0 1

1: 0 0 0 ♦ zAzB 0 0 1

2: 0 1 0 + zAzB 0 0 1

3: 0 2 0 + zAzB 0 0 1

4: 0 3 0 + zAzB 0 0 1

5: 0 4 0 + zAzB 0 0 1

6: 0 5 0 + zAzB 0 0 1

7: 0 6 0 ♦ zAzB 0 0 1

8: 0 7 0 ♦ zAzB 0 0 1

9: 0 8 0 +• zAzB 0 0 1

10: 0 9 0 + zAzB 0 0 1

11: 0 10 0 + zAzB 0 0 1

12: 0 11 0 + zAzB 0 0 1

13: 0 12 0 + zAzB 0 0 1

14: 0 13 0 +• zAzB 0 0 1

IS: 0 14 0 + zAzB 0 0 1

16: 0 15 0 + zAzB 0 0 1

17: 0 0 "• zA 0 0 0 1

18: 0 0 + zA 0 0 0 I

19: IS 0 0 1 zB 1 0 0 Y 0

20: 14 IS 0 +• 0 0 0 Y 1

21: 13 14 0 + 0 0 0 Y 2

22: 12 13 0 + 0 0 0 Y 3

23: 11 12 0 + 0 0 0 Y 4

24: 10 11 0 + 0 0 0 Y 5

PC Raddr Uaddr shift OP II OUT URSEL KULT? CRON

0 0

0 0

0 0 0 Y 7

0 0 0 Y 6

0 0 0 Y 5

0 0 0 Y 4

0 0 0 Y 3

0 0 0 Y 2

0 0 0 Y 1

0 0 0 Y 0

25: 9 10 0 ♦

26: 8 9 0 +

27: 7 8 0 +

28: 6 7 0 +

29: 5 6 0 +

30: 4 5 0 ♦

31: 3 4 0 +

32: 2 3 0 +

33: 1 2 0 +

34: 0 1 0 +

35: 0 0 + zA

36: Branch to (19)

0 1

lotes: Blank Uaddr means Urite Enable OFF

"." a> shifter sign extension 01
•i-H 3> one'8 complement on ALU A-input
"zB" »> zero B (accumulator) input to ALU
"zA" a> zero A (RAH) input to ALU
URSEL»2 =»> Urite LOU- order bits of accumulator

HASH TABLE EITRIES

Location 80

Location 96

Location 97

Location 98

Location 99

Location 100

Location 101

Location 102

Location 103

Location 104

Location 105

Location 145

Location 146

lame a init Value a o

lame a del.0 Value a o

lame a del.l Value = 1

lame = del_2 Value = 2
lame a del_3 Value = 3

lame = del.4 Value = 4

lame = del_5 Value = 5

lame a del_6 Value a 6

lame = del.7 Value = 7

lame a del_8 Value =» 8
Home a del.9 Value = 9

lame a del_10 Value a 10
lame a del_ll Value a u

240

Location 147: lame

Location 148: lame

Location 149: lame

Location ISO: lame

Location 151: lame

Location 152: lame

Location 153: lame

Location 154: lame

Location 155: lame

Location 156: lame

Location 157: lame

Location 158: lame

Location 286: lame

del_12 Value a 12

del.13 Value a 13
del.14 Value a 14

del.15 Value a is
cl Value a 0

c2 Value a l

c3 Value a 2

c4 Value a 3

c5 Value a 4

c6 Value a 5

c7 Value a 6

c8 Value a 7

sample Value a 19

241

ROM Code File created (file.ROM-L)

ROH CODE FROH FILE: fir2.asm

X37

00300000

10304000

10304080

10304100

10304180

10304200

10304280

10304300

10304380

10304400

10304480

10304500

10304680

10304600

10304680

10304700

10304780

00100000

00100000

le60000f

1600078a

1600070d

1600068c

1600060b

1600058ft

16000509

16000488

16000407

16000386

16000305

16000284

16000203

16000182

16000101

16000080

20104000

50000013

242

Result of running ROMconvert:

»»•

;;; Parameter File for Program ROH of fir2.asra

(minteras 37)
(outwidth 40)

(invidth 8)
(in-plane
(
"00000000"

"00000001"

"00000010"

"00000011"

"00000100"

"00000101"

"00000110"

"00000111"

"00001000"

"00001001"

"00001010"

"00001011"

"00001100"

"00001101"

"00001110**

"00001111"

"00010000"

"00010001"

"00010010"

"00010011"

"00010100"

"00010101"

"00010110"

"00010111"

"00011000"

"00011001"

"00011010"

"00011011"

"00011100"

"00011101"

"00011110"

"00011111"

"00100000"

"00100001"

"00100010"

"00100011"

"00100100"

)
)

(out-plane
(
"0000000000000000001100000000000000000000"

"0000000000010000001100000100000000000000"

"0000000000010000001100000100000010000000"

"0000000000010000001100000100000100000000"

"0000000000010000001100000100000110000000"

"0000000000010000001100000100001000000000"

"0000000000010000001100000100001010000000"

"0000000000010000001100000100001100000000"

"0000000000010000001100000100001110000000"

"0000000000010000001100000100010000000000"

"0000000000010000001100000100010010000000"

"0000000000010000001100000100010100000000"

"0000000000010000001100000100010110000000"

"0000000000010000001100000100011000000000"

"0000000000010000001100000100011010000000"

"0000000000010000001100000100011100000000"

"0000000000010000001100000100011110000000"

"0000000000000000000100000000000000000000"

243

"0000000000000000000100000000000000000000"

"0000000000011110011000000000000000001111"

"0000000100010110000000000000011110001110"

"0000001000010110000000000000011100001101"

"0000001100010110000000000000011010001100"

"0000010000010110000000000000011000001011"

"0000010100010110000000000000010110001010"

"0000011000010110000000000000010100001001"

"0000011100010110000000000000010010001000"

"0000011100010110000000000000010000000111"

"0000011000010110000000000000001110000110"

"0000010100010110000000000000001100000101"

"0000010000010110000000000000001010000100"

"0000001100010110000000000000001000000011"

"0000001000010110000000000000000110000010"

"0000000100010110000000000000000100000001"

"0000000000010110000000000000000010000000"

"0000000000100000000100000100000000000000"

"0000000001010000000000000000000000010011"

>
>

4. Program Source Code

The asm and ROMconvert program source code is too lengthy for inclusion in
this document. The code can however be obtained by contacting:

Professor Robert W. Brodersen

University of California, Berkeley
Department of EECS, Cory Sail

Berkeley, California 94720

244

Appendix C

Circuit Detail

1. Barrel Shifter

1.1 Floorplan

The floorplan for the barrel shifter is described below. The tiling starts from the
bottom-left side of the shifter as shown in Figure 6.1 and proceeds to the right for each
new cell and to the top for each new row.

1. Place bshifter.left.mag
2. Add-right DVc.mag, (26) DVa.mag, (3) DVb.mag
3. Add-right bshift.ctldpl.mag
4. New Row:

5. New Row:

6. New Row:

7. New Row:

8. New Row:

9. New Row:

10. New Row:

11. New Row:

12. New Row:

13. New Row:

(32) buffer.bsh.mag
(32) 2inmux2.mag
(4) bchO —S.mag
(32) 2inmux2.mag
(8) bchO —4.mag
(32) 2inmux2.mag
(16) bchO - 2.mag
(32) 2inmux2.mag
(32) bchO - l.mag
(16) dff2.bsh.mag, bshifter.top3.mag

1.2 Miscellaneous Cells

The figures below show schematic diagrams for miscellaneous cells that make up

the barrel shifter and were not shown in Chapter 6. Transistor sizes are in A.

A block diagram for the shifter control slice is shown in Figure C.l. It contains

the gated buffers for the shifter control inputs and several other buffers. The names of

magic subcells are shown. Each control signal is gated by the Ibsh signal input so

that the DCVSL 2:1 MUX circuits used in the shifter core can be simplified as explained

in Chapter 5. Figure C.2 shows the schematic for a control input cntlJ.n2.mag which

245

Bshifter Ctl Slice

(to bshifter.top)
SE

CO
Gated Buffer

cO<

(cntljn2jnag)

i

cObar*———

Gated Buffer

(cntljnljnag)

c/* i

clbar<

Gated Buffer

(cntljnZjnag)

c2<

(Hoar *

a
Dual Buffer

(dual_buffer2.bsh.mag)

Ji

Gated Buffer
c3<

c3bar <•

(cniljnljnag)

CI

C2

Ibsh

C3

dvinl

dvin2

nor
—>

buffer
DVbsh

(2in_nor.bsh.mag) (buffer2.bsh.mag)

Figure C.l: Block diagram of control slice of barrel shifter.

246

ebar out]

ouQ

45/2

cbar

27/2

(cntl_iri2.mag)

Ibar

cntl_buffer.mag w
,in2

15/2

<<
11/2

^3
M

^6/2
ui2

gate

gated_buffer.mag

11/2

8/2

gate

Cntl

In

L^HSCh

Figure C.2: Control input schematic for barrel shifter.

contains two subcells. Data Valid signals from several bits of the shifter are brought

to the control slice where the final DV signal is produced. The signals dvinl and dvin2

shown in Figure C.l are active low. A simple NOR gate is used to generate DV and the

result is buffered beforebeing made available to the outside world. The schematics for the

NOR gate and buffer are shown below in Figures C.3and C.4. The Ibsh signal is buffered

2in_nor.bsh.mag

Figure C.3: 2-input NOR gate used in the barrel shifter control slice (bshift.ctldpl.mag).

by two parallel buffers each of which drives one half of the shifter MUXes. The schematic

for the buffer is shown in Figure C.5. The data bit outputs of the shifter are buffered by

the circuit shown in Figure C.6. Several cells are used to derive the completion signal for

247

buffer2.bsh.mag
*out

outbar

Figure C.4: Buffer cell used in the barrel shifter control slice to buffer DVbsh.

dual_buffer2.bsh.mag

Figure C.5: Buffer circuit used in the barrel shifter control slice to drive Ibsh.

248

the shifter. As explained in Chapter 6, not all outputs are examined for the data valid
condition due to the symmetry of the shifter circuitry. The DVb.mag cell is used to nor
the complementary outputs ofa DCVSL MUX in the last row, generating a DV signal for
that particular bit. The schematic for the cell is given in Figure C.8. For bits which not
used in determining DV, the cell DVa.mag is placed and it contains only a routing wire to
pass the data output to the edge of the shifter layout. Figure C.7 shows this symbolically.

Finally, the cell DVc.mag is used for a bit far from the control slice. It contains an extra

buffer to drive the capacitance of the long wire spanning the shifter feeding its output to

the control slice. The output of a single DVb cell and a single DVc cell become the dvinl

and dvin2 signals of the control slice which are sent to the nor gate generating the final

data valid signal. The bshifter.top3.mag cell contains a buffer for the Acki signal which

buffer.bsh.mag

(•r P 18/2

4

rl
j

11/2

3 26/2

1
20/2

->out

Figure C.6: Buffer circuit used in the barrel shifter at the data outputs.

DVa.mag

(Routing Only)

Figure C.7: Routing cell for shifter output bits which are not used in determining the DV

signal.

must drive the input data register cells. It also contains the sign extension logic. When

the SE control signal is asserted, then the upper 16-bits of the shifter input must be set

to the value of the sign bit of the data input. This is accomplished with an AND gate

and buffer as shown in Figure CIO. The transistor schematics for and-buffer.bsh.mag and

249

DVb.mag

j
- 0 10/2

o * • out

obar >~~~* 7/2

X X

-J* DVbbar

Figure C.8: nor gate used to derive the completion signal for a single bit in the shifter.

Ol

obar

DVcmag

j
0 10/2

>

> A

o2 •*ouQ.

(routing)
o3 • out3

•* owri
J J

r ^ 12/2 D 42/2

ii >

7/2

X "X

DVb 6or

9/2

X

36/2

X

Figure C.9: nor gate with buffer used to derive the completion signal for a single bit in

the shifter.

250

c1kdrv3.bsh.mag are shown in Figures C.ll and C.12. The routing between the MUX

ln(15]

out

(bshifter.top3 .mag)

inl inl
(andjjuffer.bshjnag)

out outbar

i r
toIn[16-31]

CK<—

CKbar<—

to Dreg's

out*

29/2

-^QZ^utoar
17/2 56/2

outbar

out
in

(clkdrv3 .bsfunag)

outbar

Figure C.10: Block diagram and schematics for bshifter.top cell.

inl >•

in2>-

and_bujfer.bsh.mag

j
rl D29/2 r

np.

J

ZL

J
^95/2

J-
56/2

•*out

J
rl ° 95/2

I • outbar
56/2

1_

—SE

—Acki

Figure C.ll: and gate with buffer used in the bshifter top cell for sign extension logic.

rows of the barrel shifter is accomplished by four cells. These contain routing wires only

as symbolically represented in the next four figures. The number of rows over which the

251

clkdrv3.bsh.mag

j
rl D 28/2

}
17/2

X

r P95/2

56/2

X

->out

r P 95/2

4 56/2

X

outbar

Figure C.12: Clock driver circuit used in barrel shifter top cell to buffer input register

clocks.

routing extends is the last number in the name of the cell. So, for example, 32 of the
bchO-l.mag cells are required but only 16 of the bch0-2.mag cells are required for the 32

bit wide shifter.

bchO-Lmag

(Routing Only)

Figure C.13: Routing cell between input register and row 1of the MUXes in the barrel

shifter.

bch0-2.mag

(Routing Only)

Figure C.14: Routing cell between MUX rows 1 and 2 in the barrel shifter.

252

bch0-4.mag

a a a I

(Routing Only)

Figure C.15: Routing cell between MUX rows 2 and 3 in the barrel shifter.

bch0-8.mag

n
(Routing Only)

Figure C.16: Routing cell between MUX rows 3 and 4 in the barrel shifter.

2. ALU

The figures below show schematic diagrams for miscellaneous cells that make up

the ALU and were not shown in Chapter 6. Transistor sizes are in A.

2.1 Bitslice

The block diagram of the ALU bitslice is shown in Figure C.17. Subcell names

are given in the figure. The A-input of the ALU is stored in a register during computation.

The register output can be held low to clear the A-input. Figure C.18 shows the schematic

for the flip-flop used in the register. The function to invert the A-input of the ALU is

performed with a DCVSL 2:1 MUX which selects either A or Abar to be fed to the following

circuitry. The schematic for the MUX is shown in Figure C.19. The schematics for both

the full adder {adderS.mag) and the gate performing the logical functions (logicS.mag)

were shown in Chapter 6. Depending on whether the ALU is doing an addition or logical

operation, the output of one of these two gates is passed on to the Accumulator. The

selection is made by another DCVSL MUX circuit which is shown in Figure C.20. The

Accumulator is incorporated into the ALU and the flip-flop which is used for it is shown in

Figure C.21. Data outputs are buffered by the buffer shown in Figure C.22. The B-input

253

ALU BIT SLICE
(alubit3.mag)

InputRegister

CUar allows zeroing Ain

Select Ain orAin*

Addition

(magic cell name)

AND.OR.XOR

Select Adderor Logic

Data Valid

Register

AND gate

Output to Bin

Ain

Dflipflop/

ZeroA
(dff9.alujnag)

2:1 mux

(2inmux6.mag)

CVS

Logic

Functions

(logic2.mag)

2:1 mux

(2inmux5a.mag)

Completion
Signal/
Branch

(DV.mag)

Accumulator

(dfflQjtltunag)

ZeroB

(cvs and.mag)
Buffer

{huffprnlu.mao\
ACCout

- Acki

- CO

- INV

- Cin

Control Signals

- C2

- C3

- (C2 + C3)*

•* DV

->BNZ

— Acko

CI

Figure C.17: Diagram of the ALU bitslice with magic subcell names.

254

clr>-

4/2

dff9.alu.mag

ril*CK \T CKbar
8/2 i_

TJ-

r-J 5/2
6/2

X

T7

CKbar CK

J
3 13/2

I

7/2

•>e

rl ° n/2

8/2

X

fifcor

Figure C.18: D flip-flop used for A-input register in the ALU bitslice.

4
2inmux6.mag

>-out

I 12/2

10/2

— Z^° outbar
6/2

-|| 6/2 |[-ml>qr in\ \6I2 \\-

mv*ar-|[_ 9/2 mv-|| 9/2

inbar

HH 17/2

Figure C.19: Schematic of 2:1 MUX used to select A or Abar input in the ALU bitslice.

255

out

2inmux5ajnag

i-| |7/2 J|- inbar in\ |7/2 11~

C0fcar-|[_ 9/2 CO-j| 9/2

inbar

6/2

^>°-^~outbar

Figure C.20: Schematic of 2:1 MUX used to select logical or addition function in the ALU

bitslice.

is zeroed by the use of a DCVSL AND gate which is shown in Figure C.23. Note that the

routing of the Accumulator output (which is the B-input to the ALU) to the bitslice gate

inputs is done internally to each bit.

2.2 Control Slice

The ALU control slice contains buffering and logic required to interface the bit

slices to the control signal inputs. A block diagram of the control slice is shown in Fig

ure C.24. The buffers used on each control input are shown in Figures C.25 and C.26.

The buffers used for the Acki and I signal inputs are shown in Figures C.27

and C.28. The SEL control signal which selects the output from the adder or the logical

gate is derived from control signal inputs C2 and C3. The gates to do this are shown in

Figure C.29. The completion signal busses dvB and dvC must be fed to one final NOR

gate and buffered to form the DValu signal fed to the outside world. The schematics for

the gates doing this are shown in Figures C.30 and C.31. The gates shown in Figures C.32

and C.33 are also used in the ALU control slice.

256

CK

TT

d>-
4/2

CKbar

dfflO.alu.mag

J

6/2

CKbar , ^ ,^
ri P 12/2 i H P 17/2

IT

4/2

CK

J

ii d ii

11/2

_L

•*Q

J
rl D 10/2

->fifear

6/2

Figure C.21: D flip-flop used for Accumulator register in the ALU bitslice.

buffer.alu.mag

3 18/2 H P 26/2

11/2 H 20/2

•><Hlf

Figure C.22: Buffer cell used in ALU control slice.

cvs_and.mag

0-our

inbar

H 14/2

FlO/2
12/2

^>°—outbar
11/2

j\™ H 7/2

Figure C.23: DCVSL and gate used to zero the B-input of the ALU in the bitslice.

257

ALU CONTROL SLICE

alu.ctl.dpl .mag

Acki
Buffer

(buffert^lu)

CLKA < •

CLKAbar <

to input registers

to DCVSL

Buffer

(bufferta^lu)

(bufferjtlu)

Buffer

(buffer*)

NOR

(nandjtor)
«—|

zlect adder

orlogic SEL

C3

logic

functions
CI

CLRB = C1

(zero B)

CLRA = C0

(zero A)

(invert A) inv
(=Cin)

C2 C3

Buffer

(bufr«r6t6a.alu)

Buffer

Buffer

Buffer

Buffer

CLKB <

(accumulator) £
Buffer

(buffer5)

Buffer
/Register
(blgbuff.alu)

Ialu

CNTL3

CNTL2

CNTL1

CNTLO

INV

Acko

•*BZ

->BNZ

(fromcompletion ckt)

dvB —

dvC~

(branch on zero)

Buffer

(nor2.alu)
(hlgbufT.alu)

Buffer

(bufferjIu)

•>Cout

-> DValu

Figure C.24: Block diagram of ALU control slice showing subcell names.

258

buffer6.alu.mag
•* oari

JJ
rl D95/2 rl ^ 95/2

inl

in2>-

54/2 f

"X

54/2

X

-> oiu2

Figure C.25: Buffer used in ALU control slice.

buffer6a.alu.mag

\\tX2a fi
J
3 19/2

in. L 11/2

H

H

•*fi

3 19/2

IF
11/2

X

fiAar

Figure C.26: Buffer used in ALU control slice.

buffer2.alu.mag

j J
r 3 28/2

> ii tv

17/2

•x

0 90/2

1
56/2

1_

->oiu

J
H P 90/2

11 • outbar

56/2

1

Figure C.27: Buffer cell used in ALU control slice.

259

in >-

buffer2a.alu.mag

j j
3 33/2 r D 160/2

II u

27/2

ii <*

84/2

a.

->out

Figure C.28: Buffer cell used in ALU control slice.

nandjior.alu.mag

nand out ^
" C*

> *

^9/2

3

4/2

>/u?r <?«/IT

tL

Figure C.29: nand and NOR gate cell used in the ALU control slice.

nor2.alu.mag

j

inl

in2

3 20/2

U

o

12/2

"X tL

—p owr

Figure C.30: NOR gate cell used in the ALU control slice.

260

bigbuff.alu.mag

J J
D 20/2 r D 50/2

14/2 L 38/2

3. b_
Figure C.31: Big buffer cell used in ALU control slice.

and.alu.mag

>out

Figure C.32: AND gate used in ALU control slice.

buffer5.alu.mag

> outbar

*out

Figure C.33: Buffer cell used in ALU control slice.

261

2.3 LSB Slice

The ALU least significant bit slice contains a Ground bus that feeds all of the
cells and a single inverter which drives the adder carry input high when the inv control
signal is high. When the ALU is set to subtract two numbers, the A-input is only l's
complement inverted and the extra "one" at the carry input is required to implement a
true 2's complement inversion. One side effect is that there is no discrimination between

logical operations and addition when setting the carry input. Therefore the syntax for
l's complementing a number in the assembly code does not work if the ALU is using

the adder. Instead, a full 2's complement inversion is performed. In other words, the

instruction

ACC = ACC + rami;

actually performs the operation

ACC = ACC - rami;

For logical operations, the l's complement operator works correctly.

3. Multiplier

This section contains a more detailed explanation of the multiplier timing and

partitioning as well as schematics for all cells not shown in Chapter 6. A more detailed

block diagram of the multiplier containing node names and magic subcell names is given

in Figure C.34. The shaded portion is allgates contained in the rec0der4.mult.mag subcell

of the control slice.

3.1 Bitslice

The individual bit slices contain the input registers, booth encoding circuitry,

and carry save adders as diagrammed in Figure 6.12. Because the shift register for the

Y-input shifts two bits per cycle, even and odd cells are required. These are shown in

Figure C.35. The X-input register is a simple D flip-flop and its schematic is given in

Figure C.36. The booth encoding DCVSL gate was shown in Figure 6.13. The carry save

adder is implemented as two DCVSL gatesas was done in the ALU full adder. Twoinputs

to the adder come from the sum and carry storage registers and the third input comes

262

LD

Xreg

V

bit4mult

dff3jnult

\L

CP Adder
cpadd4

recoder4.mult

LD

Yreg
LSBs

r*
V

Booth
Recoder

invjnult

declx
dec2x

dffSbjmdt

13

DV3

<3

SFCK«Add3

Acki2

^cko2

Acko3l

rp

DV

Reqo3

inkmult

Ackiub

:LR partial
> product

counter

D

D

t>Q

done2

donel

•<AcH

•<EN

•<Imult

+DVmult

Figure C.34: Detailed block diagram of the iterative self-timed multiplier.

263

Shift Register

load load

even bits

XT

D»
CKbar

odd bits

TJ-

\>
CK

shiftreg2.e.mag shiftreg2.o.mag

Figure C.35: Schematics for the shift register cells making up the multiplier Y-input

register.

264

from the encoder gate. The schematics for the sum and carry DCVSL gates are given

in Figures C.37 and C.38 respectively. Routing between the bitslices gives the two-bit

shift required between partial product calculations. Thus, the input to the sum gate of

biti actually comes from the sum storage register of 6i*t*_2- The storage registers for

dff3.mult.mag

CLR>

Figure C.36: D flip-flop used for the X-input register of the multiplier bit slices.

the carry save adder are implemented by the cells dff8.mult.mag and dff9.mult.mag for

the carry and sum values respectively. The schematics for the two flip-flops are given in

Figures C.39 and C.40.

The carry propagate adder that computes the final product in the multiplier is

another DCVSL adder similar to the one used in the ALU. The adder is made from the

cell cpadd4.mag which is four bits wide to accommodate the completion signal scheme

which is a tree of gates on the sum outputs as shown in Figure C.41. The full adder cell

cpadd2.mag is shown in Figure C.42. It has a completion signal output as well as the sum

and carry outputs.

3.2 Control Slice

The control slice for the multiplier is rather complicated, containing the Booth

recoder, handshake circuits, and the partial product counter. A block diagram of the

complete control slice is shown with magic subcell names in Figure C.43. The multiplier

is a self-timed subsystem and the Acki signal which clocks the input registers, is used to

synchronize the beginning of a new multiplication. The multiplier internal handshaking

circuits must wait for the falling edge of the the Acki signal before proceeding with a

265

13/2J

~<]
out

£Cin-\\ 7/2

Cm* 7/2

Bin- 7/2

flw* H 7/2

Hin-\\ 11/2

sum3.mag

i

i

HH 17/2

3 13/2

DF7/2 hCin*

7/2 \ -Cut

7/2 -Box*

h7/2 h£ih

h11/2 hw'

. 8/2

5/2 our*

Figure C.37: Schematic for the DCVSL gate performing the sum operation of the carry

save adder.

266

carry8.mag

13/2J

out*

b 13/2

-|LCt»*H 7/2

9/2

Jh
6/2 oar

7/2 IrCin

flw* 7/2 7/2 -flux

flwH 7/2 7/2 hflw*

•1/tfn*H 11/2 ^Am11/2 hAin

H 17/2

Figure C.38: Schematic for the DCVSL gate performing the carry operation of the carry

save adder.

feedl

feed!

B

B*

dff8jnultjnag

(routing only)

Figure C.39: Flip-flop used for storing the carry result of the carry save adder in the

multiplier bitslice.

267

aff9.mult.mag

Figure C.40: Flip-flop used for storing the sum result of the carry save adder in the

multiplier bitslice.

new multiplication. An additional signal denoted "EN" is present over a simple DCVSL

macrocell. In the signal processor design, the multiplier is located in parallel with the

barrel shifter within the datapath. Because the Acki signal may toggle during use of the

shifter, and the Imult signal does not change until some time after the Acki signal, the

EN input allows for disabling the multiplier. The master reset signal of the DSP chip

is also fed to the multiplier to clear the handshake circuits. It is denoted INIT in the

diagram. The recoder subcell of the control slice will be examined first since it contains

the first stage of the internal multiplier pipeline. Dropping down one more level in the

hierarchy, the recoder4.mult.mag cell block diagram is shown in Figure C.44. magic subcell

names are shown in the figure also. When the multiplier is running, the Acki signal of

the first handshaking circuit (hsla) is fed around to its Reqi input. The NOR gate in

3in.nor2.mult.mag is used to stop the pipeline when the partial products are computed

and to inhibit the pipeline from starting until the Ackil signal falls. The schematic for the

NOR gate cell is shown in Figure C.45. The EN signal function is made with a single and

gate in series with the Reqi2 signal as shown. The schematic for the and gate is given

in Figure C.46. For each partial product calculation, an appropriate Booth coefficient

must be computed. The coefficient is a mapping of the three least significant bits of the

Y-input shift register. These three bits are shifted by the shiftreg2.lsb.mag cell shown

in Figure C.47. The three bits are fed to the recoder gates which were shown logically

in Figure 6.11. The schematics for the three required gates are shown in Figure C.48,

Figure C.49, and Figure C.50. The completion signal for the recoding stage is formed

by an OR gate that is fed by the 2x and 2xbar signals. The schematic for the OR gate is

268

i n_H

i 3h'i_H

Go

8-

A

= r-G3—G3

•n_H 6B--

w Hh'^lH
.&

1

Figure C.41: Carry propagate adder cell used in the multiplier.

269

Figure C.42: Full adder subcell used in the carry propagate adder.

270

mult.ctLdpl .mag

Yl YO

bwfferljnvltAt x.

from rest of *

Y'input shift reg.—

LD

Ackil <} in.it.mult

donel

recoder4.mult

Acki2

LD

lin ormilt

Acko2 Reqo2

13
To bitslices <-

dv:i

hs3a.

mult

Front MSB slice>~

(part ofhs3a)

To sum/carry registers
elk Acko3 Reqo3

To carrypropogateadder <-
Ip

rfvC- £>

Ackiub

muA cntr2

ZLR partial
> product |—±

counter

dff6jnult

djflSjnult

D

D

>Q

done2

andjbufferjnult

donel

Figure C.43: Block diagram of the multiplier control slice.

271

•<Ac\d

•<EN

•<INIT

•*Imult

->DVmult

recoder4.mult.mag

y2 yl yO

Yn-2

hiftregllsi <

Yrt-1

^L

Load

Yn

12

inv.mult ! declx ! dec2x

dff5b.muh

Acko2> > D

Ackolbar* c>jj Q
> D

^TJ Q

2xbar

2x

fc Q<>,

mv wvfcar Ix Ixbar 2x 2xbar

272

3in noTl.mult
<LD

>Acki2

*Acki2bar

<Ackil

<donel

12

Acko*

or.i null\ J2in_c
(DV)

Reqo2Acko2bar

Figure C.44: Booth recoder and associated handshaking circuits contained in the multi

plier control slice.

H 8/2

inl >-

inl 4/2

i«3*-

3in nor2mult.mag

—| p~20/2 I— p_220/2

* * boutbin

K
16/2 —|["l6/2

our

Figure C.45: 3-input NOR gate used in the Multiplier control slice.

inl

w2 ••

and.mult.mag

A J A

rl P8/2 rj ^ Hp 8/2
-1

6/2

J

6/2

a_

•*ottt

Figure C.46: 2-input and gate used in the Multiplier control slice.

273

even bits •

odd bits •

h LOADbar

Load in i-2

- LOAD

Ih4>
CK

TT

\>
CKbar

r/t-2 r"/t-2fror

shiftreg2.lsbmag

TT

-1-

CKbar

TT

CK

h LOADbar

Load in i-1

- LOAD

>

>

1W Yn-lbar

Loorf in i

- O - LOAD

TT

o
CK

TT

t>-
CKbar

Yn Ynbar

Figure C.47: Three least significant bits of the Y-input shift register in the multiplier.

274

inv.mult.mag

> outl

* ous2

Figure C.48: Inverter cell used in the Booth recoder.

12/2 C

lx_outbar —^v.

c171 7/2

Ylbar- 111

Y0- 10/2

declx.mag

(2-input XOR gate)

HH 17/2

D 12/2

37/2 h ™kw

7/2 \-Yl

10/2 hrO&ir

8/2

/x ouf

5/2

Figure C.49: DCVSL gate used in the Booth recoder for generating the "lx" signal of the

Booth coefficient.

275

dec2x.mag

12/2J

2x outbar'

Y2-\\ 7/2

Y2bar-\\ 111

Ylbar-\\ 7/2

Ixbar- 12/2

11 21/2

P12/2

V2\]rY2bar

1/2 -Y2

111 hl7

12/2 h

8/2

\J^>0—2x_oul
5/2

Figure C.50: DCVSL gate used in the Booth recoder for generating the tt2x" signal of the

Booth coefficient.

276

given in Figure C.51. The Booth coefficient is stored a register made up of dffSb.mult cells.

2in_or.mult.mag

(—| _\m j—| £u-

out

Figure C.51: 2-input nor gate used in the Multiplier control slice.

The register has larger output devices for driving the bitslices. (The coefficient signals go

to the bitslice Booth encoder (enc3.mag cell)) The schematic for the flip-flop is given in

Figure C.52.

dff5b.mult.mag

>Qbar

CKbar

Figure C.52: Flip-flop cell used to store the Booth coefficient in the recoder stage.

The handshaking of the recoder stage is handled by the subcell hsla.mult.mag.

This is a simple 4-cycle handshake circuit made up of 2 clatches as shown in Figure C.53.

The schematic for the clatch was given in Figure 5.11. Moving back up the hierarchy

again from the recoder cell into the control slice, (refer to Figure C.43) the Acki signal

is fed to a special cell that is used for initialization of the multiplier. The schematic for

the init.multmag cell is shown in Figure C.54. The initialization circuit keeps Ackil high

between the time that the chip reset is high and the first acknowledge signal is sent to the

multiplier. If this were not done, the multiplier would run once before being ever being

called after the chip was reset. The Acki signal sent to multiplier clears the partial product

277

Reqi >•

Acki*-

INTT

hslamultjnag

(clatch9djnag)

Ain ^/^~~\Q

c
Bin

Qbar

+ 12

-*Acko*

INIT

Figure C.53: Handshake circuit used in the recoder stage of the multiplier control slice.

counter and is buffered by buffer2.mult.mag before being sent to the input registers to load

new data. The buffered signal, denoted LD in the drawings also is applied to a OR gate

which causes the carry save adder storage registers to be clocked by the Acki signal. This

loads them with zeros which is required before a new multiplication begins. The buffer

and or gate schematics are shown in Figures C.55 and C.51.

acki > •

t
5/2 C

4/2

init.mult.mag

<INITbar

6a

r^30/2

^ 14/2

4/2

ackibar

21/2

^>
14/2

->AckiI

->Ackibar_ub
+ Acki ub

Figure C.54: Initialization circuit for Acki signal of multiplier.

The delay line for the "done" signal of the partial product counter is constructed

from dff6.mult.mag cells, for which the shematic is shown in Figure C.56. The Imult signal

is not applied to the carry propagate adder until the partial products are calculated. An

AND gate is used for this function and it is shown in Figure C.57. The handshake cell

for the carry-save stage of operation is hs3a.mult.mag. It contains a 4-cycle handshake

278

in >-

buffer2.mult.mag

j J
3 28/2 0 90/2

17/2 56/2

+ out

J
3 90/2

-> outbar

56/2

1L

Figure C.55: Buffer circuit used in the Multiplier control slice.

circuit and an OR gate which drives the storage register clocks. The OR gate actually is

redundant with the operation of the 2injor.mult.mag. A schematic for the hs3a cell is

shown in Figure C.58. The schematic for the subcell buffer3a.mult.mag which was not

given earlier is in Figure C.59.

CK

TT

4/2
—I—

CKbar

dff6.mult.mag

J
r 3 6/2

CKbar

,-J 4/2
4/2

-L

TT

CK

4/2 C

J
H 0 8/2

6/2

-<CLRbar

•>e

Figure C.56: Flip-flop used for the done signal delay line in the multiplier control slice.

3.3 MSB Slice

Because the Booth coefficient can have a value of 2, an extra bit on the MSB

side of the multiplier is required. The MSB slice contains the carry-save circuitry for the

extra bit. Additionally, it contains circuitry which generates the completion signal for

the carry-save operation. Symmetry is exploited in the completion circuit. Since all the

bits have the same carry-save circuitry and the carry-save addition operation is not data

dependent, a single adder circuit is used to generate the completion signal for all bits. As

279

and_buffer.mult.mag

and inl out

and in2 *

and in3 *

Figure C.57: AND gate and buffer used for the I signal of the carry propagate adder.

Ackibar ub+"

Add ub>~

o
Q

hs3a.mult.mag

Ain S Nfi

Ackibar *

Acki*

Figure C.58: Handshake circuit for the carry-save stage of the multiplier.

280

*OUt

<Acko*

1NTT

>oui2

*oul2bar

buffer3a.mult.mag

nor inl ** *out2*

nor inl *~—*

out!

Figure C.59: Buffer inside of hs3a.mult.

shown in Figure C.60, the output of the Booth encoder, is fed to a "dummy" sum circuit,

which generates the DV3 signal.

4. Parameterized Cells

The lager system that was used for assembling the DSP chip allows for param

eterized macrocell generation. The designer supplies a set of the lower level cells (called

"leafcells") and a tiling routine that specifies how the cells should be placed together. The

tiling can depend on parameters specified in the design files for the chip.

In the DSP design, there were several places that used the same type of macrocell.

For example, the RAM feedback path uses three registers that are 16-bits wide. In the

datapath, several MUXes of different wordlength are required. These cells were made

using parameterized macrocell generation. The description of the circuits for the tilable

cells is given in this section. The tiling routines are written in 'c'-ianguage syntax using

several library functions to do the tiling. The "sdl" file gives the names of the connectors

on the cell boundary and the parameters. For a full description of these file formats, the

281

Vdd

bit.msMmultmag

enebar

X Y

Shift

Register

(shiftreg2j>jnag)

Register

(((ff3.muh.mag)

Booth

Encoder

(enc3.mag)

Carry

(carrySjnag)

Register

(4ff8.muU.mag)

Ain Ainbar

Bin

Sum
Cin

(sum3.mag)

sumbar

DV3

Sum

(swnSjnag)

Register

(dff9.muU.mag)

Figure C.60: MSB bitslice used in the multiplier.

282

reader is directed to the LAGER system documentation[74].

4.1 Dregister

The dreg cell is used in the instruction pipeline, RAM feedback path, and the
I/O FIFO's. The sdl file for the cell is shown below:

;;; lane : dreg.sdl
;;; Purpose : D-Register w/clr
;;; Author : Gordon Jacobs
;;; Date : 5/30/88

(parent-cell dreg)

(layout-generator TimLager)

(parameters width buffered)

i iW ! J i! iii i! i! I»! i ii ! !• » i••• I••< >• i »•• ' » »im i» ii i m < M m ii ii iii t» ii i i ii i ii iii

;;; IETS

lllllllllllllll

(net out (IETUIDTH width) ((parent out)))
(net in (IETUIDTH width) ((parent in)))
(net CK ((parent CK)))
(net clr ((parent clr)))

(net Vdd (IETTYPE SUPPLY) ((parent Vdd)))
(net 6ID (SETTYPE GROUID) ((parent GHD)))

(end-sdl)

There are two parameters that are specified in the assembly of a register. The width is

the number of flip-flops or the wordlength of the register. The buffered parameter is a

binary valued parameter which specifies which leafcells to use. If it is non-zero, then a

buffered cell is used that contains larger output drive. The cell regcell.mag is the flip-flop

used in the normal register and its schematic is given in Figure C.61. The reg.left.mag

clock buffer cell for the normal register is shown in Figure C.62. The cell reg.right.mag

contains only an extension of the metal Vdd and GND lines to the cell boundary.

The buffered version of the register has the same floorplan, however it uses dif

ferent leafcells. The schematics for the buffered version leafcells are shown in Figures C.63

and C.64.

The tiling routine for these cells in given below:

/* dreg.c */
/*«•*******«•*«**/

/* TimLager routine for row of D flip-flops (register) w/clr
/ft**/

finclude "TimLager.h"

dregO

283

clrbar>~

CK

d 10/2

4/2

CKbar 4 8/2

regcelimag

CKbar
I

5/2

CK

4/2

HD 32/2

26/2

our

Figure C.61: Dynamic flip-flop cell used in parameterized register for DSP chip.

regleftmag >out

outbar

Figure C.62: Clock buffer cell used in parameterized register for DSP chip.

clrbar>-

CK ii
D

sa

CKbar 4 10/2

bufreg.mag

CKbar
14/2 _jl_

6/2
~T~

CK

^b 6/2 d 68/2

o«r

46/2

Figure C.63: Buffered output flip-flop cell used in parameterized register for DSP chip.

284

bufregleftmag >out

outbar

Figure C.64: Clock buffer cell for buffered version of parameterized register for DSP chip.

int i.j;
int word.length;
int buffered;

word.length = Getparara("width");
buffered = GetparamC'buffered");

Open.neocell(Read("name"));

/* Add blocks */

if<!buffered) {
Addright("reg.left" ,LEFT,TD,"CK".ALIAS,"CK",

TD,"CKbar",ALIAS,"CKbar",
TO,"clr".ALIAS,"clr",
TO,"clrbar",ALIAS,"clrbar",
EID);

Addright("regcell" .TOPIBOTTOH.OFFSETY,-2,TD,"D".ALIAS,"in", IHDEX ,0,
TD,"out",ALIAS,"out",IHDEX,0,
EHD);

for(i=l; i < word.length; i++) {
Addright("regcell",TOP IBOTTOH,TO,"D",ALIAS,"in",IHDEX,i,

TD,"out",ALIAS,"out",IHDEX,i,
EHD);

}
Addright("reg. right" .RIGHT.OFFSETY,2, EHD);

>
else { /* use bigger buffered reg cells... */

Addright("bufreg.left".LEFT,TD,"CK".ALIAS,"CK",
TD,"CKbar",ALIAS,"CKbar", •
TD,"clr",ALIAS,"clr",
TO,"clrbar".ALIAS,"clrbar",
EHD);

Addright("bufreg" ,TOP|BOTTOH,OFFSETY,-3,TD,"D" .ALIAS,"in" ,IHDEX,0,
TD,"out".ALIAS,"out",IHDEX,0,
EHD);

for(i=«i; i < word.length; i++) {
Addright("bufreg",TOPIBOTTOH,TD,"D",ALIAS,"in",IHDEX,i,

285

TD,"out",ALIAS,"out",IHDEX,i,
EHD);

>
Addright("bufreg. right",RIGHT,OFFSETY,2,EHD);

>

Close.newcellO;

}

4.2 Dlatch

The dlatch cell is used in the controller. The sdl file for the cell is shown below:

Si;iJiJiJJJiiii5!iJJiJJJiiiiiiiiiJiiJiiJSiiJii5iiiiiSiiii»iii»i»»»»»»i»i,,,,'»
;;; lane : dlatch.sdl
;;; Purpose : H-bit Transparent D-Latch w/clr
;;; Author : Gordon Jacobs
;;; Date : 5/31/88
iii

;;; : 2/22/89 Dynamic version of latch, requires clrbar, clkbar
;;; : 2/27/89 Clock buffer added. Only CK and clr signals
;;; required now as in static version but due to
;;; presence of clock buffer, signals can only
;;; come into one side of latch now.

iitiiiiiiiiiiiiiiiiiiiiiiiSiiiiiSiiiiiSSiSiiiiiiiiiiiiiiiiiiiiiiiiii'iiii'ii''

(parent-cell dlatch)

(layout-generator TimLager)

(parameters width inverted)
• ii

;;; If "inverted" parameter is made non-zero, output is inverted
;;; from input. If "inverted" ==» 0, then there is no inversion
;;; from input to output. Ion-inverted version of this latch
;;; is slightly larger and slower since it has extra inverter on top.

llllllllillllllllllllllllllllllllMIIIIIIIIIIIIIIIIIIIIIIIIIIII"lllll|l'",|l

;;; BETS

iJiiiiJiJJJiiiiiiiiJiiJJJiJiiiiiiiiiiiiiiiiiiiJJiiiiiJiiiiiiiiiiiiiiiiiiiiiiii

(net out (HETUIDTH width) ((parent out)))
(net in (HETWIDTH width) ((parent in)))
(net CK ((parent CK)))
(net clr ((parent clr)))

(net Vdd (IETTYPE SUPPLY) ((parent Vdd)))
(net GID (HETTYPE GROUHD) ((parent GHD)))

(end-sdl)

There are two parameters that are specified in the assembly of a latch. The width is the

number of latch cells or the wordlength of the assembled latch. The inverted parameter is

a binary valued parameter which specifies which leafcells to use. If it is non-zero, then only

the single latchcell.mag is used and it inverts the signal. If inverted is made zero, then

an additional cell latch.inv.mag is added so that the signal is does not see an inversion.

The schematic for latchcell.mag is given in Figure C.65. The reg.right.mag clock buffer

cell is shown in Figure C.66. When the inverter cell is added, the dlatch becomes taller,

so different end cells must be used. For a non-inverting dlatch, the cell latch.right2.mag

286

is used, but its schematic is identical to the latch.right.mag cell. The cells latch.left.mag

and latch.left2.mag contain only an extension of the metal Vdd and GND lines to the

cell boundary.

clrbar>-

D

latchcelLmag

j
4 3 7/2clkbar

I

4/2

elk

J
0 11/2

9/2

out

Figure C.65: Latch cell used in parameterized D-Latch for DSP chip.

latch.right.mag

latch.right2.mag

Figure C.66: Clock buffer cell used in parameterized D-Latch for DSP chip.

The tiling routine for these cells in given below:

/* dlatch.c */
/ft***/
/* TimLager routine for row of D latches (register) w/clr
/•***!»***•**/

finclude "TimLager.h"

dlatchO

<
int i,j;
int word.length;
int inverted;

287

*oux

Figure C.67: Inverter cell used in parameterized D-Latch for DSP chip.

word.length • GetparamC'width");
inverted = Getparam("inverted");

Open.newcell(Read("name"));

/* Add blocks •/

if(inverted)
Addright("latch.left",LEFT,EHD);

else

Addright("latch.loft2".LEFT,EHD);

if(inverted)
Addright("latchcell",TOPIBOTTOH.OVERLAP,

TD,"D",ALIAS,"in",IHDEX.O,
TO,"out",ALIAS,"out",IHDEX.O, EHD);

else

Addright("latchcell".BOTTOH,OVERLAP,
TD,"out",ALIAS,"out",IHDEX,0, EHD);

if(inverted)
for(i»i; i < word.length; i++)

Addright("latchcell",TOP|BOTTOH,TD,"D",ALIAS,"in",IHDEX,i,
TD,"out",ALIAS,"out",IHDEX,i, EHD);

else

for(i»l; i < word.length; i++) {
Addright("latchcell",BOTTOH,TD,"out",ALIAS,"out",IHDEX,i, EHD)

}
if(inverted)

Addright("latch. right",RIGHT.OVERLAP,
TD,"clk",ALIAS,"CK",
TO,"clr",ALIAS,"clr", EHD);

else

Addright("latch.right2".RIGHT,OVERLAP,
TD,"clk",ALIAS,"CK",
TO,"clr",ALIAS,"clr", EHD);

if({inverted) {
Addup("latch.inv",TOP,OFFSETX,9,OFFSETY,-38,

TD,"D",ALIAS,"in",IHDEX,0, EHD);
for(i=l;i < word.length; i*+)

Addright("latch.inv",TOP,TD,"D",ALIAS,"in",IHDEX,i, EHD);
>

Close.newcelK);

288

4.3 2inMUX

The mux cell is used in the datapath at the RAM write input port, the Y-input

to the multiplier, and the ALU input. The sdl file for the cell is shown below:

l^Ji^{iJ{5{55{ii^»ii•i••l•l••lll•ll•l•l••••••••l••l•l••»•••»•,,,,,,,,,,,,,,,,*

;;; Hame : mux.sdl
;;; Purpose : H-bit wide 2-Input HUX with or without register on Control Input
;;; Author : Gordon Jacobs
;;; Date : S/30/88
>•••••••••»•••••••••••••*•••••••»••»*••••*•••••••••••*****>******"*****"***'**

(parent-cell mux)

(layout-generator TimLager)

(parameters width clocked)

;;; HETS

5iJiiii•liil•lliliiiJiiiiliil5••!^•••i••i••i»i»•••»•»•»•,,»'•»,»,,,,,',',,',,,

(net Ain (IETUIDTH width) ((parent Ain)))
(net Bin (HETWIDTH width) ((parent Bin)))
(net out (HETWIDTH width) ((parent out)))
;;; electrically the same as out
(net outb (IETUIDTH width) ((parent outb)))
(net CTL ((parent CTL)))
(net CK ((parent CK)))
(net clr ((parent clr)))

(net Vdd (IETTYPE SUPPLY) ((parent Vdd)))
(net GHD (IETTYPE GROUID) ((parent GHD)))

(end-sdl)

There are two parameters that are specified in the assembly of a latch. The width is

the number of MUX cells or the wordlength of the assembled MUX. The schematic for

muxcell.mag is given in Figure C.68. The clocked parameter is a binary valued parameter

which specifies which leafcells to use. If it is zero, then the control input to the assembled

MUX is applied directly to the MUX cells through the buffer circuit mux.left2.mag shown

in Figure C.70. If clocked is made non-zero, then the cell mux.leftl.mag is used instead

and it contains a flip-flop which can store the control input. The schematic is shown in

Figure C.69. The cells mux.top2.mag and mux.bot2.mag contain only an extension of the

metal lines to the cell boundary. The bottom cell has two contacts for the (same) output

of the MUX which were required to work around a bug in the routing tool.

The tiling routine for the 2-Input MUX is given below:

/* mux.c */
/***•***«**************•****•******************************•***********/
/* TimLager routine for row of 2-Input muxes
/*****************•**«****••******«************«*************«*********/

finclude "TimLager.h"

289

> OUT

inl-\\ sea-\\ 6/2

*?zHL m2H[~6/2 muxcelLmag

Figure C.68: 2-Input MUX cell used in parameterized MUX for DSP chip.

(static D-register)

CTL

outbar

mux.leftl.mag

Figure C.69: Control input buffer for the parameterized MUX.

290

CTL

clr

CK

N.C.

N.C.

•> out

^-4Q/2
^>0—> outbar

mwc.left2.mag

Figure C.70: Second control input buffer containing a flip-flop that is used in the param

eterized MUX.

muxO

i
int i,j;
int word.length;
int clocked;

word.length = Getparam("width");
clocked a Getparam("clocked");

Open_newcell(Read("name"));

/* Add blocks */

if(clocked)
Addright("mux.leftl".LEFT,TD,"CK" .ALIAS,"CK",

TO,"CTL".ALIAS,"CTL",TD,"clr".ALIAS,"clr",EHD);
else

Addright("mux.left2" ,LEFT,TD,"CK".ALIAS,"CK",
TO,"CTL",ALIAS,"CTL",TD,"clr",ALIAS,"clr",EHD);

for(i=0; i < word.length; i++) {
Addright("mux.bot2",BOTTOH,OVERUP.TD,"out",ALIAS,"out", IHDEX, i,

TD,"outb".ALIAS,"outb",IHDEX,i,EHD)
}
if(clocked)

AddupC'muxcell",HOHE,0VERLAP.R270,OFFSETX,217,OFFSETY,-78,EHD) ;

AddupC'muxcell",HOHE.OVERLAP,R270.OFFSETX,90.OFFSETY,-78,EHD) ;

for(i=l; i < word.length; i++) {
Addright("rauxcell",HOHE,R270,EHD);

>
if(clocked)

Addup("mux.top2",TOP,OVERLAP,OFFSETX,217,OFFSETY,-9,
TD,"ain",ALIAS,"Ain",IHDEX,0,
TD,"bin".ALIAS,"Bin",IHDEX,0,EHD);

else

Addup("mux.top2",TOP,OVERLAP,OFFSETX,90,OFFSETY,-9,
TD,"ain",ALIAS,"Ain",IHDEX,0,

TD,"bin",ALIAS,"Bin",IHDEX,0,EHD);
for(i=l; i < word.length; i++) {

Addright("mux.top2".TOP.OVERLAP,
TD,"ain",ALIAS,"Ain",IHDEX,i,

291

TD,"bin",ALIAS,"Bin",IHDEX,i,EHD);
}

Close.newcellO;

4.4 LPC

The Ipc cell is used in the controller and acts as a program counter, generating

the address for reading the Program ROM. The counter was adapted from the lager cell

library [74]. The sdl file for the cell is shown below:

; lpc.sdl i
; (was counter.p.sdl) '•
; TimLager module generation file for a loadable program counter ;
i •

; Gautam Doshi, 11-12-87 ;
; Hodified by Gordon Jacobs, 6/2/88 ;
; Counter Top cell changed (added buffers) and some signal ;
; names changed. Otherwise, cells are same as in LagerlV/cellib ;

(parent-cell lpc)
(parameters width)
(layout-generator TimLager)

; LOADin is the input bus used to load the counter on reset
(net LOADin (HETWIDTH width) ((parent load.in)))

; "..L" and "..R" represent the side of the counter
; COUHT is the output of the counter
(net COUHT.L (HETWIDTH width) ((parent count.l)))
(net COUHT.L.BAR (HETWIDTH width) ((parent count.l.inv)))
(net COUHT.R (HETWIDTH width) ((parent count.r)))
(net CODHT.R.BAR (HETWIDTH width) ((parent count.r.inv)))

; CLOCKA and CLOCKB are the two nonoverlapping clocks
(net CLOCKA ((parent clkbar)))
(net CL0CKB1 ((parent clkBl)))
(net CL0CKB2 ((parent clkB2)))

; RESET is active high
; removed...(net EOB ((parent eob)))

; CHT is the counter increment signal (active high)
(net LOADbar ((parent loadbar)))

(net Vdd (HETTYPE SUPPLY) ((parent Vdd)))
(net GHD (HETTYPE GROUHD) ((parent GHD)))

(terminal Vdd (TERHTYPE SUPPLY))

(terminal GHD (TERHTYPE GROUHD))

(end-sdl)

The only parameter for the counter is the wordlength of the output. This deter

mines how many of the actual counter cells are placed in the layout. The cells IpcJCo.mag

and lpc.Xe.mag contain the counter circuitry which is made from a half adder and a latch.

292

The two types are used alternately in the layout, the suffixes denoting "even" and "odd".
The lpcJ.op.mag cell contains clock buffering and several gates which control counting and

loading. The cells are shown in Figure C.71. Since the cell was adapted from a lager

cell, the names are a little confusing. The way the counter is hooked up in the DSP is

shown in Figure C.72. The lpcJ>ot.mag cell contains routing only.

The tiling routine for the program counter is shown below.

/•**«»*•*»****•**••***•••****••******•**•****************•***************/
/• TimLager module generation file for a programmable counter */
/. •/
/* Khalid Azim, 6-10-87 */
/• Gautam Doshi, 11-12-87 */
/•**•******•*•*•********•*•*****•*******•*•**••••**********••***•**•*•***/

tinclude "TimLager.h"
int width,i,j,k,l;

lpcO <

width a Getparam("width"); /* the bit width of the counter •/

/* On reset: count is loaded from external input ("load.in")*/

Open.newcell(Read("name"));

Addup("lpc_bot",HOHE.OFFSETX,28,EHD);

for (i=0; Kwidth; !+♦) {
if (iX2)

Addup("lpc.Xo",LEFT|RIGHT,
TO,"in",ALIAS,"load.in",IHDEX,i,
TO,"sum.l".ALIAS."count.l",IHDEX,i,
TO,"sum.l.inv",ALIAS,"count.l.inv",IHDEX,i,
TD,"sura.r",ALIAS,"count_r",IHDEX,i,
TD,"sum.r.inv".ALIAS,"count.r.inv",IHDEX,i,EHD) ;

else

Addup("lpc_Xe",LEFTI RIGHT,
TO,"in",ALIAS,"load.in",IHDEX,i,
TO,"sum.l",ALIAS,"count.l",IHDEX,i,
TD,"sum.l.inv".ALIAS,"count.l.inv",IHDEX,i,
TD,"sum.r",ALIAS,"count.r",IHDEX,i,
TO,"sum.r.inv",ALIAS,"count.r.inv",IHDEX,i,EHD>;

Addup("lpc_top",T0P|LEFTI RIGHT,
/* TD,"cout",ALIAS,"cout",

TO,"phA",ALIAS,"phA",
TO,"phAinv",ALIAS."phAinv",
TO,"phB", ALIAS,"phB",
TD,"phBinv",ALIAS,"phBinv",
TD,"rst",ALIAS,"rst",
TD,"rstinv",ALIAS."rstinv",
TD,"cnt",ALIAS,"cnt",
TO,"cntinv",ALIAS,"cntinv"

*/
/* TD,"eob",ALIAS,"eob", removed */
TD,"incr".ALIAS."loadbar",
TD."clkBl".ALIAS,"clkBl",
TD,"clkB2".ALIAS,"clkB2",
TO,"clkA".ALIAS,"clkbar",
EHD);

Close.newcellO;

293

lpc.top.mag lpc (loop counter)

phAphA phB phB inc_cntr rstjcntr

cout (from msb only)

tnc cntr

IpcJCe.mag

lpc_Xo.mag

phA
phB

C>HEH>T£H>n

>

Figure C.71: Schematics for cells making up the counter in the DSP controller.

294

inc

eob

Connection of lpc.mag in DSP

Z=^>OUT
(changes on clkB)

clkA clkB2

• Connect clkBl and clkB2 to elk

° Connect clkA to elkbar

0 Connect eob to Vdd (always enable)

• Connect inc to loadbar
(Loads counter on clkB.inc)

Figure C.72: The connection^ signals to the counter.

5. Handshake Std. Cells

The handshake circuits for the DSP shown in Chapter 7 were all assembled from

a set of gates resembling standard cells. The gates have the same height and power

supply bus locations so that they can be placed in rows and interconnected with routing

channels. The layout in the DSP was done manually due to lack of a tool that recognized

these particular cells. The schematics for the cells are shown in this section. The names

match those subcell names shown in the handshake circuit figures in Chapter 7.

5.1 Simple Gates

The schematics for a 2-input nand gate and a 2-input nor gate used in the

handshake circuits are shown in Figures C.73 and C.74. A three input nor gate is shown

in Figure C.77.

295

*out

inb>

Figure C,73: Schematic for 2-input nand gate used in the handshake circuits.

2in_nor.mag

rl! 14/2

ina >•
out

inb >- £%_
Figure C.74: Schematic for 2-input nor gate used in the handshake circuits.

296

A 3-input nor gate is shown in Figure C.77. In the handshaking circuits for the datapath,

control signals re-configure the circuit. The use of a MUX and DEMUX was necessary

for the switching of the circuit function. The schematics for a 2-input MUX and 2-output

DEMUX are shown in Figures C.75 and C.76.

bin>-

ain >"

mux.mag

cdbar
i

5/2

cd-"

5/2

cdbar

•+ out

Figure C.75: Schematic for 2-input MUX used in the handshake circuits.

«>-

demux.mag

ctlbar * Vdd
I

8/2

u <>-ctl \

8/2

ctlbar

T
3/9

zr
3/9

ZL

-> outb

-> outa

Figure C.76: Schematic for 2-output DEMUX used in the handshake circuits.

Several buffers were used to drive long lines between cells or to the pads. The schematic

for outbuff.mag is shown in Figure C.78 and the schematic for bigbuff.mag is shown in

Figure C.79. The inverter ctlbuff.mag wasused mainly to invert control signals, providing

the complementary inputs required in the MUX and DEMUX circuits to drive the CMOS

switches. Its schematic is given in Figure C.80. An inverter to drive larger loads in shown

in Figure C.81. It is used in the RAM and controller handshaking circuits.

297

3in_nor.mag

ina > out

inb>

inc >

Figure C.77: Schematic for 3-input NOR gate used in the handshake circuits.

outbuff.ma% r

,J J
3 9/2 r 3 23/2
^~

obar
^^

*•

5/2 L 20/2

_ L n L

•*0Of

Figure C.78: Schematic for output buffer used in the handshake circuits.

bigbuffmag

J J
r ^ 20/2 D 46/2

in > "
obar

13/2 36/2

->out

Figure C.79: Schematic for large buffer used in the handshake circuits.

298

ctlbuff.mag

rl
in > "

J
0 11/2

7/2

->out

Figure C.80: Schematic for simple inverter used in the handshake circuits.

in

outinv.mag

J
r 3 25/2

17/2

-*><?uf

Figure C.81: Schematic for output inverter used in the handshake circuits.

5.2 C-elements

The c-elements used in the handshaking circuits are all derived from the c-element

shown in Figure 5.11. ClatchQe.mag is shown in Figure C.82 and it is used in the HS4
circuits as well as the RAM and PROM handshake circuits. A three input c-element is

clatchlO.mag and it is shown in Figure C.83. A four input c-element used in the RAM

handshake circuit is shown in Figure C.84.

5.3 Miscellaneous

In the controller handshaking, the four condition code signals from the datapath

are brought in through a 4:1 MUX circuit. The instruction signals which condition code

299

^\-_

—Lj*2

Qbar

*aJ\

B— [iW A— [20/2 20/2J —

b 14/2

\>J2

<• 15/2 IMjh

clatch9e.mag
(same as clatck9a\mag)

INIT

Figure C.82: Schematic for 2-input c-element used in the handshake circuits.

INIT

clatchlO.mag

Figure C.83: Schematic for 3-input c-element used in the handshake circuits.

300

clatch.ll.mag

Figure C.84: Schematic for 4-input c-element used in the handshake circuits.

to select for a particular branch. The 4:1 MUX circuit used is shown in Figure C.85 and

a decoder that drives its control inputs is shown in Figure C.86.

In the controller handshaking, the sequential handshake circuit that was shown in Fig

ure 7.10 was constructed with two special SR latches which have built in AND ing action

on their set inputs. The schematics for the latches are shown in Figures C.87 and C.88.

Finally, in the I/O handshake circuits a delay is used to simulate the delays of the FIFO

registers. The cell to do this is named regDV.mag and it is shown in Figure C.89. The

placement of the regDV.mag cell is illustrated in Figure 7.17.

301

si >—r

in/ >-
4/2 TT

Hi4/2

52 >—r
4tolmux.mag

i«2 >-
TT

L_£^
i> -> out

SJ>-

in3>-
XT

4>
S4>—r

m4>-
TJ-

L^r

FigureC.85: Schematic for4:1 MUX circuit which selects condition code fromthe datapath

in the controller handshaking (ROMhs.mag).

2to4dec.mag

inO >

7/2

p^H/2

10/2

o

•>out0

->outl

inl >» "^>oA-^>o a> ->out2

L^> •*out3

Figure C.86: Schematic for 2-to-4 decoder circuit used to drive the 4:1 MUX above.

302

srlatch2a.mag

6f23\-__
Qbar

15/2 15/2

15/2 S = A.B

J
3 10/2

Q

11/2 11/2 h* n/*]l"11/2 h INTT

Figure C.87: Schematic for SR latch used in the sequential handshake circuit in the

controller. Latch is set by raising both A and B inputs.

srlatch3a.mag

INIT

Figure C.88: Schematic for SR latch used in the sequential handshake circuit in the

controller. Latch is set by raising A, 5, and C inputs.

303

clock buffer ofD-register

regDV.mag

44/2

slave latch

DV

buffer

Figure C.89: Schematic register delay cell used in the Input/Output handshake circuits.

304

	Copyright notice1989
	ERL-89-128 (1 of 4)
	ERL-89-128 (2 of 4)
	ERL-89-128 (3 of 3)
	ERL-89-128 (4 of 4)

