

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE APPLICATION OF KNOWLEDGE-BASED

SYSTEMS TO DESIGN VERIFICATION

Copyright © 1989

by

Ricky Lee Spickelmier

Memorandum No. UCB/ERL M89/126

29 November 1989

THE APPLICATION OF KNOWLEDGE-BASED

SYSTEMS TO DESIGN VERIFICATION

Copyright © 1989

by

Ricky Lee Spickelmier

Memorandum No. UCB/ERL M89/126

29 November 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THE APPLICATION OF KNOWLEDGE-BASED

SYSTEMS TO DESIGN VERIFICATION

Copyright © 1989

by

Ricky Lee Spickelmier

Memorandum No. UCB/ERL M89/126

29 November 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

The Application of Knowledge-Based Systems to Design Verification

Ricky Lee Spickelmier

University ofCalifornia Department ofElectrical Engineering
Berkeley, California and Computer Science

Abstract

As a circuitdesignproceeds, it is continually checked by the designerfor errors, by visual

inspection, by simulation, orbyusingotherverification tools (suchas electricalrule check

ers). Before most designs can proceed to fabrication,they must go through a formal design

review where other designers analyze the design and look for errors. Errors found during

the verification process range from easily recognizable problems, such as a power supply

short, to a CMOS static gate having N and P cores that are not logical duals, to hard-to-

recognize problems, such as those dealing with charge sharing and race-conditions.

A circuit critic is a tool that finds errors in a circuit design and may recommend

corrections. There are three main uses of a circuit critic: finding errors not easily found

by other verification tools {e.g. timing, charge sharing), finding errors for novices, and

checking design style compliance. There are many errors that novice designers can make

as they do circuit designs. Novices leam the circuit configurations that lead to these errors

by experience. A circuit critic can have the patterns that describe these errors in it and the

novice can use the critic to check the circuit. Many design styles have a set of rules, that

if followed will produce a "correct" design. A circuit critic can check for compliance with

these rules.

The work presented in this dissertation focuses on exploring the ideas of technol

ogy independence of critics, tight integration with a CAD system, and the representation of

knowledge for the critic. To explore these ideas a test-bed, called Critic, was developed.

Critic reads a description of the technology and design style to be used in the check and

is tightly integrated into the Berkeley Design Environment, both in terms of the data input

to the system and the control of Critic. An example of the use of Critic and the results of

using Critic are presented.

fl. GLe/^c0M&Sl^
Professor A. Richard Newton
Thesis Committee Chairman

Contents

Table of Contents i

1 Introduction 1

2 Overview and Previous Work 6

3 Primitives 21

3.1 Overview 21

3.2 Representation 21
3.3 Built-in Primitives 30

4 Structures 33

4.1 Overview 33

4.2 Representation 34
4.3 Finding Structures 38
4.4 Displaying Structures 64

5 Errors 65

5.1 Overview 65

5.2 Representation 65
5.3 Finding Errors 75
5.4 Displaying Errors 76

6 Critic 79

6.1 Overview 79

6.2 Implementation Using Oct 97
6.3 Browsing the Critic Knowledge Base 108
6.4 Knowledge Base Documentation Ill

7 Example and Results 112
7.1 Example Critic Run 112
7.2 Statistics 116

n

7.3 Knowledge Collection 117

8 Conclusions 118

A Ruieset Documentation 124

Bibliography 152

Acknowledgements

First, I would like to thank my research advisor, Professor Richard Newton, for

his direction, support, and employment throughout my long stay at Berkeley.

I would like to thank the past and present members ofthe Berkeley CAD group for

making my long stay at Berkeley a pleasant experience, in particular, my friends: Wendell

Baker, Giles Billingsley, Jeff Bums, Professor Ron Gyurcsik (and Peggy), David Harrison,

Mark Hofmann, Tom Laidig, Brian Lee, Grace Mah, Karti Mayaram, Peter Moore, Tom

Quarles, Fabio Romeo, Richard Rudell, Professor Res Saleh, and Ellen Sentovich.

I would like to thank my friends at Tektronix for putting up with me over many

summers, especially Randy Young, Ian Getreu, and John Crawford, who continued to let

me work at Tektronix for eight summers (probably four summers longer than they should

have). My employment at Tektronix led directly to my desire to attend Berkeley.

I had many interesting discussions with circuit designers from industry. Of those,

I would especially like to thank Karlheinz Homiger from Seimens and Pat Bosshart from

Texas Instruments. I also had many helpful discussions with Professor Hugo DeMan of the

Catholic University at Leuven.

Margo Seltzer helped me finish my thesis by bugging my about my progress, I

am indebted to her. Cindy Mason has been a good friend over the entire Ph.D process, I

can't thank her enough for her encouragement. I wish her the best of luck in finishing her

thesis.

I would like to thank my friends in the Experimental Computing Facility at Berke

ley for providing me with a place to relax and for bugging me to finish during the last few

months of thesis writing. I would especially like to thank Mark Hastings, Anne Hendry,

Phil Lapsley, Jonathan Lee, and Kurt Pires. It would have been difficult to finish without

111

IV

their help.

The following people provided much needed editorial comments on drafts ofmy

thesis: Paul Cohen, Professor Ron Gyurcsik, David Harrison,Theologos Kelessoglou, Pro

fessor Don Pederson, Professor Peter Pirolli, and Pete Simanyi.

The financial and equipment support provided by the Semiconductor Research

Corporation, the Digital Equipment Corporation, Tektronix, Texas Instruments, and the

XEROX Corporation (University Grant Program) is greatfully acknowledged.

Finally, I would like to thankmyself for finishing. It took far longerthan it should

of, but now it's done!

Chapter 1

Introduction

As a circuit design proceeds, it is continually checked by the designer for errors

either by visual inspection, by simulation, or by using other verification tools. Errors found

during the verification process range from easily recognizable problems, such as a power

supply short or a CMOS static gate having N-type and P-type cores that are not logical duals,

to hard-to-recognize problems such as those dealing with charge sharing and race condi

tions. As circuits get larger and more complex, more errors and more types of errors are

found. The size and complexity of current circuit designs take them far beyond the realm

of manual verification. To simplify the problems inherent in large and complex designs,

tools have been created to automate the verification process. Another way to deal with

the complexity is to introduce design styles. Design styles consist a set of rules for circuit

construction that if followed will eliminate certain classes of errors[24,40]. Simple design

styles can be composed of a small set of rules, such as limiting the number of series con

nected MOSFETs in a CMOS static-gate. Other more complex design styles exist. One such

design style is used for NORA logic [24]. NORA is a design style for dynamic CMOS with

complementary clocks of arbitrary skew. There are nine rules that must be followed when

designing NORA circuits. By following these rules, no race conditions (because of clock

skew) can exist in the circuit. Thus by following a set of rules, many problems associated

with dynamic design can be eliminated. However, the rules further complicate the design

process, and tools have been developed to check for compliance with the design style rules.

Circuit Critics

Many types of CAD tools can show errors, but not look for errors. For example,

simulation results can show that a circuit is functioning incorrectly, but the designer then

must choose what test vectors to give to the circuit and what nodes to plot to track down

the error. A circuit critic looks for errors or "bad design style" in circuit designs[47, 48,

15,14, 3, 68, 35] and may, in fact, suggest an approach to correction of the errors. There

is a large amount of knowledge about how circuits should be properly designed and what

might cause problems. Circuit critics are tools that use this knowledge to critique a circuit

design. There arethree main uses ofa circuit critic: finding errors not easily found by other

verification tools, finding errors commonly overlooked by novices, and checking design

style compliance.

Many errors are easily handled by circuit critics but can be difficult to find using

other verification techniques. For example, if the inputs to the P-type and N-type cores

of a CMOS static-gate are connected incorrectly, the supplies may be shorted or the output

node of the gate may float (see Figure 1.1). Unless the designer happened to test the circuit

with the proper set of test vectors such that the inputs to the gate (possibly many levels

into the circuit) caused the error, the error would not be found. As another example, if the

internal capacitance of a dynamic gate is too large compared to the load capacitance, the

load capacitance may not be charged to the full value and thus may not turn on the load

devices (see Figure 1.2). While this error can be found using simulation, it is rare that all

outputs of dynamic-gates would be plotted in a simulation run, and thus the error would

have to be tracked down based on some error detected on the nodes plotted.

Novices learn how to design circuits by experience. Along the way they create

designs with errors that an experienced designer would not make. The description of these

errors are be given to a circuit critic, and a novice uses the critic to not only find errors, but

to help in the learning process.

Another use of circuit critics is in enforcing design style compliance. Many de

sign groups have a set of rules for design that if followed will eliminate certain classes of

errors. A circuit critic can use the rules to verify that a circuit complies with the design

style[15, 14].

A-

C-

D-

—• B

-3-

N

zr

-J
N

_l

Nl L-

"ZT
N

X

output Inputs Output

0000 1

0001 float

0010 1

0011 0

0100 float

0101 0

0110 0

0111 0

1000 1

1001 short

1010 0

1011 0

1100 float

1101 0

1110 0

mi 0

Figure 1.1: Incorrectly Connected Gate

1

internal

Figure 1.2: Possible Charge Sharing Problem

Scope

The work in this dissertation explores data representations for circuit critiquing

programs that are technology and design style independent, and the tight integration of

these programs into CAD systems. The work in representation covers methods for repre

senting the knowledge used by circuit critiquers to find errors in a circuit and methods for

representing the circuits. Representation of knowledge explores how process, design style,

and technology specific information can be represented along with how to represent the

rules used for finding errors in the circuit. Both external representations (what the user sees

and creates) and internal representations (what the algorithms of the critiquer work on) are

presented. The use of existing forms of representation, in particular, text-based formats and

circuit design databases, along with generalizing descriptions from examples is explored.

The purpose of technology and design style independence is to reduce the work needed

to check a circuit designed in a new technology and design style. The work in integra

tion partially overlaps the area of representation since the facilities provided by the CAD

system affect how to represent data. The integration work covers the use of the facilities

provided by a CAD system to control the execution of the critic and how the results of the

critic execution can be presented.

Outline of the Dissertation

The remainder of this dissertation is composed of eight chapters and one ap

pendix. In Chapter 2 an overview of circuit critiquing and background on previous work

is given. The representation of primitive circuit elements in explored in Chapter 3. How

collections of primitive circuit elements are represented and searched for in a circuit design

is presented in Chapter 4. The representation of error checks and how errors are located in

a circuit design is explored in Chapter 5. Critic, a test bed for the ideas presented in the

previous chapters, is described in Chapter 6. An example of the use of Critic and results

for the use of Critic, using a CMOS technology description, in a VLSI design course are are

given in Chapter 7. Conclusions and directions for future research are presented in Chapter

8. The appendix contains an example of automatically generated ruieset documentation.

Chapter 2

Overview and Previous Work

In this chapter anoverview of circuitcritiquing and a summary of previous work

in the area of circuit critics is presented. The chapter is divided into three sections: an

overview of critiquing, a description of the basic flow of critics, and a description of the

previous work in circuit critics.

Overview

Verification and analysis tools have been used to automate the task of searching

for and finding many types of errors. However, many of these tools tend to miss the class

of errors that can be attributed to 'experience'. The errors in this class are encountered as

designers leam theircraft. The designers remember the reasons why these errors occurred

and make sure they do not introduce them again (either by never introducing them or by

looking at theirdesign atvarious stages to see if they have introduced these errors). These

errors are generally referred to as rules of thumb. While most of these errors have good

theoretical foundation for why they occur, they are usually thought of as something not

to do, without much thought as too why they are bad. As examples of errors that fit this

classification: don't put more than N mosfets in series in a CMOS static gate,don't put more

than M pass gates in series without intervening level-restoring logic, and do not use this

two-phase gate if the clocks overlapby more than Ar nanoseconds. The problem with these

types of errors is that they arerarelywritten down andthus new designers must rediscover

them,either by peer review orby discovering the error and thecause in their design (by the

use of verification and analysis tools).

One method of reducing the complexity of design to manageable levels is to de

velopdesign styles1. Design styles are asetof rules for circuit construction that if followed

will eliminate certain classes of errors, such as DOMINO[40] and NORA[24] for dynamic

CMOS logic. Design styles can be composed of a small set of simple rules, such as limiting

the number of series connected MOSFETs.in the N-type core of a CMOS static-gate. Most

companies have design styles that place restrictions on designs, e.g. only a finite number

of transistor sizes allowed, certain circuit configurations not allowed (various XOR's and

LATCHes fall into this category). Other more complex design styles exist.

One such design style is used in NORA logic [24]. NORA is a design style for

dynamic CMOS with complementary clocks of arbitraryskew. There are nine rules that must

be followed when designing NORA circuits. By following these rules, no race conditions

because of clock skew can exist in the circuit. The following are two example rules:

• If the number of static inversions between two dynamic blocks is even, the two dy
namic blocks must be complementary. This implies that alternating N and P blocks
must be used for direct connections between dynamic blocks.

• If the number of static inversions between two dynamic blocks is odd, the two dy
namic blocks must be of the same type.

Other design styles insure that a circuit can be tested[17, 41]. Level-sensitive

design[17] is a such a design style. Circuit critics can verify compliance with a particular

design style. This type of analysis is called verification.

Basic Flow

The flow of a circuit critic can be broken into a several phases, some of which are

optional. These phases are:

1. Loading of the description of the technology and design style.

design styles are also known as design methodologies or structured design.

2. Loading of a description of the circuit to be checked.

3. Extracting the structure.

4. Locating the errors.

5. Presentation of the results.

Loading the Description of the Technology and Design Style

In this phase of the flow, a description of the technology and the design style is

loaded into the program, eitherexplicitly or implicitiy. An implicit loading means that the

knowledge is an integral partof the program. The description includes information about

the primitives of the technology, the structures can that can be composed out of the prim

itives, and the possible errors that might occur when designing using the design style. In

addition, to simplify the structure and error descriptions, common constants and subex

pressions are separated out. These constants and expressions are usually directly related to

the process and design style being checked, such as the threshold voltage of MOSFETs, the

maximum number of series connected MOSFETs that is allowed for the design style, or the

maximum allowed clock skew.

While this information is needed for a circuit critic, some circuit critics are have

this information hardwired fora particular technology and/or designstyle andthus skip this

phase. In these critics the information is implicit in the program. When the description is

implicit, using thecritic to checkanewtechnology ordesign stylecould require rewriting a

large portion of theprogram. If thedescription isexplicitly represented, theamount of work

necessary to check a new technology or design style depends on the degree of separation

between the program and the description.

Loading the Circuit

Loading the circuit entails reading in the description of the circuit from a text

description or a data base, along with processing any extra annotation associated with the

circuit. For most critics, the circuit description is represented as a nedist of primitives,

where a primitive can range from a single MOSFET to an entire logic block. Along with

each primitive are attributes, such as the width and length of a MOSFET, that modify the

defaultattributes of the primitive. Depending on the complexity of the design system used

with the critic, the netlist canbe in some standard textual format, such asSIM, SPICE[60], and

EDIF[2] nedist formats, or can be retrieved from a common design database (e.g. OCT[28]).

Many design databases and some textual formats (such as EDIF) allow for the

additionof arbitrary annotation. Designersof critics can develop policies for storing addi

tional information in the database. These policies describe how the additional information

should be stored and interpreted. This additional information can include what regions of

the circuit to check, what errors to check or not check on a per element or region basis, and

other forms of control. Besides directing the control of the critic, annotation can be used

to give the error checks extra information. For example, one critic, QCRTTIC[3], uses the

results of a SPICE simulation to help in finding errors.

Extracting the Structure

The complexity of large circuit designs makes it difficult, if not impossible, to

design at the level of the primitive components. Instead primitive components are grouped

together into higher level components and these higher level components are grouped into

higher level components, and so on. This is the basis of hierarchical design. Structure ex

traction is either the process of taking a collection of interconnected primitives and finding

the higher level structures that were originally used in the design, or the process of finding

new structures not intended or expected (such as unexpected storage elements). By extract

ing the structures in a design a designer can easily see if the circuit has been implemented

correctly. Structure extraction is also known as gate recognition and decompilation[25,66,

49]. Another form of structure extraction is that of extracting the symbolic representation

from the layout[46].

A major use of structure extraction is to simplify the process of finding errors

or verifying the correctness of a design. Most descriptions of errors in a design are not

represented in terms of the low level primitives, but in terms of the structures that are

composed of the primitives. Rather than have the error check specify how these structures

10

_n

Figure 2.1: XOR and LATCH

arecomposed (and be responsible for findingthem), astructureextraction can be performed

before the error checks (or sometimes during the check), allowing the error checks to be

specified more simply in terms of the structures.

Finding Errors

The primary purpose of circuit critics is to find errors (or verify that there are no

errors) in the circuit design. There are two types of errorsthat can be flagged: the presence

of something that should not exist or a set of attributesthat violate one or more constraints.

An example of the former is an illegal XOR configuration and an example of the latter is a

LATCH that can not change state because of a weak load gate (see Figure 2.1).

Depending on what is allowed in error check specifications, pattern matching

could be required. In RUBICC[47], the same rule language used for finding structures is used

in the error check and thus the same pattern matching operations can be used (in practice

the amount of actual pattern matching was limited since the stmcmre finding phase found

most of the structures of interest). Another, QCRTTIC[3], has no stmcmre finding phase so

errors contain the patterns needed to find the elements needed for the error check.

Presenting the Results

After the structures and errors have been found in the circuit description they

are presented to the designer for action. The information can be presented textually or

11

graphically. Ifthe netlist is in the form ofatextual description, the output is usually atextual

description of the elements in error. If the data is stored in a common design database and

there is an editor for that database, then the information can be graphically displayed (where

appropriate). This canbe further improved if the criticcanrun from the graphics editorand

as errors are found the user can make modifications to the circuit to fix the error. If the critic

is integrated with a common database and graphics editor, a whole range of possibilities

arise for the presentation of results. The editor can be used to step through the structures

and errors found in the design. The editor can highlight the objects in the stmcmre or in

error and zoom to the region. If the editor supports dialog facilities, dialog boxes of textual

information can be supplied to describe the stmcmre or error (detailed information about

why the object is in error).

Previous Work

In the past few years many programs for circuit critiquing have been developed

[23, 14, 47, 3, 68, 10]. Most of these have been developed to solve a particular design

problem facing the organization which developed the critic. One critic[14] was designed

to check compliance with a complex design style. Another was designed to check for

common errors made by novices[47].

This previous work can be broken into two distinct classes: work in which devel

oping a critic was the major focus, and work in which a critic (or multiple critics) is a part

of a larger task.

RUBICC - Rule Based IC Critiquer

RUBICC[47], developed by Lob and Newton at the University of California at

Berkeley, checks two-phase dynamic NMOS circuits. RUBICC is written in HPRL[43,42, 12],

which is an extension to LISP that supports frame-based knowledge and both forward and

backward chaining rule systems. Although RUBICC does not have an explicit separation

between the knowledge about the technology and design style being checked and the pro

gram, the technology and design style constants are broken out. RUBICC has three distinct

12

phases: primitive classification, structure finding, and error checking.

In the primitive classification phase, the MOSFET primitives are classified into

the acmal function they perform, such as pass gate, driver, and load. The classification is

determined by how the primitive is connected to other devices, supplies, and clocks. The

major reason for classifying primitives is to simplify the structure finders and error checks.

This is analogous to the reason for having stmcmre finding to simplify the error checks.

In the structure finding phase, complex structures are built out of the primitives

and other structures in a bottom up fashion. RUBICC does not try to determine an ordering

for the stmcmre finding mles, and instead uses the order in which the mles were entered

into the system.

In the error finding phase, the same pattern matching that was performed in the

structure finding phase is used to find the errors. Again, the error checks are ordered, be

cause of interaction among the rules. The existence of one error may negate the need to

check for certain other types of errors. Forexample, the fact that the widths and lengths of

a MOSFET are wildly out of range will negate most other error checks that use the MOSFET

widths and lengths in their calculations.

Figure 2.2 shows a RUBICC mle for checking an error associated with a dynam

ically clocked gate. Each mle is composed of a single form that contains the name of the

rule, the type of the mle (forwards or backwards chaining), the types of database elements

to be used in the pattern matching portion of the mle, the premise (tests to be performed and

patterns to match), and the conclusion (actions to be performed if the premise is true). The

type form lists the types of objects to be used in the mle and the variables to be assigned to

them. In the example rule, two objects, each of a different type (precharger and driver), are

being used, assigned to the variables pre and dr respectively. The premise form describes

a set of tests, each of which must evaluate to true. In the example mle there are two forms,

one that does pattern matching and another that checks constraints. The pattern matching

section can either match an item directly in the database or force a backward chaining mle

to fire. The constraints section uses the variables matched in the pattern matching phase.

In the example mle the conclusion section evaluates a form that creates an error frame in

the database.

Note that the example mle required detailed knowledge of the syntax of the un-

(rule dynamic-clocking-rule-1 backward-chain-rule
(type (precharger ?pre) (driver ?dr))

(premise (test (and (?pre s-node ?sn)

(?pre pre-phase ?pp)
(?dr d-node ?sn)

(?dr s-node 0)

(?dr elk-input ?clkin))

(or (equal ?pp ?clkin)
(equal ?clkin '*high))))

(conclusion (funny-node clocking-flag
"(make-node-name ?sn))))

13

Figure 2.2: Example RUBICC Rule

derlying mle system. However since many of the mles have the same basic form, previous

mles can be used as templates for new mles.

DIALOG

dialog[15, 14], developed by DeMan, et. al. at the Catholic University at Leu-

ven, was originally designed to check for design style violations in CMOS NORA[24, 33]

circuits. DIALOG uses a special purpose language for describing the errors (LEXTOC). This

language can be interpreted in LISP or translated into PASCAL and compiled. LEXTOC is used

for both describing the stmctures to be found during the run and the errors to be checked.

The language provides basic data types and constructs for describing structures and errors;

where the language does not provide the necessary expressiveness, the designer can escape

to LISP. The circuits are described using an Invariant Network Representation (INR) and

LEXTOC allows the mles to transform the circuit from one form of the INR to another; which

another name for stmcmre extraction. Figure 2.3 shows an example of a DIALOG mle for

finding a stmcmre (called a composition mle) and Figure 2.4 shows an example of a DIA

LOG error check mle. In [14] the comment "Notice the simplicity of expressing knowledge

in this system" is made. While LEXTOC does make it possible to describe a wide range of

structures and error checks, it requires the person who creates the ruieset to learn a new

language, one different from what a circuit designer is used to.

(RULE c2mos-definition

(IF

((PROPERTY fibar-cloctor (clocktransistor ctl))

(PROPERTY ptype ctl)

(RELATION inout nl ctl)

(PROPERTY fi-clocktor (clocktransistor ct2))

(RELATION inout nl ct2)

(PROPERTY ntype ct2)

(RELATION input n2 ctl)

(RELATION input n3 ct2)

(RELATION inout n4 ctl)

(RELATION inout n5 ct2)

)

THEN

((IF (COMPLEMENT (LOGFUN (gnd n5) ((ntype e)))

(LOGFUN (vdd n4) ((ptype e))))

(CLUSTER ell (n4 vdd) ((ptype e)))

(CLUSTER el2 (n5 gnd) ((ntype e))))

THEN

((MERGE varc2mos ell el2 ctl ct2)

(ASSIGN fi-c2mos varc2mos)

(ASSOCIATE output varc2mos nl)

(CREATE (c2mos varc2mos))))))

Figure 2.3: Example DIALOG Structure Finding Rule

14

(RULE input-delay-racefree-1

(IF

((PROPERTY fi-c2mos el)

(RELATION output nl el)

(PATH ell (nl ((or fi-nblock fi-block) e)) (static e))

)

THEN

((ASSIGN-ERROR rule-1-violation el)

(PRINT " fi-c2mos = " (INSTANCE el))

(PRINT " static cmos path = " (INSTANCE ell)))))

Figure 2.4: Example DIALOG Error Check Rule

15

If the goal is "finderror" and

the process is "Super-High Three" and

there is a PNP substrate transistor and

the voltage at the emitter is greater than or equal to

the voltage at the collector + 25

Then record an error

Figure 2.5: English Version of QCRITIC Rule

DIALOG was also extended to cover the RUBICCrules described in [47].

QCRITIC - Quick CRITIC

QCRITIC[3], developed by Bergquist and Sparkes at Tektronix, is used for check

ing bipolar analog circuits. QCRITIC is written in OPS83[21], an AI language that allows

simple frame-based knowledge and (the description of) forward chaining rules. QCRITIC

loads a set of OPS83 rules that describe the errors to check, but does not do any stmc

mre extraction. The error checks work directly at the level of primitives in the circuit

(transistors, resistors, capacitors), using pattern matching to find needed collections of el

ements. QCRITIC uses extra circuit annotation in the form of simulation information from

the SPICE[60] circuit simulator. For example, it may use the maximum voltages between

nodes to determine if the breakdown voltages for devices have been exceeded (or devices

have entered saturation) or use the maximum current into a terminal to see if the current is

out of range.

Figure 2.5 shows a 'human-readable' example QCRITIC rule. In this rule a check

is made to see if the voltage across the collector and emitter terminals is greater than the

breakdown voltage. The check is composed of test and action sections. In the test sec

tion, four clauses are used. The first verifies that the current phase of the critic run is the

'finderror' (or errorchecking) phase. The second makes sure the process of the circuit be

ing checked is 'Super-High Three' (the name of a bipolar process used at Tektronix). The

third clause is used to find all PNP substrate transistors. The final clause checks the voltage

difference between the collector and emitter of the transistor.

16

It is important tonote (and willbediscussed inmore detail inthe following chap

ters) that this check contains not only the error check to be performed, but also contexmal

and rule system semantic information.

Design Advisor

DESIGN Advisor[68] is a critic for checking logic gate andlatch level designs for

NCR's design system. Design ADVISOR employs artificial intelligence techniques to the

critiquing problem and uses the Proteus system[59] for representing knowledge and finding

errors in a design. Design Advisor uses truth mainte?iance[16] techniques to allow the

system to support multiple possibilities for why an error might occur. The use of truth

maintenance also permitted the retraction of faulty assumptions made during the check.

DESIGN ADVISOR uses the same input representations as other tools in the NCR

tool suite and has a graphical interface to display the errors found in the circuit. The pro

gram has rules for checking testability, manufacturability, performance, and overall design

quality for the NCR gate arraydesign system.

Figure 2.6 shows an example DESIGN ADVISOR rule. This mle checks for phase

skew caused by differing numbers of loads on the inverting and non-inverting outputs of a

two-phase clock driver. The connection form finds a component of type 'pcl2' (two-phase

clock driver) and binds the name of the driver to '?pcl2-name', the input to '?pcl2-in',

and the two outputs to '?pcl2-phl' and '?pcl2-ph2'. The fanout-cnt forms return the

number of connections to the clocks bindings to *?phl-cnt' and '?ph2-cnt'. The unless

form returns true if the counts are not equal; if the counts are equal, the action is evaluated.

The action triggers the storage/presentation of the error.

ESTA

ESTA[10], developed by P. Camurati, et. al. at the Politecnico di Torino, is a

program for verifying that circuits have been designed following the rules for Design For

Testability\\l', 1]. Designing a circuit for testability means adding extra circuitry (usually

latches), and making connections in order to improve the ability of the circuit to be tested.

ESTA is written in PROLOG[l 1]. As an example of testability mles:

17

((connection ?pcl2-name:pcll2 ?pcl2-in ?pcl2-phl ?pcl2-ph2)
(fanout-cnt ?pcl2-phl ?phl-cnt)
(fanout-cnt ?pcl2-ph2 ?ph2-cnt)

(unless (= ?phl-cnt ?ph2-cnt))

—>

(phase-skew ?pc!2-name))

Figure 2.6: Example DESIGN ADVISOR Rule

A latch X may gate aclock Ci to produce a gatedclock Cy which drives another
latch Y if, and only if, clocks Cy and Ci are not functionally dependent.

This rule may be violated if and only if:

There are two SRL's and a combinations network connected in such a way that
the input clock of the second latch is fed by the output of the combinational
network one of whose inputs is the output of the first latch.

This rule is coded in PROLOG for ESTA as follows:

lssd22(Dx, Ox) :- latch(Dx, Cx, Ox),

network4(Ci, Ox, Cy),

latch(_, Cy, _),

clock(Dx, Cx, Ci).

network4(C, Co, Cy)

:- net (T, C, _, Cy),

input(Ox, T).

clock(Dx, Cx, []) .

clock(Dx, Cx, [H|T])

:- case(Dx, Cx, H),

clock(Dx, Cx, T).

CRITTER

Critter[35], developed by Kelly and Steinberg at Rutgers University, is a pro

gram for comparing the specification of a design with its behavior. It can symbolically

18

determine the outputs based on the input specification and can take an output specification

and determine the inputs required. When give both the inputs and the outputs Critter can

derive the outputs from the inputs and compare them with the expected outputs. Critter

works on netlists of instances of modules. Each module is described by two parts, a set of

operating conditions and a set of input/output mappings. The operating conditions are a set

of constraints on the inputs that must be satisfied before the module will work. Example

constraints might be the set up time for a latch or the skew of two signals. The input/output

mappings describe the effect of the inputs on the outputs.

Palladio

Palladio[8, 9], developed by Brown, et. al at XEROX PARC, is a knowledge-

based VLSI design assistant. Palladio directs a designer by helping incrementally refine a

design from a high level description. Each step in the refinement is directed by a design

assistant that 'knows' how to correctly go from one level of abstraction to another. As

the refinement continues, the system follows rules that force each step to produce a legal

(correct) design. As examples, as high level blocks are chosen the system makes sure that

are no clocking problems or deadlock conditions, as specific devices are chosen the system

makes sure there are no charge sharing problems or illegal logic levels, and as the final

geometry is generated the system verifies that everything is design rule correct. Palladio

can also make sure that components are correctly connected together at the same level of

abstraction. For example, here are two of the rules for composing elements at the level of

clocked switches and gates (known as the CSG level in Palladio):

A control input of a steering switch or a steering net can be connected only to
an output of a restoring logic gate.

An output of a clocking switch can be connected only to an input of a restoring
logic gate.

Palladio is implemented in LOOPS, an exploratory programming language em

bedded in Interlisp[71] that supports procedural programming, access-based programming,

rule-base programming, and object-oriented programming[5,70].

19

SCHEMA

SCHEMA[74, 73], developed by Zippel at MIT, is an integrated system for design

ing circuits. It is a synthesis system with critiquing and analysis for feedback. The basic

concepts of SCHEMA are: the internal semantics of the system should matchthe semantics

of the circuitdesigner(allowingit to betterexplainwhat was going on), components should

be specified in terms of electrical parameters rather than device sizes, and a single design

repository and description language.

As part of the process, SCHEMA, had an analysis phase the would verify the cor

rectness of the design, i.e. did the design meet the specified constraints, where there design

errors. The critiquing phase would check for errors such as:

"Does this inverter have a trip point of 2.3 volts?"

"Does the bootstrapped node boot?*'

Current Work

Current work in the area of checking circuits is heading towards formal verifi

cation. DIALOG[7] is moving from a rule-based approach to one based on a formal speci

fication of correct digital circuits. PRIAM[50] verifies that a circuit functions according to

the specifications, and tries to modify the circuit such that it meets specifications. Work is

continuing in the area of extracting structure from netlists[72, 32].

Problems

There are some short comings that exist in the work on many of the previous and

current circuit critics. In particular, many systems are developed for a particular technology

and/or design style, the description of the circuit, primitives, structures, and errors is based

on the syntax of the implementation, and can contain implementation-specific information,

and the critics are not integrated into larger design systems.

Many critics are hardwired with specific knowledge of the primitives, structures,

and types of errors for a particular technology or design style, for example, RUBICC can

20

only check two-phase dynamic digital CMOS circuits, DIALOG was developed MOS circuits,

and Critter only works for digital circuits. This makes it difficult for the system to be

modifiedto check different technologies and design styles2. Critics should be independent

of the technology and design style. This allows the system to move to new technologies and

design styles with minimum effort; a new set of descriptions of the primitives, structures,

and errors of the technology and design style, but no changes to the system itself.

Many critics require that the circuits and knowledge about the technology and

design style be described using a language that is based on the underlying implementation.

Some critics also require the use of implementation-specific functions in the description of

the structures and errors. This can be seen in the example stmcmre error check descriptions

given in the previous section.

Many systems are stand-alone, they read in the circuit description, find the struc

tures and errors, and then output their results. While they may be part of a larger set of

tools for design, they are not integrated into a design system (DESIGN ADVISOR being an

exception). This makes it difficult to provide such useful features as storing the results with

the circuit, and displaying the structures and errors in the context of the circuit. Integration

into a design system simplifies the use of the system by making the input, output, and con

trol look the same as other parts of the system. Depending on the flexibility of the design

system, the technology and design style knowledge, along with the circuit, can be described

in the database of the design system, the structures and errors can be back-annotated to the

database, and the display facilities used for displaying circuits can be used to display the

structures and errors found during the run.

'Changingto slightly different designstyles within a particular technology has been accomplished[7].

Chapter 3

Primitives

3.1 Overview

To critique a circuit, the human or computer program performing the analysis

must understand the primitive elements that have been used to represent the circuit. In

MOS designs, these are usually MOSFETs of various types and sizes, and capacitors. In

higher-level designs, these primitives can be logic gates, registers, or ALUs. To understand

the primitives, the descriptions of what they look like, what attributes they might have,

and how they might be used in the representation of higher-level structures must be made

available. In this chapter, how primitives can be represented in a critic tool (both in terms

of their definition and in terms of their representation in the circuit) and how to handle the

attributes associated with primitives is presented.

3.2 Representation

Before acircuit critic can process acircuit containing primitives and compositions

ofprimitives in higher-level structures, primitives must be defined. This can either be done

by hardwiring the definition into the critic, as has been the case for critics for a specific

design style and technology, or the primitives can be described in such a way that new and

different types of primitives can ber defined and added easily. A further refinement of the

latter would have the primitive definition in a form that allows easy entry, browsing and

21

22

editing of these definitions as well.

Before exploring the forms of representations for primitives, what actually needs

to be represented must first be determined. This information can then be used to guide the

implementation choice.

Attributes

Stmcmre finders and error checks use attribute information associated with the

primitives for finding structures and errors. The attribute information can be fixed, as in

the type of an item, or it can be calculated, as in the W/L of a MOSFET, the beta-ratio of a

MOSFET static-gate, or the sink current for a pin. The representation must allow the speci

fication of fixed attributes along with the specification of calculated ones. Since there are

calculated attributes, the representation must also specify how to interpret the instructions

for calculating the attribute.

Terminals

Information about the terminals of the primitive must be included in the represen

tation. The information that needs to be specified is the names of the terminals, the types

of the terminals (input, output, bidirectional, etc.), and the permutability of the terminals.

Retrieval from a Database

In order to process a circuit description, the description must be interpreted. Sim

ple text-based descriptions are read from a file and parsed. Integrated CAD systems store

circuits in a database and thus the representation must provide enough information for the

system to read instances of the primitive from the database. This can be as simple as mak

ing one database call or making multiple calls, one for the instance of the primitive, one for

each attribute, and one for each terminal.

Display

The representation should provide enough information to allow the CAD system

to be able to display the primitive. It is important to be able to display an item in error

23

rather than just output the name of the item in error.

Approaches

There are two representation forms, the external form and the internal form. The

extemal form is used by the user of the system and any tools that are not integral to the

system {i.e. a browser, documentation generator). Thus the extemal form must be under

standable, readable, and modifyable by the user. The internal form is used by the system

and thus must be efficient and fit the algorithms used. For example, an external represen

tation might have indirect pointers via names for representing connectivity (as in textual

netlist formats), while a critic, which needs to be able to traverse the connectivity graph

quickly, would have direct pointers between elements that are connected.

The representation must also be independent of the details of the underlying sys

tem. For example, if the underlying system is a rule-based system, none of the rule system

syntax or semantics should be in the extemal representation. This facilitates changing the

underlying system without changing the representation the user sees, and the user is not

required to learn the specific syntax of the underlying system.

The definition of a primitive must contain several features, from the simple, such

as the name, to the complex, such as permutability information and how to calculate at

tributes of the primitive. Primitives should have the following:

type: The classification of elements in the database is determined by their type.

terminals: Terminals are used to connect the element to other elements via nets. The cri-

tiquer must know what terminals exist and if they are logically or electrically equiv

alent.

attributes: primitives may be further classifiedbased on what the values of their attributes

are. For example, the primitive BJT may have the attribute TYPE with values NPN

and PNP. The use of attributes are particularly important for use in finding higher-

level structures and errors. For example, a CMOS inverter is made up of two MOSFETs,

but with different attributes. Besides having simple attributes, like the TYPE example

above, there can be complex attributes that can be functions of other attributes on the

24

primitive. The simplest example is that ofthe attribute for the W/L ratio of a MOSFET.

This attribute is composed of two other attributes, the width of the MOSFET and the

length of the MOSFET.

The description of a primitive is straightforward and can be easily described by a

simple language. Often an existing language can be used, sometimes a language from the

domain. Many CAD tools use the SIM[26] or SPICE[60] netlist formats to ease the creation

and modification of data and to allow the data to be used by other tools. There is no such

language available for describing the information necessary for the primitive. Many critics

use a language from an AI system[43,42,12, 59,19]. To make the system independent of

the underlying system, a simple language was developed. Examples of using the language

are shown below:

(defprimitive type

(terminals list of terminals)

(permutable list of permutable terminals)

(attributes list of attributes))

(defprimitive bipolar-transistor

(terminals emitter base collector)

(attributes area type))

(defprimitive mosfet

(terminals gate drain source)

(permutable drain source)

(attributes width length (w/1 (/ width length)) type))

While this language is simple and provides enough expressibility for defining

primitives, it does require the person installing or using the critiquing program to define

the primitives and enter them into the system. Another approach is to find a representation

that matches one already in use in the design system that is already used by the design

groups. This allows the definition of the primitives "by example". "By example" in this

case means using the description of a primitive that has already be done for other pans

of the system. The best case would be using the basic leaf-cell definitions used to design

circuits. These leaf-cells have information about the type of the primitive, the terminals

on the primitive (and any attributes the terminals might have, such as type and direction),

permutability information, and attribute information.

25

Permutability

Many elements have sets of terminals that are electrically or logically equivalent.

These terminals are called permutable. For example, the inputs to a NAND gate are logi

cally permutable and possibly electrically permutable if you ignore capacitance and timing

concerns[61], and the source and drain of a MOSFET are electrically permutable. Choosing

the best way to represent elements and terminals is important[65, 66]. This determines the

number of rules in the system, the complexity of the mles, the size of the database and the

overall performance of the system. There are two basic formats: one is simple and allows

for easily understood rules, and the other is more complex but allows for more compact

rule sets when terminal permutability is needed. The simple case, to be called the non-

permutable case from now on, represents each terminal on an element as an attribute of the

element, so one item in the data base can describe an element. The second case, to be called

the permutable case from now on, represents each terminal on an element as a separate item

in the data base with pointers linking the element and its terminals.

Each of the following examples is in the format used by OPS5[19] for representing

the rules. OPS5 is a production system that was used in this work for testing out ideas on

permutability, representing structures and errors, and rinding them (see Chapters 4 and 5).

In OPS5, the database is called working memory and the mles and patterns used to match

the database are calledproductions. A production has the following form1:

rule: (p Ihs —> rhs)

Ihs: patterns

pattern: (type "slot-name slot-value)

type: the name of a data type declared to OPS5.

slot-name: the name of a field in the data type type.

slot-value: constant — variable — constraint

constant: a constant value, the slot must have this value.

'See [19] for a moredetaileddescriptionof the format.

26

variable: <variable-name>; if the variable has not been assigned the variable takes
on the value of the slot. If the variable has been assigned, the slot must have this
value.

constraint: conditionals (not equal, less than, greater than, etc.).

rhs: actions

action: operations to perform: add to the data base, modify data, delete data, output, re
quest input, etc.

Using the OPS5 notation, the non-permutable representation for a MOSFET is:

(mosfet "gate <gate> "drain <drain> "source <source>)

and the permutable representation is:

(mosfet "source/drain <term> "gate <gate>)

(terminal "parent <term> "type source/drain "terminal <drain>)

(terminal "parent <term> "type source/drain "terminal <source>)

The following rules show the patterns to match an inverter made of a depletion-

enhancement MOSFET pair (see Figure3.1). Since the non-permutable format does not allow

permutable terminals, four rules must be used to match all possible terminal permutations

(2 allowed permutations per MOSFET and 2 MOSFETs). In general, for the non-permutable

format, if M gates with N permutable terminals needto be matched, (N\)M mles will be

needed to match all combinations2.

(p inverter-0

(dmosfet "gate <out> "drain *vdd* "source <out>)

(emosfet "gate <in> "drain <out> "source *ground*)

—>

(make inverter "input <in> "output <out>))

(p inverter-1

(dmosfet "gate <out> "drain *vdd* "source <out>)

(emosfet "gate <in> "source <out> "drain *ground*)

—>

(make inverter "input <in> "output <out>))

2Foreach gatewithN permutable terminals thenumber ofpossible terminal permutations is JV! andsince
the terminals of each gate can permute independently of the others, each gate multiplies the effect, giving
(N\)M.

vdd

drain

t dmosfet

gate <in> <out>

emosfet

'ground*

Figure 3.1: Inverter Example

(p inverter-2

(dmosfet "gate <out> "source *vdd* "drain <out>)

(emosfet "gate <in> "drain <out> "source *ground*)

—>

(make inverter "input <in> "output <out>))

(p inverter-3

(dmosfet "gate <out> "source *vdd* "drain <out>)

(emosfet "gate <in> "source <out> "drain *ground*)

—>

(make inverter "input <in> "output <out>))

27

The following mle is equivalent to the four inverter rules above, but uses the

permutable format. Note that the inverter created by this mle uses the non-permutable

format since it does not have permutable terminals.

(p inverter

(dmosfet "source/drain <sdl> "gate <out>)

(terminal "parent <sdl> <term> « drain source » *vdd*)

(terminal "parent <sdl> <> <term> « drain source » <out>)

(emosfet "source/drain <sd2> "gate <in>)

(terminal "parent <sd2> <term> « drain source » <out>)

(terminal "parent <sd2> <> <term> << drain source » *ground*)

—>

(make inverter "input <in> "output <out>))

28

The non-permutable format requires M working memory elements and {N\)M

rules for M elements with N permutable terminals. The permutable case requires one mle

and an extra working memory element for each permutable terminal, for a working memory

size of M x (N -f 1). The RETE match algorithm used in OPS5[20] has a lower and upper

bound of time permle firing of 0{log2R) and 0{R) for rules, and 0(1) to 0(W2C~l) for

working memory elements (where C is number of patterns in a mle, R is the number of

rules, W is the number of working memory elements). As can be seen, increasing the size

of the working memory has a much worse effect on worst-caseperformance than increasing

the number of rules. Tests with 0PS5 on circuit examples show this and show that better

performance is obtained when more rules are added to the system rather than when more

working memory elements are added to the system. Thus the non-permutable format is

faster than the permutable format.

The following tables and graph show the results of experimenting with the two

permutability formats. The experiment was to find latches that were composed of nand

gates which were composed of MOSFETs. 0PS5 on a VAX 11/785 was used for the experi

ments.

Count: the number of MOSFETs in the working memory.

WME count: the number ofworking memory elements at the start. The same as the MOS

FET count for the permutable rules format, three times the MOSFET count for the

permutable working memory format (1 for each MOSFET and 1 for each of the 3 ter

minals).

CPU time: the time to find all the structures.

firings: the number of mles that fired.

firings/sec: the number of mles fired per CPU second.

memory: the maximum amount of memory used by 0PS5 while finding the structures.

For M subpattems with N permutable terminals in each subpattern, there will

be (N\)M pattern sets. Thus a basic CMOS inverter would have4 (2!2) pattern sets. Most

time x 10^

34.00

32.00

30.00

28.00

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

• • t

l

t

#_L

200.00 400.00 600.00 800.00

rule-perm (23 mles)

wme-perm (5 mles)

29

mosfets

Figure 3.2: Time to Find NAND Gates and Latches

Count WME count CPU time (sec) firings firings/sec memory (MBytes)
90 90 4.6 49 10.6 1.3

180 180 14.9 98 6.5 1.3

270 270 32.1 147 4.5 1.3

360 360 58.4 196 3.3 1.3

450 450 95.1 245 2.5 1.4

540 540 150.6 294 1.9 1.4

630 630 231.4 343 1.4 1.5

720 720 347.3 392 1.1 1.6

810 810 519.5 441 0.8 1.7

900 900 772.3 490 0.6 1.8

Table 3.1: Finding NAND Gates and Latches - Non-permutable Format (23 rules)

Count WME count CPU time (sec) firings firings/sec memory (MBytes)

90 270 394.6 49 0.1 1.5

180 540 3466.1 98 0.02 2.0

270 810 12790.0 147 0.01 3.0

360 1080 33155.6 196 0.006 4.4

30

Table 3.2: Finding NAND Gates and Latches - Permutable Format (5 mles)

structure definitions contain two to four subpattems that contain two permutable terminals,

so the numberof pattern sets does not grow too big (2!4 = 16).

A point worth noting is that if some of the terminals that permute are not used in

the pattem definition, then the number of patterns can be reduced. For example, if a pattem

is looking for two MOSFETs that are connected together by their gates and is not concerned

with what is connected to the source and drain terminals, then only 1 pattem is needed

(see Figure 3.3). If information about how the source and drain were connected, 4 patterns

would be needed.

Note that the ideas developed for permutability in this chapter apply equally well

to the permutability of terminals in structures.

3.3 Built-in Primitives

While a circuit critic should not have knowledge of the different types of prim

itives for the various technologies and design styles (e.g. MOSFETs, registers), there are a

(p interesting-combination

(emosfet "gate <mid>)

(emosfet "gate <mid>)

—>

drain

<mid>

source

drain

source

Figure 3.3: Unused Permutable Terminals

31

number of primitives that are independent of the particular design style or technology. To

simplify many of the structure finders and error checks these primitives should be known

to the critic. The ones of particular importance are: Node, Port, Supply, Ground, and

Clock.

Nodes are used for tying together the various primitives defined for the technol

ogy and design style. The major purpose of the built-in node primitive is as a holder for

node-based errors. Each technology or design style has a number of errors that are not as

sociated with structures or primitive elements, but with the node itself. For example, no dc

path to ground, multiple static outputs driving the same node, shorted supplies, or a node

that is not testable.

Ports are used to connect the primitive elements and stmcmre to the nodes. The

purpose of a built-in port primitive is to allow for the special handling of extemal connec

tions to circuits. These can simply be the formal terminals of a cell, the primary inputs and

output of a logic network, or the pads for a chip. Many error checks are modified or do not

apply based on whether the primitive element or stmcmre being checked is connected to

32

one of these pons. For example, no dc path to ground does not apply to the inputs of cells.

Also, special error checks are required when the inputs/outputs are pads.

Supplies, Ground, and Clocks are used to represent the power supplies, and time

dependent signals input the to circuit. The one problem with supplies and clocks is that they

have to be generic enough to handle all possible types of supplies and clocks that might exist

for a wide range of technologies and design styles. It could easily be argued that these are

design style and technology specific and should be in the definition of the primitives for the

particular knowledge base. In the work for this dissertation, they were built-in primitives,

but in hindsight, this may have been a mistake. Some technologies have multiple supplies

(e.g. ECL), and some have complex supplies (e.g. ramps, sinusoidal, piece-wise linear).

Clocks are even far more complex. Some technologies have no clocks, and some have

multiple clocks. Clocks can many different attributes: rise and fall time, duty cycle, pulse

width, etc. Of the design styles with multiple clocks, there are questions about whether the

clocks overlap or not. Trying to fit all these various attributes in a coherent manner into a

single supply and a single clock primitive was too ambitious a design goal.

Chapter 4

Structures

4.1 Overview

The complexity of large circuit designs makes it difficult, if not impossible, to

design at the level ofthe primitive components. Instead, primitive components are grouped

together into higher level components (*structures') and these higher level components are

grouped into still higher level components, and so on. This is the basis of hierarchical

design. The goal of hierarchical design is to reduce design complexity by representing

structures by a simple abstraction of their detail at the higher level and/or by re-using a

particular stmcture (regularity). Stmcmre extraction is the process of taking a collection of

interconnected primitives and finding the higher level stmcmres that were originally used

in the design or finding new stmcmres not intended or expected (such as unexpected storage

elements). By extracting the stmcmre of a design a designer can easily see if the circuit has

been implemented correctly.

A major use of stmcture extraction is to simplify the process of finding errors

or of verifying the correctness of a design. Most descriptions of errors in a design are

not represented in terms of the low level primitives, but in terms of the stmcmres that the

primitives make up. Rather than have the error check specify how these stmcmres are

composed and be responsible for finding them, a stmcture extraction can be performed

before the error checks or sometimes during the check, allowing the error checks to be

specified more simply in terms of the stmcmres.

33

34

4.2 Representation

There are many approaches to representing structures. However, before these

approaches can be explored, the necessary basic concepts to be represented must be deter

mined. These concepts can then be used to explore and compare various representations

and implementations. Stmcmres require the specification of the attributes associated with

the structure and the attributes of the components of the structure, the terminal information

of the structure, the connectivity and composition, how the structure can be stored in the

database, and finally how it can be presented to the user.

Attributes

The information needed for the representation and the reasons for needing it are

the same as that needed for primitives (see Chapter 3). The only difference is that most of

the attributes for structures will be calculated based on the values of the attributes of the

components of the structure. Thus a method of referringto attributes on the components is

necessary.

Terminals

The information needed for the representation of terminals of structures is the

same as that needed for primitives (see Chapter 3).

Composition

The representation must be able to describe the composition of the stmcmre (i.e.

what items make up the stmcmre) and the constraints on the composition of the stmcmre

(i.e. connectivity, constraints on attributes).

Database Storage

If the stmcmres are to persist across runs of the critic or if other tools are to be

used to present the results of the critic, the stmctures must be stored in the database.

35

Display

Once the stmctures have been found, there must be a way to present this infor

mation to the user. If the system is part of a larger integrated system, the display of the

structures may be taken care of once a method of making them persist is developed.

Approaches

Two approaches were explored for representing stmcmres: texmal and graphical.

To explore the texmal approach for representing stmcmres, a language was developed for

describing the stmcmres. There were three portions to the description: rinding the stmc

ture, calculating attributes for the stmcmre, and use of the stmcture in finding higher level

stmcmres. The "how to find the structures" portion consisted of what primitives and other

stmcmres made up the stmcture being defined, what constraints each component had, how

the components were interrelated by connectivity and attributes, and how the stmctures

were used in other structure definitions.

An important feature of the language was to remove all system internal informa

tion and lower-level system syntax and semantics from the language. By removing this

information, the language would be independent of a particular implementation. The fea

tures of the language are as follows:

name: The name of the stmcmre (e.g. INVERTER, LATCH). This is used for documen

tation and for definitions of stmcmres that contain stmcmres of this type.

comments: Comments about the stmcture, e.g. "This latch operates based on....". This is

purely for documentation.

components: Describes the components that make up the stmcmre and how they are in-

terelated. The components are described as a set of one or more patterns.

actions: Describes the actions to be performed when the stmcture is found in the database.
Used mainly for the calculation of attributes of the new stmcture:

(let <w/l> (compute (<width> // <length>)))

36

terminals: A list of the extemal ports of the stmcture.

permutable-terminals: A list of the terminals of the stmcture that can permute.

structure: Describes the stmcture to be created when the components are found in the

database.

The following is an example of a stmcture defined using the language:

(defstructure

(name inverter)

(components (depletion-mosfet (name <load>)

(drain *vdd*)

(gate <out>)

(source <out>))

(enhancement-mosfet (name <driver>)

(drain <out>)

(gate <in>)

(source *ground*)))

(terminals input output)

(actions (let <b-r> (compute (<driver:width> // <driver:length>)
// (<load:width> // <load:length>))))

(structure (inverter (input <in>)

(output <out>)

(beta-ratio <b-r>))))

The language described above for stmcmre definitions has the advantage ofbeing

human readable, however it is not based on an existing circuit description language or

database format. In Heckel's book, The Elements of Friendly Software Design, "Speak

the Users Language" is listed as one of his important principles if the design of successful

user interfaces[30]. In describing stmcmres to the critic, it would be advantageous to be

able to use existing cell designs rather than having to enter descriptions of the cells in the

stmcture description language. Stmctures should be 'described by example'. 'Described

by example' means the ability to enter cell designs using standard graphics editors and have

them be directly used by the circuit critic for stmcmre definitions.

37

Processing

To simplify the definition of the stmctures, the order in which the defimtions are

stored and read by the critic should not be specified. Since some stmcture definitions depend

on others they must be processed in a specific order, i.e. the items used in a definition must

be defined before the definition that uses them. A simple levelizing routine is all that is

needed to determine an ordering based on dependencies between structure definitions. The

algorithm hasa bestcasecomplexity of O(n)1, where n is thenumber of stmcmres defined,

and a worst case complexity of 0(n2)2. Most mle sets would have n < 50 stmcmres

defined, so the timetoprocessthemle setis acceptable3. Thefollowing pseudo-code shows

a simple algorithm for levelizing the stmcmre dependencies:

list = list of structure types;

ordered-list = empty;

foreach primitive definition {
add primitive ordered-list;

}

forever {

if list is empty return ordered-list;

item = first element in list;

if depend(item) subset-of ordered-list {
/* dependencies have been satisfied */

add-to-end item ordered-list;

} else {
add-to-end item list;

}

1All stmctures are defined in the order of use by other structures, i.e. all structures are defined before they
are used, no forward references.

2The structuresare definedin the opposite orderof use by otherstructures, i.e. structures are used before
they are defined.

3If the time gets too large, a better algorithm could be used, the structures could be partially ordered, or
the results of a levelizing could be saved for future use.

38

4.3 Finding Structures

In building a system for finding stmctures in the database, there are several ques

tions to answer: should the search go top-down or bottom-up, should the search be rule-

based or algorithmic; if rule-based, should the mles be ordered a priori or change as the

database changes; should pattern matching be done; how should the pattern-matching be

done; and should finding series-parallel groups of elements be treated the same as finding

structures.

To minimize the amount of code that needed to be written to explore some of the

ideas in representing and searching for stmcmres, the system was originally built on top of

OPS5. This allowed the use of an existing rule system and pattern matcher, along with a

language for describing stmcmres. However, afterusing OPS5, problems were encountered

in two areas. First,translating a primitive or stmcmre description to an OPS5 representation

required the addition of OPS5 specific information. Not just the expected syntactic changes,

but information regarding semantics. For example, OPS5 would allow both components of

the following pattem (used for matching two parallel elements) to match the same element

in the database:

(element "top <netl> "bottom <net2>)

(element "top <netl> "bottom <net2>)

the following additional information would have to be added to force the compo

nents to match different elements in the database:

(element "name <name> "top <netl> "bottom <net2>)

(element "name <> <name> "top <netl> "bottom <net2>)

Each additional component for element would require more complex checks:

(element "name <> <namel> <> <name2> <> <nameN>)

Second, the OPS5 mle sequencing (conflict resolution) was different than the se

quencing required for searching for the stmcmres, so extra patterns and mles were needed

to direct the searching of OPS5. Since there is no way to statically declare mle ordering

in OPS5, the ordering was always determined at run-time. In order to get the desired mle

39

order,the ruieset was split into 'mlesets'. Rulesets areusually set up by putting a 'ruieset'

pattern in each rule. The ruieset patternhas one attributewhich is the name of the mleset.

In order to allow a mleset to mn, an element is placed in working memory that

has the name ofthe current mleset. To go to the next mleset, the current element is removed

and a new one with the name of the next mleset is added. There are a couple of ways to do

this sequencing of OPS5 rulesets: one is to have a set of rules that know how to switch from

one rule set to another, i.e. one mle for each ruieset transition; another is to build a queue

of rulesets and have a generic rule that pops a ruieset name off the queue and causes that

ruieset to be run. This corresponds to having the control knowledge is in the data or in the

ruieset. The following shows an example mle with amleset pattem and a rule for switching

between mlesets. Both rules match data in the database, but OPS5 will always fire the one

that is more specific, i.e. has more components. The first mle fires until there are no more

inverters to find, then only the second rule matches the database and it is allowed to fire.

(P
(ruieset "name find-inverters)

(mosfet "type nmos ...)

(mosfet "type pmos ...)

(P
(ruieset "name find-inverters)

->

(delete 1)

(make ruieset "name find-latches))

The following shows the initializing of a stack of rulesets and the generic mle

for popping the stack. This scheme works because OPS5 will use the most recently added

item when it looks for mles to fire, thus mles from the most recently added mleset will

be considered first. This has the disadvantage that all mles in all mlesets are looked at to

determine which one to fire.

(make ruieset "find-latches)

(make ruieset "find-inverters)

(P

(ruieset)

->

(delete 1))

40

Top-Down Versus Bottom-Up

The process of extracting stmctures can be a top-down or bottom-up process. In

a bottom-up process the stmctures that are composed entirely of primitives are found and

then stmctures that use the recendy found stmctures (and possibly other primitives) are

found, and so on. The contents of the database drives the process of extraction. In a top-

down process, the search begins by looking for the set of top level stmctures (stmcmres

that are not used in any other stmcture descriptions), for each top level stmcmre the critic

searches for its component stmctures, and so on, until primitives are being searched for.

For example, if the stmcmre types to be searched for are latches and inverters, and the

primitives areenhancement and depletion mode MOSFETs, then the top-down search would

start out trying to find all latches. Since latches are composed of inverters and there are

no inverters in the circuit, the inverter stmcmre descriptions would be used to search for

inverters. The constraints on the connectivity of the inverters in the latch would be passed

down. The inverter descriptions are composed of MOSFETs, which are primitives, so the

downward process stops. In a bottom-up search, all stmctures would be searched for, but

only the inverter description would be used since it is composed entirely of primitives.

Once inverters are found, the latch description may be used since its components have

been found. In the bottom-up process, all stmcmres of a given type can be found before

going on to another, or as stmcmres are found other stmcmre descriptions that reference

them can be used. For example, all inverters can be found before any latches are searched

for, or as soon as an inverter is found, latches can be searched for.

Ordering

There are two ways to manage the mles used for finding stmcmres. The list of

mles to be fired and their order can be statically determined at the time that the knowledge

base is loaded, or the list of mles and their order can be dynamically determined based on

41

the knowledge base and current state of the database. In dynamic ordering, mles are added

to a rule queue based on the ordering criteria along with information based on the current

state of the database. Dynamic ordering only adds rules to the queue that stand a chance of

firing; thus entire groups of rules may be skipped. A set of rules may depend on a certain

type of stmcture in the database. If instances of the stmcmre type are not in the database,

dynamic ordering will never place the mles that use that set in the queue. If the patterns are

expensive to evaluate this can be a large savings. In static ordering, all mles are placed in

the rule queue based on the ordering criteria. This makes the rule firing algorithm simpler,

since it no longer has to determine if new mles should be added to the queue, but it means

that entire sets of rules that stand no chance of ever succeeding will be placed in the rule

queue and will be rejected at run-time. Both orderings give the same final results. The

tradeoff is in the overhead of dynamic ordering versus the extra time to check mles that

will never fire in a static ordering.

Some rules can be written in a recursive manner, i.e. the mle creates a stmcmre

that could be used in the rule itself. This is mainly used for finding series and parallel

combinations of elements, as described in the section on Combination finding.

The following pseudo-code shows the basic algorithm for sequencing through a

dynamically ordered rule queue:

rule-queue <- empty

foreach primitive type (P) instantiated in the circuit {
foreach structure type (ST) that contains instances of P {

add the rule corresponding to ST to the end of rule-queue

}
}

while (rule-queue is not empty) {
success <- false

while (first rule fires) {
create new structure (S)

success <- true

}

if (success) {
if (combination defined for S) {

42

schedule combination finder to be called after all

recursive rules

}
foreach structure type (ST) that contains instances of S {

add the rule corresponding to ST to rule-queue*

if (rule is recursive) {
add the rule to the beginning of rule-queue*

} else {
add the rule to the end of rule-queue*

}
}

}
}

The scheme used for dynamic ordering allows mles to be added to the end of the

mle queue (default) or to the beginning of the queue (for recursive mles). There is also the

case where the rule should be inserted into the middle of the queue at some location. This

occurs when a rale to be added is more specific than a mle already in the queue. If the new

rule were added at the end of the queue, the less specific rule would match the elements

that should have been matched by the more specific rule. If the new mle were added to the

beginning of the queue it might not match anything since there might be rules later in the

queue that create stmctures needed in the new rule. Forexample, in Figure 4.1 the group of

MOSFETs that represent a 'transfer inverter' are in the database. If the MOSFET combination

rules fire before the transfer inverter mle is checked, the transfer inverter rule will not find

the stmcmre in the database. Therefore the mle should be inserted into the queue. Instead

of placing mles at the end of the queue they could be insertion sorted. Each mle would be

assigned a value that corresponds to how "specific" it is. The information used to determine

how specific a mle is can be the number of patterns in the mle, the number of variables, the

number of constraints (shared variable bindings), etc.

; rule with shared variable bindings

; five slots used, but only three variables

; (?name is a variable)

(elementl (slotl ?varl) (slot2 ?var2))

(element2 (slot3 ?val2) (slot4 ?var3))

(element3 (slot5 ?val3))

HD

HD

Figure 4.1: Insertion Sort Example

p i

p i

.....

N i

N

:....

43

44

Pattern Matching

The process ofdetermining whether the components necessary to form a stmcture

are in the database can be done either by using patterns to search the database or writing

code to find each type of stmcture. The trade-off is that writing a specific piece of code for

each stmcture is much faster since more information can be encoded and no general purpose

pattern matcher needs to be used, but this method requires writing code for each stmcmre.

A single piece of code may also cover what would require multiple patterns or multiple

invocations of a pattern and thus can maintain information that would be lost between the

patterns. Pattem matching is general and makes adding new stmctures easy.

The problem is to match a set of patterns against a database. A set of patterns

is a group of interrelated patterns that are used to find a group of interrelated items in a

database. Each pattern is composed of a class name and a set of slot descriptions. The

class name is the type of the item to look for in the database (i.e. MOSFET, inverter). The

slot descriptions arecomposed of a name and a value. The value can be either a constant or

avariable (represented in the examples by aleading"?")• If the value is aconstant, any item

matching the pattem must have a slot with the same name and the value of the slot must be

equal to the constant. If the value is a variable, any item matching the pattem can have any

value and this value is associated (bound) to the variable. All variables with the same name

in the set of patternsmust be bound to the same value; this is called unification. Variables

specify subpattem inter-connectivity (nodes) and inter-subpattern constraints (attributes).

If the slot name is the name of a terminal, the value used is the node that is connected to

the terminal. Note that variables are only used for inter-connectivity and inter-subpattem

constraints, not forpassing values of attributes to the actionportion of amle (as in OPS5[19],

called the right-hand side). For the right-handside one has full access to the items matched

by the pattem. Figure 4.2 describes the syntax of the patterns.

The simplest approach for pattern matching is to match the firstpattem against the

entire database and foreach possible set ofvariablebindings, match the next pattem against

the entire database, taking into account the variable bindings. This method is 0(Mk) in

complexity, where M is the number of elements in the circuit and k is the maximum number

of patterns in a pattem set. The following pseudo-code shows the basic pattem matching

algorithm4:

matcher(patterns, items)

{
if (no more patterns) {

/* match ok, perform actions on 'items' */

}
matches = match(head(patterns), database));

if (no matches) {
unbind all variables;

throw back to the first call to matcher;

}
foreach (match in matches) {

bind variables;

matcher(rest(patterns), append(match items));

}
}

45

There are two straightforward ways to reduce the search space. The first method

is to partition the database into groups of like elements (all MOSFETs together, all inverters

together, etc.). If the database is composed primarily of one class of items (such as in

MOSFET circuits) the search space reduction can be small However, once collections of

MOSFET have been classified into stmcmres, the size of the stmcture classes can be small.

The worst case pattem matching time is 0(Mk). As the circuit is partitioned, the pattem

matching time improves: M = £M»,andMfc > E(M^). This method is0(£(M*S'))
in complexity. The following pseudo-code shows the improved algorithm:

matcher(patterns, items)

{
if (no more patterns) {

/* match ok, perform actions */

}
matches = match(head(patterns), class-instances(head(patterns),

database)) ;

if (no matches) {
unbind all variables;

throw back to the first call to matcher;

4For those familiar with LISP (the implementation language for this work), head is car, rest is cdr,
and append is cons.

}

}
foreach (match in matches) {

bind variables;

matcher(rest(patterns), append(match items));

}

46

In the case of finding circuit structures, the interconnectivity of the stmctures

(represented by the variables that match nodes) can be used to reduce the search space.

Once the first pattem is matched, the nodes represented by the variables can be used to

pmne the search space: only the elements connected to those nodes need to be searched.

So, in the second and succeeding steps, instead of searching the entire database again, the

nodes that have been bound to variables that are in the next pattern are searched for ele

ments of the proper class and the elements connected to the node with the smallest number

of elements connected to it are searched. There are usually three elements connected to

a single node, as compared to tens, hundreds, or thousands of elements in the entire cir

cuit. It is important to make sure the node with the smallest number of connections is

chosen; while most nodes have around three connections, some nodes, such as the sup

ply, clock, and ground nodes, may have hundreds or thousands of connections. A smaller

group of elements to be searched could be obtained by intersecting all the node lists, but

the intersection cost probably outweighs the small cost of the extra search5. This method

is 0(52(Mi x min(connections)ki)) in complexity. The following pseudo-code showsthe

algorithm:

matcher(patterns, items)

{
if (no more patterns) {

/* match ok, perform actions */

}
matches = match(head(patterns) ,

items-connected(head(patterns)));

if (no matches) {
unbind all variables;

throw back to the first call to matcher;

}

5However, if the smallest element counton the nodesis large and the othernode lists are different, inter
section could reduce the time considerably.

}

foreach (match in matches) {
bind variables;

matcher(rest(patterns), append(match items));

}

47

items-connected(pattern)

{
if (notany(variable-is-a-node, variables(pattern))) {

return(instances(class-of(pattern)));

}
/*

* build a list of elements of the right class

* connected to the node with the smallest element

*.count

*/

}

As an example, the following is a simple set of patterns for matching an inverter

from MOSFETs:

(mosfet (drain ?d) (source ?vdd) (type "pmos"))

(mosfet (drain ?d) (source ?gnd) (type "nmos"))

The first step is to match the first pattern against all MOSFETs in the database:

(mosfet (drain ?d) (source ?vdd) (type "pmos"))

This will find a set of bindings for ?d and ?vdd. The next step, for each bound

pair of ?d and ?vdd, will find all elements of type MOSFET connected to the node bound to

?d. ?vdd is not used since it does not appear in the second pattem, and ?gnd is not used

since it has not been bound. This list is then matched against the second pattem (with ?d

replaced by its binding):

(mosfet (drain NODE-12) (source ?gnd) (type "nmos"))

This list will probably contain less than 4 elements6, rather than all the MOSFETs

in the circuit.

6In circuit simulation literature[56], the fanout from an element is usually stated to be in the range of 2.5
to 3. This also can be shown in the number of non-zero elements per row in the connectivity matrix. There
is also literature on wiring space requirements[31] that backs up these numbers.

48

Indexing

Another technique for use in reducing the search space is storing information

about the values of slots so that all elements with a particular value for a slot can be quickly

accessed. This is known as indexing[l$\. For findingstmctures, indexing the nodes makes

sense since the components of stmctures are connected by nodes. This can be taken further

by indexing more fields in the elements (such as type in MOSFETs). This could considerably

cut down the search space if the number of values that the field can take on is large and

uniform (e.g. in the case of MOSFET type for static CMOS, the number of values is 2 and

uniform, which could cut down the search by a factor of2 for each subpattem in the pattem).

There is a trade-off between the time to calculate the indexes (i.e. go through all elements

and hash them based on the values of the indexed slots) and the time to search the entire

set of elements at match time to find elements that match the particular slot value.

Additional Constraints

Besides the constraints associated with interconnectivity and fixed slots values

(handled by indexing), there are extra constraints that are not easily handled as patterns and

are usually escaped to the underlying system. In the work presented here, the implemen

tation of the matcher is in LISP and thus the constraints can be arbitrary LISP expressions

that have access to the variables in the patterns. For example, the following pattern would

more precisely define an inverter:

(mosfet (drain ?d) (source ?vdd) (type "pmos"))

(mosfet (drain ?d) (source ?gnd) (type "nmos"))

(lisp-eval (supply-node-p ?vdd))
(lisp-eval (ground-node-p ?gnd))

Pattern Ordering

Note that ordering the pattern set can speed up the match; the following ordering

of the above pattern set would speed it up by immediately throwing out a bad binding of

the supply node (this assumes that the lisp-eval is faster than pattem matching):

(mosfet (drain ?d) (source ?vdd) (type "pmos"))

(pattern)

(subpattern)

(pat)

(type)

(attribute)

(aName)

(aValue)

(constant)

(varName)

(UspEval)

= ((subpattern)+)

= (pat) | (UspEval)

= ((type) (attribute)+)

= lispSymbol

= ((aName) (aValue))

= lispSymbol

= {coniiani) | (variable (varName))

= JzspFa/ue

= lispSymbol

= (lisp-eval lispExpression)

49

Figure 4.2: Internal Pattern Representation

(lisp-eval (supply-node-p ?vdd))

(mosfet (drain ?d) (source ?gnd) (type "nmos"))

(lisp-eval (ground-node-p ?gnd))

Also, the pattem that matches the class with the least number of instances in the

database should be at the beginning; this reduces the search space. If the number of inverters

in the database is less than the number of MOSFETs, the following pattem set should have

the two patterns switched (i.e. fewer bindings to throw out):

(mosfet (drain ?in) (source ?mid) (type "nmos"))

(inverter (input ?mid) (output ?out))

Figures 4.3 and 4.4 show a CMOS inverter and a pattern that represents it.

Finding Combinations

Combinations are collections of series, parallel, and series-parallel connected el

ements (see Figure 4.5). Most MOSFET designs are composed of large collections of series,

((mosfet (type "PENH")

(member-of nil)

(drain (variable G002))

(gate (variable G034))

(source (variable G045)))

(mosfet (type "NENH")

(member-of nil)

(drain (variable G045))

(gate (variable G034))

(source (variable GOlO)))

(lisp-eval (supply-node-p

(node (variable-value "G002"))))

(lisp-eval (supply-node-p

(node (variable-value "GOlO")))))

Figure 4.3: Pattern for a CMOS Inverter

Terminal = VDD (SUPPLY)

MOSFET (type = "PENH")

MOSFET (type = "NENH")

\Z

Terminal = GND (GROUND)

Figure 4.4: Pattern Example

50

51

Figure 4.5: Example Combinations

parallel, and series-parallel connected MOSFETs that form logic functions. Two techniques

have been explored for finding combinations: pattern-matching and algorithmic.

The following code fragments show how combinations can be found. Pattern-

matching is the simplest way to find combinationsbut is time consuming. Using patterns,

the combinations are found two elements at a time and therefore a sequence of pattem

matches is needed to build up the entire combination. Using a sequence of pattern matches

has the problem that all information(state) gained during the previous match is lost to the

next one.

The following patterns can be used for matching parallel combinations:

; two elements in parallel

(element (term ?top) (term ?bottom))

(element (term ?top) (term ?bottom))

; adding an element to an existing parallel combination

(element (term ?top) (term ?bottom))

(element-parallel-combination (term ?top) (term ?bottom))

The following patterns can be used for matching series combinations:

52

; two elements in series

(element (term ?top) (term ?middle))

(element (term ?middle) (term ?bottom))

; adding an element to an existing series combination

(element (term ?top) (term ?middle))

(element-series-combination (term ?middle) (term ?bottom))

With permutability taken into account, these patterns can grow to four patterns

for each basic pattem.

Since the patterns can be recursive, that is, a pattern to find a series-combination

can have another series-combination as a component, the ordering of the combination find

ing rules must be different than the ordering used for the structure finders. For stmctures,

the rules are added at the end of the mle queue. In the case of combination finders, they

should be continually fired until there are no more matches. As an example, in Figure 4.6

the dynamic-gate rule needs a MOSFET combination, and there are many sub-combinations

of the maximal MOSFET combination that fit the constraints put on the MOSFET combina

tion by the dynamic-gate pattern. Therefore the maximal MOSFET combination must be

found before the dynamic-gate rule can be fired. One method of doing this is to define a

pattem representation that allows for the specification of the maximal pattern. However,

the method explored in this work is to have simple two element patterns and have the mle

system continually fire the patterns until no more combinations can be found. The mle

scheduling system can detect that the mle being scheduled is recursive and place it at the

beginning of the mle queue rather than at the end. Note that this implies the use of a dy

namic mle ordering system or the partitioning of the mleset into recursive and non-recursive

mles.

The problem is further complicated by the fact that the finders for the two types

of combinations, series and parallel, must cycle. After finding all series combinations and

parallel combinations, the series and parallel finders must be used again to find the more

complicated series-parallel and parallel-series combinations. For example, in Figure 4.7,

the firstparallel mle will find no parallel combinations, the first series mle will find MOSFETs

A and B in series, the next parallel mle will find MOSFET C in parallel with the previously

found combination (AB), and finally the last series mle will find MOSFET D in series with

53

; find dynamic gate

(mosfet (type "NMOS") (gate ?clock) (source ?vdd) (drain ?out))

(combination (type "NMOS") (top ?out) (bottom ?gnd))

MOSFET

MOSFET COMBINATION

Figure 4.6: Recursive Rule Ordering (Pattem and Example)

54

H

H

Figure 4.7: Sequencing of Combinations

the ABC combination.

The algorithm used to explore finding combinations is to try to find as many

parallel combinations as possible, then try to find as many series combinations as possible

and repeat until no more combinations are found.

find-combinations()

{
find-parallel-combinations() ;

find-series-combinations() /

if (combinations have been found) {
find-combinations();

}

Parallel combinations are found by picking an item of the type used to build the

combination (either the primitive of the combination or another combination) and looking

at all other elements of the same type connected to it in parallel. In order to speed up the

search, the terminal with the smallest number of connections is used for the search. This

process is repeated for each item of the proper type.

55

find-parallel-combinations()

{
foreach instance of the desired type (element/combination) {

if not already a member of a combination or structure {
find the terminal which the fewest connections (top/bottom)

foreach item connected to that terminal {
if the item' s other terminal connected to the

instances other terminal {
verify the constraints;

make part of the combination;

}
}

Series combinations are found by picking a node with only two elements not

already in a combination and making sure they are of the same type, either the primitive of

the combination or another combination. This is repeated for each node in the circuit.

find-series-combinations()

{
foreach node in the circuit {

if the number of free elements connected to the node is 2

and it is not a dc node {
get the two items;

make sure they are not equal;

make sure elements of the element or combination class fit

the constraints;

make a series combination;

}
}

Note that there are other forms ofcombinations that this scheme does not handle.

Some combinations do not fit the basic series-parallel groupings (see Figure 4.8). These are

called ill-formedcombinations. Describing how to find these and how to calculate attributes

as they are found was not addressed in this work.

56

Figure 4.8: Ill-Formed Combination for Series-Parallel Design Styles

57

Calculated Attributes

For primitives, most attributes are simple and do not depend on other attributes,

such as the type of a device or the direction associated with the terminals. For stmcmres,

most attributes are computed based on the components of the stmcture, such as the beta ratio

of a static MOSFET inverter or the capacitive loading of a dynamic CMOS gate. The choice

to make in handling calculated attributes is when to calculate them and whether to store

them. They can be calculated and stored at the time the stmcmre is found. This simplies

the process, but means that attributes that will never be used in other stmctures or error

checks may be calculated. Instead of calculating the attributes at the time the stmcmre is

found, the attribute canbe calculated when it is used. This increases the code complexity7

but means that only attributes that are really used will be calculated. Once the attribute is

calculated it can be saved for later use or it can be recalculated on each use. Saving the

valuerequires a minor increase in code complexity withsignificant benefits.

If attributes are not calculated at the time the combinations are found, but only as

needed (and then optionally cached), the combinations must be traversed to calculate the

values. A simple top-down, depth-first algorithm is shown below:

traverse-combination ()

{
if primitive get the attribute and return it
if series combination {

call traverse-combination on each item in the series

combination and combine the attributes

return the composite attribute

}
if parallel combination {

call traverse-combination on each item in the parallel

combination and combine the attributes

return the composite attribute

}

7This can be alleviated somewhat by object-orientedlanguages, such as CLOS[6].

58

Explanation-Based Generalization

Currently theuseof combinations in stmcture definitions requires theuseof syn

thetic elements that do not exist in normal cell libraries. These synthetic elements are

recognized by the critic as representing combinations. The critic examines the attributes

of the synthetic element to determine what type of combination, the components, and how

to calculate attributes of the combination. A better way to do this would be to allow the

designerof theknowledge base to enterseveral examples of stmctures that Critic coulduse

to generalize into the stmcmredefinition withcombinations. A technique that wasexplored

was to use an extension of Explanation-Based Generalization[5Ay 13]. Explanation-Based

Generalization (EBG) is a technique for learning what determines sufficient conditions for

a concept by generalizing an explanation of why a particular example of the concept meets

the definition of the concept.

A key point is that Explanation-Based Generalization uses a single positive ex

ample to determine a generalization. The setup consists of a goal concept, a domain theory

(usually a set of horn clauses), an example (described in terms of terminals in the clauses

of the domain theory), and an operationality criteria (usually stating that the resulting gen

eralization must be in terms of the domain theory).

The first step is to explain why the example is a member of the concept. This

involves back-chaining from the goal concept until the backtracking matches the example.

Once this is done the explanation is generalized by regressing (following the explanation

in reverse and variablizing*) along the back-chaining path. At the end only the domain

and input language predicates used in the explanation will exist with as many parameters

variablized as possible. The generalization of the explanation does not change the stmcmre

of the explanation (no new branches, no pruning), it only variablizes it.

EBG has a couple of limitations. A single positive example; thus no errors, no

negative examples, no multiple examples. A single positive example must be enough to

fully describe the concept; if not the generalization only comes out correct via the clever

8Variablizingis theprocess of replacing constants orexpressions withvariables. Forexample, if you want
a pattern that matches both "I program in LISP" and "I program in C", you would variablize and come up
with the pattem "I program in ?LANG". The variablization may also include additional constraints, such as
"?LANG must be one of (LISP, Q".

59

selection of the goal concept, domain theory, example and operationality criteria. Another

limitation is that the operationality criteria always states that the generalization must be

in terms of the example attributes and the domain theory. After thinking about some of

the straightforward ways to do the explanation, this is the only way that the operationality

criteria can be described and keep the basic ideas intact. The operationality criteria is really

implicitly built into the goal, example and domain theory; it is redundant.

An Extension to EBG

EBG can produce over- and undergeneralizations because it forms a generalization

based on only one example. With some assumptions, some simple extensions can be made

to EBG to allow the use of multiple examples. The EBG algorithm is applied to each example,

then similarities (and differences) in the attributes inside ofeach generalization and between

generalizations are found and used to form a generalization over all examples. This is a

simple addition of similarity-based generalization to EBG. This is discussed by Mitchell

in [54], and is implemented by Lebowitz in UNIMEM[45, 44].

The Extension Applied To Static Gates

To explore the concepts of EBG and how it might apply to a circuit critic, an ex

periment to determine static gate representations from example static gates was performed.

To find a static gate generalization, each example is parsed into two groups. A group is a

series-parallel or parallel-series collection of mosfets of the same type (NMOS or PMOS).

The standard EBG algorithm is performed on each parsed example, then similarities in each

generalization and between generalizations are found and a single generalization is formed.

The similarity checks that work well in the static gate problem are equality and inequality,

there are no numeric-valued attributes.

For static gates, a basic EBG setup is (there are many different goal concepts pos

sible, this uses a functional goal and a structural operationality criteria) given:

• GoalConcept: Class of objects, such that staticGate(X), where staticGate(X) <=>

pullUp(F,X) A pullDown(FB,X)

60

• Input: (pre-parsed groups)

group(and, vdd, n1,pmos)

group(or,nl, gnd, nmos)

• Domain Theory: (mapping from structural to functional)

pullUp(F, X) <=> group(F} vdd, X,pmos)

pullDown(F, X) <& group(F, X, gnd,nmos)

• Operationality Criterion: Concept definition must be expressed in terms of con

structs usable by the pattern matcher (i.e., structural descriptions).

An individual generalization would look like:

staticGate(x) <£> group(and,vdd,n\,pmos) A group(or,nl,gnd,nmos)

The modification begins here; the attributes from each generalization are col

lected in lists, one list for each generalization (groups within each generalization have been

imposed to simplify the noticing of similarities within a single generalization). So, if the

three example generalizations are:

group(and,vdd,nl,pmos) A group(or,nl,gnd,nmos)

group(or,vdd,n2,pmos) A group(and,n2,gnd,nmos)

group(and, vdd, n3,pmos) A group(or,n3, gnd,nmos)

The lists are:

[[and, or], [vdd, nl,gnd], [pmos, nmos]]

[[or, and], [vdd, n2,gnd], [pmos, nmos]]

[[and, or], [vdd,n3, gnd], [pmos,nmos]]

If the lists are abstracted to:

[[vl,v2],[v3,v4,v5],[v6,vl]]

The similarities (and differences) are:

vl 7^ v2

v3 = vdd

vAisavariable

v5 = gnd

61

v6 = pmos

vl = nmos

so the solution would be:

group(Fl}vddiX,pmos) A group(F2iX)gnd,nmos) A Fl ^ F2

Assumptions Made in the Extension

EBG and the extensions to ebg make some assumptions about the examples and

the solution:

• Overgeneralizations are due to bad regression, not bad explanation. This is an as

sumption,of the extension.

• There should be no errors in the examples given to the system. This is an assumption

of EBG.

• The examples givento the system should all be able to be parsed into series-parallel

and parallel-series combinations; they should not be ill-formed (this is the no errors

condition). This is an assumption of the particularproblem.

• The examples should not be too similar; if they are the similarity section may no

tice similarities that are not part of the concept, just artifacts of the examples, see

Figure 4.9. This is an assumption of the extension (one that could be removed, see

Chapter 8).

• To simplify theextension, groupings of attribute inside of a generalization were im

posed tohelp in noticing similarities. This can easily be removed, butmaycause the

system to add unnecessary conditions {i.e. for the static gate example, the function

attribute is never equal to the middle node attribute). This is an assumption of the

extension (one that could be removed, see Chapter 8).

To test out these ideas, a simple PROLOG implementation was developed. The

MOSFET groups were represented explicitly rather than having a set of PROLOG clauses for

parsing theconnected MOSFETs. Also, an explicit setof variablizations was coded:

nrn

\7

Figure 4.9: Examples that are Too Similar

%

% goal concept

%

staticGate :- pullUp(F, X), pullDown(FB, X)

%

% domain theory

.%

pullUp(F, X) :- group(F, vdd, X, pmos).

pullDown(F, X) :- group(FB, X, gnd, nmos).

%

% example groups

%

group(and, vdd, nl, pmos).

group(or, nl, gnd, nmos).

62

63

% build a list to do similarity checking

%

list ([[VI, V2], [V3, V4, V5], [V6, V7]]) :-

group(Vl, V3, V4, V6) , group(V2, V4, V5, V7) .

%

% example set of similarity and difference

% noticers (variablization)

%

notice(eq, combinationType) :- list ([[V, V], _, _]).

notice(neq, combinationType) :- list ([[V, Y], _, _J),

not(V = Y) .

notice (eq, firstNode) :- list ([_, [V, __, _] , _]),

list ([_, [V, _, _] , _J),

%

% find an explanation

%

staticGate?

%

% find the similarities and differences

%

notice(X, Y)?

Over- and undergeneralization problems of EBG are best attacked by using more

positive examples (not byusing negative examples - it also rums out that multiple positive
examples are easier to deal with). Using this observation, it was determined that adding a
similarity based approach at the end of the EBG algorithm would be a good technique for

64

theproblem (this is also one of therecommendations given by Mitchell at the endof [54]).

There are two observations aboutEBG: (1) the operationality criterion is contained

within the otherparts of the setup(goal concept, exampleanddomain theory),and (2) that

to do anything useful, the domain theorymusthavealot of information (the simpleexample

in this experiment and the simple examples in [54, 13] do not have much domain theory,

but then they are not useful). This last point shows that in orderto learn, it takes a lot of

knowledge.

4.4 Displaying Structures

Most critics display the results ofthe structure finding phase outside ofthe context

of the circuit being critiqued. Their output is a textual description of the structures found.

Since the data is generally not read from a data base that allows arbitrary annotation, this is

the only way to display the data. There is the added complication that circuits to be critiqued

may have been extracted from mask level designs and the names assigned to nodes and

instances aremachine generated and relateno information to the designer. Programs could

be written to read in the circuit description and the critic output to produce a combined

output, but this has not been the case. In the work presented in this dissertation, annotation

of the circuit in the data base with the structure information and graphical display of the

resultswere explored. This follows another of Heckel's principles foruser interfacedesign,

"Communicate Visually" [30].

Chapter 5

Errors

5.1 Overview

The primary purpose of circuit critics is to find errors in the circuit design. There

are two types of errors that can be flagged: something that should not exist, e.g. an illegal

XOR configuration, or a set of attributes that violate a constraint, e.g. a latch that can not

change state because of a weak load gate (see Figure 5.1).

5.2 Representation

Before performing experiments that testvarious forms ofrepresenting errorchecks,

the components of the error check must be determined. Once the components necessary

_L

Figure 5.1: XOR and LATCH

65

66

for the representation of an error check have been determined, then the various forms of

representation can be explored.

Finding

The representation must specify structure(s) the error check should be applied to.

Depending on the system, this may also include how to locate the structure(s) that the error

check applies to, as in [47, 3].

Check

The main component of the error description is the actual check to be performed.

Normally this check is some set of constraints that if satisfied signals an error. Since the

error check evaluates some set of constraints, the representation must specify how the con

straints are interpreted and evaluated.

Database Storage

If the errors are to persist across runs of the critic or if other tools are to be used

to present the results of the critic, the errors must be stored in the database.

Display

The display of an error includes the item that is in error (either a primitive or a

structure) and information about the error check itself. The information about the error

might be based on the values of various attributes of the item that is in error.

Approaches

In general, since designers do not describe errors, there can be no "described by

example" error checks. In previous circuit critics, error checks were monolithic; how to find

an error, how to check the error, and how to mark the data base when the error was found

was contained in the error description. In addition, information specific to the internals of

67

the implementation found its way into the error descriptions. This combination make the

errors difficult to understand.

To make error checks easy to understand, create, and edit, they should be repre

sented as a collection of features ('slots') Instead of the implicit knowledge of other critics,

the knowledge should be explicit and internals knowledge should be removed. Each slot

now has a single piece of knowledge rather than some clump of knowledge.

The first representation explored was text based, as were the first representa

tions explored for primitives and structures. The definition of an error consisted of the

deferror construct. Each deferror construct contained several fields:

name: The name slot gives the name of the structure, e.g. BAD-W-OVER-L, RACE-

CONDITION.

comments: The comments slot is used to make comments about the structure, e.g. "Check

for this and that, assumes this."

structure: This slot is composed of a pattern that describes the structure to be checked.

tests: This slot is composed of one or more tests to be performed to check if the structure

is in error. Is the structureis inherently bad (it's mere existence is bad), then this slot

is not needed.

description: This slot is a string that describes the error in a textual format. The string

may contain variables matched in the structure slot.

For example:

(deferror

(name name-of-the-error)

(comments "comments")

(structure structure-to-look-for)

(tests test-to-perform-on-the-structure)
(description "description-of-the-error"))

(deferror

(name beta-ratio)

(structure (static-gate (name <gate>)))

(tests (<gate:beta-ratio> < MIN-BETA-RATIO)))

68

(deferror

(name beta-ratio-check)

(structure (static-gate (name <item>)))
(tests (< <item:beta-ratio> $MINIMUM-BETA-RATIO$))

(description "beta ratio error for <item>"))

would be converted to:

(defrule

(name beta-ratio-check)

(conditions (static-gate (name <item>)))

(tests (< <item:beta-ratio> $MINIMUM-BETA-RATIO$))

(actions (make error

(item <item>)

(description "beta ratio error for <item>"))))

This basic description has evolved to include more information about errors. The

representation breaks up the error check into several individual features (or slots):

name

This slot represents the name of the errorcheck The name is used when reporting

errors to the user and for documentation purposes. Examples of names are x''Bad N

and P Core Connections'', AxNo DC Path To Ground'', and ^Charge

Sharing Error''.

structure

The value of the structure field is the name of a primitive or structure type that

the error check applies to. name andstructure are used foruniquely representing an error

check when marking items that should not be checked for the error. Examples of structure

values are MOSFET, STATIC-GATE, and DOMINO-GATE. To remove the context infor

mation from the error,this slot is not directly set, but is inferred from the error's association

with a structure.

69

static-gate static-gate

J
clock

mosfet-tree N N

l
clock

domino-sate

Figure 5.2: Reason for the 'in-context-of and 'not-in-context-of Fields

in-context-of

The value of the in-context-of field specifies the context in which the item to be

checked must be for the error check to apply. For example, a static-gate error check may

only apply when the static gate is inside a domino-gate (see Figure 5.2). The value of an

in-context-of field is the name of a structure type. Zeroor more of these fields may exist,

implying that the structure may be found anywhere, ormay befound ina specific number

of contexts.

False errors are error reports that are not really errors. False errors are caused

by not having specific enough errors orby purposely designing a section of the circuit to
violate the error checks {e.g. conservative rales). This field, along with not-in-context-of

and role, are used to make an error check more specific.

role

This is a component of in-context-of which specifies the particular role that the

item being checked must be in fortheerror check to apply. Forexample, if there is anerror

70

feedback

P -i

N M

Latch

Figure 5.3: Reason for the 'role' Field

check for the weak feedback inverter in a latch, as in the case in Figure 5.3, context and

structure is not sufficient. The error check must be able to disambiguate the two inverters

in the structure and apply the error check to only one of the structures. The value of a role

field is the name of the instance in the structure definition. Zero or one role fields may exist

for each in-context-of field, implying that the structure may play either any role or one

specific role.

not-in-context

The not-in-context field is like in-context-of but specifies a specific context in

which the error check does not apply (see Figure 5.2). The value of a not-in-context field

is the name of the structure type. Zero or more of these fields may exist, implying that the

structure may be found anywhere, or may not be found in a specific number of contexts.

check

The value of the check field describes the error check independent of the primi

tive/structure type, and contextual and role information. The check field is usually repre-

71

sented as a set of constraints on the attributes of the primitive/structure being checked, the

attributes of components of the primitive/structure, the values of various design style and

process constants, and the environment.

An example check is (detects a charge sharing problem):

Cmiddle-node Kh

{-'middle—node "T ^dg—internal Vdd

Structure constraints

Structure constraints are conditions that depend on the values of attributes asso

ciated with the structure or primitive that is being checked.

Component constraints

Component constraints are conditions that depend on the values of attributes on

the items (primitives and/or structures) that make up the structure being checked for an

error. For example, to determine if a latch can change states, the error check must examine

the values of the device size of the items that make up the latch.

Design Style constraints

Designstyle constraintsareconditionsthatdepend on the valuesof various design

style,technology, andprocess constants. Forexample, a constraint thatthenumberof series

connected mosfets in the N (and P cores) of a NMOS or CMOS static or dynamic gate must

be less than some design style supplied constant.

Environment constraints

Environment constraints are conditions that depend on the environment of the

primitive/structure under check. For example, checking fanout related errors (charge shar

ing, drive current, etc.).

There are several constants, variable, subexpressions, and functions that are com

mon to error checks across design styles and technologies. These should be provided in a

library for the error check writer to help simplify the task. Examples are a function to tell

72

whether there is a dcpath to ground, a variable that represents the ground node, a function

for determining if a node is a supply or clock node, or whether the terminal is a primary

input or output of the circuit.

message

The value of the message field describes the textual information that should be

displayed to the user when the primitive/structure that is in error is displayed. This can

range from a simple display of the check field to a detailed description of the error and

how to fix it. The message field should have all of the information available to it that the

check field had access to. This allows the message to contain specific contextual infor

mation. For example, rather than displaying "The width of the mosfet is too small", with

contextual information it could be "MOSFET 12 has a width (1.3e-6) that is smaller than

the minimum allowed feature size (1.5e-6)". This allows more information to be conveyed

to the user; thus following another of Heckel's principles, "Communicate in Specifics, not

Generalities"[30].

• Error message without contextual information:

This particular type of exclusive-or is not allowed in

the design style.

• Error message with contextual information:

The load capacitance of the dynamic-gate DG12, 3e-12

farads, is not large enough to inhibit charge sharing

problems. Based on the threshold voltage of 0.5 volts, the

supply voltage of 5 volts, and the dynamic-gates internal

capacitance of 6e-12 farads, the load capacitance must be

at least 4e-12 farads.

One possibility for displaying error messages that was explored was to remove

the message field and try to translate the check field into English, see Section 5.4.

73

constants

Constants used in the errorcheck. Can be functions of other constants or process

constants. For example:

factor = 5.6

mobility —ratio = —

min —ratio = 0.85 x mobility —ratio

max —ratio = 1.15 x mobility —ratio

comments

Comments about the error check. This information is not reported to the user, but

is placed in the ruleset documentation. To allow the users the ability to use mathematical

symbols and the full abilities of a text processor, the string must be in a format that LSTgX

can process, for example:

As described in Hofmann[Hof85], to eliminate

charge-redistribution problems in domino-gates,

the following constraint must be met:

\[\frac{C_{middle-node}}{C_{middle-node} +

CJdg-internal}} < \frac{V_{th} }{V_{dd}} \]

Expands into:

As described in Hofmann[Hof85], to eliminate charge-redistribution prob
lems in domino-gates, the following constraint must be met:

Cmiddle-node ^th

(-/middle—node • ^dg—internal *dd

Example Rules

Charge Sharing

Name:

Structure:

Check:

Message:

Comment:

Charge Sharing
Domino-Gate

(> (/ VTH-N VDD)
(/ (CAPACITANCE MID-NODE)

(+ (CAPACITANCE MID-NODE)

(INT-CAPACITANCE DYNAMIC-GATE))))

The load capacitance of the dynamic-gate is not large
enough to inhibit charge sharing problems.
As described in Hofmann[Hof85], to eliminate
charge-redistribution problems in domino-gates,
the following constraint must be met:
\ [\frac{C_{mid-node}} {C__{mid-node}
+ C {dg-int}} < \frac{V {th}}{V {dd}} \]

74

Equal Rise and Fall Times

Name:

Structure:

Not-In-Context-Of:

Check:

Constants:

Equal Rise and Fall Times
Static-Gate

Domino-Gate

(not (<= min-ratio noverp max-ratio))

min-ratio = (* 0.85 mobility-ratio)
max-ratio = (* 1.15 mobility-ratio)
The N and P device W/L's of this static-gate are not
ratioed such that the rise and fall times will be

approximately equal.
The rise and fall times of static-gates should be
approximately equal. One exception is the static-gate
that plays the role of output buffer in a domino-gate;
in this case the gate only has to actively pull in one
direction.

Message:

Comments:

Weak Latch

Name:

Structure:

Check:

Constants:

Message:

75

Weak Latch

Latch

(< (* factor (w-over-1 (pull-down fb-inv)))

(w-over-1 load-gate))

factor =5.6

The load gate is not big enough to cause a state
change in the latch.

No DC Path To Ground

Name: No DC Path To Ground

Structure: Node

Check: (not (path-between self *dc-nodes*))

Message: The node has no dc path to ground.

Bad N and P Core Connections

Name: Bad N and P Core Connections

Structure: Static-Gate

Check: (not (logic-equal (logic-function ncore)
(logic-dualize

(logic-function pcore))))
Message: The logic functions of the N and P cores are not

logical duals.
Comments: If the logic cores arenot logical duals, there will be certain

input values thatwill cause both cores to turn on (shorting the
supplies), or cause both cores to turn off (causing the output
to float).

5.3 Finding Errors

Depending on what is allowed in error check specifications and whether there

is a structure finding phase, finding errors may require pattern matching. In RUBICC the

samerule language used for finding structures is used in the error check andthus the same

pattern matching operations can be used (inpractice the amount of actual pattern matching

was limited since the structure finding phase found most of the structures of interest). In

QCRITIC, since there is no structure finding phase the error checks must describe how to

find the elements (and groups of elements) that are to be checked.

76

In the work in this dissertation, the removal of pattern matching from the error

checks was explored. The removal of pattern matching makes the error check description

simpler and makes finding errors simpler and quicker. However, this pushes the finding of

groups of items that are grouped exclusively for error checking into the structure finding

phase. This means that some structures are denned that have no logical function.

By getting rid of pattern matching, the error checks are limited to the checking

of contextual information (in-context-of, not-in-context-of, and role), and

the evaluation of expressions (the check field). The basic algorithm for locating errors

is as follows: each item (either a primitive or a structure) is looked at and all error checks

that apply to the item arechecked, excluding the errorchecks that arein the 'do-not-check'

list. The *do-not-check' list contains the names of errors that should not be checked for the

particular element type. This information is gained from annotation placed on the circuit

by the designer. The complexity of the error check phase is 0(J2(N{ x CJ), where Nt

is the number of elements of type i in the database, and Ct is the number of error checks

defined for type i.

foreach circuit element type (T) instantiated in the circuit {
foreach error check of T (E) not in the Mo not check' list {
foreach instance of T (I) {
if (E is not a member of the Mo not check' list of I) {

if (check(E,I) is true) {
mark I as violating E

}
}

}
}

}

5.4 Displaying Errors

When presenting anerror, adescription ofthe errorand the objects in errorshould

be presented to the user. One way to present the information is to graphically zoom to the

items in error, highlight them, and display the errorcheck. Highlighting gives contextual

information about the errorand the display of the error check itself gives a description of

77

the error. Structures that are in errordon't exist as a graphical entity in the database, so the

collection of primitive elements that make up the structure should be highlighted.

In some cases the message field would not be sufficient to describe the error (or

the message field might be missing and one must be synthesized from the check field). Most

implements of error checks would use LISP as the language for describing the constraints.

Since many users would not be fluent in LISP, the check should be translated into a form

more easily understandable.

It is straightforward to translate LISP ofthe complexity generally used in the check

field into simple English. The basic algorithm is to match templates to the various lisp

forms. Some templates cover a single minimal s-expression {e.g. (not bob)), and some

handle complex s-expressions {e.g. (and s-expressionl . . . s-expressionN)).

The templates can be generic, such as ones forhandling the basic lisp functions, or specific

to the task of critiquing. The specific ones have information about the functions and vari

ables used in error checks, e.g. (length *dc-nodes*). The types of templates used

are: critic variables/constants, lisp atoms/numbers, quoted expressions, two and three ar

gument expressions, if-then-else expressions, specific LISP functions {e.g. any, every),

functions specific to the application {i.e. count-types, (not (path-between ...

...)), (not (member-of ..))), and fields in primitive and structure definitions.

The following are some examples of translating s-expressions to English:

LISP Code:

(and (not (member-of (parent gate)))
(equal (direction gate) sympol::input)
(= (count-types (node gate) t t) (length *dc-nodes*))))

English Translation:

The element containing the terminal GATE is not contained

in a structure and the DIRECTION of GATE is equal to the

direction INPUT and the number of elements of any type connected

to the node connected to the GATE terminal is equal to the

number of elements in the list of nodes connected to a supply

or clock

LISP Code:

(< (dc-max-fanout self)

(sum-of 'dc-fanin (free-terminals self))))

78

English Translation:

The DC-MAX-FANOUT of SELF is less than the sum of

DC-FANIN over all the terminals of SELF connected to elements

not contained in structures

Chapter 6

Critic

6.1 Overview

To experimentwith the ideas exploredin Chapters3,4 and 5, the program Critic

[64,67]wasdeveloped asa test-bed. Critic isaknowledge-based system1 forcritiquing cir

cuit designs that is integrated into a design environment under development at the Univer

sity of California at Berkeley[28]. Aside from experimenting with the ideas in the previous

Chapters, the main goals of Critic were: tight integrationwith a design system, interactive

graphical input and feedback, ease of use, and separation of the knowledge base from the

program internals.

There are fivephases in the execution of Critic: load the knowledge base, load the

circuit, find structures, find errors, and examine the structures and errors (see Figure 6.1).

The following sections will present the major sections in Critic and describe how

they implement the ideas and algorithms presented in the previous chapters.

Loading the Knowledge Base

The knowledge base consists of: process and design style constants (such as

threshold voltage and the maximum number of series N-type MOSFETs allowed in series),

a set of primitive descriptions and the error checks that apply to them, a set of structure

1Knowledge-based systems[29] are programs that rely on large amounts of declarative information,
knowledge, to perform tasks.

79

load knowledge base

load process
load primitives

load errors

load structures

load errors

load the circuit

find the structures

find the errors

display structures
and errors

Figure 6.1: Flow of Critic

80

81

descriptions (collections of primitives and other structures) and the error checks that apply

to them, and error checks that apply to nodes.

A goal of the work on Critic was to remove all implementation specific informa

tion from the knowledge base. This was partially successful, most of the implementation

specific information present in other critics has been removed, however there are two places

where the implementation shows up: computed attributes and error checks. The value of a

computed attribute and the constraints used in an error check are expressions in the imple

mentation language.

Loading the Circuit Description

Once the knowledge base has been loaded and the information about how to read

the data base has been created the circuit can be loaded. Each instance read from the Oct

data base is represented internally as an instance of the class of its corresponding primitive.

Meta classes are predefined for all primitive classes that deal with keeping lists of primitives

of each type and building the inverted netlist representation. Next the information about

errors that should not be checked is processed.

Finding Structures and Errors

The process of finding structures and errors follows the algorithms described in

Chapters 4 and 5.

Integration into a CAD System

The presentversionof Critic is tightlycoupledwith the Berkeley OCT CAD design

data manager and the VEM user interface using a remote procedure call package[28, 63].

Critic has gone through several changes as more was learned about how the program should

operate and how it should interactwith the user and the environment. The language chosen

to implement Critic was LISP. There were a number of reasons for this decision: (1) the

current trend to use LISP for CAD tools[51,47, 38], and (2) the majority of rule-based and

object-orientedlanguages available at the time were embedded in LISP[57, 6,43].

82

The initial version of Critic was not tightly integrated with a design system, but

was a stand-alone tool running on a XEROX Dandelion; it was implemented in GLISP2

and INTERLISP[71]. It took textual input for the circuit description (in SIM[26] format)

and the knowledge base.

sim format

type nodelist ... attributes...

type: n (n-type mosfet), p (p-type mosfet), C (capacitor)

; inverter

p in out vdd 4 16

n in out gnd 4 2

The textual format of the knowledge base is described in chapters 3, 4, and 5.

It had a custom rule system and produced textual descriptions of the structures and errors

found in the circuit, for example:

"LATCH L12" is composed of:

INVERTER 5

INVERTER 9

MOSFET 3

Error "width too small" was violated by "MOSFET M231"

The next version used OPS53 for its rule systembut still ran as a stand-alonetool.

The textual input was translated into OPS5 commands. The choice of OPS5 was driven by

many concerns: (1) the flow of OPS5 (forward chaining pattern matching rule-based system

fit the basic requirements of what a critic needed), (2) many other CAD tools were being

developed using OPS5[39,4, 34, 37], and (3) the author was experienced with the usage of

the system.

To fit Critic into the Berkeley design system, the textual input was replaced with

input from the OCT data manager and the program moved to UNIX. By using OCT for circuit

and knowledge-base storage Critic was then able to directly operate on circuits designed

2GLISP[57] isanextension toLISP toallow simple object oriented features, and pseudo-English descrip
tions of algorithms.

3OPS5[19] is a system for building forward chaining (data driven) production systems.

83

using the Berkeley Design Environment, the knowledge-base could be entered, browsed,

and modified using the standard editors, and annotation of the circuit with the structures

and errors found during the run became possible. This version of Critic was written in

GLISP and Franz Lisp.

Next, VEM was modified to accept simple commands from remote applications

using UNIX pipes. Pipes allow communication between UNIX processes. VEM would send

a token that directed the Critic to find the structures and errors, identify the next structure,

or identify the next error. Critic was modified to take advantage of this simple interprocess

communication facility. VEM would take the information from the structure/error identifica

tion and highlight the objects on the screen. This allowed a simple interface for sequencing

through structures and errors found in the design. With the use of pipes, VEM became the

primary user interface for Critic. However, VEM and Critic did not share the same in-

memory copy of the OCT data, so either program could modify the data without the other

being aware. In order for VEM to display the modifications that Critic made and for Critic

to recheck circuits that had been modified with VEM, the two programs needed to share the

same copy of the OCT data. In addition, VEM had several user interface features that could

be used by Critic to improve its interface. They included dialog boxes for displaying re

sults and requesting user input, selection sets for highlighting regions of the circuit and user

input, and menus for Critic commands. The need for shared Oct data and the use of the

user interface features could not easily be accomplished via the simple pipe mechanism, so

a full remote procedure call interface (RPC) was addedto VEM and RPC client libraries in C

and vaxlisp were written. This allowed Critic to be written as if it were a program residing

in the same address space as VEM with full access to the OCT data base it was displaying

along with all of the VEM user interface facilities.

The current version of Critic is written in CLOS[6]4 and VAXLISP5. There are 8000

lines of CLOS/VAXLISP with 1000lines of C[36]. The RPC package written to support Critic

consists of 4000 lines of C code on the client (Critic) side and 5000 lines of C code on the

server (VEM) side.

4An object-oriented system embedded on top of CommonLisp[69].
'Digital Equipment Corporation's version of Common Lisp.

84

Berkeley CAD Framework

The Berkeley CAD Framework[28] is a framework forCAD tools. The framework

provides data representation and storage, user interface, and tool control. The representa

tion and storage portion are provided by Oct, the user interface by VEM, and tool control

by RPC.

The Oct data manager

Oct provides the data access and representation facilities for the Framework.

OCT is designed to be extensible: it makes few assumptions about the data to be stored. In

stead it implements a few basic primitives, a general mechanism for relating primitives to

one another, and a small set of generic operations on these primitives. The set ofoperations

insulates the user from the internals ofOCTor changes in the data structures and algorithms,

and protects the data from accidental corruption by the user. Higher-level layers can im

plement a particular design style on top of the Oct interface. This allows experimentation

with differing representations without requiring modifications to the underlying data base.

The highest level in OCTis the cell, which is any portion of the chip that the de

signer wishes to consider as a single unit. Thus a cell may be a transistor, a contact, a gate, a

datapath, an entire chip, oreven aboardwith severalchips. Each cell can have many views,

such as a schematic view ofthe cell, a mask geometry view, or a simulation view. OCTdoes

not address the issues of what views a cell may have, nor what is contained in a view, nor

how the views are related. These decisions are left as a design policy decision made by

the design team. Views are hierarchical: they contain instances of other views which in

turn may contain instances of other cells, etc. Forvarious applications, it is advantageous

to cut off this hierarchy; instead of continuing to traverse the hierarchy by processing the

contents of a view, the view is represented by some simplified abstraction. For a graphics

editor, the abstraction might be a bounding box; for routing the abstraction might be the

terminals and routing regions of the view; for a schematic view it might be a symbol, and

for a design rule-checker it might be just that geometry on the boundary of the view that

needs to be checked against neighboring views (thus avoiding rechecking the interior of a

85

view each time it is instantiated). These abstractions are called facets of the view. Each

view has a facet named contents which contains the actual definition of the view, and zero

or more interface facets. OCT does not define what interface facets may exist, nor what

their relation to the contents facet might be.

The only relation that OCT does enforce is that all interface facets inherit the

formal (external) terminals of the contents facet. The facet is the fundamental unit that is

edited in Oct. A particular facet of a view of a cell is opened and edited independent of

the other facets of that view and the other views of that cell.

OCT has just a few basic objects. There are the standard geometrical objects:

boxes, polygons, labels, circles, wires, and layers. Interconnection andhierarchy arerepre

sented using terminals, nets, instances, and facets. Free-form annotation is available using

properties: which arenamed objects that take on a variety of values (numeric, string, array,

another object) and that can be attached to any OCT object. The general mechanism for re

lating objects in Oct is attachment, which may be thought ofas a directedlink between two

objects. An object may be attached to an arbitrary number of objects and may in turn have

an arbitrary number of objects attached to it. Forexample, in our design policy, geometry

is shown to be on a particular layer by attaching it to that layer; a terminal is connected to

a net by attaching it to that net. The bag object was addedto Oct to act as a named attach

ment point for related objects, such as a collection of permutable pins, a group of objects

in the same grid line in compaction, or one of the selected sets used in VEM.

Figure 6.4 shows a fragment ofC code that netlists an OCT facet. Two datatypes

areused in the example, the octGenerator andtheoctObject. The octGenerator

is used by the octGenerate function to traverse the attachments of an OCT object. The

octOb ject is the generic data type used to represent all the OCT objects. The OCT ob

jects OCT.FACET, OCT_INSTANCE, OCT.TERM, and OCT JSTET are used in the example.

The first step in an OCT program (and in this example) is to open the facet to be browsed

or edited. This is accomplished with a call to octOpenFacet. octOpenFacet maps

the facet name to a name in the persistent storage system (currently the UNIX file system)

and then reads the facet into memory. There is no direct programmatic access to this data;

all access is via OCT functions that return copies of the actual Oct data. After the facet

has been read into memory, the instances are processed one by one. A generator is created

86

Figure 6.2: Example Attachments

using octlnitGenContents. Each call to octGenerate returns an OCT instance

object. octGenerate returns OCT.OK as long as there are objects to return. When the

generation sequence is finished, OCT_GEN_DONE is returned. The terminals associated

with the instance are attached to the instance, so another generator is started to generate

through the terminals. Nets contain the terminals that are logically connected, so the call

to octGenFirstContainer is used to get the first (and only) net that contains the ter

minal.

Policies

Oct provides a mechanism for representing CAD data but places no meaning of

the data. There is no explicit support in OCT for representing various abstract levels of

design, such as schematic and logic. Policy is used for assigning meaning to the data rep

resented using OCT. For example, Oct has objects that represent layers and geometry, but

does not specify how to relate them to give the meaning of a geometry implemented on a

given layer. The policy states that a geometry that is contained by a layer is implemented on

87

Figure 6.3: Example Netlist Attachments

88

octObject facet, instance, terminal, net;

octGenerator igen, tgen;

/* read a facet into memory */

octOpenFacet(&facet);

/* process each instance */
octlnitGenContents (&facet, OCT_INSTANCE_MASK, &igen);

/* generate and process the instances */
while (octGenerate(&igen, &instance) == OCT_OK) {

/* process each terminal on the instance */
octlnitGenContents(&instance, OCT_INSTANCE_MASK, &tgen);

/* generate and process the terminals */
while (octGenerate(&tgen, &terminal) == OCT_OK) {

/* get the net associated with the terminal */

octGenFirstContainer(&terminal, OCT_NET_MASK, &net);

}

Figure 6.4: Sample OCT Code Fragment - Netlist a Design

89

that layer. As another example, OCT has objects that represent nets and terminals, but does

not specify how connectivity is represented. The policy describes how terminals and nets

are used to represent connectivity. Policy also describes what annotations are required:

to assign a logic function to a cell, the logic function is placed in a string valued prop

erty (named LOGICFUNCTION) attached to the formal terminal representingthe output of

the element (the output terminal is in turn denoted by attaching the string-valued property

DIRECTION to the formal terminal and giving it the value OUTPUT).

The following gives an overview of the policies in the Berkeley Design Environ

ment that are used by Critic.

generic: The generic policy defines the requirements and restrictions that are the same

across all other policies. Each view of a cell has two facets: a contents facet and

an interface facet. The contents facet contains the definition of the view. The def

inition contains the objects that comprise the view in detail (actual geometries and

hierarchy). The interface facet contains an abstraction of the view. The abstraction

is intended to contain the minimal information needed to describe the cell to higher-

level cells and tools {e.g. terminals, routing regions, annotation). The abstraction

should be derivable from the definition.

physical: The physical policy defines the requirements and restrictions for representing

mask-level designs (see Figure 6.6). All Oct objects with the exception of nets are

allowed. Hierarchy is rarely used at this level, with the cells composed primarily of

geometric objects, with terminals, and annotation.

symbolic: The symbolic policy defines a level slightly higher than mask level where con

nectivity is explicitly represented and annotation is used to represent extracted infor

mation (widths ofMOSFETs, values of resistors, what terminal ofa MOSFET is the gate,

etc.). All non-geometric objects are allowed. The only geometric object allowed is

the path and it is restricted to two points. Most tools in the Berkeley Design Envi

ronment work with designs at this level. An important part of the symbolic policy

is inheritance. The policy defines various properties that can be attached to facets

(masters) and formal terminals; if one of those properties is attached to the instance

90

or the actual terminals of the instance they override the values in the master.

schematic: The schematic representation is similar to symbolic, except that the physical

interconnect information is simplified; all interconnect is on a single layer and zero

width. All subcells are drawn as abstract symbols rather than detailed physical or

symbolic cells (see Figure 6.8).

Critic uses the symbolic policy to analyze designs. The only information Critic

uses are the netlist and some additional annotation. The netlist is obtained from the contents

facet of the design being analyzed. The subcells in the design can be physical, symbolic

or schematic. Critic does not go down the hierarchy: Critic works at a single level in

the design. Information about the subcells is found in the interface facet for the subcell.

The only information gathered from the interface facets are terminal information (number,

names, types, direction), special annotation (properties attached to the facet, such as the

width of a MOSFET, or the value of the capacitance). The information that is in the interface

is determined by the physical and symbolic polices.

The VEM Graphics Editor

VEM[27] is an interactive graphics environment for viewing and editing OCT data.

VEM also provides a facility for invoking various CAD tools on OCT views. VEM uses the

X-Window System[22] as its primary graphics interface. VEM allows users to open any

number of possibly overlapping windows, each showing one OCT facet. More than one

window may have the same associated Oct facet, in which case a change in one of the

windows causes updates in all the other windows.

VEM supports three editing styles, with each style corresponding to a particular

Oct policy:

physical: used for editing physical (or mask-level) design. VEM provides basic operations

for the entry and manipulation of geometric objects (boxes, polygons, etc.) and for

the creation of terminals (connection points) (see Figure 6.6).

symbolic: used for the entry and manipulation of instances of physical cells or other sym

bolic cells and for the interconnection of these instances. The symbolic editing mode

91

octObject facet, bag, instance, terminal, net;

octGenerator igen, tgen;

/* read a facet into memory */

octOpenFacet(&facet);

/* process each instance attached to the INSTANCES bag */
bag.type = OCT_BAG; bag.contents.bag.name = "INSTANCES";

octGetByName(&facet, &bag);

/* process each instance */
octlnitGenContents (&bag, OCT_INSTANCE_MASK, &igen);

/* generate and process the instances */
while (octGenerate(&igen, &instance) == OCT_OK) {

/*

* process each property on the instances master

* and see if it is overridden on the instance

* (e.g. MOSFETLENGTH, CAPACITANCE)

*/

/* process each terminal on the instance */
octlnitGenContents(&instance, OCT_INSTANCE_MASK, Stgen);

/* generate and process the terminals */
while (octGenerate (&tgen, &terminal) == OCT_OK) {

/*

* process each property on the formal terminal

* that the actual terminal represents and see if

* it is overridden on the actual terminal

* (e.g. TERMTYPE, DIRECTION)

*/

/* get the net associated with the terminal */
octGenFirstContainer(&terminal, OCT NET MASK, &net);

Figure 6.5: Netlisting an Oct Symbolic Representation

92

Figure 6.6: Sample OCT Physical Design

mm^&m^l rif g: * & 6 $ 5 *

S I £ s a z ft

K* § 3 S a * "8 ¥ ~ i" S I ! it

I S 5 wii^ikiA 32 S
- a . *

b 2 a 18 a
s a t s a
a ™ b IB b _

s T § - i • I * e r *-• i • 5 "

=3

* ft S * J3t*?K#SS<tffJj • | a |

u si 5

93

Figure 6.7: Sample OCTSymbolic Design

is responsible for keeping interconnectivity information in the data base up to date

(see Figure 6.7).

schematic: is an extension of symbolic where the cells are represented by symbols (see

Figure 6.8), wire width is insignificant, and design rule correctness is not an issue.

Netlist entry is performed using the schematic editing primitives.

Besides allowingthe user to enterand browsecircuits and knowledge bases using

VEM, Critic makes use of several features exported from VEM to RPC applications; these

include the ability to collect textual (strings) and graphical (points, boxes, OCT objects)

arguments, creation and browsing of annotation (extra information to Critic and results

of Critic runs), highlighting of objects on the screen, menus and key bindings for invok

ing Critic commands {e.g. show the next error), and dialog boxes for prompting for extra

information.

^H> j —O

Figure 6.8: Sample Oct Schematic Design

The Remote Procedure Call Package

A goal ofthe VEM and OCTdesign system was to take advantage of our distributed

environment, one with multiple machines (of different types and operating systems) and

multiple languages. Oct works in this distributed environment by using a remote file sys

tem to access the data base, thus allowing the data base to be spread out over many ma

chines. VEM works by using a network-transparent windowing system which allows the

I/O devices (display, keyboard, mouse) and the programcontrolling them to be on different

machines. VEM and user applications communicate in this environment by using remote

procedure calls. Figure 6.9 shows how the system components communicate. The Remote

Procedure Call (RPC) package allows user applications to run as separate processes outside

of the VEM address space. The applications make subroutine calls to VEM and Oct as if

they were in the same process and address space, similar to tightly-bound VEM commands.

The RPC client, that is the RPC code linked with the application program, interprets these

calls and passes them to VEM. The RPC server linked with VEM calls the appropriate VEM

and Oct routines, and returns the results to the RPC client.

See [28, 62] for a detailed description of RPC and a user's manual.

Critic Run-Time Environment

Critic runs as a remote application from the VEM graphics editor, and accesses

94

OCT tools

display

keyboard

uVaxII

-— network

X

VEM

OCT RPC

uVaxH

OCT Data Manager

Critic

vaxlisp

RPC

VAX 8800

X remote tools

95

Figure 6.9: Critic and the Berkeley Design Environment

the circuit and knowledge-base using the Oct data manager (see Figure 6.11). The user

opens one or more VEM windows displaying the circuit to be checked, then requests that

VEM start execution Critic. VEM is usually run on a workstation and Critic is spawned

on a mainframe, with all communication handled using remote procedure calls across the

network. If a knowledge-base has not been preloaded, a dialog box pops up requesting

the name of the knowledge base to be used. At any time before Critic starts finding the

structures and errors, the user can modify the circuit using any of the standard VEM editing

commands. The user can mark regions of the circuit that need special attention: areas

where errors are known to occur but the designer has decided that they should be ignored,

or to get around a faulty errorcheck. Theuser is prompted for the types of primitives and

structures to be marked and the errors that should be ignored. This information is placed in

the OCTdata base for use in the current and future (if saved) Critic runs. Then Critic starts

execution and finds the structures and errors in the circuit that correspond to the descriptions

in the knowledge-base. As structuresand errors are found, this information is placed in the

OCT data base for later sequencing and display. Critic can use this annotation on a future

run to start from where it left off. A dialog box keeps the user informed of the progress of

96

/* define the user-level RPC application commands */
RPCFunction Cmds[] = {{show, "Finder", "show", "S", 0}};

/* initialization routine */

UserMain(display, spot, cmdList, userOptionWord, array)

char *display;

RPCSpot *spot;

IsList cmdList;

long userOptionWord;

RPCFunction **array;

{
vemMessage("Finder operational", MSG_DISP);
*array = Cmds;

return sizeof(Cmds) / sizeof(RPCFunction);

}

/* RPC command - textually display objs in a selected set */
show (spot, cmdList, userOptionWord)

RPCSpot *spot;

IsList cmdList;

long userOptionWord;

{
RPCArg *firstArg;

octObject theBag, obj;

octGenerator theGen;

if (IsLength(cmdList) != 1) {
vemMessage("format: objects(n) : show", MSG_DISP);
return RPC_OK;

}
lsFirstItem(cmdList, (lsGeneric *) SfirstArg, 0);
if (firstArg->argType != VEM_OBJ_ARG) {

vemMessage("format: objects(n) : show", MSG_DISP);
return RPC_OK;

}
theBag.objectld = firstArg->argData.objArg.theBag;
octGetByld(&theBag);

octlnitGenContents (&theBag, OCT_ALL_MASK, StheGen);
while (octGenerate(&theGen, &obj) == OCT_OK) disp_obj(&obj);
return RPC OK;

Figure 6.10: Sample RPC Code Fragment

97

Critic (see Figure 6.11).

Once Critic has finished finding the structures and errors, the user can use Critic

commands to sequence through the structures and errors. Normally the user would have

two windows displaying the circuit being checked: one context window displaying the en

tire circuit, and the other used for displaying the structures found and the items in error.

When sequencing through the structures, the components that make up the structure are

highlighted in all windows displaying the circuit. The window in which the sequence com

mand was invoked is zoomed to display the structure. In error sequencing, in addition to

displaying the structure in error, a dialog box is displayed that shows the details of the error

and the error check. Originally the display of the description of the error check was done

by opening up a window that showed the man page that described the error. These man

pages were automatically generated from the error check. They were not generated each

time the error was displayed, but at the time the knowledge base was created. Thus as the

error checks were changed, the man pages became out of date. To get around the problem

of out of date documentation, the man pages were removed and replaced with a dialog box

that displays the error check information direcdy from the Critic data structures.

The user can save the information generated during the Critic run {i.e. user-

specified annotation on regions and errors to be ignored by Critic, and Critic-generated

structure and error annotation) by having VEM save the circuit. Chapter 7 gives a detailed

example of a Critic run.

6.2 Implementation Using Oct

To explorehow to represent the external knowledge and how to integrate a critic

with an existing design system, the Oct data base was chosen. The following sections

present the details of how the Critic knowledge base is represented in Oct. An effort

was made to make the representations follow the OCT physical, symbolic, and schematic

policies to allow for already designed cells, and new cells designed using the OCT TOOLS

system6, to be usedwith zeroor minimal additions. The basics of OCT and Oct policy have

6TheOctTools system[62]is a set ofcad toolsintegrated aroundtheOct data base and the vem graphics
editor.

This 1: vem version 5-3 <»ade 27-Jul-33.'
Log file iz /twp-'ver...l 09.01012:
ueM "VCritic/e<anpl*s<'NeuCriticTert:sp»ee:l" : open-windc«
ven : closa-winjou
•j*m "YCrltic/erMples/NeuCrlticTestr.rpacesr : open-uindcw
•-•en- : op*n-uinajw

wen : critic I

Critic Status Dialog
aluispaced icontentsj (aj

;mos (loaded on 4/5/88 21:26:$?)
finding the errors

primitives

Nodes

Formal Terminals

Struc Hire:

Error:

Name

Structure

la Context Of

Not Ir. Context Of f(DOMIHO-'3ATE Hit

constants

• •

'41zzm±] —

& 46 ^
Critic Error Dialog

EQUAL-RISE-AND-FALL-TIMES
IHVEETEK

(or (< noverp min-ratio) (> noeerp max-ratio'

max-ratio • (" 1.15 mobility-ratio
min-ratio • C 0.85 mobility-ratio

Error Message

The H and P device W/L's of this inverter are noi ratioed such that 'he
n;e snd fall ume: of (he inverter will be approximately equal. The ratio
of W/L's is 0.6? and should fall in the ranje of [0.S4, 0.46]. This may
not be necessary if the circuit has been optimized globally. This also
is not necesary if the inverter is used a the r.'atic output buffer of a
domino gate, I

Figure 6.11: Critic Screen Layout

98

facet

instance

f bag J

property

(attribute, constraint)

attachment

99

Figure 6.12: Symbols Used for OCT

already been presented in a previous section. Figure 6.12 is a description of the symbols

used in the following sections for describing the Oct representation.

Knowledge Base

The knowledge base is represented as an OCT facet with instances for each of the

four major parts: process/design style, primitives, node, and structures (see Figure 6.13).

Each instance references the facet that contains the description of the individual part.

100

process node primitives sttructures

Figure 6.13: Knowledge Base Organization in OCT

series-mosfet-limit = 5 mobility-ratio = "(/ n-mobility p-mobility)"

n-mobility = 1350 constant = value

Figure 6.14: Process Definition in OCT

Process/Design Style Description

The process facet contains a set of OCT properties that define the constants of

interest for the technology and design style being checked (see Figure 6.14). Examples of

process constants are threshold voltage and mobility. Design style constants could be the

maximum number of series connected MOSFETs in an NMOS static gate, and the maximum

fanout for a gate array family.

Node Description

The node facet contains descriptions of the error checks to apply to nodes and the

when the checks should not be applied based on the type of the node {e.g. supply, clock,

connected to a formal terminal). See Figure 6.15.

101

Figure 6.15: Node Definition in OCT

102

box I polygon
attribute

Figure 6.16: Primitive Definition in OCT

Primitive Descriptions

The primitive facet contains one instance for each primitive in the knowledge

base. The name of each instance is the name of the primitive described by the master of

the instance. Each primitive description is represented by an OCT facet (see Figure 6.16).

The facet contains an OCT physical policy correct representation of the primitive. This

includes the terminals, basic annotation, and optionally, a pictorial representation of the

primitive. Additional attributes not defined in the OCT policy can also be added {i.e. all

calculated attributes). The facet also contains a description ofeach error that can be applied

to instances of the primitive in the circuit, see the section on error descriptions that follows

for information on the representation of the errors in Oct.

Structure Descriptions

The structure facet contains one instance for each structure in the knowledge

base. The name of each instance is the name of the structure described by the master of the

instance. Each structure description is represented by an OCTfacet (see Figure 6.17) con

taining the description of the structure (layout, connectivity, terminals, and annotation), and

descriptions of the errors associated with the structure being defined. The facet representing

103

attributes

instance

constraints

attributes

constraints attributes

Figure 6.17: Structure Definition in OCT

the structure corresponds to the policies set forth for representing symbolic and schematic

designs in OCT. The annotation includes fixed values {i.e. the type of the structure, ex

tracted parameters) and calculated values. The calculated annotation describes attributes

ofthe structure that are calculated once the structure is found or when the attribute is needed

in another structure attribute or error check. In the implementation of Critic, the computed

attributes are represented as Common Lisp expressions.

104

Error Descriptions

The errors associated with a particular node, primitive, or structure are stored

with the definition of that item. A bag named CRITIC-ERRORS is attached to the facet

that represents the node, primitive, or structure. The CRITIC-ERRORS bag contains

zero or morebags, one bag foreach error definition. Most of the fields of the error check

{in-context-of, non-in-context-of check, message, comments) are properties attached to the

error check bag (see Figure 6.18). The name andstructure fields are derived from the con

text andthus are not explicitly storedwith the error. The role field is a property attached to

the IN-CONTEXT-OF or NOT-IN-CONTEXT-OF property. The constants field is a bag

named CONSTANTS attached to the errorcheck bag and contains zero or more properties;

each propertyrepresents a constant. Real andintegervalued properties are fixed constants

and string valued properties beginning with '(' and ending with ')' are Common Lisp ex

pressions that are functions of the other constants in the error check and the constants in

the process description.

The value of the check field is a Common Lisp expression that evaluates to T

for an error or NIL for no error. In the semantics of CLOS, the expression is evaluated in

the with context of the process constants, structure attributes, and error constants. The

variable self is bound to the structure being checked. The variable error is bound to

the error check. Accessing the value of an error check constant, process constant, or an

attributeof the structure is by name. Accessing the value of an attribute of a component of

the error structure is by:

(<attribute-name> <component-name>)

Forexample, if v-th and pb areprocess constants, e-const is an errorcheck

constant, sa and sb are structure attributes, and ca is a component of the structure with

attribute attribute:

(> (* (/ v-th pb) e-const) (/ (- sa sb) (attribute ca)))

The following shows how check fields are coded. Forexample, a charge sharing

check that is textually represented as:

105

facet

IN-CONTEXT-OF
MESSAGE

ROLE
FACTOR = 5 EXPRESSION = "(/LIMIT 1.2)'

CONSTANT = VAULE

Figure 6.18: Error Definition in Oct

106

Cmiddle-node ^th

L- middle—node ~r ^dg—internal »dd

would be expressed as:

(> (/ VTH-N VDD)

(/ (CAPACITANCE MIDDLE-NODE)

(+ (CAPACITANCE MIDDLE-NODE)

(INTERNAL-CAPACITANCE DYNAMIC-GATE))))

As error checks were created, common functions and subexpressions were found.

There common functions and subexpressionswere abstractedout and provided as a standard

set offunctions for the creators oferror checks. There were also several variables that could

be conveniently defined.

Error message fields and constants, along with computed attributes in structures

and primitives use the same syntax and semantics as described above.

Circuit Annotation

The in-context-of, not-in-context-of, and role fields of errors are used for limit

ing the number of false errors by making the context (under which the error check should

be applied) more specific. However, there are times when the checks cannot be made spe

cific enough or when the designers purposely violate rules. In this case the circuit must

be annotated with information to direct the critic. The information can apply to the circuit

as a whole, to regions of the circuit, or to individual elements. The method used in this

work is annotation of individual elements with information about what error checks not to

perform on them and on all structures that include them. This information is represented in

Oct as a bag named DO-NOT-CHECK which is attached to the item that requires special

handling (a primitive or node). The bag contains a property named ERROR-NAME which

has as its value the name of the error not to check. The ERROR-NAME property contains

another property named ERROR-STRUCTURE which has as its value the name of the type

of structure or primitive that the special handling applies to (see Figure 6.19). Because the

designer adds annotation to the circuit before the structure information exists in the data

107

instance/node

ERROR-NAME = "..."

ERROR-STRUCTURE ="..." ERROR-STRUCTURE = "..."

Figure 6.19: User Annotation in Oct

base, the extra annotation must be added to the primitives that will make up the structures.

For example, a MOSFET might be annotated with information that directs the critic to not

check the too-small-width rule for MOSFETs and the weak-load-gate rule for

latches.

Structure/Error Persistence

Making the information found during aCritic run persist has athree major advan

tages: (1) subsequentCritic runscan use the information to reduce the amount of checking

needed, (2) browsers and other tools can be developed for displaying and documenting the

results ofCritic runs, and (3) the display portion of Critic can be detached from the internal

representation of the structures and errors. The following two sections describe how the

structures and errors found during a Critic ran are stored in the OCT database.

108

Structures

Each time a structure is found in the circuit, a bag with the name of the structure

(and a property specifying the type) is created and the elements that make up the structure

are grouped in the bag. Structures made up of other structures are bags made up of other

bags and thus a hierarchy of bags that corresponds to the structure hierarchy being extracted

is created. Properties are added to the bags to specify the attributes associated with the

structures. As an example, Figure 6.20 shows a set of structure bags associated with a latch.

The latch is composed of two inverters and a MOSFET. Each inverter is in turn composed

of two MOSFETs.

Errors

The information necessary to display the error at some later time is the node,

primitive, or structure in error {item-in-error), the name of the error check, and the message

(since the message can be dependent on the context of the current session). Each error is

represented as an OCT bag whose name is the name of the error check with a property named

ERROR-MESSAGE attached to the bag. The item-in-error information is represented by

attaching a bag named CRITIC-ERRORS to the item-in-error and attaching the error bags

to the CRITIC-ERRORS bag (see Figure 6.21).

6.3 Browsing the Critic Knowledge Base

It is important that users who want to add to, delete from, or change the knowledge

base be able to browse it. This should also be true for programs. One approach that can

be used for browsing the knowledge base is to use the generic browsers that exist for the

data base. There are two Oct browsers: attache[62] and vem[27]. attache is a text-based

OCTdata base browser that allows you to follow attachments in a facet and move between

instances and their masters, attache can be used for following the attachments that were

presented in Section 6.2. vem is the graphics editor/browser for OCTand allows the user to

graphically traverse the data base and design hierarchy. While both of these programs can

be used to browse and edit the knowledge base, some of the information in the knowledge

109

MOSFET MOSFET MOSFET .' ••. MOSFET MOSFET

Figure 6.20: Structures Found During the Critic Execution in OCT

110

instance/structure-bag/node

ERROR-MESSAGE = "...." ERROR-MESSAGE =

Figure 6.21: Errors Found During the Critic Execution in Oct

Ill

base is specific to the function of Critic, and generic browsing and display tools cannot

use information about the structure and use of the data to display the much of the data in a

meaningful form for the Critic user.

Because of the Critic specific information in the knowledge base, a browsing

tool specific to Critic, critic-browser, was developed, critic-browser allows the user to

traverse a knowledge base without having to know the structure of the data stored in OCT.

The interface to critic-browser is X-windows based. The user starts up the program and a

list of primitives and structures in the knowledge base are shown. Clicking on one of the

primitives or structures causes a list of error checks for that particular item to be shown.

Clicking on the error check shows a description of the error check.

6.4 Knowledge Base Documentation

It is common for documentation on a knowledge base or process or circuit design

to get out of date with respect to the actual item being documented. Therefore the ability to

automatically generate the documentation from the knowledge base is important. Since the

knowledge base for Critic is stored in OCT and there is no direct way to generate a mean

ingful text hardcopy of the information in OCT, it is necessary to write specific routines to

gather the information and put it in a form that can be used for documentation purposes. As

Critic loads the knowledge base it can be told to generate a IATgC document that describes

the knowledge base. See Appendix A for the documentation of a simple ruleset.

Chapter 7

Example and Results

Critic has been run on a variety of example circuits: circuits specifically built

to test certain features of Critic, circuits produced by module generators (Critic was used

to test the quality of the designs), and student designs using a mixture of CAD tools and

hand-design.

7.1 Example Critic Run

This section goes through an example Critic run showing how the user interacts

with Critic and how Critic interacts with the design framework. It is assumed that the

circuit has already been created (either by CAD tools or by hand in VEM) and that the Critic

knowledge-base already exists.

The first step is to start the VEM graphics editor and open up a window on the

circuit to be checked. In this example assume, the circuit is stored in the OCT facet cir

cuit.symbolic.contents. To run VEM, type (make sure your DISPLAY variable is set to the

name of your display, e.g. shambhala:0):

% vem &

You can override the DISPLAY environment variable by running VEM with an

argument that is the display name:

% vem dent:0 &

112

113

VEM will prompt for a size and location for the console window. The console

window is where all textual input and feedback is displayed by VEM. As you move the

mouse cursor the window outline follows; move the mouse cursor to the top left comer of

the screen and click the left button to get the default size.

To open a window on the circuit to be checked, issue the open-window com

mand:

vem> "circuit:symbolic" : open-window <carriage return>

All commands in VEM have three ways of being invoked, either by typing in the

full name (prepended with a colon) and entering a carriagereturn, typing a single character,

or selecting a menu entry. All commands in this example will be invoked by typing the full

name.

After the open-window command is invoked VEM will prompt for the window

size and location.

The best way to run Critic is with two windows displaying the circuit being

checked, one displaying the entire circuit, called the context window, and the other dis

playing the items in error, called the highlightwindow. In this example, the first window

opened will be the context window. To open the highlight window, move the mouse cursor

into the context window and issue the open-window command.

vem> : open-window

With the mouse cursor in the highlight window, issue the critic command (either

by type-in or by selection on the Applications menu pane):

vem> : critic

Now Critic has been started and is waiting for the user to tell it how to proceed,

you can check the available Critic commands by holding down the shift key and pressing

down and releasing the middle mouse button. Before checking the circuit, certain areas of

the circuit should be marked to stop Critic from reporting some types of errors in those

regions. This can be done by drawing a box around each region and then issuing the add-

to-not-check command:

114

vem> boxes(1) : add-do-not-check

The add-do-not-check command will create a dialog box that has a list of all

primitiveandstructure types intheknowledge-base. The userselectsthe ones tobe marked.

Foreach one selected anotherdialog box is created that lists all errors associated with the

primitive or element, and for each one of these selected, the primitives in the region will

be marked so that Critic will not check for any of those errors (on the primitive or any

structure the primitive is found to be contained in).

To specify what errorchecks will not be performed for a particular instance or

net (and the structures that might contain the particular instance) select the object and issue

the show-do-not-check command:

vem> : select

vem> objects (1) : show-do-not-check

Now that the initial state has been set, the check can be started by using the run

command:

vem> : run

Critic will create a window that displays the current status. The status window

contains the following information: current phase (loading circuit, finding structures, find

ing errors), number of primitive items in the database, number of structures found, and

number of errors found.

As Critic finds structures and errors in the circuit being checked, it annotates the

database so that the next phase of Critic, displaying the results, can be done directly off

the database rather than from internal data structures. Critic will print Finished in the VEM

console window when it has completed finding the structures and errors in the circuit. Now

that the structures and errors have been found, the use can sequence them.

The next-structure command will sequence through each structure found by

Critic, zooming to the structure (in the window where the next-structure command was

issued) and highlighting the components that make up the structure- in all VEM windows

that are displaying the components (in this example, the context window and the highlight

window).

115

vem> : next-structure

The first structure found on this run is a STATIC-GATE.

The next-error command will sequence through each error found by Critic,

zooming to the error (in the window wherethe next-error command was issued) andhigh

lighting the structure in errorin all VEM windows displaying the structure.

vem> : next-error

As the errors are sequenced through, the errorscan be corrected by the user.

The first error found in this example is 'weak load gate*. This error is triggered

when the load MOSFET of alatch is not big enough to force a state change. The simple fix is

to replace the load device with a biggerone. This first step is to open a palette of standard

sized MOSFETs. To make room for the new MOSFET, select items around the MOSFET and use

the drag-instance command to move them (drag-instance stretches the interconnection

paths and maintains interconnectivity).

vem> "xmosfet-palette" p

vem> boxes(1) : select-objects

vem> objects(N) : drag-instance

vem> : select-objects

vem> objects(N) : replace-instance

After each error is scanned (and possibly corrected) the user can go to the next

error and the process repeats itself.

To end the Critic run:

vem> : exit

Critic leaves data in the circuit so that you can view it outside of Critic or restart

Critic and go directly to next-structure and next-error. In particular there are two bags,

CRITIC-ERRORS and CRITIC-STRUCTURES, that contain the errors and structures

found during the Critic run. If you issue the save-window command with the mouse cursor

in one of the windows displaying the circuit, this information will be made permanent:

116

vem> : save-window

To view the contents of the CRITIC-ERRORS bag, issue the sel-bag-contente

command, and select the item labeled CRITIC-ERRORS:

vem> : sel-bag-contents

This will highlight all items that are in error. VEM will popup a dialog asking in

what direction you want to follow the bag hierarchy. After selecting the direction to traverse

(down), another dialog will popup up with a list ofbags {i.e., errors)that were found during

the previous Critic run. Selecting one of these will highlight the items that are associated

with that particular error.

To exit VEM, issue the close-window command from the console window:

vem> : close-window

The close-window command will pop up a dialog box asking to confirm the exit.

7.2 Statistics

To check the ease ofuse of and cpu usage of Critic several example circuits were

run. Some ofthe circuits were contrived to test various features ofthe program and to excite

selected errors, others were from the Berkeley VLSI Design Course (CS250). For each of

the examples shown in Table 7.1, the cputime for each ofthe major cpu intensive phases of

the Critic execution is shown(circuit load, structure finding, and error checking)1. Along

with the cpu times is information about each circuit (number of components, number of

nodes, number of structure found, and number of errors found). The results show that

for circuit designs on the order of a few hundred components, the cpu is acceptable for an

interactive application. As the circuit grows, structure finding (which can be an exponential

problem) grows from a third of the total time to the majority of the time for execution.

1All CPUtimes are for a VAX 8800RunningULTRIX 2.2.

Name Circuit Load Structure Finding Error Checking Total

dec 4 5 6 18

28 mosfets, 21 nodes, 20 structures, 9 errors

CriticTest 6 4 6 18

35 mosfets, 27 nodes, 14 structures, 8 errors

alu_odd 4 4 6 15

36 mosfets, 28 nodes, 10 structures, 12 errors

critic-test 7 5 7 20

39 mosfets, 27 nodes, 17 structures, 11 errors

alu 7 9 7 26

58 mosfets, 42 nodes, 26 structures, 12 errors

NewCriticTest 8 10 9 30

68 mosfets, 56 nodes, 26 structures, 23 errors

alu3 20 41 17 81

212 mosfets, 135 nodes, 58 structures, 32 errors

IRMARPC 38 563 26 636

524 mosfets, 219 nodes, 130 structures, 201 errors

big-test 106 914 103 1139

1248 mosfets, 771 nodes, 544 structures, 480 errors

Table 7.1: Statistics for Critic Runs

7.3 Knowledge Collection

117

A major problem in building any knowledge-based system is collecting the knowl

edge [29,55]. Many techniques have been developed for gathering the knowledge for VLSI

design assistants [39,47,68]. The main purpose of Critic was not to collect knowledge of

circuit design, but to explore representation and build a circuit critiquer that was integrated

into an interactive design system. As such, the knowledge collection for Critic was more

ad hoc than in other critics. The knowledge in Critic builds on the work ofprevious circuit

critics [47], rules collected from design-styles [40, 24], from the author's own knowledge

of design, and from industrial visitors. Many error checks were developed after spending

time discussing Critic with industrial visitors. Rather than collecting knowledge by inter

viewing designers, the methods used in this and other circuits critics, work is being done

on developing ways of discovering rules by watching designers[52, 53].

Chapter 8

Conclusions

In this dissertation, several ideas and algorithms for use in circuit critiquing were

explored. These ideas and algorithms have been implemented in Critic, a test-bed for

exploring ideas in circuit critiquing. Critic has been used to critique a number of student

circuit designs from a VLSI design course at the University of California at Berkeley. A

summary of the major results and possible future directions follows:

Major Results

Tight Integration

If the critiquer is tightly integrated with an existing CAD system, the users of the

CAD system will be able to start using thecritiquerwith a minimumamountof effort. Critic

was developed as a remote application for the VEM graphics editor and used the Oct data

base for the storage of the knowledge base, circuits to be checked, and the results of the

execution of Critic {e.g. the structures and errors found). By being a remote application

for the VEM graphics editor, the user is able to quickly learn how to use the system since

the control, entry and presentation of data is the same as other VEM remote applications.

118

119

Technology and Design Style Independence

Maintaining independence from a particulartechnology and design style allows

the basic critiquer to be used for new technologies and design styles. Critic maintains

independence by having no technology or design style specific information. Critic has

knowledge about elements, terminals, nets, supplies, and clocks, but has no concept of the

type of elements that can exist or the attributes that can be associated with them.

Representation of Primitives, Structures, and Errors

The specification of primitives, structures, and error checks, the method of de

scribing them should be independent of the internals of the system. If the method of de

scription matches a method already used in the design system, that is "by example", then

that will further simplify the specification. Primitive and structure description by example

was appropriate, but inappropriate forerrors. Critic maintained ahigh level of system inde

pendence. There are three places where the system did not fully succeed: the specification

of computed attributes, the specification of the check and message fields in error descrip

tions, and the specification and use of combinations. The first two of these use the im

plementation language and some information about how things are represented internally.

The check and message fields and the computed attributes are written in Common Lisp and

CLOS. The use of combinations introduces synthetic elements that are not part of the un

derlying design system. Explanation-Based Generalization was used to try to replace the

synthetic elements with examples of combinations that the system could generalize from.

Future Work

There are several interesting areas that could be further explored. In particular,

the areas ofrechecking and incremental checking, the use ofclasses to minimize the amount

of duplication, making the system specific to a small set of design styles or technologies,

and further research in explanation-based generalization to simplify the specification of

structures.

120

Rechecking and Incremental Checking

After fixing the errors found by a circuit critic, the user may want to recheck

the circuit to make sure the errors were actually corrected and that no new errors were

introduced; in certain cases the recheck can be sped up. If no changes have occurred that

would change the structures found on the previous run, the structure finding phase canbe

skipped. This can be done when the following is true:

• No topological changes havebeenmade to thecircuit. If nonetshavebeenmodified,

deleted, or created, the topology of the circuit has not been changed.

• No attributes that are used in structure finders have been changed. Some structure

finding rules may put constraints on instances and nets {e.g. the type of a MOSFET

must be a certain value or anet must be a supply net). If any of the attributes used in

structure finders has been changed, the structures found on the previous run may be

invalid. The critic could invalidate all structures of that type and all structures that

use structures of that type (recursively up) and start the structure finding from that

point.

In the error checking phase only the error checks that apply to new structures

and those that use attributes that have been changed must be checked. Since attributes can

depend on other attributes, a dependency graph must be made for each attribute, and if

any attributes in the graph have changed, the calculated attribute must be assumed to have

changed.

As has been shown in the area of design rule checking[58, 26], interactive, incre

mental checking forerrors greadyhelps in the designofcircuitsatthe mask level. However,

the samedegree of checking that is done in incremental design rule checking is inappropri

ate forcircuitcritiquing. This is fortwo reasons: (1) asopposedto enteringgeometries, that

are always design rule correct, as more complex structures are entered, at various points

in time before the structure is complete, it may possibly be in violation of various error

checks; and (2) running checks thata critiquer would use takes more time than the types of

checks used by a design rule checker. Forthese reasons, the incremental checker should be

121

invoked by the designer. After the designer has entered one or more complete structures,

the critiquercan be told to check and report any errors in the previously entered structures.

The ability to do rechecks and incremental checking depends on the ability of

the underlying database to determine what changes have occurred. The Oct data manager

supports change detection. A program can register with OCT that certainoperations (such

as delete, modify,or create) on certain object types (such as net, instance, or layer) should

be recorded. Each change is represented by the OCT change-record object. The change-

recordobjectcontains information aboutthe object thatwas changed (bothbefore and after

the change) and what operation was performedon the object. Change-objects are grouped

by the change-list object. The change-list object is like other OCT objects and thus change-

records are retrieved by creating a generator on the change-list. By using the change-list

feature in OCT, both rechecking and incremental checking are possible.

Using User-Defined Structure Class Hierarchy

The current version of Critic has no hierarchy associated with the structures de

fined in the knowledge base. Thus information about structures and their error checks are

duplicated. For example, a knowledge base might have definitions for a inverter, a more

generic static-gate, and a dynamic-gate. There are information and error checks that are

generic to gates that would cover all three types, and information and error checks that

would cover the static-gates (which includes the inverter). Ways to represent the generic

information should be explored. By deciding to use existing OCT representations for the

structures in the knowledge base, use of generic information was not feasible. OCT sym

bolic/schematic policy does not have the ability to represent the generic or parameterized

structures that would be necessary for this ability.

Limited Domains

One of the purposes of this research was to make a general system. However,

the more general a system is, the more difficult it is to use. A general system can not have

functions specific to a particular technology or design style, and there are few functions that

are general enough to be included (count the number of items that are in series or parallel,

122

etc.). Most users of this system will have only a small number of technologies and design

styles available to them, so a less general system would suit their needs and be able to

provide a set of primitives tailored to those technologies and design styles. By 'knowing'

what the primitives are, functions that are specific to those primitives and the technology

used can be provided for use in error checks.

By limiting the critic to a set of primitives and structures that are 'known' to the

system, simulation of the circuit becomes possible (as with the use of SPICE in QCRrnc[3]).

Simulation can be used for two different purposes: (1) as aninput the to critiquer[3], and (2)

as away to verify that an errorreally exists. In the case of input to the critic, the simulation

file can be used to determine if values that should never occur appear in the output of the

simulator. For analog circuit simulations this could be voltages across devices that exceed

the breakdown voltage forthe device. Fordigitalcircuit simulations this could be undefined

or high impedance values at locations where only low and high values are legal.

Many errors are too complicated to express in terms of a set of attribute con

straints. In many cases what needs to be done is to take the structure being checked, add

some context and inputs, build a simulation control file and send it to a simulator. This

is good for error checks that point out possible errors, since simulation could weed out

possible errors that are not really errors.

Explanation-Based Generalization

There areseveral additions/changes that could be done to this particular extension

of Explanation-Based Generalization to make it more generally useful.

• Get rid of the fixed set of attributes. This is not a limit imposed by the concepts, just

by the implementation. This can be removed by pre-processing the domain theory

and examples to find all attributes and generating the necessary clauses for building

the similarity lists and similarity tests. However, one could claim that this sort of

information should actually be an explicit part of the domain theory.

• Get rid of the fixed groupings of attributes. This was introduced to limit the amount

of bogus similarities and differences found by the system. One could remove the

123

groupings and let the system look at all possible combinations of attributes inside

and between generalizations. Doing this the system would generate large numbers

of Vk 7^ Vjl, where Vj and 14 have nothing in common and probably are not even

of the same type. For example: combinationType ^ componentType, topNode ^

internalCapacitance. Using type information would help limit the number.

• Better Similarity Checks. The similarity checks should be tuned to the type of the

items being compared; for example, the function equality check should be used for

function equality, inequality and dualism. Only simple literal equality/inequality

checks were explored. This is something that can easily be added to the domain

theory.

• Eliminate the Pre-Parsing Constraint. To simplify the experiment, the examples of

static-gates were described in with the series-parallel combinations already deter

mined. The system must be able to take examples directly from cell libraries and

thus must be able to recognize and parse the series-parallel combinations.

Vk is the kth attribute of the combination.

Appendix A

Ruleset Documentation

The following section contains an automatically generated ruleset document for

a simple CMOS ruleset. One feature missing from the automatic documentation generator is

the use of the LISP-to-English translator used when displaying the error messages in VEM.

CMOS

Introduction

This document describes the scmos ruleset for Critic. A ruleset describes the

primitives that make up the circuits that will be checked with the ruleset, the structures

(collections of primitives and other structures) that are to be found in the circuit, the error

checks that are to be performed on the primitives and structures, and process and design

style specific constants that can be used in the error checks.

Ruleset Introduction

This ruleset is used for testing out the various features of Critic and experiment

ing with various methods of representing the knowledge base. The ruleset is not meant to

be a complete set of rules for finding errors in CMOS circuit designs.

124

125

Process

The process description contains constants and functions of constants that can

be used by the error checks in the ruleset. Examples of constants are threshold voltage,

mobility, and breakdown voltage. An example of a function of constants is the mobility

ratio; the ratio of the p-type and n-type mobilities in a CMOS process.

Process constants and functions are stored as OCTproperties on the process facet.

The process facet is found via opening the ruleset facet and doing an instance get by name on

"process". Process constants are stored as OCT integer and real valued properties. Process

functions are stored as Oct string valued properties that are converted to LISP s-expressions

and are evaluated in the dynamic scope of the error being checked and the lexical scope

of the process description. Because of this, process functions should only be functions of

process constants and other process functions.

Since process descriptions are stored as OCT properties; process descriptions can

be created and edited with VEM or ATTACHE, or created programmatically.

MOBILITY-N 0.475d0

MOBILITY-P 0.19d0

VTH-N 0.5d0

VTH-P -0.5d0

MOBILITY-RATIO (/ MOBILITY-P MOBILITY-N)

VDD 5.0d0

126

Node

The node is a basic object in Critic. Nodes are used for connecting together

terminals. The node description contains descriptions of the error checks that apply to

nodes, and the names of the node error checks which should not be checked if the node is

connected to a formal terminal of the circuit.

Some types of errors do not apply for the nodes that are connected to the formal

terminals of a circuit. Forexample, checking for a DCpath to ground is probably incorrect

for an input terminal of a circuit (in MOS technology, many cell inputs are only connected

to gates of MOSFETs.

Errors

INCOMPATIBLE-FORMAL-TERMINALS

CHECK: -

(INCOMPATIBLE-FORMAL-TERMINALS-P SELF)

MESSAGE: - "The formal terminals on this node are incompatible.

For example, both INPUT and OUTPUT formal terminals of

the circuit being checked may be connected to this node"

CLOCK-AND-SUPPLY-ON-NODE

CHECK: -

(CLOCK-AND-SUPPLY-ON-NODE SELF)

MESSAGE: - "This node has CLOCK and SUPPLY terminals on it"

SIGNAL-INPUT-ON-SUPPLY-NODE

CHECK: -

127

(SIGNAL-INPUT-ON-SUPPLY SELF)

MESSAGE: - "This supply node has a SIGNAL/INPUT terminal on

it. This may be ok, but I thought I would warn you"

SIGNAL-OUTPUT-ON-SUPPLY-NODE

CHECK: -

(SIGNAL-OUTPUT-ON-SUPPLY SELF)

MESSAGE: - "This supply node has a SIGNAL/OUTPUT terminal on

it. This could cause a short if the OUTPUT tries to pull

to the opposite supply"

OUTPUT-SHORT

CHECK: -

(OUTPUT-SHORT SELF)

MESSAGE: - "This node is connected to more than one terminal

of type SIGNAL and direction OUTPUT. If the signals drive

in opposite directions, a short will occur"

DC-PATH-TO-GROUND

CHECK: -

(NOT (PATH-BETWEEN SELF *DC-NODES*))

MESSAGE: - "The node does not have a DC path to GROUND, thus

it can not be driven. If the node is connected to a formal

INPUT terminal of the circuit being checked, CRITIC will

not list it as in error"

128

FLOATING-TERMINAL

CHECK: -

(FLOATING-TERMINAL SELF)

MESSAGE: - "This node is connected to only one element"

ONLY-INPUTS

CHECK: -

(ONLY-INPUTS SELF)

MESSAGE: - "This node is only connected to INPUT terminals,

thus the node is floating. If the node is connected to

a formal INPUT terminal of the circuit being checked,

CRITIC will not list it as in error"

Error Checks to Skip on Input Terminals

"DC-PATH-TO-GROUND"

"FLOATING-TERMINAL"

"ONLY-INPUTS"

Error Checks to Skip on Output Terminals

"FLOATING-TERMINAL"

129

Primitives

A primitive is the lowest level item that Critic deals with. Primitives describe the

cells that are read from a circuit description. Primitives can range from mosfets, capacitors,

bipolar transistors, and resistors, to macro cells of any size and complexity

A primitive description contains the names of the attributes that should be read

from the database when processing an instance of the primitive, attributes that are functions

of other attributes of the instance (and process parameters), the terminals of the primitive,

and any error checks associated with the primitive.

MOSFET

Attributes

WOVERL: (/ MOSFETWIDTH MOSFETLENGTH)

MOSFETTYPE: read from the database

MOSFETLENGTH: read from the database

MOSFETWIDTH: read from the database

Terminals

GATE with direction INPUT of type SIGNAL

SOURCE with direction INOUT of type SIGNAL

DRAIN with direction INOUT of type SIGNAL

The following terminals are permutable: (SOURCE DRAIN)

The following terminals are DC equivalent: (SOURCE DRAIN)

Errors

TOO-SMALL-LENGTH

CHECK: -

(< MOSFETLENGTH MINLENGTH)

MESSAGE: -

(FORMAT NIL "The mosfet has a channel length

of ~,2G meters which is below the minimum

allowed length of ~,2G meters~%"

MOSFETLENGTH MINLENGTH)

CONSTANTS: -

MINLENGTH: 1.2d-6

TOO-SMALL-WIDTH

CHECK: -

(< MOSFETWIDTH MINWIDTH)

MESSAGE: -

(FORMAT NIL "The mosfet has a channel width

of ~,2G meters which is below the minimum

allowed width of ~,2G meters~%"

MOSFETWIDTH MINWIDTH)

CONSTANTS: -

MINWIDTH: 1.4d-6

130

CAPACITOR

Attributes

CAPACITANCE: read from the database

Terminals

BOTTOM with direction INOUT of type SIGNAL

TOP with direction INOUT of type SIGNAL

The following terminals are permutable: (BOTTOM TOP)

Errors

TOO-LARGE

CHECK: -

(> VALUE MAXIMUM-CAPACITANCE)

MESSAGE: - "The value of the capacitor is too large"

CONSTANTS: -

MAXIMUM-CAPACITANCE: 1.0d-6

131

132

Combinations

Combinations are used for describing series/parallel collections of other circuit

objects in Critic.

A combination description contains information on what item to combine, what

terminals of the item to use, what attributes to compute for the new combination, and a set

of constraints on the items that make up the combination. Also, error checks....

MOSFET-COMBINATION

Element to combine: MOSFET using terminals DRAIN and SOURCE

Attributes

WOVERL-MAX with components:

ACCESSOR WOVERL

SERIES (LAMBDA (LST) (/ 1.0 (REDUCE (FUNCTION +) (MAPCAR

(FUNCTION (LAMBDA (X) (/ 1.0 X))) LST))))

PARALLEL (LAMBDA (LST) (REDUCE (FUNCTION MAX) LST))

WOVERL-MIN with components:

ACCESSOR WOVERL

SERIES (LAMBDA (LST) (/ 1.0 (REDUCE (FUNCTION +) (MAPCAR

(FUNCTION (LAMBDA (X) (/ 1.0 X))) LST))))

PARALLEL (LAMBDA (LST) (REDUCE (FUNCTION +) LST))

WOVERL with components:

ACCESSOR WOVERL

SERIES (LAMBDA (LST) (/ 1.0 (REDUCE (FUNCTION +) (MAPCAR

(FUNCTION (LAMBDA (X) (/ 1.0 X))) LST))))

133

PARALLEL (LAMBDA (LST) (REDUCE (FUNCTION +) LST))

LOGIC-FUNCTION with components:

ACCESSOR (OCTID (NODE GATE))

SERIES (LAMBDA (LST) (CONS (QUOTE AND) LST))

PARALLEL (LAMBDA (LST) (CONS (QUOTE OR) LST))

MOSFETTYPE with components:

ACCESSOR MOSFETTYPE

SERIES CAR

PARALLEL CAR

The following terminals are to be collected: (GATE) The following attributes are con

straints: (MOSFETTYPE)

Structures

•C

/DD

PFET

n

NFET

3ND

.OUTPUT

Figure A.1: Schematic of INVERTER

134

Structures are used for classifying collections of items in a circuit. A structure

is an interconnection of primitives and other structures.

A structure description contains information on what items make up the structure,

how they are connected, constraints upon the items and connections, attributes that are

functions of attributes associated with the items that make up the structure, and any error

checks associated with the structure.

INVERTER

135

Attributes

NOVERP: (/ (WOVERL NFET) (WOVERL PFET))

Patterns

NFET

(MOSFET (DRAIN (VARIABLE T8)) (GATE (VARIABLE T2))

(SOURCE (VARIABLE T4)) (MOSFETTYPE nNENH"))

PFET

(MOSFET (SOURCE (VARIABLE T6)) (DRAIN (VARIABLE T4))

(GATE (VARIABLE T2)) (MOSFETTYPE nPENHn))

(LISP-EVAL (GROUND-NODE-P (VARIABLE-VALUE 'T8)))

(LISP-EVAL (SUPPLY-NODE-P (VARIABLE-VALUE 'T6)))

Terminals

GND with direction INOUT of type GROUND tied to the node matched by variable T8

VDD with direction INOUT of type SUPPLY tied to the node matched by variable T6

OUTPUT with direction OUTPUT of type SIGNAL tied to the node matched by variable

T4

INPUT with direction INPUT of type SIGNAL tied to the node matched by variable T2

Errors

EQUAL-RISE-AND-FALL-TIMES

NOT-IN-CONTEXT-OF: (DOMINO-GATE NIL)

CHECK: -

(OR (< NOVERP MIN-RATIO) (> NOVERP MAX-RATIO))

MESSAGE:

(FORMAT NIL "The N and P device W/L's of this

inverter are not ratioed such that the rise and

fall times of the inverter will be approximately

equal. The ratio of W/L's is ~,2F and should

fall in the range of [~,2F, ~,2F].

This may not be necessary if the circuit

has been optimized globally. This also is

not necessary if the inverter is used as the

static output buffer of a domino gate.~%"

NOVERP MIN-RATIO MAX-RATIO)

CONSTANTS:

MAX-RATIO: (* 1.15 MOBILITY-RATIO)

MIN-RATIO: (* 0.85 MOBILITY-RATIO)

136

Figure A.2: Schematic of STATIC-GATE

STATIC-GATE

Attributes

NOVERP: (/ (WOVERL NCORE) (WOVERL PCORE))

Patterns

NCORE

(MOSFET-COMBINATION (BOTTOM (VARIABLE T14))

(TOP (VARIABLE TIO)) (MOSFETTYPE "NENH"))

PCORE

(MOSFET-COMBINATION (BOTTOM (VARIABLE TIO))

137

138

(TOP (VARIABLE T12)) (MOSFETTYPE "PENH"))

(LISP-EVAL (GROUND-NODE-P (VARIABLE-VALUE 'T14)))

(LISP-EVAL (SUPPLY-NODE-P (VARIABLE-VALUE 'T12)))

Terminals

INPUT with direction INOUT of type SIGNAL tied to the node matched by variable Tl 6

GROUND with direction INPUT oftype GROUND tied to the node matched by variable T14

VDD with direction INPUT of type SUPPLY tied to the node matched by variable T12

OUTPUT with direction OUTPUT of type SIGNAL tied to the node matched by variable

TIO

Errors

P-SERIES-LENGTH

CHECK: -

(> (SERIES-LENGTH PCORE) P-LIMIT)

MESSAGE: -

(FORMAT NIL

"Too many mosfets in the P-type mosfet block.

There are ~A items in series and there may only be ~A.

Too many series connected mosfets can increase the time

it takes to charge the capacitance in the gate~%"

(SERIES-LENGTH PCORE) P-LIMIT)

CONSTANTS: -

P-LIMIT: 3

139

EQUAL-RISE-AND-FALL-TIMES

NOT-IN-CONTEXT-OF: (DOMINO-GATE NIL)

CHECK: -

(OR (> NOVERP MAX-RATIO) (< NOVERP MIN-RATIO))

MESSAGE: -

(FORMAT NIL

"The rise and fall times of the static gate are

not equal. The N/P ratio is ~,2F and should be

within the range [~,2F, ~,2F]"

NOVERP MIN-RATIO MAX-RATIO)

CONSTANTS: -

MAX-RATIO: (* 1.15 MOBILITY-RATIO)

MIN-RATIO: (* 0.85 MOBILITY-RATIO)

LOGIC-DUALITY

CHECK: -

(NOT (LOGIC-EQUAL (LOGIC-FUNCTION NCORE)

(LOGIC-DUALIZE (LOGIC-FUNCTION PCORE))))

MESSAGE: -

(FORMAT NIL

"The logic functions of the N and P mosfet blocks

are not logical duals of each other. There are

certain input conditions that will cause the output

the float or be pulled towards both supplies (i.e. a

short)~%~%LF1=~A~%~%LF2=~A~%"

(LOGIC-FUNCTION NCORE) (LOGIC-FUNCTION PCORE))

140

N-SERIES-LENGTH

CHECK: -

(> (SERIES-LENGTH NCORE) N-LIMIT)

MESSAGE: -

(FORMAT NIL

"Too many mosfets in the N-type mosfet block.

There are ~A items in series and there may only be ~A.

Too many series connected mosfets can increase the

time it takes to charge the capacitance in the gate~%."

(SERIES-LENGTH NCORE) N-LIMIT)

CONSTANTS: -

N-LIMIT: 3

r\t\ns PULL-UP

-OUTPUT

3ND

Figure A.3: Schematic of DYNAMIC-GATE

DYNAMIC-GATE

Attributes

INTERNAL-CAPACITANCE: (CAPACITANCE NCORE)

Patterns

PULL-UP

(MOSFET (SOURCE (VARIABLE T20)) (DRAIN (VARIABLE T22))

(GATE (VARIABLE T24)))

NCORE

(MOSFET-COMBINATION (BOTTOM (VARIABLE T18))

141

142

(TOP (VARIABLE T22)) (BOTTOM-CLOCKED "YES")

(MOSFETTYPE "NENH"))

(LISP-EVAL (CLOCK-NODE-P (VARIABLE-VALUE 'T24)))

(LISP-EVAL (SUPPLY-NODE-P (VARIABLE-VALUE 'T20)))

(LISP-EVAL (GROUND-NODE-P (VARIABLE-VALUE 'T18)))

Terminals

CLOCK with direction INPUT of type CLOCK tied to the node matched by variable T24

OUTPUT with direction OUTPUT of type SIGNAL tied to the node matched by variable

T22

VDD with direction INPUT of type SUPPLYtied to the node matched by variable T2 0

GROUND with direction INPUT of type GROUND tied to the node matched by variable Tl 8

Errors

SERIES-LENGTH

CHECK: -

(> (SERIES-LENGTH NCORE) N-LIMIT)

MESSAGE: - "Too many mosfets in series"

CONSTANTS: -

N-LIMIT: 5

rtnrv PULL-UP

3ND

Figure A.4: Schematic of PRECHARGE-GATE

PRECHARGE-GATE

Patterns

PULL-UP

(MOSFET (SOURCE (VARIABLE T28)) (DRAIN (VARIABLE T30))

(GATE (VARIABLE T32)))

NCORE

(MOSFET-COMBINATION (BOTTOM (VARIABLE T26))

(TOP (VARIABLE T30)) (BOTTOM-CLOCKED "NO")

(MOSFETTYPE nNENHn))

(LISP-EVAL (CLOCK-NODE-P (VARIABLE-VALUE 'T32)))

143

144

(LISP-EVAL (SUPPLY-NODE-P (VARIABLE-VALUE 'T28)))

(LISP-EVAL (GROUND-NODE-P (VARIABLE-VALUE 'T26)))

Terminals

CLOCK with direction INPUT of type CLOCK tied to the node matched by variable T32

OUTPUT with direction OUTPUT of type SIGNAL tied to the node matched by variable

T30

VDD with direction INPUT of type SUPPLY tied to the node matched by variable T28

GROUND with direction INPUT oftype GROUND tied to the node matched by variable T2 6

Errors

SERIES-LENGTH

CHECK: -

(> (SERIES-LENGTH NCORE) N-LIMIT)

MESSAGE: - "Too many mosfets in series"

CONSTANTS: -

N-LIMIT: 5

145

CLK

NFET

INPUT. -OUTPUT

JPFET

^
Figure A.5: Schematic of TRANSFER-GATE

TRANSFER-GATE

Patterns

PFET

(MOSFET (SOURCE (VARIABLE T34)) (DRAIN (VARIABLE T36))

(GATE (VARIABLE T40)) (MOSFETTYPE "PENH"))

NFET

(MOSFET (DRAIN (VARIABLE T36)) (GATE (VARIABLE T38))

(SOURCE (VARIABLE T34)) (MOSFETTYPE nNENHn))

(LISP-EVAL (CLOCK-NODE-P (VARIABLE-VALUE 'T40)))

(LISP-EVAL (CLOCK-NODE-P (VARIABLE-VALUE 'T38)))

Terminals

CLKBAR with direction INPUT of type CLOCK tied to the node matched by variable T40

CLK with direction INPUT of type CLOCK tied to the node matched by variable T38

OUTPUT with direction INOUT of type SIGNAL tied to the node matched by variable T3 6

INPUT with direction INOUT of type SIGNAL tied to the node matched by variable T34

The following terminals are permutable: (OUTPUT INPUT)

PHT

Figure A.6: Schematic of DOMINO-GATE

DOMINO-GATE

Patterns

STATIC-BUFFER

(INVERTER (GND (VARIABLE T42)) (VDD (VARIABLE T44))

(OUTPUT (VARIABLE T46)) (INPUT (VARIABLE T49)))

DOMINO-SECTTON

(DYNAMIC-GATE (CLOCK (VARIABLE T48))

(OUTPUT (VARIABLE T49)) (VDD (VARIABLE T44))

(GROUND (VARIABLE T42)))

(LISP-EVAL (CLOCK-NODE-P (VARIABLE-VALUE 'T48)))

(LISP-EVAL (SUPPLY-NODE-P (VARIABLE-VALUE 'T44)))

(LISP-EVAL (GROUND-NODE-P (VARIABLE-VALUE 'T42)))

.OUTPUT

STATIC-BUFFER

146

147

Terminals

PHI with direction INPUT of type CLOCK tied to the node matched by variable T4 8

OUTPUT with direction OUTPUT of type SIGNAL tied to the node matched by variable

T46

VDD with direction INPUT of type SUPPLY tied to the node matched by variable T44

GROUND with direction INPUT oftype GROUND tied to the node matched by variable T42

Errors

CHARGE-REDISTRIBUTION

CHECK: -

(< (/ (CAPACITANCE (NODE (INPUT STATIC-BUFFER)))

(+ (CAPACITANCE (NODE (INPUT STATIC-BUFFER)))

(INTERNAL-CAPACITANCE DOMINO-SECTION)))

(/ VTH-N VDD))

MESSAGE: -

(FORMAT NIL

"The load capacitance of the dynamic-gate (~8,3G)

is not large enought to inhibit charge sharing problems.

The internal capacitance of the dynamic-gate is ~8,3G"

(CAPACITANCE (NODE (INPUT STATIC-BUFFER)))

(INTERNAL-CAPACITANCE DOMINO-SECTION))

LOAD

LOAD-GATE

Figure A.7: Schematic of LATCH

LATCH

Patterns

LOAD-GATE

(MOSFET (SOURCE (VARIABLE T55)) (DRAIN (VARIABLE T57))

(GATE (VARIABLE T59)) (MOSFETTYPE "PENH"))

SECOND

(INVERTER (GND (VARIABLE T53)) (VDD (VARIABLE T51))

(OUTPUT (VARIABLE T57)) (INPUT (VARIABLE T60)))

FIRST

(INVERTER (GND (VARIABLE T53)) (VDD (VARIABLE T51))

(OUTPUT (VARIABLE T60)) (INPUT (VARIABLE T55)))

(LISP-EVAL (GROUND-NODE-P (VARIABLE-VALUE 'T53)))

(LISP-EVAL (SUPPLY-NODE-P (VARIABLE-VALUE 'T51)))

148

UTPUT

149

Terminals

LOAD with direction INPUT of type SIGNALtied to the node matched by variable T5 9

OUTPUT with direction OUTPUT of type SIGNAL tied to the node matched by variable

T57

INPUT with direction INPUT of type SIGNAL tied to the node matched by variable T55

GND with direction INPUT of type GROUND tied to the node matched by variable T53

VDD with direction INPUT of type SUPPLY tied to the node matched by variable T51

TNPTIT

O AD-DATA

LOAD-GATE
£

Figure A.8: Schematic of INVERTING-LATCH

INVERTING-LATCH

Patterns

LOAD-GATE

(MOSFET (DRAIN (VARIABLE T64)) (GATE (VARIABLE T66))

(SOURCE (VARIABLE T71)) (MOSFETTYPE "NENH"))

FEEDBACK

(INVERTER (GND (VARIABLE T62)) (VDD (VARIABLE T70))

(OUTPUT (VARIABLE T71)) (INPUT (VARIABLE T68)))

STORAGE

(INVERTER (GND (VARIABLE T62)) (VDD (VARIABLE T70))

(OUTPUT (VARIABLE T68)) (INPUT (VARIABLE T71)))

(LISP-EVAL (SUPPLY-NODE-P (VARIABLE-VALUE 'T70)))

(LISP-EVAL (GROUND-NODE-P (VARIABLE-VALUE 'T62)))

150

OUTPUT

JEEEDBACK

Terminals

VDD with direction INOUT of type SUPPLY tied to the node matched by variable T70

OUTPUT with direction OUTPUT of type SIGNAL tied to the node matched by variable

T68

151

LOAD-DATA with direction INPUT of type SIGNAL tied to the node matched by variable

T66

INPUT with direction INPUT of type SIGNALtied to the node matched by variable T64

GND with direction INOUT of type GROUND tied to the node matched by variable T62

Errors

WEAK-LOAD-GATE

CHECK: -

(OR (< (WOVERL LOAD-GATE) (* 6 (WOVERL (NFET FEEDBACK))))

(< (WOVERL LOAD-GATE) (* 1 (WOVERL (PFET FEEDBACK)))))

MESSAGE: -

(FORMAT NIL "The load gate is too small to

change the state of the latch. The W/L of

the load gate is ~,2F, the gate must have a

W/L of at least ~,2F to be able to change the

state."

(WOVERL LOAD-GATE)

(MAX (* 6 (WOVERL (NFET FEEDBACK)))

(* 1 (WOVERL (PFET FEEDBACK)))))

COMMENTS: - assumptions: mobility ratio is 2, VT is small compared to VDD, LOAD-

GATE is a single N-type mosfet, not a full transfer gate.

Bibliography

[1] V. D. Agarwal, S. K. Jain, and D. M. Singer. Automation in Design for Testability.

In TheProceedings ofthe IEEE Custom Integrated Circuits Conference, May 1984.

[2] Electronic Industries Association. EDIF - Electronic Design Interchange Format Ver

sion 2.0.0. Technical report, Electronic Industries Association, 1987.

[3] Sue Bergquist and Robert Sparkes. QCritic: A Rule-Based Analyzer for Bipolar

Analog Circuit Designs. In The Proceedings of the IEEECustom Integrated Circuits

Conference, pages 617-620, May 1986.

[4] W. P. Birmingham, Anurag P. Gupta, and D. P. Siewiorek. The MICON System for

Computer Design. In The Proceedings ofthe ACM/IEEEDesign AutomationConfer

ence, pages 135-140, Las Vegas, Nevada, June 1989.

[5] D. Bobrow and M. Stefik. The LOOPS Manual. Technical Report KB-VLSI-81-13,

XEROX Palo Alto Research Center, 1981.

[6] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor

Kiczales, and David A. Moon. Common Lisp Object System Specification. Technical

Report X3J13 Document 88-002R, American National Standards Institute, June 1988.

[7] I. Bolsens, W. De Rammelaere, L. Clausen, and H. DeMan. Electrical Debugging

of Synchronous MOS VLSI Circuits Exploiting Analysis of the Intended Logic Be

haviour. In The Proceedings ofthe ACM/IEEEDesign Automation Conference, pages

513-518, Las Vegas, Nevada, June 1989.

152

153

[8] Harold Brown and Mark Stefik. Palladio: An Expert Assistant for Integrated Cir

cuit Design. Technical Report HPP-82-5, Heuristic Programming Project, Stanford

University, Palo Alto, California, April 1982.

[9] Harold Brown, Christopher Tong, and Gordon Foyster. Palladio: An Exploratory

Environment for Circuit Design. Computer, 16(12):41-56, December 1983.

[10] P. Camurati, P. Gianoglio, R. Gianoglio, and P. Prinetto. ESTA: An Expert System for

DFT Rule Verification. IEEETransactions on Computer-Aided Design ofIntegrated

Circuits and Systems, CAD-7(11):1172-1180, November 1988.

[11] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag, Berlin,

1981.

[12] Mike Creech, Dan Flickinger, Pierre Huyn, Mike Lemon, Reed Letsinger, Derek

Proudian, Steven Rosenberg, and Steve Weyer. Guide to the Heuristic Programming

and Representation Language, Part 3: Environment and I/O. Technical Report AT-

MEMO-83-5, Hewlett-Packard Computer Research Center, July 1984.

[13] G. DeJong and R. Mooney. Explanation-Based Learning: An Alternative View. Ma

chine Learning, 1(2):145-226,1986.

[14] H. DeMan, I. Bolsens, E. van der Meersch, and J. van Cleynenbreugel. DIALOG: An

Expert Debugging System for MOS VLSI Design. IEEE Transactions on Computer-

Aided Design ofIntegrated Circuits and Systems, CAD-4(3):303-311, July 1985.

[15] H. DeMan, I. Bolsens, and E. van der Meersh. An Expert System for Logical and

Electrical Debugging ofMOSVLSI Networks. In The Proceedings ofthe IEEE Inter

national Conference on Computer-Aided Design, pages 203-205, Santa Clara, Cali

fornia, November 1984.

[16] J.Doyle. A Truth Maintenance System. Artificial Intelligence, 12:495-516, 1979.

[17] E. B. Eichelberger and T. W. Williams. A Logic Design Structure for LSI Testability.

In The Proceedings of the ACM/IEEE Design Automation Conference, pages 462-

468, New Orleans, Louisiana, June 1977.

154

[18] Joseph Faletti and Robert Wilenski. The Implementation of PEARL. Technical re

port, UC Berkeley Department of Electrical Engineering and Computer Sciences,

Computer Science Division, Berkeley, California, March 1982.

[19] Charles L. Forgy. OPS5 User's Manual. Technical Report CMU-CS-81-135, Depart

ment of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania,

July 1981.

[20] Charles L. Forgy. RETE: A Fast Algorithm forthe Many Pattern/Many Object Pattern

Match Problem. Artificial Intelligence, 19:17-37,1982.

[21] Charles L. Forgy. The OPS83 ReportSystem Version 2. Production Systems Tech

nologies, Pittsburgh, Pennsylvania, 1984.

[22] Jim Gettys. X Version 10 Protocol Guide. Technical report, Massachusetts Institute

ofTechnology, Cambridge, Mass., 1986.

[23] H. C. Godoy,G. B. Franklin, andP. S. Bottorff. AutomaticChecking of Logic Design

Structures for Compliance with Testability Ground Rules. In The Proceedings of the

ACM/IEEEDesignAutomation Conference, pages 469-478, New Orleans, Louisiana,

June 1977.

[24] N. Goncalves and H. DeMan. NORA: A Racefree Dynamic CMOS Technique for

Pipelined Logic Structures. IEEE Journal ofSolid-State Circuits, SC-18(3):261-266,

June 1983.

[25] Steven Greenberg and Mahmud Buazza. Logic Recognition in the SAVVY Timing

Verification System. In The Proceedings of the IEEE International Conference on

Computer-Aided Design, pages 269-271, SantaClara, California, November 1984.

[26] Gordon Hamachi, Robert Mayo, John Ousterhout, Walter Scott, and George Taylor.

1985 VLSI Tools: More Works by the Original Artists. Technical Report UCB/CSD

85/225, UC Berkeley Department of Electrical Engineering and Computer Sciences,

Computer Science Division, Berkeley, California, 1985.

155

[27] David S. Harrison. VEM: Interactive Graphics for Oct. Master's thesis, Department

of ElectricalEngineering and Computer Sciences, University of California, Berkeley,

California, 1989.

[28] David S. Harrison, Peter Moore, Rick L. Spickelmier, and A. Richard Newton. Data

Management and Graphics Editing in the Berkeley Design Environment. In The Pro

ceedings of the IEEE International Conference on Computer-Aided Design, pages

20-24, Santa Clara, California, November 1986.

[29] Frederick Hayes-Roth, Donald A. Waterman, and Douglas B. Lenat. Building Expert

Systems. Addison-Wesley, Reading, Massachusetts, 1983.

[30] Paul Heckel. The Elements ofFriendly Software Design. Warner Books, New York,

New York, 1984.

[31] W. R. Heller, W. F. Mikhail, and W. E. Donath. Prediction ofWiring Space Require

ments for LSI, pages 117-144. Computer Science Press, 1978.

[32] Mark Hirsch and Daniel Siewiorek. Automatically Extracting Structure from a Logi

cal Design. In The Proceedings of the IEEE International Conference on Computer-

Aided Design, pages 456-459, Santa Clara, California, November 1988.

[33] MarkHofmann. Automated Synthesis ofMulti-level Combinational Logic in CMOS

Technology. Technical Report UCB/ERL M85/53, UC Berkeley Electronics Research

Laboratory, Berkeley, California, July 1985.

[34] Rostam Joobbani. WEAVER: An Application of Knowledge-Based Expert Systems

to Detailed Routing of VLSI Circuits. Technical Report CMUCAD-85-56, SRC-

CMU Center for Computer-Aided Design, Camegie-Mellon University, Pittsburgh,

Pennsylvania, June 1985.

[35] V. Kelly and L. Steinberg. The CRITTER System: Analyzing Digital Circuits by

Propagation ofBehavior and Specifications. In The Proceedings ofAAAl, pages 284-

289, Pittsburgh, Pennsylvania, August 1982.

156

[36] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Soft

ware Series. Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[37] Jin H. Kim. Use of Domain Knowledge in Computer Aid for IC Cell Layout Design.

Technical Report CMUCAD-85-57, SRC-CMU Center for Computer-Aided Design,

Camegie-Mellon University, Pittsburgh, Pennsylvania, June 1985.

[38] P.W. Kollaritsch and N.H.E. Weste. A Rule-Based Symbolic Layout Expert. VLSI

Design, pages 62-66, August 1984.

[39] T.Kowalski and D.Thomas. The VLSI Design Automation Assistant: Prototype Sys

tem. In The Proceedings of the ACM/IEEE Design Automation Conference, Miami

Beach, Florida, June 1983.

[40] R. Krambeck, C. Lee, and H. Law. High-Speed Compact Circuits with CMOS. IEEE

Journal ofSolid-State Circuits, SC-17(3):614-619, June 1982.

[41] Sandip Kundu. Design of Multioutput CMOS Combinational Logic Circuits for Ro

bust Testability. IEEE TransactionsonComputer-AidedDesign ofIntegrated Circuits

and Systems, CAD-8(11):1222-1226, November 1989.

[42] Douglas Lanam, Pierre Huyn, Mike Lemon, Steven Rosenberg, and Reed Letsinger.

Guide to the Heuristic Programming and Representation Language, Part 2: Rules.

Technical Report AT-MEMO-84.1, Hewlett-Packard Computer Research Center, June

1984.

[43] Douglas Lanam, Reed Letsinger, Steven Rosenberg, Pierre Huyn, and Mike Lemon.

Guide to the Heuristic Programming and Representation Language, Part 1: Frames.

Technical Report AT-MEMO-83-3, Hewlett-Packard Computer Research Center,

June 1984.

[44] M. Lebowitz. Experiments with Incremental Concept Formation: UNIMEM. Ma

chine Learning, 2(2):103-138, 1987.

[45] Michael Lebowitz. Concept Learning in a Rich Input Domain: Generalization-Based

Memory. InRyszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors,

157

Machine Learning -AnArtificial Intelligence Approach, volume 2, chapter8. Morgan

Kaufmann, Los Altos, California, 1986.

[46] B. Lin and A. R. Newton. KAHLUA: A Hierarchical Circuit Disassembler. In The

Proceedings ofthe ACM/IEEE Design Automation Conference, pages 311-317, Mi

ami Beach, Florida, June 1987.

[47] C. Lob. RUBICC: A Rule-Based Expert System forVLSI Integrated Circuit Critique.

Technical Report UCB/ERL M84/80, UC Berkeley Electronics Research Laboratory,

Berkeley, California, September 1984.

[48] C. Lob, Rick L. Spickelmier, andA. Richard Newton. CircuitVerification Using Rule-

Based Expert Systems. In The Proceedings ofthe IEEE International Symposium on

Circuits and Systems, pages 881-884, Kyoto, Japan, June 1985.

[49] Wen-Jeng Lue and L. P. McNamee. Extracting Schematic-Like Information from

CMOS Circuit Net-Lists. In The Proceedings of the ACM/IEEE Design Automation

Conference, pages 690-693, Las Vegas, Nevada, June 1989.

[50] Jean Christophe Marie, Olivier Coudert, and Jean Paul Billon. Automating the Di

agnosis and the Rectification of Design Errors with PRIAM. In The Proceedings of

the IEEE International Conference on Computer-Aided Design, pages 30-33, Santa

Clara, California, November 1989.

[51] K. Mayaram and D.O. Pederson. Circuit Simulation in LISP. Technical Report

UCB/ERL M84/60, UC Berkeley Electronics Research Laboratory, Berkeley, Cali

fornia, August 1984.

[52] T. M. Mitchell, S. Mahadevan, and L. I. Steinberg. A Learning Apprentice for VLSI

Design. Technical Report LCSR-TR-64, Laboratory for Computer Science Research,

Rutgers University, January 1985.

[53] T. M. Mitchell, L. I. Steinberg, and J. S. Shulman. A Knowledge-Based Approach To

Design. Technical Report LCSR-TR-65, Laboratory for Computer Science Research,

Rutgers University, January 1985.

158

[54] T.M. Mitchell, R.M. Keller, and S.T. Kedar-Cabelli. Explanation-Based Generaliza

tion: A Unifying View. Machine Learning, l(l):47-80,1986.

[55] Sanjay Mittal and Clive L. Dym. Knowledge Acquisition from Multiple Experts. AI

Magazine, 6(2), Summer 1985.

[56] A. Richard Newton and Alberto Sangiovanni-Vincentelli. Relaxation-Based Electri

cal Simulation. IEEETransactions on Computer-Aided Design ofIntegrated Circuits

and Systems, CAD-3(4):308-331, October 1984.

[57] Gordon S. Novak Jr,. GLISP User's Manual. Technical report, Stanford University

Computer Science Department, Palo Alto, California, 1982.

[58] John Ousterhout. Magic: A VLSI Layout System. In The Proceedings of the

ACM/IEEEDesign Automation Conference, pages 152-159, Albuquerque, New Mex

ico, 1984.

[59] C. J. Petrie, D. M. Russinoff, and D. D. Steiner. Proteus: A Default Reasoning Per

spective. In Proceedings 5th Generation Conference, National Institutefor Software,

October 1986.

[60] Thomas L. Quarles. SPICE3 Version 3C1 Users Guide. Technical Report UCB/ERL

M89/46, UC Berkeley Electronics Research Laboratory, Berkeley, California, April

1989.

[61] M. Shoji. FET Scaling in Domino CMOS Gates. In The Proceedings of the IEEE

International Symposium on Circuits and Systems, Kyoto, Japan, June 1985.

[62] Rick Spickelmier, editor. Oct Tools Distribution 3.0. UC Berkeley Electronics Re

search Laboratory, Berkeley, California, March 1989.

[63] Rick L. Spickelmier. The Oct 2.0 Users Guide. Internal Report, UC Berkeley Elec

tronics Research Laboratory, 1989.

[64] Rick L. Spickelmier and A. Richard Newton. A General Knowledge-Based Circuit

Critic. SIGARTNewsletter, (92):78-79, April 1985.

159

[65] Rick L. Spickelmier and A. Richard Newton. A Rule-Based Connectivity Verifier.

SIGARTNewsletter, (92):79-80, April 1985.

[66] Rick L. Spickelmier and A. Richard Newton. Connectivity Verification Using a

Rule-Based Approach. In The Proceedings of the IEEE International Conference on

Computer-Aided Design, pages 190-192, Santa Clara, California, November 1985.

[67] Rick L. Spickelmier and A. Richard Newton. Critic: A Knowledge-Based Program

for Critiquing Circuit Designs. In The Proceedings of the IEEE International Con

ference on Computer Design, pages 324-327, Rye Brook, New York, 1988.

[68] Robin Steele. An Expert System Application in Semicustom VLSI Design. In The

Proceedings of the ACM/IEEE Design Automation Conference, pages 679-686, Mi

ami Beach, Florida, 1987.

[69] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, Burlington, Mas

sachusetts, 1984.

[70] Mark Stefik, Daniel G. Bobrow, Sanjay Mittal, and Lynn Conway. Knowledge Pro

gramming in LOOPS. AI Magazine, 4(3):3-13, Fall 1983.

[71] Warren Teitelman. Interlisp Reference Manual. Technical report, XEROX Palo Alto

Research Center, October 1983.

[72] Ching-Fam E. Wu, Lionel M. Ni, and Anthony S. Wojcik. Functional Recognition of

Static CMOS Circuits. In The Proceedings of the IEEEInternational Conference on

Computer-AidedDesign, pages 306-309, Santa Clara, California, November 1987.

[73] R. Zippel and C. Clark. Schema: An Architecture for Knowledge Based CAD. Tech

nical Report VLSI Memo 85-271, Massachusetts Institute ofTechnology, Department

of Electrical Engineering and Computer Science, October 1985.

[74] Richard Zippel. An Expert System forVLSI Design. In The Proceedings ofthe IEEE

International Symposium on Circuits and Systems, pages 191-193, Newport Beach,

California, May 1983.

	Copyright notice1989
	ERL-89-126 (1 of 2)
	ERL-89-126 (2 of 2)

