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ABSTRACT

This paper explores the style of programming in which the programmer directly manipulates
dataflow graphs, and arcs in the graph carry streams of tokens. Such a style of programming
is attractive for certain application domains, such as digital signal processing, and has been
studied extensively. One of its most serious problems is that subtle semantic inconsistencies
between parts of the dataflow graph can be inadvertently created. These inconsistencies can
lead to deadlock, or in the case of non-terminating programs, to unbounded memory require
ments. Consistency is defined to mean that the same number of tokens are consumed as pro
duced on any arc, in the long run. A token-flow model is developed for testing for con
sistency. The method is a generalization of consistency checks for synchronous dataflow
(SDF) graphs [Lee87a]. Although inspired by the similar tests of Benveniste, et. al. [Ben88],
the method and the languages to which it applies are different
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1. SEMANTIC INCONSISTENCIES

For certain software applications, such as digital signal processing, programming by

directly manipulating dataflow graphs is attractive. However, when arcs in a dataflow graph

are permitted to carry streams of tokens, subtle semantic inconsistencies between parts of the

graph can be inadvertently created. These inconsistencies can lead to accumulation of tokens

in memory. For non-terminating programs, which are common in signal processing, such

inconsistencies imply either unbounded memory requirements or deadlock. These problems

have been noted before by other researchers (see for example [Dav78]), and have resulted for

example in the exclusion of operators in the ID language [Arv87][Nik88] that could lead to

these problems. This paper describes a simple systematic method that can identify these

inconsistencies, and does not have the restrictions of "clean" dataflow graphs [Dav78] or

"well-behaved" dataflow graphs [Arv86]. The method would form a critical part of a compiler

for languages that involve direct manipulation of dataflow graphs.

Some examples of such inconsistencies are shown in figure 1. The actors used here are

ordinary functions plus SWITCH and SELECT, which route tokens conditional on a Boolean

Cl
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Figure 1. Some problematic configurations of dataflow actors.
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input, as explained in figure 2. These are minor variations of the original Dennis actors

[Den75], and are the same as the DISTRIBUTOR and SELECTOR in [Dav82]. The graph

in figure la is structurally similar to a conditional. Without the NOT actor, this graph would

implement the functional expression:

y =if(c)then/(x)elseg(;c). (1)

The NOT actor, a Boolean negation, creates a problem. To understand precisely the

difficulty, observe that the firing rule for the SELECT is that it must have a Boolean token on

its control input and a token on the data input corresponding to the value of the Boolean. The

first time a control token arrives, the SELECT cannot fire, because it does not have a token on

true
S SWITCH "N

\

< SWITCH ^
FALSEg / SWITCH "\

1\

S SWITCH A

\
ENABLED FIRED ENABLED FIRED

UPSAMPLE UPSAMPLE

ENABLED FIRED

Figure 2. The behavior of SWITCH, SELECT, and UPSAMPLE actors for different input
conditions is illustrated here. The UPSAMPLE actorcan be parameterized to produce any
number of tokens given an input token.
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the proper data input Some iterations later it may be able to fire. However, notice that unless

the Boolean input stream consists of the same number of "true" and "false" tokens, then

memory requirements for token storage will grow. If the program does not terminate,

memory requirements could grow indefinitely.

Implicit in our language model is the FIFO behavior of arcs connecting actors, with no

particular size limit This can be implemented using tagged tokens [Arv82] or in some cases

static buffering [Lee87b]. However, the language model can also subsume implementations

with finite-size buffers by using feedback paths with delays. For example, the MIT static

dataflow model [Den80] prohibits more than one token on an arc at one time. The feedback

path in figure 3 models this. A delay, indicated with a diamond, can be viewed simply as an

initial token on the arc. In this case, a token on the feedback path represents an empty loca

tion in the buffer on the feedforward path. The total number of delays in the loop (one) is

equal to the size of the buffer. The numbers adjacent to the inputs and outputs of actors indi

cate that actor B requires one token on the feedback path (i.e. an empty location in the buffer)

to fire. When actor C fires, it consumes one token from the forward path, freeing a buffer

location, and indicating the free buffer location by putting one token on the feedback path.

In figure lb, an input token x is added to itself if the Boolean input c is true, but if it is

false, then the addition actor cannot fire, and no output token is produced. This may appear

acceptable until we make the following observation. Dataflow semantics require that an arriv-

-0-
1

>

B J>

1 1
c

1

•

Figure 3. Finite token capacity on arcs can be modeled with feedback paths and delays.
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ing token x be copied to provide an input for the switch actor and a separate input for the

adder1. When the c token has value false, the x token remains on the arc into the adder,

unconsumed. If this system is fired again, and the arriving c token is true, then the arriving x

token will be added to the previousx token, rather than to itself. If the inputs are semi-infinite

streams, then memory requirements are unbounded because every false adds one more token

to the queue at the adder input

In figure lc, an UPSAMPLE actor produces two tokens for each one consumed, as

shown in figure 2. This is indicated in figure lc by the numbers adjacent to the input and out

put arcs. Such an actor can be used to implement iteration [Lee89a], and is consistent with the

synchronous dataflow (SDF) model of computation [Lee87]. SDF means that for each input

and output of each actor, the number of tokens produced and consumed when the actor fires is

fixed and known at compile time. In figure lc, if the inputs are semi-infinite streams, then the

memory requirements on the arc connecting the UPSAMPLE to the adder are unbounded.

In figure Id is an attempted implementationof a guarded count. Given an input x = 4,

for example, a guarded counted produces a sequenceof output tokensy = 4,3,2,1,0. Such a

system could be used to implement data-dependent iteration, as we will see shortly. The ini

tial token indicated by the delay has value F, for a Boolean false. On the arrival of a non-

negative integer x, the SELECT actor can fire, putting the integer x on its output Ifx = 0,

then the output of the test function is false, and the subsystem waits for the arrival of another

x. If x > 0, then it is decremented, selected, and tested again. However, there is a semantic

inconsistency here that shows up the second time a token x arrives. Suppose the second x has

value x = 2. It will be selected and tested, but the next firing of the select actor will consume

the -1 token left over from the previous iteration. The output sequence will be

1Note that an efficient implementation may not need to actually perform the copy, but
logically, the system must behave as if a copy occurred.
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y = 2,-1,1,-2,0. On the next firing, there will be a -1 and -3 left over on the T input to the

select With repeated firings, the output will get bizarre indeed, and memory requirements

will again become unbounded.

This paper gives a systematic method for finding these types of inconsistencies. The

method is inspired by the algebraic techniques of Benveniste, et at [Ben88], which can

accomplish some of the same objectives for a different class of languages. Fortunately, our

method is simpler than that in [Ben88]. A comparison of the two methods and language

classes will be made later in this paper.

2. EXAMPLES OF INTERESTING PROGRAMS

From the examples in figure 1, the alert reader might conclude that SWITCH,

SELECT, and UPSAMPLE actors are the culprits, and should therefore be excluded from

any practical language. Indeed, if these could be used only to realize constructs equivalent to

those found in standard functional languages, such as if-then-else, then there would be little

motivation for using them. Such higher level constructs are more familiar because of their

similarity with imperative languages. More importantly, they cannot lead to the kinds of

semantic inconsistencies described above. However, these actors can lead to some elegant

programs with important advantages.

Consider the program in figure4. The numbers adjacent to the inputs and outputs of the

actors again indicate how many tokens are produced and consumed each time the actor fires.

Consequently, the C actor fires 10 times for each firing of the B actor, which in turn fires 10

A B c D E
10 1 10 1 1 10 1 10

Figure 4. A nested manifest iteration expressed using the SDF model.
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times for each firing of the A actor. Since there is nothingin this model to prevent simultane

ous firing of the actors being iterated, this schema solves the first open problem listed by

Dennis in [Den75], providing the semantics of a "parallel-for" in a dataflow language. Depen

dencies acrosscycles of the iterationcan be described using delays and feedback paths, as can

history sensitivity, state, and recurrences. These dependencies may restrict concurrency, but

these restrictions are immediately evident without need for subscript analysis. Furthermore,

when the iteration is manifest, the numbers of tokens produced and consumed are fixed, as

implied in figure 4. Iteration is manifest when the number of cycles to be computed is known

at compile time. In this case, the graph is SDF. SDF graphshave two important advantages;

first, they can be scheduled at compile time without any loss of concurrency, and second, a

consistency check is already known [Lee87a].

The motivation for introducing SWITCH and SELECT into a languagecan be given by

example. Consider the example shown in figure 5. It is a corrected guarded count function

that takes an input token n, assumed to be a positive integer, and counts down from that

integer to zero. Each new input token restarts the count, and is only consumed after the previ

ous count has been completed, as illustrated in table 1. The actor labeled "-l" simply

w ^ t

I SELECT J*~

<2>
* *07 -

r SWITCH \

count x~? ^counting?

Figure 5. A guarded count. This function takes a non-negative integer input and counts
down from that integer to zero.
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n 1 3 2 0 1
count 103210210010

counting? TFTTTFTTFFTF

Table 1. An example of an input stream n and the output streams count and counting?
are shown here. The tokens are aligned to show when output tokens are produced relative
to the input tokens consumed.

decrements the value of its input token by one. The actor labeled "* 0?" tests the value of the

input token and outputs a Boolean. The diamond shape represents a delay, which is simply an

initial token on the arc, as explained earlier. The label "F" indicates that the value of the ini

tial token is a Boolean false. With these actors understood, it should be easy to see by inspec

tion exactly how this function works.

There is nothing difficult about constructing a counting function in any functional

language. However, our function returns a token stream "count" and a boolean stream "count

ing? ", as shown in table 1. Viewed as a macro dataflow actor, the guarded count consumes

one input token when it fires, and produces a number ofoutput tokens that depends on the data

carriedby the input token. In other words, it takes an input stream of any length and outputs a

stream of finite streams. Viewed as a function, the number of values returned depends on the

value of its argument This functionality would be difficult in most functional languages, and

yet it proves quite useful.

The guarded count is used in figure 6a to build a function, called "last of TV", that takes

an integer input N, consumes N input tokens from the x stream, and outputs only the last of

the N tokens consumed, discarding the rest. This is therefore a function where the number of

arguments taken depends on the value of the first argument.

The "last of N" macro dataflow actor is used in figure 6b to construct an iterative pro

gram to compute Fibonnacci numbers (a recursive version will be discussed later). A Fibon-

nacci number is the sum of the two previous Fibonnacci numbers. The two delays (initialized
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fibonnacci (M)
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fibonnacci (M)

(c)

Figure 6. a. The "last of Nm system consumes N tokens from its x input path and outputs
only the last token, b. An iterative Fibonnacci number function that can only be run once
without re-initializing the delays, c. A Fibonnacci number function that can be run
indefinitely.

to one) remember the two previous Fibonnacci numbers. The "last of N" actor selects the

desired Fibonnacci number from the stream of numbers supplied at its x input The style of

iteration here is similar to that in figure 4, but the iteration is not manifest.

Unfortunately, the function in figure 6b can only be run once because once the initial

tokens in the delays are consumed, there is no mechanism for resetting them to one after the

Fibonnacci number has been produced. One possible modification that will work for a stream

of inputs is shown in figure 6c. In that graph, the boxes labeled "1" put out a token with unity

value whenever they fire. The MUX (for multiplexer) actors consume a token at each input,

discard one, and copy one to the output. With the two delays in the feedback path initialized

to unity, the Boolean delay can be initialized to true or false. It is shown initialized to false.

It will be re-initialized to false after each computation of a Fibonnacci number because the
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counting? Boolean has value false when the guarded count has finished counting2.

It would hard to claim that this Fibonnacci implementation is conventional The control

is truly data-driven, via the production and consumption of multiple tokens. A more dramatic

example, one that is more difficult to build using established functional languages, is the

ordered merge shown in figure 7. First, a macro actor called sort is explained in figure 7a.

This actor accepts two numerical inputs and outputs the maximum on one path and the

minimum on the other. It also outputs a Boolean indicating whether or not the ordering of the

two inputs was swapped on the outputs. Note that this macro actor is built entirely of homo

geneous SDF actors [Lee87a], and is a homogeneous SDF macro actor itself. Homogeneous

SDF means that exactly one token is consumed and produced on each input and output when

x y

s\

t '

_J r I

t '

x <y?

r

i

vappt

J 2 f

T F

MUX

T F

MUX

i rnuui ^ rfllin

(a)

<i

( T * \
V SELECT f

(b)

Figure 7. a. This sort macro dataflow actor takes two input tokens when it fires, and outputs
the larger one on the max output and the smaller one on the min output. It is built entirely of
homogeneous SDF actors, b. The sort actor is used to build an "ordered merge" system,
which takes two monotonically increasing token streams and combines them into one mono-
tonically increasing stream.

2 There is a significant disadvantage to the program shown in figure 6c. Without a de
tailed analysis of the program semantics, it appears that there are data dependencies between
successive Fibonnacci computations, while actually this is not true. One solution to this prob
lem is a "resetting delay", introduced in [Lee89a]. These are delays that revert to their initial
value each time a subgraph fires, where the name of the subgraph is a property of the delay.
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the actor fires. The same MUX actor as in figure 6c is used.

The ordered merge program, shown in figure 7b, uses the sort macro actor to merge two

monotonically increasing numerical streams into one monotonically increasing stream. The

XOR actor is an exclusiveor. The delayon the right is used to rememberwhich input stream

supplied the last token consumed. Whenever the Boolean swapped? is true, the next token

consumed comes from the opposite stream. The delay on the left remembers the token that

was not output the last time. In other words, the SELECT takes inputs from t2 until it gets a

token with value exceeding the stored token. Then it stores the t2 token and takes inputs from

the f i stream until it again gets a token exceeding the stored token. It continues alternating.

The resulting output is the merged stream. Notice that the program is built of very few opera

tions.

Notice that the first output of the ordered merge is - <». This output can be easily dis

carded if it is problematic to the downstream system. However, it may be useful. Note that if

we design the sort actor so that

max(+oo, + oo) = -<» and min(+°°, + °o)=+°°. (2)

then the mergefunction can take streams of finite streams with ± «> marking the beginning and

end ofeach stream3.

Although all of these examples can be implemented using more conventional tech

niques, there are some advantages to the representations given here in conciseness and imple

mentation issues. Of course there are aesthetic issues that cannot be resolved by logical

discourse, and the reader may rightfully reject this programming style on aesthetic grounds.

Even so, it would be difficult to argue that this programming style is not interesting,primarily

because of its purely data-driven control The major difficulty with using it is the possibility

3 This solution was suggested by David Culler. As before, another way to do this may
be with resetting delays, although there are still open problems with such a method [Lee89a].
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of introducing sometimes subtle semantic inconsistencies such as those in figure 1.

3. VERIFYING CONSISTENCY

In [Lee87a] it is shown that consistency can be easily checked SDF graphs. The test is

generalized here to arbitrary dataflow graphs, thus identifying all the other inconsistencies in

figure 1.

3.1. The Token-Flow Model

Consider the actors in figure 8. These are SDF actors plus control actors fashioned after

those of Dennis [Den75]. The first one consumes N and M tokens on each input when it fires

and produces L tokens on the output If these numbers are positive integer constants, the

actor is an SDF actor. The SWITCH actor in figure 8b, by contrast, is not an SDF actor. The

^\g

(a)

1
> t

TRUE

GATE
1

Pc

^ t

(d)

(b)

(l-Pc)

1
f

FALSE

GATE
1

'

(1-

r

(e)

0-Pc)

(c)

Figure 8. Some dataflow actors are shown together with the expected number of tokens
produced or consumed as a function of the probabilities of "true" for each Boolean.
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numbers of tokens produced on the two outputs are not constant (they depend on the Boolean

input). In figure lb, the outputs are labeled with the long-term average number of tokens pro

duced as a function of the proportion pc of Boolean input tokens c that are true. The

SELECT actor is the complement, in that it consumes a token from one of two input streams

depending on a Boolean input The average number of tokens consumed and produced is

similarly shown. The TRUE GATE outputs the token from its top input if the Boolean input

is "true". The TRUE GATE and FALSE GATE are merely shorthand for the SWITCH

when one of the two outputs is discarded.

The proportions used in figure 8 can be interpreted as probabilities in the Bayesean

sense, in that they model uncertainty about the value of the Boolean token. In other words, a

program may be completely deterministic, but we can nonetheless use probabilities to model

what the compiler cannot easily discern about the Boolean stream. The appropriate stochastic

interpretation is as follows: if a Boolean stream c has proportion/?c of true tokens, then a ran

domly selected token from the stream has probability pc ofbeing true. This seemingly pedan

tic statement is necessary to avoid implying unjustifiable assumptions about independence of

tokens in a stream.

A Boolean stream may be an input to the system, but more likely it is generated by test

ing non-Boolean data values. The actor performing the test is most likely an SDF actor, but

without analyzing its semantics and those of the program that generate its input, the compiler

cannot know the probability of "true" for the output of the test. Hence, each such output is

given a unique name and the compiler assumes that the value of the output has some unknown

probability p^me of being true. As we will see shortly, we need not be concerned with the

value ofPnamt, since all manipulations can be done symbolically.

Some examples of Boolean operators are shown in figure 9. These actors take Boolean

inputs and produce Boolean outputs. The probabilities of the outputs being "true" can be
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Cl c2

OR

C3

pc,= l-Pr[Cl = F,c2 = F]

FALSE

GATE

a-Pc)

C* c3

pCl =Pr[cl = r,c2 =F] + Pr[c1=F,c2 =ri pe,=Pr[c2 =T I cx=r]
C3

pc,= Pr[c2 = r I Cj= F]

Pcx fl-PJ
L_/ T F \

~*\^ SELECT y

C3 C4 C*
pc,=Pr[c2 =T I Cl =T] pC4 =Pr[c2 =r I Cl =F] pC4 =Pr[c2 =T I c1=r] + Pr[c3 =r I Cl =T]

Figure 9. Boolean actors produce new Booleans as a function of input Booleans. The
true-probabilities of the outputs are related to the joint and conditional probabilities of the in
puts, as shown here.

expressed in terms of joint probabilities of the inputs being true, as shown in figure 9. In the

figure, the notation Pr[ci = 7\ C2 = F] is the joint probability that c\ is true and c2 is false.
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These expressions can be used sometimes to determine consistency when Boolean streams are

not independent

3.2. Consistency and Strong Consistency

We will call a dataflow graph consistent if on each arc, in the long run, the same number

of tokens are consumed as produced. We will call it strongly consistent if it is consistent for

all possible pc for each Boolean stream c in the graph.

First, a requirement for consistency or strong consistency is that the graph have the

potential to be non-terminating. In other words, it must be free of deadlocks. Deadlocks

would occur, for example, when the graph has insufficient delays on a cycle. In [Lee87a], a

systematic method for checking for deadlocks is given for SDF graphs. To the author's

knowledge, a systematic checking algorithm for more general dataflow graphs is still an open

problem. For the purposes of this paper, we will simply assume all graphs are free of

deadlocks.

Some perfectly correct, albeit bizarre programs, are consistent, but not strongly con

sistent. For example, the graph in figure lb is consistent if c is known to be always true. To

show this, we can perform a simple analysis using figure 8. This analysis alludes to a more

systematic method that will be developed below.

Since both actors in figure lb consume exactly one token from the x input stream, both

actors should fire the same number of times, in the long run. However, the SWITCH only

produces an expected pc tokens on its T output, implying that the add actor should fire pc

times as often as the SWITCH. These two statements can be reconciled if and only ifpc = 1.

So we see that the graph in figure lb is consistent, subject to pc = 1, but not strongly con

sistent
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The remaining examples in figure 1 can be dispatched similarly. The example in figure

la has more actors than the one in figure lb, so we should be more systematic about its

analysis. Define qsw to be the proportion of total firings that are firings of the SWITCH actor.

Similarly, qsE is the proportion of SELECT firings, q^ of NOTfirings, q/ off (•) firings, and

qg of g (•) firings. Sincetheseare all the actors underconsideration,

qsw +qsE+<iN+<if +qg = i • (3)

The path of c \ and c2 tokens requires that

qsw=qN =4se • (4)

Assuming/ (•) and g(-) each consume and produce one token when they fire, then from figure

8 we have

Pc^sw-q/

0>-Pa)<Isw=q8

PdaSE-af

Q-pc)qsE=q8 •

Combining (4) and (5) we conclude that consistency requires that

PCl=Pc2 = 0.5. (6)

Hence this graph is consistent subject to (6), and therefore not strongly consistent

Applying the same method to figure lc, consistency requires that

2qV""+ (7)
qu = q+ •

Since we also require that

<7t/+<7+=l. (8)

this graph is not consistent

This method can be made still more systematic, and indeed can be automated. Consider

an aaor A connected to actor B. Let yA denote the average number of tokens produced on the

arc for each firing of A. This can be a function of the Boolean proportions in the system.
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Similarly, let Jb be the average number of tokens consumed for each firing of B. If A fires

proportionally qA times, and B fires proportionally qB times, then consistency requires that

IaRa =1bRb • (9)

Collecting one such equation for each arc in the graph, we get a system of equations that can

written compactly using matrix notation,

Tq =0. (10)

The vector q specifies the proportion of times each actor fires, and should therefore be normal

ized,

lTq =l, (11)
where 1T is a column vector full of l's. The matrix T has one row for each arc in the graph

and one column for each actor. Each row has two entries, the average number of tokens pro

duced, and the negative of the average number of tokens consumed. Composed with this sys

tem may be a set of relationships between the Boolean probabilities in the system, when such

relationships are known. Examples of such relationships are shown in figure 9. Consistency

requires that there be a solution to (10) and (11) for some set of Boolean proportions con

sistent with the constraints. Strong consistency requires that there be a solution to (10) and

(11) for any set of Boolean proportions consistent with the constraints.

We first illustrate the systematic method by proving that the attempted guarded count of

figure Id is not consistent. The graph has been reduced to its essentials in figure 10a, where

the three actors have been numbered, as have the arcs connecting them. To simplify things

slightly, the select is shown duplicating its output, to avoid adding a "fork" actor to the

analysis.

Notice that the delay in figure Id has been omitted in figure 10a. Recall that a delay is

an initial token on an arc, with value "false" in this case. The delay is not an actor. In steady

state, the proportion pc of true's at the output of the delay is the same as the proportion at the
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<CTE>

(a) (b)

Figure 10. a. The essentials of the example in figure 1d with actors and arcs numbered for
systematic analysis, b. A similar representations of the guarded count in figure 5.

input, so the delay can be omitted in the analysis.

The topology matrix for figure 10a is

r=

"1 -10"

-Pc 1 0

1 0 -1

-1 0 1

From this we can see that (10) and (11) have a solution if and only ifpc = 1.

To make the conclusion even more obvious, notice that (10) implies that the rank of r is

smaller than s, the number of actors in the graph (equal to the number of columns of the

matrix). It is easy to see that (12) has rank 3, equal to s, unless pc = 1. In that case, the rank

is 2, or s -1. It can be shown that for any connected graph, the rank must be at least s -1

(see [Lee87a]), so we conclude that consistency requires that

rank[T] = s -1. (13)

The systematic method can also be illustratedby proving that the guarded count in figure

5 is strongly consistent The outline of the guarded count is shown in figure 10b with each

actor and each pertinent arc numbered. There are six arcs and four actors. With this number-

17

(12)
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r=

-Pc i o o

10 0-1

-10 0 1

0 0-11

10-10

0 1 pc 0

18

(14)

In this matrix, pc is the proportion of tokens in the "counting?" Boolean signal that are true.

This matrix has rank 3, or s -1. By inspection,

q =
3+pe

1

Pc

1

1

(15)

satisfies (10) and (11). This is true for any pc, so the graph is internally strongly consistent

The qualifier "internally" is used because we are ignoring the rest of the system, to

which the guarded count is connected. To consider the behavior of the guarded count in a

larger system we can consolidate its properties into macro "guarded count" aaor, as shown in

figure 11. This approach is consistent with using hierarchyto control complexity. The labels

1-Pc
in figure 11a indicate that for every tokens consumed, there will be 1/(3 +pc) "count"

d-pc)

(3+/>c)

3+Pc

GUARDED

COUNT

3+Pc

3+Pc

count counting?

(a)

1/d-Pc)

1

GUARDED

COUNT

1/(1 -Pc)

count counting?

(b)

Figure 11. The summarized token-flow model for the guarded count, shown with two equal
ly valid sets of "average number tokens consumed and produced".
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and "counting? " tokens produced. These expressions are obtained by multiplying the entry

qx in (15) by the average numberof input (output) tokens consumed (produced) by each actor

x connectedto the outside. Notice, however, that the analysis of a system using the guarded

count (or any other actor) is not affectedby multiplying the average numbers of tokens pro

duced and consumed by any constant In other words, the token-flow model for any actoris

not unique. Equivalently, any row ofT canbe scaled without affecting its rank. Multiplying

the expressions in figure 1la by
3+Pc

1-Pc
-, we get the more intuitive expressions in figure 1lb.

The same technique can be applied to the examples in figure 6 and figure 7, getting the

consolidated results shown in figure 12.

4. DISCUSSION AND EXAMPLES

The interpretation of the solutionq to (10) and(11) as a vector of proportions of firings

of each actor is useful for developing intuition. Consider figure 13a. The top arc implies

aA-qBy meaning that actors A and B should fire the same number of times. Furthermore, it

is immediatelyevident that the program in figure 13a is consistent if and only ifps =0.5. By

contrast, the program in figure 13b is strongly consistent

N x

1 , 1/(1 "Pc)
LAST

OPN

1 1/d -Pc)

y counting?

1

FIBONNACCI

1 1

x y

SORT

nrax irtn

swapped?

Figure 12. Consolidations of the systems shown in figure 6 and figure 7.

IPs (X-Ps)

ORDERED

MERGE

1
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IPs 1(1-P^)

MERGE

1

1

&

MERGE

1

,<1-A)

20

(a) (b)

Figure 13. a. A graph that is consistent forps = 0.5. b. Agraph that is stronglyconsistent.

A particularly interesting example is shown in figure 14. Only figure 14c is strongly

consistent Applied to figure 14a,ourmethod reveals that it is consistent if andonly if

Pci =PaPci . (16)

which occurs only if pCa= 1 orpCl=0. It is easy to verify by inspection that these two situa-

1| 1
— A

C \C2 1

r

, TRUE
GATE

TRUE , i TRUE
<?ATE -^TE

/ S
V J

(a)

lr
k

C lC2

i

1

t

y ' ' r

\
TRUE
GATE

AND

'' f

TRUE
GATE

„ TRUE
GATE

/ ^

(b)

TRUE
GATE

AND

c\ c2

TRUE

GATE

C4

(c)

Figure 14. Theprograms in (a)and (b) areconsistent only for pCx - 1. The program in (c) is
strongly consistent.

TRUE
GATE

TRUE
GATE

+
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tions lead to consistent graphs, but also to semantics that are probably not intended. The pro

gram in figure 14b is an attemptto correctthe problem. However, it also fails the strongcon

sistency test because the AND actor synchronizes the c\ and c2 token streams, constraining

the rates of tokens to be the same. Applying our systematic method to the program in figure

14c we get consistency if and only if

Pc,=Pc2Pc<- (17)

From the relationships in figure 9,

pc,=Pr[ci = r,c2=r] and pC4 = Pr[ci = 7* I c2 = T]. (18)

Hence condition (17) is equivalent to

Pr[c1 = T,c2 = r]=pC2Pr[c1 = r I c2 = T], (19)

which is always true by the multiplication rule in probability! Consequently, this graph is

strongly consistent

Consistency can also be checked when recursion is used. Recursion in dataflow graph

languages is represented using self-referential hierarchy. In figure 15, for example, the path of

the c Boolean indicates that qsw =qsE* so x =y, where x and y are the number of tokens

consumed and produced by the FIBONNACCI function. Since any x =y will yield the same

consistency result, we can set x =y = 1. Showing that figure 15 is consistent then becomes

trivial

5. DATAFLOW GRAPH LANGUAGES

Languages used to program dataflow machines, such as Val [Mcg82] and ID

[Nik88][Arv87]. do not currently have the same sort of semantics of the programs given

above, although an early version of ID had some of the features. To distinguish our style of

programming, we refer to a dataflow graphlanguage as one with the semantics of a dataflow

graph. Distinguishing features of a dataflow graph language are the use of streams as the

essential data structure, the. ability of actors to consume or produce multiple tokens, and a
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Figure 15. A recursive dataflow graph for computing Fibonnacci numbers. It can be
analyzed using the token-flow model.

strict locality of semantics. The latter means that every operatorin the language is a dataflow

actor, and not a higher level construct (such as if-then-else) with semantics that can extend

over a large part of a dataflow graph. Subsets of the class of dataflow graph languages have

been explored before; a key reference that includes many pointers to the earlier literature is

[Dav82].

It is not fundamentally important whether the syntax of the language is graphical or tex

tual; all of the above examples could be given in a textual syntax without altering the seman

tics. However, although graphical programming is a controversial topic, the techniques

described in this paper may help make it truly attractive for some applications. I ask the

reader to keep an open mind, even if he or she comes with a predisposition against it In this
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paper we represent all program constructs graphically, hoping that the reader will decide that

this enhances the clarity considerably, compared with an equivalent textual description. 4

Hierarchy is used liberally to control complexity.

Conventional wisdom has it that the principal motivation for working with dataflow

graphs is to exploit parallelism. While this is an important motivation, it provides no incen

tive for languages that directly manipulate dataflow graphs. Indeed, standard practice is to

design functional, applicative, or single-assignment languages which are translated into

dataflow graphs by a compiler. The programmer does not interact directly with the dataflow

graph.

In general-purpose computation, there are good reasons for avoiding dataflow graph

languages. One reason is that semantic inconsistencies such as those in figure 1 can be

prevented by the syntactic constraints of the language. For example, the program in figure la

cannot be expressed conveniently using the functional if-then-else of (1). Although SWITCH

and SELECT areused implicitly in (1), the controlinputs of the two actors areconstrained by

the syntax of the language to be identical. Such syntactic constraints also ensure that iteration

is accomplished without inconsistencies.

Constructs such as if-then-else and do-while can be viewed as "graph constructors",

since they are translated into dataflow graphs by a compiler. In some modern work with func

tional languages, an if-then-else is alternatively a function with arity three, the first argument

of which is a Boolean, and the second two of which are functions. The value returned is a

function, which can then applied to the data. The operation (1) could therefore be written:

4 Arvind, of MIT, has suggested an interesting experiment. Design a programming
language and environment that simultaneously maintains a graphical and textual description
of a program, and permit the programmerto modify either one. Such an experiment would re
veal a great deal about programmer preferences, probably indicating that for some types of
programs, the programmer will prefer to work with the graphics, and for others with the text.
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y = if-then-else(c,/(), *(•)) (x). (20)

The if-then-else function is first applied to a subset of its arguments, and the function returned

is applied to x. The general form of such functions are said to be curried [Arv88]. Curried

functions can be part of a dataflow graph language. The construct (20) is more directly a

dataflow graph description than (1), but dataflow tokens must now be able to carry functions.

One way to view this innovation, therefore, is as a mechanism for getting closer to a dataflow

graph description without the hazards of semantic inconsistencies. The if-then-else function

in (20) is a homogeneous SDF actor, meaning that it requires exactly one token on each input

to fire, and it produces exactly one token on each output (the output of the if-then-else is a

function). Homogeneous SDF actors are the best behaved of all, since they cannot lead to

semantic inconsistencies of the type discussed in this paper. (This can be easily proven using

the mathematics developed above.)

A second reason to avoid programming with dataflow graphs is that they areunfamiliar

to programmers. Functional languages can be made reasonably familiar using if-then-else,

do-while, and similar constructs found in imperative languages. Although the semantics of

these constructs are slightly different in functional languages, their basic operationis similar,

so a programmer can more easily leam to use them.

Keeping these valid objections in mind, there are nonetheless compelling reasons for

dataflow graph languages. First, in certain application domains, particularly signal process

ing, the most natural data structure is the stream. Operators on streams are best viewed as

dataflow actors. For this reason, throughout the 30 year history of digital signal processing,

countless "block-diagram languages" have been developed by the signal processing commun

ity. For an example and a partial list of other examples, see [Lee89b]. Block-diagram

languages are essentially large-grain dataflow languages [Bab84], often with graphical syntax,

and they form much of the motivation for this paper. The author intends to apply the tech-
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nique described here to the programmingenvironment described in [Lee89b].

In the past, streams have been introduced to functional languages; for example, Weng

defined operators first, rest, cons, and empty (a predicate) for building functions that operate

on streams [Wen75]. The functionary yields the first value in a stream,while rest yields the

rest The cons operator takes as arguments an elementary value and a stream and returns a

stream with the elementary value prepended. This is identical to our delay. These functions

would be familiar to Lisp programmers, but foreign to the signal processing community, for

example. They do not reflect the notionof "flow" of values which is so natural when thinking

of streams.

A second motivation is providedby the examples given above, particularly the ordered

merge. An equivalent function in an established functional language would be far more com

plicated. Of course, it couldbe added as a primitive, like the if-then-else, but otherexamples

would arise.

It has been observed that non-determinate actors should be added to dataflow languages

in order for programs to interact with multiple external events, for example transaction pro

cessing, interprocess communication, or interaction with external hardware [Kos78]. A non-

determinate merge has been proposed by Arvind and Brock [Arv84], and resource managers

have been built using it The non-determinate merge is an "unordered" merge where token

streams can be merged in unpredictable ways, depending on the time of arrivalof tokens. The

token-flowmodel canbe used to verify consistency of programs using such a merge, precisely

because the token-flow model does not require knowledge of the expected number of tokens

consumed. The token-flow model for the unordered merge is the same as that for the ordered

merge shown in figure 12. But for some applications, the ordered merge can be used as effec

tively as an unordered merge. Often, transaction processing should not be strictly speaking

non-determinate, but rather should use information not normally available in a dataflow
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program: the absolute time of occurrence of an event An airline reservation system, for

example, should probably grant a seat to the first request (in real time) for it, and not to some

random request Such fairness can be ensured by adding a time stamp to each request and

using the (determinate) ordered merge to sort the requests. The resulting program is deter

minate. The main drawback with this approach is that the ordered merge may introduce time

delay. For applications where this time delay is objectionable, further enhancements are

required, and a non-determinate approachmay be preferred. In either case, a dataflow graph

language is preferable to a functional language, and the token-flow model can be used to ver

ify consistency.

The third justification for dataflow graph languages is an aesthetic one. Some programs

can be be expressed very elegantly in such languages, and the exercise of rethinking algo

rithms to express them in such languagescan be both enjoyable and enlightening. One exam

ple of such an elegant program is the orderedmerge of the previous section.

A fourth justification currently applies only to SDF graphs, and consequently is only

valid for applications, such as signal processing, where programs are reasonably static. SDF

graph languages can be more effectively analyzed for concurrency at compile time than esta

blished functional languages. An example already discussed is shown in figure 4. Most esta

blished functional languages use a loop counter to implement all iteration, manifest or not,

and a compiler that wishes to detect concurrency must analyze the semantics of the operations

on the loop counter; this is not an easy task. To detect inter-cycle dependencies, in some

languages it must do subscript analysis, which is also not easy.

To summarize, The graph constructor or curried function points of view have been used

to match dataflow semantics with practical languages. In either case, one objective is to

impose syntactic constraints that prevent the semantic inconsistencies that could arise from

arbitrarily connecting dataflow actors. However, through the use of the token-flow model, a
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compiler can impose looser constraints by checking for consistency, leaving the programmer

free to build perfectly correct programs such as the ordered merge. Another objective is to

maintain familiarity in the languages. However, for some applications such as signal process

ing, dataflow graph languages are more natural. Moreover, dataflow graph languages can

express certain programs, such as the ordered merge in figure 7, very elegantly. Finally,

although it is easier to exploit concurrency in functional languages than in imperative

languages, it is easier still in some dataflow graph languages. In particular, the available con

currency can be more easily recognized at compile time.

6. COMPARISON WITH HDS THEORY

The method given in this paper was inspired by the algebraic techniques of Benveniste,

et al. [Ben88]. These methods have been applied to a language called SIGNAL which is not

a dataflow graph language (the differences will be described shortly). The SIGNAL language

is used to describe Hybrid Dynamical Systems (HDS), and the algebraic method is called

model CL Model Cl inspired the token-flow model because it systematically identifies incon

sistencies similar to those found in dataflow graph languages.

Model CX works as follows. A signal consists of a sequence of slots. Each slot is

assigned an indicator -1,0, or +1, where -1 refers to a Boolean false, 0 refers to the absence of

a value (bottom), and +1 refers to a Boolean true. Any number of zeros can appear between

two non-zeros without changing the meaning of a signal. Given this model, the input/output

relationships of operators can be described algebraically, where the algebra is performed in a

finite field (or Galois field) with three elements, -1,0, and +1. This simply means that modulo

arithmetic is used. In this algebra, for example, the following statements are true:

X+x=-x

x3=x (21)

x4=x2
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Non-Boolean values are simply assigned an indeterminate ±1. Hence, a slot from the non-

Boolean signal x either has a value (in which case x2= 1), or does not (x2=0). In other

words, only the signal clock is represented fornon-Booleans.

Given this framework, functions similar to the dataflow actors we have been using can

be described as shown in figure 16. The relationships between the input and output signals

within the algebra are shown. To understand these, consider the SELECT function, which

has three relationships describing its behavior. Considering the first relationship, notice that if

c =0 (the control signal is absent) then x =0 (the output is absent). If c =- 1 (the control

signal is false) then x = z. If c = 1 (the control signal is true) then x =y, using (21). This is

precisely the behavior we expect from the SELECT function. However, the description is

Y
x2=y2=z2

NOT

c

c' = -c

S SWITCH ^v

y --c{c + l)x
z =c(l-c)x

c2 = x2

^1 <12

AND

L_/ T F N
*V SELECT J

jc = c(z(l-c)-y(l + c))
. -(c + l)c=y2

-(C-1)C=22

Ci c2

OR

Ci c3

c^clc2(cl + l)(c2+1) c3= -c1c2(c1 - l)(c2- 1)

Figure 16. The model Cl input/output relationships of certain functions in a hybrid dynami
cal system are shown here. All relationships are expressed in a Galois field with three ele
ments, -1,0, and+1.
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still not complete. Suppose c = 1 and y =0. The dataflow version of the SELECT does not

fire if y is absent and c is true. To get similar behavior in the HDS function, we impose two

more constraints on the input/output behavior of the SELECT. The second relationship

shown in figure 16requires thaty2=l if c = 1and the third requires thatz2=l if c =-1.

Another example, the/ (•), a homogeneous SDF actor, hasthe relationship x2=y2 = z2,

indicating that if one input is present (say y2= 1), then the other input must be present z2= 1,

and the output will bepresent x2= 1. The reader may have already noticed the key difference

between this model and the dataflow model. Specifically, it is not permitted for one input of

/ (•) to be present unless the other input is also present. In other words, the arcs connecting

functions do not have implicit FIFO queues, as they do in the dataflow model. Expressed yet

a third way, the production of a data value on an arc is simultaneous with its consumption at

the destination. In principle, a dataflow model can be built using HDS by defining a function

with the behavior of a FIFO queue, and inserting this function between every pair of dataflow

actors. Hence, HDS can be viewed as a lower-level description.

Using HDS to represent dataflow semantics, however, is not very attractive because the

complexity is considerable. Instead, we will use HDS in its simplest form, and we will use

model Cl to identify inconsistencies that are similar in flavor to those we have previously

identified in dataflow graphs. Unlike the dataflow inconsistencies, the HDS inconsistencies do

not lead to unbounded token buildup, since there is no queueing of tokens on arcs. Instead,

they lead to constraints on Boolean signals, or to absent outputs, or to contradictions in alge

braic relationships.

Consider the example in figure 17. Under the dataflow model, this graph is inconsistent

unless pc = 0. Applying model Cl to this graph, we get the relationships shown in the figure.

These four relationships can be solved to get a constraint on c, namely
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x=c(z(l-c)-y(l + c))

-{c + l)c =y2

-(c-l)c=z2

30

Figure 17. An example of a program that is inconsistent under either the HDS model or the
dataflow model..

c=-c2. (22)

This constraint is satisfied if either c =0 (nothing happens), or c =-1 (the control input is

false). Hence the conclusionis the same as forthe corresponding dataflow graph.

For the graphin figure la, interpreted as an HDS program, model Cl reveals that y = 0,

or the output is always absent This is not quite the same conclusionas for the corresponding

dataflow program, which is consistent if pc =0.5. The difference is entirely due to the FIFO

behavior of arcs in the dataflow model. For the graphin figure lb, model Cl reveals that when

x2 =1(the x input is present) then c =1(the control input is true). This is the same conclu

sion as thatof the token-flowmodel, which requires thatpc = 1.

The examples in figure lc and d are much more complicated to analyze using model Cl.

The reason is that the relationships shown in figure 16are instantaneous input/output relation

ships. They do not model dynamics. In model Cl, delays represent state variables, and a

finite-state machine models the program dynamics. The HDS equivalent of the UPSAMPLE

function in figure lc introduces a state variable into the system, as does the delay in the feed

back pathof figure Id. Although analysis is possible in this framework, it is not simple, andis

beyond the scopeof this paper. The reader is referred to [Ben88]. The comparative simplicity

of the token-flow analysis of dataflow programswith dynamics should be viewed as one of its
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7. COMPARISON WITH SIGNAL

»

In [Ben88], the language primitives used are not the same as those in figure 16. Instead,

a language called SIGNAL is defined with more basic primitives that can be used to construct

the functions shown in figure 16. In [Ben88], the language is described using only a textual

syntax, but to try to make a connection with dataflow graph languages, we will use an

equivalent graphical syntax here. The two basic decision-making operators are shown in

figure 18 along with their model Cl input/output relationships. The WHEN operator is

exactly like the "true" side of the SWITCH operator in figure 16. The DEFAULT operator is

much more subtle, and fundamentally more versatile (and dangerous) than anything in figure

16. As the reader can see from the model Cl input/outputrelationship, if the input x is present,

then y = x. If the input is absent, then y = d. Like the unordered merge discussed above, this

operator is not determinate. Put another way, its semantics depend on the context Consider

the program in figure 19a. Two unconnected subsystems supply input signals to a DEFAULT

operator. Without further information about the relative timing of the two input signals, any

permutation of values can result at the output of the DEFAULT. The program in figure 19b

has a related feature (or problem, depending on your perspective). Any number of values can

circulate around the loop before a value from the d input is processed. It is typical, therefore,

ex d x

'—\ when J ' \ DEFAULT J

y = - c (c + l)x y=x+d(l-x2)

Figure 18. The two basic decision-making operators of the SIGNAL language [Ben88] are
shown along with their model Cl input/output relationships.
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' \ DEFAULT J
' \ DEFAULT J

4>

(a) (b)

Figure 19. Two non-determinate programs builtwith the DEFAULT operator of the SIGNAL
language.

of SIGNAL programs to specify additional synchronization constraints not modeled by the

flow of data.

The SIGNAL version of a guardedcount, borrowed from [Ben88], is shown in figure 20.

The textual version of this program is:

•*Q ^ DEFAULT J
EVENT?

zcount count

= 0?
= 07 NOT

WHEN
WHEN

SYNCHRO
( DEFAULT V

empty

Figure 20. A version of the guarded count in the SIGNAL language.
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GUARDED_COUNT { ? integer n ! bool empty }

count = n DEFAULT (zcount -1)
zcount = count$ INIT 0
empty = WHEH(count = 0) DEFAULT (NOT EVENT(n))
SYNCHRO QNHEU(zcount= 0)),n

end

To understand this program, first note that its input is named n and output is named empty.

This is not the same output as the guarded count in figure 5, but it would be easy to modify

this program so that the outputs are the same. The dollar sign is used to represent a delay,

with the initial value given explicitly. The EVENT operator outputs a Boolean true whenever

the input is present The monadic WHEN operator outputs a Boolean true whenever the input

is present and true. The SYNCHRO operator is more subtle. It is required because of the

non-local semantics of the DEFAULT operator. It states that the input n can only be present

when previous count is finished, or WHEN(zcount = 0). This statement overcomes the non-

determinacy of the DEFAULT operator by synchronizing the signals on opposite sides of it

Two conclusions can be drawn from these examples. First, the SIGNAL language is

more fundamental, and therefore harder to work with than our dataflow graph language. The

requirement for explicit synchronization accounts for most of the difficulty. Second, since it

includes a non-determinate operator (DEFAULT), it is more flexible. This will probably

prove important if the language is used to describe physical systems. However, such an

operator can be used to construct programs that are incorrect in very subtle ways. Functions

like the ordered merge are far less dangerous. Nonetheless, further investigation of this issue

is warranted.
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8. CONCLUSIONS

Consistency and strong consistency in dataflow graphs has been defined, and a sys

tematic consistency test has been developed. It has been comparedto similar tests applied to

hybrid dynamical systems by Benveniste, et al. [Ben88]. Dataflow graph languages have

been discussed, with numerous programming examples given, and the language model has

been compared to the HDS model and the SIGNAL languageof [Ben88].
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