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via Integration of Influence Diagrams and Neural Networks

by

Fariborz Nadi

ABSTRACT

With the increase in the complexity of manufacturing processes comes the need for

models that accurately describe their behavior. Accurate models enable us to operate

these processes inan optimal manner. These models need to possess learning capabilities

in order to capture the complex and dynamic behavior ofa manufacturing process. They

should also allow random extraction of information from the model.

The work described in this thesis introduces an architecture for modeling complex

manufacturing processes. This architecture combines the qualitative knowledge ofhuman

experts, and the learning abilities of neural networks. Here, the learning abilities of

neural networks are used to extract the quantitative knowledge that relates parameters of

a manufacturing process. In creating a model, the qualitative knowledge of human

experts is captured by making use of the relational level of influence diagrams. An

influence diagram, at the relational level, is a graphical representation of the process in

which relevant parameters are identified as nodes, and directed, acyclic arcs represent the

existence of probable relationships amongst the connected nodes. By establishing the

influence diagram, a multi-input multi-output process gets broken down into several

independent multi-input single-output sub-processes. Next, the quantitative knowledge

that relates agroup of parameters in each of the sub-processes is extracted by employing

feed-forward error-backpropagation neural networks. These networks consist of intercon

nected simple processors that store their knowledge, in a distributed manner, in the

weight of the connections between them. The learning algorithm used for training these

networks is a supervised learning procedure in which a sampled set ofinput and output

vectors are chosen to train the networks. The selection ofthe training set is also done by



the help of human experts. The weights of the connections that represent the knowledge

of the networks are calculated by employing a numerical optimization technique, in our

case, a gradient descent routine. Next, in order to re-integrate the sub-processes into a

process, a single associative memory network, which simultaneously looks at all of the

parameters in a model, is used to learn the common and optimal behavioral space of all

of the sub-processes. This networkuses the same learning procedure as the previous net

works, namely, error-backpropagation. Associative memory networks are used as content

addressable memory, in which unknown elements of a given vector are calculated based

on a best match stored in the network. This concludes the modeling, or the knowledge

acquisition phase.

For the knowledge extraction phase, we have introduced a procedure to synthesize

single, or groups of neural networks simultaneously. The problem of synthesis can be

defined as such: given the value of some of the input and/or output parameters in the

model, calculate the value of the remaining parameters, such that they are in agreement

with the optimality criteria stored in the associative memory network, and the causal

relationships describing the behavior of the sub-processes stored in the feed-forward net

works. In this procedure the weights of the connections between processors are held con

stant, while the value of the unknown input and/or output parameters are calculated by

employing a stochastic optimization routine called ALOPEX [42]. The process of syn

thesis begins with synthesizing the single associative memory network to generate initial

estimates for the unknown parameters. This is done to limit the search space to specified

areas in the simultaneous synthesis of the feed-forward networks. Next, to provide the

final solutions, all of the feed-forward networks are synthesized simultaneously using the

initial estimates provided by the associative memory network.

The effectiveness of this architecture to model complex processes is tested by

modeling two Very Large Scale Integration (VLSI) manufacturing processes, and then

comparing these models to models generated by other techniques, such as statistical



regression analysis. In our study, the models generated by the integration of influence

diagrams and neural networks are, on the average, at least twice more accurate, while

given only half as much information in creating these models. The two processes that

were modeled are: dry-oxidation of silicon, and Low Pressure Chemical Vapor Deposi

tion (LPCVD) of polysilicon. For the dry-oxidation modeling, the effects of process time,

process temperature, cleaning process, and crystallographic orientation of substrates are

studied on the thickness of the resultant oxide film. For polysilicon deposition, three out

put parameters are related to five input parameters. The output parameters are: deposi

tion rate, film thickness, and stress of the film. The input parameters are: process time,

process temperature, ambient pressure, flow rate of the active gas (silane), and wafer

position.

Furthermore, by employing the generalization capabilities of neural networks, we

have generated novel ideas about the process. Novel ideas are new knowledge created by

generalizing the information gained in the learning phase. In our case, two such ideas are

generated. The first is a zero stress recipe for LPCVD of polysilicon, and the second is a

non-uniform temperature distribution across the processing tube for auniform deposition

rate of polysilicon. In the case of the zero stress recipe, none of the data used to train the

networks has zero stress value. In the case of a uniform deposition rate, all of the training

data are for uniform temperature depositions, which produce exponentially dropping

deposition rates across the processing tube.

In the last part of this work, the noise filtering capacity of the feed-forward net

works to filter inherent, normally distributed noise of process parameters, is demonstrated

by employing a known non-linear relationship to generate a noise-polluted training set,

and by extracting the original noise-free relationship at the end of the learning cycle.
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CHAPTER 1

INTRODUCTION

Due to the increased complexity of the modem manufacturing processes, economically

feasible production facilities are being required to incorporate more intelligence in their

operation. Integration of intelligence results in manufacturing systems that are predict

able in their behavior, user-friendly, and less sensitive to human error. To realize these

goals more and more manufacturing environments are moving towards Computer

Integrated Manufacturing (CIM). CIM environments operate in three main modes:

1) Create a centralized pool of data which captures the required information about the

operation of the manufacturing elements. These elements could be: incoming raw

materials, processing equipment, human operators, and so on.

2) Use the gathered data to make decisions about the future operation of the plant. This

processcould be automatic or involve human input

3) Implement the made decisions via the direct or indirect connections to the manufac

turing sites.

The decisions made by CIM are hierarchical in nature and could range from scheduling

the production of the plant for the next year, down to specific problems such as setting

the parameters of a specific processing unit for a specific product. At the present, how

ever, a lot of these decisions are made by humans, especially at the bottom or machine

level. The reason for this is that CIM does not have the required knowledge about the

manufacturing processes to make these decisions. The required knowledge could be in

the form of an accurate model of the manufacturing process. This is especially true for

complex processes, such as Very Large Scale Integration (VLSI) manufacturing. These

processes are very sensitive in general anddepend on a lot of parameters. There are gen

eral models, usually based on physical principles of the process (first principle models),

that give an understanding of the process and predict its behavior to some degree. But



most of these models fail to predict the behavior of a process with the high accuracy

required for an efficient and reliable manufacturing operation.

In most real life situations the process parameters are set or modified by human experts

who are closely familiar with specific processes. The knowledge gained by the experts is

mostly through observing the behavior of the process for along time and thereby creating

an internal representation of it in their minds. This knowledge, in turn, helps them in set

ting the process parameters. One possible method of gaining expertise, that is true of

human learning in general, is learning generalities by observing a lot of specifics. One

might explain the process of becoming an expert in the following manner: first, a novice

will observe or learn about a few important parameters whichaffect the process. Next, by

observing the behavior of the process overtime he/she will learn of a general relationship

between these parameters. At the same time he/she might notice other new parameters

which affect the process andtherefore update his/her knowledge structure. As the number

of observations grows, the knowledge gained becomes more detailed and is partitioned

into finer spaces, such that theexpert can establish which parameters are affected by each

other and which are independent of each other.

Accurate models of manufacturing processes are pre-requisite for automating the process

of recipe generation (setting of the process parameters). To create such models, we can

combine first principle models (if available), and one of the following general metho

dologies:

1) Create an analytic model of the process which takes into account the behavior of the

processing equipment. This feature is necessary since the physical characteristics of

the processing equipment affect the outcome of the process. The parameters in the

model are determined by performing numerous experiments and using statistical

and/or regression techniques. This approach is beneficial in setting up a process ini

tially, but is expensive otherwise. The model would alsolack in terms of accuracy if



there are a lot of parameters involved. Besides, if the algorithm were not adaptive,

the accuracy of the derived model would suffer more as the process shifted (a nor

mal behavior of manufacturing processes). This shift is usually due to component

aging and other time dependent factors.

2) Capture the knowledge of the human expert by creating a knowledge base and an

inference mechanism to retrieve the information. The main problem here is in creat

ing the knowledge base. For example, in rule-based systems the knowledge of the

expert is interpreted in terms of if-then type of rules, and for a complex manufactur

ing process the number of rules grows very rapidly and becomes unmanageable.

Although there are areas that lend themselves easily to this type of knowledge

transfer, in general there are not many. This technique, if not adaptive, faces the

same problems as the first approach in terms of a shift in the behavior of the pro

cess.

3) Create an adaptive learning architecture that requires minimal human knowledge.

In this approach the knowledge about the process should be gained by observing its

behavior overtime and adapting to it asit changes.

In this work we have introduced such an architecture, which is capable of learning and

synthesizing behavior of complex manufacturing processes. This is an adaptive architec

ture, which captures both qualitative, and quantitative aspects of the knowledge of the

manufacturing process.

The qualitative knowledge is captured by making use of the relational level of influence

diagrams. An influence diagram, at the relational level, is a graphical representation of

the process, in which important process parameters are identified as nodes, and directed,

acyclic arcs between these nodes depict existence of conditional dependence between

related parameters. These diagrams are an abstraction of the process which can be used

to break down the task of modeling a single, large, and complex process (multi-input,



multi-output), into modeling several smaller, independent, and less complex sub-

processes (multi-input, single-output). Influence diagrams are created with the help of

human experts, or they can be induced by observing sampled behavior of the process

over time [5]. Unlike any othermethod of knowledge transfer, it is very easy and natural

for humanexperts to create the relational level of the influence diagrams.

This is the extent of the knowledge required from the experts. They are not required to

specify the exact nature of the relationships between the related parameters, although

such knowledge can also be incorporated into this architecture. The quantitative relation

ships between groups of related parameters (sub-processes) are extracted using neural

networks. These networks have been proven to be very effective in complex learning

tasks, such as human speech recognition [31]. Neural networks crudely resemble the

architecture of the brain, in which a lot of simple processors are interconnected and the

knowledge is stored, in a distributed manner, in the weight of the connections between

processors [13]. These processors operate in parallel and therefore are very efficient in

terms of the speed of computations they perform. There is an on-going effort to build

these networks on VLSI circuits [27-30].

The neural networks used to capture the quantitative knowledge in each of the sub-

processes are of the multi-layered feed-forward error-backpropagation type. These net

works have been used successfully in a large variety of complex learning tasks [31].

The second contribution of this work is to introduce a very flexible method of synthesiz

ing single, or groups of neural networks simultaneously. Once these networks learn the

relationships between groups of related parameters (sub-processes), we need a way of

extracting this knowledge in any random manner. That is, given partial information about

some of the parameters, we should be able to produce the value of the unknown parame

ters using the knowledge of the neural networks. To do this we have employed a sto

chastic optimization technique called ALOPEX [42], which is very similar to simulated



annealing [45].

The process of synthesis (knowledge extraction) happens in two phases: (1) generation of

initial estimates for the unknown parameters, and (2) fine tunning the initial estimates

using the quantitative knowledge. The generation of initial estimates is done by syn

thesizing a single associative memory network that has captured the common and

optimal operating space of all of the sub-processes in the learning phase. This network is

also of the multi-layered feed-forward error-backpropagation type. The only difference is

in the selection of the input and the output parameters of the network, and in the

definition of the objective function, which has to be minimized using the ALOPEX

optimization technique.

The final values of the unknown parameters are generated by simultaneous synthesis of

the rest of the networks, each possessing the quantitative knowledge about one of the

sub-processes. This part is also done by employing the ALOPEX optimization tech

nique.

The final contribution of this work is to employ this architecture in modeling and syn

thesizing two VLSI manufacturing processes and comparing them to models generated

by statistical regression techniques. We will show that, in our study, the models gen

erated by the integration of influence diagrams and neural networks are, on the average,

at least twice more accurate, while given only half as much information in creating the

models. The two processes are: dry-oxidation of silicon, and Low Pressure Chemical

Vapor Deposition (LPCVD) of polysilicon. For the dry-oxidation modeling we study the

effects of process time, process temperature, cleaning process, and crystallographic

orientation of substrate on the thickness of the resultant oxide film. For polysilicon depo

sition we look at three output parameters that are film thickness, deposition rate, and

stress of the film, and relate them to process time, process temperature, flow rate of the

active gas (silane), position of the wafer in the tube, and ambient pressure. We will also



show how the generalization capabilities of neural networks can be used to generate

novel ideas about the process. Novel ideas are new knowledge generated by generalizing

the information gained in the learning phase. Two such ideas are generated in this work.

The first is a zero stress recipe for LPCVD of polysilicon, and the second is a non

uniform temperature distribution across the processing tube for a uniform deposition rate

of polysilicon. In the case of the zero stress recipe, none of the data used to train the net

works has zero stress value. In the case of a uniform deposition rate, all of the training

data are for uniform temperature depositions, which produce exponentially dropping

deposition rates across the processing tube.

Finally in the last part of our work we will show how neural networks are effective in

filtering inherent process noise and extracting the true relationships in each of the sub-

processes. This is demonstrated by having a known relationship to generate a noise-

polluted training set, and extracting the original noise-free relationship at the end of the

learning cycle. This process is repeated for two non-linearrelationships: one monotonic,

and the other non-monotonic.

The work is broken down into seven chapters. Chapter two is an introduction to

Influence diagrams and the way they are constructed along with examples. Chapter three

makes us familiar with neural networks and their properties. It covers the type of neural

networks used here, and their modes of operation. These modes are learning (knowledge

acquisition), and synthesis (knowledge extraction). Chapter four is where influence

diagrams and neural networks are combined, and the architecture of this modeling tech

nique is defined. Chapter five is the results part of this work where two VLSI processes

are modeled by the application of this approach. Chapter six is where we study the

effects of process noise in the operation of neural networks. Chapter seven is the conclu

sion where the results are summed up and the future direction of research is laid out.



CHAPTER 2

INFLUENCE DIAGRAMS

2.1. INTRODUCTION

Influence diagrams were originally developed by the Decision Analysis Group at SRI

International to automate modeling of complex decision problems involving several unc

ertain variables (Miller et al. [7]). Besides their original objective, influence diagrams

have been used for improving communications among people, participative modeling of

complex decision problems (Owen [8], and Howard and Matheson [9]), andas a develop

ment toolfor building expert systems (Agogino andRege [1-4], andHoltzman [10]).

In an influence diagram the knowledge of the dependencies between variables is

presented at two levels: a qualitative level and a quantitative level. In the qualitative (or

relational) level, which is a graphic representation of the problem under consideration,

the variables of a problem are identified and represented as nodes, and any dependencies

between related variables are depicted by directed acyclic arcs. This level of the

influence diagrams is perhaps one of the most powerful ways ofcapturing the qualitative

knowledge of human experts in a problem domain. This is due to the fact that it is very

easy for human experts to express their knowledge in a graphical frame work where the

only required knowledge is identifying critical variables and establishing directed arcs

between conditionally dependent variables. The inclusion of uncertain variables or unc

ertain dependencies at this level does not hinder the ability of influence diagrams in

modeling a problem domain. It is only when a true dependency or a critical variable is

omitted that the ability of influence diagrams tomodel a problem domain suffers.

At the quantitative level of the influence diagrams, the knowledge about the conditional

dependencies is captured and expressed in a numerical frame work. Traditionally, these

dependencies are expressed in terms ofprobability distributions, where there is a proba-



bility distribution associated with each arc, or influence, in the diagram. This makes it

possible to retrieve probabilistic information about the parameters in the diagram in any

random manner. This is done by using laws of probability which enable us to combine

these influences (probability distributions) in a manner that is consistent with the infor

mation requested from the diagram.

Despite its power and flexibility in terms of extracting knowledge from an influence

diagram, knowledge acquisition is a problem in this approach, where the influences are

expressed in terms of probability distributions. This is due to the fact that the probability

distributions associated with the arcs of the diagram must be known before hand. The

source of this information is usually the human expert, but humans are not good in pro

ducing these probability distributions.

In this work we have tried to nainimize the amount of knowledge required from the

human experts in the knowledge acquisition phase by making use of the learning abilities

of neural networks. The reader will be familiarized with neural networks in chapter three.

The only thing to be mentioned here is that the quantitative level of the influence

diagrams, which itself consists of two levels: structural, and numerical, are handled by

employing neural networks. These networks are used to learn the quantitative relation

ships between related parameters and also to extract this information in any random

manner.

In this chapter we will discuss the construction of influence diagrams and explain each of

the three levels of an influence diagram. These are the relational level, the structural

level, and the numerical level. The relational level is described here, but the in-depth dis

cussion about the structural and numerical levels is postponed to the end of chapter four,

after the reader has been familiarized with neural networks.



2.2. CONSTRUCTION OF INFLUENCE DIAGRAMS

2.2.1. RELATIONAL LEVEL

This part is best described by an example. Such an example is given in Fig. 2.1. It is an

influence diagram for dry-oxidation of silicon wafers. A brief introduction to the oxida

tion process is given in chapter 5. The point to be made here is how such a diagram is

constructed.

There are three ways of constructing an influence diagram: (1) with the help of human

experts, (2) use of first principles (knowledge about the physics of the problem), and (3)

inducing the arcs of the diagram bylooking at examples stored in a database [5]. It is also

possible to construct the diagram by any combination of the three [6]. The first step

though, is common for all approaches. This is the identification of the relevant variables.

This task is not trivial if one is dealing with a complex process. For example, if one is to

construct a diagram for an arc-welding process, with the weld quality being one of the

variables under consideration, it is not obvious to know all of the influencing parameters

that affect the quality of the weld, unless one has expertise in that area.

The next step is establishing the directed arcs or influences between the variables. If the

diagram is being constructed by the help of experts, the dependencies are established

from their knowledge. If the diagram is being constructed by use offirst principles, the

influences are established by the physical laws governing the process. If the diagram is

induced from examples, laws of probability are used to extract the dependencies.

Interested readers are referred to [5] for a complete description of the last method.

Looking at the influence diagram of Fig. 2.1, we can see that there are 10variables under

consideration, 7 input variables and 3 output variables. Input variables are defined as the

parameters that are observable and controllable by the user. Output variables are the

result of the input variables and might not be observable during the process. If we look at
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the output variable oxide thickness, it can be seen from the diagram that thickness is

dependent on 4 input variables: process time, process temperature, substrate crystallo

graphic orientation, and the cleaning process type that the substrate has gone through,

before being processed. Stress is dependent on annealing time, annealing temperature,

oxide thickness, and substrate crystallographic orientation. Surface defects of the resul

tant oxide is dependent on oxide thickness, stress in the oxide film, cleaning type, and

finally, the number of previousruns, which is a measure of the cleanliness of the process

ing equipment The essence of the information here is the conditional independencies.

For example, stress is conditionally independent of cleanliness of the processing equip

ment, given information on annealing time, annealing temperature, oxide thickness, and

substrate orientation.

It should be noted that influence diagrams are not unique, meaning that different experts

could construct different diagrams for the same process. In our oxidation example,

another expert could construct another diagram such as given in Fig 2.2. The difference

here is that the second expert thinks stress is dependent on cleaning type, process time,

process temperature, substrate crystallographic orientation, annealing temperature, and

annealing time. And that stress is conditionally independent of oxide thickness. But as

can be seen the two diagrams are equivalent, in that the oxide thickness inherits the

influences from some of the same variables that affect the stress. But the two diagrams

would be inconsistent if the second expert were to say that stress is also dependent on the

number of previous runs. It will be shown later that inclusion of uncertain influences does

not hinder the ability of influence diagrams in terms of modeling a process. It is only

when a relevant variable or a true dependence is omitted that the ability to predict the

behavior of a process suffers in terms of accuracy.
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2.2.2. STRUCTURAL LEVEL

Once the relational level has produced the conditional dependencies between the vari

ables in the influence diagram, in terms of directed acyclic arcs, the exact nature of these

dependencies or relations are learned by employing the learning abilities of neural net

works. These networks, once they have captured the quantitative knowledge, are also

used for extracting information about the relationships between the variables. The struc

ture of these networks are determined in the structural level. At this point since the reader

might not be familiar with neural networks, the discussion about the operation of this

level is postponed to the end of chapterfour.

2.2.3. NUMERICAL LEVEL

At this level the relationships between the variables of an influence diagram are

quantified by employing numerical optimization techniques to calculate the operating

parameters of the neural networks. The discussion about this level is also postponed to

the end of chapter four.
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Fig. 2.2 Alternative Influence diagram for dry-oxidation of silicon.
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CHAPTER 3

NEURAL NETWORKS

3.1. INTRODUCTION

The ability of human beings to process complex types of information and to make infer

ences based on their knowledge is unequalled [4]. The ability of the human brain to per

form such complex tasks with its parallel architecture was the motivation behind the

development of neural networks or parallel distributed processing architecture [31]. The

human brain is made of a large number of interconnected neurons, each possessing very

simple computational abilities. However, the interaction between the neurons allows for

parallel processing of information, which greatly enhances the speed of computation and

causes a large amount of knowledge to be brought to bear in processing this information

[15]. In this chapter we will give a description of neural networks and discuss learning

and synthesis for two specific types of such networks.

3.2. BACKGROUND ON NEURAL NETWORKS

Neural networks are collections of simple, interconnected processors, which

operate in parallel and store knowledge in the strength of the connections between

the individual processors. Such networks of computing elements crudely resemble

processing activity in the brain and have been successfully applied to intelligent

tasks such as learning andpattern recognition[13].

Although the connectionist computing paradigm was proposed by Rosenblatt [14] in

1950, it did not become popular until recent years. The reasons being, lack of powerful

computers for simulation of such architectures and, eventually, inability to implement

them on hardware. The recent advances in VLSI technology shows the potential of fabri

cating electronic neural networks [27-30]. Another advantage of such architectures is

graceful degradation. Since the knowledge is stored in a distributed manner over all of



15

the connections, failure of some of the connections or nodes will not result in a complete

loss of information.

Neural networks have been used in a wide variety of applications such as pattern recogni

tion in human speech, and vision [31,32], noise filtering [39], content addressable

memory [16,17,40,41], intelligentcontrol [33-36], optimization [18,19], diagnostics [11],

and others including human cognition [31].

There are different types of neural networks suited for different applications. In general

they can be differentiated in three ways: (1) typeof nodes or neurons, (2) pattern of con

nectivity between neurons, and (3) type of operation (mode of learning and computation)

of a network.

Each node or neuron has several weighted inputs comming from the output of other

nodes, and one output that is connected to theinput of several other nodes via another set

of weighted connections. In general there is a simple relationship between the input and

the output of a node, Fig. 3.1a.

output -f (weighted sum of inputs ) (3.1)

The function / in Eq. 3.1 could be linear or non-linear. A linear relationship would be a

simple summation function (output =weighted sum of inputs). In which case anetwork

with linear nodes is capable of learning a set of linearly independent vectors. In case of

non-linear nodes, / is usually assumed to be a sigmoid function of the input or in some

cases, a threshold function may also be used (refer to Fig. 3.1b). A network with non

linear nodes is capable of encoding more complex information than a network with linear

nodes.
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In terms of pattern of connectivity of anetwork, there are two general types.

1) Layered networks, Fig. 3.2a, where there is an input layer and an output layer.

These layers receive information from the outside world and transmit the results

back to it. In some cases the input and the output layers are the same. There could

be any number of layers in-between or on top of the input and the output layers.

These layers are called hidden layers which are responsible for generating an inter

nal representation of the learned material in the network. It can be shown that a

multi-layered network with linear nodes can be collapsed into an equivalent two

layer network and thereby lose the advantages of hidden units [13]. Although linear

networks are useful in learning a set of linearly independent vectors, to implement

complex, non-linear mappings, networks with non-linear nodes are required.

2) Single-layer networks, Fig 3.2b, where the input and the output layers are the same

and there are no hidden layers. In this type of networks all of the processors are con

nected together. This, usually, is not the case in the layered networks where the only

connections are between-layer connections.

There are two modes of operation in a neural network: (1) learning mode and (2) syn

thesis mode. In learning mode, the network is presented with the knowledge to be

learned, and to accommodate the new knowledge the weight of the connections between

the processors are updated incrementally according to a network specific learning algo

rithm. This, usually, is an iterative procedure which employs some type of numerical

optimization technique. In synthesis mode, when the stored knowledge is to be extracted

from a network, the weight of the connections which represent the knowledge of a net

work are held constant and activation levels (energy) or outputs are assigned to some of

the nodes with known values. The computation takes place when the activation energy is

spread throughout the network via the weighted connections. Depending on the type of

network, the spread of energy happens in a single pass through the network, which is

usually the case in layered networks, or it oscillates in the network till the activation level
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of the nodes settie down to a stable state, which is normally the case in single layered

networks. These stable states could be thought of as equilibrium points or basins of

attractions in a dynamic system. The location of these equilibrium points, or desired con

vergence states, could be chosen via the proper choice of weights between the processors.

These weights are determined by the learning algorithm.

Now, we will discuss two types of networks used in this work. First, feed-forward multi-

layered networks that have been shown to be very efficient in learning any arbitrary map

ping between a setof input and output vectors. This class of networks are also capable of

generalization and feature extraction. These networks are used to extract the causal rela

tionships between each group of related parameters (sub-processes) in an influence

diagram. The second type of networks discussed will be associative memory type net

works. These networks are used as content addressable memory, in which a partial input

vector can be completed to a full vector based on a previously stored value. The associa

tive memory network isused to coordinate the operation ofall ofthe sub-processes in the

knowledge extraction (synthesis) phase. We will discuss the learning algorithm and syn

thesis algorithm for both of these networks. '• i

3.3. FEED-FORWARD MULTI-LAYERED NETWORKS

This class of networks have been proven to be very effective in pattern association[31].

They have been widely used in human speech and vision recognition [31,32] and in other

areas such as forecasting and intelligent control [33-36]. The power of these networks

come from their use ofsemi-linear, sigmoidal shape function processors. These networks

can incorporate hidden layers that do not interact with the outside world, but rather do

classification and feature extraction ofthe information provided to them by the input and

the output layers. The structure ofthese networks is shown in Fig. 3.2a. The lowest layer,

or the input layer, gets the information from the outside world and passes it down to the

hidden layers. There can be any number ofhidden layers. There are no same layer con-
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nections in these networks and the only connections are the adjacent layer connections.

Because of the learning algorithm, each layer acts as classifier and feature extractor for

itsadjacent layers. So it can beseen how very complex information can beencoded using

this type of networks. Although each layer is working as a classifier and feature extractor

for its adjacent layers, these features and classifications are not necessarily distinguish

able in a physical or real world sense. The reason is that the information is distributed

over a large number of connections and processors so the classification of the information

happens in a distributed way. The top most layer is the output layer which transmits the

results to the outside world. These networks, because of their ability for feature extrac

tion and pattern classification, are very good in dealing with the inherent noise of the

information in the real world. So the hidden layers also act as a noise filter for the infor

mation provided by the outside world. This last statement is proven and dealt with in

chapter 6. Feed-forward, multi-layered networks, arealso known as backpropagation net

works. This is because of the learning algorithm they use in associating the input and the

output layers' information. Backpropagation networks can encode either static or

dynamic relationships between the input and the output parameters. But care should be

taken in choosing the information provided in the learning phase. The choice of input and

output parameters is a critical one in how efficient a network learns the relationship

between them. Consider encoding the dynamic behavior of a system such as:

3f-/<^^.-.<*—>
Depending on the order of differential equation /, and the sampling time, the network

should observe and learn to associate the past and the present behavior of y. This can be

done by having a moving window in time that keeps track of a predetermined number of

sampled values of y. This will result in a set of inputs that are the values of y sampled a

few steps before, and a set of outputs that are the values of y at present. So what the net

work learns is an anticipation function which relates the behavior of y in the past to its
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expected behavior at present (refer to Fig. 3.4). Therefore, the network learns the func

tion / just by looking at sampled values of y. On the other hand, if we had presented a

network with time as input and values of y as output, the network could not be expected

to learn the function /, because time can have an arbitrary initial value. Therefore selec

tion of input and output parameters is a critical factor in the learning process. Next we

will discuss the learning algorithm used for these networks.

3.3.1. LEARNING PROCEDURE FOR FEED-FORWARD MULTI-LAYERED

NETWORKS

Although the power of non-linear networks to encode complex information was recog

nized by early researchers[14,37], there was no efficient learning algorithm developed for

them. However, the generalized delta rule developed independendy by Rumelhart[31]

and Le Cun[38] solved this problem. This is a supervised learning procedure, in which

examples of inputand output patterns, representing the patterns to be associated, are used

to train the network [12]. In this algorithm the network starts out with a random set of

weights. Next, an input pattern is presented to the network and the output is calculated

with the present set of weights. Then, the calculated output is compared to the desired

output and the square of the difference between the two output vectors is used as a meas

ure of error. This is then repeated for all of the input-output pairs, summing up the total

error in the process. The cumulated error for all of the input-output pairs represents the

distance in a Euclidean space of weights thathas to be minimized.

If linear processors were used, the error surface in the weight space would look like a

bowl with only one minimum (i.e. it is convex). Any gradient descent technique would

lead to that solution. However, in our case, because ofthe non-linear processors, the error

surface could have any number oflocal minima. Therefore, a gradient descent optimiza

tion technique does not guarantee an optimal solution. However, as pointed out by

Rumelhart[31], this problem isonly oftheoretical interest. He has shown that by increas-
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ing the number of hidden layer nodes or the number of hidden layers, the network will

converge to a good enough local minimum. These networks can encode any arbitrary

relationship with a maximum of two hidden layers [25]. The generalized delta rule is

very similar to the steepest descent optimization routine. In this type of training, the

cumulated error is minimized in an iterative fashion. For each of the input-output pairs,

the gradient of the error with respect to the weight space is calculated. This is then

repeated for all of the input-output pairs. Then, one step is taken in the oppositedirection

of the total gradient. This whole process is repeated until the network converges to a

minimum in which the measure of error has converged to zero or very close to it. Each

processor has associated with it a threshold value, which shifts the sigmoid function in a

positive or negative direction depending on the value of the threshold. The reason for

having a threshold is to add filtering capability to each processor, so that if a processor

has a high threshold, it will take a large input before that processor is in its active area, or

vice versa. The value of the threshold is also determined in the same manner as calculat

ing the weights. A threshold can be treated as the weight of a connection comming from

a node with a fixed unity output. A description of the backpropagation learning scheme

[31], with the notations of [12], is given below:

Let (refer to Fig. 3.3):

Ujc = threshold of the ith node in the kth layer
wijjt = weight between jth node in the (k-\)th layer to ith node in kth layer
netit = input toith node in the kth layer
Oi%k =output of ith node in the kth layer

The input to a processor is given as:

neti,k = Z.t wijJcOjtk-i ] + tiJc (3.2)

where the summation extends over all nodes in the previous layer. The output of a given

processor is a sigmoid function of the input and can be expressed as:

°w-isW (33)
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With a random starting point, in the weights and thresholds space, the measure of error is

calculated for each of the input-output pairs in the following manner: in this phase the

input nodes are assigned a value and the computation takes place by a forward pass of the

activation level of the input layer through the network (one layer at a time), until it

reaches the output layer. The computed value of the output nodes are then compared to

the desiredvalues of the output nodes.The square of the difference between the two vec

tors is used as the measure of error.

E=HJ:(dj-OjA? (3.4)
y'=i

where n is the total number of layers in the network, q is the total number of output

nodes, dj is the desired output of the jth node of the output layer, and Ohn is the actual

output for the same node.

This constitutes the forward pass through the network. Next, the error is propagated

backward through the network, starting at the output layer. The weights and thresholds

are updated one layer at a time, such that the error is minimized. Computation of the

error term with respect to each weight and threshold is accomplished using local infor

mation at each node, so that gradient calculations at each layer can be accomplished in

parallel. Changes in the weight and threshold values in each iteration are calculated as

suggested by Rumelhart [31]. Learning relies on minimizing E by suitable adjustments

of the learning parameters, wiJfk, tijk. This requires calculation of the derivative of E

with respect to the learning parameters. Using 3.2 and 3.3 the following partial deriva

tives can be computed:

dnetjjt _

^55X =0u(1-0.\a> (3.5)

= 1



let:

dnetijt

The gradients of error with respect to weights and thresholds are calculated using the

chain rule.

BE _, BE v Bnetitk _ ~
lw~~J ~( ^hltij )( ^W-JJ) ~- ^M-i

^7-(^ir77)(^r-T)--5^ (3J)
In 3.7, all quantities except 8t>* is available from the forward pass. The quantity 8;^ is

calculated by propagating the error backward through the network. Consider the output

layer. For this layer:

Using 3.4 and 3.5, this can be expressed as :

5/,n=(^-0J>)Ot-,n(l-0/,n)

The <ktn are calculated as follows :

ot/i,rt

Using 3.4 and 3.5 :

<J>i,n=(4-0;,n) (3.8)

For the lower layers :

where the summation extends over all nodes in the (k+l)th layer. Using 3.3 and 3.6, this

can be simplified to yield :

j

The 8,,* can be determined as :
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Kk=^kOitk{l-Oi%k) (3.10)

8,-jk = OiJb( 1- OiJc) £[ S;,*+i";,i,*+i ] (3.11)
j

Notice that <(>/,* depends only on the 8 in the (k+l)th layer, so that within a layer, the <j)'s

can be computed in parallel. The gradient of error with respect to the weights and thres

holds are calculated for one pair of input-output patterns at a time, keeping the learning

parameters fixed. Then, a step is taken in the opposite direction of the total gradient of

error with respect to the weights and thresholds [13]. This procedureis repeated until the

measure of error is reduced to zero or very close to it.

3.3.2. SYNTHESIS PROCEDURE FOR FEED-FORWARD MULTI-LAYERED

NETWORKS

Although a lot of work has been done in the area of learning for thefeed-forward type of

networks, one can not find a general purpose procedure for synthesizing these networks

such that the the stored knowledge about the interrelationships between the input and the

output variables can be retrieved in any random manner. This is what we have done in

this section by employing a stochastic optimization technique.

Once a network has learned the mapping between the input and the output space by

finding the optimum weights and thresholds, we can use this network to extract informa

tion about the interdependencies of the input and the output variables. For example, a

partial input vector and a partial output vector are given and we are asked to complete

both vectors based on the knowledge stored in the network. Therefore, like the learning

case, we need to define a measure of error and a way to minimize this error to achieve

our goal. Unlike the learning case, the weights and thresholds are fixed and represent the

knowledge stored in the network. The variables here are the unspecified elements of the

input and the output vectors. This problem isvery important inmodeling the behavior of

a system. If a network learns the relationship between the input and the output space of a
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system, we would like to be able to use this knowledge in a reverse mode; meaning, if

the output is known, we should be able to calculate the input that caused such an output.

In non-linear relationships, the solution might notbe unique.

In order to solve thisproblem, let / and O represent theinput and theoutput vectors.

O =[ol,o2,'-,om ]

where n is the numberof input nodesandm is the numberof output nodes. Each element

of these vectors is then specified with an allowable range of values confined between a

minimum and a maximum value. For the fixed elements the minimum and the maximum

values coincide.

Ojmax>Oj ZOj™*

Let:

£= f[ifi* <ikmin]^>(ik-ikmhl)2 +[tfik >ikmax]-*dk-ikmax)2 +
*=i

m

2 [if Oj < Oj"^ ]-> (Oj - ojmin )2 +[if Oj >Ojmax)-^( Oj -Ojm™)2

The way that the error term is defined, it will penalize only the variables that are outside

their allowable range.

The optimization technique chosen to minimize the error term is a stochastic method

called ALOPEX [42-44] that is very similar to simulated annealing [45]. The advantages

of using such a procedure are:

1) Optimizing a small number of variables. Unlike learning, where we are dealing with

a large number of weights and thresholds, here we are only dealing with the input

and the output nodes, which are few in numbers.

2) Avoiding local minima. In finding the solution there could be more than one possi

ble answer. This method of optimization tries to avoid the local minima in the
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process of finding the global minimum or the best possible answer.

3) Having the flexibility in defining the error term. This feature becomes very impor

tant when we need to synthesize several connected networks at the same time.

4) Lacking the need to have any knowledge about the gradients of the error with

respect to the input or the output variables.

Here a brief description of the ALOPEX is given to familiarize the reader. For a detailed

description of the procedure and proofof convergence the reader is referred to [42-44].

ALOPEX is a stochastic optimization procedure in which the costfunction may be non

linear in a large number of variables. Local minima areeffectively avoided by the intro

duction of noise. The ALOPEX process has the following characteristics [42]:

1) The procedure is iterative. In every iteration all variables that determine the cost

function are changed simultaneously by small increments, and the cost function is

computed.

2) The changes in the variables depend stochastically on the change in the cost func

tion andthe change in that variable over the preceding two iterations.

3) All increments are retainedfrom oneiteration to the next.

4) The stochastic element in the process isan added noise oran effective temperature.

5) The process isguided by two parameters which determine the step size ofthe incre

ment and the level of the random contributions.

6) The procedure contains additional algorithms that automatically adjust the two

parameters as the run progresses.

The flow-chart of the synthesis process is shownhere:



Assign initial values
to the unknown input variables.
(random or otherwise)

Calculate the output variables
by propagating the input through
the feed-forward network.

Calculate error.

If error < allowable error -». exit.

Adjust the unknown input variables,
based on the ALOPEX algorithm.
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In general the relationship between the input and the output is non-linear. There could

exist several possible solutions and we might be interested in one of them. The number of

solutions can be reduced by reducing the possible range of the variables, or starting the

synthesis with good initial values that are near the final solution.

3.4. ASSOCIATIVE MEMORY NETWORKS

In order to come up with good initial estimates for the simultaneous synthesis of back-

propagation networks, we use a different type of neural network, called the associative

memory network. This network is responsible to learn the common and the optimal space

of the quantitative knowledge stored in the backpropagation networks. The reason for

using a neural network to perform this task is that the criteria for optimality could be

qualitative. The associative memory network can extract the optimality criteria by

observing discrete points that satisfy them. This type of network is used as content

addressable memory, in which a network can recall all elements of a previously stored
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vector by starting with partial information about the vector. There are different classes of

this type of networks. One such example is the Hopfield network [16,17]. The Hopfield

network is a dynamic single layered network. The state space of the network contains

locally stable states, or attractors, that correspond to minima of an energy-like function.

The basins surrounding these attractors will dominate the flow in phase space, and the

system will relax to the attractors from anywhere within the basin [42]. The location of

these attractors, or stored memory, can be specified by the proper choice of weights

between processors. However, because of the advantages of using similar learning and

synthesis algorithms, the associative memory network developed here, is a feed-forward,

layered network.

3.4.1. LEARNING PROCEDURE FOR ASSOCIATIVE MEMORY NETWORKS

The network used for associative memory is a feed-forward, error-backpropagation type.

The way one can use a backpropagation network as an associative memory network is by

training the backpropagation network on identical sets of input and output vectors. Then,

given a partial input vector (identical to the partial output vector) one can recall the rest

of the elements of the input or the output vectors by using the procedure described in the

synthesis section below. We have already discussed the learning algorithm for this type

ofnetworks. The only difference here is that the input and the output vectors are identi

cal. Therefore, the network creates a mapping between two identical spaces. This map

ping, however, is non-trivial, because each element of the output is related to all of the

input parameters.

3.4.2. SYNTHESIS PROCEDURE FOR ASSOCIATIVE MEMORY NETWORKS

Once there is amapping created by the learning algorithm, we can use it to complete par

tial vectors. The optimization process is the same as the one used for synthesis of back-

propagation networks, namely, ALOPEX procedure. The only difference is in the

definition of the error term. Since the input and the output vectors ought to be identical,
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the error term penalizes any difference between corresponding elements of the input and

the output vector. It will also penalize values of the input elements that are outside their

permitted range. Therefore, the error term is defined as follows:

E=ft(ij-Oj)2+[\fij <ij*** ]->{ ij - ij"** ?+[ if ij >f nux]^(/ / n»x)2
7=1

Once theerror is rninimized to zero, the input and theoutput vectors will be identical and

correspond to a previously storedinput vector or a generalization of that. As an example,

let us look at the following problem:

1) Create a mapping between the coordinates of the corners of a cube, with unity

volume, and themselves. Or basically store the coordinates of the corners as content

addressable memory. Fig. 3.5.

2) Start the network at points near each of the corners and let it converge freely. If the

network converges to the correct corners, it is working as an associative memory

network.

The following table shows the learning set that the network was trained on, the testing

set, and the values that the network converges to, starting at the testing set points.

Learning set Testing set Converged values

0.0 0.0 0.0 0.2 0.2 0.2 2.0e-4 6.0e-6 3.0e-6
0.0 0.0 1.0 0.2 0.2 0.8 3.0e-5 1.0e-4 1.0
0.0 1.0 0.0 0.2 0.8 0.2 8.0e-5 1.0 6.0e-5
0.0 1.0 1.0 0.2 0.8 0.8 9.0e-5 1.0 1.0
1.0 0.0 0.0 0.8 0.2 0.2 1.0 8.0e-6 6.0e-8
1.0 0.0 1.0 0.8 0.2 0.8 1.0 4.0e-6 1.0
1.0 1.0 0.0 0.8 0.8 0.2 1.0 1.0 2.0e-8
1.0 1.0 1.0 0.8 0.8 0.8 1.0 1.0 1.0

As can be seen from the table, the converged values of the network are almost identical

with the training set. In this experiment, each of the elements of the testing set are at a

distance of 0.346 from their nearest corner. If we were to increase this distance and test
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the network, we might find that the final converged values might be different and actually

a generalization of the training set. This is due to the non-linear nature of the mapping

created in the learning phase. When the network creates a mapping between two identi

cal vectors, some local minima are also created that map an unlearned vector to itself.

These can be thought of as basins of attractions that are created due to the other basins of

attractions generated in the learning phase. This property is unwanted only in cases

where exact recall of memory is required. But for our purposes it actually is a positive

quality, because the network has learned to generalize between the two spaces and can

give us good initial estimates based on its knowledge for the points that are not covered

in the training set. It should be noted that this behavior is also observed in other associa

tivememory networks with non-linear nodes, such as the Hopfield network.

As an example, if we start the network at an equal distance from all of the corners, the

final converged values of the network will not be one of the corners. This is shown in the

table below.

Initial starting point Final converged point

0.50 0.50 0.50 0.54 0.58 0.48

Finally, to get an idea about the number of iterations required in the learning phase and

the synthesis phase, we can look at Figs. 3.6 and 3.7. Fig. 3.6 is the error versus number

of iterations in learning the coordinates of the cube. It takes about 2000 iterations of

changing all of the weights and thresholds, using the backpropagation procedure, for the

desired allowable error to be reached. This is a time consuming process, but it can be

done off-line. Fig. 3.7 is the error versus number of iterations in synthesizing the same
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network, using the ALOPEX procedure, in orderto retrieve the coordinates of one of the

corners, starting at one of the testing points. It takes about 120 iterations, and in each

iteration there are only a few parameters updated, namely, the three input nodes. The

synthesis procedure is very fast and it only takes a few seconds (on a SUN 3/50) before a

solution is reached.



Incoming weighted connections,
from output of other neurons.

Output = F( weighted sum of inputs)

Outgoing weighted connections,
to input of other neurons.

Fig. 3.1 a Schematic of a single neuron.
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Fig. 3.1 b Sigmoid function [ 12]
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Fig. 3.2a Layered networks.

Fig. 3.2b Single layer networks.
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kth layer

nth layer (output)

Fig. 3.3 Schematic of a feed-forward error-backpropagation network.
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Fig. 3.4b Structure of the network capable of learning y=f(t)

34



oo i 0 1

1 0 1
A2/

000

1 1 1

/ /
0 1 0 •/

00 1 1 0

Fig. 3.5a coordinates of a cube with unity volume.

o o o
o o

o o o

Input layer

Hidden layer

Output layer

Fig. 3.5b AM network capable of learning coordinates of the cube.
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CHAPTER 4

INTEGRATION OF INFLUENCE DIAGRAMS AND NEURAL NETWORKS

4.1. INTRODUCTION

In orderto solve a complicated problem, such asmodeling a complex manufacturing pro

cess, one efficient approach would be to break down the problem into several smaller

independent problems, solve them separately, and integrate them back together. This is

the approach chosen in our method of modeling.

Influence diagrams are used to decompose the problem by establishing conditional

independence between process parameters. For example, in modeling dry-oxidation oxi

dation of silicon, Fig. 4.1, instead of trying to come up with one model that relates the

three process outputs (oxide thickness, stress, surface defects) to the seven process inputs

(rest of the parameters), we will have three separate models, each with only one output

and only as many inputs that affect that particular output One model, for example, will

relate oxide thickness to cleaning type, process time, process temperature, and crystal

orientation.

In this chapter we will explain how neural networks are used to learn the quantitative

relationships in each of the sub-processes, and how they are used to extract the stored

knowledge in them, to solve problems such as recipe generation for a desired process

output.

4.2. ARCHITECTURE OF THE INTEGRATED NETWORK

First, the topology of the process is laid out by the use of influence diagrams. Next, two

types of neural networks are employed for proper operation of the integrated network,

Fig. 4.2. There will be a Feed-Forward Error-BackPropagation (FFEBP) type of network

for each output node that does not have an exact analytic relationship with the nodes that
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affect it. For example, there are three of these networks employed in Fig. 4.2. Next, there

will be one Associative Memory (AM) type network relating all of the nodes together.

The AM network is responsible for re-integrating the sub-processes into a process by

learning the common and optimal operating space of all of the FFEBP networks so that it

can be used to generate good initial estimates for the unknown variables in the simultane

ous synthesis of the FFEBP networks. As mentioned earlier, the criteria for optimality

could be qualitative. The AM network can extract the optimality criteria by observing

discrete points that satisfy them. The integrated networks operate in two modes: learn

ing, and synthesis, described next.

4.2.1. LEARNING

This is the knowledge acquisition phase of the modeling. Each of the FFEBP networks

will learn over a vector ofinput-output pairs. This vector is a sub-set of points out of the

whole possible behavioral space of the process. These points are the possible operating

points that are acceptable in terms of their output. In this phase each of the FFEBP net

works will extract a relationship, relating their inputs to their output. At the same time

the single AM network, which looks at all of the parameters, learns over a subset of

points'learned by all of the FFEBP networks. These are optimal points ofoperation for

the manufacturing process. The measure ofoptimality could be quantitative or qualita

tive. Therefore, FFEBP networks learn over the possible operating points ofthe process

and AM network learns over the optimal operating points of the process.

A two dimensional example is given here to clarify the subject of learning. If we are

looking at two parameters only, namely, A and B in Fig. 4.3a, the influence diagram is a

simple arc from A to B, given A is input and B is output Let Fig. 4.3b describe the gen

eral relationship between A and B. And let Fig. 4.3c represent the sampled, acceptable

behavior ofA and B, in our case, all B 's above Bt. Finally, let us assume that we would

like to operate where B is less sensitive to changes in A, as shown in Fig. 4.3d. Fig. 4.3c
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represents the points that the FFEBP network is trained on, and Fig. 4.3d, a subset of

points in Fig. 4.3c, represents the points that AM network is trained on. The reason for

doing so will becomeclear in the synthesis part.

The knowledge storedin neural networks shouldbe updated periodically, otherwise there

will be no adaptation in the model to changes in the process. The frequency of updating

the knowledge is totally process dependent. In general, the knowledge of the FFEBP net

works should be up-to-date, but the knowledge of the AM network need not be updated

as often, because the AM network acts like a reference point for the FFEBP networks. In

other words, if the process degrades gradually, and the FFEBP networks keep up with

this knowledge, the AM network will act as an alarm for a corrective action to take place.

4.2.2. SYNTHESIS

Synthesis, or knowledge extraction, is where, given information about part of the param

eters, the networks will generate the value of the unknown parameters according to the

optimal behavior, stored in the AM network, and the possible behavior, stored in the

FFEBP networks. Since there could exist a number of possible solutions for the given

constraints, we would like to choose the best possible solution amongst them. For exam

ple, if we would like to find a value of A such that B >Bty Fig. 4.3b, we can see that

there are two possible regions satisfying this constraint But according to the knowledge

stored in the AM network, Fig. 4.3d, A 2 ^ A >A \ is the preferred region, because B is

less sensitive to changes in A. Therefore, the role of the AM network is to generate the

best initial values, given a set of constraints, for the answers provided by the synthesis of

FFEBP networks. The operation in the synthesis phase is summarized in Fig. 4.4.

As the number of FFEBP networks increases, the importance of the AM network in pro

viding good initial estimates increases. This is because we would like to find a region of

the space of the possible behavior of all of the networks that satisfy our constraints. As

the number of FFEBP networks increases, the number of local minima also increases.
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These local minima are the regions where only some of the constraints are met satisfac

torily.

On the other hand, one might ask "Why are FFEBP networks needed?". To answer this

question, we have to remember that the knowledge stored in the FFEBP networks is

broader in its scope and covers more of the possible behavioral space of the process than

the knowledge stored in the AM network, which covers a sub-space of the FFEBPs'

knowledge. Secondly, FFEBP networks extract natural and causal relationships existing

between the input and the output vectors, versus the AM network, which creates a map

ping between two identical spaces. As shown before, if one deviates too far from the

stored memory in the AM network, one mightend up in a local minimum (a position that

does not match the stored memory, but rather, is a generalization of it). One abstraction

would be : AM network provides the ideal operating point, and FFEBP networks provide

one possible match between the ideal and reality. Another function that can be provided

by FFEBP networks is diagnostics. Since the global knowledge about the process is bro

ken down and stored in several FFEBP networks, the knowledge stored in each of these

networks is local information about part of the parameters. Therefore, one can, by vary

ing some of the parameters independently, study their effects on the remaining parame

ters.

4.2.3. CALCULATION PROCEDURE FOR SYNTHESIS

The synthesis is done in two parts: (1) synthesis of the AM network, and (2) simultane

ous synthesis of FFEBP networks. Since there is only one AM network, and its synthesis

has been discussed in the previous chapter, we will only describe what a user needs to

define in this phase. A user needs to specify an allowable range for each of the nodes in

the influence diagram. Some of these nodes might also berigidly specified; i.e., no varia

tions allowed. Next, an error check is done to make sure that none of the FFEBP net

works are over-constrained; this is where all of the input and output nodes of a network



42

are rigidly specified. An FFEBP network must have at least one node that is allowed to

change. If this single node is an output node, then its value is determined by a feed

forward pass of the FFEBP network; otherwise, its value will be determined iteratively

by the optimization procedure. Once it is determined that none of the networks are

over-constrained, the synthesis of the AM network will result in the generation of initial

values for nodes that are not rigidly specified. If there are no rigidly specified nodes to

start with, then a random number generator is used to produce allowable values for each

of the nodes. These values are in turn passed to theAM network to produce initial values

that are in agreement with the optimality constraint storedin the AM network.

For the simultaneous synthesis of FFEBP networks, we need to define two terms: depen

dent and independent nodes. Independent nodes in an influence diagram are the nodes

that are not directly influenced by any other nodes (i.e. have no arcs going into them).

Input nodes are independent nodes. Dependent nodes, on the other hand, are nodes that

receive influences from othernodes (incoming arcs), and that might also influence other

nodes (outgoing arcs, refer to Fig. 4.5). In the synthesis phase, independent nodes are the

only free parameters that are updated in each iteration of the optimization procedure. All

of the nodes, however, are considered in evaluating the error term. As defined in the sec

tion on the synthesis of FFEBP networks (chapter 3), the error term will only penalize the

nodes that have drifted outside their allowable range. Therefore, the errorterm is defined

as follows:

n

E = Z[if* <*min]->U-*min)2+[tf* >*max ] ~» U -*max)2
i=l

n = total number of nodes in the influence diagram.

x = value of each node, input or output.

Not all of the FFEBP networks need to be involved in the synthesis procedure if we are

only concerned about the behavior of some of the parameters. But all of the FFEBP net

works connected to these parameters should be included in the synthesis procedure.
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Again, only the independent nodes connected to the same networks will be updated in

each iteration of the optimization procedure.

As seen here, the synthesis procedure is very flexible and can be used to extract informa

tion about therelationships of all orsome of the parameters in the influence diagram. The

architecture usedhere easily lends itself to building an interactive environment where the

user can gain detailed knowledge about the process by seeing the interactions of the

nodes in the influence diagram.

4.3. SIGNIFICANCE OF THE INFLUENCE DIAGRAMS

In order to reply to an important question: "Why not use only one error-backpropagation

network to learn the input-output relationship?", we have to justify the use of influence

diagrams, which break down single multi-input multi-output backpropagation networks

into several smaller multi-input single-output ones, in the following way:

1) There are variables that are conditionally independent of each other (e.g. deposition

rate is conditionally independent of time). Although neural networks are themselves

capable of extracting conditional independencies between the input and output vari

ables, influence diagrams significantly reduce the amount of data required to create

accurate models for the processes. This is due to the fact that a network would need

enough data to extract the conditional independencies by itself.

2) The process of training the neural networks gets decoupled by making use of the

influence diagrams. Decoupling of the training procedure makes it possible for

each network to cover a different region and/or size of the behavioral space of the

process. This is very important in theprocess of modeling, because of the adaptabil

ity it gives the model. If new variables are added to a model, or a sudden shift is

observed in some of the existing variables, we do not need to produce a lotof new

experimental data to re-train the one big neural network. The only additional train

ing sets required are the ones for the new, or existing, neural networks that are
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connected to the new, or the shifted, variables.

3) The process of synthesizing a model also gets decoupled by making use of the

influence diagrams. This is due to the fact that single-output networks make it possi

ble to synthesize each output variable separately. This point is significant in model

ing diagnostic types of problems.

4) There are output variables that have exact relationships with the input variables that

affect them. There is no need to use neural networks for extracting these known

relationships.

The points mentioned above, besides the very important one that influence diagrams are

an effective way of capturing and transferring qualitative knowledge of human experts,

are some of the reasons for the use of influence diagrams.

4.4. FURTHER EXPLANATION OF STRUCTURAL AND NUMERICAL LEV

ELS OF INFLUENCE DIAGRAMS

Since the reader is now familiar with neural networks and their operation, the structural

and numerical levels of the influence diagram, which are handled by neural networks, are

explained here.

4.4.1. STRUCTURAL LEVEL

As pointed out before, the physical structure of neural networks are determined at this

level. The number of input and output nodes of each network is already determined by

the variables of the influence diagram; however, the number of hidden layers and the

number of nodes in each hidden layer are not predetermined. The choices for these

numbers are totally dependent on the complexity of the relationship to be learned by each

network. The algorithm used for determining these numbers is an iterative one which

usually converges within a few iterations. The procedure is described in Fig. 4.6. The

basic goal is to find a structure that drives the measure of error in the learning algorithm

to zero or very close to it. The nature of the algorithm is such that it tries to find a
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network with the minimum number of hidden layers and the minimum number of nodes

in each of these layers. The maximum number of hidden layers allowed is two, because

these networks can encode any arbitrary relationship with a maximum of two hidden

layers [25]. In our experimental results, none of the networks needed more than one hid

den layer. Therefore, the algorithm generally needs to find the number of nodes in one

hidden layer by starting with onenode and increasing it as necessary. Since the error sur

face in the learning algorithm has more than one minimum, the learning algorithm starts

out at a few different random initial points in the weights' space and tries to drive the

measure of error to zero, before incrementing the number of hidden layer nodes. A very

useful feature of non-linear networks is that they are not very sensitive to the structure.

Therefore, as long as the measure of error in the learning algorithm is driven to zero, it

does not matter much if the task could have been accomplished with fewer nodes in the

hidden layer.

4.4.2. NUMERICAL LEVEL

This is the level where the relations between dependent nodes are quantified by employ

ing two optimization techniques.

In the learning, orknowledge acquisition, phase a gradient optimization technique is used

to drive the measure of error to zero by adjusting the weights and thresholds of the net

works. This phase is directly related to the structural level where, given a structure pro

duced by the structural level, the optimization routine tries to find weights and thresholds

that minimize the error to zero. If not possible, the structural level is flagged to update

the structure and the numerical level tries again. This is not usually repeated for more

than a few times before the measure of error is successfully driven to zero.

In the synthesis, or knowledge extraction, phase a stochastic optimization technique is

used to drive the measure of error to zero, as defined in the synthesis section. Here the

structure of the networks are fixed and this part of the numerical level operates
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independently of the structural level.
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Fig. 4.3a Influence diagram for the two variables A and B.

Fig. 4.3b General relationship between A and B.
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If desired error Is achieved •• exit
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Fig. 4.6 Flow chart for the structural algorithm.
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1. INTRODUCTION

So far we have introduced the reader to influence diagrams and neural networks in

chapters 2 and 3, and their integration in chapter 4. In this chapter the experimental

results of our work are presented. The techniques developed in chapters 3 and 4 have

been applied to modeling two VLSI manufacturing processes. The first process is dry-

oxidation of silicon, and the second one is Low Pressure Chemical Vapor Deposition

(LPCVD) of polysilicon. There are three parts for modeling each of these processes. In

the first part, a brief introduction is given about each process, defining the process param

eters and describing the present state ofother existing process models. In the second pan,

called learning, the integrated network ofinfluence diagram and neural networks is set up

for the process. The integrated network is then trained on part of the experimental data,

and is tested on the remaining data. This test isdone tosee how by looking at some of the

data, the integrated network can predict the behavior of the rest of the data, or how well

the integrated network has learned about the behavior of the manufacturing process. For

this part, the performance of the integrated network, in modeling LPCVD of polysilicon,

is compared to the performance ofother models, which are generated by the use of first

principles and/or statistical regression techniques, employing the same experimental data.

In the third part, which is the synthesis section, the trained integrated network of each

process is used to generate a recipe for a desired process output. The integrated networks

are also used to generate novel ideas about the process. Novel ideas are process set-ups

that the integrated network was not specifically trained on, but could generate them

because ofits ability to generalize the relationships developed in the learning phase.
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5.2. DRY-OXIDATION OF SILICON [51]

The thermal oxidation of silicon has been an integral part of semiconductor device fabri

cation since the 1950swhen thermal oxides were used to selectively mask dopants during

the preparation of diffused transistors [53].

In the silicon thermal oxidation process, silicon reacts with either oxygen or water at

elevated temperatures (700-1250 °C) to form silicon dioxide. The oxidation reaction

may be represented by either of the following two reactions:

Si+02-+Si02 (1)

Si+2H20 ->SiO 2+2H2 (2)

It has been shown by special marker experiments [54] that the oxidation species, either

oxygen or water, diffuses through the oxide already formed to react with silicon at the

Si—SiC>2 interface. As oxidation proceeds, the interface continues to move into the sili

con, thus producing a new clean surface. From the densities and molecular weights of sil

icon and silicon dioxide, it can be shown that, for every thickness X of oxide formed,

0.45 X of silicon is consumed [51].

Thermal oxidation is normally carried out in a fused quartz tube in a resistance heated

furnace. A schematic drawing of a typical oxidation system is shown in Fig. 5.1a. For dry

02 oxidation, high purity oxygen is transported into the furnace tube through suitable

regulators, valves, traps, filters, and flow-meters [51]. Silicon oxidation data are gen

erally obtained by determining oxide thickness as a function of oxidation time, crystallo-

graphic orientation of silicon, and temperature.

5.2.1. OXIDATION KINETICS [51]

As indicated earlier, silicon thermal oxidation proceeds by the diffusion of the oxidizing

species through the oxide already formed. This process is indicated in Fig. 5.1b. It has

been proposed [54] that three consecutive reactions occur during thermal oxidation
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whose fluxes are equal under steady-state conditions. These are indicated in Fig. 5.1b as

(a) transfer of the oxidizing species from the gaseous phase into the outer portion of the

oxide, (b) diffusion of some oxidizing species through the oxide to the silicon, and (c)

reaction of the oxidizing species with silicon at the Si-Si02 interface to form Si02. By

representing each of the three reactions by appropriate flux equations and by equating

these fluxes, a general oxidation relationship has been derived [52]:

X§+AX0 =B (r-K) (3a)

also written in the form

aq ~~Xt Xq —X;

where X0 = oxide thickness, t = oxidation time, and A, B, x, and X; are constants as

defined below:

A =2Deff(l/k+l/h)
B =2DeffC*/Ni
X= (Xi2+AXi)/B

where Deff = effective oxidant diffusion constant in the oxide; k, h = rate constants at

the Si-Si02 and gas-oxide interfaces; C* = equilibrium concentration of the oxide

species in oxide; #i= number of oxidant molecules in the oxide unit volume; and Xt -

oxide thickness at the start of oxidation.

Two limiting forms of Eq. [3] can be noted. At large oxidation "times," i.e. t»A2/4B

and t »t,

X$~Bt

This equation represents aparabolic oxidation and B is the parabolic rate constant.

For small oxidation "times," t «A2/4B alinear oxidation expression is obtained:

X0 = B/A(t+%)

BIA is the linear rate constant.



56

Special mention should be made of the correction factor x which is related to initial oxide

thickness X/ . It has been noted that for oxidation in dry O2, an initial thickness region

does appear to be satisfied by the general relationship Eq. [3]. The plot of oxide thickness

versus oxidation time tends toextrapolate through the thickness axis at about Xo=150A.

The thermal oxidation of silicon can be represented by Eq. [3] for a wide range of tem

peratures, oxide thicknesses, orientations, and oxidation ambients, provided the depen

dence of the rate constants B and BIA as a function of these variables is known.

5.2.2. INTEGRATED NETWORK

In the previous section an oxidation model basedon first principles was derived by Bruce

Deal [51,52]. The constants in the model are determined by experimental procedures.

This model, however, looks at only three input parameters, that are time, temperature,

and crystallographic orientation of the silicon substrate, and relates them to the resultant

oxide thickness. But based on experimental data produced by Dr. Dan-Bin Kao at

National Semiconductor Company (Fig. 5.2), the cleaning process of the substrate also

does affect the oxide thickness. It shouldalso be noted that the behaviorof the process is

different for thin and thick oxide films. The oxidation model suggested in the previous

section works better for thick oxide films and does not predictthe behaviorof the process

closely for thin oxide films; thickness <150 A.

Therefore, we have two objectives here. The first is to have a unified model that works

for thin andthick oxide films, the second is to include cleaning type asone of the process

parameters.

The influence diagram of the process is shown in Fig. 5.3a. The complexity of the model

is directly related to the number of output parameters that we are interested in. In this

case there is only one output parameter: oxide thickness. The model though, can be

extended if other output parameters become of interest and experimental data are
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provided for them. Such output variables could be stress or surface defects of the resul

tant oxide film.

The integrated network for this influence diagram is shown in Fig. 5.3b. There is one

FFEBP network and one AM network in the integrated network.

5.2.3. LEARNING

In this part, to train the two networks, two learning sets are chosen from the experimental

data in Fig. 5.2. In order to test the learnability of the FFEBP network, one part of the

experimental data is chosen for training and the rest is used for testing. There are a total

of 70 data points provided. 44 of these are used for training and 26 for testing. The data

points for the testing set are chosen such that almost every other data point in each tem

perature range belongs to the testing set. In other words, the space of the training set

covers the space of the testing set completely, because a network can not be expected to

effectively generalize itsknowledge outside the region of its learning space.

The learning set chosen for training the AM network is a subset of the 44 points chosen

for training the FFEBP network. We have arbitrarily chosen the criteria of optimality for

training the AM network, to be:

2000 minutes > process time > 50 minutes

There are 30 points in this region that qualify.

The range and type of each variable is given below:

Variable Range Type

Temperature 800 -1200 °C continuous
Time 1.5 - 30000 minutes continuous
Orientation (001), (111) binary
Cleaning type +HF,-HF binary
Oxide thickness 50 -10000 A continuous
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As can be seen above, three of the parameters are continuous and two of them are binary.

One of the advantages of using backpropagation as the training algorithm for both types

of networks is the possibility of having a mix of discrete and continuous parameters in

modeling a process.

The input parameters are normalized between zero and one, and the output parameter is

normalized between 0.3 to 0.7. The input parameters need not be normalized. The sig

moid function maps minus infinity and plus infinity into zero and one, respectively. The

normalization of the input is performed so that we do not saturate the sigmoid, and there

fore reduce the sensitivity of the networks to small variations in the input. In terms of the

output, we are constrained to values between zero and one, since this is the only possible

output range of a sigmoid function. But again, in order to increase the sensitivity of the

networks, the output parameters are normalized such that they fall into the linear range of

the sigmoid's output, away from its saturation regions. One other modification of the

data points is the use of the natural log of the variables instead of their actual values. This

has been shown to yield better results in creating a mapping for variables with a wide

dynamic range. This last point is found to be true experimentally, by mapping known

linear and non-linear relations with wide dynamic ranges of parameters. Pre-processing

of the raw data is shown in Fig. 5.4.

The network structures capable of successfully creating good mappings were 4-4-1 for

the FFEBP network and 5-9-5 for the AM network. Both networks have three layers. The

first number corresponds to the number of nodes in the first, or input layer, the second

number corresponds to the number of hidden layer nodes, and the last number is the

number of nodes in the output layer.

The appropriate structure of each network is found iteratively using the structural algo

rithm described in the previous chapter.
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After both networks were trained on their respective training set, the FFEBP network was

tested on its testing set. The result is shown in Fig. 5.5. The graph in Fig. 5.5 represents

actual oxide thickness versus predicted oxide thickness for the different experimental

conditions in the testing set. If the predicted and actual values of the oxide thickness were

the same, the 26 points that the FFEBP network was not trained on would lie on a 45

degree line, which is almost the case in Fig. 5.5. The maximum error in predicting the

oxide thickness is 14.6%, and the average error is 6.5%.

The conclusion to be drawnfrom this experiment is that an FFEBP networkcan learn the

quantitative relationship between process parameters just by observing discrete experi

mental data points (that are inherently polluted with some statistical noise), without hav

ing anyknowledge about thephysics of theprocess.

5.2.4. SYNTHESIS

In this part we would like to extract information about the process using the knowledge

stored in the networks. The most common form ofrequired knowledge is: given a desired

output parameter, in this case oxide thickness, and maybe partof the known input param

eters (i.e. cleaning type and substrate crystallographic orientation), find the rest of the

input parameters (which are process time and process temperature), such that all of the

parameters are in agreement with the optimality criteria stored in the AM network. It

should be noted that the use of the AM network is optional and its only function is to

limit the search space tospecified areas ofthe knowledge stored in the FFEBP networks.

The process ofsynthesis has already been explained before, so we will present the results

here, summarized in table 5.1. The first row oftable 5.1 represents the input orthe known

parameters. These values are then passed to the AM network. The second row represents

the output of the AM network, which is to provide good initial estimates for the FFEBP

network. As can be seen here, the process temperature chosen by the AM network is 800

°C and the process time is 242 minutes. These values are in agreement with our
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optimality criteria of 2000 minutes > process time > 50 minutes. If a different tempera

ture was chosen, i.e. 1000 °C, then the process time that would yield the desired oxide

thickness would fall outside of the allowable range specified by the optimality criteria.

The third row of table 5.1 represents the output of the FFEBP network. These are the

values that will be used for actual process set-up. If we compare the values in row 3 to

those of row 4, which is an actual experimental data point, it is evident that the answers

provided by the integrated network are experimentally verified, and are also in agreement

with the optimality criteria.

The results provided in this part show how the integrated network can be used to extract

information about a process in any random manner, and specifically its capability to gen

erate process recipes for desired process output values.

5.3. LPCVD OF POLYSILICON [50]

Polysilicon is generally deposited by the pyrolysis (i.e. thermal decomposition ) of silane

(SiH4) in the temperature range 580-650 °C. The main technique used to deposit polysil

icon is LPCVD because of its uniformity, purity, and economy. The deposition reaction

sequence is:

SiH4+surface site->SiH^adsorbed)

SiH^(adsorbed)->SiH2(adsorbed)+H2(gas)

SiH2(adatom)->Si (solid )+H2(gas)

where the adsorption of the SiH4 is followed by decomposition to an intermediate com

pound, SiH2- Upon evolution of the remaining hydrogen, the solid film forms. The

overall reaction is generally given as

SiH4(vapor)->&' (solid )+2H2(gas)

Horizontal tube, hot wall reactors are the most widely used LPCVD reactors in VLSI

processing. They are employed for depositing polysilicon, silicon nitride, and undoped
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and doped SiO2 films. They find such broad applicability primarily because of their supe

rior economy, throughput, uniformity, and ability to accommodate larger diameter (e.g.

150 mm) wafers. Their main disadvantages are susceptibility to particulate contamination

and low deposition rates. A schematic drawingof such reactors is given in Fig. 5.1.

Three processes are commonly used in conventional LPCVD systems. The first uses

100% SiH4 at total pressures from 300-1000 mtorr, while the second uses approximately

25% SiH4 in a nitrogen carrier at approximately the same pressures. A third technique,

performed in vertical flow isothermal reactor configurations, uses 25% SiH4 diluted in

hydrogen, also at about 1000 mtorr.

5.3.1. DEPOSITION PARAMETERS [50]

The deposition rate shows an exponential dependence on temperature. Fig. 5.6a is a plot

of deposition rate versus reciprocal temperature. Apparent activation energies are found

todepend on the silane pressure and range from 1.36 to 1.70 eV. Depositions are limited

to the 580-650 °C range, since at higher temperatures gas phase reactions occur (leading

to rough and loosely adhering films), and below 580 °C the rate is too slow for practical

use (deposition rate <50A/min).

The polysilicon deposition rate depends on the silane (SiH4) pressure as shown in Fig.

5.6b . The dependence is not linear except for low values ofpressure. Such behavior may

be due to homogeneous reactions, adsorption of hydrogen on the surface sites, or tran

sport phenomena.

Several surface processes can be important once the gases arrive at the hot substrate sur

face, but the surface reaction, in general, can be modeled by a thermally activated

phenomenon which proceeds ata rate R, given by:

R=Roe[-Ejm



62

where R0 is the frequency factor, Ea is the activation energy in eV, and T is temperature

in °K. R0 is a function of ambient pressure, silane flow rate, and position of the wafer.

These three parameters basically determine the partial pressure of the silane. One such

model is discussed later on in this section.

5.3.2. INTEGRATED NETWORK

The integrated network for modeling LPCVD of polysilicon films is given in Fig. 5.7. It

consists of five input parameters (ambient pressure, process temperature, process time,

flow rate of silane gas, and position of the silicon wafer in the processing tube), and three

output parameters (deposition rate, film thickness, and stress). There are only two FFEBP

networks used in the model, because there is an exact relationship between deposition

rate, deposition time, and the resultant film thickness. The AM network does not cover

the film thickness variable, because of the same reason. The type and range of process

parameters are given below:

Variable

pressure (mtorr)
temperature °C
flow rate (seem)
time (min.)
position (cm)
thickness (A)
stress(Mfichne Icm2)
dep. rate (A/mm.)

Range

300 - 550
605 -650
100 - 250
60 -150
3.6-28.8
9100 -18700
-5.9 to 7.6
90-300

Type

continuous

continuous
continuous
continuous
continuous
continuous
continuous
continuous

5.3.3. LEARNING

The data set here is provided by Kuang-Kuo Lin (research assistant) and Costas Spanos

(Assistant Professor) of the electrical engineering and computer science department of

University of California at Berkeley.

There were 12 experiments performed with 6 wafers positioned along the tube for each

experiment The input parameters were chosen in such a way as to cover a maximum
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space of the process behavior with a minimal number of experiments. The use of first

principle models for such purposes is of great importance. The reader can refer to [48,49]

for parameter selection criteria. The film thickness was measured for all of the wafers,

resulting in 72 data points. But the stress information was gathered selectively from the

six wafers in each of the experiments, resulting in 54 data points.

The data set was then broken into two parts: learning set and testing set. The data gath

ered for every other wafer in the tube, for all 12 experiments, were used for the learning

set, and the rest for the testing set, resulting in 36 data points for the learning set and 36

data points for the testing set. For the stress modeling, however, 34data points were used

for the learning set and 20data points were used for the testing set. This was due to the

lack of stress data for all of the wafers.

The structure of the networks, determined iteratively, for each of the three networks is

shown below:

FFEBP network for deposition rate 4-5-1

FFEBP network for stress 5-5-1

AM network 7-7-7

The optimality criteria used for the selection of the training set of the AM network was

arbitrarily chosen to be data points with ambient pressures equal or less than 520 mtorr.

There are 27 such data points.

Figs. 5.8 and 5.9 are the results oftesting the two FFEBP networks on their correspond

ing testing set. Each figure compares the values produced bythe trained FFEBP networks

to the empirical data under different experimental conditions.
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The maximum and average errors in predicting the values of deposition rate and stress

are given below:

Maximum error Average error

Deposition rate 11.0% 1.4 %

Stress 21.2 % 13.2 %

Comparing Fig. 5.8 and 5.9 it can be seen that the values of stress are not predicted as

accurately as the values of deposition rate. Although a lot of different FFEBP network

configurations were tried in order to achieve a better learning, most of the networks pro

duced the same amount of total error in learning the behavior of stress. This could be due

to one or both of the following reasons.

1) Absence of an important variable, affecting the stress, in the influence diagram.

2) Presence of excessive noise in measuring the values of the stress.

Although stress values of the polysilicon film are not predicted as well as its deposition

rate, the amount of error in doing so is still very reasonable.

5.3.3.1. COMPARING PERFORMANCE OF NEURAL NETWORKS TO OTHER

MODELS

In order to answer the question : "Why use neural networks and not any other statistical

or regression techniques ?", the performance of the neural networks in creating the

models for deposition rate and stress is compared to models generated in [49] by means

of statistical techniques. The models in [49] are developed by Kuang-Kuo Lin and Costas

Spanos using the same experimental data. These models are presented in Figs. 5.10a-b.

The model for deposition rate was developed by combining statistical regression analysis

and the knowledge about the physics of the process. But the model for stress was

developed purely based on statistical regression analysis. This is due to the lack of a first
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principle model for stress. A point to be mentioned here is that the neural networks were

only trained on part of the data, whereas the models in [49] used all of the data points in

creating the process models.

Fig. 5.11 represents the actual deposition rate versus the deposition rate predicted by the

model in [49], for the same 36 data points of the testing set of Fig. 5.8. Comparing Figs.

5.8 and 5.11, onecan seehowmuch more accurately the neural network generated model

performs, even though it wasnot trained on these data points.

Fig. 5.12 represents the actual stress versus the stress predicted by the model in [49], for

the same 20data points of the testing set of Fig. 5.9. Notice that the stress model in [49]

does not include silane flow rate and position of the wafer as part of the parameters

affecting stress. These parameters were found to be statistically insignificant. But the

model generated by the neural network includes all five of the input parameters (Fig.

5.7). Comparing Figs. 5.9 and 5.12, it is obvious that the neural network generated

model is more accurate in predicting the amountof stress.

The quantitative comparison of the performance of thedifferent models, in terms of max

imum and average error in predicting the experimental values, is given in table 5.2.

The important conclusions are:

1) Although the neural networks were given half as much information in creating the

models, they were able to create amore accurate model of the process (refer to table

5.2).

2) The inclusion of uncertain influences in modeling a process does not degrade the

performance of neural networks increating an accurate model. Although silane flow

rate and position of the wafer were found to be statistically insignificant inmodeling

the behavior of the stress, their inclusion in the model did not degrade its perfor

mance.
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Although neural networks are capable of generating more accurate models of a process

just byobserving selected experimental data points, it does notmean that there is no need

for the statistical models. On the contrary, the statistical models are needed in creating

bounds on the amount of variability of process parameters and in giving an understanding

to the degree of significance of each of the process parameters, features which are of

great importance in terms of planning exploratory experiments, or setting up a process

initially.

5.3.4. SYNTHESIS

In this part we have done two experiments, both of which test the generalization abilities

of the integrated network to produce novel ideas.

5.3.4.1. GENERATING A RECIPE FOR A ZERO STRESS POLYSILICON FILM

In this experiment the integrated network is supplied with information about the desired

film thickness, stress, and some of the input conditions such as process time and ambient

pressure. The integrated network is then asked to produce values for process temperature

and silane flow rate that would result in the asked for outputs. The position of wafer #3

was chosen for the position variable because it is in the middle of the processing tube

and, therefore, would yield a better approximate for the rest of the wafers. The novel

point about this experiment is that the required stress value is zero, and the FFEBP net

work for the stress has not seen any such values for stress in its training set. All of the

values of the stress in the training set were either compressive or tensile. Therefore, the

integrated network is required to generalize its knowledge in order to solve the problem.

Table 5.3 shows the result of the experiment. The input row is the given information. In

the first output row the value of the deposition rate is calculated by using the exact rela

tionship between time, thickness, and deposition rate. The second output shows the initial

estimates for the temperature and silane flow rate produced by the AM network. The last

output shows the final values produced by synthesizing the two FFEBP networks
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simultaneously.

To test the validity of the answers, the resultant values were plugged into models

developed by K.K. Lin and Costas Spanos using the same experimental data [49]. The

result of the comparison is presented in table 5.4. It is evident that the results are fairly

consistent with each other.

5.3.4.2. GENERATING A NON-UNIFORM TEMPERATURE DISTRIBUTION

FOR A UNIFORM DEPOSITION RATE

In this experiment only the deposition rate FFEBP network is used to come up with a

non-uniform temperature distribution that results in a uniform deposition rate across the

processing tube.

Fig. 5.13 shows a typical deposition rate versus wafer position for constant temperature

across the tube. The drop in the deposition rate from the inlet to the outlet is because of

the depletion of the active gas (SiH4) as it passes over the wafers and its concentration is

gradually decreased. To compensate for the depletion effect, a non-uniform temperature

distribution across the processing tube (lower at the inlet and higher at the oudet) would

result in a uniform deposition rate across the tube. This is due to the fact that the deposi

tion rate isanexponential function of the temperature.

To produce the temperature distribution, the deposition rate FFEBP network was syn

thesized once for each of the six wafer positions, specifying the deposition rate, silane

flow rate, and ambient pressure, and then calculating the process temperature that would

result in such a deposition rate across the tube. Fig. 5.14 shows the resultant temperature
distribution.

In actual practice, however, the length of the process tube is heated up in three heating

zones, which can be controlled independendy. Therefore, the result is a step-wise tem-
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perature distribution that approximates the distribution in Fig. 5.14.

The novel point about this synthesis is that allof the data in the training set of the deposi

tion rate FFEBP network were for uniform temperature distributions across the tube,

which resulted in exponentially dropping deposition rates (refer to Fig. 5.13). This again

shows how these networks can effectively generalize their knowledge to produce novel

ideas.

5.4. CONCLUSIONS

The following is a summary of experimental conclusions from this chapter.

1) FFEBP networks can learn the quantitative relationships between the process

parameters just by observing discrete experimental data points (inherendy polluted

with some statistical noise), without the need for any knowledge about the physics

of the process. The error-backpropagation training algorithm also offers the advan

tage of having a mix of discrete and continuous parameters in modeling a process.

2) Models generated by the FFEBP networks are more accurate in predicting the

behavior of a process than models generated by the statistical regression analysis.

This is due the fact that a neural network adapts itself direcdy to the behavior of the

data rather than trying to adapt the behavior of the data to a pre-assumed model,

which is the case for the regression analysis. This advantage can be attributed to the

distributed manner in which knowledge is stored, the learning algorithm, and the

large number of free parameters (weights and thresholds) in a neural network.

3) The synthesis procedure developed here can be used to extract information about

the relationships between the process parameters in any random manner. This capa

bility is useful for recipe generation, and diagnostics.

4) FFEBP networks can effectively generalize their knowledge to produce novel ideas

for the process.
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EFFECT of CHEMICAL CLEANS on DRY OXIDE KINETICS
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Fig. 5.3b Integrated network for dry-oxidation of silicon.
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Thickness, experimental (angstroms x io3)

5.5 Experimental vs. network generated oxide thickness
for different input conditions.



Input

1st output

2nd output

experimental data

time temp clean

min. c

orientation thickness

A

? ? ♦HF (111) 180

242 800 ♦HF (111) 180

332 801 ♦HF (111) 180

342 800 ♦HF (111) 180

Table 5.1 Result of the dry oxidation synthesis
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Polysilicon Deposition Rate Model for TYLAN16:

-AE

R(T,P,Q,X) = APVRr
1-

1+

k3

E
1-T1(P,Q,T, in *

Mole Fraction of Depleted Siftj:

Ti(PtQ,T,X) = X^-Ro

where

-AE

Ro(T,P,Q,X=0) =AP«e"lfr
1-

k3

1+
W

T = deposition temperature in °K. Range878- 923 °K.

P= deposition pressure in mtorr. Range250- 550 mtorr.

Q = silane flow ratein seem. Range 100- 250 seem.

X =waferposition in cm.Wafers are 1.2cm apart.
Firstwafer is at X=0cm, secondat X=1.2cm, third at X=2.4cm, etc.

A=the Arrhenius frequencey factor =9.2935xl08 A/min-mtorr0
a = 0.2910

AE =the activation energy= 30183.8cal/mol

k3 = 23.9845 seem"1

R = the universal gas constant= 1.98719 cal/mol-°K

Cgs =the gas solid conversion factor =1.85xl0~5 cm/A

S: Surface areaof the furnace, 12740.8 cm2
L: Length of the furnace, 80 cm
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Fig. 5.10a Deposition rate model for polysilicon generated by Lin, K.K. andSpanos, C. [49]



Empirical AVERAGE* Residual Stress Model for TYLAN 16:

o fTJ> ri - a, f8?g-T^ +*, r 120-K . te f898-Tx / 400-P vo u^,g - a! ( 22 5 )+a2 (-^j-) +a3 ( 22.5 }{~7W>

+^ (irar> <i^=L>+a5 <-Tz5r>2+«6 C^1)2 in 109 dyne/cm2

T =deposition temperature in °K. Range878 - 923 °K.
P=deposition pressure in mtorr. Range 250 - 550 mtorr.
t =deposition time in minutes. Range 60 -150 minutes.

ai = 3.856
a2=3.445

a3=-2.521
34= -1.764
a5= 3.376

ag=-5.140

80

Fig. 5.10b Stress model for polysilicon generated by Lin,K.K. and Spanos, C. [49]

AVERAGING over the wafers in 2 boats.
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Fig. 5.11 Experimental vs. regression model generated deposition rate
for different input conditions.
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Fig. 5.12 Experimental vs. regression model generated stress
for different input conditions.



Integrated networks Regression models

Stress

Dep. rate

max. error = 21.2 %

avg. error = 13.2 SI
max. error = 131.1 %

avg. error = 28.2 %

max. error = 11.0 %

avg. error = 1.4 %
max. error =17.0 18

avg. error = 5.1 %

Table 5.2 Comparison of the accuracy of two
methods in predicting stress and deposition rate
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Pressure Temperature Flow rate Time Location Dep-rate Stress Thick.

Input 450 ? ? 70 13.2 ? 0 10000

1st output 450 ? ? 70 13.2 142.6 0 10000

2nd output 450 621 177 70 13.2 142.8 0 10000

3rd output 450 615 190 70 13.2 142.8 0 10000

Table 5.3 Result of the zero stress synthesis

9 2
Stress x 10 dyne/cm

Deposition rate
angstroms/mln.

Integrated networks Regression models

0.0 0.89

142.8 151.9

Table 5.4 Comparison of results for the zero
stress synthesis
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Fig. 5.13 Deposition rate vs. position for constant temperature across
the tube.
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CHAPTER 6

DEALING WITH PROCESS NOISE

6.1. INTRODUCTION

In a manufacturing environment, the ability of a process model to deal with the inherent

noise of process parameters is of critical value. There are many sources that contribute to

this statistical variation of the process behavior. Two important sources are: input noise

and output noise.

The cause for input noise could be small variations in the input parameters of a process.

Such variations could be smallchanges in the property of the raw materials (e.g. purity of

the active gases), small fluctuations in the behavior of the component controllers (e.g.

flow-rate controller, temperature controller), and finally human enror in setting the input

parameters correctiy (e.g. setting the temperature or deposition time correctly). For

tunately, this last source of error will play a minor role as there is an effort to put direct

communication capabilities in the processequipments, so that most of the parameters can

be directly loaded from a data-base in a CIM environment.

The source for the output noise is mosdy due to measurement errors, which could be

caused by human error or faulty instruments (e.g. measuring thickness of an oxide film

with an instrument that is out of calibration).

We have already discussed the training algorithm of FFEBP networks. In this chapter we

will examine this learning procedure and show its effectiveness in filtering process noise

and generatinga noise-free representation of the observed process.
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6.2. FILTERING OUTPUT-NOISE FOR A SINGLE-INPUT SINGLE-OUTPUT,

NON-MONOTONIC, NON-LINEAR RELATIONSHIP

Assume that the following relationship describes the behavior of a process:

Y=Sin(X)

where X is the input and Y is the output. We would like to extract the given relationship

by just observing sampled pairs ofX and Y, where we have also added a normally distri

buted noise of 3a = 6% of Y to the output

The normally distributed noise of 3a = 6% of mean value would produce a band-width of

12% allowable error, which is assumed to be a reasonable amount.

The training set consists of 44 pairs of data for X and Y, where :

Y = Sin (X) + normally distributed noise of 3a = 6% * Y

k>X >0

The structure of the FFEBP network that produced the minimum error in the training

phase was 1-4-1. To see how effectively the FFEBP network has learned the true

behavior of the process, a process without noise, we have to look at Figs. 6.1 and 6.2.

Fig. 6.1 represents actual output (noisy output, used for training the FFEBP network)

versus theoretical output (noise free output, generated by Y =Sin(X) ). The amount of

deviation from the 45 degree line represents the amount of noise present in the process.

Fig. 6.2 represents output produced by the trainedFFEBP network versus theoreticalout

put, for the given input range. If the FFEBP network was able to filter the noise com

pletely, the points in Fig. 6.2 would all lie on the45 degree line, which, practically, is the

case. Therefore, the backpropagation training procedure was able to extract the true rela

tionship between X and Y by observing noisy samples ofX and Y.
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6.3. FILTERING INPUT AND OUTPUT NOISE FOR A MULTI-INPUT,

SINGLE-OUTPUT, MONOTONIC, NON-LINEAR RELATIONSHIP

In the previous experiment the noise was only added to the output of the process. In this

experiment a Gaussian noise will also beadded to the inputs of the process. In addition, a

cubic relationship is used as the theoretical process model so that the effect of the input

noise will be magnified.

Since all FFEBP networks used in the integrated network are multi-input single-output,

we have chosen a two input one outputprocess model described as

Z = (X+Y)3

where X and Y are the inputs andZ is the output. The training set for the FFEBP net

work was produced in the following manner:

1) Set a range for the inputs: 1>X>0,1>F>0

2) Divide the range of each input into 10 equally spaced points. Combination of the

two inputs generates 100output points.

3) Add a Gaussian noise of 3a = 6% ofmean value toeach pairof the inputs.

4) Calculate theoutput forall noisy input pairs using Z=(X+Y )3

5) Add a Gaussian noise of 3a = 6% of mean value to the calculated output.

6) Use the input pairs generated in step 2 and the output of step 5 to train the FFEBP

network.

Fig. 6.3 shows the procedure described above.

The FFEBP network capable of learning the input-output relationship has a 2-3-1 struc

ture. In order to see how effectively the FFEBP network has learned the true behavior of

the process, we have to compare Figs. 6.4 and 6.5. Fig. 6.4 represents actual output (out

put that the network was trained on) versus theoretical output (generated by Z=(X+Y)3),

for different input conditions. The deviation of the points from the 45 degree line
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represents the amount of noise in the data. Fig. 6.5 represents output produced by the

trained network versus theoretical output, for the same input conditions. It can be seen

that the amount of deviation from the 45 degree line in Fig. 6.5 is considerably less than

the one in Fig. 6.4. Therefore, it is shown once again that the backpropagation training

algorithm is very effective in filtering both input and output noise, and extracting the true

model describing the behavior of the process.

The reason for the noise filtering capability of FFEBP networks lies in the training algo

rithm, whereby weights and thresholds of a network are adjusted such that the measureof

error, which is the square of the difference between actual and desired values of the

network's output, is minimized. In doing so, the network has to create a model that fits

the mean value of the data set, very much like regression analysis, with a difference

being that the network extracts the model insteadof having a priormodel and trying to fit

the data to it, as is the case in regression analysis.

Since it is shown here that FFEBP networks can filter process noise, we can use the

trained network as a true, noise-free representation of the process and get an overall

measure of the process noise. To get an overall measure of process noise, the output

values produced by a trained network can be compared to the actual output values of a

process, given different input conditions. But this overall measure of process noise can

not be separated into input noise andoutputnoise,because thereis no way of distinguish

ing the noisedue to the inputand the noise due to theoutput.
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CHAPTER 7

CONCLUSION AND FUTURE RESEARCH DIRECTION

In this work we presented an architecture for modeling complex manufacturing

processes. This architecture possesses both qualitative and quantitative knowledge of the

manufacturing process. The qualitative knowledge is captured by use of the relational

level of influence diagrams. An influence diagram at the relational level is a graphical

representation of the manufacturing process in which critical process parameters are

identified and any conditional independence between them is explicitly revealed [3]. By

using influence diagrams, the task of modeling one complex process gets broken down

into modeling several smaller, less complex, sub-processes. Here, a complex process is

defined as a multi-input multi-output process, and a sub-process is defined as a multi-

input single-output process.

In chapter two we discussed how these diagrams are constructed, either by the help of

one or more human experts, each of whom could be knowledgeable about parts of the

process, use of first principles, or by induction from examples [5]. We also showed that

influence diagrams are an adaptive knowledge representation scheme, in which addition

of new process parameters or deletion of existing process parameters can be easily

accommodated, as ourknowledge about the process grows.

In chapter three we discussed parallel distributed processing, or neural networks. These

networks have been proven to bevery effective in complex learning tasks such as human

speech recognition [31] and other similar tasks involving pattern recognition, pattern

completion, generalization, and categorization. In this work neural networks are used to

capture thequantitative knowledge amongst the dependent parameters. We discussed two

specific types of neural networks, both of which use the error-backpropagation scheme in

the learning phase.
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To extract the knowledge stored in the neural networks, we introduced a very flexible

method of synthesizing single, or groups of neural networks simultaneously. This method

employs a stochastic optimization technique called ALOPEX [42] which allows us to

extract the knowledge of the interrelationships between the input and the output parame

ters of neural networks in any random manner.

Integration of influence diagrams and neural networks was discussed in chapter four, in

which Feed-Forward Error-Backpropagation (FFEBP) networks are used to learn the

quantitative and causal relationships in each of the sub-processes.

To coordinate the operation of several FFEBP networks in the knowledge extraction or

synthesis phase, another type of neural network was applied in this work: theAssociative

Memory (AM) network. The AM network is responsible for re-integrating the sub-

processes into a process by learning the common and optimal operating space of all the

process parameters so that it can limit the search space in trying to find solutions that

satisfy simultaneous constraints imposed by all of the FFEBP networks. Therefore, this

network is responsible for pattern completion, where a partial vector of process parame

ters is completed according to the best match stored in this AM network. This initial

solution is then simultaneously synthesized by the FFEBP networks, using their exact

and causal knowledge.

The synthesis procedure used for both types of networks employs the ALOPEX [42-44]

optimization technique. The onlydifference in synthesizing the two types of networks is

in the definition of the input and the parameters of the network, and in the definition of

the objective functions, asdefined in chapter three.

In chapter five we discussed the experimental results of our work. The effectiveness of

neural networks in creating accurate models of two semiconductor manufacturing

processes (dry-oxidation of silicon, and low pressure chemical vapor deposition of
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polysilicon), was proven experimentally. In testing each model, neural networks were

trained on a part of experimentally gathered data and were then tested on the rest of the

data, on which they were not trained. We also compared the performance of the models

generated by neural networks to other models developed by means of statistical regres

sion analysis, and knowledge about the physics of the process. In this comparison the

modeling technique developed here performed at least twice more accurately (on the

average) as the other models, while given half as much information in producing the

models.

Again the effectiveness of the integrated networks was proven in the synthesis procedure

by generating process recipes for specified process outputs.

We also showed how the generalization capabilities of these networks can be used to

create novel ideas (new knowledge, created by generalizing the relationships learned in

the knowledge acquisition phase). These were tested successfully against experimental

data or other models. Two such ideas were produced here: (1) a zero stress recipe for a

polysilicon film, and (2) a non-uniform temperature distribution across the processing

tube for a uniform deposition rate of polysilicon film.

The ability of neural networks to filter process noise, that is both input noise and output

noise, was demonstrated in chapter six. This was done by starting with a known non

linear model, adding Gaussian noise to input, calculating output, and finally adding more

Gaussian noise to the output. Networks trained on the noisy data were able to extract the

initialnoise-free relationships.

The benefits of this modeling approach can besummarized in the following way:

1) The ability to create an accurate model of the manufacturing process justby observ

ing selected experimental data (polluted with process noise), without the need to

haveanunderstanding about the physics of the manufacturing process.
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2) Adaptive learning scheme in both qualitative and quantitative phases ofknowledge

acquisition.

3) An architecture that can be direcdy implemented on hardware in the near future,

and can also actasa knowledge-base for a higher level reasoning.

4) The ease of extracting knowledge from experts by means of creating influence

diagrams, which are also very useful in terms ofknowledge transfer.

5) Generalization capabilities of neural networks, allowing the model to create novel

ideas.

We should also, however, mention the disadvantages of this modeling approach:

1) Computationally intensive in the learning phase; the learning though, can be done

off-line. In the nearfuture, the whole architecture can be implemented on hardware,

which will increase the speed of computations dramatically because of its parallel

distributed processing capabilities.

2) Thequantitative knowledge stored in the neural networks is in terms of strengths of

connections (weights) between processors, and as such these weights do not give us

any understanding about the physics of the process, as opposed to a simple linear,

quadratic, or cubic relationship generated byregression analysis.

3) This approach is not suggested for initial process set-up due to the small amount of

data available and large level of variability. First principle models should be used

for that purpose. Although this technique can be used to provide insight because of

its generalization capability.

THE FUTURE DIRECTION OF RESEARCH

Further development of this work can befollowed in two different directions: theory and

application.

In terms of theory, we canexpand this work in two areas. First, instead of using backpro-
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pagation networks, which require supervised learning, we can use networks that employ

unsupervised learning schemes [20-23]. One such application is discussed by Burke [24].

Second, more intelligent optimization routines than purely stochastic ones can be used

for the synthesis of the networks. One possible optimization procedure is discussed by

Jain and Agogino [46]. There is also an on-going effort to improve the backpropagation

learning scheme in order to speed-up the learning procedure [26].

In terms of application, this method canbe applied to model different areas which require

learning. One such area is diagnostics. If an influence diagram can be constructed for a

problem domain, and enough experimental data can be gathered for the variables of the

model, there is no apparent reason why this approach can not model the behavior of the

problem under consideration.

One very useful application in diagnostics would be in the area of preventive mainte

nance [47]. The up-time of processing equipment plays a very definite role in the

efficiency of a manufacturing environment, and as such it would be very valuable to

detect and correct equipment related problems in their early stages, before they become

catastrophic. Most major problems, in their early stages, manifest themselves in minor

drifts in some of the process variables. One can create a preventive maintenance and

diagnostic model for the processing equipment by creating an integrated network that

relates trends in the process and equipment related parameters to an upcoming mainte

nance problem. The neural networks of the integrated network would each be trained on

the history of a set of parameters that relates them to specific equipment problems. Once

amodel is generated, it can beused as a tool for scheduling preventive maintenance.
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