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Robust Learning Control

Greg Heinzinger,* Dan Fenwick,* Brad Paden,* Fumio Miyazaki5

Abstract

In this paper the robustness of a class of learning control algorithms to state distur
bances, output noise, and errors in initial conditions is studied. We present a simple

learning algorithm andexhibit, viaa concise proof, bounds on the asymptotic trajectory

errors for the learned input and the corresponding state and output trajectories. Fur

thermore, these boundsare continuous functions of the bounds on the initialcondition

errors, state disturbance, and output noise, and the bounds are zero in the absence of

these disturbances.
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Notation

|| •|| Euclidean norm

IIMOIIa a norm



Robust Learning Control

Greg Heinzinger, Dan Fenwick, Brad Paden, Fumio Miyazaki

1 Introduction

Learning control is aname attributed to a class of self-tuning processes whereby the system

performance of a specified task improves based on the previous performances of identical

tasks. This is an advantage when controlling systems that can not be modeled accurately.

But the ideaof a self-learning systemis in itselfaesthetically appealing in that it represents

a significant step in the development of an intelligent, fully autonomous control system.

Consider the "learning" system depicted in Figure 1. «,(•) denotes an input trajectory.

P represents a plant whose desired output trajectory is yj(-) and whose actual output due

to «,-(•) is &•(•)• / is alearning operator which compares y<j(«) and y,-(-) and adds an update
term to«;(•) to produce tt,+i(*)- These trajectories are taken tobe functions oft € [0, T] and
the updates occur sequentially in time. The trajectories are supported on finite intervals of

the time axis and the iteration from i to t + 1 occurs from one interval to the next. In a

sense, «,(•) is a parameter which isadaptively tuned. In contrast to typical adaptive control

schemes, the parameter «,-(•) belongs to an infinite dimensional space.

As an example, a learning control scheme for a robot manipulator would record mea

surements as it moved an object from point A to point B; it would then use this data to

improve its performance the next timeit moved the same object from pointA to pointB. In

some applications the need to repeat atrajectory multiple times is adistinct disadvantage of

learning control. However, in many applications repetitive tasks are commonly performed

making learning control a very natural solution. Another advantage of learning control is

that it is easy to implement and allows simple modelsand controlschemes to be used while

compensating for unmodeled dynamics and complex phenomenon such as stiction. It is also

appealing because it is similar to some of our own learning processes; we may practice a

task (say throwing aball) many times before we are able to find inputs to a complex system

(our body) to accomplish the task.
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Figure 1: Basic learning system

Recently-there have been a number of efforts toward definmg-and-analyzingJeariiing.

control schemes [1,2,3,4,5]. In model-based learning schemes (Atkeson [4]) the inputs cor
responding to the desired and actual trajectories are computed from estimated system
parameters and the resulting input errors fed to the learning operator. In this scheme, the
performance of the algorithm depends on the quality of the parameter estimates. A more
common approach is to operate on the output errors directly, and themodel-based learning
scheme in [4] is shown in [5] to be a special case of this more general approach. The basic
strategy ofthese techniques is to use an iteration ofthe form uj+i(») = /(««(•)> Vd(') —Vi('))i
where the operator /(•»•) remains to be specified.

For time-invariant mechanical systems Arimoto et al. [1] andCraig [2] present conditions

on thelearning operator which guarantee system convergence upon repeated application of
the learning algorithm. One shortcoming of these analyses is that they are small signal
analyses which require the assumption that the initial trajectory (and thus all subsequent
ones) lies in a neighborhood of the desired trajectory. In addition, no investigation is
presented on the size or existence of these neighborhoods. Both Hauser [5] and Bondi et
al. [3] remove this assumption by developing global analyses, proving convergence of the
input sequence «,-(•) with any initial trajectory. Another extension of Hauser [5] allows
time-varying systems. This is important because we wish to improve the performance of
the plant as much as possible using conventional feedback control methods. The learned
input, «,-(•), is a feed forward term which further improves the performance for a specific
task. Thus, for most applications wehave the situation shown in Figure 2, and the learning

algorithm operates on the system between «,-(•) and y,-(«) which is time-varying.
In this paper we consider the robustness of the learning algorithm. Specifically, does

the performance of the algorithm continuously degrade as errors and disturbances are intro

duced? For a practical implementation we would like to know that the learning algorithm
causes the input, state, and output trajectory errors to be asymptotically bounded when

there are (1) errors in the initial state, (2) bounded state disturbances, and (3) bounded
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Figure 2: Learning control application for a plant with a feedback controller attached.

output disturbances. In addition, we would like to understand how these bounds depend

on the disturbances, and they should decrease to zero as the disturbances do.

In the last few years researchers have begun to answer these questions. Arimoto et al. [6]

deal with time-invariant mechanicalsystems and use a small signal analysis to demonstrate

robustness to initial state errors and differentiable state disturbances; the proof once again

assumes the initial trajectory is in some small neighborhood. In [3] Bondi et al. present

a global analysis of robustness for time-invariant mechanical systems. However, neither

of these papers answers all the questions posed above and both deal with time-invariant

mechanical systems.

In this paper weconsider the following class of nonlinear, time-varying systems described

by the following state space equations:

x(t) = /(a(t),«)+ £(*(*), t)ti(t)

y(t) = g(x(t),t).

As mentioned before, this is significant because we can apply our results to a plant and

feedback configuration as shown in Figure 2. The form of the learning operator studied

often and the one we study operates on the derivative of the previous output error in a

memoryless linear fashion:

(i.i)

«•+!(*) = «i(*)+ I (W(*)-*.(<)) . (1.2)

where X is a memoryless linear map. We choose L to be linear and memoryless because

this is sufficient for robust convergence and it allows for a very simple implementation. It

is also shown in this paper that we can include terms in the update law which act on the

previous output error and its integral.

The inclusion of this more general class of systems represents the main contribution of

this paper. In addition, the global proof of robustness we present is simple, concise and

complete, and it makes explicit the dependence of the bounds on the disturbances and

errors.



The remainder ofthe paper is structured as follows: Section 2 presents a simple learning
control example. Section 3 states the problem formally and presents our results. Section 4
examines additional examples and implications of our conditions. Section 5 discusses some

implementation issues.

2 An Example

In this section we present a simple example to illustrate the concept of learning control.
Consider- theone degree-of-freedom spring-damper system given by.the.differential equation

mq+cq + h(q) = v, (2-1)

where q is the position, m is the mass, c is the damping coefficient, and the continuous
function h(-) represents the (possibly nonlinear) spring force. We rewrite (2.1) as a first
order dynamical system:

y = (0 1)i = 5

where x = [ * ). Our objective is to find an input, v(t), such that adesired twice
continuously differentiable trajectory, qd(t) for t G[0,T], is followed.

If the system parameters are known exactly and q(0) = qd(0) and q(0) = g</(0), we can
write down the solution from (2.1) and use the control law v(t) = mqd(i)+cqd(t)+h(qd(t))+
kv(qd(t) - q(t)) + kp(qd(t) - q(t)) +u0(t) where mo(0 = 0. However, in many situations we
have only estimates ofthe parameters (m, c, h(-)), the initial state may vary (q(0) « tfd(0),
g(0) « 9d(0)), and there may be unmodeled dynamics. The basic idea oflearning control
in this example is to attempt the task (following g<*(t) starting from a given initial state
(qi(0),qi(0)) ), compare the output with the desired output, and adjust the "learned" input
«,-(•) for the next attempt. We use the following update law:

«i+i(«) = **(*) + ™(W) " &(*))•

In this situation the learned input is updated by the difference between the desired and

actual forces exerted on the mass. In the next section we show that g,(-) -> qd(-) as i

increases if |1 - fh±\ < 1. This implies that toguarantee convergence mmust be in(0,2m).
As expected the better the estimate ofm the better the convergence rate will be, as shown



in the next section. Intuitively we expect this algorithm to work since we are adjusting the

force exerted on the mass to be that required to follow the trajectory (mqd(t)). Requiring

m > 0 implies that we are updating in the correct direction and m < 2m prevents the

algorithm from "over-correcting".

3 A Robust Learning Control Algorithm

In this section we present a robust learning algorithm for a class of time-varying, nonlinear

systems. By robust we mean that when state disturbances are present or there are errors

in the initial conditions our learning algorithm generates a sequence of inputs such that

the asymptotic trajectory errors for the input, state, and output are bounded. In addition,

these bounds are continuous functions of the bounds on the initial condition errors and the

disturbances, and we quantify the degradation due to each of these factors.

The description of the system, assumptions, notation, and update law are similar to

those in [5]; and the proof technique is similar to many in that it proceeds in a straight
forward manner showing that wehave a "contraction" on the input sequence implying the

convergence results.

As specified in Equation (1.1) the class of nonlinear, time-varying systems considered is

described by the following state-space equations:

&i(t) = /(*,-(*), t) + B(*i(t), t)Ui(t) + Wi(t)

»(*) = *(*••(*)>*)

where, for all t G[0,T], *,-(*) GRn, «,(*) GRr, y,-(t) GRm, and w,-(t) GRn. The functions
/ : Rn X [0,T] -> Rn and B : Rn X [0,T] -» RnXr are piecewise continuous in *; and

g :Rn x [0,T] -♦ Rm is differentiable in x and r, with partial derivatives #*(-, •) and gt(; •)•
We consider inputs u,-: [0,T] -* Rr, not necessarily continuous. In addition, weassume the

following properties:

(Al) For each fixed x,(0) with »,-(.) = 0 the output map O : C([0,T],Rr) xRn-»
C([0,T],Rm) and the state map S :C([0,T],Rr) xRn-» C([0,T],Rn) are one-to-one.

In this notation y,-(.) = O(ttt(.),*i(0)) and *;(•) = £(«,•(.), *i(0)).

(A2) The disturbance u\(-) is bounded by bw on [0,T] (i.e. ||w,-(*)|| < bw on the interval

[0,21).

(A3) The functions /(•, •), £(♦, •), #*(•, •), and £*(-, •) are uniformly globally Lipschitz in x
on the interval [0,T]. That is, ||fc(*i,t) - h(x2yt)\\ < kh\\xi(t) - x2(t)\\ V t G[0,T]

and some kh < co G R (h G {/,£,<7x,<7t}).



(A4) The operators B(-, •) and flrx(«, •) are bounded on Rn X[0,T].

(A5) All functions are assumed to be measurable and integrable.

Assumption (Al) implies that given an achievable, desired output trajectory (yd) and initial
state (a?c*(0)), there exist unique input (ud) and state (xd) trajectories corresponding tothis
output trajectory. Assumption (A4) on gx(; •) implies that gis uniformly globally Lipschitz

in a: on [0,T].

The function w,-(t) represents both deterministic and random disturbances of the sys
tem; it may be stiction, non-reproducible friction, modeling errors, etc. This, is important

to include since these are present in physical systems. Assumption (A2) restricts these

disturbances to be bounded, but they may be discontinuous (e.g. stiction in mechanical

systems).

We consider the update law given by

iii+i(t) =(1 - 7)«.<*) +7«o(«) +I(W(*),*) [&(*) - Vi(*)] 0<7<1, (3.2)
where L : Rro X [0,T] -*• RrXm is bounded. This learning operator is similar to those used
in [5,6,1,7,8] in that it updates the system input in an affine fashion.

We include 7 to allow the influence of a bias term. This may prevent the input from

wandering too much initially. In addition, 7 may be allowed to vary with the iteration to
further improve performance; we leave it fixed for simplicity of presentation. The use of7
will be discussed in Section 5, and for an initial reading 7 is best ignored (i.e. 7 = 0) since

its inclusion does not alter the proof in any essential way.

The following normis used to simplify the expression of our results.

Definition 3.3 We define the Anorm for afunction h : [0,T] -> R* by

IIMOIU = S*P e-Xt\\h(t)\\. (3.3)
*g[o,ri

Remark: From this definition we can see that \\h\\\ < Wh]^ < eXT\\h\\x for A > 0 (where

IWloo = SUP MOID* imptytog tnat tnese two norms are equivalent. Thus convergence
°° *€[o,T]

results can be proved using either norm.

For clarification of the remaining discussion, function parameters will be shown in sub

script notation with the dependence on time implied unless otherwise stated. In particular,

gxi = 3£0OM)|*=X,(O> 9xd =&0(»»*)l»=*a(O' 3ti = Tt9ix^)\x^xi(ty
9td = foOM)^), fi = /(*<(<).*). U = /(*-(*)•<),

Ui = «$(i), ud = ud(t), Wi = Wi(t),
Bi = B(xi(t),t), Bd = B(zd(t),t), Li = I(y,-(t),«)



and kgx,kgU kf, kB, kg are the Lipschitz constants for </*(•, •), 0«(*>')» /(*»*)» 5(*»0> a™1
</(•, •) respectively. We now state the main result of this paper.

Theorem 3.4 Let the system described by (3.1) satisfy assumptions (Al)-(A5) and use

the update law (3.2). Given an attainable yd{-), if

|(1 _7)j_ H0(x,t),t)gs(x,t)B(x,t)l < p<1 V(M) €Rn X[0,21
and the initial state error is bounded (\\xd(0) - &;(0)|| < b^), then as i -> oo the error
between «,- and Ud is bounded. In addition, the state and output asymptotic errors are

bounded.- These bounds depend continuously on the bound on the initial state error, bound

on the state disturbance, and 7; as bxo, bw, and 7 tend to zero, these bounds also tend to

zero.

The main idea of the proof is to show that ||tfu;+i||A < /#«i|U + e where 0 < p < 1

(Sui = Ud-Ui). This implies that limsup \\6ui\\\ < z =£• Thus the main portion ofthe
t—HX> I ~~ P

proof is a calculation to show that this relationship holds. The results follow quickly once

we have established this. Intuitively, the condition on L says that if we push on the system

(through «), we can observe a change in the output, and we take an appropriate action to

reduce the error.

Proof. From (3.1) and the update law (3.2), the error for the iterate i + 1 can be

written as

- ui+i = ud - (1 - 7)«i - 7«o - Li \yd - Hi] (3.5)
= (1 - i)(ud - Ui) + i(ud - Uq)

- Li [gxd(fd +Bdud) +gtd - gxi(fi +Bm +Wi) - gti] (3.6)
= [(1 - 7)/ - LigxiBi] [ud - u{) +i{ud - wo)

- Li [gxd(fd +Bdud) +gtd - 9x*{fi +B{ud +w,-) - g«] • (3.7)
Taking norms, using the bounds, and using the Lipschitz conditions yields

Ihf-tii+ill < ||(1 -l)I-LigxiBi\\\\ud- Ui\\ +7lh*-«o||

' \\gxd-gxi\\\\fd + BdUd\\
+\\Li\\l +11^.11 [ll/rf - /.ll +ll^rf - .Billll^ll -*- Ilxt7.ll] \ (3.8)

k +\\gtd-gti\\
< phd-uiW + iWud-uoW

kgx\\xd - Xi\\bd
+bL\ +bgx[kf\\xd-Xi\\ +kB\\xd-Xi\\bud +bw] \, (3.9)

k + kgt\\Xd - X{\\

Ud



where bL, bgx are the norm bounds for £(-, •), gx(-, •) respectively and

bd= sup \\fd + BdUd\\ and 6ud = sup ||ud||.
t€[o,n <€[0,T]

Defining fci = bL[kgxbd +M*/ +*bM +**] equation (3.9) simplifies to

\\ud - tti+i|| <p||«d - «.H +Ml*** - *.'ll +&lM«, +7||«rf - «o||. (3.10)

Now writing the integral expression for x(t) (with the quantities in the integral being
functions of r) and taking norms we obtain

||a*-*.-|| = |*<K0)-**(0)
+/'((fd +Bdud) - (fi +Bm +wifjdrj (3.11)

< IMO) - ««(0)||

[* ( \\f<-fi\\HB*-Bi\\\M\\dr (3.12)
Jo \ +\\Bi\\\\ud-Ui\\ +\\wi\\ )

< \M0)-Xi(0)\\

+/*((*/ +ksb^Wxd - Xi\\ +bB\\ud - Ui\\ +bw)dr, (3.13)
where bB is the norm bound on £(•, •). Defining fc3 = (kf +kBbud), \\txi\\ = \\xd - x;||, and
using a basic integral inequality (see [9] p. 96) we have that

\\Sxi\\ < 11*40) - *i(0)||e*

+/* e*»(*-T> (bB\\ud(T) - Ui(r)\\ +bw)dr. (3.14)
Combining equations (3.10) and (3.14) yields

||*tti+i|| <p||*«i|| +*i {l|fe.<0)||e**4 +jf ek^-r\bB\\6ui(T)\\ +bw)dr}
+ bLbgxbw + >r\\6uo\\ (3.15)

< p\\Sui\\ +hbB f ek^-^\\6ui(r)\\dr
Jo

+*i||fo,-(0)||e*»* +hbw I c*»<*-r>dr
Jo

+&lM«+ 7||tf«o||. (3,16)

Multiplying (3.16) by e~At, defining k=max^s,**}, and assuming A>k we have that

+fci|l^(0)ll*(*3_A)t +*i*« /' e-Xre^-x^-TUr
Jo

+ bLbgxbwe-Xt + ie-Xt\\6u0\\. (3.17)

c-*i

10



Noticing that the integrals are strictly increasing and that for a constant ||fc|| \ = k we

obtain

+̂illMo)ll +̂ (i-^-^)
+ bLbgxbw + i\\6u0\\\. (3.18)

Defining p=p+^(1 - e<*-A)T) and k4 =bLbgx +^ (l - e(*»-A)T), we have that

\\Sui+l\\x < p\\Sui\\x + k1\\6xi(0)\\ + k4bw + <y\\6u0\\x (3.19)

||^.+i||a < p\\S«ih + e- (3'2°)

Where e combines the norm bounds of the initial state errors, state disturbances, and bias

contribution. Since p < 1, we can find aA>fc which makes p < 1. By Lemma A.l, wt-

converges to the neighborhood of Ud of radius \rhp) ewith respect to the Anorm. Thus

Urn sup \\6ui\\x <(t^z) e- (3-21)
Using equation (3.14), and similar manipulations we obtain

IKIU < ||^(0)||+ f'e^-x^"^\\Sui\\xdT (3.22)
Jo

< IIMoJII +̂ ^-^-^IIMa. (3.23)

So limsup ||fe,||A <||**,(0)|| +j^ (l - e^"x)T) (j^ e.
To obtain the result for y; we use the fact that g is Lipschitz in x. Thus ||£y,||A <

fc^ll^XillA, with ||&p,||a being bounded as above. I
Equation (3.19) clearly illustrates the influence of the initial state error, state distur

bance, and bias term in degrading our bound on the asymptotic errors. We see that this

bound on the degradation is continuous in these factors. Furthermore, in the absence of

these terms e = 0, and we have convergence of the algorithmto the desired trajectories.

We now state and proverobust learning for a few useful extensions of our update law.

Corollary 3.24 // we replace (3.2) with

ui+1(t) = (1 - 7)«.-(«) +7«o(*) +L(yi(t)it) [yd(t) - ifi(tj\
+K(yi(t),t)[yd(t)-yi(tj\

with K(',-) bounded, then Theorem 3.4 still holds.

11



Proof. Using the fact that g is Lipschitz in x and the condition on K it follows that
\\Ki(yd - Vi)\\ < bKkg\\xd - *,-||. Thus we modify h in (3.10) by adding bKkg and proceed
exactly as in the proof of Theorem 3.4. *
Remark: This update law is referred to as a "PD" scheme.

Corollary 3.25 If in addition to the conditions in Corollary 3.24 we have measurement
noise, Vi(t) = g(xi(t),t) + Vi(t), such that \\vi(t)\\ < bvl and \\vi(t)\\ < bv2, then we obtain
the same results as in Theorem 3.4>

Proof. The proof proceeds the same as in the proof of the Theorem 3.4; equation

(3.19) is modified by adding the term bj(bv\ + 6l&u2- •

Corollary 3.26 If we modify the learning operator asfollows

m+iW = (1 - 7)«.'W +7«o(0 +L(yi(t),t)[yd(t) - yi(i)]
+Q(yi(t),t)[J\yd(r) - yi(r))dr]

withQ(',') bounded, then we obtain the same results as in Theorem 3.4-

Proof. From the bound on Q we have that

||«< /W) - WMWI <bQkg f |Mr) - Xi(T)\\dT. (3.27)
Jo Jo

Letting RHS(t) denote the right hand side of (3.14) evaluated at time *, we see that
RHS(s) < RHS(t) for s < t. This together with (3.27) and the fact that t < T, al
lows us to modify fci in (3.10) by adding bQkgT. Then we proceed exactly as in the proof

of the Theorem 3.4. *
These corollaries are proved independently so they could be combined to show that a

«PID,, update law, operating on asystem satisfying the conditions ofTheorem 3.4, isrobust
to initial state errors, state disturbances, and output noise.

4 Examples and Implications

In this section we apply thelearning algorithm to the dynamics ofa robot manipulator and
examine the implications ofourresults. In addition, we present an example to demonstrate

the need for differentiation in the update law.

12



4.1 Robot Example

If 0 e Rr is the vector ofjointangles ofa robot manipulator, then we canwritethe dynamics

as

or as

M(0)0 + C(0,0)0 + F(0) + G(Q) = r (4.1)

x =

0 \
-M-1(Q)(G(e) +c(eie)e +F(e)) )

y = (Ci C2)x,

(4.2)

where x = I Iand r is the vector ofjoint torques which we assume are bounded. M(0)
V6/ .....

is the bounded, positive definite inertia matrix for the manipulator, C(0, 0)0 is the coriolis

and centripetal forces, G(0) is the gravity forces, F(Q) is the viscous friction forces, and

Ci, C2 € RmXr (all are assumed to be smooth). The update lawexamined is

Ti+l =Ti +L(yi(t), t) [&(*) " W(*)] • (4«3)

To apply our results we need to check that assumptions A1-A5 are satisfied. Foropen-

kinematic-chain manipulators with bounded configuration space (i.e. 9i 6 [a^bi] for pris

matic joints) we know that Al is satisfied, we assume A2 & A5, and we see that A3-A4 are

satisfied provided we establish a bound on 0. The bound on 0 implies that the state space

is bounded and contained within a compact set. This guarantees that the desired functions,

which are continuously differentiable, are Lipschitz on the state space. Thus we are left to

show that 0 is bounded. This is done by noticing that the power dissipated by friction,

< F(0),0 >, increases as ||0||2, whereas, the power added to the system, < Af(0)r,0 >,
increases as ||0||, implying a bound on ||0|| since ||r|| was assumed to be bounded. In
addition, if a particular joint torque exceeds the torque bounds we project back into the

allowable set of torques, this is discussed farther in Section 5.

Theorem 3.4 implies that given a desired trajectory the torques will converge, even in

the presences of disturbances, to a neighborhood of the desired torque trajectory providing

that ||J - LgxB\\ < p < 1. Thus we ask, what does this condition imply?
We observe that gx = (Ci C2), and looking at the structure of B we have

LgxB = LC2M-1.

For ||J - LC2M~1\\ to be less than one we observe that it is necessary for C2 to have full

13



column rank, which requires that m (the number of outputs) is greater than or equal to

r (the number of joints). In essence we need measurements of each joint velocity, so for

simplicity we let C2 = I ], so the last rentries of yare 0. Letting L= (Li X2), where

L\ e Rrx(m_r) and L2 GRrXr, we see that the condition becomes ||J —X2Af-"1|| < p < 1
which gives a condition on the accuracy of the dynamical model of M that we must have.

We are free to choose L\ without destroying the convergence of the algorithm. Since the

update law differentiates the output, we are using acceleration data for each of the joints

to insure robust learning.

4.2 Another Example

Through the use of a simple example we hope to make plausible the claim that for robust

learning with mechanical systems the update law must contain derivatives of the output.x
Weconsider the one degree-of-freedom system described by (2.1)and (2.2). We specify the

desired trajectory to be qd(-) = 0, implying Xd(-) = I I. Consider the update law
w

m+iW = m(t) +JK'(g.-(«)99,-(0) [**(*) - &(*)] •

Ifrrt(0) = and uq(-) = 0 then

Ul(0) = 0-K(0,v)v

1It is possible to consider systems for which the relative degree between the input and the output is
not one (see [10] for definitions), however, since we are mainly interested in mechanical systems with force
inputs and assume we can measure velocities we concentrate on relative degree one systems. For a SISO
system, if the relative degree between the input and the output is i/, wecould use the update law Ui+i(i) =

and the condition on the learning operator becomes |1 —L(g(z, t), t) •

< p < 1. To obtain the results in Theorem 3.4 we would need to add

additional conditions on the derivatives of/, g, and B (e.g. -§pg{x, t) isLipschitz in x). For MIMO systems
the conditions are analogous. In these analyses we must also be concerned with the relative degree between
the state disturbances and the output. If the state disturbances are discontinuous we can't differentiate y
more than the relative degree between the state disturbances and the output.

«.(<)+L(yi(t),t) [&*(*) - $ry.-(<)
LhL)-1g\ = |1 - L(g(x,t),t) •L)-Xgb
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u2(0) = -K(0,v)v-K(0,v)v

un(0) = -nK(0,v)v,

which is a divergent sum. In addition, adding terms depending on Xd —a?« or on I Xd —Xi
to the update lawwould not improve the situation since these would both be zero at t = 0

in the example considered. In the literature update laws such as the one above have been

proposed, and convergence can be proven in the absence of disturbances. However, these

update laws are not robust.

5 Discussion

The learning update laws presented in Section 3 guarantee robust learning providing certain

conditionsaremet, and this is the main issuewhichwe have researched. However, in practice

there may be modifications which improve the performance of the algorithm.

If at any time the update law produces an input that we know to be out of range, and

the allowable set of inputs is a convex set, then projecting back into this set will improve

performance. This is evident from our analysis since this will further decrease \\ud —itt_|_i ||.

For many robot manipulators the allowable set of joint torques is a hypercube and projection

is easily implemented.

Theorem 3.4 implies that as the iteration number approaches oo the trajectory errors

are less than certain bounds. However, in many applications we desire to stop the process

in a finite time and we desire the error to be as small as possible at this time. For this

situation the bias term may be helpful, and varying the update operator as the iterations

progress may improve performance. The bias term is initially useful to keep the input from

wandering excessively if we have a reasonable expected trajectory for the input, but with

time we want to decrease its influence by decreasing7. Once the input has converged fairly

well we may want to begin decreasing the learning gain (the size of L) to cause the input

to average out random disturbances, thus improving the accuracy of the final input that

we choose after a finite time. It is easily seen that these modifications do not change the

results of Theorem 3.4 provided that the condition on the update law is satisfied for all L ,-

and 7;.

The class of systems considered is fairly general, and a closer examination of the results

reveals that what is essential is that when we apply an input to the system, we can observe

a corresponding output, and we act upon this output with the learning operator. The
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stability of the system may affect the convergence rate but not the actual convergence of

the learning algorithm.

It is important to remember thatlearning control is not a form ofdynamic feedback. It
can't be used to stabilize a system nor to change its performance for a general trajectory.

Thus in applications it is desirable to use a robust feedback controller to improve the
system performance, and as explain earlier this is the motivation for considering time-
varying systems. Learning control iteratively updates afeed forward term to provide a finer
and finer "open loop" performance along a specific trajectory, it is not intended to make

up for a poor feedback controller design.

In conclusion, we believe that the learning algorithm presented is applicable to a wide

variety of problems. The proof of robust learning allows us to use the learning algorithm
withconfidence in applications. Moreover, for a particular system and taskour results allow

bounds to be calculated on the degradation in performance due to each disturbance. We

further conjecture that these results can be extended to other update laws, allowing the
differentiation to be replaced by saya lead filter with better noise response; this constitutes

an interesting area for future research.
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Appendix A

Lemma A.l If {a,}£0 ** a sequence of. real numbers such that

\ai+i\<p\ai\ + e 0<p<l (A.2)

then

Urn sup \ai\ < (- )e. (A.3)

Proof. Iterating equation (A.2) we obtain

|ai| < p\a0\+e

\a2\ < p2\a0\ + (l + p)e

N < PiM +Y/Pje = Pl\ao\ +(j^) e. (A.4)
j=o \ " '

So as i -» oo, p{' -*• 0 implying that limsup |a,-| < ( 1e. •
t—»•<» \l P'
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