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Particles simulations have been made of an infinite plasma slab, bounded by absorbing

conducting walls, with a magnetic field parallel to the walls. The simulations have been

either 1-D or 2-D, with the magnetic field normal to the simulation plane. Initially, the

plasma has a uniform density between the walls, and there is a uniform source of ions and

electrons to replace particles lost to the walls. In the 1-D case, there is no diffusion of

the particle guiding centers, and the plasma remains uniform in density and potential over

most of the slab, with sheaths about a Debye length wide where the potential rises to the

wall potential. In the 2-D case, the density profile becomes parabolic, going almost to zero

at the walls, and there is a quasineutral presheath in the bulk of the plasma, in addition

to sheaths near the walls. Analytic expressions are found for the density and potential

profiles in both cases, including, in the 2-D case, the magnetic presheath due to finite

ion Larmor radius, and the effects of the guiding center diffusion rate being either much

less than or much greater than the energy diffusion rate. These analytic expressions are

shown to agree with the simulations. A 1-D simulation with Monte Carlo guiding center

diffusion included gives results that are in good agreement with the much more expensive

2-D simulation.

* Present address: Lawrence Livermore National Laboratory, University of California,
Livermore, CA 94550



I. Introduction

Particle simulations can be a useful tool for studying the formation and steady state
behavior ofsheaths near theboundaries ofplasmas. To becertain ofincluding all relevant
physics, such simulations would have to be fully three-dimensional, but 3-D simulations
are very expensive, and it is completely impractical to make extensive sets of 3-D simula

tions with varying parameters. Even with 2-D simulations, large numbers of runs can be
impractical, especially if the phenomena being simulated depend on resonances involving
only a small class of particles, or on the interraction of physics on different time scales,
sincein these casesa large number of particles will be needed to reduce noise to a low level,

or a large number of time steps will be needed. One-dimensional simulations, on the other

hand, are very cheap, and it is easy to make many runs with many time steps and parti

cles, but 1-D simulations often leaveout important physics that is present in two or three

dimensions. If it is possible to modify a 1-D simulation in such a way that the essential

two or three dimensional physics can be included, without doing a fully two dimensional

run, then a great deal of computer time can be saved. At the very least, 1-D runs can

then be used to explore parameter space, and to determine an optimum set of parameters

for making a few 2-D runs, which may be used to verify that the two-dimensional physics

is being treated correctly in the 1-D runs.

To illustrate this, we show, in Fig. 1, the potential profile $(2) and electron density

profile nc(x) for a 1-D simulation and, in Fig. 2, for a 2-D simulation, of a plasma slab

bounded by floating conducting walls at x = duRp, with a uniform magnetic field Bo in
the 2 direction, parallel to the walls and perpendicular to the simulation space. Models

related to this one can be used to describe the interface between the closed field-line region

and the scrape-off layer in tokamaks.1

The simulations were done using the electrostatic two-dimensional particle simulation

code ES2.2 This code is of the explicit type, in that it includes full electron and ion

dynamics, and simulates plasma behavior on the time scale of the electron dynamics.3

The simulation plane is periodic in the y direction with periodicity Ly, and is bounded
at x = Rp by a floating, perfectly conducting wall, which absorbs all particles. Inversion

symmetry4 is imposed at x = 0 (so that in effect there is another wall at x = —Rp), as well
as the boundary condition $ = 0. A uniform ionization source is simulated by creating

ion-electron pairs at random positions and times, and with random and uncorrelated initial

velocities (with a maxwellian distribution). For the 1-D simulation, Ly was set equal to



0, eliminating the y dimension. In both simulations, the mass ratio mi/me was 40, the

ion and electron temperatures were initially equal (and remained about equal) the thermal

ion Larmor radius was about 0.212p, and the thermal electron Larmor radius was about

0.03i2p. In the 1-D simulation, about 6000 particles of each species were present at a given

time, and the Debye length was 0.03Ap. For the 2-D simulation, about 25000 particles

ofeach species were present at a given time, in a simulation area of 4A£, and the Debye
length was 0.06/2p. The 2-D simulationwas run for 1000 ion gyroperiods, at which time it

had reached a fairly steady state. (The 1-D simulation reached a quasi-steady state within
one ion gyroperiod.)

Before considering the obvious differences between the 1-D and 2-D simulations, we

note that in both cases the plasma hasa potential that is negative with respect to the wall,
by a few times the ion temperature T*, with most of the change in potential occuring in a
narrow sheathnear the wall. Transport across a magnetic field is morerapid for ions than
for electrons, so in steady state the plasma must develop a potential that is negative with
respect to the wall, to make the ion and electron loss rates equal. This is in contrast to

the case where the magnetic field is perpendicular to the wall, which results in a positive
potential with respect to the wall. (When the magnetic field is at an oblique angle 9 to
the wall, unless 9 is extremely small the flow of electrons to the wall along the magnetic
field will be much greater than the transport of ions across the magnetic field, and the
plasma will have a positive potential with respect to thewall, ofamagnitude that isalmost
independent of 0.5»6)

There is another important difference between cross-field sheaths and sheaths devel

oping along a magnetic field (or in an unmagnetized plasma). While it is possible to make
a collisionless sheath model along a magnetic field, which maybe modified when collisions
are included, it is not possible to model a cross-field sheath without collisions (or effective
collisions of some kind) to give cross-field transport. The form of the sheath will depend
very much on the details of the cross-field transport used in the model. (Daybelge and
Bein5 calculate the profile ofa ttcollisionlessn sheath in the limit 9=0 by assuming that
the ion and electron distribution functions are zero in the regions of phase space where
particles go the wall, and maxwellian everywhere else. But their calculation, which gives
results quite different from our simulations, does not describe a self-consistent steady state
on the time scale of cross-field transport, and has no relevance to the late time behavior
of our simulation models.)



The differences seen in the 1-D and 2-D simulations shown in Figures 1 and 2 are
due to the differences in cross-field transport. Initially, ions and electrons are uniformly
distributed inas, thepotential $(a?) is flat, and those particles whose guiding center position
xge = x + vv/fl is within a Larmor radius v±/Q of the wall can be lost immediately,
without any transport in xge. (Here ft is the gyrofrequency, either ft* = eBo/m»c, or
fte = —eBo/mec, and v± = vj + «*.) Since an ion Larmor radius is greater than an
electron Larmor radius, more ions than electrons can be lost, and the plasma will develop
a negative potential. If the ion plasma frequency Upi is much greater than ft*, then the
plasma willbuildup a negative potential $0 of a few times T*/e whenonly a small fraction
of the ions within a thermal Larmor radius of the wall have been lost, viz. when those

ions within a few Debye lengths of the wall have been lost, and after this the ion losses

will almost cease. At this time the plasma is quasineutral with uniform density, and the
potential profile #(x) is fiat, except in sheaths a few Debye lengths wide (or an electron
Larmor radius wide if that is greater than a few Debye lengths) near the walls. All of the
rise in potential occurs in these sheaths, which have much lowerdensity than the rest of the

plasma. In the 1-D simulation, there are no forces in the y-direction exerted on particles,

so there can be no change in a particle's xgc, which is the y-component of its canonical
momentum. The potential and density profiles therefore remain in this state, as is seen

in Fig. 1. Actually this is not strictly speaking a steady state, since particles can diffuse

in energy, as a result of collisions with other particles in which part of the x-component

of momentum is exchanged. Even a particle with xgc not within a Larmor radius of the
wall can be lost, with no change in its xge, if it diffuses up far enough in energy so that

its Larmor radius becomes greater than the distance from xgc to the wall. The further xge
is from the wall, the longer this takes. Eventually, the plasma density profile will evolve

to a narrow peak equidistant from the two walls, but if the width of the slab 2Rp is much

greater than a thermal ion Larmor radius pi then the plasma will take an exponentially

long time to reach this state. For any reasonable number of time steps in the simulation,

the plasma density and potential will be essentially flat except in narrow sheaths near the
wall, as seen in Fig. 1.

In a 2-D simulation, on the other hand, particles can change their xge, as a result
of forces in the y-direction, either due to binary collisions with other particles, or due

to interractions with waves which have a finite y-component of wavenumber, ky. If the
ions have a characteristic collision time t/{, then the time required for an ion to diffuse



Figure 1
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1. Potential and electron density profiles for a1-D simulation with no diffusion of xgc.
Debye length and thermal electron Larmor radius are both 0.03i2p, and thermal ion Larmor
radius is 0.2i2p.



to the wall will be on the order of R^/pfe, and the electrons will diffuse to the wall in
a characteristic time fi*/p%v€. Since the flow to the wall must be ambipolar, the species
with the shorter diffusion time, usually the ions, will be held back by an electric field, and
both species will diffuse to the wall in a diffusion time characteristic of the more slowly
diffusing species, usually theelectrons. After atime longer than this, the density profile in
the quasineutral region, away from the sheaths near the walls, will be determined by the
balance between diffusion in xgc and the source 5(x)

where Dx « p*ve is the diffusion coefficient in electron guiding center position. We have
neglected the effect of the electric field on the electrons. If Dx and S are independent of
x, then the density profile will be parabolic, with a maximum in the center of the slab,

at x = 0, and going to zero at the walls. The potential profile in the quasineutral region
will depend on the ion energy distribution, which in turn will depend on the balance

between diffusion and loss of energy, and spatial diffusion, but in general the potential
will have a logarithmic dependence on density in this region, which is analogous to the
Bohm presheath7. Near the walls there will be sheaths about a Debye length wide, with
a Debye length defined not by the density in the center of the plasma, but by the much
lower density near the wall, at the beginning of the sheath. Hence, for the same central
density and temperature, the sheaths in this case will be substantially wider than in the
1-D case. For a parabolic density profile, the sheath width will be approximately

Sx =(V2)1/3Ad/S

where A^ is the Debye length in the center of the plasma. Figure 2 shows that the
.densityand potential profiles of the 2-D simulation are in approximate agreement with this
picture, although there are details, such as a macroscopic vortex structure resulting from
the nonlinear development of a Kelvin-Helmholtz instability,8 that cannot be described by
spatial diffusion and an effective collision rate.

The fact that the density profile in the 2-D simulation is described fairly well as a
parabola going to zero at the wall, suggests that much of the 2-D physics, which makes

the 2-D simulation look very different from the 1-D simulation, could be included in a
1-D simulation by artificially putting in a coefficient of diffusion in xge, uniform in space.
This diffusion coefficient would incorporate all of the 2-D processes, such as ion-electron



Figure 2
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x/Rp

2. Potential and electron density profiles for a 2-D simulation, with central Debye length
0.06.Rp, edge Debye length 0.12-Rp, and thermal ion Larmor radius 0.18i2p.



collisions, Kelvin-Helmholtz instabilities,9 and lower hybrid drift waves,10 which cause
diffusion in xgc, and would allow all of the bulk properties ofthe 2-D simulation (although
not, of course, such details as the Kelvin-Helmholtz vortex structure) to be reproduced
in a much cheaper 1-D simulation. A nontrivial check of such a notion would be to see

whether the shape of the potential profile #(x) could also bereproduced, since this profile
depends on the interraction between energy diffusion and drag, which already are present
in the 1-D simulation, and spatial diffusion.

In Sec. II, we find the potential and density profiles that would be found in the 1-D

case, with no diffusion in xge, when the plasma has reached a quasi-steady state, with

further changes (due to diffusion in energy) being exponentially slow. These profiles are

compared to those seen in Fig. 1. In Sec. Ill, we calculate analytically what the density

and potential profiles should look like with uniform ion and electron spatial diffusion

coefficients, considering first the limit where the ion spatial diffusion rate is much lower

than the energy diffusion rate. This limit is the appropriate one for the 2-D simulation

whose results are shown in Fig. 2, at least for x not too close to the wall, since it involves

only one species of ions. Because collisions between like particles cannot result in any

diffusion in xge, although they can result in diffusion or loss in energy, the ion spatial

diffusion rate in this simulation is due only to collisions with electrons, or to interractions

with waves, and is consequently much lower than the energy diffusion rate. It is shown that

the potential profile in Fig. 2 is in good quantitative agreement both with the analytic

expression (a simple Boltzmann relation between ion density and potential), and with
the potential profile of a 1-D simulation in which a weak spatial diffusion rate has been

artificially included. Near the wall, however, the simulation results are not in such good

agreement with the analytic expression for the potential, because the ion spatial diffusion

rate is greater than the energy diffusion rate. If there is more than one species of ion

present, as there often is at the edge region of tokamaks, due to impurities, then this limit

can also apply further from the wall. An analytic expression for the potential profile is

derived in this limit, and is shown to agree well with 1-D simulations in which a strong
ion spatial diffusion coefficient has been artificially included.

The analysis in Sec. Ill does not include finite ion Larmor radius. This is appropriate

for simulations, such as the 2-D simulation shown in Fig. 2, where the ion Larmor radius

is less than or comparable to the Debye length at the beginning of the sheath, and indeed

this tends to be marginally true in the scrape-off layers of tokamaks. At higher density,
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such that ujpi ^> ftt- at the beginning of the sheath, finite ion Larmor radius must be

taken into account, and there are modifications in the potential within an ion Larmor

radius of the wall, even when this is much greater than a Debye length; this region, which

is quasineutral, has been called the "magnetic presheath" by Chodura.6 In Sec. IV we

calculate the potential and density profiles including the effect of finite ion Larmor radius,

and show that, in the limit that the ion spatial diffusion rate is much greater than the

energy diffusion and loss rates, finite ion Larmor radius has no effect; the potential profile

found in Sec. Ill in this limit is exactly valid for arbitrary ion Larmor radius. In the

case where the ion spatial diffusion rate is less than the energy diffusion and loss rates,

there are some modifications to the potential in the magnetic presheath, within an ion
Larmor radius of the wall. However, most of the drop in potential still takes place in the
much narrower non-neutral Debye sheath, of width comparable to a Debye length, near
the wall. (A similar calculation was done by Holland, Fried and Morales,11 who also found
a Debye sheath and a magnetic presheath,but not a Bohmpresheath because their source
was located at x —*• —oo rather than being distributed throughout the plasma.) This is
confirmed by 1-Dsimulations,with spatial diffusion artificiallyincluded, and with different

values for the ion Larmor radius. An argument is given suggesting that this would not
be true in a 2-D simulation, where ion-electron collisions and current-driven instabilities

might be expected to broaden the Debye sheath, resulting in a potential profile whose
scale length near the wall is not a Debye length, but an ion Larmor radius. We have not

been able to do a 2-D simulation to confirm this conjecture, since such a simulation, with
Wpi » ftt, would require many more particles than the simulation shown in Fig. 2, and
would be very expensive. A summary and conclusions are given in Sec. V.

H. 1-D Model Without Diffusion

Suppose the ions and electrons are initially maxwellian and uniformly distributed in
xge

Me,*gc) = n0mtTr1exp(-c/T<) (1)

/e(€, xge) = nomeT-^xpf-e/Te) (2)

where, for the ions

e=Am«(i£+t£) + e*(*) (3a)

xgc = x+vy/Ui (3b)
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and for the electrons

*=§"»«(**+«?)-e*(*) (4a)

Xgc=X-Vy/Qe (4b)

Eqs.(l) and (2) may be written as

fi =nomiir1exp(-e*(x)/T0exp(-7rm;2/2ri)exp(-m<t;J/2ri) (5)

fc = nomeTe"1exp(+e*(x)/Te)exp(-m<t;2/2re)exp(--mtt;2/2re) (6)

and the ion and electron densities are

/+oo *+oo

dv9exp(-mivl/2Ti) / dvvexp(-mivl/2Ti)
•oo «/—oo

(7)
/+oo /»+oo

dv*exp{-mevl/2Te) / dvyexp{-mev2/2Te)
•oo «/—oo

(8)
Poisson's equation

—$ = 4ne(ne - m)

determines $(x), which in this case is equal to 0, initially. Within a gyroperiod, particles

with e and xge suchthat vx > 0 at x = ±Rp will go to the walls and be lost. The condition
for this is

«>\m(xSc - Rp)2H? +e^JJp) (9)
for ions, and

e>imeOv ~*p)2«« " «*(*p) (10)
for electrons. At this time, before any diffusion in e has taken place, the distribution

functions will just be maxwellians truncated in this region. $(x) will no longer be equal

to zero everywhere, but will adjust so that Poisson's equation is satisfied with these new

distribution functions. Changing variables from vz and vy to i/t = miv\j2Ti and f =
(mivJ/^Tj)1/2, the new ion density is

/{mam /*Vma«o

df exp(-£2) / di> tfr-We-* (11)
•oo Jo

where Vw» is the ij) at which an ion can get to the wall, from Eq.(9)

^ma* = (W(x,c - Rp)2 - (xge - x)2]ft? + e[*{Rp) - #(x)])/Ti (12)
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or, expressed in terms of £

tfmaa = (2mi/Ti)1^ni^max - £)(Rp - x) (13)

and (mas is the £ at which Vw» = 0

c -d^.y,2(S_ Jffl , e[#(^) - *(*)]
*—"W (^_x)n<+(2m<T<)1/2(i?P-x)fii (W)

Similar expressions hold for the electrons, but with e replaced by —e in the second term

of the expression for £„,<„, and with ft*, 1} and m, replaced by fte, Te and mc. The ft*

appearing in Eqs.(13) and (14) is really |ft*|, so does not change sign when replaced by fte
in the electron expressions.

The i/ integral in Eq.(ll) is

/ "~ dr/, l,-1^-* =erf(V^T) (15)
Jo

Assuming, as will be shown a posteriori, that the potential drops by more thanTi/e from
the wall potential in a distance much less than a thermal ion Larmor radius from the wall,
we find that ^ » 1 (in which case erf(V?m^) « 1) unless Rp - x < (T^/m,)1/2/!},-,
in which case Vw* « e[$(-Rp) - $(x)]/T<. In either case

independent of £„„,„. Then, from Eqs.(ll) and (15)

The assumption that the potential drops more than Ti/e in much less than an ion Larmor
radius from the wall also implies that £max » 1 for any x. Then, from Eq.(16),

^^(^[(ffll^)1'2] (17)
This expression applies at a time on the order of an ion gyroperiod after the particles are
initially loaded with uniform density, but before any diffusion in energy has taken place, so
the ion energy distribution cuts ofsharply at the maximum energy given by Eq.(12). After



a few energy diffusiontimes, this sharpcutoff in the distribution function will be smoothed

out, and the distribution function will go linearly to zero at the maximum energy, rather
than going to zero discontinuously. This situation may be modelled by using

n*(x) = noexp(z^a^^HtcM)1^

-^(z£lM)(et^r'(8)])1/2 (i8)
instead of Eq.(17). This will have only a minor effect on the potential profile we will

calculate, so for simplicity we will use the original expression for n<(x), Eq.(17).
For the electrons, when x is more than a few electron Larmor radii from the wall, then

1>ma* » 1 and £mas > 1, so

Ms) «noexp{j} J (19)
but within a few Larmor radii of the wall Vw* is in general neitherlarge norindependent
°f £ma«* and we must use

*.(•) ="o«p(±^fi)/J"««p(-e2)erf[(2me/T«)1/4ne1/2(/?I,-*)1/2(|mM-|)1/2]
(20)

where

^'-\8Tj (*>s)U'-(2mtTty/*(Rp-x) (21)
The potential $(x) may now be found by putting Eqs.(17) and (20) for ni(x) and

ne(x) into Poisson's equation. We will not solve for $(x) exactly, but will comment on its
qualitative behavior. In the case where the Debye length is much greater than an electron
Larmor radius, Eq.(19) may be used for the electrons when Rp —x is greater than or
comparable to a Debye length, and Poisson's equation becomes

H^) -<Hcp(^)erf[(e^-^)])1/2]} (22)
In this case the potential drops from $(Rp) down to #o> which is a drop of a few times
Ti/e, in a sheath about a Debye length thick, and is close to $0 in the rest of the plasma.
Nothing special happens when Rp —x is comparable to an ion Larmor radius. When

10
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jRp —x is comparable to an electron Larmor radius, we must use Eq.(20) for ne, and £max

is positive, approaching 0 as x approaches the wall. The electron density is reduced by a

factor of 2 in this region, but over this short distance the reduction in electron density has

little effect on the potential. In the opposite limit, where the Debye length is much less

than an electron Larmor radius, Eq.(20) must be used for the electron density throughout
the sheath, and £ would be very negative if the potential dropped more than Te/e in a
distance much less than an electron Larmor radius. In this case nc from Eq.(20) would be
exponentially small throughout the sheath, and Poisson'sequation could not be satisfied.
Hence the potential cannot drop by Te/e over a distancemuchless than an electron Larmor

radius from the wall. This will make £max « -1 in the sheath, which will be about an
electron Larmor radius wide, and allow Poisson's equation to be satisfied.

In summary, in the case ofa 1-D simulation with no diffusion in xgc we expect that
thepotential will benearly flat inmost ofthe plasma, and will rise up to the wall potential
(a few Ti/e) in a sheath of width comparable to the greater of the Debye length and the
electron Larmor radius. This is exactly what is seen in the 1-Dsimulation result shown in
Fig. 1. Aseries of1-D simulations with different values of the Debye length12 shows that
the sheath width scales with the Debye length.

HI. 1-D Model With Diffusion

The ion and electron distribution functions are fi(e, xge) and /e(c, xge), where e is the
energy and xge is the guiding center position. In steady state afe/dt = 0 and dfi/dt = 0,
so

sb '̂sb*+*hVifi+iD"ifi+lG<*+*=° w
9 „ 9 , . d „ . d _ d . d

where (for each species) Dx is the spatial diffusion coefficient, V is the radial flow velocity
due to aforce in the y-direction (which may occur, as a result of collisions or instabilities, in
2-D, and could also be imposed artificially in 1-D), D< is the diffusion coefficient in energy,
Gis the energy loss rate, and S is the source. The coefficients Dx, V, D€, G, and 5 are all, in
general, functions of €and xge. Ifthe sources are locally maxwellian and (when integrated
over energy) independent of x, then 5e will be proportional to exp[(-€ - e#(x))/Te] for
c> -e$(x) and zero otherwise, while 5» will be proportional to exp[(-e + e$(x))/Tj] for
c> e#(x), and zero otherwise. (Although x has a complicated dependence on xgc and e
near the walls, where #(x) has a scale length less than or comparable to a Larmor radius,

11



the source terms are not important in these regions, whereas far from the walls x&xge.)
We have set the radial drift terms Vi and Ve equal to zero in our 1-D simulations, since we
have found that it isnot needed to reproduce the results of the 2-D simulations, although,
for reasons given in Sec. V, such a term may be needed to reproduce 2-D simulations at
higher density.

We first consider the case where the energy diffusion and energy loss rate for each
species is much greater than the diffusion rate in xge for that species. This is appropriate
for the 2-D simulation shown in Fig. 2, since there is only one species of ions, and there
is no contribution to ion spatial diffusion from ion-ion collisions, only from ion-electron

collisions (which have a collision rate that is lower than the ion-ion collision rate by the

mass ratio) and perhaps from interractions of ions with waves. Ion-ion collisions can,

however, cause energy diffusion. The dominant terms of Eqs.(23) and (24) are then

iD-4ji+iGifi=0 <25)

iD-4j'+iG<f-=Q w
subject to the boundary conditions /t,e(€, sffC) —• 0 as e -*• oo. The source terms have been
neglected, since, in steady state, they must be equal to the losses, which are due to spatial

diffusionand flow, which have been assumed to be small comparedto the energy diffusion

and energy loss terms. The energy diffusion and energy loss terms for the electrons are

dominated by Coulomb collisions with electrons, and the energy diffusion term for the ions

is dominated by Coulomb collisions with ions. Unless Te <IC 2i, the energy loss term for

ions is also dominated by Coulomb collisions with ions. If we neglect finite Larmor radius,

so that xgc « x, then the energy diffusion and energy loss terms at a given xge depend
only on the distribution function at that xge. Eqs.(25) and (26) then imply13 that the ion
and electron distribution functions at a given xge aremaxwellian

= 0 for e < e$(xge) (27)

= 0 for e < -e$(xge) (28)

12



where we have used the approximation $(x) « $(x9C). The densities and temperatures

are determined by the spatial diffusion and source terms in Eqs.(23) and (24) which were

neglected in Eqs.(25) and (26). If we integrateEqs.(23) and (24) over 6, then the dominant

terms, the energy diffusion and energy loss terms, vanish, because the Coulomb collison

operator conserves particles. This yields one equation for ni(xgc) and Ti(xge) and one

equation for n€(xgc) and Te(xge). The source term may be neglected for the ions, since

it is equal to the electron source term, hence comparable to the electron spatial diffusion

termandmuch less than the ionspatial diffusion term. The remaining ion term, the spatial
diffusion term, may then be integrated over xge, giving

(£*B.,.-<-»)(£+f»)+

The constant on the right hand side of Eq.(29) is equal to zero if the plasma slab is
symmetric about x = 0, i.e. if $(Rp) = $(-jRp) and the source terms are symmetric
about x. The electron equation is

<fe,.Vy_«» '* )\dx,c TedxgJ +

=b(£> *(e+<*-^HI£+£*5--(*+e*)/T«=°w
Another pair of equations for the ion and electron temperatures and densities may be
obtained by multiplying Eqs.(23) and (24) by 6and then integrating over e. This again
causes the dominant energy diffusion and energy loss terms to vanish, since the Coulomb
collision operator conserves energy, and we neglect transfer of energy between ions and
electrons, which we assume takes place on a time scale even longer than the electron
spatial diffusion time. We integrate the resulting ion equation over xge, and subtract e$
times the left hand side of Eq.(29), to obtain

(/r *•(e ~e*)(e •e*_ T*>i?«.«e"<e"'*>/T') ^ jp-=° (3i)
while the electron equation is

^-( r <k (« +e*)D- te-(<+<*)/T.\ (1_*± _?h.*±\+
dx,c\J-.* ' '- )\T.dxac T*dxse) +
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4:(£*d€ (€+e* -Tc)(e+•*)^--(H^)/T-)t^
7jrj_ &(6-e*)5ee-(«+e*)/T« =0 (32)

Note that the two equations for the ions, Eqs.(29) and (31), may be written as

. ( drti eni d$ \ M dTi

M^+*sd+*3*£=0 <33a)
A (dni eni d$ \ A dTi

H*r<+K*rJ+A»*£=0 (33b)
where the Aij'a are various energy moments of the diffusion coefficient Dx$i. Then, unless
A11A22 —A12A21 happens to vanish (and there is no reason why it should),

dni eni d# , „

dxge Ti dxgc v '

and

S=° (35)
In other words, the ion temperatureis the sameeverywhere, and the ion density is related
to the potential by a Boltzmann relation. This simpleresult does not depend on the details

of the collision operator, but only on the fact that Dxj » Dx,e, so that the ion source
term Si, which is equal to the electron source term Se, may be neglected compared to

the ion diffusion term. Physically, the reason for this result is that the potential adjusts

itself to make the ion particle flux nearly vanish (so that it can be equal to the electron

particle flux), by making the d$/dx contribution to the ion particle flux nearly cancel the

dni/dx and dTi/dx contributions. This makes the convective part of the ion heat flux

nearly vanish, but there is also a conductive part of the ion heat flux, proportional to

dTi/dx, which in general will be comparable to one of the terms in the convective part,

hence much greater than the convective part. Since there are no sources or sinks of heat

for the ions, other than the sources and sinks of particles, the conductive heat flux will

rapidly make the ions isothermal, with a temperature Ti equal to the mean kinetic energy
of the ion source.

No such simple result can be obtained for the electrons, since the electron source term

is comparable to the other terms. However, a major simplification of the electron equations

may be obtained if we assume that Te is much greater than e$. Since, as follows from the
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ion Boltzmann relation, Eq.(34), e$ will be comparable to Ti, this approximation will hold

if the mean energy of the electron source is much greater than the mean energy of the ion

source. Then the d$/dx term in Eq.(30) may be neglected and Eq.(30) may be written

DXiel—nc + Se = Q (36)
axgc ' dxgc

where Z)SfC and Se are averages over energy. In general Dx,e will depend on the electron
densityne and temperatureTe, which must be found self-consistently from Eq.(32), which
represents a balance between the electron source, convective and conductive heat flow,

and sink at the walls. Dx%c may also depend on the ion density and temperature, and

perhaps on turbulence as well. If we make the crude assumptionthat Dx,e is independent

of Xgc, take 5e independent of xge (as was done in the simulations) and use the boundary

conditions ne = 0 at x = ±Rp, then Eq.(36) gives a parabolic electron density profile.

This was true to a good approximation for the 2-D simulation, which suggests that the

assumption of uniform diffusion coefficient DXy(i is not a bad one. This is consistent with

the evidence, reported previously,8 that the electron diffusion in the simulation is not due

primarily to Coulomb collisions, but is dominated by turbulent convective cells, which

might be expected to diffuse all electrons at about the same rate.

The ion density and potential may be related to the electron density, which is now

assumed to be fixed, by Poisson'sequation. For x more than a Debye length from the wall,

this means that the plasmais quasineutral, n+ ssne. The potential $(x) in this region, the

Bohm presheath, may then be found from the ion Boltzmann relation, Eq.(34). We find

*(x) = #(0) - 2;in(l - x2/R$) (37)

The potentialdoes not really become infinite at x = ±Rp, of course, since the density does
not quite go to zero at the wall, but is a low value such that the ion flux to the wall is equal

to the electron flux to the wall, and the potential at the wall is generally a few times Ti/e.

(An accurate expression for the wall potential cannot be found using Eqs.(29) and (30) as
a starting point, even if the ion source term is included, since, as will be discussed below,

the ion spatial diffusion rate is not small compared to the energy diffusion and energy loss

rates near the wall, and the Boltzmann relation for the ions, Eq.(34), is not valid there.)

Figure 3 shows the potential $(x) for a 1-D particle simulation using the PDW1

code,14 with spatial diffusion artificially added by including random scattering from fixed

scattering centers, in Monte Carlo fashion, by both ions and electrons. This Monte Carlo
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Figure 3

♦/Ti

3. Potential profiles from a 2-D simulation, from a 1-D simulation with Monte Carlo

diffusion of xgc, with similar Debye length and ion Larmor radius, and from Eq.(37).



collision frequency was made small enough so that the spatial diffusion rate was less than

the energy diffusion and energy loss rates (which were due to Coulomb collisions with

other charged particles in the simulation). The simulation has been allowed to run for

10,000 time steps, corresponding to 250 ion cyclotron periods, 8 ion collision times, and

1000 electron collision times. An implicit electron mover was used, so that the time step

could be set equal to anelectron cyclotron period; in effect only the electron guiding center
positions were followed. During the run, about half of the particles went to the wall and

were replaced by source particles. The potential from this 1-D simulation is compared to

the theoretical $(x) from Eq. (37), and to $(x) for the 2-D simulation shown in Fig. 2.

The potentialprofile from the 1-D simulation is in good agreement with the 2-D simulation,

the main difference being a feature in the potential profile of the 2-D simulation caused by

a Kelvin-Helmholtz vortex, which of course we would not expect to reproduce in the 1-D

simulation. The potential profile from Eq.(37) differs from that of the 1-D simulation by

less than 15% throughout most of the plasma, but the two become significantly different
as x gets close to the wall. This difference is not due to the breakdown of quasineutrality

within a Debye length of the wall, since quasineutrality is still a very good approximation

in the regionwhere Eq.(37) and the 1-D simulation start to differ, but to the failure of the

ordering that the ion diffusion time to the wall, (x —Rp)2/DXti, is much greater than the
energy diffusion and energy loss times. This means that the ion distribution function is no

longer locally maxwellian, but is reduced at energies above e($(Rp) —$(x)), the energy
at which an ion can reach the wall and be lost. Then the ion density will fall more rapidly
with increasing $ than it would if the Boltzmann relation, Eq.(34), were satisfied, and
$(x) will not be as high as one would expect from Eq.(37). In this region, $(x) may be
found by solving Eqs.(23) and (24) in the opposite limit, where the energy diffusion and
energy loss rate for each species is much less than the xgc diffusion rate for that species.

We now consider that limit, taking it as true throughout the slab. (However, we
will still assume the ion energy diffusion rate is greater than the electron spatial diffusion
rate, otherwise the potential $(x) will be nearly flat, varying much less than Ti across the
plasma, to avoid having the confinement time of the coldest ions be greater than that of
the electrons.) This is also an appropriate limit for the edge region of a tokamak with a
moderately large impurity density. Spatial diffusion for hydrogen ions will be dominated by
collisions with impurity ions, but such collisions will not cause muchenergy diffusion if the
impurity ions are much more massive than the hydrogen. As before, we take'Vi = Ve =0
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in Eqs.(23) and (24), and we assume that Te > Ti, which allows us to neglect the effect

of the potential (which will have variations across the plasma of order Ti) on the electron

flux. The electron distribution is then given by

i>,,e|^/.(e,*)+5.(«)=0 (38)
If 5e(e) goes like exp(—e/Te), and Dx%e is uniform and independent of e, then /«. has the

same dependence on e. Integrating Eq.(38) over e then gives the electron density profile,

"•w =V1" m)"0 (39)

where no = R%S/2DXtc, S is the source Se(e) integrated over e, and we have used the
boundary conditions ne(x) = 0 at the walls, x = ±Rp. Equation(39) is valid for x more

than a few electron Larmor radii from Rp, where xgc « x is a good approximation.

To find the potential $(x), the ion diffusion equation is used to find n«(x) in terms of

$(x), and then Poisson's equation

d2
# = 47re(ne —n,-)

dx2

and Eq.(39) for ne(x) areused to solve simultaneously for $(x) and n*(x). This procedure

is considerably simplified if x is more than a few Debye lengths from the wall. Then

Poisson's equation implies nj(x) w.n^x).

Since we are assuming that the ion energy diffusion rate De^2J"2 and energy loss
rate GiTf1 are much less than the radial diffusion rate DXliR^2, and since Dx%i » Dx,e,
ions with energy greater than the confining potential e$(Rp) will be lost in a time short

compared to the average ion loss time (which in steady state must be equal to the average

electron loss time), hence fi(e,xge) « 0 for € > e$(Ap). Ions with energy less than
€n»a» = e$(Rp) will never be lost until they diffuse in energy up to emax, at which time
they will be lost almost immediately. The ion loss flux will then be equal to

D**Tefi " Gifi

evaluated at e = €„»«,. and integrated over x. This loss flux must be equal to the electron

loss flux and to the source S integrated over x. If, as is reasonable, Gi < D^iTf1 and
D*tiTf ^> D^cRp"2, then ^g will have to be a few times Ti, so that the ions are lost
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when they are far out on the tail of the distribution fi(e,xge), which will be roughly
maxwellian at energies well below 6^,,. For ions with e < e^*, which are almost all of

the ions, the radial diffusion term will be much greater than the other terms, which may
be neglected. Then Eq.(23) becomes

4r^4:A'(e,a!'e)=0 (40)
Equation (40) may beintegrated over xge, using the fact that (by symmetry) dfi/dxge %0
at xgc = 0 (where we may take x w x^c). Then

D^i^-Ji(e,XgC)=0 (41)

so

fi{e,*gc) = F(e)

independent of xffC. To find F(e) it would be necessary to solve a differential equation
which includes the energy diffusion, energy loss, and source terms, integrated over the
range of xge for which e<&(xgc) < e (since radial diffusion takes place on a much faster

time scale than the energy diffusion and energy loss), subject to the boundary condition

F{*max) = 0. Since the source term at least will depend on $(xge), which is not known
yet* and depending on the details of the model the energy diffusion and loss terms may
depend on F(e), it could be a difficult numerical problem to find F(e). Instead, we will
assume that

F{e) = exp(-c/7;) -exp(-€maB/7;) for e < Cmax

= 0 for €> ^ (42)

which is qualitatively reasonable, and is probably exactly right for some model of energy
diffusion and loss. The ion guiding center density ni(xgc) may then be found byintegrating
F(e) from e$(xge) to €max. We find

n» (*$<:) = **o
1-1

(43)

Taking xge « x and setting the right hand side of Eq.(43) equal to the electron density
ne(») gives the potential $(x) in the Bohm presheath. Although $(x) is the solution to a
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transcendental equation which cannot be expressed in closed form, we can express x as a
simple algebraic function of $

x=^[l"{^W+iV<m~/T<]"1/2(*-e~e*/Ti-Yie'€mam,Ti)V2 (44)
Figure 4 shows a plot of $(x) and n(x) for Cma*/!} = 3, using Eqs.(39) and (44). The
plot would look identical to the naked eye for any emax/Ti > 2.5. This $(x) has infinite
slope at the wall, but ofcourse it isvalid only for x more than a few ion Larmor radii away
from the wall, where xgc « x is a good approximation, andfor x much more than a Debye
length from the wall, so that ne = n» is a good approximation to Poisson's equation.

Figure 5 shows the potential $(x) for a 1-D particle simulation withspatial diffusion
artificially added by a Monte Carlo collision operator, as in Fig. 3, but in this case the
Monte Carlo collision frequency was made great enough so that the spatial diffusion rate
was much greater than the energy diffusion andenergy loss rates. For comparison, the the
oretical $(x) from Eq. (44) is also shown. The theoretical #(x) is ingood agreement with
the simulation result, except within a few Debye lengths of the wall, since the theoretical
$(x) did not include finite Debye length, but assumed quasineutrality everywhere. The
densities ne(x) and n*(x) found in the simulation are virtually identical to the parabolic
profile given by Eq. (39), except within a Debye length or soof the wall, where they are
both much lower, especially n*(x). (The relevant Debye length here isnot theDebye length
in the center of the plasma, but the edge Debye length Sx = (i2P/2)1/3A2/3, for which the
Debye length is equal to 6x at a distance 6x from the wall.)

IV. Finite Ion Larmor Radius

We now consider how $(x) will be modified for x within an ion Larmor radius of
the wall, in the "magnetic presheath." The equations of motion for an ion in a uniform
magnetic field B0 and a potential $(x) are

dvx ~ e d$ t %

dvv _-£ = -*«, (46)
where Q< = eB0/miC and vx = dx/dt. Integrating Eq.(46) over t gives

Vy = {xgc - x)Cli (47)
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Figure 4

ne/ao

x/Rp

4. Density and potential profiles from Eqs.(39) and (44), valid when the spatial diffusion
rate is greater than the energy diffusion rate.



Figure 5

♦/Ti

x/Rp

5. Potential profile from 1-D simulation with Monte Carlo diffusion of xgc and from
Eq.(44). For the simulation the central Debye length is 0.018i2p, the edge Debye length is
0.055i2p, and the thermal ion Larmor radius is 0.18Rp.



Putting Eq.(15) into Eq.(45), and integrating over x yields

KS)f-5^-w-i^+i (48)

In other words, the motion of an ion in x is described by an effective potential energy

Q(x) =̂ rm{xgC - x)2nf +e*(x) (49)
Ions are lost to the wall whenthey reach the loss boundary in (e, xge) space, given by

€= Q{Rp) (50)

This loss boundary is a parabola with its minimum at xgc = Rp and e= e^j (defined as
in Sec. II), shown as a solid curve in Fig. 6. In the limit that diffusion of ions in xge is
much more rapid than diffusion in 6, which we consider first, the ion distribution function

/»(c» *ffc) must gonearlyto zero at c = e^,,, the lowest eto intersect the loss boundary. In

the opposite limit, fi(e, xge) would go to zero at the loss boundary. In addition to the loss

boundary, thereis another significant boundary in (e, x^c) phase space, the boundary of the
non-physical region where particles cannot go because theireffective potential energy Q(x)
is greater than their total energy e for all x. This non-physical boundary e= emtn(xffC) is
shown by a dashed line in Fig. 6. It is calculated by simultaneously solving the equations

\rm{x - xgc)2n2 + e*(x) - eni* = 0 (51a)

rm[x - xgc)n2 +e^-(a?) =0 (51b)
for the twounknowns €*»»« andx. (The curve for cmin(xgc) shown in Fig. 6 was computed
using the #(x) satisfying Eq.(44), which as we will show a posteriori is correct even when

finite ion Larmor radius is taken into account, in the limit that the ion spatial diffusion

rate is much greater than the energy diffusion rate. In the opposite limit, the $(x) given
by Eq.(37) has to be corrected for finite ion Larmor radius, so an iterative procedure would

have to be usedto find €„rin(s9e), but it would stillqualitatively resemble the curve plotted
in Fig. 6.) Ions in the loss region of Fig. 6 are lost to the wall in a gyroperiod. Ions in

the confined region, between the two curves, are confined for a radial diffusion time if they

have e > emax (which is equal to ZTi in Fig. 6), and for a (much longer) energy diffusion
time if they have € < e^a,. Ion orbits for the points in phase space labelled A, B, and C
in Fig. 6 are shown in Fig. 7.
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Figure 6
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6. Ion phase space for finite Larmor radius pi —O.lRp, showing the loss boundary given

by Eq. (50) and e^,, given by Eq. (51).

1.2



y/R,

0.7 •

• ••
a«*«*

^\• * *.

V \

0.6
• •••
: b

•••••J
• ***•• *•*.

0.5 *. .»* \

y• * *

0.4

• *•
• •

*

*****

*

•
}

f
• /
• f

0.3

0.2

•

••V
♦♦.♦:♦ ♦:♦.

•• «•

: a :

•*^

X
1
\
\
X

X

\
i

(
0.1 ••v y

v

X
\

\
t

> 1
J

A A
, >

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x/R,

7. Ion orbits for the points in phase space labelled A, B, and Cin Fig. 6.



The ion density rii(x) is given by

*(*) =F° d*„ [*~ de- f*e>X°c) —-— (52)
J-co ./e*(*)+$m<(*-89e)anf [c - e$(x) - %mi{x - x^ftfjVZ

In the case we are considering, with ion spatial diffusion rate much greater than energy
diffusion rate, a reasonable guess for the ion distribution function which is valid even for

xge within a Larmor radius of the wall is

fi(e,*gc) = F(e) (53)

where F(e) is still given by Eq.(42). Because fi(e,xge) has no explicit dependence on
Xgc, the Xgc integral in Eq.(20) can be put inside the 6 integral, with the lower limit of

the € integral replaced by limits on the xge integral, x - [2(c - e^J/m^1/2^1 < Xge <
x+[2(c - efy/mi]1'2^1. The xge integral is then ofthe form /£ dxgc[xgC - a]"*1/2 =tt,
with no dependence on e, and Eq.(52) just reduces to Eq.(43), the expression we used for
nt(x) neglecting finite ion Larmor radius. In other words, Eq.(43) for n,(x) and Eq.(44)
for $(x) are valid to allorders of finite ion Larmor radius, in the limit that the ion spatial
diffusion rate is much greater than the energy diffusion rate, so that fi(e,xge) has no
explicit Xgc dependence.

In the other limit, where the ion spatial diffusion rate is much less than the energy
diffusion and loss rates, a reasonable guess for fi(e, xgc) is

/.(€,*f«) = exp(-€/Ti) - exp(-Q{Rp)/Ti) (54)

for c < Q(Rp), and fi(e,xgc) = 0 for e > Q{Rp). Here Q{Rp), which is a function of xge,
is given by Eq.(49). For x —xge more than a few thermal ion Larmorradii from the wall,

Q(Rp) > Ti, so, to excellent approximation, fi w exp(—e/T»). For x more than a few
thermal ion Larmor radii from xge, the lower limit of the e integral in Eq.(52) is much
greater than Ti, so these xge do not contribute significantly to ni(x), and it follows that
for x more than a few thermal ion Larmor radii from the wall, fi « exp(—e/T»). Then
fi(*i8gc) has no explicit xge dependence, and the expressions we derived before for ni(x)
and $(x) are valid. Within a few ion Larmor radii of the wall, the xgc dependence of
fi(etxge) must be retained. Then, for x near Rp, but many ion Larmor radii from —Rp,

./-oo •/e*(B)+im<(*-aac)*nf [e - e$(x) - {\mi(x - x^)2!}?]1/2
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where xmax is the xgc at which the upper and lower limits of the e integral are equal

^-5(.+J^) +Xgjl_^ (56)
Then, doing the 6 integration,

*(.) =noexp (=£) £"""**,*($->} \
L, /-^(x-s^nn ^ / /2m<n?(JZp-»)(xma,-»Je)\ _

The integral is nearly equal to 1 when the argument of the erf is much greater than 1,
since in this case the erf is nearly 1, and the second term in the integral is exponentially

small. This is true to excellent approximation whenever x is more than a few Larmor radii

from the wall, and in this case nj(x) is hardly affected by finite ion Larmorradius. Even

if x is within an ion Larmor radius of the wall, but much more than a Debye length from
the wall, the argument of the erf will not be much less than 1, because $(x) will be at
least Ti below the wall potential (since most of the rise in potential takes place within a
few Debye lengths of the wall). In this case, the integral will not be reduced by morethan

a factor or 2 or so, so n*(x) will be within a factor of 2 of the value that it would have,
at that #(x), if finite ion Larmor radius were neglected. Hence the self-consistent $(x) in
this region, including the effect of finite ion Larmor radius, will only be a fraction of Ti
above the value it would have if finite ion Larmor radius were neglected, and it will still
be true that most of the rise in potential (which we assume is a few times Ti) will occur
within a few Debye lengths of the wall. The width of the sheath, where most of the rise

in potential takes place, might be increased by a factor of 2 or so as a result of finite ion

Larmor radius, but it will still be comparable to a Debye length, even if a Debye length
is much narrower than an ion Larmor radius. The magnetic presheath will only have a
modest effect on the potential profile, raising it some fraction of Ti within an ion Larmor
radius of the wall.

In Fig. 8 we show the potential profile $(x) for two simulations with the same Debye
length but with ion Larmor radius differing by about a factor of 2. In one case the thermal

ion Larmor radius was 0.082Ap and in the other case it was 0.154iZp. The Monte Carlo
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Figure 8

♦/Ti

x/Rp

8. 1-D simulations with Monte Carlo diffusion in xgc, for two different values of the thermal
ion Larmor radius, 0.1541^ and 0.082i2p. For both simulations the central Debye length
is 0.022J2p and the edge Debye length is 0.065i2p.



ion collision frequency is great enough to make the spatial diffusion rate greater than

the energy diffusion rate, and, as expected in this limit, the potential profile is nearly

independent of ion Larmor radius. The potential profiles do not differ by more than 0.2T;

at any x, despite the factor of 2 difference in ion Larmor radius. The small differences

that do exist in the potential profile (due to the fact that the energy diffusion rate is not

completely negligible compared to the spatial diffusion rate) are greatest within an ion

Larmor radius of the wall, the region of the magnetic presheath. In order to show that

the scale length of the potential nearthe wall is comparable to the Debye length, we show

potential profiles for two simulations with Debyelength differingby about a factor of 2, in

Fig. 9. The Debye lengths in the center of the plasma are 0.018i2p and 0.03712p in these
two simulations. In this case, in contrast to Fig. 8, there is dramatic difference in the scale

length of the potential near the wall, with the scale length being comparable to the edge
Debye length, 6X =(/2p/2)1/3Aj,/3 in each simulation.

In a fully 2-D simulation, as opposed to a 1-D simulation with a Monte Carlo collision

operator, there is reason to believe that the scale length of the sheath at the wall will

be an ion Larmor radius, rather than a Debye, if Upi > Qit i.e. if a Debye length is
much less than an ion Larmor radius at a distance of an ion Larmor radius from the wall.

Unfortunately sucha 2-D simulation would be veryexpensive, because of the great number

of particles required, and we have not done such a simulation. The 2-D simulation shown

in Fig. 2, for example, has Debye length comparable to ion Larmor radius at a distance of

one ion Larmor radius from the wall, although the Debye length would be much less than

this at the higher densities in the middle of the plasma. This conjecture has therefore not
been demonstrated.

The reason for this expectation is the drag force Fy in the y direction which can occur
in a 2-D simulation, and which would cause particles to drift at a velocity eFy/cBo in
the x direction. Such a drag force can result either from collisions or from a two-stream

instability when the ions and electrons have different drift velocities in the y direction. It

can also result from a Kelvin-Helmholtz instability9 when the drift velocity of the ions in

the y direction varies too sharply with x, or from a lower hybrid drift instability10 when
the density gradient is too steep.

The electrons at a given x will have a mean vy (if we neglect finite electron Larmor
radius) of

, . c d$ v2 1 dn
MX) =T0te ~Hind*- W
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Figure 9

♦/Ti

x/R

9. 1-D simulation with Monte Carlo diffusion in xge, for two different values of the Debye
length. The central Debye lengths are 0.018^ and 0.037i2p, and the edge Debye lengths
are 0.055-Rp and 0.0911^.



while the ions will have a mean vy that depends on a weighted average of d$/dx anddn/dx
(as well as higherderivatives) within an ion Larmor radius of x

U.(X) = JL f "dx^ f °° dc («-»!«)/«(«. «f«) (5Q)
n(x) .Loo 9e J9*M+lmii.-.m)*ti} [e - e#(x) - ±m<(x - xgc)2a2]1'2 K }

As shown previously, the potential $(x) obtained usinga Monte Carlo collision model for

radial transport (ignoring drag in the y direction) rises on a scale length small compared

to an ion Larmor radius when x is much less than a Larmor radius from the wall. The

density given by Eq.(39) alsohas a scale length much shorter than a Larmor radius when x

is muchless than a Larmor radius from the wall. This means that ue will be much greater
than the ion thermal velocity vt- = (X^/m*)1/2 when x is much less than a Larmor radius

from the wall, due to both the d&/dx and dn/dx terms in Eq.(58). The ion drift velocity
Ui is of course never much greater than rt«. This difference in the local drift velocities ue

and U{ would give rise to a collisional drag force Fy (and perhaps a much greater drag
force due to modified two-stream instability) of equal and opposite sign on the ions and

electrons, which would cause both the ions and electrons to drift toward the wall with a

velocity eFy/cBo. About an ion Larmor radius away from the wall or a little more, the

local ion drift velocity u,-(x) will be greater than uc(x) because the ions would pick up a

contribution from the very steep d$/ax near the wall, while the electrons will only see the

local d$/dx. In this region the drag forces will be in the other direction, and will cause

both the ions and electrons to drift away from the wall. These radial drifts should be

included in the terms Vi and Ve which appear in Eqs.(23) and (24). The result will be to
modify n(x) and $(x) is such a way as to decrease the drag forces.

Although the drag forces make equal contributions to Ve and Vi, the contribution to

Ve willhavea much greater effect on /e than the contribution to Vi willhaveon fi, because

the dominant terms in Eq.(23) are much greater than any of the terms in Eq.(24). If the
contribution of the drag force to Ve is competitive with the electron spatial diffusion and

source terms in Eq.(36) or (38), then n(x) and $(x) will be substantially modified, and

the drag forces substantially reduced. But at this magnitude of drag forces, the terms

in the ion equation, Eq.(23), will hardly be affected by the drag force contribution to V{.
It follows that the drag forces will never have much effect on the ion equation, because

they will be self-consistently limited in magnitudeby their effect on the electron equation.
Equation (23), and the equations that follow from it, such as Eqs.(34), (43), and (57), will
still be valid if there are drag forces present, but Eq.(39) will be modified.
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We consider an artificially simple model for drag which illustrates the effect it has on

n(x) and $(x), and how this effect may be calculated. We suppose that the drag forces

are infinite if d?$/dx2 exceeds some critical value

§>«L* (60)
and zero otherwise. If we take $"Ht to be of order Ti/ep2, then this is roughly what would

be expected from a two-stream instability that turned on suddenly when \uc —U{\ > V{,

although the real conditionwould involve a complicated integral functional of $(x) rather

than just the second derivative. With this model, there must be an x0 such that a*$/dx2 <

SjJrit for |x| < x0 and &$/dx2 = $J!^t for |x| > x0. Both $(x) and d$/dx are continuous

across x = ±x<>. For |x| < xo, the drag force is zero, and Eq.(38) is still satisfied. Equation
(39) is generalized to

Sx2n(x) =no - £g— (61)
'x.e

which still satisfies Eq.(38). It is no longer true that no = fi^S/D^c, because Eq.(38)
is no longer satisfied all the way to the wall, only out to x = ±xo, but no will be close

to R^S/D^ if x0 is close to the wall, and Eq.(39) will be a good approximation to n(x)
for Rp —|x| » Rp —x0. In this region $ is still given in terms of n by Eq.(57), or by
Eq.(34) which is a good approximation to Eq.(57), orby Eq. (43). Note that the resulting
expression for $(x) will involve two unknowns, n0 and e,nax, which will not necessarily be

the same as in the case where there is no drag force, because the electron loss rate is not
the same. For |x| > xo, $(x) is given by

*(x) =*(x0) +(|x|-x0)g +|(M - *o)2*:U (62)
S=Zq

where $(x0) and d$/dx evaluated at x = x0 are given by the solution in tjhe region
where |x| < x0. The density n(x) is then given by Eq.(57), or more simply and to good
approximation, by Eq.(34), or by Eq. (43). The drag force on the electrons, which can have

any value between zero and infinity when cP^/dx2 = $"rit, adjusts itself so that Eq.(24)

is satisfied with this ne(x). The required drag force will be such that the additional term

in Ve due to the drag force makes the Ve term comparable to the other dominant terms in

Eq.(24), viz. those that havebeen kept in Eq.(38). The two unknowns, n0 and emax, may
be found by solving two equations, one equating the electron loss rate with the integrated

source, and the other equating the ion loss rate with the electron loss rate. If x0 is near the
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wall, as it will be if Rp » pt and $" « Ti/ep2, then no and £„„ will be close to the values

they have when there isno drag force. To illustrate theeffect ofthedrag force on n(x) and
#(x), we have plotted these quantities in Fig. 10 for the case where $|^t = 10QTi/eR2
(appropriate for pi « O.LRp), assuming that emax and no are unchanged by thedrag force,
and using Eq.(43) to relate $(x) to n(x). Thecurves for $(x) and n(x) in the absence of
drag force are shown as dashed curves in Fig. 10, for comparison; these are identical with
the curves in Fig. 4. For these parameters, we find

x0 = 0.83i2p

$(x0) = 0.93Ti/e
3.52;d$

dx _ **, (63)
The effect of the drag force is to broaden the sheath (decreasing d$/dx near the wall but
increasing it just to the right ofxo), and to decrease the density in the region xo < x < Rp
where the drag force is present due to a marginal two-stream instability. The scale length
of the rise in potential near the wall is now on the order of p^ This would be true even if

the drag force were due to collisions, rather than to a hypothetical instability which turned

on at a certain value of #$/dx2, as long as the collision frequency were at least as great
as the the frequency ofcollisions causing the spatial electron diffusion Dx,e. (Such a model
would make the calculation more difficult, of course.)

V. Summary and Conclusions

Important differences exist between 1-D and 2-D simulations of magnetized plasmas,
and these differences have been illustrated for the case of a plasma slab in a uniform

magnetic field in the z direction, bounded by conducting absorbing walls at x = ±Rp,
so that the magnetic field is parallel to the walls. This model has some relevance to the

edge region of a tokamak.1 If the simulation starts with a uniform density of ions and
electrons, then initially particles within a Larmor radius of the wall can be lost, and there

are more ions than electrons in this class. This almost immediately results in the plasma

potential becoming negative with respect to the wall, in order to hold in ions, and the

electric field is limited to narrow sheaths near the wall, with widths comparable to either

the Debye length or the electron Larmor radius, whichever is greater. In a 1-D simulation
there are no forces exerted in the y direction, so there can be no changes in the x guiding
center position of a particle. The plasma then remains in this state, with nearly uniform
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Figure 10

ne/no

x/Rp

10. Effect of drag on edge potential and density, for #^t = IQOTie/R2. Potential profile
from Eq.(62) is the dashed line, and potential profile from Eq. (44), with no drag, is the
solid line. The corresponding densities, also shown by dashed and solid lines, are related
to the potentials by Eq.(43).



density except in the sheaths. Further losses of particles to the walls are possible only
if particles can diffuse up in energy so that their Larmor radius is comparable to Rp,
and this process will be exponentially slow if the thermal ion Larmor radius is much less

than Rp. In a 2-D simulation, by contrast, particles can diffuse to the walls as a result
of collisions, or interractions with waves, which change xge. The density profile will be
governed by the diffusion of the moreslowly diffusing species, electrons in our case. If the
electron diffusion coefficient is spatially uniform, which seems to be a good approximation
in the 2-D simulations we have done, then the density profile will be parabolic, going
almost to zero at the walls. The effect of this diffusion can be incorporated in a 1-D
simulation, without the expense of a fully 2-D simulation, by adding a phenomenological
Monte Carlo diffusion of xgc for the particles. When this is done, the 1-D simulation
evolves to anequilibrium that is in excellent agreement with the 2-D simulation, although
a 2-D simulation is still needed in order to examine the details of the Kelvin-Helmholtz

turbulence which is principally responsible for particle transport.8 An analysis has been
made of the potential and density profiles that should evolve in these simulations, in
different limits of the parameters. The ion density profile is also nearly parabolic, since
the plasma must be quasineutral except in the sheaths near the walls. In the quasineutral
Bohm presheath region, the potential follows a Boltzmann expression, given by Eq.(37),
in the limit that the ion energy diffusion rate is much greater than the spatial diffusion
rate to the wall. In the opposite limit, which would apply within an ion Larmor radius

of the wall, and even further from the wall if there were more massive impurity ions
causing enhanced collisional transport, the Boltzmann relation is somewhat modified, and
the potential profile is given by Eq.(44). The non-neutral Debye sheaths near the walls,

where much of the rise in potential occurs, have widths comparable to the greater of the
Debye length and the electron Larmor radius, as in the 1-D model without diffusion. This

is true even though the sheath width is much less than an ion Larmor radius. Equation
(44) is correct in the limit for which it was derived, even when finite ion Larmor radius

is taken into account. The potential profile given by Eq.(37) would have to be modified
slightly, within an ion Larmor radius of the wall (the magnetic presheath region6), but
the potential profile still has the same qualitative appearance. These analytic results have
been confirmed by 1-D simulations with Monte Carlo diffusion of xgc. In addition to the
diffusion in xge that occurs in a 2-D simulation, there is another 2-D effect that should

be important if the plasma has high enough density so that utpi » fl^ at a distance of an
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ion Larmor radius from the wall. This effect is the drag in the y direction that would be

exerted by the ions on the electrons within an ion Larmor radius of the wall, as a result

of collisional dragor modified two-stream instabihties. This drag causes the electrons and

ions to flow away from this region, until the scale length of the potential rise near the wall

has been broadened to about an ion Larmor radius. We have not been able to confirm

this conjecture with a 2-D simulation, because the simulation would have to have a large

number of particles and would be very expensive. In any case utpi is typically not much
greater than fU near the edge of a tokamak, so this effect may not be important.

This drag force does not have much effect on the overall confinement time, because

the instability (or collisions) causing the drag force is only important at the very edge
of the plasma, within about an ion Larmor radius of the wall, while the source extends
over the whole plasma. The drag force merely reduces the density in the narrow region
where the instability is present, effectively moving the edge of the plasma in by about an
ion Larmor radius from the wall, while the interior of the plasma is hardly affected. The
situation would be different if the source were localized to the region near the wall where
the instability was present. This might happen if the source were dominated by ionization
of neutrals coming from the wall, which could not penetrate more than a few ion Larmor

radii into the plasma. In this case the equilibrium density in the interior of the plasma
would be substantially reduced as aresult of thedrag force, or the source term (and hence
the flux to the wall) would have to be substantially increased to keep the interior density
the same as it would be without the drag force. There is evidence that the improved
confinement during H-mode in JET is associated with a lower level of edge fluctuations,15
although these were probably microtearing or ballooning modes, not Kelvin-Helmholtz
modes.

By using 1-D simulations with phenomenological Monte Carlo diffusion of xgc, and
perhaps phenomenological flow of xgc as well, it should be possible to reproduce the the
macroscopic behavior of a 2-D simulation, much more cheaply. Such 1-D simulations could
be used to make surveys of parameter space, and a few fully 2-D simulations could then be
madeto confirm the validity of the phenomenological terms, and to determine such details
as the turbulent wave spectrum. This procedure should beapplicable notonly to the cross-
field sheath in a plasma slab, but also to other physical situations that may be of more
direct relevance to tokamak edge phenomena. It is likely thatrealistic modelling oftokamak
edge transport will require 3-D models, which allow instabihties to have a spectrum of
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parallel wave numbers fc|j. At fc||Ve > w, where ve = (Te/me)^2 is the electron thermal
velocity and u; is the wave frequency, Kelvin-Helmholtz instabihties and lower hybrid drift
instabihties are supressed, but electron drift waves (including16 the universal instability*
trapped electron instabihties, temperature gradient instabihties, and related dissipative
instabihties) can be unstable at arbitrarily small density gradients. Finite k\\ve/u) also
plays a role in the saturation of the rippling mode,17 a resistivity gradient driven mode
which is thought to be important in tokomak edge regions characterized by high ne and
a low Te which is a steep function of radius. The details of the density, temperature and
current profiles at the plasma edge should determine the relative importance of such 3-

D effects compared to the 2-D instabihties appearing in the particle simulations we have

described. Analyticmodels willbe especially important in interpreting 3-D models of cross-
field transport, because 3-D simulations are too expensive to allow extensive variation of
parameters.
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