

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DISTRIBUTED DATABASES IN A

HETEROGENEOUS COMPUTING

ENVIRONMENT

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M89/110

7 September 1989

DISTRIBUTED DATABASES IN A

HETEROGENEOUS COMPUTING

ENVIRONMENT

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M89/110

7 September 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

DISTRIBUTED DATABASES IN A

HETEROGENEOUS COMPUTING

ENVIRONMENT

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M89/110

7 September 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

% &ft?*tf\ hUfOFfiCT 'S^

Distributed Databases in a Heterogeneous Computing Environment

Lawrence A. Rowe

Computer Science Division-EECS
University of California

Berkeley, CA 94720

Abstract

This paper describes alternative software architectures for database applications.
The ANSI SQL standard data model and the database vendors commitment to tools and
systems that support portable applications will allow organizations to change hardware
platforms and reconfigure their computing environment more easily. The features of a
full-function distributed database system and how they can be used to solve some com
mon problems in alarge manufacturing organization are also described. Lastly, database
gateways are described that interface existing databases stored in older database systems
(e.g., hierarchical and network) to applications that use therelational model.

1. Introduction

Engineering design and manufacturing environments are heterogeneous computing
environments. A typical environment will have many different types ofcomputers (e.g.,
embedded computers, personal computers, workstation computers, minicomputers, and
mainframe computers) that are interconnected by anetwork. Many different applications
including engineering design, real-time factory control, and corporate business applica
tions are run on this collection of computers.

These applications manage databases that contain relevant data. For example, engineer
ing design applications maintain documents that specify a product's requirements and
design, geometric models that describe a product, and component lists that specify the
parts that makeup a product. A factory control system keeps track of the work-in-
progress (WIP), status of equipment in the factory, and test data collected during the
manufacturing process. Finally, corporate business applications manage data about ord
ers, personnel, and inventory. These information systems (i.e., the application programs,
the databases, and the operational procedures) are an important corporate assest
Computing environments of the past were dominated by a few large mainframes. The
proliferation of low cost microprocessors has lead to the introduction of hundreds, and in
some cases thousands, of different types of computers into the engineering design and
manufacturing environment. Application programs must run on these different comput
ers. Atthe same time, they must access ashared, integrated database created by merging

t This research was supported by National Science Foundation Grant MIP-8715557.

the autonomous application-specific databases. A shared, integrated database is required
for two reasons. Rrst, applications will have to access data in more than one database to
meet future business requirements. And second, existing applications that currently run
onasingle large computer will bedistributed todifferent computers inthe environment
An important trend in the development of application software is to build portable,
reconfigurable applications. A portable application can be run on different hardware
platforms and different software systems (e.g., operating systems and database systems).
A reconfigurable application can be distributed across different computers in different
ways. Vendor independence is important because it allows an organization to change
computers without having to rewrite the application software. Consequently, the organi
zation can migrate tomore cost effective computer systems with less difficulty. Applica
tion reconfiguration is important because the distribution of the software across different
computers may changedue to changes in the price performance of hardware.

This paper surveys the current state of database systems and database application archi
tectures. Alternative software architectures and database system support for those archi
tectures will be presented. We will attempt to show that a standard data model and a
vendor commitment to portable applications allows an organization to build portable,
reconfigurable applications.

The software environment we envision is applications written in a 4th Generation
Language (4GL) or a 3rd Generation Language (3GL) that access a relational database
using the SQL query language [Dat81]. These applications may interact with the user
through an alphanumeric or graphic terminal and they may run on different operating sys
tems.1

The remainder of the paper is organized as follows. Section 2 discusses alternative
software architectures for applications and the DBMS. Section 3 presents the features
that a full-function distributed database system should provide. And, section 4 describes
database system functionality that is required by engineering design and manufacturing
applications.

2. Software Architectures

This section describes software architectures for applications and database management
systems (DBMS). These architectures can be used in different ways in an engineering
design and manufacturing environment. Some examples are discussed at the end of this
section.

The application program must run in a separate process from the DBMS as shown in
figure 1. The application process contains code specific to the application and code to
interact with the user through a terminal or workstation interface. The DBMS process

The goal of portable applications will be easier to achieve if aUNIX operating system is
used. However, many 4GL*s and 3GL*s are designed to run on different operating systems.

Figure 1: Separate application and DBMS process architecture.

contains the database system code. The DBMS is run in aseparate process so that itcan
run in adifferent protection domain. That way, the application program can access only
the data thatit is supposed to access.

Another reason the DBMS is run in a separate process is so that it can be run on a dif
ferent computer. This configuration is sometimes called remote database access. The
advantage ofthis configuration is that the workload can be spread across two computers
rather than just one computer. If the computer that runs the DBMS process is dedicated
to that function, it is called adatabase server. This configuration is a natural one when
users are running applications on a workstation but still need to share a common data
base. The applications access the same database managed by the DBMS process on the
database server. This configuration has the added benefit of putting the DBMS code
close to the disk that contains the data and the interface code close to the user. Because
the application issues high-level relational queries to the database server, only the data
required by the application must be sent to the workstation. In contrast, if the DBMS
process ran on the workstation and accessed the data through a network file system, all
disk pages that the DBMS read would have to be sent to the workstation. A similar argu
ment can be made that the application process should be located close to the user to
minimize the messages that must be sent between the interface devices and application
program.

In amultiuser environment, each application might have a separate DBMS process as
shown in figure 2. The DBMS processes run in "shared instruction** mode so that only
one copy of the DBMS code must be kept in main memory. However, this architecture
will be less efficient than the server architecture shown in figure 3. The server DBMS
process handles requests from more than one application.

The server DBMS is amini operating system that manages and schedules *'tasks*' (i.e.,
the application queries), issues I/O requests to read and write disk pages, and manages a
buffer pool of recently accessed pages.

Figure 2: Process-per-user configuration.

Figure 3: Server DBMS architecture.

The primary advantage of a server DBMS over a process-per-user DBMS is that the
server can be customized to the database tasks that it is executing. A customize operat
ing system is more efficient than a general-purpose operating system because it knows
more about the tasks that it is running [Sto81]. For example, the server has a good idea
of how much CPU time and how many I/0*s each task will perform because the query
optimizer estimates these numbers when it selects a query execution plan for the task.
Most on-line transaction processing systems use a server architecture because it is the
most cost effective architecture.

A server architecture is agood architecture, but itdoes not take advantage of the tightly-
coupled parallel processors that are currendy popular. The appropriate configuration in
that environment is a multi-server architecture. Figure 4 shows a multi-server architec
ture. Each server runs in parallel on adifferent processor. The advantage of this archi
tecture is that both response time and thruput can be improved because the system can
execute many tasks in parallel. More work will becompleted by the multi-server archi
tecture that exploits parallelism than by a server architecture that uses interleaved execu
tion. Another advantage of the multi-server architecture is that DBMS cycles can be
increased byadding another processor if the application load grows towhere it cannot be

Figure 4: Multi-server architecture.

handled by an existing computer system.

Parallel processors are most frequently used to support a larger application workload.
However, some vendors are developing query executers that will use several processors
in parallel to speed up query execution. Parallel execution is also possible in a distri
buted database system asdiscussed below.

Thus far, we have focused on applying the idea of servers to the DBMS program. The
same idea can be applied to the application program. Figure 5 shows an application
server process that is connected to several database servers. The application server can
send a request to the server process that is least busy in order to balance the load across
the different processors. A disadvantage ofthis architecture is that the application server
can become abottleneck which will limit the system performance. Consequently, it is
necessary to support multiple application servers. Although some systems use this archi
tecture, it conflicts with the trend of moving applications toauser's workstation.
Some organizations cannot justify the cost to put ahigh-priced graphic interface worksta
tion on every person's work space. Some window systems, notably the X Window Sys
tem [ScG86] and Sun's NeWS System [SUN89], actually run a server process that per-

Figure 5: Application server architecture.

forms screen output and handles keyboard and mouse input.2 The application process
architecture in the workstation is shown in figure 6. Each application interacts with multi
ple windows that are managed bythe window system server. A new generation of intel
ligent terminals that execute just the X Window System server are being developed that
will cost roughly $1,000 and run exactiy the same applications with the same interface
"look and feel** as amore expensive workstation. The advantage these devices offer is
that alow cost-per-user graphic terminal can be used that will run exacdy the same appli
cations as ahigh cost-per-user workstation. The X terminal solution may run slower than
the workstation for some applications because the application runs in a shared compute
server rather than in the local workstation.

The last database system architecture that will be discussed evolved from the desire to
access data stored on physically separate computers. This architecture, called a distri
buted database system, is shown in figure 7 [CeP84]. The FE application sends exacdy
the same commands to the distributed DBMS that it sends to a single-site DBMS. The
distributed DBMS sends commands to the local DBMS*s to implement the application
query. Typically, the application process and the distributed DBMS process run on the
same computer and the local DBMS's run on the computers that contain the data. This
architecture has three advantages. First, data can be accessed transparendy. That is, an

O

Figure 6: Workstation window server architecture.

A protocol could be defined to run the other major window systems (Microsoft's Presenta
tion Manager and the Macintosh Toolbox) as servers, but they do not inherendy support awin
dow server.

Figure7: Distributed database system architecture.

application program can access data stored on different computers without having to
know where it is stored. Second, queries can be executed in parallel to improve perfor
mance. And third, computers can be incrementally added to orremoved from the system
without requiring changes in the application programs. The next section describes in
more detail the features of adistributed database system.

Figure 8 shows a typical hardware configuration in a factory. A local area network con
nects together a factory computer, a database server, and a collection of workstation and
cell computers. In addition, terminals are connected to the factory computer and to some
cell computers. Notice that the network has gateways to the corporate and engineering
design computers too. The data for the WIP system that controls the manufacturing pro
cess will be distributed to the database server and the cell computers. Most of the time
the applications that run locally on the cell computers will access data on the local data
base and occasionally they will access data on the database server. A server DBMS
should be run on the cell computer that can handle the local applications and the com
mands sent to it by a distributed database process that runs on the factory computer or
one of the workstations. An engineer trouble shooting a problem in the factory might

8

Local Area Network

Terminals

Factory
Computer

Workstations

o n

n
Workstation

Workcell

Cell
Computer

Terminals

Database
Server

o
Workstation

Workcell

Figure 8: Typical computing environment ata factory.

query data in the database server or a local database on a cell computer. However, all
these applications should be written in an SQL compatible language so that they can be
easily ported to run on the different databases.

This section described alternative architectures for database and application systems. A
typical factory computing environment was described and ways to use the alternative
database architectures in that environment presented. Most factories have heterogeneous
hardware so it is crucial that the application software run on this different hardware
without changes.

3. Distributed Database Systems
Distributed DBMS*s have only recently been introduced to the commercial marketplace.
Consequently, most products are primitive. This section describes the features that a
full-function distributed DBMS should eventually support. Current products will be
enhanced to provide most, if not all, ofthese functions over the next 5 years.
First and foremost, adistributed DBMS must be functionally equivalent to a single-site
DBMS. It must support ad hoc and program query access to the database, transactions

(i.e., multiple user access and crash recovery), integrity and protection, and other single-
site DBMS services. These functions must transparently operate on data located at dif
ferent sites.

A distributed DBMS can provide more function than a single-site DBMS because it is
distributed. The natural partitioning of a database is toplace different tables at different
sites. Queries that involve one table can be executed at one site. Queries that involve
tables atmore than one site can either move all the data to one site and execute the query
there or move subsets of the data to several sites and execute the query at those sites.
The distributed query optimizer is responsible for picking an efficient query execution
plan given a query, a particulardata distribution, and information about the cost to move
data and execute local queries.

A table can be distributed to more than one site by either vertical orhorizontal partition
ing. A vertical partition stores different columns of the table at different sites. For exam
ple, given the employee table

EMP(Name, Address,Dept, Picture)

The Name, Address, and Dept columns could be stored at one site and the Picture
column, presumably a large pixmap, could be stored at adifferent site. Ahorizontal par
tition stores rows of the table at different sites. Each partition is called afragment. The
EMP table above could be partitioned based on the employee's department. For exam
ple, administrative employees could be stored at headquarters on the corporate computer
and manufacturing employees could be stored in the factory computer in the manufactur
ing plant. Regardless of how the data is partitioned, the following query should return
the same results

select *

from EMP

where Name = 'John Smith'

The data partition is chosen to optimize a particular set of queries. For example, if
employee pictures are infrequendy accessed they can be stored on a slow optical disk in
the corporate data center. This example uses vertical partitioning to store infrequently
used data on slower devices. On the other hand, suppose there is a very large table, say
10 gigabytes, ofhistorical sales data that amarketing person is analyzing for trends. This
table can be horizontally partitioned and distributed to different computers so that the ad
hoc queries run by the marketing person can be executed in parallel to improve response
time.3

Adistributed database can be accessed from geographically dispersed places. For exam
ple, corporate headquarters might be in Detroit but a manufacturing plant might be in

Asimple query to compute a mean that takes 48 hours to run on asingle processor can be
runin 60 minutes on a parallel processor.

10

Mexico. Trouble shooters in the manufacturing plant might need to access a part data
base stored at headquarters. If many queries against the part database are being run, the
data might be moved many times to Mexico. It may be impractical to move the part
database to Mexico permanendy because it is also being accessed by other plants in the
US. The solution might be to keep a copy of thedata in Detroit and Mexico. The distri
buted DBMS will manage the copy. In other words, the distributed DBMS will choose
the least expensive copy to access and it will propagate updates to all copies to maintain
database consistency.

Copies are a good idea if you have data that does not change frequently. Otherwise, the
cost of maintaining the copies may out weight the advantage of keeping it. Another pos
sibility is to maintain asnapshot of the part table in Mexico. A snapshot is just acopy of
the table at aparticular time. Then, the snapshot can be updated with changes at regular
intervals (e.g., once a day, week, or month). A snapshot improves the execution of
queries in Mexico, but the answers may be out of date. This solution might be perfecdy
acceptable if the parts table does not change very often. The distributed DBMS should
manage the periodic updating of the snapshots.

Another feature of a full-function distributed DBMS isreplicated catalogs. A catalog is a
table maintained bythe DBMS to keep track of the database itself. For example, acata
logexists that describes each table or fragment in the database and the site at which it is
stored. A single catalog leaves the distributed DBMS vulnerable to a single failure. The
entire database will beunavailable if the site that holds the catalog is down. The solution
is to replicate the catalogs at several sites. That way, if one site goes down, the distri
buted DBMS can access acopy of the catalog at adifferent site. Replicated catalogs are
not free. Schema changes (e.g., adding or removing indices, adding columns to a table,
or adding or removing tables) will require that all copies of the catalogs be updated.
Consequentiy, replicated catalogs will be useful for stable production environments that
need high availability.

The last feature of a distributed DBMS is a distributed transaction log. Recall that log
records have to be written before a transaction can commit so that the database can be
restored to a consistent state should the system crash before the updated data pages are
written to disk. A limited function distributed DBMS will have a log at one site. This
solution is acceptable if the overhead to write the log is small as will likely be the case if
the log is at the same geographical site. However, if the log is at aremote site, it might
take a long time to write the log. The solution to this problem is to have many logs dis
tributed at different sites. Distributed logs do not cause a problem for the applications
that run on adistributed DBMS, but they do introduce considerable code complexity into
the distributed DBMS itself.

4. Heterogeneous Distributed Database Systems
Distributed database systems solve the problem of building integrated information sys
tems that use geographically disperse databases and parallel processing. They do not,

11

however, solve the problem of managing the transition from existing applications and
databases to these new systems nor the problem of integrating disparate data that is not
stored in adatabase (e.g., geometric models stored in a.file). A distributed database sys
tem can be used to solve these problems if we build gateways from the distributed system
to the older systems.

Figure 9 shows a heterogeneous distributed database system that interfaces to an IBM
IMS database and a DEC RMS file. The IMS and RMS gateways translate the com
mands sent by the distributed DBMS process to alocal database system into commands
on the foreign database or file system. The results of executing these commands are
translated into responses to the DBMS process which passes them back to the application
program.

O

Figure 9: Heterogeneous distributed database system.

12

The majority of relational queries can be translated to a foreign database. However,
some queries, usually update commands, cannot be translated. For example, a relational
database with EMP and DEPT tables that represent employees and departments can be
updated so that employees exist who are not in any department.4 This update cannot be
mapped to a CODASYL system that represents the departments by DEPT records and
places the employees in owner-coupled sets.

Other problems must be solved to make these systems practical. For example, acommon
dialect of SQL must adopted so that gateways between different relational databases can
be implemented. Common data types, catalogs, and error messages must also be
specified so the systems can work together smoothly. Nevertheless, heterogeneous distri
buted databases can bebuilt and they will solve an important problem.

5. Summary

Single site relational database systems are approaching maturity. Functions can still be
added to the leading products, but most products already have a rich set of functions.
Distributed database systems are an important new technology that will allow data stored
at different sites to be accessed and used as though it were at a single site. Distributed
DBMS*s are immature products. However, they offer real promise for several problems.
First, they will allow applications written against a relational database to access data
stored in different physical databases. The data can be stored at different sites and in dif
ferent DBMS*s (e.g., hierarchical, network, orrelational).

Second, they will take advantage of the proliferation of low cost computers. Parallel pro
cessing can be exploited to handle changing workloads and to improve response time for
selected queries.

These capabilities will be available without changes to application programs because the
a standard program interface to a database is used and because database vendors recog
nize that customers want portable applications that can access heterogeneous databases.
It may take 5 years for the vendors to complete the network protocols, database gate
ways, and distributed database systems. Nevertheless, the direction for the future is port
able, reconfigurable applications that run on heterogeneous computing environments.

References

[CeP84] S. Ceri and G. Pelagatti, Distributed Databases: Principles and Systems,
McGraw-Hill, New York, NY, 1984.

[Dat81] C. J. Date, An Introduction to Database Systems, Addison-Wesley, Reading,
MA, 1981.

, This example assumes that the database does not have areferential integrity constraint that
disallows this situation.

13

[ScG86] R. W. Scheifler and J. Gettys, "The X Window System*', ACM Trans, on
Graphics5,2 (Apr. 1986).

[Sto81] M. Stonebraker, "Operating System Support for Database Management'*,
Comm. of the ACM, JULY 1981.

[SUN89] NeWS Programmer Guide, Sun Microsystems, Inc., Mar. 1989.

14

	Copyright notice1989
	ERL-89-110

