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The Global Analysis of Fuzzy Dynamical Systems

by

Yung-Yaw Chen

Abstract

In this report we focus on the behavioral analysis of fuzzy dynamical systems,

which has become an increasingly important issue due to the prominent success of

fuzzy logic control. Fuzzy logic control was first proposed (Zadeh (1968)) as a possi

ble application of fuzzy set theory. Many industrial applications of it have been

demonstrated in the past two decades. A fuzzy logic controller utilizes the

knowledge of a human expert to acquire better control strategies for a process. It

starts from some simple process controls which can be easily handled by human

operators, such as steam engine control. However, as the constructed fuzzy control

systems become more complex and larger in scale, there is an increasing need for a

systematic analysis and design methodology.

Among all the problems concerning the analysis of a fuzzy dynamical system,

stability is one of the most interesting topics. In this thesis, a notion of the

"expert's Lyapunov function" is first proposed to give an insight into the stable

nature of a fuzzy control system. A cell-to-cell mapping method, which is success

fully used in the nonlinear system analysis, is then adopted to attack the problem

♦Research supported by NASA Grant NCC-2-275, AFOSR Grant 89-0084 and California
State MICRO 88-094.



of the global analysis of a fuzzy dynamical system. An analytical method is

developed to describe the behavior of a fuzzy dynamical system. Both the real and

fuzzy initial state responses are also studied. A definition of cellular stability is pro

posed to give a complete description of the analyzed fuzzy system. A follow-up sta

bility theorem is also formulated to provide a sufficient condition for a stable fuzzy

dynamical system. To illustrate the advantages as well as the disadvantages of

the fuzzy logic control, an experiment involving an inverted pendulum was con

ducted to compare the differences on the performance and controller design pro

cedure between the fuzzy logic control and the more conventional state feedback

control. The results of this experiment are described subsequently.



Chapter 1

Introduction

1.1 Motivation

Fuzzy Dynamical Systems (FDS) are aclass ofnonlinear systems which are represented in

arule-base form with the rules described in terms oflinguistic variables. The representation of

an FDS is entirely different from the traditional descriptions ofadynamical system using dif

ferential or difference equations. Conventional system theorists have constructed avery good, if
not perfect, universe for linear time-invariant (LTI) systems. There exist many powerful

methods, both in the time domain and the frequency domain, for the analysis and design ofan

LTI system. The task is straight forward since there is asimple relationship between their input-
output behavior and their internal dynamics. It is especially easy to characterize their input-output
behavior in the frequency domain as the Fourier transform ofthe impulse response. On the other

hand, there is not yet auniversal method for the analysis and design of ageneral nonlinear sys
tem. This iseven more difficult for an FDS because there is no precise mathematical formulatioa

Fuzzy Control Systems (FCS) are parts ofthe fuzzy dynamical systems. Their basic struc

ture consists of a plant and aFuzzy Logic Controller (FLO in the feedback loop. An FLC is

designed based on the knowledge of the process operators and, like an FDS, is inarule-base form

and described by linguistic variables. Human operators are usually able to summarize their con

trol strategies and incorporate them into the design ofan FLC to achieve the control goals. The

advantage of utilizing operators' knowledge accounts for part of the excellent performance
achieved by fuzzy logic control. However, the power as well as the weakness of an FCS is its

total dependency on the experts* knowledge. The controller design is impossible in cases when

there is no experienced operator available. In order to automate the design process ofan FLC, it

is firstly necessary to have a systematic way of analyzing the behavior of an FDS. Many



researchers have tried to solve the problem, but with few satisfactory results. As amatter offact,

there are not even commonly accepted definitions of stability and controllability, the two most
important properties required to describe an FDS.

Apowerful technique, namely cell-to-cell mapping (Hsu (1980)), is used in nonlinear sys
tem analysis with great success. The basic idea underlying the usage of the cell-to-cell mapping
is to transform the original nonlinear infinite numbered point-to-point mapping into afinite num
bered cell-to-cell mapping. Then the original nonlinear system is approximated by this new cell-
to-cell mapping and can be analyzed accordingly. As the cost of the computer memory and the
cpu time decreases, this method has proven to be very useful in nonHnear system analysis and
controller design.

Motivated by the success ofthe cell-to-cell mapping in nonlinear system analysis, we intro
duce this method into the analysis of fuzzy dynamical systems. Adetailed analysis of an FDS
using the cell-to-cell mapping technique is developed. Both the real and the fuzzy initial state
responses are discussed to give a complete picture of the behavior of the analyzed FDS.
Definitions of stability based on this method are also proposed. Under aNASA project, a
hardware setup of an inverted pendulum was constructed to provide us with away to practically
compare the performance of the fuzzy logic control and the more conventional state feedback
control.

1.2 Review ofPrevious Work

The original idea of fuzzy control was first proposed by Zadeh (1968,1972,1973) as apos
sible apphcation of fuzzy set theory. The idea offuzzy logic control is to construct acontroller

which utilizes the linguistic, imprecise knowledge of the human operators. The first stage of
development was mostly contributed to Mamdani (1974) and his colleagues in Queen Mary Col
lege, London. Most of the research conducted in this period were merely experiments in labora
tories, such as the work by Kickert (1976) and Rutherford (1976). One exception is the work by



Ostergaard (1977), which led to the development ofacommercially available fuzzy controller for
acement kiln and was the first industrial application of fuzzy logic control.

Many applications of fuzzy logic control have appeared in a wide range of fields since

Mamdani's first steam engine controller. They can be listed as follows: warm water process
(Kickert (1976)), sinter plant (Rutherford (1976)), robot (Uragami (1976)), stirred tank reactor

(King (1977)), heat exchanger (Ostergaard (1977), Sinha (1977)), traffic junction (Pappis and
Mamdani (1977)), strongly perturbed motor (Willaeys (1977)), activated sludge processes
(Flanagan (1980), Tong (1980)), cement kilns (Umbers (1980), King (1982)), box annealing fur
nace (Yonekura (1981)), casting plant (Bartolini (1982)), pump operation (Kokawa (1982)),
model cars (Takagi and Sugeno (1983), Sugeno and Nishida (1984)), automobile (Murakami

(1983)), diesel engine (Murayama (1984)), aircraft flight (Larkin (1984)), steam generating unit
(Kumar and Majumder (1985)), vehicle navigation (Hogle and Bonissone (1985)), robot arm

(Scharf (1985)), blast furnace (Hong (1985)), tuming process (Sakai and Ohkusa (1985)), mul
tilayer incinerator (Sugeno and Kang (1986)), crane (Yasunobu (1987)), nuclear plant (Bernard
(1986), Fukuzaki (1988)), automobile transmission (Kasai and Morimoto (1988)), Sendai
automatic train (1988).

With the increasing number of successful industrial applications, researchers became more

interested in formalizing the structure of fuzzy logic control. The format of afuzzy control sys
tem, which will be explained in detail in Chapter 2, has not changed much since it was first intro

duced. The main problem considered by most researchers regarding the controller design is the
method to assemble the control statements that constitute the rule-base. Braae and Rutherford

(1979) and later Czogala and Pedrycz (1981) discussed the completeness of afuzzy logic con
troller in their work. A lot ofwork, such as Baldwin and Pilsworth (1980), Bandler and Kohout

(1980), Mizumoto (1981), and Sugeno and Takagi (1983), focused on the appropriateness and
validity of the implication rules. Aself-organizing fuzzy controller was proposed by Procyk and
Mamdani (1979) who tried to construct alearning fuzzy logic controller by using a"performance
measure decision table". Czogala and Pedrycz (1982) adopted asimilar approach to generate



controlrulesthrough a performance index and the subsequent solutionof a relational equation.

Many researchers involved in the analysisof fuzzy control systems have theoretical control

backgrounds. The notionsof state, stability and controllability from conventional system theories

are studied and extended to fuzzy control systems. Kickert and Mamdani (1978) used the

describing function method to evaluate the stability of fuzzy control systems. Braae andRuther

ford (1979) proposed alinguistic phase plane trajectory for analyzing thestability. An energetis-

tic stability criterion was formed by Kiszka, Gupta, and Nikiforuk (1985). There was also the

workof deGlas (1984) that included a fuzzy stability theory. Chen (1987) proposed a notion of

"expert's Lyapunov function" to explain the intrinsic stability of fuzzy control systems.

While people were looking for a suitable tool to analyze a fuzzy control system, Hsu and

his students successfully developed the cell-to-cell mapping method for analyzing a wide range

of nonlinear dynamical systems. The details of the method can be found in a series of publica

tions: Hsu (1980), Hsu and Guttalu (1980), Hsu (1981), Hsu, Guttalu and Zhu (1982), Hsu

(1982), Hsu (1985), Hsu and Chiu (1986) and Chiu and Hsu (1986). The prospect of combining

the cell-to-cell mapping with the analysis of fuzzy dynamical systems further leads to the work

by Chen (1988), Chen and Tsao (1988) and Chen and Tsao (1989).

13 Contributions of the Thesis

In this dissertation, we analyze the behavior of the fuzzy dynamical systems with more

emphasis on the fuzzy control systems and also introduce the cell-to-cell mapping technique to

discuss:

(1) theglobal behavior of a fuzzydynamical system,

(2) the real and fuzzy initial state response of afuzzy dynamical system,

(3) the cellular stability of a fuzzy dynamical system.

The outline of the thesis is as follows:



In Chapter 2, we give an introduction to a fuzzy control system including both the plant

modeling and the fuzzy logic controller. The definitions ofa fuzzy set and its basic operations

are explained. A functional block diagram is shown to fully describe the difference between a

fiizzy control system and aconventional control system. Detailed descriptions of each block,

such as the plant modeling, the fuzzification, the defuzafication and the rale inferences of an

FLC, are also included in the chapter. Lastly, two industrial applications are described to exem
plifythe practicality of fuzzy logic control.

In Chapter 3, we give an explanation for the seemingly intrinsic stability ofafuzzy control
system. A new concept, namely "expert's Lyapunov function", is proposed to represent the sta

bility notion ofaprocess operator. We believe afiizzy control system is stablized because ofthe

incorporation of experts' stability notion into the controller design. A stability criterion is
developed and can be used to help the design ofan FLC.

The most important part of this dissertation is the introduction of the cell-to-cell mapping
into the analysis ofafuzzy dynamical system. In Chapter 4, the idea behind cell-to-cell mapping
is explained. This is then adapted to the analysis of an FDS. The analytical method gives an
approximate description of the behavior of the analyzed system. The description cannot be pre
cise because the system is represented in fuzzy linguistic terminology in the first place. From the
analysis, both the real and fuzzy initial state responses are shown to further illustrate the behavior

ofthe system. A definition ofthe cellular stability and ofan FDS, which is based on the results
ofthis method, isalso proposed inthis chapter.

In Chapter 5, an experimental comparison between the conventional state feedback control

and the fuzzy logic control is described. A hardware setup of an inverted pendulum under a
NASA project was built for this purpose. Both the advantages and the disadvantages of afuzzy
control system are investigated and verified through the experiment



Chapter 2

General Description of Fuzzy Control Systems

2.1 Introduction

The construction ofafuzzy control system (FCS) is based on the idea ofincorporating the

"experience" or "expert knowledge" of ahuman process operator to derive abetter strategy for
the control of aprocess and thereby achieve better system performance. An FCS is similar to an

expert system in the sense that they both model human experience and human decision making

behavior. The main advantage of this approach is its ability to implement "rule ofthe thumb"

experience and heuristics. It can also work without amodel of aprocess. However, an FCS is

different from an expert system in that it is a real-time feedback control mechanism and not a

consulting tool like mostexpert systems.

The basic configuration ofan FCS is shown in Figure 2.1.1. A plant and afuzzy logic con
troller (FLQ constitute a feedback loop with the FLC supplying the input to the plant. The
configuration is basicaUy the same as aconventional control system except for the replacement of

the controller block with an FLC. The plant in Figure 2.1.1 is generally a process which is

difficult to describe and/or control by conventional methods but which can be controlled by
human experts with quite satisfactory results. Figure 2.1.2 shows the detailed structure ofan FLC.

The major part ofa fuzzy logic controller is arule-base which consists ofanumber of if-then
rules expressed in linguistic terms, suchas:

if X! is small, and x2 is zero , then u is medium , (2.1.1)

where xi and x2 are state variables and u is the plant input The linguistic terms, small, zero,
and medium, are fuzzy sets whose membership functions are defined in the database. The prem
ise and the consequent parts ofthe control rules are constructed based on the expert's knowledge
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of the plant The compositional inference is performed by the computation unit to combine the

effects of different rules. Practically, the input and outputof a fuzzy logic controller are real vec

tors and not fuzzy sets. A fuzzification stage is needed to convert the real-valued inputs into

fuzzy set expressions and a defiizzification block is also needed to transform the "fuzzy" results

of the inference operations into real vectors again. Each functional block of an FCS will be dis

cussed in detail in the rest of the chapter.

Section 2 gives some basicdefinitions and operations of fuzzy sets and commonly used ter

minology. Section 3 shows the plant modeling of an FCS. Section 4 introduces the formulation

of a fuzzy logic controller and explains its inference operations. These include the fuzzification

and the defiizzification processes. Section 5 describes two successful industrial applications of

fiizzy logic control on cement kiln and automatic train control.

22 Definitions and Terminology

We shall start with some basicdefinitions andoperations of fuzzy sets in this section. Only

definitions which are relevant to the representation and the operation of an FCS are introduced.

Moredetailed descriptions canbe found in Zimmermann (1985) andKandel (1986).

2.2.1 Basic Definitions of Fuzzv Set Theory

Let X be a space of objects, namely objectspace and * be a generic element ofX. A clas

sical setA is defined as a collection of elements orobjects x e X, whichcanbe finite, countable,

or uncountable. Each element in X can eitherbelong to or not belong to a set A, A cX. By

defining a characteristic function (ormembership function) forthe elements in a set where 1 indi

cates membership and 0 non-membership, a classical set can be represented by a set of ordered

pairs (x ,0) or (x , 1). For example, assume that X contains 5 elements xlf x2t *3, x4 and jc5,

thenasetA <zX, containing xi, x2, and xs, can berepresented by



A - {Xi,x2,xs }, (2.2.1)

= {(*1.1).(*2»1).(*3>0),(;C4,0),(*5,1) }. (2.2.2)

Unlike the conventional "crisp" set, a fuzzy set expresses the different "degrees" to which

an element belongs to aset In the real world, most ofthe human concepts and descriptions are

full ofterms of"degrees". People, without knowing the true measure, tends to give an approxi
mate statement ofan event such as John is tall. Zadeh (1965) proposed the fuzzy set theory as a

means of representing this concept of "matters of degree". For a fuzzy set, the characteristic

function is extended to have values between 0and 1to denote different degrees of membership
forthe elements of a given set

Definition2.2.1:Fuzzy Set

IfX is acollection ofobjects denoted generically by x, then afuzzy set A in X is defined as aset
oforderedpairs:

A = { (x ,\iA(x)) Ix e X } (2.2.3)

\ij(x) is called the membership function or grade ofmembership ofx in A,which maps X to the
membership spaceMt M =[0,1].

•

When Mcontains only two points 0and 1, Ais non-fuzzy (crisp) and \iA(x) is identical to
the characteristic function of anon-fuzzy set eements with azero degree of membership are
normally not listed. In the literature, there is another commonly used notation for fuzzy sets:

A=Ma(*i)/*t+M* (*2)/x,+ ' •' =Z Mtf<*)/* (2.2.4)

jMrffrVx (2.2.5)or

X

Example 2.2.1:

Assume that A is a fuzzy set representing the temperature of a DC motor, then A can be
expressed as



A = Positive Medium ,

The membership values of"Positive Medium" arc given by

A" = {(110,0.1).(120,0.5),(130,0.8),(140,1),(150.0.8).(160.0.5),(170,0.1) }

By(2.2.1.4), A canalso be represented by

A = 0.1/1,0+0.5/120+0.8/130+ 1.0/,40+0.8/150+0.5/160+0.1/no.

1.0

M*)

0.0

110 140 170

Figure 2.2.1: Themembership function of A"

Definition 2.2.2: Supportofa Fuzzy Set

The support ofafuzzy setA",5(A"), is the crisp set ofalljceX, such that u.A-(*)>0,
i.e.

S(A")= [xeX \\iA-(x)>0} .

Definition 223: Crossover Point

For a fuzzy set A defined inX,x iscalled the crossoverpoint if

U* (*) = 0.5.

•

10

(2.2.6)

(2.2.7)

(2.2.8)

(2.2.9)

(2.2.10)
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Definition 2.2.4: Fuzzy Singleton

A fiizzy set A" defined in X is called &fuzzy singleton if the support ofA contains only one point

and its membership value is 1.

•

Definition 2^5: oc-Cut

The (crisp) setof elements which belong to the fiizzy setA atleast to the degree a, is called the

a-level-set or a-cut ofA",

Aa= { x e X I \LA(x)Za ) (2.2.11)

and A'a= { x e X I \la(x)><x } iscalled "strong a-level-set" or "strong a-cut".

a

Note that both a-cutand strong a-cut of a fuzzy setA are crisp sets.

Example 2.2.2:

For the A inexample 22.1, the a-cut ofA" for a=0.3,0.7,1.0 are shown inthe followings:

A03 = { 120,130,140,150,160 } , (2.2.12)

A0j= { 130,140,150} , (2.2.13)

Ai.o= { 140} . (2.2.14)

222 Basic Operations on Fuzzv Sets

A fiizzy set is defined in terms of its membership function. Hence it is obvious that the set

operations of fuzzy sets will be also defined via their membership functions. Though there is

actually more than one possible way to give a consistent definition of the fuzzy sets operations,

the min-max operation proposed by Zadeh (1965) is the most widely accepted one.
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Definition 22.6: Intersection

Themembership function \i^(x) ofthe intersection C =Ap>fl ispointwise defined by

\Lc(x) = min { u.A-(jt),\ig(x) },xeX. (2.2.15)

D

Definition 22.7: Union

The membership function \i^(x) ofthe union D =A\jB ispointwise defined by

\L6(x) = mdx [ \la(x),\lb-(x) ) ,x e X. (2.2.16)

•

Definition 2.2.8: Complement

The membership function ofthe complement ofafuzzy set A", u.^, A(x) isdefined by

Vn« * CO = 1- Ma to** * X (2.2.17)

D

1 .

HCO

0

X

Figure 222: Anexample of the fuzzy set operation
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Definition 2.2.9: Cartesian Product

Assume that A h ... ,AH are fiizzy sets in Xx,... ,XH respectively. The Cartesian product of

A i,... ,An is a fuzzy set in the productspaceX \ x • • • xXn with the membership function

P-4x."*C (*i *n )=niin { ^(xi) |iA (xB) } (2.2.18)

where (xi,... ,xH) e Xi x • • • xX„.

•

A fuzzy relation is a fuzzy subset of the product space X\ x • • • xXn. In the two dimen

sional case,a fiizzy relation canbe considered as a mapping from Xx -»X2.

Definition 2.2.10: Fuzzy Relation

LetXi,..., Xn c R be universal sets. Then

R= {((xi,...,xH),)ig(xl,...,xn))\(xl xn)eX1x-"XXn } (2.2.19)

is called a fuzzy relation on X\ x • • • xX2.

D

23 Plant Modeling

Most of the existing fuzzy logic controllers are designed without using any mathematical

model of the underlying process. Theconstruction procedures aregenerally based on the experts'

understanding of the process without involving any detailed mathematical descriptions. This

approach has its benefit but is not without its shortcomings. The main disadvantage is the

extreme difficulty in automating the controllerdesign of a fuzzy control system. As a result, the

design of an FLChas notprogressed much since it was first proposed. Therefore, some research

ers havetriedto workon the fuzzy identification and/or fuzzy modeling in orderto develop some

model-based fiizzy logic controller design theories.
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One of the most notable contributions to fiizzy modeling was byTakagi and Sugeno (1985).

Theproposed format of a fuzzy model consists of anumber of implication rules which are written

as:

R:

If f(xiisAu...,xkisAk) (2.3.1)

then y =£(*i, ••• *xk) (2.3.2)

where

y Variableof the consequent whosevalue is inferred.

xi Variables of the premise that also appear inthe consequent

Ai Fuzzy sets with linear membership functions representing a fuzzy subspace in which

theimplication R can be applied for reasoning.

/ Logical functions connecting the propositions inthe premise.

g Function that implies the value of y when xi •••xk satisfies the premise.

The function / and g can be some "appropriate" functions. However, the simpliest one

used is an identity function for/ and linear equations for g, i.e. an implication rule is expressed
as:

R:

If X\is A\ and ••• and xk is Ak (2.3.3)

then y =/>0+Pi x,+ --+pk xk (2.3.4)

23.1 Reasoning Operations of the Fuzzv Model

Suppose that we have n implication rules rt', / =1,...,n in the format of (2.3.3)-(2.3.4)

to form a rule base. Given the states



15

*i=*i° xk=xk° (235)

where x\ ,... ,xk arerealnumbers, the reasoning operations of the model are as follows:

(1) Foreachimplication ruleR', the consequent variable y' is calculated by

y'1 =Po +P\ x? + ••• +plxk0 (2.3.6)

(2) The truth value of the i -th implicationrule is given by

IR* I=A\ (x?) A ••• AAtixf) (2.3.7)

where I* I denotes the truthvalueof the implication and A is the "min" operator.

(3) The combined output of the n implications is calculated by the weighted average method,

i.e.

2 I*1' Ixyl

7--4 (2-3.8)

232 Identification

Basedon the structure of (2.3.3)-(2.3.4) the identification algorithm is basically divided into

three steps, i.e.

(1) Consequent parameter identification,

(2) Premiseparameter identification,

(3) Choice ofpremise variables.

The identification is done by minimizing a performance index which is defined to be the root

mean square of the output errors. The outline of the algorithm is shown in Figure 2.3.1. Details

ofthe algorithm will be discussed in the following sections.



* Premise Variables

, .1
Premise Parameters

Consequence Parameters

Figure 2.3.1: Outline of the algorithm
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232.1 Consequent Parameters Identification

Suppose thatthe rale baseconsists of n implication rales in the form of (2.3.3)-(2.3.4). The

outputy with the input (*i xk ), by (2.3.8), is obtained as

Let

then

£(A"i (Xx) a ••• aAl(xn))x(pi0 + ••• +plxk )

2(Ai(Xi)A ••• hAUxn))
v =

fc =
(A\(xx)h -•• Aifjft,))

£(A*i(Xi)A ••• Aififc.))

y=ZPl(pb+---+^ixJfc)

=2(PoP,+ -•+Pkixkpi)

(2.3.9)

(2.3.10)

(2.3.11)

(2.3.12)
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With (2.3.11)-(2.3.12), wecan obtain the consequent parameters by using the least square estima

tionmethod whenever the input-output pairs are given.

2322 Premise Parameters Identification

The task of deciding the premise parameters is equivalent to determining how to divide the

state spaceinto some fuzzy subspaces so that the performance index can be minimized. The task

is simplified by assuming thelinear shape of the membership functions. The problem of premise

identification is then reduced to anonlinear programming problem which is solved by a complex

method for the minimization.

2323 Choice of Premise Variables

The basic concept of fiizzy modeling is to represent a dynamical process with a certain

number of implication rules. The implication rules are supposed to be few and representative.

Alternatively, the major task of fiizzy modeling is to divide the input-output space into regions

such that each region canbe described by oneimplication rule.

The choice of premise variables is done by successfully dividing the state space into sub-

spaces, then choosing theone associated with theminimal performance index. For example:

Suppose that we wish to build a fuzzy model for a k-input ( xx,..., xk ) and single-output y

system.

(1) Divide the range of xx into two fuzzy subspaces "small" and "big", and do not divide the

other variables x2, ...,xk. The model willthus contain onlytwo implication rules as:

if xx is small x then...

if x xis big x then...

Call it model 1-1. Similarly, a model with x2 divided into two subspaces and other states

undivided is called model 1-2 and so on. In this way, we shall havek models, each with 2
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implication rules.

(2) Find the optimum parameters for both premise and consequent by the methods described in

the previous sections. Then choose the model with the least performance index value.

(3) Proceed with the second level partition which is basically the same as the first level parti

tion and create the 2-i model.

(4) Repeat the procedure of (2) and (3) until the performance index becomes less than the

predetermined value or the number of implications exceeds a predetermined number.

233 Remarks

Fuzzy modeling is a very important issue in developing a model-based fiizzy logic con

troller design theory. Sugeno's work is a foundation for fiimre research. However, it is not clear

at this moment as to how to systematically design an FLC based on his model. We also believe

that the extension from a linearconsequentequation to a polynomial one should improve the per

formance of the modeling. The tradeoffis, of course, the increase of the computational complex

ity. We feel that the goalof automating FLCdesign is animportant and worthwhile one and that

the progress towardsthis is very promising.

2.4 Fuzzy Logic Controller

2.4.1 Basic Structure

As shown in Figure 2.1.2, a fuzzy logic controller consists of five major parts: (1) a rule

basewhichcontains anumberof control rules, (2) a database whichdefines the membership func

tions of the linguistic terms used in the rule base, (3) a computation unit which performs the

necessary inference operations upon the control rules, (4) a fuzzification interface which relates

the real sensor inputs with the fuzzy terms so that they can be processed by the inference
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mechanism, and (5) a defiizzification interface which transforms the "fiizzy" results of the infer

ences in the rule base to realnumbers so that they can be used to control the process.

A rule base usually consists of a number of if -then control rules which are of the form:

if xx is PS , and x2 is PL , then u is PS (2.4.1)

where xx and x2 are the state variables, u is the output of the fiizzy logic controller, PS

(Positive Small) and PL (Positive Large) are fuzzy sets with membership functions defined by

the experts.

In fuzzy logic control, the control rules are given by the experts. Therefore, it is necessary

for the experts to specify the universeof discourse to give the semantics of a fuzzy variable, i.e.

the membership function. An example of the membership functions ofPS (Positive Small) and

PL (Positive Large) is shown in Figure2.4.1.

\i(x)

Figure 2.4.1: The membership functions

Generally, there is no restriction on the shape of a membership function. However, there are

some functions, such as the bell-shaped function, the triangular function, and the monotonic

linear function, which are usually adopted in the formulation of the membership function of a

fiizzyvariable. Since the meaning of a fuzzy variable is normally defined by the expert according

to his own terminology, a fiizzy term may represent different meanings for different variables.
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For example, the PS (Positive Small) in(2.4.1) has different interpretations forxi and x3 respec

tively.

To summarize, a rale base with n control rules of a fuzzy logic controller is of the follow

ing form:

if xxis AXXt..., Xp is AXpt then uxis BXXt..., uq is BXq, (2.4.2)

if xx is A2X,..., Xp is Aip, then ux is B2h..., uq is B^, (2.4.3)

if xx is AnX Xpis Anp, then uxis BnXt..., uq is B^> (2.4.4)

where xt, i =1,... ,p are the state variables, uj, j =1 q are the action variables or the con

troller outputs, Ay, By, i =1,... ,p, j = l q are fuzzy variables. In most cases, the

number of the action variables isone, i.e. we normally consider only one controller output.

2.4.2 Operations of a Fuzzv Logic Controller

The operation of a fuzzy logic controller depends on the fiizzy reasoning method adopted.

There are generally twokind of fiizzy reasonings:

(1) basedon compositional ralesof inference,

(2) based onfuzzy logic, e.g. fuzzified Lukasiewicz logic.

We shall introduce both methods inthe following sections. However, in fiizzy logic control, the

second method based onfuzzy logic isusually used because ofthe simplicity incomputation.
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2.4.2.1 The First Type

To simplify the notation, we shall useonly two rales to represent the ralebaseand eachrale

has onlytwo state variables and one action variable. This can be easily extended to systems with

more state and action variables. Let the rule base be:

if xx is in *x2is AX2t then u is Bx (2.4.5)

if xxis A2X,x2is A-22, then u is B2 (2.4.6)

Fuzzification

Suppose that the premise part of the control rules is given from the sensor readings which

may be fuzzy terms or real numbers. For fuzzy terms, each reading /fy is matched to the premise

Aij by finding the matching coefficient m/y to be:

mij =mm(Aij (xt),jfy &)) (2.4.7)
Xt

However, the sensor readings are generally real numbers in most practical situations. These

real-valued sensor measurements, e.g. x? and x$, are matched to their corresponding fuzzy vari

ables by finding their corresponding membership values, such as:

A"nU? ),A12(x2° ), A2X (xx° ), AnU2° ) (2.4.8)

Graphically, the operations of a fuzzy controller is shown in Figure 2.4.2.

FuzzyReasoning

For all the control rales, (2.4.5)-(2.4.6), in the rule base, we derive the truth values of each

rule inthe premise by forming the conjunction of all the fuzzy variables either by:

wi =A"n(x1°) a AX2(x$ ) (2.4.9)

w2=A2x(xx°) AA22(xS ) (2.4.10)

or by

wi =^ii(*i° )XA"12(J:20 ) (2.4.11)
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W2 =i2l(*l0)x/22(*2°) (2.4.12)

The latter one (the multiplicative weights) has been used more often than the previous "min"

operatorbecause of better smoothness properties.

mm

Figure 2.4.2: The first type of fuzzy reasoning
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The effect of the control rules or their action part are represented as the fuzzy sets wxBx

and w2 B2 and are calculated by:

wxBx(u) = wxxBx(u) (2.4.13)

w2~B2(u) =w2xB2(u) (2.4.14)

Then the combined result of the inferences forms a fiizzy set B as:

B =wxBxkjw2B2 (2.4.15)

where the u operation is generally the "max" function.

Defiizzification

The purpose of the defiizzification process is to transform the output of the inferences,

which is a fiizzy set, to a realnumber so that it couldbe used to control a process, i.e. we need to

find a singlenumber to represent a fuzzy set The most commonly adopted method is to find the

value corresponding to the centerofmass of the membership function as shown in (2.4.16).

n \B (u)udu
n0-2^ (2.4.16)

\B (u)du

There may be many rulesin the rulebaseof a fuzzy controller. Generally, if the weights of some

rales are smaller than a certain threshold value, then the rales are omitted in reasoning. A fuzzy

logic controller usingthis type of reasoning method hasbeen proved to function like a multirelay

(Braae and Rutherford (1979)).

2.4.2.2 The Second Type

The second type of reasoning is based on fuzzy logic. One major difference between the

first type and the second type of reasoning is the shape of the membership functions used. The

first type, as shown in Figure 2.4.2, uses bell-shape or triangular functions for the membership

functions. The second type is applicable only when monotonic membership functions arc used



24

for the consequent inthe rale base. The reasoning operation ofthe second type isshown inFigure

2.4.3.

"2 u

mm

Figure 2.4.3: The second type fiizzy reasoning
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The fuzzification procedures for the second type are the same as the first. The truth values

or weights of the different rules arealso derived by (2.4.9)-(2.4.12). However, since the member

ship functions ofBx andB2 aremonotonic functions, the action partcan be calculated by

ux = Bx'l(wx) (2.4.17)

u2 = B2l (W2) (2.4.18)

Then the outputof the inferences is givenby the weighted average method to be

u° = • (2.4.19)
wx + w2

The advantage of the second type of reasoning is its computational simplicity. The first

type operates with fiizzy sets throughout the whole procedure. It takes to a lot of memory space

and computation time to derive the final control output The second type works with real

numbers as much as possible to reduce the usage of memory and computation time. Since fuzzy

logic controllers are more complicated in structure than other kinds of controllers, computational

efficiencyis very important to real-time fiizzy logic control.

2.5 Industrial Applications

Two most well-known industrial applications of fuzzy logic control are described in this

section. The cement kiln control (Holmblad and Ostergaard (1982)) was the first successful

example that practically implemented a fuzzy logic controller on an industrial process. The

automatic train control by Hitachi, Japan was the mostnotable application whichconsidered not

only the quantitative factors, suchas fuel efficiency and braking frequency, but also human fac

tors, such asthe comfortnessof its passengers.
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2.5.1 Cement Kiln Control

23.1.1 Plant and Process Description

Cement is manufactured by heating a slurry consisting of clay, limestone, sand and iron ore

to ahightemperature to form thecomplex compounds of cement, dicalcium silicate (Ca2Si), tri-

calcium silicate (Ca3Si), tricalcium aluminate (Ca^Al), and tetracalcium aluminofenite

(Ca4Al Fe), Three different heating stages are involved to complete the process. The kiln con

sists of a long steel shell about 130 m in length and 5 m in diameter and is mounted at a slight

inclination to thehorizontal. The shell rotates slowly atapproximately 1rev/min and the slurry is

fed in attheupper back end of thekiln. Thecomplete process of transporting thematerial through

the kiln takes about 3 hours and 15 minutes with a further 45 minutes spent in the clinker

(referred to the end product) cooler. The heat in the kiln is provided by pulverized coal mixed

with air. The hot combustion gas is sucked through the kiln by aninduction fan at the backend

of the kiln.

There are five measurable state variables and three control variables used in the process.

The state variables are:

(1) exhaust gas temperature: backendtemperature (BT),

(2) intermediate gas temperature: ring temperature (RT),

(3) burning zone temperature (BZ),

(4)oxygenpercentage in exhaust gas (O2),

(5) litre weight (LW): indicates clinker quality.

The three control variables are:

(1) kiln speed (KS),

(2) coal feed (CS),

(3) induced drought fan speed (BF).
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The cement manufacturing process is very complicated and involves many factors, time

delays, heat conductions, etc. The dynamic responses were modeled by using the "reaction"

curve method with a pure time delay. The representation is very much simplified because the

kiln is subject to random disturbances from severalsourceswhich can not be quantified and the

kiln's dynamics is extremely nonlinear andvariable depending on the prevailing kiln conditions.

The whole process was controlled manually by operators. An experienced operator monitored

the control panel and made proper control actions based on the sensor information, operational

procedures, and most importantly, experiences.

2.5.1.2 Fuzzy Logic Controller Design and Its Results

The operational procedures and operators' experiences were formulated in the form of an

if-then statement

if<condition> then <control actions>

The condition part consists of linguistic statements of the five state variables, such as "the litre

weight is slightly high" or "the back end temperature is somewhat low", andthe action part are

statements like "makea medium reduction in coal feed rate" or "openslightly the exhaustgas fan

damper". The key items in the control rules are terms like "medium reduction", "slightly high",

and "somewhat low". These linguistic terms were represented by fuzzy sets with membership

values between 0 and 1. The fuzzy control system was thencoded and incorporated into the F. L.

Smidth's computerized process monitoring system, FLS Supervision, Dialogue and Reporting

(SDR) system.

The system had then put into continuous operations for two years when Holmblad and

Ostergaard reported that it was capable of maintaining a good and stable operation of the kiln

consistently. The success of this example demonstrated the plausibility of fuzzy logic control

with a real industrial application for the first time and was considered an important milestone of

its development
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2.5.2 Automatic Train Control

Another important industrial application of fuzzy logic control was applied on the

automatic train operation (Yasunobu andMiyamoto (1985)).

2.5.2.1 Automatic Train Operations

The automatic train control system (ATC) has two sub-systems, namely, the automatic train

operation system (ATO) and the automatic train protection system (ATP). The input data of

ATO are distance pulses of a tacho-generator, cab signals of the ATP on-board system, position

marker deteaed signals which indicate the train position, and supervisory commands from the

automatic train supervision system (ATS). The output data of ATO are powering and braking

commands to a traction controller and a brake controller.

Limited Speed
C _J : Performance index

(Running Time^

(Energy Consumption^

Station \ Distance
CSC Position TASC Position

Marker Marker

Figure 25.1: The automatic trainoperation

(Source: (Yasunobu, 1985))
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The ATO was operated manually by human experts whose control actions were decided by

evaluating the sensorinputs and various performance indices such as safety, riding comfort, and

stop accuracy. The human operator's strategies werebasically divided into two parts. One was

the Constant Speed Control (CSQ andthe otherwas the Train Automatic Stop Control (TASC)

as shown in Hgure 2.5.1. With the departure command, the operator first brought the train to a

target speed. The CSC was then performed accordingto rules such as:

(C-l) For safety: if the train speed exceeds the speed limit, the maximum brake notch is

selected.

(C-4) For riding comfort: if the train speed is in the predetermined allowance range, the

control notch will not be changed.

In the second stage of the train operation, the human operatorstartedthe TASC by detecting

the position marker which indicated the distance to the target station. Then the control command

was selected with rules like:

(T-l) For riding comfort: when the train is in the TASC zone, the control notch will not be

changed if the train will stop at the predetermined allowance zone.

(T-3) For the stop gap accuracy: when the train in the TASC zone, change the notch a little

if the train will not stop within the predetermined allowance zone.

2.5.2.2 Fuzzv Logic Controller Design and Its Results

The meaning of the performance indices, such as danger, safety, and comfort, were first

characterized by fuzzy sets with different membership functions. The linguistic rules of the CSC

and TASC operations were transformed into fuzzy control rules like:

(C-4)IF(DNisO->SisSS and TisTG) ThenDNisO.

where DN is the difference of control notch, S is the safety index, SS is the fiizzy term represent

ing "safe", T is the traceability index, and TG is the fuzzy term representing "good trace".
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The fiizzy ATO control system was built into an on-board controller by a micro-computer

(M-6800) with a sampling time of 100 ms. A conventional PID controller was also built for the

purpose of comparison. In field tests, the fuzzy ATO system gave significant improvements over

a conventional PID controller with respect to the safety, riding comfort, accuracy of stop gap,

running time and energy consumption. Also, it was able to operate robustly under the changing

environmental conditions and saved over 10% of energy compared with conventional ATO con

trollers.

2.6 Concluding Remarks

This chapter gave a preliminary introduction to fuzzy set theory and fiizzy control systems

which will be useful for the following chapters. We do not intend to cover all the previous work

in this field, but only describe the topics which are relevant here. From the context of this

chapter, we can see that fiizzy logic control is still in its developing stages. Many questions need

to be answered, namely, the modeling problem, the model-based controller design, stability

analysis etc. There is plenty of research space to be carefully examined and worked on. Hope

fully, fiizzy logic control will become a major tool for dealing with some systems which are

difficult to control by conventional methods.
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Stability Property of Fuzzy Control Systems
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3.1 Introduction

The stability of a fuzzy control system (FCS) has always attracted the attention of research

ers who are interested in formal FCS analysis. An interestingquestion is concerned with the for

mulation of a definition of stability for an FCS, which can describe its dynamic behavior. The

problem is very interesting and also difficult because an FCS cannot be represented in terms of

the well-studied differential or difference equations. Moreover, itsfuzzy nature alsomakes it very

hard to have a precise definition of stability. To date, several methods have been proposed to

evaluate the stability of an FCS. Kickert and Mamdani (1978) used the describing function

method to evaluate the stability of fiizzy control systems. A linguistic phase plane trajectory for

analyzing the stability of fuzzy systems has been proposedby Braae and Rutherford (1979). DeG

las (1984) suggested an invariance principle for continuous-time fuzzy dynamic systems. An

energetistic stability criterion has also been proposed by Kiszka, Gupta and Nikiforuk (1985).

In conventional system theory, the stability property of a system is always fully investigated

and has top priority in controller design. However, for most of the applications of fiizzy control,

the stabilityproperty is always assumed a priori withoutdetailed analysis. Part of the reasons for

this assumption is that there is no commonly accepted method forFCS analysis. Practically, the

design of a fiizzy logic controller is based on the knowledge of the process experts. The better

the experts* understanding of the process, the betteris the performance of anFCS.To explainthe

stability nature of a large class of fuzzy control systems, we propose a notion, namely the

"expert's Lyapunov function". Very often,anexpert has his own ideaabout the stability criterion

of a system. The criterion may not be of a crisp mathematical form, but is more likely to be a

linguistic expression, such as:
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If: the temperature is NOT VERY-HIGH,

and the rate ofchange ofthe temperature is NOT LARGE,

then: System is stable.

During the construction of a fiizzy logic controller, an expert helps a control engineer to incor

porate his implicit notion of stability into the rule base. Although the expert may not be familiar

with the term "Lyapunov function", he must have his own stability notion , which is not neces

sarily quantitative, in mind. This notion of stability is the underlying reason for the stability of a

fiizzy control system and will be called the "expert's Lyapunov function". A control engineer can

verify the stability of an FCS by computing the expert's Lyapunov functions from the linguistic

implication rules. An expert can also heuristicallywrite down a Lyapunov function based on his

notion to help develop the rule base.

This chapter is organized as follows: some previous work on the stability analysis of an

FCS is given in section 2; a stability theorem and adesign method aredescribed in section 3; then

the proposed idea is illustrated by an example using an inverted pendulum in section 4 ; finally,

the results of the chapter are summarized in the last section.

3.2 Review of Previous Work

We shall discuss some of the approaches proposed by researchers for stability analysis of a

fuzzy control system in this section. Although many ideas have been investigated by researchers

with different degrees of success, none can give a practically useful description of the stability of

an FCS. Despite the unsatisfying results, some innovative ideas merit further study and will be

briefly discussed in this section.
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3.2.1 Conventional System Approach

Most of the researchers in the field of FCS analysis have conventional control backgrounds.

It is therefore very natural for them to extend the concept of stability in conventional system

theories to fiizzy control systems. In linear system theories, many properties, including stability,

are discussed through the state equations. Following a similar approach, we can represent a fuzzy

control system by a fuzzy relational matrix R and discuss its dynamic behavior through the next

state mapping.

3.2.1.1 Basic Structure

For a simple dynamic system as shown in Figure 3.2.1, assume that the dynamics of the

system can be described by the following discrete fiizzy relational equation:

Xk+x=XkUkoR (3.2.1)

where Xk and Xk+X are fuzzy sets defined on a multidimensional finite discrete state space X and

Uk is a fuzzy set defined on a multidimensional finite discreteinput space U.

"a *xk

Process
xk+x

Figure 3.2.1: A simple dynamic system

Xk is the current state; Uk is the current input and Xk+X denotes the next state of the process.

Xk Uk is a fuzzy relation defined in the Cartesianproduct space XxU and is defined by

M&c74(*>") = M-&(*)A Mtf4(") (3.2.2)

where u. is the membership function and a denotes the "min" operator. The finite discrete fuzzy
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relation R is defined on the product space XxUxX and is considered as a next state mapping.

The next state Xk+l is calculated from

Mak.Cfc+1)* Y [M*&(**•"*> A MrfC**."*.*fc+i)] (3-2.3)

where y denotes the "max" operator.

3.2.1.2 Dynamic Behavior of a Fuzzy Control System

Some equalities will be given in this section first, before the examination of the dynamic

behavior of (3.2.1).

Theorem 3.2.1

If: X is a finite discrete fuzzy set onAT andQ is a finite discrete fiizzy relation onX xX,

then:

(X oQ ) oQ =X o(Q ofi ) (3.2.4)

Proof: See Appendix A.

•

Theorem 3.2.2

If: X and U are finite discrete fuzzy sets onX and Ut and R is a fuzzy relation defined on

XxUxX,

then:

X U oR = X o( U oR ) = U o(X oR ). (3.2.5)

Proof: See Appendix A.
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Suppose that we consider a constant input U = Ue responseof (3.2.1) with an initial condi

tion X = Xq, then we can derive

Xx=X0UeoR (3.2.6)

X2=XxUeoR (3.2.7)

XN=XN.xUeoR (3.2.8)

From (3.2.6)-(3.2.8), we have

X2 = (X0Ue oR) o(U0oR) (3.2.9)

= (X0o(Ue oR)) o(UQoR) (3.2.10)

= <XooQ)oQ (Q=UeoR) (3.2.11)

Also, by Theorem 3.2.2, we have

X2=X0o(jQoQ) (3.2.12)

= X0oQ2 (3.2.13)

Following the same procedure, we can get

XN=X0oQN (3.2.14)

From (3.2.14), the asymptotic behavior of the system depends on the behavior of Qn. as

N -» «». However, it was shown by Thomason (1977) that the powers of any fuzzy relational

matrix will either converge to a fixed fiizzy matrix or to cycles with a finite period.
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3.2.1.3 The Concept of Stability

To discuss the stability of a system, it is essential to clearly define the meaning of

"unstable". In the conventional system theories, "unboundedness" is an unmistakable indication

of instability. However, this concept of instability becomes ambiguous when a system is

represented by fuzzy sets. From the analysis in section 3.2.1.2, we can see that the final state XN

always converges or cycles with a finite period, which is clearly different from the conventional

analysis. It becomes obvious that a different kind of stability, i.e. a stability with degrees, should

be used to analyze fiizzy control systems. The degrees of stability might be a real-numbered

index or even some linguistic statements such as, "very stable", "more or less unstable". In the

following paragraph, we shall talk about a stability measure proposed by Tong (1980).

Consider that a state space is partitioned into two non-fuzzy regions, Xf the interior set or

the stable region, and XB the boundary set or the unstable region. The degree of stability of a

state X is given by

c(X) = l-IQC,XB) (3.2.15)

where I(XtXB) denotes the degree to which the fiizzy set X is included in the unstable region

Xb . The choice of the function / is not obvious and is left open. Two possible candidates were

proposed as:

/1(X,Xb) = y((^(jc)a (1*00) (3.2.16)

/2(X,XB)=A([l-(^(x)]YHXf(x)) (3.2.17)

Examples of the two stability functions are shown in Figure 3.2.2. The degrees of stability are

ax(Xx) = 1.0, o1(Xr2)=l-a, 0^3) =0.0, o1(Xr4) =0.0, (3.2.18)

o2(Xr1)=1.0, o2(X2) =1.0, o2(X3) =p, a2<X4) =0.0. (3.2.19)
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Figure 3.2.2: Stable and unstable states

3.2.1.4 Remarks

The so called "soft" definition of stability which considers different degrees of stability is

likely the solution to the stability definition of fiizzy control systems. Tong's stability function

demonstrates a possible formulation of such a concept However, we still need an operational

definition which can be incorporated into a practical design method. Moreover, the analysis

above also shows its weakness in describing the behavior of a fuzzy dynamic system. The final

state is obviously obscured by the fuzzy iterations, which might pose an even more serious prob

lem.

3.2.2 Enereetistic Approach

The concept of "energy" is commonly used as a measure of the stability of a dynamic sys

tem. Onefamous example is from Lyapunov function theory which usesa Lyapunov function as

a generalized energy function to indicate the stability property of a dynamic system (Vidyasagar

(1973)). The energetistic approach by Kiszka, Gupta and Nikiforuk (1985) is based on the

assumption that a dynamic system is stable if its total energy decreases monotonically until an

equilibrium state is reached. In their work, they try to answer questions such as: Is a fuzzy system
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stable, unstable, or oscillatory? What causes the instability of a fuzzy system? How can it be

removed? A summary of their work is given in this section. Although the questions are very

interesting, we are not convinced that the answers have been found.

3.2.2.1 Basic Structure

The basic equation of a fiizzy dynamic system used in this section is the same as in (3.2.1)

and is of the form:

Xm =** oUk oR , k = 0,1, • • • (3.2.20)

where Xk and Xk+X are state variables, which are represented by fuzzy sets, at the time instant k

and £+1 respectively.

Therefore, the constant input responseof the system is also the same as in (3.2.14),

XN =X0oQN (3.2.21)

where Q=UeoRt and Uc is a fuzzy constant

3.2.2.2 Energetistic Stability Method

It is intuitively true that a dynamic system is stable if its total energy decreases monotoni

cally until an equilibrium state is reached. The argument should also apply to a fuzzy control

system since it belongs to a class of nonlinear dynamic systems. However, the question remains

as to how to define a "generalized energy function" which is related to the stability of an FCS.

Some comparisons and observations were made by Kiszka to conclude that the desired "energy"

function of a fiizzy set should depend on its support and shape. Tvto fiizzy sets, both named

medium, are shown in Hgure 3.2.3. X and X' have the same value corresponding to the max

imum membership. But X' hasa widerspread than X. Hence, it is expectedthat

E (Xf = medium )>E(X= medium ) (3.2.22)
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where E ( ) denotes the energy function of a fuzzy set

1.0 1.0

0.0 0.0

X

Figure 323: Two fiizzy sets named medium

A generalized energy function is formulated to account for its connections to the support

and shape of the membership function of a fuzzy set The definition is

1 ZE(X) = -^-^w(xi)f(}i][(xi)) (3.2.23)
i»i

where w() is a function which relates the support of X to the energy function E, f () is a func

tion which relates the shape of the membership function of X to E, n is the cardinality of X, and

— is a normalization factor,
n

The definition of (3.2.23) is heuristic and does not have any theoretical justification. Also,

it is not clear as to what kind of functions w and / should be. Kiszka simplified (3.2.23) by

using the functions

i.e. (3.2.23) becomes

w (x)=x

f(x)=x

E(X) =̂ xiu,i(xi)
n i=i

(3.2.24)

(3.2.25)

V"

(3.2.26)
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Now consider a fiizzy dynamic system described by the fuzzy relation equation

Xk+x=XkoQ (3.2.27)

which has the solution (3.2.21) when given the initial state X0. We can further define the energy

function of the state at each time instant k by

E (Xk )=£ (X0oQk ), k = 1,2,••• (3.2.28)

A characteristic function of energy is also given by

AEk =£ (X0oQk )-£ (X0oQk~l), k =1,2,••• (3.2.29)

Based on their intuition and experience, Kiszka and his colleagues developed some rules of

stability for a fuzzy dynamic system.

Conjectured Rules ofStability

(1) The fiizzy dynamic system describedby (3227) is said to be stable if

AEk £ 0, for k->oo. (3.2.30)

(2) The fuzzy dynamic system described by (3.2.27) is said to be unstable if

A£*£0, for *-»«». (3.2.31)

(3) The fiizzy dynamic system described by (3.2.27) is said to be oscillatory with a period x if

I A£jk I = I A£t+t I, for k -> ~. (3.2.32)

where I* I denotes the absolute value.

3.2.2.3 Remarks

The approach proposed by Kiszka is very interesting and, in our option, deserves further

investigations. However, the value of their work is mostly in the innovative idea. Many ques

tions remain unsolved, such as, what is the physical meaning of the proposed"energy"?how does

this energy relate to the stability of an FCS? Besides, it has been proved that the powers of any
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fuzzy relational matrix will either converge to a fixed fiizzy matrix or cycles with a fixed period.

That means, Kiszka's energy function can never "blow up" like the conventional one. Obviously,

the work is far from complete.

33 Expert's Lvapunov Function

There have been many successful experimental and industrial applications of fuzzy logic

control since it was first proposed by Zadeh (1968). The scales and complexity of some applica

tions arevery large, e.g. automatic train control. It is expected that this kind of large scale project

needs detailed planning and analysis. One of the important tasks is the stability analysis of the

system. However, due to the fact that there is no existing method which can perform satisfactory

analysis of an FCS, the design of these industrial fiizzy logic controllers was reportedly done

solely by human experts. It would, therefore, give rise to questions like: why are these systems

stable? how is the stability incorporated into the system design?

To answer the questions, we propose a notion, namely the "expert's Lyapunov function".

The stability of almost all fuzzy logic controllers is guaranteed by the existence of such a notion

in the experts* mind. Generally, an expert always has his own understanding of the stability of a

system, which may be explicit or implicit In the process of controller design, an expert will

inevitably incorporate his stability concept into the rule base and thus guarantee the stability of

the system.

33.1 Stability Criterion

To further elaborate the concept of the expert's Lyapunov function, we formulated two cri

teria for the stability of a fiizzy control system. The stability of an FCS is predicted when the cri

teria are met Before stating the stability theorem, we shall present some preliminary definitions

(Vidyasagar (1973)).
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Definition 3 3.1 Class K Function

A continuous function a: R -» R is said to belong to class K if

(i) a (•) is nondecreasing, (3.3.1)

(ii) a(0) = 0,and (3.3.2)

(Hi) a(p)>0 whenever p >0. (3.3.3)

•

Definition3.3.2 Locally Positive DefiniteFunction (I.p.d.f.)

A continuous function V:R+xRn ->R is a locally positive definite function (l.p.d.f.) if there

exists a continuous nondecreasing function a:R->R such that

(/) a (0) = 0, a (p ) > 0 whenever p > 0, (3.3.4)

(") V(f,0) = 0 V tZO, (3.3.5)

(Hi) V(t,x)Za(x) V tZ0,V xeBr, (3.3.6)

where Br is a ball with radius r and center 0.

•

Definition 333 Decrescent Function

A continuous function V :R+xRn -+R is said to be decrescent if there exists a class k function

PC) such that

V(f,jc)<;p(x) (3.3.7)

\f r£0,W x e Br c#B, for some r >0.

•

For a nonlinear autonomous plant, a stablizing fuzzy logic controller in a linguistic rule

base form generally hasthe fuzzy state variables x, asthe only independent variables and can be
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expressed as a fiizzy function, g, of the fiizzy state variables, such as:

u=g(x) (3.3.8)

By includingthe fuzzification andthe defiizzification operators, a stablizing fiizzy logic controller

can be represented by a real-valued function g as:

u=g(x) (3.3.9)

where x and u are real state and input variables.

The following stability theorems are extensions of the Lyapunov stability theorems in non

linear system analysis. Given a nonlinear autonomous plant with a stablizing fuzzy logic con

troller, the complete system is Lyapunov stable if there exists a function, namely the Lyapunov

function, which satisfies the conditions in the theorem. The Lyapunov function can acmally be

considered as a generalized energy function. The convergence of such an energy function to zero

indicates the convergence of the state variables and hence the stability of the system.

Theorem 33.1 (Stability Theorem)

Consider a nonlinear autonomous plant P and a fiizzy controller C (including the fuzzification

and the defiizzification operator) represented by:

x=f(x,u) (3.3.10)

u=g(x) (3.3.11)

wherex is the state variable, xeRn,u is the input, ueRr.

If: there exists a continuously differentiable, decrescent l.p.d.f. V such that

j;V(t,x)£0 (3.3.12)

V t >to,x e X, where X is the universe of discourse,

then: the equilibrium 0 of the FCS is uniformly stable over [r0,°°).
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Proof: See Appendix A.

The above theorem claims that an FCS is Lyapunov stable if the criterion in (3.3.12) is

satisfied. By giving more constraints on the Lyapunov function V, the asymptotic stability can

also be guaranteed by the next theorem.

Theorem 3.3.2 (Asymptotic Stability Theorem)

Consider a nonlinear autonomous plant P and a fiizzy controller C as in (3.3.10)-(3.3.11),

If: there exists a continuously differentiable, decrescent Lp.d.f. V

such that ——V is an l.p.d.f.f
dt *

then: the equilibrium 0 of the FCS is uniformly asymptotically stableover [ r0.°°).

Proof: See Appendix A.

Theorem 3.3.1 and 3.3.2 show that we can prove the Lyapunov stability of a fuzzy control

system by finding a suitable Lyapunov function. The statement is true not only for a fuzzy con

trol system but also for a general nonlinear dynamical system. However, the function g in

(3.3.10)representing a fuzzylogic controller, is generally a highlynonlinearfunction. Practically,

it is very difficult to find a proper Lyapunov function to verify its stability for a completed fuzzy

control system. It would, on the other hand, be much easier if a fuzzy logic controller is built

based on a certain Lyapunov function. Therefore, the value of the stability theorems does not

purely lie in mathematical proofs but also in the design method described in next section.

33.2 Design Method

Consider a nonlinear autonomous plant P described by:

x=f(x,u) (3.3.13)

As mentioned in the previous section, an expert always has his own notion of a stability criterion

for the system. A control engineer or an expert himself can find a Lyapunov function based on
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this notion to help the design of a stablizing fiizzy logic controller. The choice of the Lyapunov

function certainly depends on the experts, however the 1-2 norm of the state variables seems to

be an intuitively good choice.

Suppose that V is the Lyapunov function devised by an expert based on his knowledge of

the controlled system. In order to satisfy the conditions in Theorem 3.3.1, we need to solve the

following inequality equation for the admissible class of inputs,

V(jc) =^i (3.3.14)
ax

=̂ /(x,tt)£0. (3.3.15)

The constrained input surface Uc can be defined by

Ue={u IV *,-—/(*,«)<S0 } . (3.3.16)

The constrained input surface Ue, is a set of inputs which satisfies the stability criterion of

Theorem 3.3.1. The fiizzy input surface, denoted by Uf, is the set of inputs generated by the

fiizzy logic controller. In the process of constructing a rule base, an expert can use the con

strained input set Uc to compare with the fiizzy input set Uf. If Uf is completely contained in

Ue, then the FCS is stable according to Theorem 3.3.1 or Theorem 3.3.2. Also, if there is some

mismatch of the two sets, a controller designer can modify the fuzzy logic controller based on the

difference of the two sets.

3.4 Example

Consider the inverted pendulum shown in Figure 3.4.1. It consists of a motor-driven cart on

which a pole—aninverted pendulum-is mounted with a frictionless ball-bearing pivot The pole

can fall freely about the pivot axis. 9 is the angle between the pole and the vertical line; m is

mass of the pole; 2 I is the length of the pole; mc is the mass of the cart; / is the force appliedto

the cart; x is the position of the cart The angular position 9 and angular velocity 9 of the pole



can be measured by a position sensor and a velocity sensor.

/ 4
\ A, W

Figure 3.4.1: An Inverted Pendulum
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By considering the angular position 9 and angular velocity 9, a fuzzy logic controller was

implemented in a computer program to balance the pole. The rule base of the fuzzy controller

consists of 9 linguistic rules, such as:

if 9 is PSX ,9 is PM2, then / is PS3.

where PSX is a fuzzy set named positive small for 9; PM2 is a fuzzy set named positive medium

for 9; PS3 is a fuzzy set named positivesmallfor/.

The state trajectories of the fuzzy logic controller with initial conditions 90 = 0.5 rod and

90= 0.8 rod/sec are shownin Figure 3.4.2-3.4.4.



t (sec)

Figure 3.4.2: Pendulum position 9 (radians)

0.75

X2 (rad/sec)

0.

-0.75
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Figure 3.4J: Pendulum velocity 9 (rad/sec)
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Figure 3.4.4: Fuzzylogic controller output

Assuming the ideal case, i.e. no friction at the joint and no slippage of the cart wheel, etc.,

thekinematic equations of the pole can be derived as:

mex +mx +m/9cos9-m/92sin9 =/

—m/29+m/(jccos9+/9)-m^/sin9 =0.

By eliminating x from (3.4.1) and (3.4.2), we have

T/e+ ^ _,_ (~m /9cos9+m /92sin9+/)cos9-*sin9 =0
j mc +m °

which can be re-written as:

(3.4.1)

(3.4.2)

(3.4.3)

(T"m „, ^wtcos29)9+w —~-sin9cos992-^sin9+ —-—
5 mc+m me+m ° me+m /cos9 = 0 (3.4.4)
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By choosing xx =9 and x2=9 as the state variables with the limitation — <x, < —, the
2 l 2

state equations of the system are

*i=*2 (3.4.5)

ml . , 1
gsmxx--——smx1cosxix2z fcosxx

me+m me+m
Xl = T. S " OAfi)

•7/ 7—cos2*!
3 mc +m

Suppose an expert chooses the following Lyapunov function:

V=j(xx2+x22) (3A7)

thenthe derivative ofV with respect to t is

V=xxxx+x2x2 (3.4.8)

ml 1

*sinXl ~ "rrrs««icosxii22 —fcosxx
me +m me +m

=XlXi+x> —,—s 7 (3A9)
-zl —COS2*!
3 me+m

ml , 1

=X2(" + r—5—; ) (3-4.10)
irl —cosrxi
3 mc+m

Since V is acontinuously differentiable decrescent function, by Theorem 3.3.1, the system can be
stablized if

V<0. (3.4.11)

This implies that

for x2 > 0, we need to have

"*c ^ m 4 ml ml
f > cocr <Tfai" „, , m^iCOS2^1 +gsiru:1 -—sinxjcosx^2) (3.4.12)cosxx 5 mc+m mc+m

orforx2<0,



50

me +m 4 ml mlf <"eolx7(T&1" ^T^XlCOs2zi +'*"i - "^^TsinXlCOSX^22) . (3.4.13)

The input surfaces generated by the fuzzy logic controller and the input surface unstrained by
(3.4.12) and (3.4.13) are given in Figure 3.43 and Figure 3.43 respectively.

Figure 3.43: The controller input surface Uf
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Si

»1

Figure 3.4.6:. The constrained input surface Uc

By comparing the two input surfaces, we can easily verify the stability of the FCS by Theorem

3.3.1. At the same time, if there is any inconsistency between the two surfaces, the expert can

modify the rule base accordingly.
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33 Concluding Remarks

In this chapter, we discussed the connection between the stable namre of a fuzzy control

system and the existence of the expert's Lyapunov function. In many cases, the stability of an

FCS is assured through the incorporation of the expert's notion of stability into the rule base.

Also, by heuristically choosing aLyapunov function, acontrol engineer can examine the differ

ences between the two input spaces Ue and Uf and then make proper adjustments to the current

rule base to improve the stability ofthe system. Notice that the criterion is only asufficient con

dition, i.e. even there is amismatch ofUc and Uf, the fuzzy control system may still be stable.



Chapter 4

Analysis ofFuzzy Dynamical Systems Using Cell-to-Cell Mapping

53

4.1 Introduction

Control problems are usually formulated and analyzed in aprecise mathematical language.
The thriving of artificial intelligence, which utilizes human experience in a more relaxed form

than the conventional mathematical approach, has attracted more attention to fuzzy logic control

recently. Many industrial applications have been carried out since Zadeh's first introduction of

fuzzy logic control (1968), for instance, automatic train control (Yasunobu and Miyamoto
(1985)) and kiln control (Holmblad and Ostergaard (1982)). However, in spite ofthese, there are
still very few tools for analyzing the global behavior ofafuzzy dynamical system.

The global behavior of a dynamical system means the evolution of the system states

corresponding to various initial conditions. Linear algebra has been an indispensable tool for

solving these problems for linear dynamical systems. Differential topology has been auseful tool

for the case of some nonlinear systems although an unified approach is still not available. For a

fuzzy dynamical system, there is not yet avery useful mathematical tool because ofits fuzziness,

complexity andnon-parameterization.

Many researchers have attempted to find asystematic method for analyzing fuzzy dynami

cal systems. Tong (1980) used an approach ofdefining system operators as fuzzy relations on the

state, output and control spaces. Cumani (1982) considered the system quantities such as states,

input and output as fuzzy variables which obey time-evolving possibility distributions governed
by Hisdal's Calculus ofconditional possibility. Kiszka et aL (1985) formulated an energy func

tion ofafuzzy set and proposed that a fuzzy system is stable if the energy function is monotoni

cally decreasing. However, the results by these researchers failed to give significant descriptions
of the dynamics ofa fuzzy system.
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We believe thatthe mainreason for the previous unsuccessful attempts is the conservative-

ness of the min-max calculus. The min-max operation (Zadeh (1965)), widely accepted by most

researchers in this field, is too conservative to extract the behavior of a fuzzy dynamical system

because the operation has the effect of "flattening-out" the distribution of the membership func

tions. When a fuzzy dynamical system is described in a recursive form, the cumulation of this

effect makes the observation ofthe evolution ofthe system dynamics almost impossible.

To remedy this problem, different operators which are less conservative were first investi

gated. The "min" operator is actually the most conservative member in a class of so called tri

angular or T-norms operators and the max operator is its corresponding T-conorm (Dubois and

Prade (1980)). The T-norms satisfy several properties as:

r(0,0) =0 (4.U)

T(a,l) =T(l,a) =a (4A2)

T(a,b)<T(c,d), i£a£cmdb£d (4.1.3)

T(a,b) =T(b,a) (4AA)

T(a ,T(b ,c)) =T(T(a ,b),c) (4.1.5)

and has drawn a lot of interest recently, especially in uncertainly reasoning (Bonissone and

Decker (1986)). However, most ofthe T-norms, except for the "min", lack ofan important asso

ciativity property oftheir matrix operation when aT-norm is considered to be an "and" operator
and its T-conorm to be an "or" operator. This mathematical incompleteness unfortunately
prevents the T-norms to bethe solution ofthe aforementioned problem.

Some people may consider the problem unavoidable as the consequence of the fuzziness

possessed by the system. However, one must bear in mind that although there is uncertainty in a

fuzzy system, an "expert" should be able to tell the "trend" of the system dynamics. The rale

base created by the expert may be vague in words but should be descriptive in global behavior.
Hence, amethodology should be devised to grasp the evolving trend of the states of a fuzzy
dynamical system. It should also be noted that "fuzziness" is different from "randomness". For a
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fuzzy dynamical system, "fuzziness" lies in the foimulation ofafuzzy controller. We try to imi

tate human thinkings with ofarule base. Just like an expert system, the expert's knowledge is

formulated to give abetter way ofhandling acomplex process. Generally, the "uncertainty" or

"fuzziness" is from the imprecise knowledge representation of an expert, not from the "random

ness" of the process. In another word, once a fuzzy controller is given, the whole system can

actually be considered as adeterministic system.

The proposed method applies the concept of cell-to-cell mapping to describe the global

behavior of a fuzzy dynamical system. The method ofcell-to-cell mapping was developed by

Hsu (1980) for analyzing the global behavior ofnonlinear dynamical systems. The state space is

first partitioned into finite number of disjoined sets called Cell State Space. The differential

equation describing the system dynamics is then integrated for acertain time interval and amap

ping from the Cell State Space toitself can be determined. Byworking onthis next state cell-to-

cell mapping, which contains the information of states evolvement, the periodic motions of the

mapping and their domain of attractions can be obtained. In analyzing afuzzy dynamical system,

since our goal is to obtain the evolving trend of the states, the concept of cell-to-cell mapping is

particularly useful. We first convert a fuzzy dynamical system to acell-to-cell mapping, and then

extract the global behavior of the system dynamics byamethod similar to Hsu's. By working on

the cell-to-cell mapping, the problem of fuzziness cumulation is eliminated.

The remainder of this chapter isorganized as follows. Section 2 gives ageneral description

of the cell-to-cell Mapping method. Section 3 gives the model of fuzzy dynamical systems and

shows the transformation from the original fuzzy mapping to the proposed cell-to-cell mapping

and the extraction of the dynamic behavior from the cell-to-cell mapping. Section 4 performs the

global analyses of both the real and fuzzy initial state responses. Some definitions of thecellular

stability are also described inthis section. Section 5 shows the validity of the method by apply

ing it to asimple example. Section 6 gives some further discussions and the concluding section

summarizes the results.
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4.2 Cell-to-Cell Manning Methnri

Consider adynamical system with agoverning equation

*(0=/(f.x(0) (4.2.1)

where x is a N-dimensional real vector and / is a real vector function. Assume that / is a

periodic function of t with a period x. We can then integrate (4.2.1) over the period oft and

derive a relation between the state at t and the next state at t +x. In another word, we can

represent the same dynamical system with adifferent governing equation

x(*+l) =G(x(*)) (4.2.2)

where G is anext-state point-to-point mapping. This kind ofpoint-to-point mapping representa
tion ofadynamical system is called apoint map or aPoincare map in the mathematical literature.

The method dates back to Poincare (1881) and Birkhoff (1920). There have been consistent

mathematical developments since then, for instance, Amol'd (1963), Smale (1967). Bemussou

(1977). Hsu applied this method to analyze acertain class of strongly nonlinear dynamical sys
tems and further developed amethodology, namely the cell-to-cell mapping, in the past decade.
His method proved to be very effective in dealing with some peculiar phenomena, such as bifur
cation, found innonlinear dynamical systems.

The motivation to use the cell-to-cell mapping lies in the question of"how fine ascale is

one allowed in specifying astate variable", Hsu (1980). There is undoubtly aphysical limitation
ofthe accuracy ofany measurement Ifthe "true" values oftwo readings ofastate variable differ
by less than the measurement accuracy, there will be no way to distinguish the two values and
they have to be considered equal. Moreover, in computation, one is also limited by the numerical
roundoffs. Therefore, in the practical world, there is no real continuum ofastate variable, but a
large number ofdiscrete values for each ofthe state variables. This point ofview leads to the
cell-to-cell mapping method.
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4.2.1 Cell State Space

Consider again the dynamical system governed by (4.2.1). The coordinate axes ofthe state

variables xit i =1,... ,N can be partitioned into anumber of intervals with the size ht,
i=l,...,N. The interval zf of the state variable xt is defined to be the one containing aU the x,,
such that

(*« - y)^ ZXi <> (Zi +j)^ (4.2.3)

The N-tuple (r,.... ,zN ) is called acell and denoted by z. Every point x in the state space
belongs to acertain cell z. The coUection ofall the cells, namely the CeU State Space is normally
denoted by Z. Some basic definitions ofthe cells are given next

Definition 4.2.1

Acell z' is said to be acontiguous cell to z in the Z4 direction if

z'-z =+e/0r-ef (4.2.4)

where et is the unit vector in the Z,- direction.

•

Definition 4.Z2

A cell z'* z issaid tobeaneighboring cell ofcell z if

I z'i - zf- I£ 1, for i =1,...,n (4.2.5)

Therefore, acontiguous cell to zmust also be aneighboring cell ofz.
D

4.2.2 Cell-to-Cell Mapping

For the dynamical system given in (4.2.1), we shall further assume that the system is an
autonomous (time-invariant) system,i.e.
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x(t)=f(t,x(t)) (4.2.6)

=/(x) (4.2.7)

Therefore, given an initial condition x(rq) and atime period x, the state at t =10+x can be calcu
lated by

lo+t

/
to

x(r0+t)=x(fo)+ / x(t)dt. (4.2.8)

Since the system is autonomous, we can assign t0=0 to be the initial time. We can also simplify
the notations ofx(tQ) to xc x(r0+x) to x? and reformulate (4.2.8) by

xx =x0 +jxdt. (4.2.9)
o

Now assume that the state space has been partitioned into anumber of cells to form acell

state space Z. For every cell z e Z, we represent z by its center point xcz. Given an initial con

dition xq=x% for acell z and atime period x, the next state xt is

T

xx=xez+jxdt. (4.2.10)
o

Then we can define amapping from the cell z to the cell z', if

xx e z' (4.2.11)

The procedure above can be done for every cell in the cell state space. The result will be anext-
state cell-to-cell mapping denoted byF, i.e.

z(*+l)=F(z(*)). (4.2.12)

This cell-to-cell mapping is constructed to approximate the dynamical behavior of the original
system. The smaller the cells are, the better isthe approximation.

Before giving the method for extracting the dynamical behaviors from the cell-to-cell map
ping, we first give some basic definitions relating to its dynamic properties.
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A cell z* which satisfies
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zk=/?(2*) (4.2.13)

issaid tobean equilibrium cell ofthe cell-to-cell mapping F.

D

Definition 4.2.4

Asequence ofkdistinct cells z*(l) z*(*) which satisfy

z*(m+l) =Fm(z*(l)), m=1 k-l (4.2.14)

z*(l) =F*(z*(l)), (4.2.15)

is said to constimte a periodic motion of period k of the cell-to-cell mapping F. The motion is
called ap-k motion and the cells are called p-k cells.

•

Remark: Obviously, an equilibrium cell isa p-1 cell.

Definition 4.2.5

Acell zis said to be r-step removed from ap-k motion ifris the minimum integer such that

Fr(z) =z*(/) (4.2.16)

where z*(/) is one of the p-k cells in ap-k motion.
•

Remark: It is clear that the cell zwill be mapped into ap-k cell in r steps and further mappings
will remain in the p-k motion.

Definition 4.2.6

For ap-k motion, the set of cells which are r-step or less steps removed from the p-k motion is

called the r-step domain cf attraction for the p-k motion. The total domain of attraction or

simply the domain of attraction of ap-k motion is its r-step domain of attraction with rgoing to
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infinity.

D

Definition 4.2.7

For acell-to-cell mapping F, assume the domain of interest in the Xj subspace to be limited in
[Ibj, ubj ]J =l„..,n. Those cells which belong to the domain of interest are called regular
cells. The region which is outside of the domain of interest is considered as one cell and is called
a sink cell.

•

After the partitioning of the state space, the cell state space consists of anumber of regular
cells and asink cell. Label the regular cells by rx)sitivemtegers 1,2,. ..,^c andthesinkceUby
Ne +1. Since we don't care about the further development of the dynamic system once it enters
the sink cell, we have one additional rule for the mapping:

F(Ne + l)=Ne + l (4.2.17)

That means the sink cell is ap-1 cell and the system will stay in the sink cell once it is mapped
into it

With the number of cells being finite, the evolution of the cell mapping starting with aregu
larcell z can only lead tothree possible outcomes:

(1) CeU zis one of the members of ap-k motion, i.e. cell zwill be mapped back to itself in k
steps.

(2) Cell z is mapped into ap-k motion in r steps, i.e. cell zbelongs to the r-step domain of
attraction of a periodic motion.

(3) CeU z is mapped into the sink ceU in r steps, i.e. ceU zbelongs to the r-step domain of
attraction of the sink ceU.
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4.2.3 Grouping Algorithm

We shaU process the ceU state space to find the desired periodic motions and domain of

attractions by a grouping algorithm (Hsu and Guttalu (1985)). The algorithm uses exhaustive

search. It wiU process all the cells to determine the global behavior ofamapping. Every ceU z

wiU be assigned three characteristic numbers. Agroup number G(z) is assigned to every ceU in a

periodic motion and every ceU in its domain of attraction. The step number S(z) ofaceU z indi

cates the number ofsteps it takes to map z into aperiodic ceU. If z happens to be aperiodic ceU

then S(z) =0. The period of a periodic motion is denoted by a periodicity number. The same

periodicity numberP(z) isassigned to all the ceUs in agroup.

to distinguish the cells in different stages, we divide them into virgin cells, cells under
processing and processed cells. The group number of aU the virgin cells is set to zero at the

beginning of the algorithm. When avirgin ceU is caUed up to be processed, we change the group
number to -1, which means it is aceU under processing. After the process, aceU is assigned a
groupnumber and is caUed a processed ceU.

To begin with, since the sink ceU is ap-1 ceU, itis considered to be the first periodic motion

and we set G(NC +1)= 1, S(NC +1) =0 and P(NC +1) =1. Then we process the regular ceUs

z=1 Ne sequentiaUy. Let us consider avirgin ceU z and the processing sequence as:

z -*F(z) -»F2(z) -*•••->F'(z) (4.2.18)

At each step, there are three possible conditions:

(1) The newly generated image ceU F»(z) is avirgin ceU. In this case, we change the group
number ofthe image ceU from 0to -1,which indicates ithas become acett under process
ing, and proceed tothe next image ceU F,+1(z).

(2) The newly generated image ceU Fi (z) is aprocessed ceU with apositive group number. In
this case, the current processing sequence is mapped into aceU with known global proper

ties, i.e. the group number, step number and periodicity number. It's obvious that the

sequence of the cells should have the same group number and periodicity number as those
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ofF' (z). The step number ofthe cells in the sequence can be decided by:

S(FJ(z)) =S(Fi(z)) +i^j, ;=0,l,....i-l (4.2.19)

After this, we pick up another virgin ceU and start anew processing sequence.

(3) The newly generated image ceU F'(z) is a ceU under processing. In this case, a new

periodic motion is discovered. AU the cells in the sequence are assigned a new group

number. Let us assume the reappearing ceU to be the (/+l)-th ceU in the sequence (4.2.18),

i.e. Fl (z) =FJ(z), j <i. Then the periodicity number is (i-j) for this periodic motion and

is assigned to every ceU in the sequence. The step number can also be determined by:

S(Fk(z))=j-k, k=0.1 y-l, (4.2.20)

S(F*(z))=0, k=j,j+l i-l. (4.2.21)

When everything is done, we again go back to pick up another virgin ceU and begin anew

process. The process wiU be performed repetitively until every ceU in the ceU state space

has been processed and the global behavior ofthe mapping is completely determined.

In summary, the grouping algorithm divides the ceU state space into different groups con

sisting of periodic motions and their domain ofattractions. Every ceU in the ceU state space

belongs to acertain group. The step number of each ceU also indicates the distance of each ceU

from its attracting periodic motion.

43 Fuzzv Mapping toCell-to-Cell Mapping

hi this section, we shaU transform a fuzzy dynamical system into the form of a ceU-to-ceU

mapping so that it could be used to analyze the global behavior ofthe fuzzy dynamical system.

The fuzzy system is originaUy represented by afuzzy mapping. The fuzzy mapping is extended

to areal mapping by including the fuzzification and the defuzzification blocks in the input and

output, respectively. Then the real mapping can be processed to derive the desired ceU-to-ceU

mapping.
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43.1 Fuzzy Mappingto Real Mapping

Consider asimple time-invariant process represented by the block diagram shown in Figure

32.1, where uk is the input variable at time k and xk, x*+1 are the state variables at time k and

k+l respectively. Assume that we can model the process by afuzzy dynamical equation:

4*"/C*i.«0 (4.3.1)

where/ is afuzzy mapping defined onXxU ->X,X is amultidimensional state space and Uis
amultidimensional input space. The state variables xtk and jf^, are fuzzy sets defined on X; the

input u\ is a fuzzy set defined on U and tk ,k =0,1, ••• are a sequence of time indices which

may not be uniformly distributed.

For aclosed loop fuzzy control system, the fuzzy logic controUer is generaUy a function of

the outputorthe measurable state variables, i.e. we have

"<»=£%) (4.3.2)

where g is also a fuzzy mapping which maps from X toU.

From (4.3.1) and (4.3.2), we get

=fiW (4.3.3)

where xtk, x^ e X and fx isa fuzzy mapping X -» X, i.e. a fuzzy relation defined on XxX.

GeneraUy, the fuzzy relation fx isof the foUowing rule-based form:

if xxu=Axx,...,xntk=AXn, then xxh« =Bxx xn'M =BXn,

X xx"=A2x x^oAa,, then xx^=B2X xHh«=B2n,

tf *i*=4»i xnu=Amn, then xxtM=B~mXt...,xntk« =Bmn. (4.3.4)
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where the rule base consists ofm if-then rules and Au, B(j, i =1 m, j =1 n are
fuzzy variables. In this chapter, we shaU mostiy use (4.3.3) to represent afuzzy dynamical sys
tem. The detailed description ofthe inference operation ofthe fuzzy logic controUer is given in
Chapter 2and Zimmermann (1985) and is not repeated here.

The fuzzy mapping/, defined as afuzzy relation between two spaces can be extended to a
real mapping between the same two spaces by including the fuzzifying and defiizzifying opera
tors. The center block ofFigure 4.3.1 is afuzzy mapping in the form ofarule base and the whole

diagram including the fuzzifying and defuzzifying blocks is areal mapping. The fuzzifying
block takes in the real inputs and matches them to different fuzzy variables to find corresponding
membership values. These wiU be used as inputs to the fuzzy mapping. The defuzzifying block
takes the outputs ofthe fuzzy mapping, which are in the form of fuzzy numbers, and converts
them to real numbers by weighted average or some other method. PracticaUy, we always use the
real mapping in our operations, instead ofthe fuzzy mapping alone, since the measurements and

the control inputs must be real numbers. In this paper, we shaU differentiate these two mappings
by putting a""" on the fuzzy onefeg./, is the real mapping of the fuzzy mapping/,).

xk
Fuzzify Xk Fuzzy

System

f

/

**+i
Defuzzify

Figure 43.1: Relation between afuzzy mapping and the real mapping

**+!
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43,2 Real Mapping to Cell-to-Cell Mapping

The main idea of the cell-to-cell mapping approach is to transform the infinite numbered

point to point real mapping problem into a finite numbered cell to cell mapping problem. The

system dynamics can then be easily described once the cell-to-cell mapping is derived.

First ofall, our domain ofinterest is generally bounded in the real case. It is meaningless to

consider something which is outside our domain ofinterest For example, owing to the current

limitation of arobot-arm driving motor, we cannot control the robot arm with avery large
current Without loss of generality, we shall limit our domain of interest for the Xj space in a
finite closed interval [Ibj ,ubj]J=1,... ,n.

Consider the n-dimensional state space Xand the real mapping/ lf obtained from the fuzzy
mapping /,. Ut us first divide the i-th subspace Xt into numbers of equal intervals with an
interval size hi. An interval will be denoted by an integer z{ if for all the xt belonging to the inter
val, we have

(if - y) hi £Xi £(Zi +y) hi (4.3.5)

The n-tuple (zu...,zn )is then called acell and is denoted by z. Apointx e Xbelongs to z if
and only if (4.3.5) holds for all /. Now the state space X can be considered as acollection of

cells and be represented by the so called Cell State Space Z. The cells in Z are actually lattice
points ofaEuclidean space with integer-valued Cartesian coordinates. Let e{ be the unit vector in
the direction ofthe 2* -axis. A cell z can be represented as

H

z=Ez«ei (4.3.6)
i=i

After partitioning the state space X into acell state space Z, we wish to transform the real

mapping / j into acell-to-cell mapping F. The procedure for deriving F is described as follows:

(1) For every cell z=(z lt z2,..., zn), by definition, ifxe z, then (4.3.5) holds for all /, i.e. z

can be considered as an n-dimensional cube in X. We shall choose the center point zc ofa
cell z to represent the cell, where
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Zi=zthit i=l n (4.3.7)

(2) We now define the cell-to-cell mapping F: Z -»Z. For all z and its center point zc at time

thenF(ztk) =£ (438)

where Atk ischosen to beaconstant time interval, such as tm.

To summarize, the cell-to-cell mapping F is constructed byrepresenting the cells inthe cell

state space Z by their center points and then finding the cells where the images of the center

points are located after acertain time period tm. The mapping / xisnot limited to be in the form

of differential equations as in Hsu's work. It can bearule base oracombination of rules and dif

ferential equations.

The cell-to-cell mapping F is created by considering the mapping fx as a deterministic

nonlinear system and does not deal with uncertainty at alL Although there may be more man one

image cell of an initial cell z if we consider more points in z, we concentrate only on the one

evolved from the center point ofz in our work. The multi-image case is very interesting and is

also understudy by the author but will not be discussed here.

4.3.3 Extracting Dynamical Behaviors from Cell-to-Cell Mapping

After the transformation ofafuzzy dynamical system to its corresponding cell-to-cell map
ping is completed, the grouping algorithm (described in section 4.2.3) can be applied to process

themapping to find the different p-k motions and their domain of attractions in the cell-to-cell

mapping. The results ofthe grouping algorithm will give avery clear and complete picture ofthe

behavior ofthe fuzzy dynamical system. The detailed analysis and asimulation example will be
given in the next two sections.
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4.4 Fuzzv Dynamical System Analysts

We have incorporated the method ofcell-to-cell mapping into amethod offuzzy dynamical
system analysis in previous sections. Given afuzzy dynamical system, we transform itinto areal

mapping by including the fiizzification and defuzzification operators. Then acell-to-cell mapping
is obtained from this real mapping. The cell-to-cell mapping then undergoes aprocess to find its
periodic motions and the corresponding domain of attractions. After this process, every cell in
the cell state space belongs to acertain group which consists ofaperiodic motion and its domain

ofattraction. In this section, we shall use the result to obtain the system response for either areal
initial state ora fuzzy initial state.

4.4.1 Real Initial State Response

Now consider areal initial state (within our region ofinterest)

*='*o (4.4.1)

where x is the state variable and x0e X is the initial value of x. We only need to identify the
cell zsuch that x0 e z. Then we can easily understand the behavior of the system from the group
number, step number, and periodicity number associated with it Furthermore, aglobal analysis
can be done by computing the domain of attractions of periodic motions with different step
numbers. A detailed example will bepresented inthe next section.

4.4.2 Fuzzy Initial State Response

It is natural to ask at this point about the case when the initial state is afuzzy variable like
"small" or "medium". The answer is not as straightforward as in the real-valued domain case.

First, any sequence of evolving cells must converge to aperiodic motion (including the sink
cell) because there are only finite number of cells. The main purpose of global analysis is to find
those periodic motions and their corresponding domain of attractions. In the real domain case,
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we assigned every cell agroup number to describe the behavior of the system. In the fuzzy
domain, as can be expected, the system behavior will be described by fuzzy group numbers.

For simplicity. We consider only atwo dimensional state space X=XxxX2. It can be
easily extended to ahigher dimension. Suppose that we have afuzzy initial state:

*i=4i (4.42)

*2=A2 (4.4.3)

where xx and x2 are fuzzy variables and Ax and A2 are fuzzy sets in the subspaces Xx and X2.
We first define the a-level sets ofxx and x2 by:

Af = {xx e Xx Iu^fr,) £a } (4.4.4)

A?= {x2 e X2 I u^Cc*) £ a } (4.4.5)

where Axa c xxandA2a c x2 are crisp sets, not fuzzy sets.

Then we denote the a-level region enclosed by the a-level sets Axa and A£ as:

^t\xXtx2) = { (xxjcz)\xxeAxa,x2eA2* } (4.4.6)

Every point in/?° has amembership value greater than ain both^ and X2 directions. However,
the smallest unit in acell state space is acell. We shall not be able to process Ra in Z without
further modification. One reasonable approach is to take an approximation ofRa with aset of
cells. Thus, we define the minimum cells set ofRaby:

*«(*i,X2)=min {z e Z IWxe R^x^^B z,such that x e z } (4.4.7)

In other words, /?,£ is the smallest set ofcells which contains Ra.

Now consider adecreasing positive a sequence

<Xi, a*... ta* (generally ax = 1). (4.4.8)

We can easily derive R« and R«9 i =1 * from (4.4.6)-(4.4.7). The problem will be as sim
ple as in the real domain ifall the cells in R« belong to only one group. Unfortunately, that is
not necessarily the case. Let's assume there are 1,2,... ,g numbered periodic motions from the



Table 4.4.1: The cell numbers of groups in differentminimum cells sets

a/group number 1 2 • • g

<*i *«« Ww(2) . • • Nub)

<*2 *«fl> *«» • • *«&>

a* WS.(D W„(2) . . • *»<*>

Table 4.4.2: The cell proportions of groups in different minimum cells sets

a/group number 1 2 g

«i J°n Pn • . i>„

02 Pn /*22 . P2g

ak Phi Pk2 . P^
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result of the grouping algorithm. Every cell in our domain of interest belongs to one of the

domain ofattractions ofperiodic motions. Therefore, every cell in R™ also belongs to one ofthe

groups. We shall further define:

NR&) =the number of cells in R*which belong (4.4.9)

to the i-th group, / = 1,... ,g

Table 4.4.1 shows the number of cells belonging to different groups in the minimum cells

sets Rm , / =1,2,...,*. The sums of the elements in each row are the total numbers of cells in

jy for i =1,... ,g. Table 4.4.2 shows the proportions of the cells of different groups in each
minimum cells sets. The sum ofthe elements in each row is equal to 1. The proportions are
defined as:

^0)

*=1 8

Pii ~ £ "N »(*)* ,=1, •••'*• •/=1 J (4.4.10)

Finally, we shall define the fuzzy group number G ofthe fuzzy initial states xxand x2 as
follows:

O(xx ,*2)=Vm x+2/m2+ -- +g/mg (4.4.11)

mJ =• max tmin(ai >pij) (4.4.12)1=1....,* ' '

where O; and Pg are defined in (4.4.8) and (4.4.10). With fuzzy initial statesxx and jf2, the fuzzy
group number G denotes the possibUity distribution ofthe system's final destination among dif
ferent groups. An example will also beshown in section 4.5.

4.4.3 Cellular Stability

In this section, we shall give astability definition based on the result ofthe above analysis.
Some related definitions are introduced first
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Definition 4.4.1

The norm of a cell z with component z,-, / = 1 n, is defined as

I Izl I=max lz/1 (4.4.13)

D

Definition 4.4.2

Assume that S and S'arc two sets ofcells. The distance between S and S', denoted by D(S, S')
is given by

£>(S,S0= min llz-z'll (4.4.14)
zeS,z'eS' v '

D

Definition 4.4.2 will also apply to the distance between two cells and the same notation is used

when there is no possible confusion.

Definition 4.4J

Given aset of cells S, the e-neighborhood ofS is defined by

W(S,e)= { z ID(z,S)<;e } (4.4.15)

•

In the following discussions, we shall assume that vector 0 is the equilibrium point of the

fuzzy dynamical system described in (4.3.3). The assumption is justified because one can always

transform the original equilibrium point, say xe, to zero byredefining the state variable as

x' =x-xe (4.4.16)
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Definition 4.4.4

Given the equilibrium point 0, a "target set" Te is defined to be ane-neighborhood of 0 for some

e £ 0, i.e.

rc = AT(0,e) (4.4.17)

•

Definition 4.4.5 Cellular Stable

Given an e-target set Tz and a domain set SDf the fuzzy dynamical system (4.3.3) is cellular

stable if and only if

(1) there exists anumber of p-k motions, such that all their p-k cells belong to the target set

rc,and

(2) the r-step domain of attraction of all the p-k motions contains the domain setSp, for some

finite r *s.

•

From the abovetheorem, a fuzzy dynamical system is considered to be cellular stable if all

the cells in the domain of interest will converge to the target set in finite time. The target set Tt

actually represents an extended equilibrium region. In conventional theories, an equilibrium point

is regarded as the target set inthe analysis. We loosen the constraints byenlarging the target set

from a point to a collectionof cells to accommodate the resolution limitation of the cells andthe

fuzzy nature of a fuzzy dynamical system. To further explain the concept of cellular stability, a

stability theorem is givenin the following.

Definition 4.4.6

Given acell-to-cell mapping F, aset ofcells Sf iscalled apositively invariant set ofF if

F(St)c:S^ (4.4.18)

and is called an invariant set ofF if
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^(5/)=57. (4.4.19)

•

Theorem 4.4.1

Consider afuzzy dynamical system in(4.3.3) and its corresponding cell-to-cell mapping F,

If: Si is a positively invariant or invariant setofF,

then: there exists at least one p-k motion in Sf and each cell in Sf either belongs to ap-k
motion or its domain of attraction.

Proof: Since Sf is a positively invariant or invariant setofF, wehave

F(Si) c 5/, or F(Sf)=Sr. (4.4.20)

Consider a sequence ofcells starting from a cell z e 5/,

z->F(z)->F2(z)-> ••• (4.4.21)

According to (4.4.20), all the cells in the sequence belong to 5/. Since the number ofcells in Sr

is finite, the sequence will eventually map back to a previous cell inthe sequence to form apnfc

motion. If the repeating cell, F*(z) is z, then z is one ofthe p-k cells. Ifnot zbelongs to the

domainof attraction of thep -k motion.

Theorem 4.4.2 (Cellular Stability Theorem)

Consider afuzzy dynamical system in (4.3.3) and its corresponding cell-to-cell mapping F with a
domain set SD,

If: there exists a positively invariant orinvariant / -neighborhood of0,N(0, /), / >0,

such that

D(0,F(z)) <D(0,z), Wz € SD -tf(0,/), (4.4.22)
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then: there exists a target set rectf (0,/), such that the fuzzy dynamical system is cellular

stable with thetarget set 7*E and the domain setSD.

Proof: From definition 4.4.1 and 4.4.2, the distance function Dcan only have integer values,

such as 0,1,2,.... Consider asequence ofcells starting from acell z e SD-N(0J),

z-»F(z)->F2(z)-» ••• (4.4.23)

Thedistances between 0 and the cells in the (4.4.23)

0(O,z)-»D(O,F(z))->D(O,F2(z))-» ••• (4.4.24)

canonly be non-negative decreasing integers according to (4.4.22). Therefore, there must exist

an i such that

Z>(0,Ff(z))<;/, (4.4.25)

i.e. the sequence (4.4.23) will map into acell in W(0,/) infinite steps i.

Now, since tf (0,/) isa positively invariant orinvariant set by Theorem 4.4.1, there exists at

least one p-k motion and each cell inN(0J) belongs to a certain p-k motion or its domain of

attraction. Therefore, all the cells inthe domain set SD either belong toa certain p-k motion in

N (0,/) or its domainof attraction. Now,if we choose

TE = an epsHon-neighborhood of 0 which contains

all the p-k motions in N(Q,l) (4.4.26)

then the fuzzy dynamical system iscellular stable according to definition 4.4.5.

•

Theorem 4.4.2 gives a sufficient condition for the cellular stability of a fuzzy dynamical

system. The dynamical system is cellular stable if the conditions are met. However, it is also

possible that afuzzy system iscellular stable without satisfying (4.4.22).
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43 Example

In this section, a simple fuzzy dynamical system is analyzed to illustrate the validity of the

method. The system is composed of an inverted pendulum and a fuzzy controller. The physical

structure of the inverted pendulum is the same as shown in Figure 3.4.1. A free falling pole is

mounted on acart which is controlled by an actuator. Theactuator will apply a force/ to control

themotion of the cart The control objective is to usethe actuator force/ to control the motion

of thecart such that thepole can bebalanced in the vertical position.

The state equations of the inverted pendulum system are shownin (4.5.1) and (4.5.2) with

xx the angle between the pole and the vertical line and x2 the angular velocity of the pole.

*i=*2 (4.5.1)

gsmxx -cosx,[ --^—^sirw, - —^—f ]
me +m me +m

*2 = 1 : (4.5.2)
4, ml _o

3 mc+m l

where g is the gravity constant, m is the mass of the pendulum, mc is the mass of the cart, / is

the lengthof the pendulum and / is the input force to the cart

A fuzzy controller is constructed by considering the angular position and angular velocity

of the pendulum as conditional variables and the force/ as reaction variable. The rule base con

sists of9 linguistic control rules.

To apply the method of cell-to-cell mapping, a cell state space is to be determined. The

region of interest of the state space istaken to be from -1.5 to 1.5 (rad) for the angular position xx

and from -10.0 to 10.0 (rad/sec) for the angular velocity x2. The specified region is then parti

tioned into 101x101 blocks with equal divisions hx=0.0297 and h2=0.1980. Thus thecell state

space contains 10201 regular cells and one sink cell which covers theregion outside the region of

interest

Then we need to find the cell-to-cell mapping from dynamical system which comprises of

the continuous time plant and the discrete time fuzzy controller, as shown inFigure 4.5.1.
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The sampling time r, of the controller is set to be 10 ms.The cell-to-cell mapping is con

structed by finding out the image cells of every cell inthe cell state space with tm =10 ts, where

tm is the time taken by the initial cell to reach its image cell. The image cell is obtained by

integrating (4.5.1) and (4.5.2) with the input u determined by the fuzzy controller. Before we

proceed further, we would like to compare of the original real mapping and its corresponding

cell-to-cell mapping. A graph of the trajectories ofthe real mapping and the cell-to-cell mapping

is given in Figure 4.5.2. Both trajectories start with the initial condition xx =0.6rod,

x2- 3.0 rod/sec. It can be seen that the two trajectories are very close to each other. The trajec

tory ofthe real mapping reaches to the vicinity ofthe origin while the cell-to-cell mapping trajec

tory converges to a p-8 motion around the origin.

Zero
CXfAexw Inverted /T>
Hold Pendulum Sampler

Defuzzifi****
Fuzzy

Fuzzifier
Controllier

Figure 4.5.1: Block diagram ofthe inverted pendulum system

By applying the grouping algorithm to the cell-to-cell mapping, the periodic motions and

their domain ofattractions can be obtained. The result in Figure 4.5.3 shows one p-8 motion and

three p-1 motions. The p-8 motion consists of 8 cells around the origin (group 1). There is one

p-1 motion at the origin (group 2) and two p-1 motions at (1.4703,0) (group 3) and (-1.4703,0)

(group 4) respectively. One other p-1 motion which isnot shown in Figure 4.5.3 is the sink cell

(group 5). The separation ofgroup 1and group 2ismainly due to the rough partitions ofthe cell

state space. Itdoes not imply the existence ofan inherent limit cycle of the system. However, a
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Figure 4.5.2: Trajectories for the inverted pendulum and its cell-to-cell mapping with
initial states xx =0.6%x2 =1.0. (Squares are for the cell-to-cell map
ping and the dots are for the real trajectory.)
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Figure 433: The four periodic motions of the cell-to-cell mapping. The eight dots

around the origin are in group 1, the x at the origin is group 2, the x at

(1.47, 0.0) is group 3, and the x at (-1.47, 0.0) is group 4. Group 5 is

the sink cell andis not shownin the graph.
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Figure 4.5.4: The5-step domain of attraction of the periodic motions. Thedark area

in thecomers is thedomain of attraction forgroup 5(the sink cell).
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Figure 4.5.5: The 20-step domain of attraction of the periodic motions. The dark

area in the comers is the domain ofattraction for group 5(the sink cell).
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Figure 4.5.6: The domain ofattraction ofthe periodic motions. The dark area in the

comers isthe domain ofattraction for group 5(the sink cell).
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finer partitioning for the cell state space could be used, if this were aconcem. Group 3and group
4are undesirable equilibrium points since our control goal is to drive the trajectory to the origin
in the state space. In our simulation, they can be easily removed by modifying one fuzzy control

rule. This implies that the method of cell-to-cell mapping can also be used as acomputer aided
tool for modifying or designing fuzzy controllers. Figure 4.5.4 - 43.6 respectively show the

5,20-step and the total domain of attractions of those periodic motions. The convergence rate of
an initial cell to its periodic motion can be estimated from the plot of the finite-step domain of
attractions.

43.1 Real Initial State Response

With the results from the grouping algorithm, we can now discuss the real initial state

response of the fuzzy dynamical system. Suppose that we have an initial state

x - (xi ,x2 )=(0.6,3.0 ).The first step isto find out which cell z° contains x°. The cell coordi

nate can be easily derived as z°=(zx°tz$ )=(20,15). From the result of the grouping algorithm,
we have

G(z°) =l, 5(z°) =24, />(z°) =8. (4.5.3)

The group number 1is assigned to the p-8 motion around the origin in our simulation. Therefore,
the interpretation of the above information is that z° will converge to the p-8 motion in 24 steps.
Since the time interval for each step is tn =lOr, =ICOms, z° will converge in 2.4seconds.
Though this prediction in the cell state space can only be considered as a rough estimate in the
real state space, itdoes give us some idea about the system dynamics.

432 Fuzzv Initial State Response

Now let us assume fuzzy initial states to be xx =0.75 and x2 =53), where 0.75 and 5a0 are
fuzzy numbers with membership functions shown in Figure 4.5.7.
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V*

0.5 0.75 1.0 4.0 5.0 6.0

Figure 43.7: The membership functions ofxx and x2

6.0 H

*2

0.5 [

4.0

Figure 43.8: The figures of fl°\ i=l,2,3,4
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*2

4.0 _

Figure 43.9: The figures ofR*, /=1,2,3,4

Consider an a sequence a, =1.0, a2 =0.7. a3 =0.3. and 04 =0.0. The corresponding R*
md R'"'i=1 4mshown mFigure 4.5.9 and Figure 4.5.10 respectively. The ceUs belong
to two different groups numbered 1(blank squares) and 5 (darkened squares) from the global
analysis of the inverted pendulum. The rectangles with solid lines are K* /=1,2,3,4 in Figure
4.5.9 and R«, /=1,2.3.4 in Figure 4.5.10. Noticed that Ra> is actually apoint in the state space.



Table 43.1: Cell numbers in rt" £=1,2,3,4

a/group number 1 2 3 4 5

1.0 1 0 0 0 0

0.7 9 0 0 0 0

0.3 36 0 0 0 13

0.0 79 0 0 0 42

Table 432: Cell proportions in R*, i=1,2,3,4

a/group number 1 2 3 4 5

1.0 1.0 0 0 0 0

0.7 1.0 0 0 0 0

0.3 0.73 0 0 0 0.26

0.0 0.65 0 0 0 0.35
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By counting the cells in the respective regions, we shall have two tables ofnumbers of cells

and proportions as seen inTable 4.5.1 and Table 43.2. From (4.4.10)-(4.4.12), wecan derive:

mx= max min(ot,-,?/2)
1=1,2.3.4

= max (1.0,0.7,0.3,0.0)

= 1.0

(4.5.4)
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ms= max min(ccl-,/><i) (4.5.5)
1=1.2,3.4

= max ( 0.0,0.0,0.26,0.0 )

= 0.26

Finally, the fuzzy group number of the fuzzy initial statesxx and x2 is:

G(*i.*2> = 1/1.0+ 2/0.0+ 3/0.0+ 4/0.0 + 5/0.26 (4.5.6)

which means the system state has a possibility value 1.0 of converging to group 1, a possibility

value 0.26 of converging to group 5, and a possibility value 0.0 of converging to any of the last

three groups.

433 Stability Analysis

In Figure 4.5.6, there area p-1 motion at the origin (group 2) and a p-8 motion around the

origin (group 1). The domain of attraction of group 1 covers most of the central area in the

figure. The four comers belong to the domain of attraction of group 5, the sink cell. Now, sup

pose that we choose an e-neighborhood TE of0 to be

rE=tf(0,l) (4.5.7)

= { (0,0),(1,0),(1,1),(0,1),(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1) }, (4.5.8)

and a domain set SD to be

SD =tf(0,20). (43.9)

Since Tz is the union of group 1 and group 2 and all the cells in SD belong to the domain of

attraction of group 1, the fuzzy system of inverted pendulum is cellular stable by definition 4.4.5.
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4.6 Discussion

We wish to discuss some important points in this section. In the process of creating the

cell-to-cell mapping from afuzzy mapping, we fixed Af* to be aconstant tm and the partition to
be equal divisions. However, this is only for the reasons ofsimplicity. There are other approaches
fordealing with the problem:

(1) With the partition fixed, we could choose different Atk for different initial cells. The func

tion ofacell-to-cell mapping in this method is to describe the flow of afuzzy dynamical
system. Therefore, we only need to know the relation between acell and its neighboring
cells. In other words, beginning with an initial cell the process can be terminated once the

trajectory enters one of its neighboring cells. A cell-to-cell mapping constructed in this

fashion has advantages over the previous approach. For fast dynamic regions, Ar* will be
small, thus avoiding possible big jumps when using fixed Atk. For slow dynamic regions,

Atk will become large so as to find the actual image cell position instead ofstaying in the
same cell and creating the illusion of periodic motions. Itisobvious that more details of the

system dynamics will berevealed inthis approach.

(2) Another approach is to use nonuniform partitions while keeping Atk fixed. We can partition
the state space according to the speed ofthe system dynamics in local regions. There will be

coarse partitions for slow dynamics regions and fine partitions for fast dynamics regions.

The analysis will be more efficient and revealing by using such an approach because
unnecessary computations will be avoided.

However, it is still unclear how we can know the speed of the system dynamics beforehand.
Hence, the first approach seems to be more implementable than the second.

One other issue to be discussed is the accuracy ofthe global analysis. Since the cell state

space is actually an approximation of the real state space, the prediction ofthe system dynamics
around the boundary oftwo groups is likely to be unreliable. The accuracy will certainly improve
with the cost ofcomputation time ifwe use smaller cell size of the state space.
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4.7 Concluding Remarks

Anew approach for the global analysis of fuzzy dynamical systems has been proposed. It
applies the ceU-to-cell mapping method to obtain the evolving trend of the states of a fuzzy
dynamical system. This method solves the problem of uncertainty accumulation by confining
uncertainty only in the transformation from the fuzzy mappings to the cell-to-cell mappings. It
greatly reduces the uncertainty in the analysis. As aresult, we can give acharacterizing descrip
tion of the system dynamics. However, the method can only give an approximate prediction of
the behavior of afuzzy system, which is, on the other hand, quite reasonable owing to the fuzzi-
ness inherentby the system.

This cell-to-cell mapping method proves to be very successful in analyzing the global
behavior of the inverted pendulum case given in the example. It gives very good, though not pre
cise, description of the system behavior. There remains aquestion about how we relate the pred
ictions to areal system, i.e. how do we know that the behavior of the cells in the cell state space
can really represent the behavior of the states in the real state space? We observed avery con
sistent behavior of the inverted pendulum and its corresponding cell-to-cell mapping in Fig. 4.4.2.
But it is obvious that the phenomenon is not universal. Intuitively, the method will certainly work
ifwe have infinitesimal partitions. In that case, the cell-to-cell mapping will simply converge to
the original point-to-point mapping. But it is impractical to have very small divisions ofastate
space because ofthe large amount ofcomputation needed. Hence, it is very important to know
the conditions on a fiizzy dynamical system such that the cell-to-cell mapping method can be
applied. One reasonable conjecture is the "weU-behavedness" of afuzzy dynamical system. The
"weU-behavedness" may be the continuity of the vector field of the fuzzy dynamical system or
some other more restrictive condition. The answer is not clear at this moment and needs further
investigation.
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5.1 Introduction

Fuzzy logic control has found many practical applications recently. Its idea oftransforming

the knowledge and/or experience ofhuman operators into a rule-base to perform control actions

has proved to be very useful in dealing with systems which are difficult to control by conven

tional methods. One of the advantages ofthis approach is that it does not require a mathematical

model of the process. All the control rules are formulated based on the operators' knowledge or

"rules of thumb". Ontheother hand, all existing classical control theories areconstructed with a

certain model representation inmind, such as transfer functions and state equations. Their design

procedures require precise prior knowledge of system models. Hence, it becomes extremely

difficult when only partial or none of thesystem information is available.

State feedback control is one of the modem control techniques (Kailath (1980)), which uses

a control law

u=-kx, (5.1.1)

or

K(/) = -kx(0 (5.1.2)

indiscrete-time cases, u is the input variable ofthe plant, which isa real number insingle-input

systems; x is the state variable which is an n x 1 columnvector, k is the 1x n row vector of feed

back gains. Its formulation is based on the state space representation of the controlled system.

Many theories have been developed to design a stablizing state feedback controller (SFQ for an

LTI system (Chen (1984)). Its basic idea is to relocate the eigenvalues ofa system to the left-half

plane of its state space through state feedback. A closed-loop system can be stablized if the
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corresponding open-loop system is stablizable inthe first place. This method is very simple and

effective and is widelyusedin practical situations.

Since fuzzy logic control is not based on conventional mathematical theory, it needs

justification through the performance of its practical implementations. It would , therefore, be

very interesting to compare the differences between model-based control algorithms, such as state

feedback control and Al-oriented fiizzy logic control through some specific experimentation. A

hardware setup of a cart-pole system was built under a project at the NASA Ames Research

Center to study the implementation ofastablizing fuzzy logic controller and to compare itwith a

state feedback controller. The control objective was to balance an inverted pendulum inavertical

position by controlling the motion ofthe cart and at the same time move the cart to aprescribed

position. This problem has been studied in many articles and has been used as abenchmark for

many nonlinear control algorithms. The results of the experiment postulate the differences

between the two different approaches and are described in the rest ofthe chapter.

This chapter is organized as follows: Section 2 describes the problem formulation and its

hardware setup. Section 3gives the modeling and identification ofthe system. Section 4explains

the design procedures and the details of the two controllers compared. Section 5 makes acom

parison ofthe fuzzy logic and state feedback controllers based on the experimental data. This is

followed by our conclusions.

5.2 Description and Design of the System

The basic physical configuration ofthe cart-pole system in the experiment is similar to Fig

ure 3.4.1. A cart with four grooved tree-turning wheels was placed on apair oftight-fitting rails.

A pole was installed on the cart by fixing one end to the pivot of alow-friction potentiometer

through apole-holder. The potentiometer was mounted firmly on the cart so that the pole could

fall freely in a forward-backward direction. The cart-pole combination was driven by a DC

motor through an aluminum chain which matched the teeth ofthe driving pulleys. A 15KQ low-
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friction one-tum potentiometer and a lOKfl ten-turn potentiometer were mounted on the end of

the pole and the shaft ofthe DC motor respectively , were used to take the readings ofthe angle

ofthe pole with respect to the vertical line and the cart position on the rails. These two readings

were used as the sensor inputs to the controller. Shielded electric wires were also used to protea

the measurements from outside noise.

CPU

IBM AT

« DACA A
V

Power

Amplifier!—• Motor
Cart-Pole

System

Figure 5.2.1: Block diagram ofthe cart-pole control system

As shown by the block diagram ofthe integrated system inFigure 5.2.1, the plant includes

the cart-pole system, the DC motor, and the power amplifier which supplies electric current to the

motor. The major part ofthe controUer block is an IBM AT with a Data Acquisition and Control

Adaptor (DACA) which has two D/A channels and four A/D channels. Two A/D channels are

used to take sensor measurements from the two potentiometers and one D/A channel is used to

send the controller output to the power amplifier, which will then be amplified to feed to the driv

ing motor. The software controllers are coded in Cand this code can be found in Appendix B.

The data communication programs are also in C. These are not shown in the block diagram but
can alsobe found in Appendix B.
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53 System Modeling and Identification

First, system modeling and identification was done with a view to designing a state feed

back controller. In this experiment, a fuzzy logic controller was designed, as generally claimed,
without a modelof the system.

53.1 Modeling

The inverted pendulum problem has been studied by many researchers. The governing
equations of the cart-pole system are given by the following nonlinear differential equations
(Cannon (1967)) (Barto, Sutton and Anderson (1983)):

gsine+cose[±z!!LlJ^lhI«!l^l,_ Jfcl
q = me+m ml

l{4 mcos^j (5-3-1}
3 mc +m

/+m/[e2sin6- 9cos 8]- u.c sgn (x)
x =

me +m
(5.3.2)

where 9is the angle of the pole with respect to the vertical line, x is the horizontal position of
the cart, / is the driving force applied to the cart, g is the acceleration due to gravity, mc is the
mass ofthe cart, m is the mass ofthe pole, / is the half-pole length, m, is the coefficient offric

tion ofcart on track, and \ip is the coefficient offriction ofpole on cart.

The plant being considered in our experiment included a cart-pole system, a driving DC

motor and apower amplifier. Its input was the voltage output of the DACA board, which sup
plied the power amplifier. The power amplifier was assumed to have aconstant gain. Since the
angular position and velocity of the DC motor shaft were linearly proportional to the cart position
and velocity respectively, the relation between the cart driving force /, the velocity of the cart x,
and the input voltage v was modeled as:

f=kv-bx (5.3.3)
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where k and b are constant coefficients. By considering the coulomb friction between the cart
and the rails, the net force applied to the cart/„ can be derived by:

/. =/ -/c

=kv-bx-\Lesgn(x)

where

=k(v-—sgn(x))-bx

= k(v-ve)-bx (v^=— sgn(x))

= kv'-bx (v' =v-vc)

A,=

x = A/x + B/v'

0

3(me+m)g j 0
l(4me+m) o 0 l(4me+m)

0 0 0 1

-3m g 0 0 -4b
4me +m

0

3b

4me +m

(5.3.4)

(5.3.5)

(5.3.6)

(5.3.7)

(5.3.8)

where fe is the coulomb friction and vc is its equivalent in terms of the DACA board input vol
tage.

The pole friction was neglected because of the use of alow-friction potentiometer which
linked the pole to the cart, i.e. u„ =0.0. Choose 8,9, ^, and i to be the state variables ^x^^,
x4 and v' to be the input variable. Based on (5.3.1)-(5.3.8), the whole system can be linearized at
the origin and represented inastate space form:

(5.3.9)

(5.3.10)



B/ =

0

-3k

I (4me +m )

0

4k

4w, +m
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(5.3.11)

5.3.2 System Identification

We first identified the DC motor dynamics by considering the cart-pole system with the

pole taken off. The governing equation can be described as:

fn =/ ~/c (5.3.12)

=Mi* (5.3.13)

= k(v-ve)-bx , (vc=-£-sgn(i)) (5.3.14)

where M includes the mass of the cart, the mass of the chain and the equivalent mass of the

motor shaft inertial, ve is the equivalent voltage of the coulomb friction. The coulomb friction

was first identified to be 1.967 volt by examining the relation between the input voltage and the

steady state velocity of the cart as shown in Figure 5.3.1.

From the step response of the cart position (Figure 5.3.2) with the mass M known, k and b

were identified to be:

* =0.835, fc=25.0. (5.3.15)
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Figure 532: Step responseof the cart system
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Hnally, the state space representation of thecart-pole system with

half-pole length /: 0.2858 m,

massof the polem: 0.0473 kg,

mass of the cartmc: 0.6983 kg,

is given by

where

A,=

x = A/X + B/v'

0.000 1.000 0.000 0.000

27.002 0.000 0.000 92.386

0.000 0.000 0.000 0.000

-0.4896 0.000 0.000 -35.205

B,=

0.000

-3.086

0.000

1.176

96

(5.3.16)

(5.3.17)

hiour experiment, the control algorithms were implemented inan IBM ATwith asampling time

of20ms. Therefore, the identified model was transformed to its discretized form with sampling
time 20ms as:

where

o=

x(k+\) = <S>x(k) + Tv'(k)

1.0054 0.0200 0.000 0.0148

0.5337 1.0054 0.000 1.3292

-0.0001 0.0000 1.000 0.0144

-0.0070 -0.0001 0.000 0.4945

r=

-0.0005

-0.0444

0.0002

0.0169

(5.3.18)

(5.3.19)
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5.4 Controller Design

The design procedures of both the fuzzy logic controller and the state feedback controller

are described in detail in this section. Since fuzzy logic control is supposedly based on the

knowledge of human experts, a fuzzy logic controller was designed entirely by heuristics and no

model of the system was involved. The state feedback controller, on the other hand, was

designed according to the identified system model in (5.3.18).

5.4.1 Fuzzy Logic Controller

Balancing a poleon one's palm is intuitively easy. Most people can perform the balancing

for a short while. However, it becomes extremely difficult if one wishes to balance the pole on

the palm and at the same time holdone's position. Very few people, suchas acrobats, can per

form it for along period of time. In this experiment, a fuzzy logic controller was designed to per

form the balancing through observations and heuristics. After some trial and error, the policies

forbalancing the polewereeasily acquired as

if the pole is falling to the right, then pushthe cart to the right,

if the pole is falling to the left, then pushthe cartto the left.

The pole-balancing policies above were easy to understand and to derive. However, it became

more difficult whenthe cart position wasalso considered. After someplaying around with a pole,

we cameup with two general rules forcontrolling the cartposition, i.e.

if the poleis almost balanced and the cart is on the rightside of center,

then push the cartto the right,

if the pole is almost balanced and the cart is on the left side ofcenter,

then push the cart to the left

At first, it would seem to contradict to ourintuition to push the cart to the right Geft) direction

whenit was already in the right Geft) position. Given a position of the cart, the trickwasto push
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the cart in the same direction hard enough so that the pole would fall to the opposite direction.

Then the attemptofbalancing the polewouldmove the cart toward the centerposition.

Four variables were used to describe the system status at each stage and functioned as the

feedback signals to the controller. Onevariable denoted the control action adopted corresponding

to a specific system status. The variables were:

0 : angle of the pole with respect to the vertical line

0 : angular velocity of the pole

x : horizontal position of the cart on the rails

x : velocity of the cart

v : voltage applied to the power amplifier

Negative Zero Positive

Figure 5.4.1: Fuzzy terms for the state variables

Three labels were used to linguistically define the value of each of the statevariables: Posi

tive (PO), Zero (ZE), and Negative (NE). Figure 5.4.1 illustrates the membership functions of

these linguistic tenns. Note that thethree linguistic labels were defined differentiy for each of the

four state variables. Seven labels were used for the input variable v, namely Negative-Small

(NS), Negative-Medium (NM), Negative-Large (NL), Zero (ZE), Positive-Small (NS), Positive-

Medium (NM), and Positive-Large (NL). The membership functions of these linguistic terms are

illustrated in Figure5.4.2.
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NL NM

Figure 5.4.2: Fuzzyterms for inputvoltage v

The control policies were implemented in a rule base consisting of 9 rules for controlling

the angular position of the pole and 4 rules for centering the cart position. The complete rule

baseis described in the following:

Rule-1: if 9 is PO and 9 is PO, then v is PL

Rule-2 : if 6 is PO and 9 is ZE, then v is PM

Rule-3 : if 9 is PO and 9 is NE, then v is ZE

Rule-4 : if 9 is ZE and 9 is PO , then v is PS

Rule-5 : if 9 is ZE and 9 is ZE, then v is ZE

Rule-6 : if 9 is ZE and 9 is NE, then v is NS

Rule-7 : if 9 is NE and 9 is PO, then v is ZE

Rule-8 : if 9 is NE and 9 is ZE, then v is NM

Rule-9: if 9 isNE and 9 is NE, then v is NL

Rule-10: if 9 isVS and 9 is VS and x isPOand x is PO,

then v is PM
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Rule-11 : if 9 isVS and 9 is VS and x isPOand x is PVS,

then v is PS

Rule-12: if 9 isVS and 9 is VS and x isNEand x is NE,

then v is NM

Rule-13 : if 9 is VS and 9 is VS and x is NE and i is NVS,

then v is NS

where VS is Very Small, PVS is Positive Very Small, and NVS is Negative Very Small. To

reduce the computation time in order to balance the pole inreal time, we adopted the second type

of fuzzy reasoning for our controller operation. Details ofthe operation were given inChapter 2.

5.4.2 State Feedback Controller

Based on the model given in (5.3.18M5.3.19), astate feedback controUer was designed by

the pole-placement technique. The input variables v' (/) was alinear combination of thetwo state

variablesxx and x2:

v'(n) = kxxx(n) +k2x2(n) +k3x3(n) + k4x4(n) (5.4.1)

where kx, k2t k3 and k4 are state feedback gains. The determination of the controller gains was

also constrained bythe voltage rating of the power amplifier. A stablizing discrete state feedback

controller wasdesigned by assigning the poles inside theunit circle at:

Pi =0.55+0.5i , p2= 055-0.5i , />3 =0.98+0.1i , p4=0.98-0.1/ . (5.4.2)

Thecorresponding state feedback controller has the gains:

kx =605 , *2= 19.3 , k3 =352.1, *4=40.2 . (5.4.3)

Therefore, including the friction compensation, the final control lawwas:

v (n )=v' (n )+vc sgn (x4(n )) (5.4.4)

=kxxx(n) + k2x2(n) + k3x3(n) + k4x4(n) + vcsgn(x4(n)) (5.4.5)
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53 Experimental Results and Performance Comparison

Both of the fuzzy logic and the state feedback controller achieved their control objectives in

our experiment The experimental data of the trajectories of the pole angle, cart position, and

input voltage are shown in Figure 5.5.1-5.5.6.

Performance Comparison

In our experiment, the fuzzy logic controller succeeded in balancing the pole practically

from the beginning of the testing and was tuned to maintain the cart position at the prescribed

center point aftersome parameter adjustments. The state feedback controller also achieved very

good performance on both the pole balancing and cart centering, which was really not unex

pected. It was accomplished through time-consuming system modeling and identification. A

precise mathematical model as in (5.3.19), had to be acquired before the state feedback controller

could be designed.

Fuzzy logic control demonstrated its potential in handling difficult control problems in our

experiment. It was very interesting to see that a difficult pole balancing and a cart position

centering taskscould be done simultaneously simply by implementing the intuitive and linguistic

balancing strategies from a person who was really not an"expert". The result by fuzzy logiccon

trol, was especially valuable if the amount of effort spenton modeling and identification is also

considered. For instance, anestimated 75% time wasspent on the modeling and identification in

ourexperiment Ourfuzzy logic controller required minimal time to design and balanced the pole

within the first few trials. Its control, though not as precise, was as good as the state feedback

controller. Based on the experimental results, the performance comparison of the two different

approaches aresummarized in the following:

• Design Complexity: The design ofa fiizzy logic controller involves much less mathematical

calculations than a state feedback controller. It does not require modeling and identification

of a controlled process, which can be very difficult and time-consuming if the process is

very complex,there is no physical model,and/or humanfactors are involved. Contrary to
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fuzzy logic control, state feedback control is a model-based control algorithm. Its design requires

complete knowledge of the concerned process. However, this approach is very simple and effec

tive if a well-understood LH system is considered. Therefore, the design complexity of the two

approaches dependents more on the processconsidered than on the design strategy itself.

• Performance: "Precision" is usually not important for fuzzy logic control. The rule base

constructed by human experts normally achieves an acceptable performance in a fairly

short period of time. It, however, can only reach a control objective approximately due to

its fuzzy nature. As demonstrated by Figure 5.5.1, the pole position does not converge to

zero uniformly but oscillates in its neighborhood. State feedback control benefited from a

precisemodel andhas a more precisebehavior.

• Stability Region: Since many systems are inherently nonlinear, their identified models are

applicable only around their equilibrium points. A model-based state feedback controller

will perform correctly when it is operating in an area, namely the stability region, around

the equilibria. A fuzzy logic controller, which is nonlinear in design, adopts different con

trol actions in different areas and can often work in a larger stability region than a state

feedback controller.

• Robustness: Robustness is one of the acclaimed properties of fuzzy logic control. The

design of a state feedback controller does not include the uncertainty in a system, while a

fuzzy logic controller based on experts* knowledgehas a largertolerance to the variation of

the process parameters. Moreover, we believe that the multiple firing of control rules in a

fuzzy logic controller is also partly responsible forthe robustness of the system.

• Controller Modification: This is, in our opinion, the main disadvantage in current fuzzy

logic controller design. Many parameters are used in the linguistic rules of a fuzzy logic

controller. The fine tuning of these parameters to achieve a better system performance is a

very time-consuming process. State feedback controller involves much less parameters than

its AI counterpart and canbe easily fine-tuned.
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5.6 Concluding Remarks

Our experimental study of the Al-oriented fuzzy logic control algorithm and the conven

tional state feedback control scheme verified some of the generally claimed differences between

the two approaches. The rule-based fuzzy logic control, benefits from the knowledge of human

operators, does not require a precise model of a system. It is generally formulated to control a

complex nonlinear process with man-machine interactions. On the other hand, state feedback

control, amodem control scheme, is based onaprecisely identified model to reallocate the poles

of the closed loop system inorder toachieve stability. It is originally designed onlinear systems

and does not result in a large stability region when a highly nonlinear system is involved. In our

experiment, fuzzy logic control performed, though not as precise, as well as state feedback con

trol. Most importantly, it had its great advantage of design efficiency. Given a"true" expert and a

reasonable amount of effort, we believe that fuzzy logic control can perform better than state

feedback controlin many cases.

This experiment was conducted in order to compare the differences between fuzzy logic

control and conventional state feedback control. In our experiment, the model of the system was

derivable and was identified so that the state feedback controller can be designed accordingly.

However, there are many different complex situations in the real worid. Some of them can be

resolved only byconventional control theories, for instance, mechanical machining often requires

highprecision and is best for mathematically-proved conventional control theories. Some others

may be solved by both methods, such as the inverted pendulum problem in our experimem. The

choice of either methods depends on the availability of resources and the goals to be achieved.

There are, however, some situations which are either impossible or very difficult tobehandled by

conventional methods, such as the automobile parking problem. In these cases, the Al-oriented

fuzzy logic control ismore appropriate tobeapplied to achieve the control goals.

All in all, fuzzy logic control has demonstrated its usability and value in certain types of

situations. It was never designed to replace aconventional control algorithm. Instead, it aimed at

offering a different approach, which has proved to be very effective, in many situations where
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conventional methods fail to achieve better results.
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Chapter 6

Conclusions

Most of the current applications of fuzzy logic control are aimed at replacing a human

operator with a linguistic rule-based system. The utilization of an operator's knowledge of a

specific process in achieving a control goal has proved to be very effective and successful. Due

to the fact that human operators are always using fuzzy expressions in describing their

knowledge, fuzzy set theory and fuzzy logic have played important roles in this approach. How

ever, we wish to point out that the key factor of fuzzy logic control, i.e. representing human

operators' knowledge in a fuzzy format, is actually the weakest point, as far as analysis is con

cerned, because of its noncompatibility to the existing precise mathematical world of analysis.

Without a formal analysis, all the applications of fuzzy logic control can only bejustified through

practical implementations. There is no stability analysis before and/or after the building upof a

real system. A lengthy process of "trial and error" and the fine tuning of its parameters has tobe

involved.

In this thesis, we first discussed the stability property of a fuzzy control system and pro

posed anotion of "expert's Lyapunov function" to explain its seemingly intrinsic stability. Two

theorems are formulated to describe its stability criterion. To remedy the disadvantage of lacking

of an analytical methodology, this thesis also endeavors to develop an analytical method which

can describe the global behavior of a fuzzy dynamical system and indicate its stability properties.

The proposed method incorporated an analytical technique, namely ceU-to-cell mapping, in con

structing the global picture ofa fuzzy dynamical system. A thorough analysis of fuzzy dynamical

systems using this method was performed. Both the real and fuzzy initial states responses were

discussed. Cellular stability was defined ai«I a stability theorem formulated to give a complete

description of the analyzed fuzzy system. In order to understand the differences between the Al-

oriented fuzzy logic control and conventional control algorithms, such as state feedback control,

an experiment was conducted under aproject inNASA Ames research center. The experimental
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results gave aclearer picture of both the benefits and limitations of fuzzy logic control.

Though fuzzy logic control was successful in the past, we recognize the fact that many

future applications may not have human experts available for the controller design. The space

station thermal control studied by NASA, for example, involved complex modeling and computa

tions if handled by conventional methods. The problem may possibly be solved by using the

technique of fuzzy logic control. Unfortunately, it is obvious that there will be no "expert" for

consultation in the design process. As aresult, the automation in fuzzy logic controUer design

has become much more important than it was before. The method proposed inthis thesis can also

serve the purpose of design automation. Given aprocess and acontroUer candidate, our method

is capable ofdetermining its closed-loop performance as weU as indicating the undesirable rules

in the controUer for further modifications. The procedure can be repeated until satisfactory con
trol is achieved.

We shaU conclude this thesis with several constructive propositions for future fuzzy logic
control automation.

(i) Linguistic model-based fiizzy logic control: It is the most intuitive and probably the most

promising way for design automation. The proposed controUer wiU depend on the hnguis-

ticmodel used. The basic problem can besimpUfied tothe form:

Given aset ofimpUcation rules Rhand adesired control goal R3, find R2 such that

Rx and R2 -» R3. (6.1)

This approach involves quahtative reasoning and is very interested in our opinion,

(ii) Self-tuning fuzzy logic control: This approach wiU be most beneficial to current controUer

design if succeeded. It can be done by incorporating some optimization and/or learning

scheme in a fuzzy logic controUer such that the self-tuning can be achieved by evaluating

its performance. A combination of fuzzy logic and neural networks may be agood direc
tion for future research.
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(iii) Rule Extraction: The purpose of fuzzy logic control automation is to reduce the degree of

dependency on human experts. This can be achieved by systematicaUy formulating control

rules which were given previously byhuman experts (Chen (1989)). This approach is par

ticularly interesting because it preserves the useful format of fuzzy logic control whUe elim

inating thenecessity of human experts.
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Appendix A

Proof ofTheorem 32.1:

Assume that the cardinality ofX is n, Le. cardQC)= n. Hence, X is a 1 x n row vector and Q is

SLnxn square matrix. Let LHS denote the left-hand side in (3.2.4) and RHS denote the right-

hand side. To simplify the notation, denote u^Cx,) by X,- and lL$(xitXj) by Q^% xit Xj e X.

Then, the k th element of LHS is

LHSk = v([iXi A Qij]kQjk) (A.1)

and

RHSk = Y(Xi A[ Y Qij AQjk ]). (A.2)

Since the y ( max) and the a (min) operators are commutative and distributive, we have

LHSk = Y( Y[Xi AQij AQjk ]) (A.3)

= y.[X* A (2«y A j2>*] (A.4)
»J

= Y(Y[X,. A Qu A Q/k]) (A.5)
» J

= RHSk (A.6)

Q£.D.

Proof ofTheorem 3.2.2:

Using similar notations as in Theorem 3.2.1 with MHS denoting the middle term in (3.2.5) as

weUas the definition ofXU in (3.2.2), it is easy to see that

LHSk = y(XUij hPijk) (A.7)

= Y.([X; kUj]k Pijk) (A.8)
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= Y.(Xf AUj APijk) (A.9)

MHSk = y (Xi A[y Uj A/>^]) (A.j.0)

o.Y.(* Af/y Afy) (A.H)

=LW* (A.12)

RHSk = H(UjK UXt hPijk}) (A.13)

= V(Xi h Uj h Pijk) (A.i4)

=LffS* (A.15)

Q.E.D.

Proof ofTheorem 3.3.1:

From (3.3.10) and (3.3.11),we can have

x=f(x,u) (A.i6)

=/(*,£(*)) (A.i7)

=/'<*) (A.18)

The theorem can then be proved by the Lyapunov Uniform StabUity Theorem.

Proof ofTheorem 33.2 :

From (3.3.10)and (3.3.11), we can have

x=f(x.u) (A.19)

Q.E.D.
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=f(x,g(x)) (A.20)

=/'(*) (A.21)

The theorem can then be proved by the Lyapunov Asymptotic StabUity Theorem.

QJE.D.
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Appendix B

The control and data communication programs used in the inverted pendulum experiment

are included in this appendix and are listed in the foUowing:

(l)fuzzy.c : The host program for fiizzy logiccontrol,

(2)sf.c : The host program for state feedback control,

(3)daca.h : The header file for the IBM DACA board,

(4)daca.c : The data acquisitionprogram forDACA board,

(5) pendulumx : Definitions of input-output variables.



I* fuzzy .c: host program for the real time */
/* control of the inverted pendulum system. */
/♦ using fuzzy logic control */
I* NO timer interrupt is used to invoke */
/* sampleO. */
/* CE line is used to enable DA conversion */
/* and hence control the sampling rate. */
/ft*******************************************************/

^include <stdioJi>

#include "dacaJT

#define sign(x) ((x >= 0.0) ? 1.0: -1.0)
#define max(x,y) ((x > y) ? x: y )
#define min(x,y) ((x < y) ? x : y )

double expO;
extern float pos_xl0; /*in pendulumx */
extern float pos_x30; /*in pendulum.c */
extern float drive(); /*in pendulumx */
extern intresetO;

static float fl,f2,f3,sfltsf2;
static float x[S];
static float oldx[5];
static float olderx[5];
static float f,
static float samp_time;
static float _nuU;
static float_tmp;
static float xl [15];
static float x2[15];
static float x3[15];
static float x4[15];
static float lx2[15J;
static float Ix4[l5];
static float w[15];
static float u[15];
static float wu[15];
static float wl, w2, wul, wu2, ww, uu;
static floatmag;
static float weight;
static float a, az, azz, b, bz, bzz;
static float c, cz, d, dz;
static float posl, zerol. veryzl, negl;
static floatposZ, zero2, veryz2, neg2;
static float pos3, zero3, neg3;
static floatpos4, poszero4, zezo4, negzero4, neg4;
static float dl, d2, d3, d4, d5. d6. d7, d8, d9, dlO;
static float dll, dl2, dl3. dl4, dl5, dl6, dl7, dl8, dl9, d20;
static float d21. d22, d23. d24, d25, d26, d27, d28, d29, d30;
static float d31,d32;

static int i;
static int j;
static int jnum.samp;
static int .choice;
static int _time;
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static char _cmd;

float datal[10000]
float data2[10000]
float data3[10O00]
float data4[10000]
float data5[10000]

static char filename[10];
FILE *af, *fopenO;

mainO
{

do{

reset();

promptO;

startO;

printfCWork End! Startstoring data.");

resetO;

store.dataO;

} whUe( i(finishO));

resetO;
}

promptO
{

printfC DATA INPUT-STORAGE FILE (<= 7 characters) :- ");
scanfC%s", *filename);

printfC CONTROLLER GAINS mag:- ");
scanf(M%f",&mag);

printfC POLICYWEIGHTING weight:- ");
scanfC%fM,&weight);

printfC Forcel fl:- ");
scanf("%f",&fl);

printfC Force2 £2:- M);
scanfC%f'\&f2);

printfC Force3 f3:- ");
scanf(H%fM.&f3);

printfC SForcel sfl:- ");
scanfC%fMt&sfl);
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printfC SForce2 s£2:- ");
scanfC%f".&sf2);

printfC" SAMPLING TIME:- ");
scanfC%r, &samp_time);

printfC NUMBER OF NULL ITERATIONS:- ");
scanfC%r,&_null);

printfC CHOICE NUMBER, 0-fixed samples, 1-continuous
scanf(H%dM, &_choice);

if( .choice = 0) {
printfC NUMBER OF SAMPLE <1 -10000>
scanfC%d", &_num_samp);

}

startO
{

resetO;

_time = 0;
getcharO;
printfC Turn on POWER. HIT RETURN TO START! ");
if(_choice!=»0)
printfC" HIT y after RETURN TO STOP! ");
getcharO;

if( .choice = 0 ) {
while(_time < jnum_samp) {

sampleO;
}

}
else {

do{
_cmd = bdos(0x06,Ux00ff) & OxOOff;
sampleO;

} whileCcmd != *q');
)

store_dataO
{

af = fopenC*filename,"w");

forOsO;i<jtime;i-H>) {
fprintfC at"%5d %f %f %f0,i.datal[i].data3[i],data5[i]);

)

fcloseCaf);
)

intfinishO
{
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printfC" Do you wish to run again <y/n> :- ");

if((char)getchar() = *y* )retum(0);

retum(l);

}

/it***********************************************/

sampleO
{

/****** start of the controller ****************/

/*** Parameters ***/

a = 0.2;
az = 0.2;
azz = 0.01;

b=1.0;
bz « 0.5;
bzz = 0.1;

c=1.0;
cz=0.1;

d=10.0;
dz=1.0;

/*** Sensor readings ***/

x[l]=pos_xlC);
x[2]= (x[l] - oldx[l])/samp_time;
xP]=pos_x30;
x[4] a Cx[3] - oldx[3])/samp_time;

lx2[2] s Cx[2]4oldx[2]+olderx[2])/3.0;
lx4[4] = Cx[4]+oldx[4]+olderx[4])/3.0;

/*** Membership values ***/

dl = maxCx[l]/a.0.0);
posl = minC dl, 1.0 );

d2 a maxC1.0-x[l]/Caz), 0.0);
d3 = maxC1.0+x[l]/Caz), 0.0);
zero 1 = min ( d2, d3);

d4 = maxC1.0-x[l]/Cazz), 0.0);
d5 = maxC1.0+x[l]/Cazz), 0.0);
veryzl = min Cd4, d5);

d6 = maxCx[l]/(-a),0.0);
negl a min( d6,1.0);

d7 = maxClx2[2]/b,0.0);
pos2 = minCd7,1.0);
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d8= max(1.0-lx2[2]/Cbz). 0.0);
d9= max(1.0+lx2[2]/(bz), 0.0);
zero2 = min(d8, d9);

dlO= max(1.0-lx2[2]/(bzz), 0.0);
dll = max(1.0+lx2[2]/(bzz), 0.0);
veryz2 a min(dlO, dll);

dl2= max(lx2[2]/C-b). 0.0);
neg2 = min(dl2,1.0);

dl3 a max( x[3]/c, 0.0);
pos3 = min(dl3,1.0);

dl4 = maxC1.0-x[3]/Ccz).0.0);
dl5 = maxC1.0+x[3]/(cz), 0.0);
zero3 = min (dl4, dl5);

dl6 = max(x[3]/C-c),0.0);
neg3 a minCdl6,1.0);

dl7 = maxClx4[4]/d,0.0);
pos4 a minCdl7,1.0);

dl8 = maxC1.0-lx4[4]/Cdz). 0.0);
dl9 = maxC1.0+lx4[4]/Cdz), 0.0);
zerc4 = min(dl8,dl9);

d20 = maxClx4[4]/C-d), 0.0);
neg4 a minCd20,1.0);

d21 = maxC1.0-lx4[4]/(dz), 0.0);
d22 = maxC1.0+lx4[4]/(0.000000001*dz), 0.0);
poszero4 = min( d21, d22);

d23 = max(1.0-lx4[4]/C0.000000001*dz), 0.0);
d24 a maxC1.0+lx4[4]/(dz), 0.0);
negzero4 a min( d23, d24);

/*** Rules ***/

xl[l]aposl;
x2[l]apos2;
w[l)anunCxl[l]fx2[l]);
u[l] = fl + 100.0*w[l];

xl[2] = posl;
x2[2] a zero2;
w[2]=minCxl[2],x2[2]);
u[2] = f2 + 100.0*w[2];

xl[3]aposl;
x2[3]=neg2;
w[3] = min(xl[3],x2[3]); .
u[3] = 0.0*w[3];

xl[4] = zerol;
x2[4] a pos2;
w[4]=min(xl[4],x2[4]);
u[4]= O*w[4]*C0J + 0.5*sign(x[l]));
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xl[5] = zerol;
x2[5] a zen>2;
w[5] = min(xl[5].x2[5]);
u[5Ja0.0

xl[6]azerol;
x2[6]aneg2;
w[6]amin(xl[6],x2[6]);
u[6]a -f3*w[6]*(0J - 0.5*sign(x[l]));

xl[7] = negl;
x2[7]apos2;
w[7) = min(xir7].x2[7]);
uf7] = -400.0*w[7];

xl[8]anegl;
x2[8] a zero2;
w[8]aminCxl[8],x2[8]);
u[81a-Cf2)-100.0*w[8];

xl[9]=negl;
x2[9] = neg2;
w[9]= minCxl[9],x2[9]);
u[9]= -Cfl)-100.0*w[9];

xl[ll]averyzl;
x2[lljaveryz2;
x3[ll]=pos3;
x4[ll]apos4;
d25 = mmCxl[ll],x2[ll]);
d26armnCx3[ll],x4[ll]);
w[ll] a minC d25, d26);
u[ll]ai0.0*sfl*w[H];

xl[12]averyzl;
x2[12]averyz2;
x3[12]=pos3;
x4[12]aposzero4;
d27aniinCxl[12],x2[12]);
d28 = minCx3[12]tx4[12]);
w[12]=min(d27,d28);
u[12] = 0.5*s£2*w[12];

xl[13]averyzl;
x2[13]averyz2;
x3[13]aneg3;
x4[13]aneg4;
d29 = minCxl[13],x2[13]);
d30aminCx3[13],x4[13]);
w[13]=min(d29,d30);
u[13]a-i0.0*sfl*w[13];

xl[14]averyzl;
x2[14]averyz2;
x3[14]=neg3;
x4[14] a negzero4;
d31 = minCxl[14],x2[14]);
d32 = minCx3[14],x4[14]);
w[14] = min(d31,d32);
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u[14] = -0.5*sf2*w[14];

/*** Defuzzification ***/

wl = 0.0;
w2a0.0;
wul a 0.0;
wu2a0.0;

forCfe=l;i<10;i-H-){
wufi] a ufi]*w[i];
wl a wl +w[ij;
wul a wul + wu[i];

}

forCi=ll;i<15;i++){
wu[i] a u[i]*w[i];
w2 a w2 + w[ij;
wu2 a wu2 + wufi];

}

ww a wl + w2;
uu a mag*(wul + weight*wu2);

ifCww > 0.0)
fauu/ww;

else

f= 0.0;

/****** end of controller **********************/

datalLtime] a xfl];
data3[_time] a x[3];
data5Ltime] a f;

driveCf);

olderx[l]aoldx[l];
olderx[2] = oldx[2];
olderx[3] = oldx[3];
olderx[4] = oldx[4];

oldx[l]ax[l]
oldx[2]aX[2]
oldx[3] = x[3]
oldx[4]aX[4]

_time ++;

fcr0a0;i<_null;i4-+-)
_tmp = Cfloat) Ci+l)*(float)i/Cfloat)Ci+l);
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/* sf.c : host program for the real time */
/* control of the inverted pendulum system. */
/* using state feedback control */
/* NO timer interrupt is used to invoke */
/* sampleO. */
I* CE line is used to enable DA conversion */
/* and hence control the sampling rate. */

#include <stdioJi>
^include "dacaJi"

double expO;
extern float pos_xlO; /*in pendulum.c */
extern float pos_x30; /*in pcndulumx */
extern floatdriveC); /*in pendulumx */
extern int resetO;

static float x[5];
static float oldx(5];
static float v;
static float kl;
static float k2;
static float k3;
static float k4;
static float samp_time;
static float _nuU;
static float_tmp;
static float jdead_zone;
static float_rtoise_immunity;
static float jdynamic_friction;

static int i;
static int j;
static int _num_samp;
static int .choice;
static int .time;
static int _mode;

static char _cmd;

float datalflOOOO]
float data3[10000]
float data5[10000]

static char filenamef 10];
FILE *a, *fopen0;

mainO
{

do{
resetO;

promptO;

startQ;
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printfC Work End! Start storing data.");

resetO;

store.dataO;

} whileC KfinishO));

resetO;

^********+**********i|^*i|^**+****4**********i|^**iM^**^

promptO
{

printfC DATA INPUT-STORAGE FILE (<= 7 characters) :-");
scanfC%s", *filename);

printfC CURRENT CONTROLLER GAINS kljc2jc3Jc4:- ");
scanfC%f %f %f %r, &kl, &k2, &k3. &k4);

printfC" DYNAMIC FRICTION :- ");
scanfC"%r, &_dynamic_friction);

printfC" SAMPLING TIME:- ");
scanfC%r, &samp_time);

printfC NUMBER OF NULL ITERATIONS:- ");
scanfC%f', &_null);

printfC CHOICENUMBER, 0-fixed samples, 1-continuous :- ");
scanfC%d", &_choice);

ifC.choice = 0){
printfC" NUMBER OF SAMPLE <1 - 10000> :- ");
scanf("%d",& num.samp);

)

startQ
{

resetO;

_time a 0;
getcharO;
printfC Turn on POWER. HIT RETURN TO START! ");
ifC.choice !=0)
printfC" HIT 'q* after RETURN TO STOP ! ");
getcharO;

ifC.choice = 0 ) {
whileCjime < .num.samp) {
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sampleO;
)

}
else {

do{
_cmd a bdos(0x06,0x00ff) & OxOOff;
sampleO;
} whileCcmd !a V):

}

store.dataO
{

}

a a fopen(*filename,"wH);

forCi=0;K.time;i++) {
rprintfCa,"%5d %i %i %f0,i.datal[i],data3[i],data5[i]);

fcloseCa);

intfinishO
{

printfC" Do youwishto runagain <y/n> :- ");

if((char)getchar() aa y )retum(0);

retum(l);

sampleO
{

/****** start of the controller ****************/
/****** Sensorreadings ************************/

x[l]apos_xlO;
x[2] a Cxfl] - oldx[l])/samp_time;
x[3]=pos_x30;
x[4] a Cx[3] - oldx[3])/samp_time;

v a kl*x[l]4i2*x[2]+k3*x[3]+k4*x[4]+_dynamic_friction*sgn(x[4]);

/****** end ofcontroller ****************»*****/

datalL_time]ax[l];
data3Ltime]aX[3];
data5Ltime] a v;

driveCv);

oldx[l]=x[l];
oldx[2] = x[2];
oldx[3]=x[3];
oldx[4] = x[4];
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tune-

forCi=0;i<.null;i++) {
.tmp a Cfloat) Ci+l)*Cfloat)i/(float)(i+l);

} ... .....
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/♦File:- DACA.H */
I* HeaderHie for the IBM DataAcqui- */
I* sition Board CDACA). */

/* Device number selection */

#defineSEL.DEVICE 0xc2e2 I* select device number */

#define ANALOG

#define BINARY
9 /* analogdevice number */

8 /* binary device number */

/* Binary Device CParallel I/O) */

#defineDPORT 0x22e2 /♦ binary port base address*/

#define DPORTLO

#define DPORTHI
DPORT
DPORT+1

1*low byte data */
/* high byte data ♦/

/* Analog Device */

#define D.AO
^define D.A1

0x0000

0x0001

/* D/A channel 0 */
/* D/A channel 1 */

#define A.D0
#define A_D1
#defineA D2

#defineA.D3

0x0000
0x0001

0x0002

0x0003

/* A/D channel 0 */
/* A/D channel 1 */
/* A/D channel 2 */
/*A/Dchaimel3 */

#defineD_A_SEL
#define A_D_SEL

0xl2e3

0x02e3

/* Channel select register */
/♦Channel select register */

#defineSTOP.A.D
#define STARTJUD

0x0000

0x0001
/* Stop conversion */
/* Start conversion */

#define A.D.CNT 0x02e2 1*A/D control register "V

#defineA_D_STA 0x02e2 /* A/D status register */

#defineA_D_RDY 0x00f2 /* A/D ready */

#define A.D DAT
#defineA D.LOW
#defineA_DJIGH

0x22e2
0x22e2

0x22e3

/* A/D dataregister *
/* A/D low byte
/* A/D high byte */

/
*/

#define D.A DAT
#defineD A LOW

tfdefineD.AJIGH

0x32e2

0x32e2

0x32e3

/* D/A dataregister
/* D/A low byte
/♦D/Ahigh byte ♦/

*/
*/

I* Unit Conversions */

#defineVOFFSET

#define DIG VLTS

#defineVLTS_DIG

2048 /♦ Analog Binary Offset ♦/

10.0/2048.0 /♦ Digital to volts ♦/

2048.0/10.0 /♦ Volts to digital ♦/
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/ft***********************************************************/

/♦Hle:-DACA.C ♦/

I* DataAcquisition program for the IBM ♦/

I* DataAcquisition Board (DACA). ♦/

#include <stdioJi>
#include "dacaJT

/I*************************************************************

I* DIGITAL-ANALOG CONVERSION ♦/

float fdaO(value)
float value;
{
float actuator;
int output;

actuator = value;

ifCactuator >a 2047.0) actuator a 2047.0;
ifCactuator <a-2048.0) actuator = -2048.0; /♦ actuator limitcheck♦/

outportbCSEL.DEVICE,ANALOG); /♦ select analog I/O♦/

outportbCD_A.SELJ5_A0); /* select D/A channel♦/

output a OntXactuator +Cfloat)VOFFSET); /♦ convert todigital */

outportbCD_A.LOW,Coutput & OxOOff));
outportbCD_A.HGH,CCoutput» 8)&OxOOff)); I* output value ♦/

retum(actuator);
}

float fdalCvalue)
float value;
{
float actuator;
int output;

actuator = value;

ifCactuator >a 2047.0)actuator a 2047.0;
ifCactuator <= -2048.0) actuator a -2048.0; /♦ actuator limitcheck♦/

outportbCSEL.DEVICE,ANALOG); /♦ select analog I/O ♦/

outportbCD_A.SEL.D_Al); /♦ selectD/A channel ♦/

output a CintXactuator +(float)VOFFSET); /♦ convert todigital ♦/

outportb(D_A_LOW,Coutput & OxOOff));
outportb(D_A_HGH,((output» 8)&OxOOff)); /♦ output value ♦/

return(actuator);
}
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int daOCvalue)
int value;

(
int actuator;
int output;

actuator a value;

ifCactuator >a 2047) actuator a 2047;
ifCactuator <= -2048) actuator =-2048; /♦ actuator limitcheck ♦/

outportb(SEL_DEVICE,ANALOG); /» select analog I/O*/

outportbCD_A_SEL,D_AO); /♦ selectD/A channel♦/

outputa actuator + VOFFSET; /♦ convertto digital ♦/

outportbCD_A_LOW,(output & OxOOff));
outportbCD_A_HGH,(Coutput» 8) &OxOOff)); I* output value♦/

returnCactuator);
}

int dal(value)
int value;
{
int actuator;
int output;

actuator = value;

ifCactuator >=2047) actuatora 2047;
ifCactuator <=-2048) actuator = -2048; /* actuator limit check ♦/

outportbCSEL_DEVICE,ANALOG); /♦ select analog I/O♦/

outportb(D_A_SEL,D_Al); /* selectD/A channel♦/

outputa actuator + VOFFSET; /♦ convertto digital ♦/

outportbCD_A_LOW,Coutput & OxOOff));
outportbCD_A_HGH,CCoutput» 8) &OxOOff)); /* outputvalue♦/

returnCactuator);
)

floatvdaO(value)
float value;
{
float actuator;
int output;

actuator = value;

ifCactuator >a 10.0) actuator= 10.0;
ifCactuator <a -10.0) actuator a -10.0; /♦ actuator limit check ♦/
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outportbCSEL.DEVICE,ANALOG); /♦ select analog I/O ♦/

outportbCD-A_SEL,D_AO); /♦ select D/A channel ♦/

output a CintXactuator ♦ VLTS.DIG +VOFFSET); /♦ convert to digital ♦/

outportbCD_A_LOW,(output & OxOOff));
oiitportbCD_A_HGH,CCoutput» 8) & OxOOff)); /♦ output value ♦/

returnCactuator);
}

float vdal(value)
float value;

{
float actuator;
int output;

actuator a value;

ifCactuator >= 10.0) actuator a 10.0;
ifCactuator <=-10.0) actuator = -10.0; /♦ actuator limit check ♦/

outportb(SEL_DEVICE,ANALOG); /♦ selectanalog I/O ♦/

outportbCD_A_SEL.D_Al); /♦ select D/A channel ♦/

output a CintXactuator ♦ VLTS_DIG +VOFFSET); /♦ convert to digital */

outportb(D_A_LOW,Coutput & OxOOff));
outportb(D_A_HGH,CCoutput» 8) & OxOOff)); I* outputvalue ♦/

returnCactuator);
}

/* ANALOG-DIGITAL CONVERSION ♦/

float fadOO
{
int input;
float position;

outportbCSEL_DEVICE,ANALOG); /♦ select analog device ♦/

outportbCA_D.CNT,STOP_A_D); /♦ stop conversion*/
outportbCA_D_SEL,A_D0); /♦ select A/D channel 0 ♦/

outportbCA_D_CNT,START_A_D); /♦ start conversion ♦/

outportbCA_D_SEUA_D0); /♦ select A/D channel 0 ♦/

whileCCinportb(A_D_STA) & OxOOff) !=A_D_RDY);
/* wait for complete conversion */

outportbCA_D_CNT,STOP_A_D); /♦ stop conversion♦/
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outrjortbCA.D_SEL.A_DO); /♦ select A/D channel0 ♦/

input =inportbCA_D_LOW) &OxOOff; /♦ input lowbyte♦/

input 1= CCinportbCA_D_HGH) & OxOOOf)« 8);
I* input high byte andcombine ♦/

position a (CfloatXinput - VOFFSET));

retum(position);
}

float fad10
{
int input;
float velocity;

outportbCSEL_DEVICE,ANALOG); /♦ selectanalog device ♦/

outportbCA_D_CNT,STOP_A_D); /♦ stopconversion ♦/

outportbCA_D_SEL,A_Dl); /♦ select A/D channel 1 ♦/

outportbCA_D_CNT,START_A_D); /♦ startconversion */
outponbCA_D_SEL,A_Dl); /* select A/D channel 1 ♦/

whaeCCmportb(A_D_STA) & OxOOff) != A.D.RDY);
/♦ wait for complete conversion ♦/

outportbCA_D_CNT,STOP_A_D); /♦ stopconversion */
outportbCA_D_SEUA_Dl); /♦ select A/D channel 1 ♦/

inputa inportbCA_D_LOW) &OxOOff, /* input lowbyte*/

input 1= CC»nportbCA_D_HGH) & OxOOOf)« 8);
/♦ input high byte and combine ♦/

velocity a ((float)(input - VOFFSET));

retumCvelocity);
}

float fad20
{
int input;
float position;

outportb(SEL_DEVICE,ANALOG); /♦ selectanalog device ♦/

outportb(A_D_CNT,STOP_A_D); /♦ stopconversion */
outportb(A_D_SEUA_D2); /♦ select A/D channel 2 S*/

outportb<A_D_CNT,START_A_D); /♦ startconversion ♦/

outportbCA_D_SEL,A_D2); /♦ select A/D channel 2 S*/

whileCCmportbCA_D_STA) & OxOOff) !=A.D.RDY);
I* wait for complete conversion ♦/

outportb(A_D_CNT,STOP_A_D); /» stopconversion ♦/

outportb(A_D_SEL,A.D2); /♦ select A/D channel 2 S*l
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input = inportbCA.D.LOW) & OxOOff; /♦ input low byte ♦/

input 1= CCinportbCA_D_HGH) & 0x0000 « 8);
/♦ input high byte and combine ♦/

position a CCfloat)Cinput - VOFFSET));

retumCposition);
}

float fad30
{
int input;
float velocity;

outportb(SEL_DEVICE,ANALOG); /♦ selectanalog device ♦/

outportbCA_D_CNT,STOP_A.D); /♦ stopconversion ♦/

outportb(A_D_SEL,A_D3); /♦ select A/D channel 3 ♦/

outportbCA_D_CNT,START_A_D); /♦ start conversion ♦/

outportbCA_D_SEUA.D3); /♦ select A/D channel 3 ♦/

while(CmportbCA_D_STA) & OxOOff) !=A_D_RDY);
/♦ wait for complete conversion ♦/

outportbCA_D_CNT,STOP_A_D); /♦ stopconversion♦/

outportbCA_D_SEL,A_D3); /♦ select A/D channel 3 ♦/

inputa inportbCA_D_LOW) & OxOOff, /♦ inputlow byte ♦/

input la CCmportbCA_D_HGH) & OxOOOf) « 8);
/♦ input high byte and combine ♦/

velocity a CCfioatXinput - VOFFSET));

return(velocity);
}

intadOC)
{
int input;
int position;

outportbCSEL_DEVICE,ANALOG); /♦ selectanalog device ♦/

outportbCA_D_CNT,STOP_A_D); /♦ stop conversion♦/

outportbCA_D.SEUA_D0); /♦ select A/D channel 0 ♦/

outportbCA_D.CNT,START.A.D); /♦ start conversion ♦/

outportb(A_D_SEL,A_D0); /♦ select A/D channel 0 ♦/

whileCCinportb(A_D_STA) & OxOOff) !=A_D_RDY);
I* wait for complete conversion ♦/

outportbCA_D_CNT,STOP_A_D); /♦ stopconversion ♦/

outportbCA_D_SEL,A_D0); /♦ select A/D channel 0 */

inputa inportbCA_D_LOW) & OxOOff; /♦ input lowbyte ♦/
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input 1= CCinportbCA_D_HGH) & 0x0000 « 8);
/♦ input high byte and combine ♦/

position a input - VOFFSET;

return(position);
)

int adl()
{
int input;
int velocity;

outportbCSEL_DEVICE,ANALOG); /♦ selectanalog device*/

outportbCA_D_CNT,STOP_A_D); /♦ stop conversion ♦/

outportbCA.D_SEUA_Dl); /♦ select A/D channel 1 ♦/

outportbCA_D_CNT,START_A_D); /♦ start conversion ♦/

outportbCA_D_SEL,A_Dl); /♦ select A/D channel 1 ♦/

whfleC(inportbCA_D_STA) & OxOOff) !=A_D_RDY);
I* wait for complete conversion ♦/

outportbCA_D_CNT,STOP_A_D); /♦ stop conversion♦/
outportbCA_D_SEUA_Dl); /• select A/D channel 1 ♦/

inputa inportbCA_DJLOW)& OxOOff; /♦ inputlowbyte ♦/

input 1= CGnportbCA_D_HGH) & OxOOOf)« 8);
I* input high byte and combine ♦/

velocity a input - VOFFSET;

retumCvelocity);
)

intad20
{
int input;
int position;

outportb(SEL_DEVICE,ANALOG); /* selectanalog device♦/

outportbCA_D.CNT,STOP_A_D); /♦ stopconversion */
outportbCA_D_SEUA_D2); /♦ select A/D channel 2 ♦/

outportbCA_D_CNT,START_A_D); /♦ startconversion ♦/

outportbCA_D_SEUA_D2); /♦ select A/D channel 2 ♦/

whileCCmportb(A_D_STA) & OxOOff) !=A_D_RDY);
/♦ wait for complete conversion ♦/

outportbCA_D_CNT,STOP.A.D); I* stopconversion ♦/

outportbCA_D_SELA-D2); I* select A/D channel 2 ♦/

input=inportbCA_D_LOW) & OxOOff; /♦ inputlow byte ♦/

input 1= (CinportbCA_D_HGH) & OxOOOf)«8);
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I* input high byte and combine ♦/

position a input - VOFFSET;

retumCposition);
}

intad3()

{
int input;
int velocity;

outportb(SEL_DEVICE,ANALOG); /♦ select analogdevice ♦/

outportbCA_D_CNT,STOP_A_D); /♦ stop conversion ♦/

outportbCA_D.SEL,A.D3); /♦ select A/D channel 3 ♦/

outportbCA_D.CNT,START_A_D); /♦ start conversion ♦/

outportbCA.D_SEL.A_D3); /♦ select A/D channel 3 ♦/

whileCCinportb(A_D_STA) & OxOOff) != A_D_RDY);
I* wait for complete conversion ♦/

outportbCA_D_CNT,STOP_A_D); /♦ stop conversion ♦/

outportbCA_D_SEUA_D3); /♦ select A/D channel 3 ♦/

input a inportbCA_D_LOW) & OxOOff, /* inputlow byte ♦/

input !=CQnportbCA_D_HGH) & 0x0000 « 8);
/♦ input high byte and combine ♦/

velocity a input - VOFFSET;

retumCvelocity);
}

/♦FUNCTION: ♦/

r* */
/♦ resetO -KS&t ad-da registers ♦/

/* */

int resetO
{

outportb(SEL_DEVICE,ANALOG); /♦ select analogI/O ♦/

outportb(D_A_SELJD_A0);
ourportbCD_A_LOW,0x00)
outportbCD_A_HGH,0x08);

outportb(D_A.SEL,D_Al)
ourportb(D_A_LOW,0x00);
outportbCD_A_HGH,0x08);

/♦ reset D/A0 ♦/

/♦ reset D/Al ♦/
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/♦File:-PENDULUM.C */
I* Defineinput-output varaible names ♦/
/♦♦♦♦♦♦**********************************«*»**********»******^

#define PI 3.141592653

extern float fadOO;
extern float fadlO;
extern float fdaOO;

/♦ Calibration forangle: 0:7.22 volts ♦/

I* 90:11.0 volts ♦/
/* -45:5.15 volts ♦/

float pos.xlO
{

float p;
if CCfad00/2047.0 - 7.22/10.0) >= 0.0)
p=PI / 2.0♦ (fad00/2047.0 -7.22/10.0)/((11.0-7.22)/10.0);
else

p « PI/ 4.0 ♦ Cfad00/2047.0 - 7.22/10.0)/C(7.22-5.15)/10.0);
returnCp);

}

/* Calibration forposition: 0.0 cm: 6.75volts ♦/

/* -0.527cm: 2.05volts ♦/

floatpos_x30
{

float p;
p=0.527/C6.75 - 2.05)^Cfadl0/2047.0 - 6.75/10.0)^10.0;
returnCp);

}

float drive(value)
float value;
{

float p;

p = (value/30.0)^2047.0;
return(fdaO(p));

}
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