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A NOTE ON ZADEH'S PROBABILISTIC DEFINITION

MARIA ANGELES GIL*

Department ofElectricalEngineering andComputer Sciences, University ofCalifornia, Berkeley

This note presents a brief discussion regarding the interpretation of grades of membership
describing fuzzy data from randomexperiments,when Zadeh's probabilistic definition is considered.

1. INTRODUCTION

Statistical problems often concern the drawing of conclusions aboutarandomexperiment,on

the basis of the information supplied by the performance ofthatexperiment A random experiment

is a process by which anobservation is made, resulting in oneoutcome that cannot be previously

predicted. In Statistics it is assumed that therandom experiment canbe repeated under (more or

less) identical conditions, and there is a predictable long-run pattern (what is referred to as

statistical regularity). According to its nature, to characterize arandom experiment we need: i) to

identify all experimental outcomes, ii) to identify all observable events, and iii) to assign

probabilities to these events. Anobservable event isintended as astatement or question regarding

theexperimental outcome, and sothat after theexperiment has been conducted onecan determine if

it is true or false. Obviously, the observable events are determined from the ability of the person

responsible forobserving the experimental outcome.

Li"traditional" Statistics it is supposed that the observer is able to perceive the exact outcome

after each experimental performance. Then, the model describing arandom experiment X is given

by aprobability space (X,%JP),.where X is the sample space (or set ofall possible experimental

outcomes), % is the a-field of all observable events, and P is aprobability measure on %.

Furthermore, we hereafter assume that in the experiment we will consider arandom variable (or

vector) is tobeobserved, sothat X will bethe set of all variable (or vector) values and contained

inaEuclidean space, and % will be the smallest Borel a-field on X. Consequently, due to the

assumption of the structure of a-field for the set of all observable events, Probability Theory
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guarantees that every element in % will beidentified with a "classical" subset of X, and the

probability ofan observable event Be % is given by the Lebesgue-Stieltjes integral
P(B) =JB dP(x) =Jx 3cB(x) dP(x) (1)

(where XB =indicator orcharacteristic function of the Borel set B).

Nevertheless, one frequently encounters situations inwhich the ability of the observer does not

allow him to express the available experimental information in terms of an exact outcome, but

rather each observable event may be assimilated with a fuzzy subset of the sample space (or,

alternatively, an observable event is intended in these situations as a statement or question

regarding the experimental outcome, so that after the experiment has been conducted one can

determine the "degree to which it is true") (cf. [10], [11]).

An illustrative situation is the following one:Water in a lake is examined to determine if it is

drinkable. It is known that the water may contain a type of microorganisms, so that if the mean

number of microorganisms per milliliter, 6, is greater than 7 water cannot be regarded as

drinkable. Consider the random experiment consistingin observing the number of microorganisms

per milliliter, and assume random distribution of microorganisms in lake water. Then, if exact

information is available, we can describe this situation by means of a Poisson experiment with

mean 8, (M,%,P9), Pe(x) =Q*er*/X\ for x e N.

Suppose that a biologist is interested in concluding if lake water is drinkable or not, but the

microorganisms areactuallyvery difficult to be identified, and based on some features he can only

decided after each experimental performance that there is a «very small number of micro

organisms^ or a «moderate number of microorganisms», or «many microorganisms». This type

of observable events can be easily described in terms of fuzzy subsets of the sample space, rather

than in terms of a classical ones. Thus, a model for this new situation involves the mathematical

identification of the available information (cf. [7], [9], [12]):

DEFINITION l.l. A fuzzy event * on X, characterized by a Borel-measurable membership

function |i^. from X to [0,1], where \i£x) is the degree towhich x belongs to *(or degree to

which x agrees with ^), is calledfuzzy information associatedwith the experiment X.



In particular, an observable event such as «a moderate number of microorganisms» could be

assimilated, for instance, with the fuzzy event defined by the membership function in Figure 1.

6 8 9 10 11

Fig. 1.Membership function describing the fuzzyinformation
«a moderate numberof microorganisms*.

This assimilation would indicate that the biologist regarded at 9 as compatible with the

perception «a moderate number ofmicroorganisms* according to adegree equal to .75, and so on.

2. ZADEH'S PROBABILISTIC DEFINITION

For statistical purposes, one can be interested in establishing the probabilities ofall observable

events, even for the case in which they are characterized by means of fuzzy subsets.

Zadeh, [11], suggested to quantify the "induced probability" of the fuzzy information as

sociated with anexperiment as follows:

DEFINITION 2.1. The probability of^induced by Pis given by the Lebesgue-Stieltjes integral
^=Jx^x)dP(x) (2)

According to Zadeh, [12], the value ¥($ could be viewed as the "degree ofconsistency" of

the probability distribution P with the possibility distribution associated with the membership
function ji^

Although (2) isintroduced as adefinition (not aresult), itmay be justified through different
arguments:



*itisthe most immediate extension ofthe non-fuzzy case (in which we replace the indicator or

characteristic function by themembership function),

and

* it is coherent withLeCam's definition of the probability of bounded numerical functions in a

single stage experiment (cf. [5], [6]). Thus, Le Cam suggested to replace the structure of

a classical experiment, by a weaker structure (X,^JP), called single stage experiment,

where V^ is a vector lattice for the usual operations (sum, product by real numbers,

pointwise supremum and infimum) that contains the indicator or characteristic function of X

and complete for the norm sup LI, Pis anormalized linear functional on 1^, and for /e

V^ me value of P at / may beconsidered as theLebesgue-Stieltjes integral given by P(/)

=JxXx) dP(x). Consequently, if the fuzzy event ac is such that \iK belongs to avector

lattice 1^ in asingle stage experiment, then PQi^ =fflfo).

3. DISCUSSING THE INTERPRETATION OF GRADES OF MEMBERSHIP

Let X = (X,%JP) be arandom experiment andlet k. denote a fuzzy event associated with X.

Given x° e X, we can define a new experiment X(x°) in which a random variable (or vector)

degenerated at x° is to be observed. This experiment would be characterizedby the probability

space ({x°},J3(xo},Pxo), where Px°({x°}) =1. If we now consider the restriction of the fuzzy event

Kto {x°} (or, more precisely, the restriction ofthe mapping \iK from X to {x°}), then

PROPOSITION 3.1. The probability of the restriction of * induced by Pxo is given by

fPxoW =^x°) (3) •

This last result indicates that, when we use Zadeh's probabilistic definition, \i^x°) could be

intuitivelyinterpreted as "akind" of (induced) probability with which the observer gets * when he

really has obtained x°. That interpretation was previously consideredby Ruspini, [8], Tanaka et

al.t [9], and Hisdal (see [4] and some papers referenced in it), and for the former example would

indicate that in 75 % of milliliters of the lake water in which there are 9 microorganisms, the

observer would conclude that there would be a moderate number of them.

Nevertheless, it should be emphasized that such an interpretation does not mean a rigourous



approximation to quantify the gradeof membership, because of the following reasons:

i) The (induced) probability in Eq.(3) cannot be well-defined in a classical probabilistic

framework. Thus, according to Probability Theory, to define theprobability of ^ this event has to

belong to the corresponding a-field, and ?c cannot be identified with a classical (Borel) set

ii) the source of uncertainty is in this case fuzziness, instead of randomness. In this way, the

scheme in Figure 2 explains themechanism leading to obtain fuzzy information.
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Fig.2. Process leading to obtain fuzzy information

In this scheme we easily distinguish between these two types of uncertainty. So, after the

experiment has been conducted, randomness disappears, but sometimes fuzziness remains (since a

concrete experimental outcome will have been obtained, although the observer ability does not

permit him to perceive it exactly, orthe nature of the event itself does not permit the observer to

conclude if it is true or false). In other words, the uncertainty associated with propositions we

assimilate with fuzzy events is non-probabilistic in nature, since it regards to concepts, not exact

events.

iii) The process ofrestricting the fuzzy event * from X to X(x°) does not mean an intuitive

step incomputing |l^x°), since ^ makes only sense when it isdefined over all X.

The preceding arguments indicate that when we try to use Eq.(3) as a way to approximate

|i^x), we have first to formalize ?c and itsprobability. This formalization canbecarried out in a

framework involving Probability Theory and Fuzzy Sets Theory, but it is not possible to develop



in a classicalprobabilistic framework.

Consequently, wecan conclude that Eq.(3) can be viewed as an intuitive but not a formal way

toassign grades of membership to fuzzy information associated with arandom experiment

4. Concluding remarks

Applications of Zadeh's probabilistic definition can be found in the literature of Statistics with

fuzzy data (see, for instance, [3], [4], [7], [8], and[9]).

In these applications, theinterpretation discussed in Section 3 has an especial meaning and a

practical interest (e.g., to justify theuseof fuzzy partitions, [1], [8], to develop different studies).
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