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Maria Angeles Gil *

Department ofElectrical Engineering and Computer Sciences, University ofCalifornia, Berkeley

In previous papers, the consequences of the "presence of fuzziness" in the experimental information on which

statistical inferences arebased were discussed. Thus, the intuitive assertion «Fuzziness entails a Loss of Information»

was formalized, bycomparing the information inthe "exact case" with that inthe "fuzzy case". This comparison was

carried out onthe basis of different criteria toCompare Experiments (e.g., that based onSufficiency). The question we

are now interested in is the following: how will different degrees of Fuzziness in theexperimental information affect

the Sufficiency?. In this paper, a study of this question for Bernoulli experiments is first developed. The immediate

generalization of that study toother experiments indicates that two fuzzy data associated with the same experiment

become comparable only whenever arestrictive condition isverified. In all cases, and under very general conditions, the

comparison is coherent with theaxiomatic requirements for measures of fuzziness.
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1. Comparing Traditional Experiments through Sufficiency

The essential element in statistical problems is the random experiment, that is a process by which

an observation is made, resulting in an outcomethatcannot be previously predicted. In addition, it is often

assumed that the experiment can be repeated under more or less identical conditions and there is

statistical regularity. In such a situation, the components of a model for a randomexperiment are: i) the

identification of all experimental outcomes; ii) the identification of all observable events (or statements

regarding the experimental outcome, so that after theexperiment hasbeen performed'one can determine

if each one of them is true or false);-iii) the assignment of probabilities to theseevents.

According to the second component, or more precisely according to the ability to observe the

experimental outcomes, the traditional approach oftenadmits that the observer is able to perceive the

exact outcome after each experimental performance. The model associated with this "traditional

experiment" is then givenby a probability space (X,2x,Pe), 9 e 0, where X is the sample space (or

set of all possible exact outcomes), #x is the a-field of all events of interest (so that, each observable

event may be mathematically identified with a measurable subset of the sample space X), and 9 is the

state or parameter value governing theexperimental distribution Pe. Furthermore, it is usually supposed

that X is a set of real numbers and <BX is the smallest Borel a-field on X (in other words, the

elementary observable events are all the singletons of exact outcomes).

Given twoexperiments, E =(X,%,Pe), 9 e 0, F=(Y^Qe), 9 € 0, whose distributions are

governed by thesame state of nature or parameter value 9, theidea of comparing such experiments was

introduced by Bohnenblust, Shapley and Sherman, in a private communication whose basic results are

collected by Blackwell (1951), and developed into a theory by Blackwell (1951,1953). Many preference

relations tocompare experiments have been then examined and connected withthe previous ones (see, for

instance, papers referenced in Lehmann, 1988).

Blackwell's (1951, 1953) method for comparing experiments states that the experiment E is

sufficient for the experiment F if there exists a nonnegative function h on XxY, so that the density

function associated with Qe with respect toaa-finite measure V on typOy isgiven by

ge(y) =Jx h(x,y) fe(x) dv(x), for all 9€0

where



JYh(x,y)dv(y) =l, for all xeX
and h is integrable with respect to x (fe(x) being the density function associated with Pe with respect
to the a-finite measure v).

Since the function h (called stochastic transformation) does not depend on 9, the above sufficiency

condition indicates intuitively thatanoutcome from F could begenerated from anobservation on E and

anauxiliary randomization according to h. Consequently, toobserve F does notadd any probabilistic

information about 9 to what is contained in E.

A second traditional approach, which is eventually considered in the statistical literature, admits

that theobserver is notable to perceive the exact outcome after each experimental performance, since the

required degree of accuracy to specify a measured quantity exactly is lacking, but the available

experimental information is grouped in classes or intervals. The problem of the lossof information due to

grouping of observations hasbeen examined from different viewpoints (cf., Kale, 1964, Kullback, 1968,

and Ferentinosand Papaioannou,1979).

The notion of sufficiency could be also applied in this second approach. Thus, if the available

experimental information from an experiment is grouped in accordance with a partition X = {E^jgj

(where E{ e %), then wecan define anew probability space US = (X,G(X),IPe), 9€ 0, so that c(K) =

a-field generated by X and

pe(Ei)=jx xE.(x) yx) dv<x>' *e *
(where 3CEi is the indicator function of Ej) and, on the basis of this induced probability IPg, we can
easily compare partitions associated with the same or different experiments.

2. Fuzziness in the Experimental Information

In previous papers (1987, 1988abc), we have analyzed an intermediate approach, in which we

admit that the ability of the observer does not allow him to express the available information from the

performance of E = (X,£x,Pe), 9 € 0, in terms of an exact outcome, but rather each observable event

maybe mathematically identified witha measurable fuzzy subset of the space X (or, alternatively, an

observable eventis intended in this approach asa statement regarding theexperimental outcome, so that

after theexperiment hasbeenconducted onecan determine the"degree to whichit is true").

It is worth remarking that in this approach one assumes that the empirical evidence contained in



the present experimental observation conveys no information concerning the probability distribution of

the exact outcomes, but the "degree of compatibility"of these outcomes with it. So, all probabilistic

information regarding Pe (and 9, in theBayesian context) had been obtained from previous experimental

observations (or, degrees of belief). Consequently, we suppose that, after the experiment has been

conducted, there is still an imprecision associated with the identification of the obtained outcome, and

this imprecision is non-probabilistic but possibilistic in nature (see, Zadeh, 1978).

A model for this new situation starts with the mathematical identification of the available

information, (Okuda et al, 1978,Tanaka et a\.f 1979, Zadeh, 1978),

DEFINITION 2.1. A fuzzy event e on X, characterized by a Borel-measurable membership

function \ie from X to [0,1], where \ie(x) represents the"degree of compatibility" of x with e (or

degree to which e is satisfied when x is the outcome in the performance of E), is called fuzzy

information associated with the experiment E.

As an illustrative example of this notion, we canconsider the following one: Suppose that the time

of attention (in minutes) to a concrete game in a population of ten-year children has an exponential

distribution withunknown parameter 9 (9 =inverse of the population mean time). A psychologist want

to draw conclusions about 9, but as the loss of interest in a game does not usually happen in an

instantaneous way, he cannot measure the timeof attention exactly. Assumethathe express theoutcome

after a measurement by means of propositions such as "too much time", or "around 20 minutes", or "a

moderate time".

The uncertainty associated with these propositions is non-probabilistic in nature (since it is an

uncertainty regarding concepts, not regarding exact events), but it could be easily described by means of

fuzzy information. Thus: the proposition "too much time" could be assimilated with the fuzzy

information e characterized, for instance, by the membership function \ie(\) = (x-50)/10 if x €

(50,60), = 1 if x > 60, =0 otherwise; theproposition "around 20 minutes" could beassimilated with

the fuzzy information e' characterized, for instance, by the membership function Hg'(x) = (x-10)/10 if

x e (10,20], = (30-x)/10 if x € (20,30), =0 otherwise; the proposition "a moderate time" could be

assimilated with the fuzzy information e" characterized, for instance, by the membership function



50 60

Fig. 1. Membership functions of the fuzzy data"too much time" ( «g»)
"around 20 minutes" ( =), and "a moderate time" ( •• ).

IV'(x) = (x-20)/10 if x g (20,30], = 1 if x e (30,50], (60-x)/10, if x € (50,60), = 0 otherwise

(see Figure 1).

Another relevant element to model the new situation is the assignment of "probabilities" to the

observable (fuzzy) events. Zadeh (1968) suggested to quantify the"induced probability" of a fuzzy event

as follows:

DEFINITION 2.2. The probability of e induced by Pe is given by

*e(*) =J ^e(x) fe(x>dvto
.A.

According to Zadeh (1978), the value ¥Q(e) could be interpreted as the "degree of consistency" of

the probability distribution Pe with the possibility distribution (Zadeh, 1978) assimilated with the

membership function \le.

The use of the preceding definition could be justified by means of the following arguments: i) it is

the most immediate extension of the second approach (grouping of data), in which we replace the

indicator function of a grouped datum by the membership function of a fuzzy datum; ii)when |!g(x) is

interpreted as a kind of "probability" with which the observer perceives e when he really has obtained

x in the performance of E, Zadeh's definition is coherent with the Total Probability Rule of the

Probability Theory; iii) Zadeh's definition is coherent with Le Cam's (1964, 1986) definition of the

"probability" of bounded numerical functions in a single stage experiment.



Remark. It should be emphasized, that when we accept to use Zadeh's probabilistic definition we

are implicitly accepting the second interpretation, ii), described in the previous paragraph. More

precisely, the "induced probability" of e given x (defined in accordance with Definition 2.2) would

coincide with \ie(x) . Nevertheless, this "induced probability" could not be appropriately defined

within the probabilistic context, since eg % (i.e., e cannot be identified with a classical Borel set).

Consequently, the interpretation in ii)means onlyanintuitive but not a formal approximation to quantify

V-e-

The question of how to measure the fuzziness of a particular fuzzy observation (or, in general, of a

fuzzy subset) has been exhaustively studied in the literature of Fuzzy Sets (see, for instance, Klir and

Folger, 1988). Formally,

DEFINITION 2.3. A measure of fuzziness isa real function / defined on ^F(X) (set of all fuzzy

subsets of X) satisfying the following requirements:

Axiom1.fie) = 0 if and onlyif e isacrisp set.

Axiom 2. If e,e' e f{X) and e is "sharper" than e',then fie) £ fie').

Axiom 3. fie) assumes themaximum value ifand only if e is"maximally fuzzy".

The notions "sharper" and "maximally fuzzy" above, are usually interpreted as follows:

l)e isintended as "sharper" than e'if \Le(x)£\le'(x) for Hg'(x)< 1/2, and ^(x)>-^g'(x) for

^e'(x)>l/2,forall xe X.

2) e is intended as"maximally fuzzy" if and onlyif \ie(x)= 1/2, for all x € X.

3. Connections between Sufficiency and Fuzziness

In previous papers (1987,1988a), we discussed theconsequences of the presence of fuzziness in the

experimental information, by comparing the "information" in the "exact case" (in which fuzziness is

completely absent) with that in the "fuzzy case". This comparison was carried out through different

criteria to compare experiments, such as those based on Sufficiency (Blackwell, 1951, 1953), Shannon's

Information Measure (Lindley, 1956), Expected Value of Sample Information (Raiffa and Schlaifer,

1961), Fisher's Amount of Information (Stone, 1961), and others.

The aim of this section is to develop a similar study by comparing through Sufficiency two

situations, associated with the same population, in both of which different degrees of fuzziness can be



present. To connect fuzziness in the experimental observations with the probabilistic notion ofsufficiency,

it should be first noted that the degree of fuzziness ofa fuzzy set is usually expressed (Klir and Folger,

1988), in the most natural way, in terms of the lack ofdistinction between the set and its complement,

since the less a set differs from its complement, the fuzzier it is. (Although the definition of the

complement ofa fuzzy set itnot unique, we herein will employ that most commonly used, the fuzzy set e?

described bythe membership function u.gc(x) =1- u.e(x), for all xe X). Then, the degree of fuzziness of

the fuzzy information e could be interpreted as the lack ofdistinction in the fuzzy 2-partition (Bezdek,

1987), X = {eye?}.

On the other hand, on the basis of this fuzzy 2-partition and Zadeh's probabilistic definition,

(Definition 2.2) it is possible to construct a new "probability" space, £ =(X,?(X), iPe), 0 e 0, (where

f(X) =parts of X), which may be regarded as a"probability space induced by X".

Let E=(X,(Bx,Pe), 0 e 0, be arandom experiment and let e and e' denote two fuzzy observa

tions associated with E.Let £ =(*,?W),!Pe), £' =OCWOtfeJ, 0€ 0, where JC= {*,<*},*'

=W,e'c}. Then, the notion of sufficiency may be immediately applied as follows:

DEFINITION 3.1.We will say that £ is sufficient for £' if there exists anonnegative function k
on XxX' such that

*e(0 = fKe,e')¥Q(e) +h\e^e')T^e9\ <eQ(e'*) =h\e^)TB(e) + /KeVc)2>e(e<0

where

hXe,e')+ Ke,e'c) = 1, A(eV)+ /t(eV'c) = 1

Obviously, the conditions concerning T§(e') and ^(e*) are equivalent

As the two fuzzy observations we have just compared in Definition 3.1 are associated with the same

experiment (and, consequently, with the same probabilistic information), the comparison via sufficiency

must be mainly dependent on the fuzziness in those observations. We are now going to formalize this

assertion. Thus, we first consider the simplest case inwhich the referential experiment is Bernoulli.

3.1. Sufficiency and Fuzziness in Bernoulli Experiments

In particular, when E =(X,Sx,P9), 0 e 0, is a Bernoulli experiment, it involves only two

outcomes (often assimilated with the real values 0 and 1). The probability measure is then defined by

Pe(0) =1-9, Pe(l) =0, [0,1] 3 0. Many experiments are of this type: avaccine is effective or it is



not;a patient has a symptom or does not have it;a pathological condition is present or absent.

A fuzzy observation e associated with the Bernoulli experiment E may be described by means of a

pair (Mo»Mi), where |lo=|Ae(0) and M-i =|Xg(l). Theinduced "probability" in this case would be given

by 2$(e) = M-0 + OCM-i ~ M-o)* Examples of fuzzy observations associated with a Bernoulli experiment are,

for instance, the following ones: a given patient sometimes cannot be diagnosed as having a particular

malady or not; some organisms cannotbe classified as belonging to a certainspeciesor not

If e' = ec, then £ and £' would be indifferent (that is, £ would be sufficient for £' and,

conversely, £' wouldbesufficient for £), andhence wecan constraint ourstudy to thecase in which 0 <

U.0 £ \ix £ 1 and 0 &\Iq £ \i{ £ 1.

The following theorem establishes equivalent conditions for the sufficiency,

THEOREM 3.1.1. Let E = (X,%JPe), 0 € 0, bearandom experiment andlet e and e' denote two

fuzzy observations associated with E.Let £ = (X,T(X),¥B), £' = (X'tftX*)^), 0 e 0, where X=

{e,ec},X'= {e',e'c}. Then,

i) £ is sufficient for £' if and only if

(3.1.1) u-quV <S no'm £ m/Hi + (Hi* - Ho') ^ KHi' + (m - Ho)

(where \iQ = \le(P), Hi=He(l) and^U-g^O) and U^Ml)).

Consequently, if £ and £' arecomparable, then

ii) £ is sufficient for £' if andonlyif \i{ - \Lq £ \ix- \Iq. •

Although theoretically we have 0 £ JIq £ 1,0 £ m £ 1, we can constraint with no loss of

generality ourstudy to thecases in which0<^o^ 1/2 and 1/2^^^!, or l/2^Ho^l and O^U-x

£ 1/2. Thus, in theobservation from a Bernoulli trial onecould: a) obtain quite fuzzy information (so that

theoutcomes 0 and 1 are equally compatible with theobservation), thatcould be oftenrepresented by

U-0 = M-i = 1/2; b) obtain information so that 0 is lesscompatible with the observation than 1, thatcould

be often represented by 0 < U.0 < 1/2 and 1/2 < Hj £ 1; c) obtain information so that 0 is more

compatible with the observation than 1, that couldbe often represented by 1/2 <|Io ^ 1 and 0 £ \ix <

1/2. Due to the indifference between £ and £' whenever e' = 6°, we constraintourselves to the case in

which 0<Ho^l/2 and l^U^l.

On the basis of the preceding theorem, and under the precedingassumptions, the following results



state that the comparison of fuzzy observations by means of thenotion of sufficiency is coherent with the

axiomatic requirements that everymeasure of fuzziness must satisfy.

THEOREM 3.12. Let E = (X,(Bx,Pe), 0 € 0, bea random experiment andlet e and e' denote two

fuzzy observations associated with E. Let £ = (A;?(A),!Pe), £' = (Jf.^JO.ffb), 0 e 0, where X=

{e7e*},X'= [e\e'c). Then,

i) if e is a crisp set, then £ is sufficient for £', whatever the fuzzy set e' may be (that is,

exact experimental information is always sufficient for fuzzy experimental information);

ii) ife is sharper than e', then £ is sufficient for £' ;

iii) ife' is maximally fuzzy, then £ is sufficient for £' (that is, fuzzy experimental information

is always sufficientfor uniformly fuzzy information). •

The resultii) in Theorem 3.1.2 is nowillustrated bymeans ofan example:

Example. Consider a population of mice,a fraction 0 of which have a character C.

Assume that thecharacter C may berecognized through two different symptoms A and B,each

one of which determines the presenceof character C.

However, suppose thatafterexamining each mouse forpresence of C, theaccessible mechanisms of

detection of A and B donot allow us to state them exactly, butit isonly possible to conclude fl: "the

mouse has A quite sharply" or b: "the mouse seems more or less to have B". If these imprecise

propositions are, for instance, assimilated with the fuzzy events characterized by the membership

functions \la(l) = 0.9, U.fl(0) = 0.2, U.&(1) = 0.6, U.&(0) = 0.3 (quantifying the degree to which the

perception agree with having or not each symptom with the available propositions, where 0 = C is

absent, 1=C is present), and we are interested in drawing conclusions about 0,it is preferred to try to

detect A than B. Thus, if we define h\ayb) = 45/7, h\ac,b) = 15/7, then lPe(&) = hXayb)<PQ(a) +

hXac,b)<PQ(ac), whence £ = (j?,^[^),lPe), 0 6 0 = [0,1], (where A= [a#c}) issufficient for £' =

($,*W),*e). 9e 0 = [O,1], (where 0 ={&,&*}).

3.2. Sufficiency and Fuzziness in other Experiments

Difficulties in the extension of this study for other experiments arise because of the

non-comparability of the fuzzy data, unless some restricted conditions are satisfied. Thus, the im

mediate generalization of the present study to Binomial, Pbisson, Exponential or Normal experiments
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indicates that two fuzzy data associated with the same experiment become comparable only in a special

situation (in which the membership functions describing these data coincide with a particular linear

transformation). Thus, byusing the Inversion Formula Theorem ofthe Fourier Integral, we can verify that

£ issufficient for £' if and only if there exist 0C,Pe [0,1] (independent of 0) such that

Mxi) - M*o) =(a - P)IM*l) - M*o)]' for «H Xq, X! e X
and

m,'(x)=P+(a-P)Hg(x), for all xeX

Therefore, if u.0 =ue(x0), \lx =ne(Xl), [Iq' =^'(xq), \l{ =ji^Xj) and 0 <p.0 <jLix ^ 1, 0<

\Lq £ \L{ £ 1, condition (3.1.1) must be also satisfied. So, under the conditions, 0 £ \Iq £ 1/2, 1/2 £ \ix <

1, 0 <H0* <1/2,1/2 £ m* £ 1, a result similar to that in Theorem 3.2, connecting sufficiency and

fuzziness, canbe obtained for that special situation.

4. Concluding Remarks

Asin the non-fuzzy case, the inconveniences in the extension of this study for general experiments

arise because of non-comparability problems.

It should be hence interesting to analyze in the near future questions similar to those discussed in

this paper, butbased on comparisons avoiding non-comparability inconveniences (that is, establishing

complete preorderings) such as, for instance, that based onthe Expected Value of Sample Information, or

the expected Fisher's Amount of Information and so on, for aparticular prior distribution.
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