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ABSTRACT

Module generators for structured arrays create automatically area-efficient

custom circuit modules while maintaining compatibility with hand designs. Two

module generation systems targeted toward building the two basic components of

a microprocessor chip, namely a PLA-based control unit and a data path, have

been developed. The algorithms and the optimization techniques used in these two

module generation systems are described in this report.
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CHAPTER 1

INTRODUCTION

Recent development in Very Large Scale Integration (VLSI) design has made

possible the realization of a microprocessor on a single chip. The complexity of a

microprocessor chip can vary from 100,000 transistors to over 300,000 transis

tors. To design microprocessors of this complexity is a great challenge to chip

designers and Computer Aided Design (CAD) tools are vital during the design pro

cess to ease the task of chip designers. The design of a canonical microprocessor

can be divided into three major parts: data path design, control unit design, and

memory structure design. A data path is a unit that performs logical operations on

a set of data with a set of control signals from the control unit. A control unit is

the "brain" of a microprocessor that controls the flow of the data. Memory struc

tures, such as register files, store data in the chip. All of them can be imple

mented by structured arrays. The structural regularity can be exploited by CAD

tools in order to obtain optimized layout and performance. In this report two

module generation systems that implement data paths and help building Pro

grammable Logic Array (PLA)-based control units aredescribed.

The design of these systems was first motivated by projects aimed at imple

menting a Central Processing Unit (CPU) chip of a multiprocessor workstation.

SPUR [hill85], being developed at UC Berkeley. This workstation is designed for

supporting multiprocessing in LISP programming environments. In this report a

description of the use of the module generation systems for the automatic layout

of various parts of the SPUR CPU chip is presented.



In Chapter 2. a folded PLA design system. OCTPLA. is described. Previous

PLA design systems are first analyzed, followed by a brief description of OCT

PLA. Comparisons are drawn against other PLA design systems. The interaction

of CAD tools in OCTPLA is then explained.

A data path generation system. DAPAGES. is presented in Chapter 3. Simi

lar data path generation systems developed in the past are first analyzed. A

description of how DAPAGES remedies the common problems occurring in data

path generators and its overall optimization strategy is presented. Various phases

of layout generation in DAPAGES are then examined.

In Chapter 4 the results obtained thus far by both module generation sys

tems are presented. An evaluation of the two systems according to the results is

provided. First, some general examples produced by OCTPLA are shown. The

application of OCTPLA to the design of the Instruction Unit of the SPUR CPU

chip is then described, and comparisons with hand design are drawn. Next.

different components of the Instruction Unit data path and the Arithmetic Logic

Unit of the SPUR CPU chip generated by DAPAGES are presented individually.

This helps understand the local optimization achieved by DAPAGES.

Directions for future research in both module generation systems is discussed

in Chapter 5. A discussion of how the systems can be improved with reference to

the evaluation obtained in Chapter 4 follows.

This report is concluded in Chapter 6. Appendix A contains the manual page

of octopus, a key element in OCTPLA. Appendix B contains the manual page of

OCTPLA. The layout design rules used in both generators are listed in Appendix

C.



CHAPTER 2

OCTPLA: A FOLDED PLA DESIGN SYSTEM

PLAs are very regular structures that are widely used in Very Large Scale

Integration (VLSI) circuit design to implement control logic, decoder logic and

random logic. They can have a very large regularity factor [lattin79], depending on

their sizes. Besides, circuit designers can get fast and early estimation of area

requirement, power consumption and the critical path delay in a PLA by just

looking at an intermediate description of the PLA structure, e.g., a personality

matrix. This makes it very attractive for CAD designers to develop PLA design

systems. However, in order to obtain designs comparable to manually generated

designs, optimization steps are crucially necessary. Optimizations in a PLA design

system can be classified in three areas: logic optimization, topological optimization,

and electrical optimization.

2.1. Previous work

Past PLA design systems developed in industry and universities have focused

on different optimization areas, how easy the systems can be maintained, and the

adaptability to other layout styles. The PLEASURE/PANDA system [micheli83]

[mah84] developed at Berkeley has successfully generated multiply-folded PLAs.

However, like other traditional PLA generators [mayo84], it uses a tiling approach

to place the PLA cell templates, resulting in a very large cell library due to the

large number of templates. Effort in maintaining a cell library of over 100 cell

templates [mah84] is not easy. PLASCO [bart85], using procedural design for cell

generation, attempts to avoid the time consuming re-design process for cells by



instantiating a cell library from a small set of parametrized cells. A classical

approach [glasSO] uses a prototype PLA and adapts it through a set of rules to

other layout styles. Different and ef&cient PLA designs can be implemented, but

with the specification of a large number of rules. Other PLA design systems focus

on the performance of PLAs, rather than the design system. PLAOPT [hed85]

improves the speed and power consumption by modifying transistor sizes, but it

expends a large amount of CPU time. The Complementary PLA technique

[powell84] also aims at low power consumption in PLAs, but the resulting PLAs

occupy more area than standard PLAs due to the use of full complementary logic.

The symbolic design environment of OCTPLA not only eases the task of

maintaining the cell library in the case of changes in design rules, but it also

allows different layout styles to be easily implemented. OCTPLA also targets at

improving the performance of the PLAs by allowing different sizes of pull-up or

pull-down devices and different sizes of buffers. Buffers with different embedded

logic can be used simultaneously in a single PLA. This can help optimize the per

formance of the whole chip, as well as the PLAs.

2.2. Features of OCTPLA

OCTPLA is a pipeline of CAD programs that begins from an unfolded PLA

description and automatically generates PLA layouts using a symbolic design

method. It can handle different layout styles, like static CMOS and domino CMOS.

This flexibility is important for a general synthesis and layout generation system,

since the choice of the layout style of PLA depends on the timing constraints, as

well as power and area limitations of the chip.

OCTPLA allows the use of different types of input and output buffers. This

is useful when some inputs or outputs have to be clocked, while the others are



not. It is also useful when different logics are embedded in different output buffers

to save area required for implementing logic outside the chip.

This system can handle singly-folded PLAs and unfolded PLAs. There are

two common instances when users want to use unfolded PLAs. When the combi

national logic of the PLA does not allow much folding and the PLA is not large,

then the folded PLA may occupy a larger area than the unfolded one due to large

buffers present on two sides rather than only one. In another case, users may want

to minimize routing among different macro blocks in the chip due to changes in the

logic of the PLA. A folded PLA usually causes more routing changes since the the

locations of inputs and outputs may move to another side of the PLA due to fold

ing.

One other major feature of this system is the use of a hierarchical symbolic

design method. This leads to much smaller mask layout description than one

using only a single level physical design. The symbolic design environment at

Berkeley also helps reduce the number of templates used for a PLA. as is

explained in Section 2.4.2. The minimum number of templates used in OCTPLA is

twelve.

23. Structure of PLAs

To facilitate discussion, the structures for a typical folded PLA and a typical

unfolded PLA are shown in Fig. 2-1. The unnamed blocks are connectors, which

serve the function of connecting other blocks. A PLA is composed of AND and

OR planes, input and output buffers, and peripheral devices. The AND plane con

tains transistors that are connected to realize the product terms of the PLA, and

the transistors in the OR plane are used to realize the sum terms of the PLA.



INTERFACE

(a), a typical folded PLA

INTERFACE

(b). a typical unfolded PLA

Fig. 2-1 Block diagrams of typical PLAs



Different layout styles require the use of different cell libraries and different

connection rules. (Connection rules will be explained in Section 2.4.3). In a

NOR-NOR pseudo NMOS layout style, both planes contain NMOS transistors in

parallel, while the PD block is implemented by weak PMOS transistors. The

INTERFACE block is then simply a column of connectors. The OB cells consist of

output buffers and weak PMOS pull-up transistors used in the OR plane. The cir

cuit level schematic of this type of PLA is shown in Fig. 2-2.

NOR NOR

inputs output

Fig. 2-2 Circuit schematic of a NOR-NOR pseudo NMOS PLA
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It turns out that for a minimum area layout, diffusion is used as the vertical

and horizontal ground line in both the AND and OR planes respectively. So hor

izontal and vertical metal ground lines are occasionally introduced in the AND

and OR planes respectively to bring the diffusion ground line resistance down.

The number of metal ground lines depends on the size of the PLA and the resis

tance of diffusion, which in turn depends on the process technology used.

In a Domino CMOS layout style, the circuit level schematic is shown in Fig.

2-3. In this case, the PD block is implemented by clocked NMOS pull-down

transistors, while the INTERFACE block consists of clocked PMOS pull-up

transistors used in the AND plane and inverters between the two planes. The OB

is modified to contain output buffers, and the pull-up and pull-down transistors

used in the OR plane.



>hHf

>»<

AND plane

J"l ri

inputs

y

y

OR plane

{>
5p

phi

phi

\

output

Fig. 2-3 Circuit schematic of a domino PLA
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Different features can be included in a PLA by putting different components

in the blocks in Fig. 2-1. Varying the size of pull-up or pull-down devices can

optimize PLA performance. Sense amplifiers can be placed in the INTERFACE

block to enhance the rise or fall time of the product term signal entering the OR

plane. This is particularly useful for large PLAs. since the RC delay is large and a

slight swing of voltage is then enough to operate the OR plane.

Different types of buffers have been designed for different purposes, again

without any change in the algorithm used. The circuit level schematics and lay

outs1 of these buffers are shown in Fig. 2-4 and Fig. 2-5 respectively. Buffers can

be clocked and logic can be included in buffers. In Fig 2-4e the output voltage of

the output buffer remains at logic '0' until the onset of the evaluation phase. Fan

cier logic can be included at the cost of slightly larger buffers.

1. Different masked layout layers and their corresponding layout patterns are shown:

[JU N-diffusion

HI P-diffusion

HI polysilicon

HI first metal

HI second metal

H contact
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input
phih^D I r^c T0 AND plane input A p^n | f^yj0 AND plane

(a), input buffer (b). clocked input buffer

from OR plane •. output
" L>

from OR planeffi p. output -
1> •>

(c). output buffer

i • 5-phiPI11 r ^ outputfrom OR plane *%*

(d). clocked output buffer

>

(e). clocked and pre-charged output buffer

Fig. 2-4 Circuit schematics of buffers

ar



(a), input buffer

, _ .assaw i%~fctnniH«n»an*.m'.M«ri! :iujJ3mmniair:f.:j VA

(b). clocked input buffer

(c). output buffer

(d). clocked output buffer

1 m*m&%mmmmg^
&»itkiiiimHtkktktttaic±—».^ i..... S;£is.

(e). clocked and pre-charged output buffer

Fig. 2-5 Layouts of buffers:

12
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2.4. Interaction of CAD tools in OCTPLA

Within the Berkeley synthesis framework, a number of tools exist that are

integrated to form the OCTPLA system. These tools perform folding, mapping,

placement and connection, and compaction. Genie [dev86] is a general array folder

that produces a folded PLA personality matrix. Octopus is the key element of this

system. It maps characters of a PLA personality matrix to transistors. It decides

the appropriate peripheral devices and buffers based on the user's specifications.

MkArray [kring87] forms an underlying framework for array composition. Spares

[burns86] is a symbolic compactor that ensures minimum area and corrects design

rule error. Fig. 2-6 illustrates the interaction of the CAD tools.

SPARCS

Boolean
Description

of PLAs

ESPRESSO

GENIE

OCTOPUS

OCT

Users'
Specifications

MKARRAY

Fig. 2-6 Interaction of CAD tools in OCTPLA
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2.4.1. Folding of PLA

The input to the folding program. Genie, is the output of a logic minimiza

tion tool espresso [rudell85]. Genie uses simulated annealing and performs single

folding in OCTPLA. Input signals and their complements are constrained to stay

together and on the same side of the PLA. A sample input and output file is

shown in Fig. 2-7.

f espresso
. i 6
.o 2
. i lb 1 2 3
.ob 7 8

•P 5__
10

1 0- 01

1—o— 01

1-0 01
01

.e

4 5 6

(a), input file

new 10 9

.c. ...c..

SC.3S.C3.

. . . S . . . . C

c

. .3.C. .

C . . . . 8 .

C..C8..

P •PP.PP-

row

row

row

row

row

row

row

row

row

0 2* 0 1*
12 0 13

3* 0 )
3 0 )
4* 0 )
4 0 )
5* 0 )
5 0 6 5

8 6* 0 )
row 9 7 0 8 3
column 0 0
column 1 0
column 2 0
column 3 0
column 4 0
column 5 0
column 6 0
coIumn 7 0
coIumn 8 0

4 7 )

(b). output file

Fig. 2-7 Sample input and output files of genie
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2.4.2. Mapping of Cells

Octopus reads the personality matrix generated by Genie, and then define the

size of the array that holds cell instances. Using the pre-defined template structure

of a PLA. octopus divides the array into a number of rows and columns. One cell

instance may be put in one or more unit areas in the array. The placement of the

instance depends on the topology of the PLA. If overlapping of instances is

desired, then they share one or more unit areas in the array. An example is shown

in Fig. 2-8. In this example. Transistors 1 and 2 have their diffusion layers over

lapped, since they share the same ground line. They cannot be put in only one

unit area; otherwise there is no way to differentiate the two different transistors.

The input buffer shown supplies the signal lines connecting to Transistors 1 and 3.

Thus the buffer should share the columns occupied by Transistors 1 and 3.

Transistor

1

Input
Buffer

Transistor

3

Transistor
9

Fig. 2-8 Placement of cell instances in one part of an array
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If a pure tiling technique is used in the above example, then the transistor

cell and input buffer cell will have to be chopped off into several smaller cells.

This is one of the reasons why OCTPLA can have a cell library of only twelve

cells. Another reason is that the database of the layout design tools. OCT

[harr86], allows all eight Manhattan transformations of a cell, including mirror

ing.

If pull-up or pull-down devices with variable sizes are needed, octopus

counts the number of product terms in the AND and OR plane. It then decides

whether a larger or normal size pull-up is to be placed in that row or column.

2.4.3. Placement and Connection

After the cells have been put in the array. MkArray places the cell instances

according to their sizes and the constraints of the spaces between instances. A

placed PLA without connection is shown in Fig. 2-9a. It then connects the

instances in a certain area, specified by octopus, according to the connection rules

specified in a rule cell. The rule cell contains a number of RULE bags which con

sist of different rules. To implement the NOR-NOR PLA design, thirteen RULE

bags are used. An example of a rule cell is shown below:

(FACET PLArulesymbolic
(BAG RULE

(PROP RULENAME "puUup")
(BAG CONNECT

(PROP WIRE_MAXIMUM "")
(TERM Vdd_terml_pfjnstl)
(TERM Vdd_terml_of_inst2)
(TERM Vdd_tenn2_of_jnst3) )

(BAG CONNECT
(TERM poly_terml_pf_instl)
(TERM poly_term3_pf_inst2)
(TERM poly_terml_of_inst3) )

)
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RULENAME is used to specify the name of the rule. Terminals inside a

CONNECT bag are connected together. The OCT property WIRE_MAXIMUM

informs MkArray that the wires that connect the terminals should be as wide as

possible. The example PLA is connected and shown in Fig. 2-9b.

2.4.4. Compaction

After MkArray places and connects the cell instances, the resulting layout

may not be very compact, and the placement does not guarantee the absence of

design rule error. So a symbolic compactor is called to ensure correct and

minimum design rule spacing. The example PLA is compacted as shown in Fig.

2-9c.
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Fig. 2-9a. An unwired PLA Fig. 2-9b. a wired PLA Fig. 2-9c. a compacted PLA
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CHAPTER 3

DAPAGES: A DATA PATH GENERATION SYSTEM

As more module generators are developed for regular structured modules,

like PLAs and ROMs, techniques for other structured modules that are not as reg

ular are being investigated. Data path is one type of modules that has been tar-

geted. Data path is an indispensable structure in microprocessor chips and digital

signal processing chips. Many other chips have their own data paths to suit their

special needs. A data path is regular in the sense that each bit-slice is either simi

lar or identical to another bit-slice of the data path. A data path, however, is

more complex than PLA, ROM, and RAM. Therefore, although traditional module

generator techniques, like tiling, can still be applied to data path generation, more

advanced techniques are required to generate high performance data paths.

In the following sections, some previous works are discussed, followed by an

overview of a new data path generation system, DAPAGES. The input format is

explained first. The algorithm of.DAPAGES is presented systematically in the last

section. The results obtained by DAPAGESare presented in Chapter 4.

3.1. Previous work

In contrast to PLAs. data paths are less regular and generators for data paths

are less common. Different approaches have been taken in past data path genera

tors. Some of them rely more on experienced circuit and layout designers to

design compact individual cells, while some others put more emphasis on the con

straints imposed on the cells. In general, data path generators can be classified into
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three categories by the cells they use to generate the entire data path: fixed cell

library generators, modifiable cell library generators, and automatically generated

cell library generators.

The first type of generator takes the simplest approach. The whole data path

is partitioned into bit-slices, and each bit-slice is further decomposed into different

elementary cells. Each elementary cell is laid out by hand to achieve optimal per

formance, while its area is minimized. These cells are then tiled to form the

whole data path. Routing is often needed for the interconnection of cells, thus

enlarging the entire data path. This approach suffers from the fact that changes in

design rules or the data path architecture require a re-design of the cell library.

However, this approach is simple and fast, so some new generators [ruetz86] [row-

son87] are still using it.

The second type of generators use either parameterized cells or virtual grid

symbolic layout methods. Both approaches can adapt to different constraints, thus

a change of the data path architecture imposes less penalty to the final layout than

the layout of the first type of generators. Generators [marsh86] that use the

former approach have a cell library ready to be modified by input parameters. So

the cells have some flexibility to re-configure. This flexibility, however, may not

assure automatic alignment of terminals when there is a change in the architec

ture. Generators using the second approach [weste87, tan87] take advantage of

virtual grid symbolic design to achieve pitch matching of cells and terminals,

which is area efficient. Compactors are used to handle the pitch matching and to

ensure design rule correctness. The performance, however, depends on how well

the original layouts are constructed.

The third type of generators use a procedural design method [shrobe82.

batali8l]. Cells are defined procedurally and a set of parameters is passed to the
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procedure to allow cells takingon different configurations. This approach does not

rely on any existing layout and can adapt to any local constraints on pitch match

ing. It is. however, time consuming since all the cells have to be generated for

each data path. Other procedural languages [lipton82] and procedural design

environments [wood86] also exist to support this type of generator, and the con

straints imposed by the use of a virtual grid.

The above review explains what advantages and disadvantages each type of

data path generator has. The first type, although it is simple and fast, is not good

enough for advanced data path generators. Thus DAPAGES uses a mixed approach

and takes advantages of the other two types of generators. The modifiable cells

that DAPAGES uses are memory and tri-state cells. These are termed stretchable

cells. To generate this kind of cells automatically while keeping them compact is

difficult. So they are partially laid out and can be stretched to pitch match with

the neighboring cells. The other cells are combinational logic cells which are

decomposed into logic gates. Each logic gate is generated automatically using a

procedural approach. Parameters, including the locations of inputs and outputs,

are passed in the generator. In this way, the advantages of both types of genera

tors are exploited, while keeping DAPAGES faster than the pure Type 3 approach.

Moreover, rather than only extracting local constraints. DAPAGES first extracts

global constraints by examining all the cells in the whole data path. This gives

DAPAGES better performance than the data path generators developed in the past.

3.2. Overview of DAPAGES

DAPAGES is a data path generation system for VLSI design. It takes a

hierarchical netlist of logic blocks and their logic description as input, and gen

erates a symbolic layout of the data path without a cell library. The whole pro-
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cess first produces a two-dimensional graph of cells. The next process uses

message-passing to ensure pitch-matching of cells and input/output ports, thus

greatly reducing the routing area. Each gate within a cell is individually configured

to avoid excessive area consumption and unnecessary delay due to routing among

gates.

The cells in the graph are treated as individual objects. They pass messages

to neighboring cells to signal the beginning or the end of a process. These mes

sages also contain the constraints of the terminals and the pitch of cells. The

message-passing algorithm will further be explained in Section 3.4.3.

In the process of layout generation, technology and layout-style dependence

is minimized so that different implementation technologies can be employed.

Moreover, different layout styles can be implemented without a major change in

the program. Presently, DAPAGES supports full.custom and Sea-of-Gates (SOG)

layout style.

Before going into the details, it is useful to know the floorplan of the entire

data path. It is constructed in such a way that logic blocks are placed horizon

tally. Thus data busses, power and ground busses flow in the horizontal direction.

Control lines, on the contrary, flow in the vertical direction. In other words, bit-

slices containing registers and functional operators are stacked up to form the

whole data path, starting with the least significant bit at the bottom. Each cell in

a bit-slice is provided with one power bus and two ground busses, thus allowing

two rows of NMOS transistors and two rows of PMOS transistors. The two

ground busses bound the cell at the top and bottom. This layout structure brings

the aspect ratio closer to unity. It also allows a bit-slice to share a ground bus

with the upper bit-slice and another ground bus with the lower bit-slice. The

structure of the data path is illustrated in Fig. 3-1.
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DAPAGES is explained more thoroughly in the rest of this chapter, starting

with a description of the design environment in which DAPAGES resides. The

data-path generation algorithm is then decomposed into different parts and

explained.

Clock and

Control Lines

Power and

Ground Busses " Entire

Data Path

Data Busses '

upper Ground

Data Busses '
A typical

Power
Cell

Data Busses •

lower Ground

Fig. 3-1 Structure of a typical data path
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3.3. Netlist and Logic Description

Users start from a behavioral description of the netlists of logic blocks and

the description of the logic of a unit cell. Since data paths are generally large and

complicated, the netlists are usually expressed hierarchically. The netlist descrip

tion is then converted to netlists in the database. OCT [harrS6], by a netlist trans

lator, bdnei [segal87], and the logic description, written in BDS [segal87]. is con

verted to the Berkeley Logic Interchange Format (BLIF) description by the logic

description translator, bdsyn [segal87]. The logic is then minimized by a multi

level logic optimization program. MIS [rudell86]. The above process is illustrated

by the diagram in Fig. 3-2.

Behavioral

Description

of Netlists

BDNET

Netlists

in OCT

Behavioral

Description
of Logic

BDSYN

BLIF

Description

MIS

Logic
Description

in OCT

Fig. 3-2 Behavioral synthesis flow diagram
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3.3.1. Netlist Requirement

Since the relative placement of logic blocks is a higher level synthesis prob

lem, it is not performed by DAPAGES. Instead users provide coarse placement

information of different logic blocks by specifying the relative co-ordinates of the

logic blocks in the netlist description.

To differentiate different types of cells stored in the database. OCT allows

properties of different values attached to cells. The CELLCLASS property is used

to differentiate a single cell from a block of cells when a hierarchy of netlists is

parsed. The possible values of this property are "MODULE". "UNITCELL". and

"LEAF". The "LEAF" cell class includes all the basic gates that are used by the

MIS. These gates will be discussed later. The "UNITCELL" cell class represents

all cells that are the basic units in the two-dimensional graph. These basic units

will be called unit cells from now on. "MODULE" cells contain one or more unit

cells. Another requirement for a unit cell is the CELLTYPE property. This

differentiates combinational logic cells from special stretchable cells. This is

needed since a stretchable cell is chosen from a cell library and then modified,

while a combinational logic cell is decomposed into gates and then generated

automatically.

A simple example to illustrate the above properties is shown as follows:

(FACET datapath:symbolic
(INSTANCE adder^A [0,0]

(PROP CELLCLASS "MODULE"))
(INSTANCE adder_B [0,20]

(PROP CELLCLASS "MODULE"))
(INSTANCE shifter [10,0]

(PROP CELLCLASS "MODULE"))
(INSTANCE latch.0 [30,0]

(PROP CELLCLASS "UNITCELL")
(PROP CELLTYPE "MEMORY"))

(INSTANCE latch.1 [30,0]
(PROP CELLCLASS "UNITCELL")
(PROP CELLTYPE "MEMORY"))

)
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In this example, the adder is made up of two different blocks, with "adder_BM

placed on top of "adder_A". Each adder will further be broken down into unit

cells. The shifter cells are identical and are represented by one block. The shifter

is placed on the right side of the adders. Two identical latches placed on the far

right side are represented by two latch instances. These two latches are stretch

able library cells.

33.2. Logic Optimization

Gates are implemented in static CMOS and domino CMOS technology. Gates

in static CMOS include NAND, NOR. and inverter. Gates in domino include AND,

and OR. Two cell libraries are used to accomodate both technologies. DAPAGES

recognizes the technology by reading the IMPLJTECH property attached to a gate

cell. The two possible values of this property are "STATIC" and "DOMINO".

It should be noted that MIS does not handle pass transistor logic. This poses

an area-efficiency problem to DAPAGES layout. For example, a multiplexer imple

mented by pass transistor logic is much smaller than if it is implemented by

NAND gates and inverters.

3A. Algorithm of DAPAGES

The whole process includes five major steps. The first step is input process

ing which creates a two-dimensional graph of cells from the input hierarchical

netlists. Each cell corresponds to one bit of a logic block in the data path. Prelim

inary information, including bypassing busses, input connection, and output con

nection, are stored in each cell. The second step is the estimation of the vertical

pitch of each cell. It determines the maximum height of each bit-slice. The third

step generates individual cells and stretches specified individual cells stored in the
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library. Constraints are passed among cells to make sure the input and output

ports match so that no routing is required between adjacent cells. The fourth step

involves resizing of each vertical slice. Each slice represents a column of unit cells.

The resizing is to make sure that vertical signals can be connected without routing.

Steps 2. 3. and 4 are distributed processes, performed by message passing among

all cells. The last step extracts the connection information from each cell and then

connects all the individual cells to form the entire data path. The process flow

chart is shown in Fig. 3-3.



Input
Netlists

Logic
Descnption

>

Graph
Construction

"

Pitch
Estimation

•

^ Cell
Generation

'

Resizing

''

Global
Connection

Final

Data Path

Fig. 3-3 Algorithm of DAPAGES
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3.4.1. Graph Construction

A recursive function is called to extract all the cells in the hierarchical net-

lists. Cells are further classified to base cells, block base cells, and normal cells. A

base cell is defined as a unit cell which is also the first cell instance of a new type

of logic block. It is usually the least significant bit of a logic block. A block base

cell is similar to a base cell, except that it has a CELLCLASS property

"MODULE". A normal cell is any cell other than the base cell and the block base

cell. Cells belonging to the same column are connected vertically according to

their co-ordinates, while the base cells and the block base cells are connected in

the order specified by their oct co-ordinates. Then each block base cell is extracted

and replaced by its component cells. At this point, the whole graph contains unit

cells. The links among all cells are then created, and information about bypass

ing busses is added to each cell.

The following is the pseudo codes of the graph building function:

Open input cell(&cell);
Init_octGenerator(&cell. &instance):

while ( generation not finished ) {
if ( instance is a unit cell ) {

allocate a unit cell for the instance;
if ( instance is a base cell ) {

add it to a list of base cells;
}else{

if ( the corresponding base cell exists )
get the base cell from the base cell list;

else

create the corresponding base cell;
}
stack the unit cell on its base;

} else{
put the instance in a block list;

}

while ( not all the block cells have been processed ) {
call this function to process a block in the block list;

}



Arrange the bases and block bases according to the oct co-ordinates;
returnO;
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It should be noted that after the whole graph has been created, each unit cell

belongs to a unique row and column.

Each cell should "know" how it is connected to the neighboring cells. So

each one stores the names of its formal terminals and the corresponding terminals

that will be connected to its formal terminals. Cells that are placed on the edge of

the datapath will then store the names of the formal terminals of the whole data

path for one or more sides.

Each cell should also "know" all the signals that pass through the cell pas

sively. The above connection information is important in finding the path that

signals go through. By looking at the relative locations of terminals in a net. the

paths of bypass signals can be determined.

3.4.2. Pitch Estimation

A good estimation of pitch is important since resizing a cell to pitch match

with other cells in the same row is costly. The process starts with estimating the

height of each cell in a bit-slice. The maximum height of the cells defines the

pitch of the bit-slice. The process is repeated for the other bit-slices. Like cell

generation, this process is distributed. It is performed by message passing among

the cells. It should be noted that this process is not necessary for SOG style since

each cell has a pre-defined pitch. This will be explained in the next section.

Pitch estimation of a combinational logic cell is done after the logic gates

inside the cell have been placed in one dimension by a placement tool, octlatte

[lin87]. Octlatte uses simulated annealing to minimize the net density between

adjacent gates. Then the maximum net density is determined and the pitch is thus
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found. It should be noted that octlatte does not count the input and output nets.

Therefore, when the net density is calculated, these nets have to be considered

carefully since they may enter or leave the cell on any side.

Pitch estimation is not necessary for stretchable cells, since they are passive.

Their pilches are defined by the other combinational logic cells in the same row.

They are initially laid out with a minimum pitch, and then stretched vertically

according to the maximum pitch defined above.

3.4.3. Cell Generation

Cells are generated starting from the lower left corner cell. The other cells in

its bit-slice are generated with the constraints from the left. If any cell cannot

meet the constraints, then they pass messages back to the leftmost cell and then

re-start the process. Re-starting the process, however, is very unlikely since a

good estimation has been made before the cell is generated. After one bit-slice has

been generated, the leftmost cell asks its top neighbor to generate its bit-slice. The

process continues until the whole data path has been generated.

When a cell is generated, constraints come from both the left neighbor and

the bottom neighbor. The former set of constraints can easily be met by placing

the input and output ports on the left side before any generation of gates is done.

However, the constraints from the bottom are harder to meet, since the gate place

ment may not allow two vertical signal lines to be placed too close. This happens

when the cell is different from its bottom neighbor. In this case, resizing is needed

which is explained in Section 3.4.4.
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3.4.3.1. Combinational Logic Gate Generation

Gates within a cell are already placed by octlatte. Each one of them is laid

out individually with given input and output tracks. Each type of gate is handled

by a dedicated procedural call with the above parameters. Since the input and

output tracks are not fixed, standard cells cannot be used.

Recall that each cell is bounded by two ground rails on the top and bottom

sides, while a power rail runs through the middle of each cell. So there can be at

most four rows of transistors, including both NMOS and PMOS. There are four

possible combinations for the placement of N-diffusion and P-diffusion blocks of a

gate. The placement of transistors depend of the input and output tracks, and

also the transistor placement of the last gate. For example, if the last gate is

placed entirely in the top half of the cell, then the current gate should be put in

the bottom half. The two gates can then share the empty spaces after compaction.

Examples of two different transistor placements and different parameters, includ

ing input and output locations, for a 2-input NAND procedural call are shown in

Fig. 3-4.
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Fig. 3-4 Examples using different parameters for a2-input NAND gate
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3.4.3.2. Stretchable Cell Generation

Stretchable cells are laid out with a pitch equal to the minimum pitch for all

cells. The minimum pitch is defined as the number of allowable horizontal second

metal tracks when all four rows of transistors are present in the cell. A latch cell

is shown in Fig. 3-5a. The two ground rails are missing from the figure. They are

added after the cell has been stretched.

To ease the modification process, some OCT bags and properties are required

for stretchable cells. TOPJTERM and BOTTOM_TERM bags contain terminals of

vertical signals on the top and bottom sides respectively. These terminals also

include those to be connected to the ground rails. The USED_M2_TRACKS bag

specifies the horizontal second metal track which has already been used by the

cell. Contained by the bag is one or more TRACK_NUMBER properties which

specifies the number of the used track. Another useful property,

DP_M1_TRACKS. attached to the facet specifies the number of vertical first metal

tracks occupied by the vertical signals and the vertical ground wires.

The cell is laid out with minimal use of second metal to allow more room for

horizontal bypassing busses which are added during the modification process.

When the cell is stretched, the above OCT information is first extracted. Then the

ground rails are placed and connected. Routing is done to the inputs of the cell if

necessary. An example for a stretched latch cell is shown in Fig. 3-5b.
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(a), before modification

(b). after modification

Fig. 3-5 A latch cell before and after modification
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3.4.4. Resizing

Signals running vertically, except clock and control signals, are placed on the

left of the gates so that the spacing is regular and so the constraints can easily be

met by the top neighbor cell. However, if all the vertical signals, including clock

and control signals, are placed on the left, then the net density on the left may be

too high and the fixed number of available tracks in the SOG cell template may

not be enough. So clock and control signals, which run through the whole data

path and are likely to be used by all the cells in a column, are placed next to the

gates that use them.

If two cells in the same column have different gate netlists, then they may

share two control signals but having different spacings for the signals. In this

case, the most constrained cell determines the spacing of the two control signals.

Iterations may be needed to make sure all the terminals can be pitch-matched.

This process also uses message passing to pass constraints to cells in a

column. It is similar to the message-passing algorithm used in cell generation.

However, resizing is performed for a column of cells first, and then the process

propagates to the right to the other columns of cells.

3.4.5. Global Connection

After every cell has been laid out. they are connected using the connection

information stored in each cell. This step is basically tiling, since all cells pitch

match and all terminals align. Ground rails of cells are shared by their top and

bottom neighbors.
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3.4.6. Modification for SOG style

Modifying DAPAGES to adapt to different layout styles is not difficult, since

most changes required only happen in the cell generation process. The sea-of-gates

layout style has pre-defined locations for transistors and power and ground

busses, thus having less flexibility than the custom layout style. The Mariner

SOG cell template [.layer87] also has four rows of transistors, but it is bounded by

two power rails and the ground rail runs through the middle.

The major difference in the cell generation process is the use of partially laid

out cell templates for logic gates. Since compaction is not appropriate for SOG

style and gate placement is one dimensional, each gate always occupies a whole

column of transistors within a cell. So a column of four transistors is taken as a

cell template. Gates are then carefully laid out to allow input and output routing

be done within each template. Transformation of the template and interchange of

inputs for a multiple-input gate can also help the routing, three templates are

shown in Fig. 3-6.
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(c). 3-input NAND

Fig. 3-6 Combinational gate templates in SOG style
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Memory and tri-state cells are no longer stretchable due to fixed template.

However, the Mariner SOG cell template allows twelve horizontal second metal

tracks to cross, so the pitch of a cell should be large enough for any data path. A

tri-state buffer template and a latch template are shown in Fig. 3-7.

Another difference is that routing space is always the area of one or more

templates. This quantum increase is very area inefficient. This is why much

effort is paid to localize routing within the template of a gate.

The last difference is that the Mariner SOG cell template uses first metal for

the power and ground. So after all the cells have been connected, large vias are

added to bring the second metal power and ground to first metal terminals for

external connection.
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(a) Tri-state buffer template

(b) Latch template

Fig. 3-7 Tri-state buffer and latch templates inSOG style
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CHAPTER 4

APPLICATION AND RESULTS

Both OCTPLA and DAPAGES were run using numerous examples obtained

from the SPUR CPU chip. The results are analyzed and compared with the hand

design. How these experiments reflect the effectiveness and the drawbacks of both

tools is also described.

4.1. OCTPLA

The Instruction Unit (IU) Controller of the SPUR CPU chip contains 6 PLAs

and some random logic. These PLAs are generally small. The largest one has 30

product terms. When the IU controller was designed, espresso was employed, and

then a tiling based unfolded PLA generator, Mpla [mayo84], put together the cells

in the cell library to form the PLAs.

Since the hand design approach also includes espresso for logic minimization,

comparison between OCTPLA and Mpla shows only the difference due to folding.

Both folded and unfolded versions of the above PLAs are generated by OCTPLA

and Mpla using the same buffers. The areas of the above PLAs and two other

PLAs. "trap" and "opcode". are summarized in Table 4-1.

Three observations can be derived from this experiment. First the unfolded

PLAs generated by OCTPLA and Mpla have approximately the same size. Since til

ing approach can always generate very compact layout with prior careful planning

on the tiles, the approach that OCTPLA employs compares favorably with Mpla.

This is partly due to the tightly coupled structure of a PLA. The use of an efficient
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compactor also contributes to this result.

The second observation deals with the use of folded PLAs. The output

buffers used in these examples are planned to drive large loads, in the range of 5pf

to 20pf. They are. thus, very large. So if a PLA is not that large or if not much

folding can be achieved, an unfolded PLA may be smaller than a folded one. The

largest PLA. "opcode", shown in Table 4-1 has a 27% reduction in area when the

PLA is folded. Shown in Fig. 4-1 are both versions of PLA "p2" with 10 product

terms. The area gained in folding almost offsets the area wasted in placing buffers

on the other side of the PLA. The PLA "pf" with 14 product terms shown in Fig.

4-2 is worse. Not much folding can be derived in this PLA. So the unfolded one is

actually smaller. Therefore, if buffers are large and the PLA cannot have much

folding, a folded PLA is not rewarding.

PLA

Number of

product terms
Unfolded

(MPLA)
Unfolded

(OCTPLA)
Folded

(OCTPLA)

fet 14 89.8 80.5 121.4

Pf 14 89.8 82.5 117.6

Pi 6 59.7 55.4 77.6

P2 10 85.1 74.9 82.4

p3 30 192.9 173.2 195.6

P4 21 168.9 152.4 194.9

trap 35 722.0 648.1 475.2

opcode 69 720.1 648.1 475.2

Table 4-1 Areas (in thousands of X2) of PLAs in the IU Controller
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(a) folded with area 82.4 X (b) unfolded with area 74.9 X2

Fig. 4-1 Folded and unfolded versions of PLA Mp2'

(a) folded with area 117.6 X2 (b) unfolded with area 82.5 X2

Fig. 4-2 Folded and unfolded versions of PLA "pf"
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The timing performance of folded PLAs are, however, much better than that

of unfolded PLAs. This can easily be understood by comparing the sizes of the

cores of folded and unfolded PLAs. The cores of folded PLAs are smaller, thus

reducing the capacitances of the wires. The reduction leads to shorter charging

and discharging time. Therefore, folded PLAs are superior to unfolded PLAs in

terms of timing performance.

The IU Controller has been implemented using the PLAs generated by OCT

PLA. The random logic is also implemented using a small PLA. Two of the PLAs

are unfolded due to the reasons mentioned above. A Berkeley placement and rout

ing system, mosaico [igusa87], has been used to place the PLAs and latches, and

then route them. Both this IU Controller and the hand design one are shown in

Fig. 4-3 and Fig. 4-4 respectively. The area ratio of this IU Controller and the

hand design one is 1.2:1. The main reason for this difference is due to the place

ment of the input and output pins and, the related routing. Ideally, the floor-

planner specifies the constraints of the pin locations. This in turn puts constraints

on the pins of the PLAs which can be met by the folding program. Genie. How

ever, when the example is run, the PLAs are generated first and no constraint on

the pin locations of the IU Controller is given. The pad placement program thus

randomly places the input and output pins of the IU Controller. This un-

optimized placement creates a lot of unnecessary routing. When doing a hand

design, one has a pre-conceived floorplan for the whole chip, so the input and out

put pins are grouped together on both sides. Routing isthus more regular.
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Fig. 4-3 IU Controller generated by OCTPLA and mosaico with area 2100Xxl900X
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Fig. 4-4 Hand designed IU Controller with area 1775Xxl879\



47

4.2. DAPAGES

Major components of two data paths in the SPUR CPU chip are taken as

examples. The first one is the 32-bit data path for the Instruction Unit (IU). The

second one is the the Arithmetic Logic Unit (ALU) of the Lower Data Path. The

SOG layouts of these cells are also shown.

4.2.1. Instruction Unit Data Path

The IU data path is chosen since it is a very simple data path. It consists of

a set of latches, followed by multiplexers (MUXes). and then tri-state buffers. All

bit-slices of this data path are identical. So this is a good example to show some

basic functions of DAPAGES.

The 4-to-l multiplexer cell is the only combinational logic cell in this data

path. Three of the four input busses are external, while the last input bus is the

output of the latch. The other cells in the data path are stretchable cells in the

library. Since this data path has only five local busses and the minimum pitch of

a library cell allows eight busses, the library cells do not need stretching and the

pitch of the MUXes are set to the minimum.

An unspaced MUX cell is shown in Fig. 4-5a. The area is 415 X x 96 X.

Transistors are placed alternatively in the top half and the bottom half, hoping

that they can share the space after compaction. Although most of the gates in this

cell are 2-input NAND gate, they have different configurations to adapt to

different locations of inputs and outputs. After compaction the cell with an area

of 217 X x 84 X is shown in Fig. 4-5b. The area reduction after compaction is

46%.

The ratio of area of this cell to that of the hand design cell is 2.0 : 1. The big

difference in area is mainly due to the use of different circuit design techniques. A
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hand design cell can use pass transistors to realize the multiplexing function.

However, since MIS cannot handle pass transistor logic, DAPAGES can only use

standard logic gates, like 2-input and 3-input NAND gates. These standard gates

are certainly larger than pass transistors. However, DAPAGES has a performance

advantage since it uses fully-restored logic, instead of pass transistor logic which

may have charge sharing problems. It should be noted that if MIS allowed pass

transistor logic, DAPAGES would be able to generate the MUX using pass transis

tors.
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(b). after compaction

Fig. 4-5 A MUX cell before and after compaction
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A single bit-slice of the IU data path is shown in Fig. 4-6. The ratio of area

of this bit-slice to that of the hand design bit-slice is 1.8 : 1. The large difference

is, again, due to the use of different circuit design techniques, as explained before.

An 8-bit IU data path is shown in Fig. 4-7.

Fig. 4-6 A single bit-slice of the IU data path
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Fig. 4-7 An 8-bit IU dau path
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4.2.2. Lower Data Path

The Lower Data Path is the major data path in the SPUR CPU chip. It

includes an adder, a shifter, latches, and some random logic. Of all these com

ponents, the shifter is the best one that can demonstrate how constraints of verti

cal signals are handled, since it has a lot of vertical signals that cross the top and

bottom boundaries.

This shifter cell is able to shift left by 1. 2. or 3 bits, shift right by 1 bit.

and perform no operation. So one bit signal may travel through at most three

cells upward or at most one cell downward. In a typical shifter cell, there are five

input signals, three coming from the bottom, one coming from the top, and one

coming horizontally from the left of the bit-slice. There are also five control sig

nals that choose the output from these five input signals. It is important to make

sure that the input signal and the corresponding control signal are connected to

the same gate. This is done by getting the exact locations of the input signals

from the bottom cell.

A shifter cell with no constraints from the bottom is shown in Fig. 4-8b, and

a shifter cell that is placed on top of the previous one is shown in Fig. 4-8a. The

vertical signals are not placed beside the corresponding gates, otherwise routing

must be required for the vertical signals between the two cells. So all the routing

is done within each cell on the left as shown.
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Fig. 4-Sa. Top shifter cell with constraints from bottom

pWW»^HW4iWMtM^p^

LKKKKiSista

Fig. 4-8b. Bottom shifter cell with no constraint from bottom
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The area of any one of the shifter cells is 350 X x 84 X. The ratio of this area

to that of a hand design shifter cell is 1.5 : 1. The difference is due to the use of

pass transistor logic in hand designed cells. However, this ratio is much smaller

than the area ratio of the MUXes determined in section 4.2.1. The reason is that

DAPAGES routed the vertical signals more efficiently than the hand designed cells

in this case.

4.2.3. Sea-of-Gates Data Paths

Some terminology is defined before the results for SOG layout are analyzed.

A transistor template is a vertical column of eight N- and P- transistors bounded

by two power rails. A substrate contact template is a column of well and sub

strate plugs.

Since the SOG layout style has fixed transistor templates, one can expect the

SOG cells to be larger than the custom style cells. A MUX cell, a shifter cell, and

a latch cell are shown in Fig. 4-9. Unused transistor templates have been removed

to show the input and output signals better. The horizontal bypassing signals in

the latch cell are made short. This makes the program simpler, while spaces are

guaranteed for the signals to bypass the whole cell.

The SOG cell generation routines are modified so that control signals can be

grouped together if possible to save area. Both the MUX cell and the shifter cell

demonstrate this point. If the control signals were not grouped together, each one

would occupy a transistor template.
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Fig 4-9a. A MUX cell in SOG style

Fig4-9b. A shifter cell in SOG style

Fig 4-9c. A latch cell in SOG style
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Since the Mariner SOG layout style has two transistor templates followed by

one substrate contact template, sometimes dummy transistor templates have to be

added to a fixed library cell to maintain this pattern. The latch cell shows this

weakness. This is one of the reasons why a fixed cell template style is not pre

ferred. A tri-state buffer cell can be generated similarly. The layout is very simi

lar to the latch cell and therefore has not been shown.

The total number of transistor templates and the transistor templates used

by gates or memory cells are given in Table 4-2. This is to show how much area

is really used by the logic and how much is for routing. The results show that

area utilization is between 60% to 70% which is very good.

CELL

Total # of

transistor templates
Transistors

Templates Used
Utilization

Ratio

Shifter 13 8 61.5%

MUX 10 7 70%

Latch 5 3 60%

Tri-state 5 3 60%

Table 4-2. Area utilization of cells

The area ratios of cells generated by DAPAGES in both layout styles when

compared with hand design cells are summarized in Table 4-3.

CELL

Custom Style
by DAPAGES

SOG Style
by DAPAGES

Shifter 1.5 4.1

MUX 2.0 6.9

Latch 2.1 8.9

TriBuf 1.2 5.5

Table 4-3. Area Ratios of cells generated by DAPAGES when compared with hand design cells



57

CHAPTER 5

FUTURE RESEARCH

The previous chapters explain the approaches taken by both OCTPLA and

DAPAGES to optimize their outputs, with the illustration of some results using

the SPUR CPU chip as an example. Drawbacks of each system mentioned in the

last chapter lead to the following discussion on possible future work to enhance

and further optimize the systems.

5.1. OCTPLA

OCTPLA can be easily modified to handle multiply folded PLAs. Since genie

has the capability to do multiple folding, the only change in OCTPLA is then the

repetition of the mapping of transistors and buffers of the multiple AND and OR

planes. The cell library remains the same.

One way to further optimize the area of the PLAs is to merge output buffers

in adjacent columns. This requires terminal merging done by compaction. Careful

layout and terminal implementation are needed.

The cell library can be expanded to handle different layout styles and to

include testable circuits. Dynamic PLAs can be realized as described in Chapter 2.

This only requires three more cell templates. Output buffers and the circuitry in

the interface of the AND and OR planes can be modified so that users can monitor

the outputs of the PLA and the product terms in the AND plane.
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5.2. DAPAGES

DAPAGES is in an experimental stage. It is less mature, compared to OCT

PLA, thus more future work on DAPAGES is expected.

More gate generation modules should be written to enlarge the static CMOS

gate library for MIS. This can further reduce the area of the data path. Up to

now. an inverter, a 2-input NAND, and a 3-input NAND modules have been suc

cessfully implemented. A 4-input NAND. some NORs. and a 2-input exclusive-OR

generation modules are desirable. Transmission-gate generation modules should be

introduced if MIS is modified to allow the use of transmission gates.

A change in the data structure can simplify the netlist requirements. The

current version requires that a unit cell belongs to only one row and one column

in the graph. It is sometimes difficult for users to separate a logic block into

exactly n bit-slices, where n is the number of bits of the whole data path. It is

more convenient for them to describe a unit cell, like an adder cell, that belongs to

more than one row or one column. This requires a change in the data structure of

the graph and a corresponding change in the message passing algorithm. In addi

tion to these changes, a two-dimensional placement program for the gates of a cell

is also needed in case the cell belongs to more than one row.
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CHAPTER 6

CONCLUSION

Two module generation systems targeted at building PLA based control units

and data paths of microprocessor chips are described in this report. The PLA

design system. OCTPLA. generates singly folded PLAs for a number of layout

styles using hierarchical symbolic design. The whole system uses only twelve

templates in the cell library. The CAD tools within OCTPLA perform logic

minimization, topological optimization, and electrical optimization. The data path

generation system, DAPAGES, generates the entire data path using a mixture of

automatically generated cells and modifiable cells. It handles both global con

straints and local constraints by message passing in an object-oriented environ

ment to achieve pitch matching of cells and terminals. It handles both custom lay

out style and SOG layout styles.

Numerous examples from the SPUR CPU chip were run on these systems to

illustrate the characteristics of the systems and determine the drawbacks. Both

OCTPLA and DAPAGES were successful in generating important modules in the

SPUR CPU chip.

Possible future work on OCTPLA includes extending its capability to handle

multiply folded PLAs, further optimizing the area by merging cell instances, and

expanding the cell library for different layout styles and testable circuits. More

gate generation modules to optimize both area and performance of the resulting

data paths, and simplifying the input requirement by changing the data structure

are recommended for DAPAGES.
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NAME

octopus - A Programmable Logic Array (PLA) module generator

SYNOPSIS

octopus [ options ] cell_out

DESCRIPTION

octopus is a layout generator that takes the output of an array folder GENE and generates an unspaced
layout of the PLA.

INPUT / OUTPUT

The input tooctopus is a text file that includes a personality matrix of a folded or unfolded PLA. The
view of the output OCT cell is optional and defaults to "unspaced". Users have to ran sparcs to get the
PLA laid out according to the design rales.

The input file can be generated byGENE and a modified version ofGENE, GENEJMST, as follow:
genie.dist -pla espresso_output_file I genie -pmr

OPTIONS

-i specifies the name of the input personality matrix file. The default is ./final

-F generates an unfolded PLA. All the input and output buffers are puton the top of the PLA.

-s sets the spacing of the horizontal metal-1 ground line in the AND plane and that of the vertical
metal-1 ground line in the OR plane in terms of rows and columns respectively. Metal-1
ground lines are introduced to bring the resistance of diffusion ground line down.

-v specifies the view of the outputOCT cell.

-t specifies the technology of the cell.

-clib specifies the names of the library cells in a text file. This will be described later in this
manual.

-ni tells where the RULE cell is placed. This rule cell contains all the connection rules of the
PLA

-cib uses clocked input buffer.

•cob uses clocked output buffer.

-cp uses clocked output bufferwith the output set to low while the clock is not asserted.

-d turns on the debugging mode, thus allowing octopus to print the debugging information about
the cell instances.

-do uses different output buffers in the same PLA. When this option is used, the option 'clib' must
also be used. The signals that use different output buffers and their corresponding buffer
names are listed in the same text file that the option 'clib' specifies.

-g tells OCTOPUS to print the constraint graphs used by MKARRAY in ./mkarray.x and ./mkarray.y.

-p specifies the threshold number of transistor for the AND plane pull up devices. When this
number is exceeded for a row in the AND plane, a larger pull up is used to minimize the delay
in this row. The default is 10.

-W tells octopus to place the PLA cells without wiring. This is useful for debugging when users
change the cell templates that cause non-Manhatten wires.

CELL LIBRARY

Users can use their own cells, in which case another input file should be provided to indicate the names
of the cells in the cell library. Users should change the second entry in the appropriate line in the fol
lowing file:

LSIDEBUF/cad/libAechnology/scmos/octopus/Lside_buf

7th Edition local
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RSIDEBUF/cad/IibAechnology/scmos/octopus/Rside„buf
ANDM1GND /cad/lib/technology/scmos/octopus/and_GND
ORM1 GND /cad/Iib/technology/scmos/octopus/or_GND
CONNECT /cad/libAechnology/scmos/octopus/connect
INBUF /cad/lib/technology/scmos/oaopus/in_buf
MEDBUF /cad/libAechnology/scmos/octopus/mid_buf
LEFTORGND/cad/lib/technology/scmos/octopus/or_GND_L
RIGHTORGND/cad/lib/technology/scmos/octopus/or_GND_R
OUTBUF/cad/lib/technology/scmos/octopus/out_buf
PULLUP/cad/lib/technology/scmos/octopus/pull_up
PUlXUPGND/cad/libAechnology/scmos/octopus^)ull_up_GND
ORGNDBUF/cad/lib/technology/scmos/octopus/GND_or_buf
ANDXSTER /cad/libAechnology/scmos/octopus/and_xster
ORXSTER /cad/libAechnology/scmos/octopus/or_xster
!J\JlGEPULLUP/cad/lib/technology/scrnos/octopus/large_pull_up

Each cell has its own function which is described as follows:

-LSIDEBUF

Connector placed on the left of the input buffer.

-RSIDEBUF

Connector placed on the right of the outputbuffer.

-ANDM1GND

Connector for the horizontal metal-1 ground line in the AND plane.

-ORM1GND

Connector for the vertical metal-1 ground line in the OR plane.

-CONNECT

The interface of the AND plane and OR plane.

-INBUF

Input buffer.

-MIDBUF

Connector between the input and output buffers.

-LEFTORGND

Connector on the left of the OR plane for the horizontal ground diffusion.

-RIGHTORGND

Connector on the right of the OR plane for the horizontal ground diffusion.

-OUTBUF

Output buffer.

-PULLUP

Pull up device for the AND plane.

-PULLUPGND

Connector replacing the pull up device for the AND plane when a row is used for metal-1
ground line only.

-ORGNDBUF

Connector replacing the output buffer when a column is used for vertical metal-1 ground line
only.

-ANDXSTER

Transistor in the AND plane.

7th Edition local
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-ORXSTER

Transistor in the OR plane.

-LARGEPULLUP

Large pull up device for the AND plane. This is usedwhen the number of transistors in a row
exceeds a given or default value.

Sometimes different output buffers may be used in the same PLA to ensure correct timing and save
some external logic. In this case, the signals that use different output buffers are listed in the same file.
This information may follow the previous texts by a line of one or more asterisks. No separator is
needed if default cells are used. An example is shown as follows:

****

output2 ~/lib/out_buf_clk_pre
outputs "/lib/out_buf_clk

In this example, signals 'output2' and 'outputs' use different buffers, while the rest of the outputs use
the default or given buffers.

After the cells have been changed, users should also update the rule cell. The following is the set of
rules embedded in the rule cell:

-pull-up
For the column of AND plane pull-up devices.

•andOrlntRule

For the column of connectors between the AND and OR plane.

-andlnRule

Connect the gate of the AND plane transistors to the non-inverted output signal of the input
buffer.

-andlnBarRule

Connect the gate of the AND plane transistors to the inverted output signal of the input buffer.

-andDifTRule

Connect the diffusion of the AND plane transistors.

-orColRule

Connect the drain of the OR plane transistors to the output buffer.

-orSigRule
Connect the gate of the OR plane transistors to the product terms in the AND plane.

-lastColRule

For the last column of PLA,

-bufRule

For the row of buffers and connectors.

-rowCoreRule

For the row in the AND plane.

-orDiffRule

Connect the diffusion of the OR plane transistors.

-coreGndRuIe

Connect the metal-1 ground lines in both planes.

-orXsterRuIe

Connect the gates of OR plane transistors.

Some OCT properties, like DIRECTION and TERMTYPE, are required in some cells. Users can look at
the "addProp" file in the cell library. Run bdnct on this file to attach the OCT properties.
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DIAGNOSTICS

If users manually change the number of rows or columns in the personality matrix without modifying
the related information in the file, the program will die and may not give enough error messages to
point out the incoherence in the file.

BUGS

There is a bug in GENE thatmay not constraint an input and its complement to staytogether. This may
occurs when there is an empty column in the PLA and the signals are folded. This is not detected by
OCTOPUS now. So users should make sure the input file is correct before running octopus on it The
following is an example that shows the error in the file:

( row 3 si* 0 )
( row 4 si 0 s2* 5 )
( row 5 s2 0 s3* 9 )
( row 6 s3 0 )

Since "s2" and "s2*" should stay together, users can swap "s2" and "s3" in row5 or "si" and "s2*" in
row4, and change the starting position for the signals. If signal "s3*" is empty, then starting place of
"s2" can be set to 0:

(row 3 si* 0 )
( row 4 si 0 s2* 5 )
( row 5 s3* 0 s2 0 )
( row 6 s3 0 )

Up to now most of the PLA's generated can be compacted by sparcs. It is possible that a PLA cannot
be compacted This problem is being investigated.

/cad/lib/technology/scmos/octopus - the default cell library
/cad/lib/technology/scmos/octopus/PLArules:symbolic - the default rale cell
/cadyiib/technology/scmos/octopus/addProp

SEE ALSO

genie(l) mkarray(l) sparcs(l) espresso(l) bdnet(l)

AUTHOR

Shau-Lim Chow

schow@ic.Berkeley.EDU
(415) 642-5322

FILES
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NAME

octpla - A Programmable Logic Array(PLA) module generation pipeline

SYNOPSIS

octpla [ options ] input_file

DESCRIPTION

octpla is a shell script that calls espresso, gene, octopus, sparcs, and vulcan to generate a PLA.
The input to this pipeline is a text file. By default, it is an input file for ESPRESSO. If ESPRESSO is not
ran, then it will be an input file forGENE. If gene is not run, then it will be a personality matrix input
file for OCTOPUS. The output of this pipeline is an OCT cell that contains the PLA layout A more
detailed description of the layout can be found in the manual page of OCTOPUS.

OPTIONS

Skip espresso and start from gene.

Skip gene and start from OCTOPUS.

Skip sparcs. The final output view is "unspaced".

Specify the output OCT celL

Generate an unfolded PLA.

Turn on debug mode.

specify cell library for octopus.

Use clocked output buffer.

Use clocked input buffer.

Use clocked precharged output buffer.

Use different output buffers in the same PLA.

p Specify the threshold transistor number for AND plane pull up devices,

ra Specify the rule cell for octopus.

s Specify metal-1 ground line separation.

W Make an unwired PLA.

noEsp

noGenie

noSparcs

output

unfolded

debug

clib

cob

cib

cp

do

BUGS

Please report to schow@ic.

SEE ALSO

espresso(CADl)
genie(CADl)
octopus(CADl)
sparcs(CADl)
vulcan(CADl)

AUTHOR

Shau-Lim Chow

schow@ic.Berkeley.EDU
(415) 642-5322
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Chip Will Be Unbondrble
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