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CHAPTER I

INTRODUCTION:

1.1. A Survey of Neural Networks

The mathematical modeling and idealization of biological memory has led to

a variety of networks with interesting properties. Associative memory was one of the ear

liest such properties to be studied. Interest in the perceptron, originally conceived by

Rosenblatt waned when Minsky and Pappert studied and criticized its limitations.

McCulloch and Pitts proposed the first mathematical model of a single nerve cell. In re

cent years, Hopfield and Grossberg have greatly revived interest in models of the human

brain built by connecting several such McCulloch Pitts neurons. Grossberg has attempted

to build faithful models of the cortical nerve cells while Hopfield has proposed and stu

died a simplified model mainly applying them forassociative memory andoptimization.

There are about I0n neurons in the human brain. The functioning of the brain

depends on the flow of information through elaborate networks of neurons. Information

is transferred from one neuron to another at specialized points of contact, called the

synapses. A typical neuron has 1000 to 10,000 synapses, neuroscientists model the neu

ron using three characteristics : 1) their internal state, 2) the axonal potential, and 3) the

synaptic inputs and outputs.

The Internal State: The internal state of a neuron is characterized by the potential differ

ence across the cell membrane. The baseline is a resting potential between 70 and 100

mV and when external inputs cause it to go beyond a certain threshold, an action poten

tial is generated which travels across the axon.

Axonal Signals : The action potential is a depolarizing signal with a peak amplitude of

about 110 mV and lasting for 1-10 msecs. Axonal signals are bursts of evenly spaced ac

tion potentials with pulse frequencies of 2 to 400 Hz for the pyramid cells in the cerebral
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cortex and 1 to 100 Hz for retinal ganglion cells. The information carried in the axonal

signals is believed to be in the pulse frequency of the burst. Thus the signal can be

represented by a positive real number over a limited short time duration.

Synaptic Inputs and Outputs : The flow of signals into and out of the neurons is unidirec

tional. Signals are received at points of contact on the dendrites called synapses. When

an incoming signal reaches the synaptic knob it induces the release of a substance called

a neurotransmitter which diffuses into the synaptic cell and causes a change in the recep

tor potential across the cell membrane. A synaptic input is excitatory if it increases the

receptor potential or inhibitory if it decreases it.

Artificial Neural Networks

All the artificial neural networks proposed thus far share a common broad

framework. They have a set of processing units, each of which has a well defined state of

activation, analogous to the internal state of a nerve cell. Each unit has an output func

tion which is typically a threshold function. The inter-connection between the processing

units is described by a pattern of connectivity, which is modified by "learning". Patterns

of activity are propagated through the network by a propagation rule. The inputs to each

processing units are combined by an activation rule (which is typically a sigmoid func

tion) to alter the state of activation of the unit. The construct of the networks proposed by

Hopfield [1], Grossberg [2], and that by Michel, Li and Porod [4] which we will be

studying in detail are briefly discussed here.

The Hopfield network

Hopfield has proposed several models of networks. In his paper [1], he pro

posed a model that would function as a Content Addressable Memory. The structure of

the network can be described as follows :

Let x = {.r i, ;t2, *3,....,*m ) De an m-set of n-dimensional binary (their entries belong to

(-1,1}) column vectors which we want the network to store as memories. For each ,x,, a
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connection matrix describing the pattern of connectivity among the various neurons is

constructed thus:

Ti = XiXl - /„ (1.1)

The connection matrix, also called weight matrix, for the entire network is then con

structed by summing the Tt s.

T = V Ti (1.2)

Once the vectorsX\X%...^cm are programmed into the network they are "for

gotten". In order to retrieve information, we start with an n-dimensional probe vector x.

We wish to find the stored memory x, closest to x in Hamming distance. Hopfield's asyn

chronous algorithm for this consisted of replacing the kxh component of x by the kth

component of Tx. For a symmetric T, this process can be shown to be convergent. Start

ing with any x, one will find a y such that y =Ty.

Hopfield also proposed a continuous-variable neural system which is realiz

able by electric circuits. It is represented by the following system of equations:

Ciiujdt) =;£* Tijvj - u-JRi + Ii (1.3)

where C,-, Ri and /,- are constants for all i, C,- > 0 and Rt > 0.

Tij is a real symmetric n x n matrix and gt : R -> (-1,1) is amonotone increasing func

tion satisfying the following conditions:

gi(Q) =0, gi(p) =-^/(-p). Further, grl : (-1,1) -> R exists and gL andgf1 are C1 func

tions.

The Grossberg Model

Cohen and Grossberg[3] studied a class of competitive dynamical systems

described by

x =ai(Xi)[bi(Xi) - Jf!Cijdj(Xj)l fori =1,2,3 n. (1.4)

where C, > 0.

Xi is the potential (short term memory activity)
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dk frk) is the output of node k

C/jk is the strength of the connection between node i andk

dk > 0 for an inhibitory system and C* is < 0 for an excitatory system

ax (xi) is the amplification factor and

biixt) is the intrinsic rate of decay or activity

The Hopfield model is in fact a special case of the Grossberg model and this can

be established by a simple transformation ofvariables. To illustrate, if in equation (1.3) we set

^i- =flifa). -jj^jiii +Ii =bi(Ui), Tij =-Cy and^-(^) =dj(uj),
then equations (1.3) and (1.4) are identical.

Grossberg's Convergence Theorem:

Grossberg proved a remarkable convergence theorem[2]. If the functions bi

are monotonic increasing functions, then the system has a finite number of equilibrium

points and each initial point converges to the equilibrium point that is closest to it.

1.2. Generalised Model proposed by Michel, Li and Porod

This is the model that we study in detail. The model is described by the fol

lowing differential equation:

dxldt = - H{x) (rTx + S(x) - I) (1.5)

H: (-1,l)n ->Rnx n , i.e. for each x, H(x) is an n x n matrix;

T e Rnxn, and is the "connection" or "weight" matrix;

and S(x) = [S i(* i) IS2(x2) I Sn(xn)];

/ = tf i» /2.--» W is a constant real vector and represents the input to the system;

Under certain assumptions imposed upon this model which are described in the next

chapter, the qualitative behavior of the model has been shown to be predictable. It is in

structive to study this model because because of its convenient mathematical representa

tion and more importantly, because it represents the class of Hopfield and Grossberg

models described earlier. This is an'interesting fact because these two models are being



studied widely.

To illustrate, let us consider the continuous variable network realizable by

electrical circuits proposed by Hopfield in [1]. It is represented by the system of equa

tions

d(dui/dt) =J?Tij - Vi/Ri +Ii (1.6)

where Ci%Ri and /, are constants for each i,C, >0,Rt >0 and Ttj = Tji, T e Rnxn;

«£ e /?, vi e (-1,1) and vt- = gi (Kui) where X> 0;

and gi :/?-»(-1,1) satisfies the following conditions:

a) it is monotone increasing.

b)*,-(0) = 0, ^(p) = -&(-p)

c) gr1 : (-1» 1)->R exists, and & and gr1 are C1 functions. Now, representing equation

(1.6) in terms of v,-,

dvjdt = (dvi/dui)(dui/dt)

dg'HviVdVi ;=1

Now, substituting (vi,v2, • • • vn)' by x,

X
diag

C.-Wft-Kvi)

and {l\JiJz* ••' Jn) by I, equation (1.7) is identical to equation (1.5), the model pro

posed by Michel, Li and Porod.

The model proposed by Cohen and Grossberg which we described earlier

can also be represented by equation (1.5). The equation describing the Grossberg model

is:

byH(x), \Tu]by T,
*"l(vi) g'fon)

dx/dt =ai(Xi)[bi(Xi) - ^fCijdjiXj)], fori =1, 2,.. n.
7=1

(1.7)

by S(x),

(1.8)

if we let 1/C,- = ai(iii),(rVRi)Ui +/,- = fr,-("i). and gjOuif) = djdij), then it



translates to equation (1.4).

In both cases, it can be easily verified that the assumptions made to establish the proper

ties of the network modelsalso mapped underthe transformation of variables.

1.3. An overview of the chapters that follow

In Chapter II, the model proposed by Michel, Li and Porod and their algo

rithm for updating the weight matrix T are studied. A modified algorithm which makes

the update rule recursive is proposed. In Chapter III we study the discrete time Hopfield

network and analyze the spurious states of the network using the principles of Threshold

logic. In Chapter IV, we study back propagation and its difference in approach to the as

sociative memory problem.
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CHAPTER H

THE MICHEL LI POROD MODEL:

2.1. Analysis of the model

The model can be thought of as a class of nonlinear, autonomous, nonlinear

differential equations of the form

x = - H(x)( - Tx + S(x) - /) (2.1)

where x = (*i,X2,...JCn)' e (-1,1)"

#:(-l,l) -> Rnxn, Te Rnxn

S(x) = (Si(Xi\ 5n(;cn))rwhere5/ : (-1,1) ->/?

Assumptions (A):

i) For every x e (-1,1)" ,//(*) is symmetric and positive definite.

ii) Tij = Tji for all i, j.

iii)5/:(-l,l) -» /? is monotone increasing for 1 < i ^ «, 5/(0) = 0;

5i(Xi) = -5/(-*,•); 5,-, 5/"1 areC1 functions.

Also, it is required that 5/"(*/) = d2Si/dXi2 exists.

A few of the important results that describe the qualitative behavior of the system are

presented here.

Definition 2.1: An energy function is associated to the system and it is :

E(x) = - (l/2)*'7;t +TI Si(p)dp - xll (2.2)

The gradient of E,

VE(jc) = (d£(x )/dxhdE(x)/dx2, dE(x)/dxn)' (2.3)

= -Tx +S(x)-I

This immediately leads us to the following conclusion:

Lemma 2.1:
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If the system satisfies assumptions (i) through (iv) then x e(-l,l)n is an equilibrium

pointof the system if andonly if V£ (x) = 0

Assumptions (B):

i) There is no* e (-1,1)* satisfying the equations:

(a)V£(x) = 0,

(b)det(JE(x)) = 0

(c)Je(x) > 0 simultaneously.

ii) The set of equilibrium points of the system is discrete.

Theorem 2.1: If the system satisfies assumptions (A) and (B) then

1) Forany x e (-1,1 )n there is a unique solution for (2.1).

2) Along a non-equilibrium solution, E decreases monotonically, implying that no non-

constant periodic solutions exist.

3) Each solution exists on [0,<»)

4) Eachnon-equilibrium solution of (2.1) converges to anequilibrium solution of (2.1) as

t —»<».

5) There are only a finite number of equilibrium points for (2.1).

Theorem 2.2: Suppose that the system satisfies the assumptions (A) and (B). If x is an

equilibrium of (2.1) then the following statements are equivalent:

a) x is stable;

b) x is a local minimum of function E;

c)JE(x)>0;

d) x is asymptotically stable.

Assumptions(C):

1)5/ : (-1,1) -» R is a C2 function and

2) 5/"(p) > Oforp e (0,1)



Conjecture:

If the system (2.1) satisfies assumptions (A), (B) and (C), then there is at most one

asymptotically stable equilibrium point of S in each of the 2" regions A(rj1,Ti2, r\n)

defined by

A0llJl2Jl3»'--T|n) = [X £ (-l,l)n :T|/*/ > 0, -1 < I <S n).

Michel, Li and Porod have proposed the above as a theorem in their results [1]. Howev

er, the proof proposed by them is not complete in our opinion. We present their proof

here and explain why we consider it to be incomplete.

Proofproposedfor Conjecture:

To prove the theorem we define the following:

Ds{xeA: DF(x) > 0) andC = P~l(D)

Lemma 1: C is convex.

Lemma 2: There is at most one zero of V£ (x) in region D.

Proofof Lemma 2: Assume there is more than one zeroof V£ (x) in region D. Then there

exist y, z e C, y * z such that Qiy) = Q(z) = 0 . By the mean value theorem, there

exists*, e (0,1) such that Qiy) - Q(z) + DQ(z+t(y -z))(y -z).

It is this proof which finally leads to the proofof the conjecture that we disagree with be

cause of the fact that the mean value theorem is not applicable for functions from Rn to

R.

2.2. Synthesizing the Network

Given a set of specified vectors, we wish to store them as equilibrium points

of a neural network of the form (2.1), satisfying assumptions (A), (B) and (C). We as

sume that 5 (x) and H (x) are given and that they satisfy the assumptions we have made.

The m information vectors, {fli,fl2, &n} are specified. We wish to find a symmetric

real n x n matrix T and an external input vector / e Rn such that a \ait..,an are equilibri

um points of (2.1).

From Lemma 2.1 we know that in order for the vector a,. , 1 £ / ^ m to be equilibrium
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points of (2.1) they must satisfy the system of equations

Tai + / = 5 (fl/), i = 1,2, ...m. (2.4)

Lemma 12:

Given m vectors {a i a2,»>Ai) C (-1,1)", then T and I comprise a solution of (2.4) if and

only if they are a solution of the equations

TA =B (2.5) and

/=5flm-T(flm) (2.6)

whereA = [a1-am,....,flm_i-am] and£ = [5(ai)-5(flm),...,5(flm - l)-5(flm)]

2.2.a Summary of Synthesis Procedure

i) Check if there are any at * a} which are located in the same region AOiiTjz ru)

defined by equation (2.4). If so it may not be possible to store both at and fly as equili

bria.

ii) Compute A = [a \ - am flm_i - am ], 5 (fl/ ),for i=l,2,...,/n ,

B = [S{ax)-S{am\ ..., 5(flm_!)-5(flm)andA'5.

iii) Check if AlB is symmetric. If this is not true, (fli a^.An) can not be all equilibrium

points of (2.1).

iv)Perform a singular value decomposition of A to obtain the matrices U, V and Z such

that A = UZV1 where U, V are unitary matrices and 2 is a diagonal matrix with the

singular values of A on its diagonal. In doing so we findk, the rank of A.

v) Compute U'BV

vi) Check if the last (m-l-k) rows of UlBV are all zero. If not a \a2,...Am can not all be

equilibria of (2.1).

vii) Choose an (n-k) x (n-k) symmetric parameter matrix *F = - cd(n-k) where a is a large

positive number.

viii) Compute Q =

where C\ is formed bv the first k rows and first k columns of U*BV and U* is formed bv

dir1 {c2zr*y
c2ltx *
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the last n-k rows and first k columns of UlBV. Zi is formed by the first k columns of I.

ix) Computer = UQU* &ndl = S(am) - Tam

x) Check if all of the eigenvalues of Jgto) = diag[ s[ (fl/(1)),....^n(flj(n))] - 7* are posi

tive. flg-O') is the yth coordinate of vector fl/, i = 1, 2, ....m. If this is true then a \a2t...,an

are asymptotically stable equilibrium points of (2.1)

2.3. Properties of the model

1. The model is fail soft in the sense that it will operate satisfactorily even if some of the

connections are severed (some of the7/y 's set to zero).

2. The update algorithm is straight forward and easy to program.

3. The computation is collective and this leads to a reduced computation time.

2.4. Limitations of the model

1. Given a set of memory vectors, the network is fixed and there is no "learning" process

going on which will make the time to converge from an initial vector to the equilibrium

closest to it shorter by starting from that initial vector frequently.

2. Every time we wish to add a new memory vector the entire network has to be syn

thesized from step 1.

2.5. Modified update Rule :

The algorithm described above has to be repeated from step (i) if we wish to

program the network to store an additional vector as an equilibrium point. In order to

make the computation a little easier we propose an update rule which is based on the

orthogonalized projection algorithm [5]. To begin with we assume that the vectors a, are

an onhonormal set of vectors. This is a reasonable assumption if m « n. Then we build

T in the following manner:

WeletTflisy!

fl^
We construct a first approximation for T as T{=y \-—-j

We define 6'-> = do - fli-—-r
Ifli I-
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(fli'flV)Now, 7a2 =yi - y\{la {i =?2

So we build the next approximation to T as

and so on to find the weight matrix. The advantage of this construction is that it is recur

sive. We illustrate both the methods with the example borrowed from Michel, Li and Po

rod.

Example 2.1 : Let n = 3 and let functions s : (-1,1) -> R be given by the sigmoid func

tion

j(p) = (\!X){2ln)tan ((ic/2)p) where X = 1.4. Then

j'(p) = (l/X)[l/cos2((7t/2)p)], and

*"(p) = (7t/X)sin((7C/2)p)/cos3((7U/2)p)

fl! = (-0.6,-0.5,-0.4)' andfl2 = (-0.4,0.8,-0.7)'

We seek to find a 3 x 3 matrix T and an input vector I, for a neural network of the form of

equation (2.1).

As explained in the procedure above we compute

A =
0.3

-0.626
-0.'5(fli) = _.455

0.330

B =
-0.956
-0.944

0.560

,5(fl2) =
-0-339
1.3995
-0.892

A'B = [1.4083]

The symmetry of A'B is trivially verified. And this means that the chosen vectors can be

programmed to be the equilibria of a network of the form (2.1).

Now, performing a singularvalue decomposition of A, such that A = UT.V1 yields

-0.9206 0.2761 0.2761
-0.2761 0.9603 0.0397

0.2761 0.0397 0.9603



I =
1.086
0.000
0.000

and V = [1.0] and the rank of A = k = 1.

We compute the matrix U'lV

U'ZV =
1.2965

-13

Since m-l-k = 0, we don't have to check for null columns in UlBV . We now choose the

parameter matrix *¥ to be *F =-a q°j J where a=10
1.194 -0.571 (

Matrix Q =
1.194 -0.571 0.219

-0.571 -1.6 0,^
0.2192 0.0 -10.0

From Q we can compute the matrix T and the input vector I andthey come out to be

T =
-9.1608 3.2827 -2.9584
3.2827 -8.8479-1.0548
-2.9284 -1.0548 -9.0425

and/ = *4-5.20

By computing 5(fli)-rfl!-/ and S(a2)-Ta2-I it is verified that ax and a2 are

equilibrium points of system (2.1). Further, since the eigenvalues of -/£(fli) and Je&i)

are both positive, a \ anda2 are asymptotically stable equilibria.
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CHAPTER HI

DISCRETE NEURAL NETWORKS

3.1. The Hopfield Network

In [1], Hopfield proposed a model which consisted of n "neurons", the output

of each being either 0 or 1. Each neuron adjusted its state asynchronously by setting

Vi -» +1if ^TijVj >Ui (3.1)

andv/ —> —1 if 2LTijVj < Ui

where Ttj is the strength of the interconnection between neurons i and j. The I/O charac

teristic of each neuron is modeled as a step function. The output of all the neurons,

vi,v2, •• • ,vrt can be represented by one vector v*. The modeof operation of the network

can now be described by the equation

t(k+l) = sgn(P?(k)) - U (3.2)

where sgn(x) = +1 for x > 0 and -1 for x < 0, and U is the vector of thresholds

uhu2,--un.

In general, the thresholds are set to be equal sincethis is easier to implement

and they are very often set to be zero. Also, only oneentry of U is updated at a time. The

output of the network is lirnv(fc) when it exists and we denote it by Vout. If the limit
k'

Vout exists, then H: {-1,1} -> {-1, 1) is called a Hopfield operator. H is completely

specified by the matrix T. We seek to study the number of spurious equilibria of the sys

tem.

3.2. Properties of the network

1. It is fail soft.

2. It "learns". Neurophysiologists believe that human beings learn by modifying the
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synapses in the brain. The ability of the network to modify the strength of the connection

between two units to add memories can be considered analogous to that.

3. The collective nature of the computation makes it faster.

3.3. Limitations of the network

1. Perhaps the biggest limitation of the network is its memory capacity which is very

low. The number of memories that can be faithfully programmed to be content address

able is as low as 1.5N [7], N being the number of units in the network.

2. Another limitation is the appearance of spurious equilibria, or memories that represent

patterns we do not intend to remember.

3. The large number of interconnections between the various units makes it difficult to

synthesize such a network in a VLSI chip.

Theorem 3.1:

Let G = {fli,fl2,.-.An) belong to (-l,l)n where the fl/ s are orthonormal, i.e. fl,rfly = 1

for i = j and 0 otherwise.

Let T = 'fffl,-fl,-r. Let Mm be the set of memories that the network stores. The set of
1=1

memories that we wish to store, G, is a proper subset of Mm.

Let Rm = the set of all realizable Boolean functions of the vectors fl1,fl2,...,am- Then

there is an injection between Mm andRm. Further, the cardinality of Mm is given by

2£ < cardiJAm) <^r « *m.
Proof:

Let x be an attractor. Then ,

sgniTx) = x\ (3.3)

sgntf^aia* {x) =x; (3.4)

sgnffiaiai) = x: (3.5)
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Hence the argument of the signum function is the orthogonal projection of x over the

space spanned by the eigenvectors of T that correspond to non-zero eigenvalues. T is

also called a projective matrix for this reason.

If we define an orthant of x , O(x) to be the region of Rn that satisfies sgn(fl Y) =

sgn (*i), sgn(fl2) = sgn (*2), and so on, then ths gn function can be characterized as the

mapping of a vector into the vertex of the N-cube in that shares the same orthant as the

vector.

Observation 1: A necessary and sufficient condition for x to be an attractor is that the

orthogonal projection of x over the space spanned by the eigenvectors of T corresponding

to the non-zero eigenvalues also lies in the orthant of x.

Observation 2: sgn (Tx) = x if and only if projection of x on S eO (x);

where S is the space spanned by the eigenvectors of T corresponding to the non-zero

eigenvalues.

Let Qm = { x: S p> 0(x) * 0). Let Mm = [x: H(x) = *), where H represents

the Hopfield operator.Then, from observation 1, we conclude that Mm C Qm. The fol

lowing exercise illustrates how Qm is determined.

Illustration:

Let us consider the case of 3 memories. (This example is borrowed from the work of

Akra[5]).

T='j^fl/fl'; (3.6)
Let S = space spanned by the three vectors. To find the orthants that intersect S, it is

sufficient to study the sign of the entries of the vector

sgniaa^ + $a2 + ya2)

which is the same as exploring the signs generated by

a + p + Y

a - p + y

a- P - y
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So the number of memories is the number of distinct signs of vectors we can generate us

ing,distinct choices of a, p and y. From the literature on Threshold Logic[6], we learn

that 4 planes passing through the origin divide R3 into 14 regions such that all triplets

(a,P,y) lying in the sameregion generate the same vectorof signs. Hence, we derive that

23 = { x : x = sgn{m\a-\ + m2a2 + m^az) } where (mi, m2, m3) e M,

M being defined by

M = { (1,0,0), (-1,0,0), (0,1,0), (0,-1,0), (0,0,1), (0,0,-1), (1,1,1)

(1,1,-1), (1,-1,1), (1-1,-1), (-1,1,1), (-1,1,-D, (-1-1,1), (-1-1-1)1

Mm can be determined by using the fact that Mm C Qm to check if even' vector of Qm

and see if it satisfies T(x) = x. However, we really need to check only two of the vec

tors, those corresponding to m = (1, 0, 0) and m = (1, 1, 1). Taking N = 4,

fl! = (1,1,1, l),fl2 = (1, 1,-1,-1) and fl3 = (1,-1,-1,1), the attractors are fli and

sgn (a i + a 2+ a3). therefore, for m = 3,

Mm = Qm = { x-jc = sgn(mia\ + m2fl2 + ^3^3))- Thus we reach the im

portant results that the attractors of H are the following:

fli, fl2» 03> <*1» fl2, 03.

fl!fl2 + fl3 (a1 xor a-i), a\a2 + 03 (fli xor a2)

axa2 + fl3 (fli xor ai), a\a2 + 03 (fli xor a2)

a\a2 + fl3 (fli xor a2)ia\a2 + 03 (fli xor a2)

a\a2 + A3 (fli xor a2),a\a2 + 03 (fli xor a2) >

the logical operations between the vectors being defined on an entry by entry basis and

the xor operator refers to the logical exclusive OR operation. Thus the number of spuri

ous equilibria is very large. The above example indicates that the number of equilibria is

14, no matter how large N is. Since the number of desired equilibria is 3, the remaining

11 equilibria are spurious equilibria. For a larger value of m, the number of attractors is

extremely large. For m = 7, the number of attractors is 3, 548, 351. As m grows larger,

the number of equilibria grows very rapidly.
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3.4. Characterization of Spurious States

Consider a Hopfield network consisting of N neurons having threshold zero.

Let [Tij] be the interconnection matrix of the network. Let m be the rank of T. Let

Viy2,V3,..Vm be the eigenvectors of T corresponding to its non-zero eigenvalues. Let us

assume that these vectors are constrained to be the comers of (-1, ly7. Further, let us

assume that the corresponding eigenvalues are equal and positive. Let Mm be the set of

attractors of the network. Then,

cardiMi) = 2, cardiMi) = 4, CardiMJ) = 14, and soon. (refer [5])

In general, 2%- <card{Mm) <Mj£- « 2*. (3.7)
Let Rm be the set of all realizable Boolean functions of the m vectors. Since there is an

injective mapping between Mm and Rm,

card{Mm) < card(Rm) (3.8)

It is known form threshold logic[6] that

card(Rm) < -^- « 22"\ thus establishing the upper bound of Mm.

For the lower bound, note that for any m all vectors having anodd numberof +Vs or -l's

and (m - p) zeros correspond to an attractor. The number of such attractors can be com

puted as follows:

A3
r "\

s

P feLPJ
y = 3»-^-ir foroddp. (3.9)

To summarize, the results mean that a space spannedby vectors of the n-cube in

tersect an orthant if and only if the N-cube element which lies in the orthant is a realiz

able Boolean function of these vectors.

3.5. Discussion

Amit et al[12] and Newman[13] have shown that in the case where N -»°° , the spurious

states correspond to mixtures of finite number of original patterns. Each such

configuration, denoted X (v) is given by:
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X(v) = sgn(vlV1 + v2V2+.... + vmVm) (3.10)

where v=(Vi,V2,..) is a fixed real vector independent of m with the following properties:

(i) v has a fixed number of non-zero components.

(ii) ivilv2iv3 •••*Q for any choice of! signs.

(iii) For each non-zero vm the sum iviiv2tv3 ••• has the same sign as ivm for exactly

a fractional + vm)/2 of all possible sign choices.

The threshold logic approach of enumerating the spurious states is an attempt to

exhaust all the possible v's . The above results hold for finite N as long as

\og2N > m - Land the vectors are orthogonal to one another in the geometric sense.

3.6. Generality of the Results

1) The results hold even if the vectors at are not orthonormal. If the vectors are uncorre-

lated, i.e. E{at Taj) =0 for /*j , the results hold if N is large enough.

2) It is not fundamental to the results thatT be a sum of outer products matrix. It is only

required that T be symmetric. Since any N x N symmetric matrix has N orthonormal

eigenvectors, flt-, i = 1,2,.JV , T can be written as

T = Thai

3) If T is asymmetric then the complex eigenvalues may cause the output to exhibit oscil

latory behavior.

4) It is not necessary that the eigenvalues of T be equal. The only restriction placed on

the eigenvectors of T is that they belong to the N-cube. This constraint helps establish a

lower bound for the number of equilibria, as we saw earlier.

5) Since the fixed points of sgn(T) remain the same whether we update one neuron at a

time or all of them, the synchronous and asynchronous models behave similarly. If the

network is operated in continuous space mode, the sigmoid function that would be used

will gradually shrink during the operation of the network to force the output of the state
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to be on the N-cube. This is discussed by Hopfield[ ]. If the network is operated with sto

chastic transitions where the probability of changing the neuron state is given by figure

2., the number of spurious states is reduced significandy at high temperature (the proba

bility of the transition in state of each unit is given by 1

l+e -A£4/r
and T is a parame

ter analogous to temperature and this corresponds to the long transition region in figure

2). However, as the network starts to cool, other spurious states start to appear and for T

= 0, all of them are present. In order to heat the network at start and thus produce correct

outputs with very high probability, the number of neurons required is very large, approxi

mately m/0.15 [5]. The number of interconnections involved make this impractical from

an implementation perspective.

6) In order to push the spurious states away from the desired memories, the number of

neurons required is very large, which a'gain leads to difficulty in implementation.

7) Newman[13] has proved that the spurious equilibria have energy barriers for

sufficiently small a = lim m/N.

Applying Simulated Annealing to Hopfield nets:

Rumelhart and McClelland[10] have proposed a simple modification to the

Hopfield update rule to implement simulated annealing. If the energy gap between the 1

and 0 states of the kxh unit is A£* then, regardless of the previous state set, a* is 1 with

probability

" where T is the parameter that is analogous to the temperature of aPk =
l+e

-A£4/r

physical system. This corresponds to our discussion above on the stochastic models and

its limitations.

Hopfield has also applied his networks to solve optimization problems[8].

Our discussion clearly indicate why these networks do not succeed in their goal of

finding a global minimum or optimum solution. Not only do they get stuck in local mini-
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ma, but also there is a possibility of encountering a large number of spurious equilibria.

Applying simulated annealing is not an altogether satisfactory solution to the problem of

spurious equilibria, primarily because of the difficulties in implementing such a network.
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CHAPTER IV

BACK PROPAGATION:

4.1. The Problem

The networks models we have seen so far are two-layered association net

works in which a set of inputvectors arriving at the '"input" layer are mapped to a set of

output vectors at an "output" layer. These networks do not have any hidden units. This

implies that there is no internal representation for the things we wish to remember. The

essential characteristic of these networks is that they map similar input patterns to similar

output patterns. This could lead to an inability to learn certain mappings from input to

output. Whenever the similarity structures of the input and output patterns are very dif

ferent a network which does not have an internal representation will be unable to accom

plish the necessary mapping. This is exemplified by the classic case of not being able to

build the XOR function usirfg a single threshold element. Minsky and Papert[ll] have

analysed the conditions under which two layer networks are capable of performing the

required input-output mappings. They alsopointed out that with a single layer of simple

perceptron-like units, as in figure 3. with which the input layer can be augmented, any

mapping between the input and output units can be supported.

If we have the right connections between the input units to a large enough

set of hidden units, we can always find a representation that will perform any mapping

from the input to the output units. To the output unit, the hidden unit is equivalent to

another input unit. The problem, is that whereas a very simple guaranteed learning rule

that applies to all problems that can be solved without hidden units, there is no equally

powerful learning rule for networks with hidden units. There have been three approaches,

as it were, to this problem. One of the learning procedures is competitive learning in

which unsupervised learning rules are employed in order to make useful hidden units ap-
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pear. The obvious drawback of this method is that there is no external force to ensure that

hidden"units appropriate for the desired mapping are developed. The second response is

to assume an internal representation, based on a priori reasoning. The third is attempting

to develop a learning procedure capable of learning an internal representation that is ade

quate for accomplishing a specified task. One such procedure involves the use of stochas

tic units, requires the network to reach equilibrium in two different phases and is limited

to symmetric networks. There is also an alternative approach that uses deterministic units

and involves only local units. This is called the generalized delta rule.

4.2. Description of a multi-layered network

The Hopfiled network can be viewed as a two-layer neural network with

each network having n threshold units. The connection between the two layers is given

by the symmetric matrix T. For the standard autoassociative Hopfield model, which we

have discussed earlier, the output of the second layer is fed back into the first layer and

the elements of T are given by the Hebbian(outer product) rule. The change in weights

ATjy in a very general form can bethought of as a function of

1. The input to the /th unit,

2. A teaching input to the /th unit,

3. The output of they'th unit and

4. The strength of the connection between the /th andyth units, w/y.

In its simplest version, the Hebbian learning rule is given using only 1 and 3 above :

A\Vij = T|fl,-0;-

where rj is a constant of proportionality representing the rate of learning and

a,- andoy are the input to the /th unit and output of they'th unit respectively.

A multi-layered network, on the contrary, has several layers of units, each

layer being a set of units whose relationship with the units belonging to another layer be

ing different from its relationship to units in the same layer. Thus a layer is a logical con

cept (and not necessarily a physical one). We consider three-layered networks here.
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Most of the results can be easily extended to networks with more than three layers. In the

analysis that follows the input vectors are represented by /,•, and the output units by ot.

The weight between any two units, i and j is given by wy-. We present several patterns to

the network, in order to make it "leam". The target or desired output of they'th output unit

on the presentation of the kth pattern is represented by ty. The output of thejth unit on

the presentation of the kth pattern is represented by oy and the jth component of the kxh

input vector is represented as /*;. Each of the units is a threshold unit like the one

described in Chapter HI.

4.3. The Generalized Delta Rule

To begin with we apply the procedure to a two-layer network. The learning

procedure involves presenting the system with pairs of input and output patterns. The

system uses the first input pattern to to produce an output vector, and compares this with

the desired target vector. If there is no difference, no "learning" takes place. Otherwise,

the weights are altered so as to reduce the difference. The rule for changing the weights

after the kth input, output vector pair, input vector fe and output vector ok is given by

A*Wy = T\(tkj -okj)iki = r\b*kjiki C4-1)

where ty- = target input for/th component of the output pattern k.

Okj =yth element of actual output pattern produced byinput pattern k.

iiu = value of the /th element of the input pattern.

8*y = hj - Okj

AkWij - change to be made to the strength of the connection between the /th and

7'th units following the presentation of the pattern k.

There are many ways of deriving the the generalized delta rule. It is useful to

observe that the method minimizes the squares of the differences between the actual and

desired output vectors summed over the output vectors and all pairs of input/output vec

tors. One way of establishing this is to show that the derivative of the error measure with

respect to each weight is proportional to the weight change dictated by the delta rule, the
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constant of proportionality being negative. This corresponds to performing the steepest

descent on a surface in weight space whose height at any point in the weight space is a

measure of the error [10]. The delta rule essentially implements gradient descent in sum-

squared error for linear(as opposed to sigmoid) activation functions. Without any hidden

units, since the error surface is concave upwards, gradient descent is guaranteed to find

the best set of weights. However, with hidden units, there is a possibility of getting stuck

in local minima. The important observation to be made is that the problem of local mini

ma is not relevant to.a wide range of learning tasks. Also, since hidden units with linear

activation functions provide no advantage, it is important to generalize the analysis to the

case of nonlinear activation functions. The nonlinear activation function must meet the

requirements that it be a nondecreasing and differentiable function of the net total output

n&kj = ^wjiPki where ox =/,• if unit / is an input unit. Thus the nonlinear activation

function results in the following dynamics:

Okj = fj(netkj) (4.2)

where/is differentiable and nondecreasing. In order to generalize the delta rule, set

AkWji a--^- (4.3)
* Jl dWji

where E, as defined earlier, is the sum squared error function described earlier.

dEk _ dEk dnetkj ,44^
dwji dnetkj dwji

By the definition of netkj ,

dnetk; d ^
dwji dwji /& J

Defining -j—— = 5*;-0# This implies that to implement gradient descent in E, the

weight changes should be made according to

A*uy« = r\SkjOid (4.5)

The only problem remaining is what Skj should be for each unit iij of the network. It is
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easy to establish that a simple recursive computation of the 8's can be implemented by

propagating error signals backward through the network [10]. The results can be sum

marized as follows: the weight on each line should be changed by an amount proportion

al to the product of an error signal, 8 , available to the unit receiving input along that line

and output of the unit sending activation along that line. In symbols,

Afcwyi = r\BkjOfd (4.6)

where 5*; = (ty -okj)f")(netkj)

f)(netkj) being the derivative of the activation function which maps the total input of

the unit to an output value. The error signal for the hidden units for which there is no

specified target is determined recursively in terms of the error units to which it is directly

connected. That is,

5*; =/ 'j (netkj)Y^ton wmj (4-7)
m=sl

whenever the unit is not an output unit.

The application of the generalized delta rule, thus involves two phases. In

the first phase the input is presented and propagated forward through the network to com

pute the output value for each unit. The output is compared with the target to obtain an

error signal for each output unit. In the second phase the error is passed back to each unit

in the network and the appropriate weight changes are made. The second phase allows a

recursive computation of 8. The 8's are first computed for all the units that are in the

output layer. The weights of all the connections that feed into the output layer are

changed accordingly. Then the 8 's for the units in the penultimate layer are computed.

The same process is repeated for every layer of the network. Note that it is not required

that wemodify all the weights. It is possible to keep any number of weights fixed. In this

case, the error is still propagated backwards, but the fixed weights are not modified. Also,

output units can receive inputs from other output units in earlier layers. Such units re

ceive two different kinds of error, one from direct comparison with the target vector and

the other passed through the activation units they are connected to. The two weight
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changes are summed to obtain the weight change corresponding to the two error signals.

4.4. The Activation Function for back propagation

The derivation of the learning rule requires that the derivative of the activa

tion function exists. Also, it is necessary to have a nonlinear differentiable activation

function since a linear function does not achieve any advantage from the hidden units.

Let us consider an activation function of the form

aia = l—- (4.8)
l+e-"""

In order to apply the learning rule it is necessary to establish that the derivative of a&

with respect to net/a exists.

Jjgi- =aw(l-a«) (4.9)
Thus the error signal, 8*,-, is given by

8jy = Oki - an )<*ki (1 - a>\d )•

Note that the derivative reaches its maximum at fl&- = 0.5 and since 0 <a& <1, it

reaches its maximum value as ak approaches 0 or 1. Since the amount of change in the

weights is proportional to the derivative, weights are changed most for those units that

are close to their midrange, and in a sense, not committed to be either on or off.

4.5. Discussion

The learning procedure requires only that that the change in weight be pro

portional to the weight error derivative. True gradient descent requires that infinitesimal

steps be taken. Theconstant of proportionality, e, is the learning rate in the procedure and

the larger it is, the greater the change in weights. Forpractical purposes, it is important to

choose as large a learning rate as possible without leading to oscillation in order to

achieve the most rapid learning. One way to increase the learning rate without leading to

oscillations is to modify the back propagation learning rule to include an extra term that

is analogous to momentum. This can be accomplished as follows:

Auvy(rt +1) = e(didai-j) + OiAwijin) (4.10)
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where n indexes the presentation number of the pattern and a is a constant that deter

mines the effect of past weight changes on the current weight change. Thus it provides a

momentum in weight space that filters out high frequency variations of the error surface

in weight space.

The learning procedure has one more problem. If all the weights start out

with equal values and if the solution requires that unequal weights be developed then the

system will never leam, This is because the error is propagated back through the weights

in proportion to the values of the weights. All the hidden units that are connected direct

ly to output units will thus get identical weight changes and the weights from these units

to the output units will thus remain the same. The system thus starts out in an unstable

equilibrium point and keeps the weights equal. In order to counteract this problem the

system must be started with small random weights.

The derivation of the back propagation rule supposes that we are taking the

derivative of the error function summed over all the patterns. Hence it is possible that we

may present all the patterns and then sum the derivatives before changing the weights.

Instead, we can change the weights after we present each pattern. For a small learning

rate, it-is easy to establish by simulations that the difference in the two approaches is

negligible. However for a very large number of patterns the approach of changing

weights after the presentation of each pattern is more useful.

4.6. Extensions of Back Propagation

We have analysed back propagation in one-pass, feedforward networks.

Here we discuss some extensions of the method in an attempt to make the scheme more

recurrent.

4.6.a Cascaded Feedforward Networks

These networks preserve the desirable computational characteristics of the

back propagation scheme but combines with them a gradual build-up of the activation.

Here, the net input to each unit is given by
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netirit) =kr^wijajsO) +(1 -kr)netir(t - 1) (4.11)

and the equation for its activation is

*><'> - l+eLM <4-12>
In the implementation of the scheme there is a single parameter, called the cascade rate,

that is used for all units instead of a separate rate parameter for each level. One advan

tage of this scheme is that if an input pattern comes on at time t=0 and stays on, the

asymptotic activation each unit reaches is identical to the activation it reaches in a single

step in the one-pass feedforward computation. Thus the one-pass network in fact com

putes the asymptotic activations that would result from a process that may in real systems

be gradual and continuous. The network can then be trained to achieve a particular

asymptotic activation value for each of several patterns. Another feature of such net

works is that their dynamical properties depend on the initial state. It may be assumed

that the initial state is the pattern of activation resulting from an input pattern consisting

of all non-zero activations for all the input units. In order for this to work the network

must be trained to produce an appropriate output state for this initial input state.

4.6.b Recurrent Networks

It is easy to establish that for every recurrent network, there is a feedforward

network with identical behavior (over a finite period of time). However, the behavior of a

recurrent network can be achieved in a feedforward network at the cost of duplicating the

hardware many times over for the feedforward version of the network. Hence the advan

tages of building a recurrent network. We have distinct units and distinct weights for

each point in time. As long as we constrain the weights at each level of the feedforward

network to be the same, we have a recurrent network which performs identically with the

feedforward network(refer to figures 4 & 5). The appropriate method for maintaining the

constraint that all weights be equal is to simply keep track of the changes-dictated for

each weight at each level and then alter each of the weights by the sum of the required
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changes. The general rule for determining the change prescribed for a weight in the sys

tem foe a particular time is to take the product of an appropriate error measure 8 and the

input along along the relevant line. Thus the problem reduces to computing the correct 8

for each time. In a feedforward network, 8 is determined by multiplying the derivative of

the activation function by the sum of the 8's for those units it feed into weighted by the

connection strengths. The same procedure works for recurrent networks, except that in

this case, the value of 8 associated with a particular unit changes in time as a unit passes

error back, sometimes to itself. After each iteration, as error is being passed back through

the network, the change in weight for that iteration must be added to the weight changes

specified by the preceding iterations and the sum stored. This process of passing error

through the network should continue for a number of iterations equal to the number of

iterations through which the activation was originally passed. And at this point, the

changes to all the weights are made.
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Summary and Conclusions

We have examined two layer networks and found that their main limitations

are that they can leam only certain classes of input/output patterns and that they end up

learning a large number of "spurious" patterns. In order to increase the reliability of such

networks in recalling the stored patterns it is necessary to have a network with large

number of units in proportion to the size of the pattern they leam. They also have the

problem that some initial states may get stuck in local minima.

The back propagation approach overcomes some of the limitations that are

inherent to two-layer networks. By learning internal representations for patterns, they are

able to leam a considerably wider range of patterns than two-layer networks. However,

they also have the problem of learning extra or spurious patterns and have local minima.

However, for a ldrge variety of problems the local minima are not really a problem.

Further, it is possible to obtain a recurrent implementation of the back propagation model

and this is extremely useful for implementation.

Most artificial neural network models that have been developed have a com

mon characteristic which is that they perform very well for a particular class of problems.

And even so, it cannot be guaranteed that they will produce the correct solution in a new

instance even after a long learning or training period. In this sense, they are a far cry

from biological neural networks. And because it is not possible to guarantee that they

will produce the correct solution every time, they are not entirely suitable as a tool for

computation. However, many such networks have been implemented as VLSI chips and

they are a very useful tool to augment the conventional tools for such problems as pattern

association.
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Figure 2: Transition probabilities of a neuron in the stochastic mode
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Figure 3: A multilayer networkwith internal representatiion units



Figure 4: A completely connected two-unit recurrent network

Figure 5: An equivalent feedforward network
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