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KHARITONOV'S THEOREM AND A GRAPHICAL STABILITY TEST
FOR LINEAR TIME-INVARIANT SYSTEMS

John J. Anagnost, CharlesA. Desoerand Robert J. Minnichelli
Department of Electrical Engineering andComputerScience

University of California, Berkeley

0. SUMMARY

This paper presents a simple rigorous development of two major results in robust stability theory:
Kharitonov's Theorem for interval polynomials (a previously known result); and a graphical U -stability
Nyquist type test for a broad class of parameterized linear time-invariant systems. An example is
included for a time delay system with non-linear parameter dependence.

1. INTRODUCTION

This paper presents a simple rigorous development of two major results in robust stability theory.
Section 2 presents simplified analytical methods for proving Kharitonov 's stability theorem and several
extensions, all previously known results. Section 3 presents a generalization of these analytical methods
to develop a graphical technique-related to the classical Nyquist criterion-for a much broader class of
robust stability problems.

Kharitonov*s Theorem states that an interval class of polynomials, defined by letting each
coefficient vary independently in arbitrarily defined intervals, is Hurwitz if and only if four special, well-
defined polynomials in the class are Hurwitz. The original proof of this theorem was rather complex, but
a series of simplifications in the exposition have led up to the simple proof included here; we refer to
[Barm. 1], [Yeu. 1], [Das. 1] and [Min. 1] in particular, with additional references included in these.
Indeed, the cornerstone of our exposition is the observationthat the image of the interval class of polyno
mials, evaluated at any point on the imaginary axis, is a level rectangle in <C, with corners specifiedby the
four Kharitonov polynomials (Lemma 2.2); this observation is due to Dasgupta [Das. 1]. We consider
the motion of this rectangle, using very elementary facts about Hurwitz polynomials, to prove the result
without reference to the Hermite-Biehler Theorem.

In Section 3 we apply the analytical methods developed in Section 2 to a much broader class of
problems. Instead of the closed right half-plane, we consider arbitrary closed sets U of forbidden zero
locations; and instead of an interval class of polynomials-a parallelepiped with edges parallel to the coor
dinateaxes in coefficient space-we considermoregeneral sets: arbitrary polyhedra, convexsets, compact
connected sets and even completely arbitrary sets. The resulting test is a graphical technique-first pro
posed in [Ana. l]-based on a result sometimes referred to as the 'zero-exclusion principle,' an old idea
discernible in Bode's notion of gain andphasemargin. Section 3 includes a proof of this result appropri
ate for the broad class of problems under consideration. Of course, the polyhedral case, with its linear
constraints, will have the most numerically efficient solutions. Finally, instead of considering only poly
nomial functions, we consider a broader class of functions on <C; specifically, functions analytic in the
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region U. This allows us to analyze systems with a variety of infinite-dimensional components: PDE's
and time delays being the most important. An example demonstrating the latter is included in Section
3.4.

Related work has been developed by Barmish [Barm. 2,3]; similar graphical tests are proposed,
although not exactly of the 'Nyquist' variety used here. The Nyquist type tests, actually plotting the
'nearestpoint* in the imageset, seemto be the mostefficient, and the resulting graphical information can
be utilized with a traditional Nyquist plot interpretation for the whole family of systems. For the
polyhedral case mentioned above (either polynomials or analytic functions), an alternative approach to
theNyquist type tests described hereis the root-locus type tests of Bartlett, Hollot and Lin ([Bart. 1], the
'Edge Theorem'). There areeven finite algorithms forimplementing theEdge Theorem (see [Fu 1] for
the special case where U is the right half-plane; [Kra. 1] for the unit circle with low order polynomials;
and [Ana. 2] for arbitrary closed U with parameterizable boundary). Even considering these finite
implementations, we feel the Nyquist type algorithms will, in general, prove most efficient (see ourdis
cussion in [Ana. 2]).

2. STREAMLINED PROOF OF KHARITONOV'S THEOREM

2.1 Statement of the Theorem

We consider a family of real polynomials of degree n
n _

p(s,a) =%aksk 0 < Qk £ ak < ak £=0,1,...,* (2.1)
o

where the realnumbers a* andak are givenanda: = (a0,a lt..., an). Define

A: = {aeIR"+1 : a* < ak < ak, k =0,1,... ,n). (2.2)

A is a parallelepiped in Rfl+1 with 2"+1 vertices. There is an obvious bijection between the points ofA
and the polynomials p(•, a), so we consider A as &family ofpolynomials. Using standard setnotation
we write, for any fixed s e <C,

p(s,A)={p(s,a)\ aeA) (2.3)

Recall that a polynomial q{) (with either real or complex coefficients) is called Hurwitz iff all its zeros
have negative real parts. We say that the family A is Hurwitz iff all members of A are Hurwitz. We
define the four Kharitonovpolynomials with respect to A as follows:

k\\(s) =aQ +axs +a2s2 +a3s3 +a4p4 +a5s5 +... (2.4)

kiz(s) =a0 +als +a>2s2 +a3s3 +a4s4 +a5s5 + ... (2.5)

k2\(s) =a0 +ais +a2S2 +a3s3 +a4s4 +a5s5 +... (2.6)

k22(s) =a0 +als +a^2+a3s3 +a^s4 +a?5 +... (2.7)

Theorem 2.1 Kharitonov's Theorem (Real Coefficients) [Kha. 1]. Consider A, the family of poly
nomials defined in (2.1) and (2.2). The family A is Hurwitz if and only if the four Kharitonov poly
nomials ki!(•), k12( •), *2i( *). *22(*) are Hurwitz.

2.2 Two lemmas

We start with a useful characterization of Hurwitz polynomials. The following analytical tools have
been available to the engineering community for a long time; the earliest reference we have found to
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similar concepts is [Whi. 1,Sec. 6.31, Ex. 2 (1902)]. They are proven here for completeness.

Lemma 2.2 Characterization ofHurwitz polynomials. Let

<?CO =S<fc** ^to fteR.Vik, and qn > 0. * (2.8)
o

i) The polynomial q is Hurwitz if andonly if

a) arg<7(/©) is well defined V©eR, and (2.9)

b) lim argte(/©)]-arg<7 (())=-—•. (2.10)
a>-»oo Z

ii) If q is Hurwitz then the map CD -> argq (J©) is strictly increasing on R.

in) If q is Hurwitz with qn > 0, then all of its coefficients are positive.

Comment Geometrically, statements i) and iii) imply that an nth degree real polynomial q with posi
tive coefficients is Hurwitz if and only if the curve traced in C by q(j' ©), as © increases from 0 to °°,
starts on the positive real axis and rotates around the origin counterclockwise by a net change of angle of
n 7i/2. Statement ii) implies that this rotation is monotonic.

Remark. If the coefficients of q (•) in (2.8) are complex with |qn \ ± 0 then statements i) and ii) of
Lemma 2.2 remain valid provided (2.10) is replaced by

lim [argq(+j<o)-aigq(-j(o)] = nK. (2.10a)
<0—»oo •

In the proof below we would add arg(<yB) to the RHS of (2.11) for the complex coefficient case.

Proof, i) =>. Statement (2.9) holds since q has no zeros on the y©-axis. Now since qn > 0, denot
ing the zeros as z,- = a,- + j ©,-, we have

n

argteO'©)]= Z argO'co- zf). (2.11)
l

Since Vi, o,- < 0, for each real zero, arg(/©- z,) increases by n/2 as © increases from 0 to «>; for each
pair of complex conjugate zeros, arg(/© - z,) + arg(/© - zj) increases by k. Hence (2.10) follows.

<=. Assumption (2.9) implies that q has no j ©-axis zeros. To prove that q is Hurwitz use contraposi
tion. Suppose q has a real zero in the open right-half plane, say z j > 0. Then arg(/ ©- z x) decreases by
n/2 as © increases from 0 to «>. Since q has precisely n zeros, the equality in (2.10) cannot be satisfied.
Hence (2.10) rules out open right half plane zeros of q.

ii) If q is Hurwitz then its n zeros are in the open left half plane: hence Re z, < 0, V7. Now
arg(/©-z,-) is a strictly increasing function of © for all ©sR, hence by (2.11) the same holds for

arg ?(/©)•

iii) Since q is a real Hurwitz polynomial, its zeros are realor occur in complex conjugate pairs: so q (s)
is a product of qn, monomials (s - a,) with a,- < 0 and binomials s2- 2aks +(qk + ©*) with ok < 0.
Since each factor has positive coefficients, their product, q (•), will have positive coefficients. •

We now prove a key property due to Dasgupta.

Lemma 23 [Das. 1], For each fixed ©e IR+, /?(/©»A)is a rectangle with edges parallel to the coor
dinate axes and with vertices determined by the four Kharitonov polynomials fcn0'©)» ^nO®).
*22(/©)and*2i(/<«>)-



-4

Comment By (2.1), for any fixed ©eR, the map a ->p(jto,a) \sz linear map from A cRn+l into
<E: since A is a parallelepiped in Rrt+1, p (J ©, A) is a convex polygon in <C. The thrust of Lemma 2.3 is
thatthis polygon is the rectangle with comers kn(/©)» knU ®)t *2i(/ ©)t and k^Q <*>)• (Fig-2-1)

Proa/. From (2.1) we have, V©e R,

a0~a2<aL +aA<a4-... £ Re{p(/©»fl)} ^ a0-S2°>2 +«4©4- • (2.12)

and,V©eR+,

©(fli-a3©2+S5©4-...) £ Im{/?0'©.«)} ^ ©(a!-a3©2+fl5©4-...). (2.13)
Let gi(/©) and g2(/©) be the LHS and RHS of (2.12), and hi(j<o) and h2(ja>) be j times the LHS and
RHS of (2.13). Note that the four polynomials $,(j), g2(s), ni(s) and A2(s) nave real coefficients and
thatthe four Kharitonov polynomials, defined in (2.4M2.7), are givenby

(2.14)kim(s) = gi(s) + hm(s) /,m=l,2.

By (2.12) and (2.13), we see that p(j ©, A) is the convex hull of the images of the four Kharitonov poly
nomials:

pO'©,A)=CO{^llO'G>).*2lO'(«>)^220'G>)^120'0))} (215>

Examination of (2.12-2.15) shows that the sides of p(j ©, A) are parallel to thecoordinate axes. D

i k.

h2(j(Q)< *12(/G>) *22(/©)

P(/©.G)

/ii(/©)<
*ii(/©)

i

*2i(/©)

i

i

*l(/©) £2(/©)

Figure 2.1:

Rectangularimage p(/©»6) (for©>0).

23 Proof of Kharitonov's Theorem

Proof =>. If all polynomials of the family A are Hurwitz, then, in particular, kxlf k12, £2i and £22 are
Hurwitz.

<=. By assumption*!i, k 12, fc2! andk-^are Hurwitz polynomials.

Step 1. Consider the motion of the rectangle p(j(d,A) as © increases from 0 to <~. Clearly,
p (0, A) =[a 0> flol» asegment of the positive real axis since a0 > 0. Since the klm (/©) are polynomials in
©, the rectangle p(j<otA) will move continuously in <C as © increases, keeping at all times its sides



parallel to the coordinate axes (Lemma 2.3).

Now k21 is Hurwitz and k2l(j<a) is the lower right hand comer of p(j<a,A)\ since argk2l(j<a) is
strictly increasing, k2l(jri) will push/?(/©.>*) off the real axis into the open first quadrant and then, if
n > 1, will push the whole rectangle p(j<o,A) into the open second quadrant. Now, withp (J©, A) in the
(open) second quadrant, consider its upper right hand corner k22(jGi): sincearg fc^O'©) is strictly increas
ing, if n >2, k22(j©) will push the whole rectanglep(j<s,A) into the open third quadrant Now consider
the upperleft handcorner k12(/ ©): sincearg kl2(j©) is strictly increasing, if n > 3, kl2(j©) will pushthe
whole rectangle into the open fourth quadrant Now consider the lower left hand comer of p(j(d,A),
namely kn(j<o): since arg£n(/©) is strictly increasing, if n>4, kn(j<o) will push "the whole rectangle
into the open first quadrant. At this point, we considera secondtime k2x(J ©), the lower right hand comer
of the rectangle: if n >5, Jfc21(/©) pushes the rectangle from the open first quadrant into the open second
quadrant, as before. This motion-the whole rectangle moving continuously from one open quadrant into
the next never passing through the origin-will go on until the net argument of each comer asymptoti
cally approaches nrc/2, since each comer polynomial is Hurwitz of degree n and (2.10) holds. Thus the
whole rectangle p 0*©. A) starts from the positive real axis andtravelscontinuously through a net angleof
nn/2 as © increase from zero to infinity.

Step 2. Let p (•, a) be an arbitrary polynomial in A. By (2.12) and (2.13), V©e R+,

p(j(Qta)(zp(j(i>,A) (2.16)

By step 1, V©e R+, p (J©, a)^ 0, so its argument is a well defined continuous function of ©; furthermore,
by step 1 and condition (2.16), condition (2.10) of Lemma 2.2 holds. Hence, by Lemma 2.2, p(-, a) is
Hurwitz. •

2.4 Special Cases

Corollary 2.4 (n = 3,4 and 5) [And. 11. Let the notation of (2.1), (2.2) and (2.4H2.7) hold.

For n = 3, the family A is Hurwitz if and only if k2\ is Hurwitz.

For n = 4, the family A is Hurwitz if and only if k2\ and k^ are Hurwitz.

For n = 5, the family A is Hurwitz if and only if k2i, k^ and k 12 are Hurwitz.

Proof We use the ideas of the proof of Sec. 2.3 to prove sufficiency. For n = 3, the Hurwitzness of k2\
will move the rectangle p(/©» A) from the real axis into the open first quadrant and then into the open
second quadrant. As © increases further, arg£21(/©) will increase to become asymptotic to 3iU2. Thus
the lower horizontal edge ofp (/©» A) will enter and remain in the open third quadrant The top edge will
do the same because, for n = 3,

*22(/ ©) =-j ©3 a3 - a2©2 +aJ ©+a0 (2.17)

hence, for © large, RetJfc^O'©)] and Im[jfc22(/©)] will eventually become and remain negative with
arg k^ij ©) -»3rc/2. A similar calculation applied to k i2(/©) leads to the same conclusion. Thus we see
thatp(/©. A) will travel counterclockwise around the origin through a total angle of 3rc/2, never inter
secting the origin. By step 2 of the proof above, \fa e A, /? 0 ©»a) will do the same, hence the family A is
Hurwitz.

The proof for n - 4 and 5 follows from a similar argument •



-6

25 Complex Coefficients Case

Let A* be the family of polynomials defined as follows:

p(5,a) =(<xfl+7Pjr+(aB_1+;pfl_1VB-1 +... +(c^+;Po) (2.18)
where ak=ak +$k, and a* £ a* £ c^andfe ^p* £ p*,for& =0,1,..., n; the c^'s, dys,jVs and
ftt's are given, andthe rectangle [(£,, 6^, ]x [p„ x p„ ]is bounded away from zero. Again we visualizeA*
as aparallelepiped in R2"*2. Since, \/5 e <C, a -> p(s, a) is alinear map, it maps the convex set A* into a
convex polygon in <C.

Since the arguments for the complex case areentirely analogous to those of the real case, we sketch
them briefly. There are two important differences: first we must consider two cases © > 0 and © < 0;
second, p (0, A*) is now a rectangle in <E, namely [Qq, Oq] x [p0, p0].

As in Lemma 2.3, we observe that Va e A*, V© > 0

gt(j<o) < Re[p(/©,a)] £ *2 (/<*>) (2.19)

and

Im^O'©)] £ Im[p(/©,a)] ^ Im[/i2+0©)] (2-20)

where

g\(s) := ao+ypis +a2s2+j$3s3+aAs4+ ••• (2.21)

gib) - Cfe+yPi^ +0252+yp3j3+6V4+ •*' (2.22)

hf(s) ^ygo+a^ +;P252+^3+;P454+ ••• (2.23)
h{(s) :=;P0+a^ +yp252+^3+;p454+ ••• (2.24)

Clearly the four complex polynomials k& := g? +h£, /, m = 1,2, are in the family A*. By (2.19) and
(2.20) we see that V© > 0

pO'©,A*) =co{/:1+10'©)^2iO'®).*220<o)^r20'©)}- (2-25)

Again, V© > 0, p 0' ©, A*) is a rectangle with edges parallel to the coordinate axes.

For © < 0, VaeA*, we obtain again Eqns. (2.19M2.24) with £i+, £2, /if and h2 replaced by
£f >#2~» ni, h2 , where g\,g2>hi,h2 are defined as in (2.21M2.24) except that all the odd power
coefficients are interchanged (ft is replaced by plt etc.). With k^ :=g/~+ /im, l,m = 1,2 we have
V© < 0, VaeA*

pO'©,A*) = co{A:r10'o>).*r20'o>),A:210'0)).*22 0'«>)}. (2-26)

Thus we have the generalization of Lemma 2.3 for the complex case. Using Lemma 2.2 and Eqns.
(2.10a), (2.25) and (2.26), we easily prove the following using arguments analogous to those used for
Theorem 2.1 (for the complete proof, see [Min. 1]).

Theorem 2.5 Kharitonov's Theorem (Complex Coefficients) [Kha. 2, Bos. 1]. Let A* be the family
of complex polynomials defined in (2.18). The family A* is Hurwitz if and only if the eight complex
Kharitonov polynomialsk Ji, k [\, k*2, k f2 , &2i, fcfi, &£, ^ are Hurwitz.



3. ROBUST STABILITY FOR LINEAR TIME-INVARIANT SYSTEMS

We propose to generalize the results of Section 2 in two directions: allow for a more flexible
definition of stability and allow for less restrictive parameter dependence of the characteristic polynomial
coefficients. In Section 2, each of the n+1 coefficients of p(st a) were allowed to vary independently
inside prescribed intervals. Examples of control systems and circuits show that physical parameters—
such as mass, inertia tensor, spring constants, damping factors, resistances, transconductances, induc
tances, etc.—appear as variables in polynomials that specify the coefficients;usually a parameter appears
as a variable in several coefficients, thus the coefficients are no longer independent (See example in Sec
tion 3.4.)

3.1 U-stability

Roughly speaking, we let U be the closed set containing all those values of s that are viewed as
"undesirable" from a stability point of view. Typically, U includes the closed right-half plane, is sym
metric with respect to the real axis, and has aboundary, dU, consisting ofC! curves (hence parameteriz-
able curves). A simple example is

U = rtCo := {seC | Re{s) £ o0) for some fixed a0 < 0. (3.1)

We consider a family of polynomial functions of seC parameterized by q e Q <z JR.m, p (s 4). Using
standard set and functional notation, this family of polynomials is denoted p(-,<2). Note that p(- ,q)
denotes a particular polynomial in p (• ,Q) if q e Q, and p (s ,q) e € denotes the value of that polynomial
evaluated as a point se<E. Finally, p(s,Q) denotes the set of values of all the polynomials p(-,Q)
evaluated at .s;e.g. p(s,Q)=[p(s^):q eQ). A polynomial p(-,q) is said to be U-stable iff
p(s,q)i:0 VseU. A family of polynomials is U-stable iff each polynomial p (♦ ,<7) is £/-stable; i.e. iff
0«pCs,G) VseU.

32 Lumped linear time-invariant systems

We consider lumped systems with characteristic polynomials of the form

P(s,q) =i,ak(q)sk' qeQ<zJRm (3.2)
0

where the parameterization p(-,<7) has been expressed as a parameterization of the polynomial
coefficients.

Assumptions:

(Al) The parameter vector q e Rm is in a given non-empty set Q, and Q is connectedand compact.

(A2) For k = 0,1,..., n, the coefficient parameterizations ak:Q -»R are continuous.

(A3) Foralltfefi. an(q) > 0.

For example, Q could be a convex polyhedronin Rm or a closed ball. (Al) and (A2) imply that ak(Q) is
a compact interval, k=0,..., n; then (A3) implies that the interval an(Q) is boundedaway from 0.

We begin the derivation of the main result of this section (Theorem 3.3) by stating two facts. Fact
3.1 is a corollary of [Die. 1, Thm. 9.17.4]; it is a rigorous version of the statement that the zeroes of a
polynomial varycontinuously with respect to its coefficients.1 Fact3.2 states that the zeroes of the set of

1 We mention an alternative-more formal-approach to characterizing 'continuity' of polynomial zeroes
with respect to coefficients. Consider the set of zeroes of a polynomial as an element of thefinite power set of
<C, P/(<T), the set of all nonempty finite subsets of <E, equipped with the Hausdorff metric [Mun. 1, Ex. 7, p.
279]. In this metric, two subsets of C are e-close if and only if every element of either set is e-close to some
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polynomials defined above can be uniformly bounded.

Fact 3.1 Givenanybounded setV c <C and any qQ e Q, ifp (stqd± 0, Vs e dV, then the number of
zeros ofp (s, <7) in V, counting multiplicities, is alocally constant function of qeQ at <? 0-

Fact 3.2 Under assumptions (A1)-(A3), there is an ae(0,«) such that for all qe Q, the zeros of
p(s,q) belong to the disc D(0, a)c<C, centered on 0 with radius a

Proof Define a*, ak by 0*(G) = [2*»5JfcL Given any qeQ, suppose z is a zero of p (•,<?); i.e.
p(z,q)=0. Of course, if z =0 then z e D(0,a); so we may assume z# 0. Then

a,|i| < W?)i| * I 5>*(<7)z*+1-"l * X«*M*+1~rt- 0.3)
o o

If |z| > 1, we have

o

so wechoosea = max{l,aiJ. D

Theorem 3.3 U-stability ofp(s,Q). Let the set of polynomials p (• ,Q) as defined in (3.2) satisfy
assumptions (A1)-(A3), and recall that U c<E is closed. Then

1) the set of polynomials p(-,G) is {/-stable (3.5)

if and only if

2) (a) for some q0e g. P (*»<7o) is tf -stable, and (3.6)

(b)VsedU, OepCs.Q). (3.7)

Remarks, a) Assumption (Al) can be modified to read:

(Al') The parameter vector qe Rm is in a given non-empty set Q, andQ is pathwise connected.

So Q is required to be neither closed nor bounded. The simplest way to prove this is to observe thai any
point q' mQ can be connected to the point q0 of condition 2(a) by a path C in Q; this path is compact.
Since p(s,C)czp(s,Q), condition 2(b) implies that 0 e p Cs ,C) Vs e dU, and Theorem 3.3 (with theori
ginal assumption (Al)) implies that q'eC isU-stable.

b) Theorem 3.3 can be further extended to arbitrary connected parametersets Q satisfying (A3) using a
different method of proof (see foomote 1); of course, the distinction between connected and pathwisc
connected parameter sets is not a real engineering concern. We may even consider completely arbitrary
sets Q c Rm if we require condition2(a) to hold forsome q0 in eachconnected component ofQ.

element of the other set. So set ordering and multiplicityare not issues,and two sets can be arbitrarily close to
each othereven if they don't have the samenumber of elements. It is not difficult to show that the map from
the space of polynomials to the setof polynomial zeroes in P/((C) iscontinuous; indeed, this is implied by Fact
3.1. The proof of Theorem 3.3 then proceeds in a straightforward manner.

This approach to the problem is mathematically more powerful, as it produces the result (Theorem 3.3)
quitenaturally for arbitrary connected parameter setsQ. Theorem 3.3 is stated for compact connected Q, and
in the remark which follows the theorem, it is extended to non-compact pathwise connected Q. However,
from the engineering perspectiveof plausible parameter sets, the distinction between connected parameter sets
and pathwise connected parametersets is insignificant.

The approach taken in the text is used because the topological and geometric arguments in the complex
plane haveadirect conceptual connection to theresulting graphical test; theconnection to the Hausdorff topol
ogy of Py((C) is considerably more abstract.



Comments, a) The choice of U allows for great designer freedom.

b) Note that Q is not required to be convex. The freedom in choosing Q and U allows the engineer to
evaluate trade-offs:higher degree ofstability versus greaterparameter variations.

c) The theorem is a labor saving device: '4the set p (• ,g ) is U -stable'' is equivalent to 0 4 p (JJ, Q);
once condition 2(a) holds, we need only check 04p(dU, Q). Condition 2(b) is to be tested on a work
station: hence any possibility for obtaining p(s,Q) efficiently should be exploited (see special case
below). Note that, VsedU, it is not required to actually determine the whole setp(s, Q), we need only
check that 04 p(s, Q). In casepfc, Q) is convex, we need only a line separatingp(s, Q) from the ori-
jgin,V.S€9£/.
Proof 1=>2: Suppose p (• ,fi) is U -stable. Clearly condition 2(a) is satisfied. We show 2(b) by con
tradiction. If s e dU and OepGs.Q). then there is some parameter q* e Q with p(s,q*)=0. Thus
p(• ,4*) has a zero indU czU and is not {/-stable, which contradicts the assertion that p(• %Q) is U-
stable.

2=>1: From Fact2.1 thezeroes ofp (•,?) areuniformly bounded for all q in fi. say |s \ < a whenever
p(s,<7)=0 VqeQ. Then.let V= U C>{s :\s\ £a). Clearly p(,q) is V-Hurwitz o p(-,?) is U-
Hurwitz, for all q in Q. Condition 2(b) implies thatp(s,<7>£0 V$ e 9V V^eg, since s e 9V implies
s e 31/ or |s \ =a. NowFact 3.1 implies that the number of zeroesthatp (• ,q) has in V is a locally con
stant function of q on all of Q. Since Q is connected, the number of zeroes that p (• ,q) has in V is glo
bally constant on Q [Dug. 1, p. 1081, and condition 2(a) guarantees that that number is zero. So p (• ,Q)
is V -stable, and thus U -stable. D

Special Case: Q is a Convex Polyhedron.

Consider the polynomialp (s, q) given by (3.2), but now replace assumptions (A1)-(A3) by

(Al*) Q is a convexpolyhedron in Rm with vertices {vltv2 V/}.

(A2*) For k =0,1,..., n, the coefficient parameterization ak(•) is affine; i.e.

ak=ak+$kTq (3.8)

where otjfcGR and pjteRm are given and qeQ cRm.

(A3) For all qeQ,aH(q) > 0.

Assumptions (Al*) and (A2*) imply assumptions (Al) and (A2), so Theorem 3.3 applies. Assump
tion (A2*) implies that, for any fixed s e <C the map q -» p (s, q) is affine. Hence by (Al*), p (s, Q) is a
convex polygon in <C. In fact

p(*,G) = co{p(j,v1),...,pCs,v/)} (3.9)

where co{pi,... ,pm} denotes the convex hull of {plt... ,pm}. Usually only a proper subset of the
points p (s, v;) are vertices of the polygon p(s,Q); note that as j varies, that subset may change.

By Theorem 3.3, once it has been verified that for some qQ, p (•, q^) is U-stable, it remains to check
that the convexpolygonp(s,Q) does not contain the origin VsedU. We define the nearest point func
tion, Nr( •), on closed convex subsets S c C by

Nr(5) := arg min { \s\ }. (3.10)
seS

Checking that p(s,Q) does not contain the origin is equivalent to checking that Nr(p(s,(2)) does not
equal zero. This can easily be done using Wolfe's nearest point algorithm [Wol. 1, Hau. 1], which com
putes
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NKcof*!,...,*,}) <3-n)

for any finiteset {klf..., kt }<z<E in an efficient and finite manner. In our case we wish to compute

Nr(pCs, fi)) = Nr(co{p(5,v1),p(ls,v2),... ,pCs,vz)}) (3.12)

for various values of sedU. It is easily verified that (3.12) is a continuous function from sedU to
Nr(p (s,Q ))e<E. So, for the typical case where dU iscomposed ofa finite number ofC1 curves, we have
the following procedure to implement Theorem 3.3:

a) check any polynomial in p (• ,Q); if it is Hurwitz, condition 2(a) of Theorem 3.3 is satisfied;
otherwisep (• tQ) is not U-stable;

b) parameterize the curve(s) dU;

c) as s travels along the componentsof dU, plot the point Nr(p (s, Q));

d) if the resulting curve is bounded away from zero, then condition 2(b) of Theorem 3.3 is
satisfied; otherwise, 2(b) is violated and p (• ,Q) is not U-stable.

Comments, a) One obviously cannot plot the locus in step c) for every value of s e dU. Indeed, one
would normally partition dU, plot those points, and then fill in points as necessary (either manually or
'automatically') until the locus becomes sufficiently smooth to yield a reliable conclusion. The 'filling
in' problem is identical to the 'filling in* problem for the conventional Nyquist test

b) The nearest point calculation in step c) is finite (using the Wolfe algorithm [Wol. 1]). Indeed, in our
experience, by using the resulting edge of the polygon containing the nearest point as the starting point
for the search at the next value of s ed£/, we usually required only one or two iterations (mostly one) of
the numerical procedure defined in [Wol. 1]. Of course, this cannot be guaranteed; in general, we may
need up to / iterations.

Remark. We now consider modifying (Al*) once again to read

(Al**) Q e Rm is closed and convex

leaving (A2*) and (A3) intact (e.g. Q might be a closed convex set in coefficient space itself, with ak(q)
being simply coordinate projections). The algorithm above still works (that is, the nearest point function
is still well-defined), although the nearest point calculation is no longer finite. For this convex case, how
ever, efficient convergent algorithms do exist [Hau. 1]. If we specify a priori some acceptable precision
for approximating the nearest point, we obtain a finite algorithm for finding Nr(p (s ,Q)).

33 Linear distributed time-invariant systems

Theorem 3.3 is easily generalized to linear time-invariant distributed systems. Consider a control

system made up of subsystems whose matrix transfer functions have elements in the algebra £ (g0),
where c0 is typically negative [Cal. 1-3, Des. 1, Nett 1; for connections to the semi-group literature, see
Cal. 4 and the references therein]. Let Ra denote the closed right half-plane {s e <C: Re{.y} >a} and fix

o0<0. We say that afunction?(s)e$(a0) if, for some a<a0:

1. f has a finite number ofpoles in R0, and

2. the inverse transform off includes-in addition to the exponentials due to the poles in
Ra-

fa(t)+j:fk^t-tk) (3.18)
k=Q



11

where

j\fa(0\e^dt + El/*|«-* < - (3.19)
0 *=o

with r0=0 and tk>0 Vk.

So, except for its poles inRa, ?(s) is analytic inR^ and, except for arbitrarily small neighborhoods of

its poles, f (s) is bounded in ROo. In particular, f (s) is bounded in ROo as |s | goes to infinity. Note that
?(s)\s not necessarily defined on all of <C; indeed, there are functions in &(a<j) which have no analytic
continuation beyond a half-plane Ra for some g<Gq.

The framework above guarantees that the control system matrix transfer functions have coprime
matrix factorizations with factors which are analytic in s forse R^. In [Cal. 3, Des. 11 it is shown that
such acontrol control system is a0-stable2 if and only if

inf |xd)| > 0 (3.20)
Re{ s }5c0

where the characteristic function %(.?) is a sum of products of the elements of these matrix factors. Thus
we see that the zeroes of a characteristic function of a distributed system have dynamical interpretations
similar to zeroes of a characteristic polynomial of a finite dimensional system.

Now suppose that each element of these factorizations depends continuously on a parameter
q e Q cRm with Q compact and connected. Then the characteristic function becomes X(s,q), continu
ous in q forq e Q and analytic in s for seRao. We consider 'undesirable' closedsets U of the complex
plane which satisfy the assumption:

(A4) UczR^.

Of course, assumption (A4) guarantees that %(s A)wm* be analytic in s for all s e U. Note that there was
no analogous assumption required in the polynomial case, since polynomials are automatically analytic
on all of <C. We also impose the well-posedness assumption:

(A5) lx(f*?)l *s bounded away from zero as \s\ -»°° in/?Ooforall<7 e Q.

Assumption (A5) is analogous to assumption (A3) for the polynomial case; indeed, it is equivalent to Fact
3.2, whose proof required (A3). From [Die. 1, Thm. 9.17.4], the zeroes of x(s ,q) are 'continuous' with
respect to q\ more precisely, Fact 3.1 holds for arbitrary analytic functions, not just for polynomials.
Hence the reasoning for Theorem 3.3 applies and we conclude immediately:

Theorem 3.4 For all qe. Q, the distributed control system satisfying all the assumptions of the pre
vious paragraphhas a characteristic function %(s A) with no zeroes in the closed set U c <C if and only
if

(a) for some q0e Q, xfa .<7o)*0 V^ef/, and

(b) 0$x(s,Q)fordHsedU.

So the graphical algorithms discussed in Section 3.2 apply to distributed systems. In particular, if %(? ,q)
depends affinely on q e Q and Q c Rm is compact and convex, then %(s ,2)c <C is convex for all s in C

2 Here, we say that a control system is o0-stable (for o0<0) if it isLp -stable Vp € [1,«>], and, for any input
withcompact support, the responses are o(ew) as t -»«».
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and Nr(x(s ,Q)), s e dU, canbe computed using the method of Hauser [Hau. 1], as was thecase for poly
nomials. Further, if Q is a convex polyhedron, we can apply Wolfe's finite 'nearest point* algorithm as
described in Section 3.2.

Remarks, a) The discussion of6 (o0) provides an apriori guarantee that factorizations of the open-
loop transfer functions exist which are analytic in /?Co; this implies that the resulting characteristic func
tion is analytic in R^. Combined with assumption (A5), this implies that closed-loop transfer functions

are well-defined as elements ofS(g0). Thus the discussion of8(g0) and assumption (A5) are to be
thought of as system theoretic considerations.

b) In many specific examples, the characteristic function is easily obtained and analyticity over certain
regions-or all of <C-can be verified by inspection (see, e.g., the example of Section 3.4); here we impli
citly assume that the characteristic function was derived using some appropriate algebraic structure. In
these cases, we may considerarbitrary closed sets £/c<Cif we modify assumptions (A4) and (A5) to

(A4*) X(SA)'1S analytic in s forallseU andqeQ.

(AS*) |x(sa) I is bounded away from zero as |s | -> «> inRao forallq e Q.

Now (A5*) is not to be interpreted as a well-posedness condition, nor even as a system theoretic con
sideration, but simply as an analytic requirement (compare with (A3) and Fact 3.2 in the polynomial
case). Very roughly speaking, if U and Uc are both unbounded, we may think of the boundary of U as
consisting of dUc<£ and a 'point' (or a 'set') at infinity; (A5*)extends condition (b) of Theorem 3.4 to
thisextraboundary at infinity, so that zeroes cannot enterU neitherthrough dU nor through 'infinity.'

3.4 Example: LTI System with Delay

In this section we illustrate the use of Theorem 3.4 by analyzing an LTI plant with a delay. The
plant is a regulated motor-inertia system modelled as shownin Figure3.1. The transfer function is given
by

&(s) = r — r V0(s) (3.21)
Us2 + (JR +Lb)s +(Rb +K2)

where co is the shaft angular velocity and V*0 is the applied voltage to the motor. The nominal design
parameters are given as

Km = 1 Nm/amp

L = 1H

R = .01 Q

7 = lkgm2
b =0kgm2/sec
T=0sec

Due to uncertainty, we would like the system to meet specification for parameters in the ranges:
/e [0.8,1], be [0,0.2], and 7e [0,x]. We have not specifiedx ahead of time, but instead, we would like
to estimate the maximum x which will work (if any).

The design objective is steady-state regulation of the motor output <d with "good" disturbance rejec
tion. Steady-state regulation is obtained with integral control, while disturbance rejection will be
specified in terms of closed-loop pole location according to the region U shown in Figure 3.2 (£ > 0.707
and g>\ sec"1). Specifications were met for the nominal system by using a root-locus design to obtain
the following compensator:
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_ lOO(s2+2s+2) n77S
C™{S) - ,(,+20) ' (3'22)

The four closed-loop polesare at-1.75±/1.47, -2.77and -13.73. A Nyquist plot of the compensated sys
tem shows the nominal system has a 50° phase margin, infinite upper gain margin, and a lower gainmar
gin of-40 dB.

Now we want to find out if the specifications are met for all possible plant perturbations. Using
Theorem 3.4, condition (a) is met by the nominal plant, and condition (b) amounts to checking if the
characteristic function

X(s'JJ?,T) = l00e-Ts(s2+2s +2) + [Js2+(b+0.01J)s +(l+O-0lb)](s +20)s (3.23)

satisfies x(soiJoJ>oJ6) = 0 for some s^e dU,J0e [0.8,1], ft0€ [0,02] andT^e [0,0.1].

First we discuss the restricted problem of consideringvariationsof/€ [0.8,1] and b e [0,0.2], fixing
T=0. In this case, x(*^»£»0) is a polynomial in s whose coefficients are affine functions of J and b.
Thus x(*;[0.8,l],[0,0.2],0) is a parallelogram inC for each fixed s. So Theorem 3.3 applies, and, further
more, the system is one of the 'special cases* discussed after Theorem 3.3. Applying the nearest point
algorithm to this parallelogram, we have plotted

Nr [x(s ;[0.8,1],[0,0.2],0)} (3.24)

in Fig. 3.3 for sedU. Ass traverses dU (see Figure 3.2), the locus circles around the origin without ever
intersecting the origin. We conclude that this restricted class of perturbed systems (7*=0) does robustly
meet specifications.

Now we want to consider the whole class Je [0.8,1], be [0,0.2], Tg [0,x] using Theorem 3.4 and
the extension (for U not contained in a right half-plane) in remark (b) following Theorem 3.4. We know
by inspection of (3.23), however, that as 7-»0 (for / and ft fixed), there are infinitely many zeroes of
X(sJ,b ,T) whose real and imaginary parts both go to infinity (in the left half-plane), while the imaginary
parts increase in magnitude more rapidly than the real parts (i.e. the ratio is unbounded). Thus 'every*
such zero enters the region U of Figure 3.2 for T sufficiently small (but not equal to 0); and for any fixed
T±0, there are infinitely many zeroes in U, and their magnitudes are not bounded. So we see that
Theorem 3.4 does not apply, since the assumption (A5*) is not satisfied: x(s'J>b T) obviously cannot be
uniformly (with respect to T) bounded away from zero as ,-»«> in U. (In case one were to apply the test
of the 'extended' Theorem 3.3 'blindly' to this problem~i.e. without satisfying assumption (A5*)~there
do exist proper finite-dimensional linear controllers which would seem to 'guarantee' (/-stability for the
whole class of systems, a conclusion which is clearly erroneous. This demonstrates the importance of
satisfying assumption (A5*)--or(A5) in the case UczRao.)

We repeat the following fact for emphasis: although the zeroes of x(s 'J .ft »T) enter U as T-»0, they
also have real parts which tend to -«». This suggests the following modification of the undesirable region
U. We intersect the original region U with the half-plane [s :Re{s} >-7.5). The modified region U is
shown in Figure 3.4. In terms of modal settling times and damping ratios, the modified specifications on
the characteristic function zeroes is g>1 sec"1, and £> 0.707 for any zero with o<7.5sec-1; zeroes with a
corresponding a >7.5 sec'1 have nodamping margin requirement.

With the modified region U, it is clear that assumptions (A4*) and (A5*) are satisfied. In fact, wc
can give bounds on the zero locations in U if we restrict x to some arbitrary interval, and we choose
xe [0..1]. (If this turns out to be too restrictive~i.e. the whole class meets specification even for x=0.1--
we can just increase the interval size, or just choose some maximum x of interest to begin with.) A simple
calculation based on Eq. 3.23 shows that \x(s'JJ?J)\ >15 for all7e [0.8,1], fte [0,0.2], Te [0,.l] and



-14-

for all s satisfying Re{^} >-7.5 and |s \ >50. So the zeroes of |x(s J Jb ,T)\ which are in the modified
region U must satisfy |s | <50.

Now we apply the test of Theorem 3.4. x(si[0.S,l],[0,0.2],[0,z]) is not a polygon in <C, since
X(s JJb,T) is not affine in T. We therefore cannot apply Wolfe's nearest pointalgorithm directly. How
ever, for each./fca?d Te [0,x], we can apply Wolfe's algorithm to find Nr{x(s;[0.8,l],[0,0.2],r)}. Per
forming a line search over Te [0,x], we determine Nr{x($;[0.8,l],[0,0.2],[0,x]}. In Figures 3.5 and 3.6
we have plotted Nr(x(s;[0.8,l],[0,0.2],[0,x]} forse dU, forx=0.03 and x=0.04. From the discussion in
the previous paragraph, wedo notneed to plot the image of the whole unbounded boundary dU\ we need
only plot the image of the compact intersection of dU with the ball [s :|s \ £50}. Figure 3.5 shows that,
forx=0.03, the locus remains bounded away from the origin. The shapeof the locus is similar to Figure
3.3 at low frequencies, drawing slightly closer to the origin during the 'first pass' around it (probably
indicating that the delay does push some of the original poles closer to the boundary of U). Figure 3.6
shows that, for x=0.04, the class of characteristic functions (3.23) is not U -stable. The low-frequency
locus is similarto Figure 3.5, still coming nearto, yet remaining bounded away from, the originas it cir
cles around the origin, and then travels away from the origin. At higher frequencies, indeed, near
s =-5.3±j5.3, the locus comes back in and does intersect the origin. Roughly speaking, we conclude
that it is not one of the 'original' zeroes that crosses into the region U, but, instead, one of the (infinitely
many) zeroes introduced by the delay.

Figure 3.7 shows a close up near the origin of the locus for x= .025, .030, .035, .040. Note that once
the locus hits the origin forx=.035, it must intersectthe origin forx > .035. Using additional analysis,we
found the limit to be just slightly less than 0.035.

Summary

This example has demonstrated the following:

1) Theorem 3.4 provides a workable test fordistributed parameter systems, even when the characteristic
function depends nonlinearlyon one or more of the unknown parameters. However, the inclusion of non
linear dependence can severely intensify the numerical calculations. In this example, the nonlinear
dependence on T lead to a line searchwith respectto Te [0,x] in the nearestpoint calculation. Including
several nonlineardependencies would mandatemore sophisticated minimization algorithms.

2) The role and importance of assumption (A5*). Note that a finite-dimensional system will automati
cally satisfy assumption (A5*) (or (A5)) if we bound the leading coefficient of the characteristic polyno
mial away from zero and consider a bounded set of characteristic polynomials (regardless of how the set
U is defined). Also note that, in the case where we start with a finite-dimensional system satisfying
assumption (A5), if the region U is contained in some right half-plane (assumption (A4)), assumption
(A5) will automatically accommodate the addition of unknown time delays. In our example, we had to
modify U to fit in a right half-plane when we included the delay.

3) The theory allows assumptions (A4) and (A5) to be replaced by (A4*) and (A5*) (see remark (b) fol
lowing Theorem 3.4). However, in many common examples of distributed systems, (A5*) will be very
difficult to satisfy for regions U which are not bounded on the 'left,' unless the region is very carefully
crafted. For our example system (and for any time delay system), a simple positive damping coefficient
bound cannot generate a region U for which (A5*) will be satisfied.
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4. CONCLUSION

The contributions of this paper should be viewed from the following perspective. Workstations
have revolutionized engineering design by their computing power, sophisticated software and graphics.
The computing power and the software allow designers to consider muchmore complicated dynamics as
well as more complicated constraints on performance. The combination of computing power, software
and graphics allows the study of design trade-offs. Kharitonov's Theorem streamlines the study of the
tradeoff between the degree of stability of the nominal system and the size of coefficient perturbations
that will not destroy stability. Section 3 of this paper develops tools forlooking at trade-offs between the
degree of stability (choice of region U) for a parameterized class of systems, and the size of that class
(choice of the set Q).
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