

Copyright © 1988, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ELECTRICAL PROBING OF TEST STRUCTURES

FOR OPTICAL LITHOGRAPHY

by

Jay Fleischman

Memorandum No. UCB/ERL M88/60

7 September 1988

ELECTRICAL PROBING OF TEST STRUCTURES

FOR OPTICAL LITHOGRAPHY

by

Jay Fleischman

Memorandum No. UCB/ERL M88/60

7 September 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Electrical Probing of Test Structures for Optical Lithography

Jay Fleischman

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

ABSTRACT

The use of electrical testing to characterize Optical Projection Printing is con
venient for studying effects across the field of the die, across the wafer, and over
many wafers. The electrical data is not subject to operator interpretation and can be
compiled into informative graphs and charts via software, making the entire process
completely automated. New test structures designed to be sensitive to various process
ing elements can then be analyzed for sensitivity and compared to simulated results.
This will provide a set of test structures that can be used to refine and monitor a fabri
cation process or characterize the equipment used in the process.

A flexible system for automatic measurement and display of test results for a
large class of structures was implemented. It consists of the following equipment: an
Electroglas 2001X Automatic Prober and the HP 4062 system (4085A SWM, 4084A
SWC, and 4141A DCS) controlled by an HP9836 Pascal workstation. The input con
trol file allows functions and keywords specific to lithography and can be generalized
to accommodate other applications. This is accomplished by using an input interpreter
to connect pins, force and measure voltages and currents, and to analyze those meas
urements. The output generated is then set to a VAX where it is parsed using the
keyword and plotted using routines written in C. Example plots for cases such as
linewidth vs focus and dose (SMILE), linewidth variation within the die, flare, conduc
tivity of checkerboards, defects, and lines, and exploratory structure resistance tables
have been generated.

This paper describes step by step operation of the above system. First the
hardware initialization will be presented. Next, the structure of the probing software
and prober input control files will be discussed. Then various parsers designed to
create specific formats of output data for easy analysis are described. Finally, a step
by step example and some experimental results are presented with a few comments.

September 6,1988

Table of Contents

Chapter 1 : Hardware 1

Chapter 2 : Prober Software 3

Chapter 3 : Prober File: 5

Chapter 4 : Parsing. 8

Chapter 5 : Sample Session 11

Chapter 6 : Typical Results 14

Acknowledgement 25

Appendix A : Automatic Prober Hardware 26

Appendix B : AUTOPRB Code 38

Appendix C : AUTOPRB Short Output Format ,. 62

Appendix D : AUTOPRB Long Output Format 63

Appendix E : Parser Code 64

Chapter 1

Hardware

The components consist of three main parts: first, there is the Electroglas automatic proberitself,

then the several components of the HP 4062 system, and finally the HP Pascal workstation, which

serves as the controller. The 4062 measurement system contains the SWC 4084A Switching Matrix

Controller, the SWM 408SA Switching Matrix, and the DCS 4141A DC Source/Monitor components for

all the measurements taken and programs written at this time. The CMS 4280A 1 MHz C Meter and

C-V Plotter may be added in the future, and the probing software revised as necessary.

Appendix A is an excerpt from Norman Yuen's thesis describing how to set up the Electroglas

prober, mount the wafer, and align the wafer for measuring. This document should be sufficient to set

up and operate the prober, but there is a correction necessary to all previous documentation on the

automatic prober regarding the orientation of the wafer. Since the mask can be in any of four possible

rotations, there is no set position of the flat relative to the machine. When the wafer is on the chuck

and observable through the microscope, the orientation necessary to probe will become evident For

probing, there must be agreement with the prober file and the die orientation. Since a focus/exposure

matrix is usually fixed relative to the flat, special versions of the parsers may be necessary. This is dis

cussed further in the software section.

Care must be taken to connect the different components. First, the controller Pascal workstation

(HP9836U), hard-drive system, expansion box (9888), printer, prober, and measurement components are

all on the same HP-IB bus. Thus, a lot of "piggyback" cables will be attached together. But, there is at

least one cable that has a bad connection to additional cables. Therefore, it must be the last in any

given sequence. The cable most suspect at this time is the one to the printer. Second, any device on

the HP-IB bus can take hold of the bus, denying access to all other devices and causing the system to

lock up. If the system locks up for some reason, each machine may have to be reset (or turned off) and

complete reinitialization may be necessary. If this situation occurs, try to close any output files and

save them to the hard-drive before powering down the HP9836U. Finally, the connection between the

SWC and the SWM 408SA Switching Matrix is limited. It supports all 4 SMU connections and 2

1

auxiliary ports. These two ports can be used for either VM's or VS's, but not both. VMl or VSl

should be connected to AUX1, and VM2 or VS2 should be connected to AUX2. Hence, not all possi

ble connections on the HP4045 are supported by this system. Currently, the VM's are both connected

and all sources are provided through the SMU's.

To power up the computer controller, first turn on the hard disk, then the expansion box, and

finally the HP9836U. It will then immediately recognize all its extensions and find the Pascal system

on the hard drive. If a system floppy disk is in a drive, the Pascal system will not be automatically

loaded, so to avoid confusion, power up this way unless you know what you are doing (or wish to

experiment..).

Chapter 2

Prober Software

The prober software consists of the Pascal program AUTOPRB and several parsers in C which

run on VAXes. AUTOPRB is currently located in the GAMES: volume on the hard disk of the

HP9836U workstation while the parsers are located in "simsoft" on esvax. AUTOPRB is a revised edi

tion of the E290 program, which in turn is a cut down version of BSIM. Much of the overall structure

has been maintained, but the measurement routines have been completely rewritten. The prober file

format has also been changed to simplify writting long files, and at the same time make the file more

readable to the operator. Finally, the output has been improved to include two output formats: a long

descriptive format, and a short specialized one. The latter format is a subset of the former and can be

redirected to the printer or to an output file. The screen display during probing has been changed to

reflect more pertinent data. Now all information related to the device being tested is displayed. This

way, the operator can determine during the run if the wafer is being probed correctly and if the results

are reasonable.

To run AUTOPRB, simply eXecute it from the main Pascal menu, and then follow the directions

it displays on the screen. A listing of the program is contained in Appendix B. Due to the general

structure of AUTOPRB, adding features like more user defined functions and measurement

configurations is easy to do. At this time, the entire prober file is read into several data structures to

describe the probing of the die. For long probing, this may exceed the memory of the HP9836U. The

revised structure of the measuring routines coupled with the data structures used to describe each test

makes it simple to convert the program to read in the prober file sequentially while performing the

measurements. Thus, rho, a user macro that will be discussed later, will have more power, as the sheet

resistance used can be changed for all corresponding tests to reflect its variation over the die. Although

all user macros for testing that have been written so far incorporate only one measurement, this is also

not necessary. Simply describe the test using the various data structures to reflect the equivalent

number of devices, there location, and lower level tests to be done accordingly. This creates the possi

bility to probe the whole die in one statement from the prober file. This demonstrates the potential of

the user macro capability. Although it becomes unwieldy in this case, using a single macro to test

sheet resistance and linewidth may be useful. All macros and functions are defined in the AUTOPRB

program (in Pascal) at this time. Future improvements may include a script-type language where

different macros could be saved in files and recalled for used by commands in the prober file, but this

would be a complicated addition.

Chapter 3

Prober file

An example prober file is provided below. It is self documented feature by feature. For exam

ples of the output of the AUTOPRB program, see Appendix C (short format) and Appendix D (long

format).

Currently, there are 3 measurement macros: u4pt, uif, and uvf, and 5 functions: fvdp, fclw, fflw,

fsht, and f2tr. Either lower or upper case can be used for their names. In addition to these, ; is used

for a prober file comment, # is used for a comment which is also transferred to the output file, and rho

is used to set sheet resistance parameters.

The program also allows a more detailed measurement control to make the full capabilities of the

equipment available to the user. There are commands to connect any smu, vm, or vs (see notes in

hardware) to any pin number and to specify their attributes. Then the pre-defined functions can be

used, provided that the operator understands how they work in detail. In any case, the long output for

mat will provide all information (currents and voltages) necessary to derive whatever function is desired

by parsers. This interface is very similar to that of the HP4045 system and is easy to learn and under

stand.

The user defined measurements are built from a set of these lower level commands.

u4pt 42 6 46 48

For instance, is just:

smu2 42 i 0.001

smu3 6 v 0

vml 46

vm2 48

The function fflw then can compute {mom * 150E-6 * ismu3 / (vml-vm2)}, where mom is the nominal

rho, ismu3 is the current in smu3, 150E-6 is the length of the line, and vml-vm2 is the change in vol

tage. For the exact definitions of the rest of the functions and macros see the AUTOPRB program list

ing.

10885

1088S

800

320

11111110

11111110

11111110

111X1110

11111110

11111110

11111110

00000000

;NO COMMENTS above the testing matrix
;Comments anywhere from then on, starting the line with a ";"
;2xl0 probe,but since documentation for 2x5, use 800 instead of 1600
; for the X micron site size. This file will only contain EVEN X
; coordinates for this reason.
;Line 1 = X die size (microns)
;Line 2 = Y die size (microns)
;Line 3 = X SITE size (microns)
;Line 4 = Y SITE size (microns)
;Lines 5-13 contain the wafer testing matrix, X marks the die the
; prober is aligned to when the program starts.

rho 32.6 30.0 35.0

;Set sheet resistance for linewidth calculations
;32.6 in nominal, 30.0 is min and 35.0 is max. Two variables are used
;to keep track of sheet resistance. One is the forced value (nom) and the
;other is the measuredone, being updatedon every sheet resistance function
;call, if it is between min and max.

mx=4

my=17
;mx,my is the ABSOLUTE coordinates of the first device to be measured
;and the prober must be aligned to it when the program starts.

dv=LINEWIDTH

;dv stands for device

l.Ou line

;This is a comment which WILL BE PRINTED in the output file (long format)
: and is a maximum of 80 characters starting with a "#"

u4pt42 6 46 48
;u4pt is a four point probe measurement macro. It connects smu2 to the
;first pin number, smu3 to the second pin, vml to the third, and vm2 to the
;fourth. smu2 is a current source of 1mA, smu3 is GND, and vml & vm2
;measure the change in voltage.

fflw l.Ou

;fflw is Function Forced rho Line Width. It uses rho nom to calculate
;linewidth, assuming the u4pt macro was used to make the measurement
;l.Ou is the KEYWORD which can be used to parse to in analyzing the output
;The output line is "Keyword diex diey sitex sitey test.result"
;See the output formats for further information.

fclw 1.0U

;fclw is Function Current rho Line Width. It uses the current MEASURED
;sheet resistance (if no van der pauw was measured, it defaults to rho nom)
;and otherwise acts like fflw. Notice several functions can be done on the
;same measurement

dv=VanDerPauw

;the next device will, by default, use the same site location as the
;previous device unless mx and my are explicitly set. This is to accommodate
;several device measurements on the same probe site.
liu line vdp
u4pt 36 18 34 20
fvdp 1.5uvdp
;fvdp is Function Van Der Pauw. It calculates sheet resistance, rho,
;assuming the u4pt measurementmacro. This is then stored as the Current
;rho, if it is between min and max rho. 1.5uvdp is the Keyword to parse to

mx=4

my=15
dv=FOCUS

Focus A (1 D) 3 12u lines in parallel 0.4u
uif48 6

uif is User macro I (current) Forced. smu2 is connected to the first pin
number and smu3 to the second. smu2 is a 1mA current source and smu3 is

GND. Voltage difference is measured from smu2 to smu3.

f2tr foc0.4

;f2tr is Function 2 Terminal Resistance. It assumes either macro uif or uvf
;to be used for measuring. Delta V is divided by the current in smu3 to
-.produce a resistance value.

fsht dfoc0.4

;fsht is Function SHorT. It detects a short or open circuit by using an
;arbitrary 3K ohm cut-off point

;An example of the last user macro is "uvf 48 6"
;uvf is User macro Voltage Forced. It applies 3 volts to smu2 (first pin
:numbert relative to smu3 (GND. assigned to the second pin numbert.

Chapter 4

Parsing

The analysis of output from each test structure and test site strategy requires a separate parser.

However, they are all very much the same. First identification information is read in, then the program

checks the first word in every line, comparing it to the keyword passed to it When the keyword is

found, it reads the location of the die and site where the device was measured and the result of the test

function. This corresponds to the information available from the short output format Since it is also

included in the long format, that file can also be used, but since the short format is many times shorter,

it can be transferred more rapidly to esvax and parsed. The different parsers simply display the result

of the test in different manners.

Since the focus exposure matrix is made relative to the flat not the orientation of the mask, the

coordinates of the die that was measured during probing may change for a given "position" in the focus

exposure matrix. This occurs because the probing is dependent only on the orientation of the mask.

Hence, all parsers that display information concerning the focus exposure matrix (probing over the

whole wafer) must be made to fit the orientation so it can interpret the coordinates correctly. Appendix

E contains two example parser programs. The first lwfe, is for line-width SMILE plots in the

"assumed lower left" orientation. The second, exfeuL creates the tabular resistance output for a wafer

in the "upper left" orientation. These listing show how to adjust the indices to reflect changes in orien

tation and how to create different types of output

The names "lwfe" and "exfeul" are strange, but describe several things. The parsers' names are

made up of five parts. The first part describes what structure the parser was made for (i.e. line-width

(Iw), flare (fl), or the exploratory structures (ex)). The second part refers to the scope of the informa

tion to be displayed (i.e. over the wafer focus exposure matrix (fe) or within the die (in)). The first two

parts combine to determine the way the test result is to be displayed. The last three parts have default

values and may be missing. The first of these refers to the orientation of the wafer. The assumed

orientation is where the SEM lines are in the lower left comer of the die when the flat is at the top.

Different orientations are described by two letters to describe where the SEM lines are (i.e. upper left

8

comer (ul), etc.). The last two parts correspond to the version of the mask used. Since the site location

is used in determining certain aspects of the display and to distinguish between some structures, this

information is necessary. If this field is absent, it is assumed to work regardless of the version. The

versions are described by the stepper used and the version for that stepper (i.e. the first version done on

the Berkeley stepper is bl, and the first for the AWIS stepper is al). At this point, only al and bl ver

sions have been made and the lack of a version in the name means that either of these two version will

work on that parser.

Figure 1 is a flow chart showing how to probe a wafer and process the output from the software

point of view. All the parsers are invoked in the same way: Parser_name "keyword" [input.file]. The

input file is optional and, if left out the default is used. See the parser program listing for their

defaults. In general, the default is related to the function like smileplotdata, explor.data, or flare.data.

In this way, many different sets of input data can be process with ease. The plotting output is made up

of up to eight files: plotinl rewritten every time the parser is invoked. The plotin files are simply files

containing a number of points, (x,y) on each line. The .plot file contains the script commands to the

CREEP plotter module. Therefore, to make the plot on the apple laserwriter printer, invoke the plotter

and pass it the name of the script file (i.e. plot .plot).

The other output type is a table of resistances generated by exfe. This is contained in the file

explor.out It is approximately 1/4 of a page, but since 66/4 is not an integer, it doesn't come out quite

right By concatenating several files together, the result can be edited to produce 4 results per page.

I r oh ma JOTf ware rath
3

Prober r,U: fr*,* *e*«.J £„>-, *,«;„ W»e ~,Wo~^
^V»") tft fy, Pases.) \A/orksf*-'*YS

\
AUTOPRB,

pfOQ ram

\

Output Jaf<\

IOH« amd short

forma tj

P<\"fa Tram *rerci

back to esv&x

/ i Cj lir e 1

!
exfthf.ouT

TexT omT^m''

p lot.', H1

plottl +j
ouTftA T

CREEP
p)ott<r><\

fe
a r*P'

10

Chapter 5

Sample Session

First write the prober file using any text editor. This can be on a mainframe and later transferred

to the HP workstation, or done on the workstation itself. To keep a copy in the mainframe environment

is usually a good idea so the first method is preferred. To transfer the file to the HP, the terminal emu

lator must be used. Turn on the hard drive, expansion box, and HP9836U. From the main command

menu, type the following:

P
-> Load what code file?

#11:NEWKBD

P
-> Load what code file?

#11:VT2

x

-> Execute which file?

VT2

The input message prompts may differ slightly. At this point you will be running the emulator,

an HP2648, but the protocol must be set up first, so choose that option (option 4: create configuration)

and respond to the questions accordingly For this example, connection was made to a VAX/UNIX

(option 1), at 9600 BAUD and full duplex (option 3). After setting up the emulator, go into emulation

mode and log in through the Cory Hall Port Selector. To transfer a file, press <ctrl> and <exeo at the

same time. A menu will be display with the options to transfer files in either direction. Simply follow

directions. One special note is that all volumes are referenced through numbers. In this work, files were

always transferred back and forth through the RAM: volume, which is referenced as #45:.

While the files are transferring, set up the hardware. Turn on the Electroglas 2001X and respond

to the prompts on the monitor. Mount the wafer, remembering to turn on the vacuum, and align it

Next position the probes over the origin die and device as specified in the prober file to be used. Turn

on the SWC and DCS. Make sure the automatic prober is ONLINE and the I/O is set to GPIB (option

2 on line 7 of MODE DISPLAY). For more detailed instruction see Appendix A.

After transferring the files, logout and terminate the emulator. This will bring you back to the

11

12

main menu. To speed up processing, you can use the Filer to transfer GAMES:AUTOPRB.CODE to

AUTOPRB.CODE (default volume is RAM:), and the prober files to the RAM: volume. Quit the Filer

by pressing "q" and execute AUTOPRB (type "x" followed by AUTOPRB to the prompt). AUTOPRB

will then provide directions and options to which you can respond. All questions have defaults and you

can always change the options before probing if a mistake is made. The long format output is automat

ically directed to GAMES:PRBLONG.OUT. The short format is default RAM:SHORT.OUT, it but can

be renamed in the options. The default prober file is PROBER.TEXT, but it can also be renamed.

Probing is initiated by pressing any key other than "c". During probing, the current status of the

equipment is displayed. This includes the information you typed in as the options, the position of the

prober on the wafer, within the die, the test being done and its results, and the results of any user func

tion, if specified, along with its keyword. When the probing is done, you have the option of exiting the

program or doing more tests.

When you are finished probing, transfer whatever files you wish back for processing. Transfer

ring the short format output saves time and space. To transfer back to esvax, press "control-execute" as

in transferring from the. VAX, but choose the "to host" option instead of "from host" as before. When

the data is transferred, processing continues using the parsers.

An example prober file for a SMILE plot on the 290 wafers is:

1088S

1088S

800

320

11111110

11111110

11111110

111X1110

11111110

11111110

11111110

00000000

rho 32.6 30.0 35.0

mx=4

my=17
dv=LINEWIDTH

#1.0u line

u4pt 42 6 46 48
fflw l.Ou

dv=LINEWIDTH

#1.5u line

u4pt 32 16 36 38
fflw 1.5u

13

Assuming the output data is in the file 290.smile.data, the SMILE plot is generated for a 1.0 micron

line using the "l.Ou" keyword (assuming the standard orientation) by:

lwfe "l.Ou" 290.smile.data

plot smile.plot

The SMILE plot of 1.5u lines is generated by:

lwfe "1.5u" 290.smile.data

plot smile.plot

Other structures would be parsed and plotted by similar commands.

Chapter 6

Results

Classical structures and some exploratory ones have been tested on both the AWIS and Berkeley

steppers. The results shown here are for the Berkeley wafer. The OCT/VEM CAD tool was used for

layout The test patterns were converted onto the mask' using the GCA 3600F pattern generator. The

resist for the process was 1.2 microns of KTI 820 Micropositive photoresist at 120 degrees C prebake.

The wafers were printed on a GCA 6200 10X stepper at a numerical aperture (NA) of 0.28 microns,

wavelength of 0.4358 microns, and partial coherence factor of 0.7. These wafers were exposed in a

standard focus-exposure matrix, with exposures ranging from 0.06 sec to 0.12 sec in 0.01 sec steps, and

with focus settings ranging from 254 to 290 in steps of 6 (GCA units). They were developed on a MTI

Omnichuck Photoresist Development Station with KTI 934 (50% concentration). Spin-Spray and a 60

sec development time were used. The wafers had 0.4 microns of Phosphorous doped poly, annealed for

30 min at 850 degrees C. They were etched in a LAM Plasma Etcher using carbon tetracloride.

The classical results were as expected. SMILE plots were quickly and easily generated (see Fig

ure 2). The variation of linewidth within the die increased almost linearly with respect to the distance

from the center of the die as shown in Figure 3.

Flare structures were created by a line near a large dark field. Two types were made, one with

the line on the outside comer of the field, and one on the inside. There is a definite bias from outside

to inside separation to as much as 0.3 microns as shown in Figures 4 and 5. This may be caused by a

bias in the plasma etch. In Figure 5, the points that drop to Oum at 5um separation are due to defects

in this particularwafer, but in both Figures 4 and 5, the first separated point corresponding to Middle of

the die (versus the Comer and Edge) is uncharacteristically larger than those at the comer and edge.

This was found to be a mask error (Figure 4 shows this best due to the lack of discontinuity).

Figure 6 contains two pictures of the mask used for the checkerboard test patterns. In Figure 7,

the plasma etch step may be causing the round inside comers verses the sharper outside comers of the

checkerboard pattern This checkerboard also seems to indicate an astigmatism, as the comers of the

14

15

squares are connected along one diagonal more than the other. The resistance table output of these

checkerboards is given on the bottom of the next page. Figure 8 is a picture of the "focus" test struc

ture. It consists of three parallel lines. The resistance table output of this structure is also on the next

page, at the top.

The test structure defect3A did not work well, as the resolution of the process was never good

enough to clear the poly between the defect and contact, even during over-exposure. But defect3B did

appear to present some possibly useful structures. The resistance table output for this structure follows

on page 23. Defect3B consists of two elbows with defects of different sizes aligned between the

comers of those isolated elbows.

Although some results, graphs, and charts are presented here from the 290 wafer, for the complete

set of data for the Berkeley and AWIS wafers, the description of the test structures, and their layout,

see those documents..

One problem in electrical probing is the determination of sheet resistance! This variable can

change over the wafer and even within a die (see Graph A). For this reason, Van Der Pauw structures

were made next to each linewidth site, but the Van Der Pauw structures need to be redesigned. The

resistance in the-leads to the symmetric square is so great that the voltage drop from comer to comer is

much smaller than the overall change in voltage. Hence, to get a reading which is significant to several

figures, the current necessary is so great it is excessive for the small size of. the leads. This may cause

the leads to heat up and go up in smoke, or at least affect the local temperature, making the sheet resis

tance found invalid. In this work, the sheet resistance was assumed to be constant and was forced to be

32.6 ohms per square in all the calculations.

%±?A

+HL2

36,26 -% J*.*

+l;::

4 2C

-I

-1

3SJ3*

f C^)

33.5"©

i

(s>rapV\ /\

• # •

#«*# ♦ MM

f3/.72 7)

Repetitions

#

t (3/./i5)_ "_

• • • » « t • # ;:/3£;2J9;

i 6

eorr.Y

f * # (3 3.99V 75 "V

70^t'

Verf»eJ

Hori-zon Ta I

Distance. fro*t V/af&r CenT&r

7:-

7f.

C/3

a
o

o

.s

W: 290-3, D: 7/28/88,1: 290SMIL.TEXT, K: 1.5u

4 5

Focus (by Row)
-j

I I n Ur cf D

W: 290-3, C: 3 R: 6, D: 8/3/88,1: INTPRB.TEXT, K: 1.5u
1.6

CO

O
u
o

(D

•i-i

1.4

1.2
•

•

H*

0.8 "

0.6 "

0.4

0.2

0

0 1

Distance from center of die

^

CO

O

o

•a

•i-H

1.4

1.2 -

0.8

0.6

0.4

0.2

/ ' <3 m v et i

W: 290-3, C: 3 R: 6, D: 8/3/88,1: FLRPRB.TEXT, K: iflare

10 15 20

Separation (microns)
-4)

CO

a
O

o

•5
•ct
•l-H

<U

.s

/ ; Ca U /jf 5

W: 290-3, C: 3 R: 6, D: 8/3/88,1: FLRPRB.TEXT, K: oflare

Separation (microns)

4-

fijure o

$

•

*

v^*
<^-

•^

^

3?

V
•

*»

¥:¥:>
:•:•:••:• ?

•J

-x \

2^-

F 3 lA f 7

F; j u re j

W: 290-3, D: 8/2/88, I: EXPRB.TEXT, K: foc0.8
7 3

Column Column

CI C2 C3 C4 C5 C6 C7 CI C2 C3 C4 C5 C6 C7

Rl 1 1 0 0 0 0 0 Rl 568 846 999999 999999 999999 999999 999999

R2 1 1 0 0 0 0 0 R2 1038 2218 999999 999999 999999 999999 999999

R3 1 1 0 0 0 0 0 R3 556 652 999999 999999 34557 999999 999999

R4 1 1 1 0 0 0 0 R4 563 677 1204 999999 999999 999999 999999

R5 1 1 1 0 0 0 0 R5 527 689 672 999999 999999 999999 999999

R6 1 1 1 0 0 0 0 R6 627 632 959 999999 999999 999999 999999

R7 1 1 1 0 0 0 0 R7 423 660. 1482 999999 999999 27034 999999

Continuity Resistance

r: 290-3, D: 8/2/88, I: EXPRB.TEXT, K: focl.O

Column Column

CI C2 C3 C4 C5 C6 C7 CI C2 C3 C4 C5 C6 C7

Rl 1 1 1 1 0 0 0 Rl 868 1207 2234 1516 999999 999999 999999

R2 1 1 1 1 0 0 0 R2 1783 2151 1632 728 999999 999999 999999

R3 1 1 1 1 1 0 0 R3 519 1246 866 1367 1284 999999 999999

R4 1 1 1 1 1 1 0 R4 496 574 808 840 1506 2155 999999

R5 1 1 1 1 1 1 0 R5 670 900 848 1174 670 932 999999

R6 1 1 1 1 1 1 0 R6 1055 689 1079 1492 771 2189 999999

R7 1 1 1 1 1 0 0 R7 621 2070 1040 2022 1641 999999 999999

Continuity Resistancei

W: 290-3, D: 8/2/88, I: EXPRB.TEXT, K: exp6

Column Column

CI C2 C3 C4 C5 C6 C7 CI C2 C3 C4 C5 C6 C7

Rl 1 1 1 1 1 1 1 Rl 820 589 579 1323 488 1219 1738

R2 1 1 1 0 0 0 0 R2 370 1015 1295 999999 999999 999999 999999

R3 1 1 1 0 0 0 0 R3 377 516 892 999999 999999 999999 999999

R4 1 1 0 0 0 0 0 R4 466 656 999999 999999 999999 999999 999999

R5 1 1 0 0 0 0 0 R5 389 459 999999 999999 999999 999999 999999

R6 1 1 1 0 0 0 0 R6 520 481 830 999999 999999 999999 999999

R7 1 1 1 1 0 0 0 R7 501 932 1266 1401 999999 999999 999999

Continuity Resistance

r: 290-3, D: 8/2/88, I: EXPRB.TEX1?, K: exp7 •

Column Column

CI C2 C3 C4 C5 C6 C7 CI C2 C3 C4 C5 C6 C7

Rl 1 1 0 0 0 0 0 Rl 588 822 999999 999999 999999 999999 999999

R2 1 0 0 0 0 0 0 R2 1124 999999 999999 999999 999999 999999 999999

R3 0 0 0 0 0 0 0 R3 999999 999999 999999 999999 999999 999999 999999

R4 0 0 0 0 0 0 0 R4 999999 999999 999999 999999 999999 999999 999999

R5 0 0 0 0 0 0 0 R5 999999 999999 999999 999999 999999 999999 999999

R6 0 0 0 0 0 0 0 R6 999999 999999. 999999 999999 999999 999999 999999
R7 0 0 0 0 0 0 0 R7 999999 999999 999999 999999 999999 999999 999999

Continuity Resistance

2 W
W: 290-3, D: 8/9/88, I: DEF3PRB.TEXT, K: 3B0.3u

Column Column

CI C2 C3 C4 C5 C6 C7 CI C2 C3 C4 C5 C6 C7

Rl 1 0 0 0 0 0 0 Rl 2325 5441 4179 9962 7788 31639 45157

R2 1 0 0 0 0 0 0 R2 2395 5855 17207 3610 3300 4847 20548

R3 1 0 1 0 0 0 0 R3 2175 3128 2567 4755 999999 999999 5665

R4 1 1 0 0 0 0 0 R4 2347 2914 999999 999999 999999 999999 999999

R5 1 0 0 0 0 0 0 R5 2145 3420 999999 999999 999999 999999 999999

R6 1 1 0 0 0 0 0 R6 1691 2368 999999 999999 999999 999999 999999

R7 1 1 1 0 0 0 0 R7 1199 1572 1926 999999 999999 999999 999999

Continuity Resistance

W: 290-3, D: 8/9/88, I: DEF3PRB.TEXT, K: 3B0.5u

Column Column

CI C2 C3 C4 C5 C6 C7 CI C2 C3 C4 C5 C6 C7

Rl 0 0 0 0 0 0 0 Rl 5768 3791 43014 13724 16411 78586 665705

R2 0 0 0 0 0 0 0 R2 3142 4351 3494 70897 5838 5129 41531

R3 1 0 0 0 0 0 0 R3 1529 3499 3564 3525 999999 999999 20311

R4 1 0 0 0 0 0 0 R4 2661 3472 999999 999999 999999 999999 999999

R5 1 1 0 0 0 0 0 R5 2001 2351 999999 999999 999999 999999 999999

R6 1 1 1 0 0 0 0 R6 1784 2593 2822 999999 999999 999999 999999

R7 1 1 0 1 0 0 0 R7 1718 1944 3219 2134 4694 999999 999999

Continuity Resistance

W: 290-3, D: 8/9/88, I: DEF3PRB.TEXT, K: 3B0.6u

Column Column

CI C2 C3 C4 C5 C6 C7 CI C2 C3 C4 C5 C6 C7

Rl 1 1 0 0 0 0 0 Rl 2783 2863 3245 5621 3040 52868 47322

R2 1 0 0 0 0 0 0 R2 2726 13004 165746 4547 6173 4980 35055

R3 1 1 0 0 0 0 0 R3 1598 2510 3850 4841 5459 7651 10409

R4 1 0 0 0 0 0 0 R4 1656 3755 4525 10220 999999 999999 999999

R5 1 1 1 0 0 0 0 R5 2255 2095 2765 8793 999999 999999 999999

R6 1 1 1 0 0 0 0 R6 1779 1719 2085 3116 3274 999999 999999

R7 1 1 1 1 1 0 0 R7 1293 1291 2266 2409 2911 4111 999999

Continuity Resistance

W: 290-3, D: 8/9/88, I: DEF3PRB.TEXT, K: 3B0.8u

Column Column

CI C2 C3 C4 C5 C6 C7 CI C2 C3 C4 C5 C6 C7

Rl 1 1 1 1 0 0 0 Rl 2592 1750 2667 2639 4233 13640 291545

R2 1 1 1 1 0 0 0 R2 1599 2243 2856 2869 3318 4785 19538

R3 1 1 1 0 0 0 0 R3 2052 2374 2475 3967 7323 4635 10825

R4 1 1 0 0 0 0 0 R4 1869 2704 4040 4554 5093 4523 4822

R5 1 1 0 0 0 0 0 R5 1602 2373 3077 3664 4015 6723 8459

R6 1 1 1 0 0 0 0 R6 1412 2174 2283 4012 3446 5964 9349

R7 1 1 1 1 0 0 0 R7 1383 2066 2683 2896 6050 4010 3893

Continuity Resistance

Acknowledgement

This work was supported by the SRC-SEMATECH Industrial Consortium on Deep UV Lithogra

phy and the California State MICRO program.

25

Appendix A

Automatic Prober Hardware

Equipment and set-up Procedure
From

Norman Yuen's Thesis

26

(

SWC
4084A
Switching Matrix
Controller)

DCS
/4141A \
\DC Source/Monitor/

CMS
/4280A
\ 1MHz C Meter/C-V Plotter

Figure 3-1. HP 4062 system (not to scale)

27

Relay Board (12 to 48 boards

SWM
/ 408SA \

VSwitching Matrix/

C

2 y

^ SJ<3-re WAPFR PLAT CX2ieUTA-nOK>
\A/Heto MOUNTING THE WAFS12.

MC^OSCOPC ARM

COLLETS. 5

c a snow* >

opeAA-roP cowsoLe

The aicroscope «rm .how. will not work with the 4062 .yucnv. The .nn oust have . «ru»f»l«r
thftpe to th*t tne microscope us xe*ch over »nd into the m»tra.

Figure 3-2. Electroglas 200IX Automatic Prober

(

swrrcn

THETA MANUAL ADJUST
SWITCH

Figure 4-2. Operator Control Console

2,£?

JO

Figure 4-3. Monitor Console Keyboard

r

06:50:38

POS X ~..0
Y .0
Z DOWN-

WAFER .OFF
EDGE D1S
CHUCK VAC....OFF
PROBE MATRX

INDEX

MM

DIE X 10.8S50
Y 5.8850

DIA -115MM

INKER DIS
ONLINE

WAFER*. 0
GOOD DIE 0
BAD DIE 0

figure 4-4a. Default Display

01 METRIC/ENGLISH METRIC
02 QUADRANT SELECT. * -2
03 FLAT SELECT °
04 AUTOPROBE PATTERN MATRX
05 EDGE SENSOR DIS
06 SKIPD1E FUNCTION -DIS
07 10MODE GPIB
08 BAUDCODE °
09 GPIB ADDRESS 14
10 LINEFREQ 60
11 PRINT ERROR MESSAGES DIS
12 PRINT WAFER LOG DIS
1? PRINT CASSETTE LOG ~ DIS
14 WAFER EDGE INKING DIS
LINE?

figure 4-4b. SET MODE Display

01 DIE

02

03

04

05

06

07

08

09

10

11

12

LINE?

X 10.8850 MM
Y .5.8850 MM

PRESET X.......0 Y.......0 DIE
MATRIX X.......0 Y.......0 DIE
INKER OFFSET ° Dl£
TURNAROUND ; wJt
W*AFER DIAMETER H5 MM
Z OVERTRAVEL 0.00 MILS
Z CLEARANCE 0M MILS
Z UP LIMIT W4 MILS
ZDOWN LIMIT -2*4 M*t£
Z ALIGN... -200 MILS
NEXT PAGE

figure 4-4c. SET PRMTR Display

SETPARM PAGE #2
01 ALIGN SCAN VEL ^n^SI
02 reprobe limit :••-;£:.
03 set runtime display clock

LINE?

figure 4-4d. SET PRMTR Page 2Display

32

c

01 AUTOLOAD SWITCH DIS
02 AUTOALIGN SWITCH DIS
03 AUTOPROFILE SWITCH... DIS

LINE?

figure 4-4e. SET OPTION Display

33

so that all these steps will be done automatically upon power-on. An example of an

AUTOSTART file is shown in figure 4-1.

43. Setting Up The Electroglas 200IX

1) Plug in the appropriate probe card.

2) Turn ON the prober.

3) If the monitor is not already ON. turn it ON.

4) Answer the questions on the monitor or else wait for default response from
prober. It takes about 30 seconds for adefault response.

Type Message Plus Enter~>Enter key
Wait for Pattern Rec I/O Test... Wait about 30 seconds
Rom Test? Y
Repeat Test?Enter key

5) Now you will see "XY MOTOR BLANK- at the bottom of the screen. The
^ stage is now floating on the platform. Pull it to the front right corner against

the 2 edges.

6) Press the button inside the left side of the joystick control panel (figure^4-2).
THE PROBER WILL NOT RESPOND UNTIL YOU PRESS THIS BUTTON.

7) Pull out the vacuum level at the front panel. A hissing noise indicates
compressed air coming into the probe station.

** 8) Using the monitor console keyboard (figure 4-3) «g ^.^j^gjg?^
figures 4-4b to 4-4e. Of course, the parameters DIE, WAFER DIAMETER, ZVF
LIMIT, and Z DOWN LIMIT will depend on your particular wafer. To get any
of the screens, press the appropriate key on the monitor console keyboard.

9) Place the wafer on the chuck and press ESS ™d [TA0E • The device pads
must be roughly parallel to the probes.

10) Align the wafer (i.e.. route the chuck until the device pads are perfectly paral
lel to the probes). The following section describes more fully bow to align the
wafer.

11) After the wafer is aligned, use the joystick to move the wafer so that the^probes
are directly over the pads of the devices to be tested. The die «^ * ** "£
gin die and the devices should be the origin row of dev»ces w.thin that d,e. as
specified in the prober file.

3«

.,i o — m to raise the wafer to the probes. You may have to reset the Z UPU) WM/SarL" er £.Ce 4-4c) in the ISrTTPRMTrimode. If the probes .ret/A/TT parameter ^see g ^ ^ g] twlCe
T l°^fwel wa '̂once Wra" eT). When you see that all the probes are
hareVtoS^me^ds increase ZUP LIMIT by 0.5 to 1.0 MIU5 to pro-
vtd."some overdr" * £ much overdrive will wear out the probes and the
pads very quickly.

4J.1. Aligning the Wafer

Aligning the wafer will take some practice. Alignment is done when the wafer (actu
ally the stage holding the wafer) is moving from side to side under the probes.

The idea is to route the wafer until the device pads are parallel to the probes. When
they are not parallel, then even if the probes are directly over the pads at one end of the
wafer, the probes will not be directly over the corresponding pads at the other end of the
wafer (figure 4-5).

Initially, the prober should be setup similar to the one shown in figures 4-4b to 4-4e.
Some prober parameters will depend on the particular wafer being used. The WAFER
DIAMETER parameter tells the prober how far the stage should move before reversing the
direction of movement. The ALIGN SCAN VEL parameter (ISF.T PKMltU . page 2) sets
how fast the stage will move. Three hundred MPS is areasonable speed for wafer align-

ment.

43.1.1. Alignment Instructions

Refer to the operator control console (figure 4-2) while reading the following instruc-

;. The rectangularly enclosed words below represent keys on the joystick panel.
tions.

1) Follow steps 1 to 9 of section 4.3.

2) Press 1ALIGN SCAM. , ,« ,u* richt of theThis causes the stage to move from the right front corner to the right of the
probes.

25

3) Press IPAUSfcJ.
The stage moves to the left of the probes.

4) Turn the joystick until you see "scan" at the lower left column of the monitor.
Use the joystick to move the wafer until you see some linear pattern below the
probes. You will use this pattern in step 6) to judge whether the probes are
parallel to the pads or not. The pattern can be the pads of a row of devices or
the edge of the dies.

5) Press lPAUS^I. ,.,•••.,
The stage now moves back and forth. Successively pressing jPAUSEJ causes the
stage alternately to stop and start moving.

6) As the wafer is moving, look under the microscope and compare the probes to
the pattern. If they are not parallel from one end of the wafer to the other,
then turn the theta knob, causing the wafer to route. Play with the knob until
the probes are parallel to the pattern.

7) When you are confident that they are parallel, use the joystick to move the pads
to directly underneath the probes. You can use the joystick to move it fast
(scan), slow (jog), or fixed (index). How far the stage moves in index mode
depends on what the Xand Ydie si2es are set to (see figure 4-4c).

•7 f
JO

^

2881

\

\

v
-
°

•8eo
o

<*
u£•8c<

oZ

eEes
o

<
ui
n3

7
_

Appendix B

AUTOPRB Code

•7 8

$REF 420$
$UCSD$
program bsim (input,output);

import hpib_0, hpib_l, hpib_2, hpib__3,
general_0, general_l, general_2,
iodeclarations, iocomasm, dgl_lib;

type shortstring=string[30];
type chuck_pos_type=(Zup, Zdown);
type linestring=string[80];
type source^ record

pin : integer;
value : real;

end;

type ivsm= record
pin : integer;
kind : char;
value : real;

end;

type funtp= record
fnum : integer;
keyword : shortstring;

end;

const

max_num_devices=100; {max number of devices per die}

var device: string[20];
mode: char;

process, wafer, lot, date, operator: string[80];
output_file, prober_file: string[15];
new_die, end_of_die, initial_jump, end_of_wafer, new_wafer: boolean;
end_of_jprogram: boolean;
time_count: integer;

printer: boolean;
{PROBER ORIENTED PARAMETERS}
step_array :array[1..8, 1..8] of char;

{this holds the automatic array}
number_devices, present_device, number_die, present_die: integer;
present_diex, present_diey: integer; {x y die location}
xdie_size, ydie_size, origin_diex, origin_diey: integer;
xmult, ymult : integer;

mom, rvdp, rmin, rmax : real;

comment: array[1..max_num_devices] of string[80];

funcs: array[1. .2,1. .max_nuni_devices] of funtp;

vml: array [1. .max_num_devices] of integer;
vm2: array[1..max_num_devices] of integer;

vsl: array[1..max_num_devices] of source;
vs2: array[1..max_num_devices] of source;

smul: array [1. .max_jvum_devices] of ivsm;
smu2 : array [1. .max_num_devices] of ivsm;
smu3: array [1. .max_num_devices] of ivsm;
smu4: array[1..max_num_devices] of ivsm;

devices: array[1..max_num_devices] of string[10];
mx, my: array[1..max__num_devices] of integer;

{device types and internal die steps}

HO

temporary, userout, userout2: text;

hpib_controller_isc: integer; {interface select code of controller}
hpib_controller_isc_prober: integer;
hpib__dev_addr: integer;
hpib_addr_DCS, hpib_addr__SWC, hpib_addr_CMS: integer;
hpib_addr_prober: integer;
PROBER: integer;

continue: char; {move probes to new location, then enter CR to continue}
{also user inputs a 'y' or 'n' or CR to tell what to do
in prepare_for_iv_graphics procedure}

colonjposition: integer; {colon position in output_file name}
period_position: integer; {period position in '.TEXT' in output_file name}
first_time_thru_program: boolean; {allows 'graceful' ending of program

if user decides to quit before actually enterring program}
measure_error: integer; {error flag for any errors encounterred while

measuring the device before extraction of
parameters}

minutes_per_device, minutes^per_clevice_above_thresh,
minutes^per_device_subth: real;
number_of_increments, number_of__increments__subth: integer;

TRACEMD, TRACEselftest, TRACE_linear_ext, TRACE_sat_ext, TRACEiv,
TRACEpf: boolean;

DCS, SWC: integer;

procedure init_global_variables;

begin
hpib_controller_isc:=700; {isc is 7. have to X100}
hpib_addr_SWC:=22; {4084A matrix controller}
hpib_addr_DCS:=23; {4141A DC source/monitor}
hpib_addr_CMS:=24; {4280A C meter/C-V plotter}
hpib_controller_isc—prober :=700;
hpib_addr__prober: =14 ;
PROBER:=hpib_controller_isc_prober + hpib_addr_prober;

end; {proc init_global_variables}

procedure bsim__timer (var present_increment:integer);

{const minutes_j?er_device=l.6;
number_of_increments=37;}

var minutes_to_die__completion,minute s_to_wafer_completion:real;
i:integer;

begin
minutes_to_die_completion: =minutes_per_device* (number_devices-

present_device+ (number_of_increments-
present_increment) /number_of_increments);

minutes_to_wafer_completion: =(number_die-present_die) *number_devices*
minutes_per_device+minutes_to_die_completion;

{here is where the speedometer is written}
if present_increment=l then

begin
gotoxy(27,11);
write(' ');

end;
gotoxy(27,11);
for i:=l to present increment do

write('X'); ^I
present_increment:=present_increment+l;
{here is where the time values are written}
gotoxy(26,10)
write(' ');
gotoxy(68,10)
write('
gotoxy(26,10)
write(minutes
gotoxy(68,10)
write(minutes_to_wafer_completion:1:1);
gotoxy(21,23)

end; {end of bsim timer}

procedure pause;

var i: integer;

begin
for i:=l to 300000 do; {takes about 5 seconds}

end;

{from miscfunc.TEXT}

procedure device_self_test (hpib_dev_addr: integer);

const endbit=2; {end bit position in status byte}
failbit=5; {fail bit position in status byte}

var result: string[80];
bitset: boolean;
sbyte, device: integer;

begin {proc device_self_test}
bitset:=false;
device:=»700+hpib_dev_addr;
if hpib_dev_addr=hpib_addr_DCS then begin

writestring (device, 'ID;');
readstring (device, result);
writeln ('the device ID is ', result);
writeln (' 4141A self testing ');
writestring (device, 'TS;'); {DCS start self test}

end

else if hpib__dev_addr=hpib_addr_SWC then begin
writestring (device, 'IDEX');
readstring (device, result);
writeln ('the device ID is ',result);
write (' install the relay test ');
write ('adapter (16075A) and hit ');
write ('enter >');
readln;

writeln (' 4084A self testing ');
writestring (device, 'TSEX'); {SWC start self test}

end;

while not bitset do begin
sbyte:=spoll(device);
bitset:=(bit_set(sbyte, endbit) or bit_set(sbyte, failbit));

end;

writeln ('status byte is ', sbyte:l);
if hpib_dev_addr=hpib_addr_DCS then writestring (device, 'TR;')

{get self test result for DCS}
else if hpib_dev_addr=hpib_addr_SWC then writestring (device, 'TREX');

{get self test results for SWC}
readstring (device, result);
writeln ('the self test result is ', result);

);

to_die_completion: 1:1) ;

write ('the status byte after the next spoil is '); H2
writeln (spoil(device):1);

end; {proc device_self_test}

***************************STRING CONVERSION ROUTINES**********************

function realtostr:linestring;
{this function will read a real number string, reading only legitimate
characters from the user}

var buffer:string[80];
value:char;
i,j,max:integer;
number:real;

begin
realtostr:='0.0';

i:-l;
j:=l;
readln(buffer);
max:=strlen(buffer);
if max <> 0 then

realtostr:=' ';

for j:=l to max do begin
value:=buffer[j];
if ((value>='0') and (value<='9')) or (value='.') or (value='E')

or (value='e')or (value='+') or (value='-') then begin
realtostr[i]:=value;
i:=i+l;

end;

end;

end;

function digit(number:char):integer;
{this function returns an integer given a character}

begin
if (number>'9') or (number<'0') then begin

gotoxy(0,22);
writeln('ERROR in function(digit). Erroneous number = ',number);

end;

digit:=ord(number)-ord('0'); {this is the new function}
end; {end of function digit}

function strtoreal(realstring:linestring):real;
{this function takes a real string and converts it into the
corresponding number}

var filestring : linestring; {string that will be treated as a file}
pos : integer; {of no earthly value, required by I/O call}
realnumber : real; {intermediate storage place before put into strtoreal}

begin
if (strlen(realstring)oO) then begin

setstrlen(filestring,0); {clear out the 'file' filestring}
strwrite(filestring,1,pos,realstring);

{write realstring into filestring}
strread(filestring,1,pos,realnumber);

{read filestring into realnumber as a real}
strtoreal:=realnumber;

{put the real number into our function name- strtoreal}

end Lf
else

strtoreal:=0.0; {in case only a CR & LF are enterred}
end; {function strtoreal}

j**************************^

{***********HPIB TALK, LISTEN & WAIT PROCEDURES**************}
j***********************^

procedure talk_to_hpib(var hpib_address:integer);
{this procedure sets up the hp9836 to talk to the hpib. hpib_address
is the current hpib address.}

begin
untalk (7);
unlisten (7);
talk (7,- my_address (7)) ;

{my_address returns the HP-IB address of this (i.e., 7)
HP-IB interface. It returns the talker address for

proc talk. The first 7 is the controller's isc.}
listen (7, hpib_address);

{The 7 is the controller's isc; the 2nd parameter is
the listener address.}

end; {procedure talk_to_hpib}

procedure listen_to_hpib(var hpib_address:integer);
{this procedure sets up the hp9836 to listen to the hpib.
hpib_address is the current hpib address.}

begin
untalk (7);
unlisten (7);
talk (7,hpib_address);
listen (7, my_address(7));

end; {procedure listen_to_hpib}

procedure wait_till_hpib_ready(var hpib_address:integer);
{this procedure tells the hp9836 to wait until hpib is
ready. hpib_address is the current hpib address.}
{last change made: JUNE 21, 1984 by: JRP}

var statusbyte:integer; {status of serial poll of hpib}

begin
statusbyte :=» spoil (700 + hpib_address);
while statusbyte <> 1 do {keep polling until statusbyte=l}

statusbyte := spoil (700 + hpib_address);
end; {procedure wait_till_hpib_ready}

procedure wait_till_bit12_IOSTATUS_set;
{this procedure polls bit 12 of the IOSTATUS register
until it is set to '1'}

var bitset:boolean;

begin
{not(bit_set(IOSTATUS(7,7),12)) returns the not-ready-for-data-bit}

bitset:=false;
while not(bitset) do

bitset:=not(bit_set(IOSTATUS(7,7),12)) ;
end;

{** f, u

*****************************USER INPUT FUNCTIONS**************************
**}

procedure selection__input (xpos, ypos: integer; charl, char2: char;
var selection:char);

begin
gotoxy(xpos,ypos);
read (selection);
while (selection<charl) or (selection>char2) do

begin
gotoxy(xpos,ypos);
write(' ');
gotoxy(xpos,ypos);
read(selection);

end;

gotoxy(xpos-3,ypos); »
write(' ') ;
gotoxy(xpos-3,ypos);
write(selection);

end;

j**

******************************m£,jjj MENU ROUTINES***************************
**}

procedure initial_bsim_j>age;
{this procedure shows the initial bsim information and takes the user
inputs}

begin
writeln(#12); {clears the screen}
gotoxy(12,0);
write('AUTOMATIC PROBER CONTROL PROGRAM');
gotoxy(20,1);
write CUC BERKELEY 1988 VERSION 1.0');
gotoxy(0,2);
writeln('This Program can be used in either of the following modes:');
writeln('[1] Fully Automatic or [4] quit! ');
writeln;

write('FULLY AUTOMATIC OPERATION requires a prober file, and');
writeln(' tests all devices ');
write('in the file without interuption. This mode requires an');
writeln(' automatic prober.');
writeln;
gotoxy(0,14);
write('Select a Mode of Operation >');
gotoxy(32,14);
write (' [1] :FULLY AUTOMATIC) ;
gotoxy(32,17);
write('[4]:EXIT PROGRAM');
selection_input(29,14,'1','4',mode);

end;

procedure clear_output_file;
{this procdure simply clears out the output file, if the user has chosen
the same name output file as he did on the previous run, the old one will
get erased, this is done so that only the present devices under test
will get recorded in the output file, if an output file of the same
name does not exist, it will be created first (so as not to get an
operating system error)}

begin
{suppose the user chooses 'bsimout.TEXT', for example, for his
output file, quits the program, and then runs it again

and chooses 'bsimout.TEXT' again, now if the original H£
bsimout.TEXT was not destroyed by the user, all information
to be put into bsimout.TEXT in the 2nd run will simply be
added to what is already in bsimout.TEXT from the first run!
that's why we must destroy the output file before it gets
created, and in case it doesn't exist, we will create it
first, and then destroy it....all to be followed by opening
the file up and making it writeable!! are you confused yet?}

rewrite(userout,'GAMES:PRBLONG.OUT');{create output_file if it doesn't}
close(userout,'save'); {exist, or open and save if it does}
reset(userout,'GAMES:PRBLONG.OUT');{now make output_file readable and}
close(userout,'purge'); {then destroy it}
rewrite(userout,'GAMES:PRBLONG.OUT'); {now create new output_file and}
{close(userout,'save'); make it writeable}

end; {of procedure clear_output_file}

procedure standard_input_display;
{this procedure prompts the user for all inputs common to
modes of operation}

begin
gotoxy(0,2);
writeln('Process Name=? >');
writeln('Lot=? >');
writeln('Wafer=? >');
writeln('Date=? >');
writeln('Operator=? >');
writeln('Output File=(short format)? >');
writeln('Print Output? (default n) >');

end;

procedure input__standard_values;
{this procedure handles inputing values common to all modes of operation}

const blanking=' ';

var i:integer;
pr_option: string[5];

begin
gotoxy(17,2); {process name input}
readln(process);
if strlen(process)>25 then

strdelete(process,25,strlen(process)-24); {deletes extra char.}
gotoxy(13,2);
write(blanking);
gotoxy(13,2);
write(process);
gotoxy(8,3); {lot input}
readln(lot);
if strlen(lot)>25 then

strdelete(lot,25,strlen(lot)-24); {deletes extra char.}
gotoxy(4,3);
write(blanking);
gotoxy(4,3);
write(lot);
gotoxy(10,4); {wafer input}
readln(wafer);

if strlen(wafer)>25 then
strdelete(wafer,25,strlen(wafer)-24); {deletes extra char.}

gotoxy(6,4);
write(' ');
gotoxy(6,4);
write(wafer);
gotoxy(9,5); {date input}

readln(date); H&
if strlen(date)>25 then

strdelete(date,25,strlen(date)-24); {deletes extra char.}
gotoxy(5,5);
write(blanking);
gotoxy(5,5);
write(date);
gotoxy(13,6); {operator input}
readln(operator);
if strlen(operator)>25 then

strdelete(operator,25,strlen(operator)-24); {deletes extra char.}
if strlen(operator)=0 then

operator:='Egor';
gotoxy(9,6);
write(blanking);
gotoxy(9,6);
write(operator);
gotoxy(30,7) {output_file input};
readln(output_file);
colon_position:=strpos(':',output_file);
period_jposition:=strpos('.TEXT',output_file);
if (period_position<>0) then {'.TEXT' has been included in file name}

strdelete(output_file,colon_position+ll,period—position
-colon_position-ll)

else {'.TEXT' has not been included in file name}
strdelete(output_file,colon_position+ll,strlen(output_file)

-colon_position-10);
if strlen(output_file)=0 then

output_file:='SHORT.OUT';
gotoxy(12,7);
write(blanking);
gotoxy(26,7);
write(output_file);
gotoxy(30,8);
readln(pr_option);
if (pr_option = 'y') or (pr_option = 'Y') then printer := true

else printer :=» false;
gotoxy(28,8);
write(blanking);
gotoxy(28,8);
if printer then write('Y') else write('N');

end;

procedure automatic_mode_inputs;
{this procedure handles making the automatic mode display}

var i:integer;

begin
gotoxy(14,0);
write('***AUTOMATIC OPERATION***');
standard_input_display; {this displays the standard prompts}
gotoxy(0,12);
writeln('Prober File=? >');
input_standard_values;
gotoxy(16,12);
readln(prober_file);
if strlen(prober_file)>15 then

strdelete(prober_file,16,strlen(prober_file)-15);
if strlen(prober__file) =0 then

prober_file:='TEST.TEXT';
gotoxy(12,12);
write(' ');
gotoxy(12,12);
write(prober_file);
gotoxy (0,19);
writeln('Probing Instructions');

end;

writeln(' The prober should be on, and the probes should be down'); 77
write('on the starting die, starting position.');
writeln(' (see prober instructions)');
writeln('HIT a "C" for changes, or any other key to start. >');
gotoxy(52,22);

procedure initial_status_inputs;
{this procedure handles getting the first set of inputs required by one
of the two modes of operation for measurement}

var change:char;

begin
change:='c';
while (change='c') or (change='C) do begin

writeln(#12);
automatic_mode_inputs;
read(change);

end; {end of change loop}
gotoxy(52,22);
write('READING PROBER FILE');
clear__output_file;

end; {end of procedure to get initial inputs}

procedure initial_status_display;
{this procedure handles making the initial status chart which is
displayed during the progress of an extraction}

begin
{writeln(#12); } {clears the display}
gotoxy(23,0);
writeln('***MEASURING STATUS***') ;
gotoxy
write(
gotoxy
write(
gotoxy
write(
gotoxy
write(
gotoxy
write(
gotoxy
write(
gotoxy
write(
gotoxy
write(
gotoxy
write(
gotoxy

0,2);
PROCESS=',process);
0,3);
LOT=',lot);
0,4);
WAFER-',wafer);
0,5);
DATE=',date);
40,5);
XPOS=',present_diex:2,' YPOS=',present_diey:2);
0,6);
OPERATORS,operator);
0,7);
OUTPUT FILE=',output_file);
0,8);
PROBER FILE=',prober_file);
0,10);
DEVICE=»', devices [present_device],' ');
0,11);

write(comment[present_device],'
0,12);
DEVICE LOCATION ',trunc(mx[present_device]/xmult):4,',',

trunc(my[present_device]/ymult):4);
40,13);
VSl ')
40,14);
VS2 ')
40,15);
VMl ')
40,16);
VM2 ')

gotoxy
write(

gotoxy
write(
gotoxy
write(
gotoxy
write(
gotoxy
write(
gotoxy(40,17) ;

');

write CSMU1 ')• ^*
gotoxy(40,18);
write('SMU2 ')
gotoxy(40,19);
write('SMU3 ')
gotoxy(40,20);
write('SMU4 ')

end;

{**************************** 4062 ROUTINES ************************}

procedure self_test_4062;

var equipment_to_test: char;

procedure matrix_self_test;

•const endbit = 2;

failbit = 5;

var self_test_result: string[200];
failure__code, i, nextpos, sbyte: integer;
bitset: boolean;

begin
bitset:=false;

gotoxy (0, 4);
write ('install the relay test adapter (HP16075A) and hit enter >');
readln;

writestring (DCS, 'CL;'); {make sure the sources are off}
writestring (SWC, 'TSEX'); {matrix self test code}
gotoxy (10, 10);
write (' SWITCHING MATRIX TEST IN PROGRESS ') ;
gotoxy (20, 12);
write ('(it takes approximately 45 seconds)');
writestring (SWC, 'TREX');
while not bitset do begin

sbyte:=spoll(SWC);
bitset:=(bit_set(sbyte, endbit) or

bit_set(sbyte, failbit));
end;

readstring (SWC, self_test_result);
if TRACEselftest=true then begin

gotoxy(0, 15);
write ('The result of test is');
gotoxy (10, 16);
for i:=l to strlen (self_test_result) do

if (i mod 50) =» 49 then begin
writeln (self_test__result [i]);
write (' ');

end

else

write (self_test_result[i]);
end; {if TRACEselftest}
strread (self_test_result, 3, nextpos, failure_code);
gotoxy (0, 18);
if (failure_code «=» 0) then

writeln ('switching matrix PASSED self test!')
else begin

writeln ('switching matrix FAILED self test!');
writeln ('The result is');
gotoxy (10, 4);
for i:=l to strlen (self_test_result) do

if (i mod 50) = 49 then begin
writeln (self test result[i]);

write {' '); H-
end

else

write (self_test_result [i]) ;
gotoxy (0, 21);
writeln ('SEE USER" S GUIDE FOR EXPLANATION OF MESSAGE');

end; {if failure_code=0 else begin}
gotoxy (0, 23);
write ('Press "ENTER" to return to main menu >');
readln;

end; {proc DCS_self_test}

procedure DCS_self__test;

var self__test_result: string[200];
failure_code, i, nextpos: integer;

begin
writestring (DCS, 'TS;'); {start DCS self test}
gotoxy (6, 10);
write (' DC SOURCE / MONITOR SELF TEST IN PROGRESS ') ;
writestring (DCS, 'TR;'); {get result}
readstring (DCS, self_test_result);
gotoxy (0, 15);
for i:=l to 4 do begin

strread (self_test_result, 3*i, nextpos, failure_code);
write (' SMU ', i:l);
if failure_code = 0 then

writeln (' PASSED')
else

writeln '(' FAILED');
end; {for i:=l to 4}
gotoxy (0, 23);
write ('press enter to return to main menu >');
readln;

end; {proc matrix_self_test}

begin {proc self_test_4062}
writeln (#12); {clear screen}
gotoxy (22, 0);
write ('*** 4062 SELF TEST ***');
gotoxy (0,3);
writeln ('The available diagnostics are for the DC source/monitor ',

'(HP4141) and');
writeln ('the switching matrix (HP4085).');
writeln ('In order to test the switching matrix, place the matrix so ',

'that the');
writeln ('matrix pins are facing up. Then screw the relay test ',

'adapter (HP16075)');
writeln ('onto the matrix facing the pins and then you are ready.');
gotoxy (0, 15);
write ('Select an option >');
gotoxy (24, 15);
write ('[1]:DC S.OURCE / MONITOR');
gotoxy (24, 16);
write (' [2] SWITCHING MATRIX') ;
gotoxy (24, 17);
write ('[3]:EXIT TO MAIN MENU');
selection_input (19, 15, '1', '3', equipment_to_test);
writeln (#12);
case equipment_to_test of

'1': DCS_self_test;
'2': matrix_self_test;
'3': {do nothing, exit to main menu}

end;

end; {proc self test 4062}

5" D

/************************* PROBER ROUTINES ************************}

procedure prober_move(deltax,deltay:integer; Zpos: chuck_j?os_type);
{this routine handles all movement of the prober}
{the step array size must be previously set}

var ready:boolean;
i,spoll_byte,nextposition:integer;
message:array[1..10] of char;
deltaxstr,deltaystr:string[6];

begin
{here is where deltax, and deltay are converted to strings}

deltaxstr:=' ';

deltaystr:=' ';
strwrite(deltaxstr,1,nextposition,deltax:1);
strwrite(deltaystr,1,nextposition,deltay:1);

{here is where the trailing blanks are trimmed}
deltaxstr:=strrtrim(deltaxstr);
deltaystr:=strrtrim(deltaystr);
talk__to__hpib(hpib_addr_prober);

{Z down before move}
writestringln(PROBER,'ZD') ;
wait_till_bit12_IOSTATUS_set;
writestring(PROBER,'MOX');
writestring(PROBER,deltaxstr);
writestring(PROBER,'Y');
writestringln(PROBER,deltaystr);
wait_till_bit12_IOSTATUS_set;

{check for the signal that message is to be sent from prober}
ready:=false;
while not(ready) do

ready:=requested(7);
spoll_byte: =*spoll (PROBER) ;

{must do serial poll of prober before it will accept
any more commands. If move is successful, prober
will send back "MC" followed by CR/LF. See the
Berkeley CMOS Process - A User's Guide, the paper
"General purpose Test System for 290 Wafer" p.23}

{here is where the prober message is read}
listen_to_hpib (hpib__addr_prober) ;
i:=l;

repeat
begin

readchar(7,message[i]);
i:=i+l;

end;

until end_set(7);
{here is where the ZUP is issued}

if Zpos=Zup then begin
talk_to_;_hpib (hpib_addr—prober) ;
writestringln(PROBER,'ZU');
wait_till_bitl2_IOSTATUS_set;

end;

untalk(7);
unlisten(7);

end; {end of procedure to move prober}

procedure set_die_size(xmicron,ymicron:integer);
{this procedure is called to set the die size of the wafer. For internal
die stepping, the procedure sets the die size at 1 micron}

var xmicronstr,ymicronstr:string[6];

nextposition:integer; ^ ,

begin
{here is where the die size strings are setup}"

xmicronstr:=' ';

ymicronstr:=' ';
strwrite(xmicronstr,1,nextposition,xmicron:l);
strwrite(ymicronstr,1,nextposition,ymicron:1);

{trim the trailing blanks}
xmicronstr:=strrtrim(xmicronstr);
ymicronstr:=strrtrim(ymicronstr);
talk_to_hpib(hpib_addr_prober) ;
writestring(PROBER,'SP1X'); {this does die size preset}
writestring(PROBER,xmicronstr);
writestring(PROBER,'Y');
writestringln(PROBER,ymicronstr);
wait_till_bit12_I0STATUS_set;
writestringln(PROBER,'SP2X0Y0'); {this does origin preset}
wait_till_bit12_I0STATUS_set;
untalk(7);
unlisten(7);

end; {end of procedure to set die size}

j***}

/******************** MEASUREMENT ROUTINES *************************}
j***}

procedure clear_and__connect_matrix__pins (device: integer);

procedure connect(what: shortstring; where: integer);

var pinstr: string[15];
nextpos, startpos: integer;

begin
pinstr:= '0';
if where < 10

then startpos := 2
else startpos :=• 1;

strwrite(pinstr,startpos,nextpos,where);
writestring(SWC,what);
writestring(SWC,pinstr);

end;

begin
writestring (SWC, 'CL EX'); {clears current matrix connections}
if (vml[device] > 0) then connect('PC5 ON ',vml[device]); •
if (vm2[device].> 0) then connect('PC6 ON ',vm2[device]);
if (vsl[device].pin > 0) then connect('PC5 ON ',vsl[device].pin);
if (vs2[device].pin > 0) then connect('PC6 ON ',vs2[device].pin);
if (smul[device].pin > 0) then connect('PCI ON ',smul[device].pin);
if (smu2[device].pin > 0) then connect('PC2 ON ',smu2[device].pin);
if (smu3[device].pin > 0) then connect('PC3 ON ',smu3[device].pin);
if (smu4[device].pin > 0) then connect('PC4 ON ',smu4[device].pin);
writestring (SWC, 'EX'); {terminator}

end; {proc clear_and _connect_matrix_pins}

procedure measure_device(var error_code: integer; device: integer);

var measurement, vl, v2, vsmu2, ismu3, tres : real;
i : integer;

procedure smu source(port: integer; info: ivsm);

var portstr: shortstring;
endpos: integer;

begin
case info.kind of

'i','I': begin
writestring (DCS, 'DI');
portstr := ' ';
strwrite(portstr,1,endpos,chr(port+ord('0')),', 1, ');
writestring (DCS, portstr);
writenumber (DCS, info.value);
writestring (DCS, ', 20;');

end;

'v','V: begin
writestring (DCS, 'DV');
portstr := ' ';
strwrite(portstr,1,endpos,chr(port+ord('0')),', 0, ');
writestring (DCS, portstr);
writenumber (DCS, info.value);
writestring (DCS, ', 0.020;');

end;

otherwise;
end;

end;

procedure smu_measure(port: integer; info: ivsm);

var measurement: real;
portstr: shortstring;
endpos: integers-

begin
case info.kind of

'i','I': begin
writestring (DCS, 'TV');
portstr :=»'';
strwrite(portstr,1,endpos,chr(port+ord('0')));
writestring (DCS, portstr);
writestring (DCS, ';');
readnumber (DCS, measurement);
writeln(userout, info.pin:4, measurement:21:5,

info.value:23:7);
write(info.pin:4, measurement:10:5,info.value:13:7);
if port = 2 then vsmu2:= measurement;
if port = 3 then ismu3:= info.value;

end;

'v','V : begin
writestring (DCS, 'TI');
portstr := ' ';
strwrite(portstr,1,endpos,chr(port+ord('0')));
writestring (DCS, portstr);
writestring (DCS, ';');
readnumber (DCS, measurement);
writeln(userout, info.pin:4, info.value:21:5,

measurement:23:7);
write(info.pin:4,info.value:10:5,measurement:13:7);
if port = 2 then vsmu2:= info.value;
if port = 3 then ismu3:= measurement;

end;

otherwise;
end;

end;

begin

clear_and_connect_matrix_pins (device); _.-.
DCS := 723; b ~
writeln(userout);
writeln(userout,'Pin # Voltage Current');
writestring (DCS, 'CL;');
writestring (DCS, 'IT2;');
if (vsl[device].pin > 0) then

begin
writestring (DCS, 'DV5, 1, ');
writenumber (DCS, vsl[device].value);
writestring (DCS, ', 0.020;');
writeln(userout, vsl[device].pin:4, vsl[device].value:21:5);
gotoxy(44,13);
write(vsl[device].pin:4,vsl[device].value:10:5);

end;

if (vs2[device].pin > 0) then
begin

writestring (DCS, 'DV6, 1, ');
writenumber (DCS, vs2[device].value);
writestring (DCS, ', 0.020;');
writeln(userout, vs2[device].pin:4, vs2[device].value:21:5);
gotoxy(44,14);
write(vs2[device].pin:4,vs2[device].value:10:5);

end;

if (smul[device].pin > 0) then smu_source (1, smul[device]);
if (smu2[device].pin > 0) then smu__source (2, smu2[device]);
if (smu3[device].pin > 0) then smu_source (3, smu3[device]);
if (smu4[device].pin > 0) then smu__source (4, smu4[device]);
if (vml[device] > 0) then

begin
writestring (DCS, 'TV5;');
readnumber (DCS, measurement);
vl := measurement;

writeln(userout, vml[device]:4, measurement:21:5);
gotoxy(44,15);
write(vml[device]:4,measurement:10:5);

end;

if (vm2[device] > 0) then
begin

writestring (DCS, 'TV6;');
readnumber (DCS, measurement);
v2 := measurement;
writeln(userout, vm2[device]:4, measurement:21:5);
gotoxy(44,16);
write(vm2[device]:4,measurement:10:5);

end;

gotoxy(44,17);
if (smul[device].pin > 0) then smu_measure (1, smul[device]);
gotoxy(44,18);
if (smu2[device].pin > 0) then smu_measure (2, smu2[device]);
gotoxy(44,19);
if (smu3[device].pin > 0) then smu_measure (3, smu3[device]);
gotoxy(44,20);
if (smu4[device].pin > 0) then smujneasure (4, smu4[device]);
if ismu3 =0.0 then ismu3 := 1E-18;
if vl = v2 then v2 := vl*(l - 1E-6);
if ((v2 = 0) and (vl = 0)) then vl := 0.000001;
for i := 1 to 2 do

begin
case funcs[i,device].fnum of

1 : begin
tres := abs(4.53236014183 * (vl - v2) / ismu3);
if ((tres > rmin) and (tres < rmax)) then rvdp := tres;

end;

2 : begin
tres := abs(rvdp * 150E-06 * ismu3 / (vl - v2));

if vsmu2 > 17.5 then tres := 0.0; c H
end; b n

3 : begin
tres := abs(rnom * 150E-06 * ismu3 / (vl - v2));
if vsmu2 > 17.5 then tres := 0.0;

end;

4 : if (abs(vsmu2/israu3) > 3E3) then tres := 0.0
else tres := 1.0;

5 : tres := abs(vsmu2/ismu3);
otherwise;

end;

if funcs[i,device].fnum > 0 then
begin

writeln(userout2,funcs[i,device].keyword,
present__diex: 6,present__diey: 2,
trunc(mx[device]/xmult):6,trunc(my[device]/ymult):6,
' ',tres);

writeln(userout,funcs[i,device].keyword,
present__diex: 6, present_diey:2,
trunc(mx[device]/xmult):6,trunc(my[device]/ymult):6,
' ',tres);

gotoxy(1,17);
write(' ') ;
gotoxy(1,17);
write(funcs[i,device].keyword);
gotoxy(5,18);
write(' ') ;

gotoxy (5,18);
write(tres);

end;

end;

end; {end measure device}

{***}

{*************************^UTOMATIC PROBER ROUTINES*************************}
{************************************•***************************************}.

procedure read_j?rober_file (var xdie__size, ydie_size,origin_diex, origin_diey,
number_die, number_devices:integer);

{read_prober_file performs the following:
-counts number of dice to be probed
-counts number of devices per die
-fills in the arrays mx, my, devices, pd, ps, pg, pb, and
step_array.

mx and my contain coordinates of the device; all
devices in the same section of the die will have

the same mx and my. in the prober file, mx'and
my are given only for the first device in that
section,

devices is the device type (10 characters)
step_array contains the 8X8 map of the dice on

the wafer that are to be probed. X=origin die,
l=to be probed, 0=not to be probed.}

var xdie_sizestr, ydie_sizestr: linestring;
command: string[80];
command2, command3, kind: char; {place to keep original command[2]}
probertext: text;
i, j, pin, npos, fnum: integer;
value: real;

mxmap: array[1..max_num_devices] of integer;
{bit map to signal a new section of die, hence prober

movement will be needed.}

S£
begin {proc read_j?rober_file}

reset (probertext, prober_file);
number_die:=0;
readln (probertext, xdie_sizestr);
readln (probertext, ydie_sizestr);
readln (probertext, xmult);
readln (probertext, ymult);
xdie_size:=trunc(strtoreal(xdie_sizestr));
ydie_size:=trunc(strtoreal(ydie_sizestr));
for j:=l to 8 do begin {scan rows, the x pos}

for i:=l to 7 {scan colums, y pos}
do read (probertext, step_array[i,j]);

readln (probertext, step_array[8,j]); {finish row j}
end; {filled in the map of the dice to be probed}
for j:=l to 8 do {scan rows for dice to be probed}

for i:=»l to 8 do begin {scan columns}
if step_array[i,j]<>'0'

then number_die:=number_die+l;
{count the number of dice to be probed}

if (step_array[i,j]='x') or (step_array[i,j]='X') then begin
origin_diex:=i; {record origin of die}
origin_diey:=j;

end;

end; {for i:=l to 8 do begin, columns}
number_devices:=0;
rnom := 33.0;

rmin := 30.0;

rmax := 38.0;

rvdp := 33.0;

for i:=1 to max__num_devices do
begin

mxmap[i]:=0;
funcs[l,i].fnum:= 0;
funcs[2,i].fnum:= 0;
vml [i]:= 0;
vm2[i]:= 0;
vslji].pin := 0;
vs2 [i] .pin :=» 0;
smul[i].pin := 0,
smu2[i].pin := 0,
smu3[i].pin := 0,
smu4[i].pin := 0,

end;

{wherever mx[i]<>0, then the probes need to be moved
to a new section of the die indicated by mx[i] and
my[i]. mx and my will be filled while reading
prober file. The 0's will be filled in so that all
devices in a section will have the the same mx[i]
and my[i].}

while not(eof(probertext)) do
begin

readln (probertext, command);
{if read only CR/LF on a line, then there is no
command[1] or command[2]. the length of command
is then 0.}

if (strlen(command)<3) {comment or invalid com}
then command:='zz' {just a filler}
else command2:^command[2]; {retain command2}

case command[1] of
'm', 'M' : begin

strdelete (command, 1, 3);
if (command2='x') or (command2='X') then begin

mx[number devices+1]:=xmult*trunc(strtoreal(command));

mxmap [number_devices+l] :=1; {a 1 in mxmap denotes a -> °
new section of a die}

end;

if (command2='y') or (command2='Y') then
my [number_devices+l] :=ymult*trunc (strtoreal (command));

end; {'m','M'}
'd','D': begin

if (command2='v') or (command2='V) then begin
number_devices:=number_devices+l;

{number_devices incremented only on dv.}
strdelete (command, 1,3);
devices[number_devices]:=command;

end;

end; {'d','D'}
'#': comment[number_devices]:= command;
'v','V : begin

command3 := command[3];
strdelete(command, 1,4); .
case command2 of

'm','M': begin
pin := trunc(strtoreal(command));
case command3 of

'1': vml[number_devices]:=pin;
'2': vm2 [number_devices]:=pin;
otherwise;

end;

end;

's','S': begin
pin := trunc(strtoreal(command));
while ((command[l] >= '0') and

(commandil] <= '9')) do
strdelete(command,1,1);

strdelete(command,1,1);
value := strtoreal(command);
case command3 of

'1': begin
vsl[number_devices].pin := pin;
vsl [number__devices] .value := value;

end;

'2': begin
vs2[number_devices].pin := pin;
vs2[number_devices].value := value;

end;

otherwise;
end;

end;

otherwise;

end;

end;

's','S': begin
command3:= command[4];
strdelete(command,1,5);
pin := trunc(strtoreal(command));
while ((command[1] >= '0') and

(commandfl] <= '9')) do

strdelete(command,1,1);
kind:= command[2];
strdelete(command,1,3);
value := strtoreal(command);
case command3 of

'1': begin
smul[number_devices].pin := pin;
smul[number_devices].kind := kind;
smul[number_devices].value := value;

end;

'2': begin

smu2[number_devices].pin := pin;
smu2[number_devices].kind := kind;
smu2[number_devices].value := value;

end;

'3': begin
smu3[number_devices].pin := pin;
smu3[number_devices].kind := kind;
smu3[number_devices].value := value;

end;

'4': begin
smu4 [number_devices].pin := pin;
smu4[number_devices].kind := kind;
smu4[number_devices].value := value;

end;

otherwise;

end;
end;

u','U': begin
case command2 of

'4': begin
strread(command,5,npos,

smu2[number_devices].pin,
smu3[number_devices].pin,
vml [number_devices],
vm2 [number_devices]);

smu2[number_devices].kind := 'i';
smu2[number_devices].value := 0.001;
smu3[number_devices].kind := 'v';
smu3[number_devices].value := 0.0;

end;

'i','I': begin
strread(command,4,npos,

smu2[number_devices].pin,
smu3[number_devices].pin);

smu2 [number__devices].kind := 'i';
smu2[number_devices]'. value := 0.001;
smu3[number_devices] .kind := 'v';
smu3[number_devices].value := 0.0;

end;

'v','V : begin
strread(command,4,npos,

smu2[number_devices].pin,
smu3[number_devices].pin);

smu2 [number__devices].kind := 'v';
smu2[number_devices].value := 3.0;
smu3[number__devices] .kind := 'v';
smu3[number_devices].value := 0.0;

end;

otherwise;

end;

end;

r','R': begin
strread(command, 4,npos, rnom, rmin, rmax) ;
rvdp := rnom;

end;

f','F': begin
strdelete(command,1,5);
case command2 of

1,v' 'V

'c','C
'f','F'
's','S'
'2': fnum

otherwise;

end;

if funcs[1,number devices].fnum = 0

fnum

fnum

fnum

fnum

then begin 5* ?
funcs[l,number_devices].fnum := fnum;
funcs[l,number_devices].keyword := command;

end

else begin
funcs[2,number_devices].fnum := fnum;
funcs[2,number_devices].keyword := command;

end;

'end;

otherwise ; {nop}
end; {case command[1] of}

end; {while not eof(probertext)}
close (probertext, 'SAVE');
for i:=l to number_devices do

if mxmap[i]=0 then begin
mx[i]:=mx[i-l];
my[i]:=my[i-l] ;

end; {all devices in same section of die have the same coordinates
mx and my. mx[] had been filled with O's earlier in this procedure.}

end; {proc read_j?rober_file}

procedure set_up_j?rober_initial_conditions;
{this procedure sets up the prober to use microns instead of mils,
and it sets up the proper coordinate system quadrant (quadrant 2)}

begin
talk_to_hpib(hpib_addr^prober) ;
writestringln(PROBER, 'SM1U1');
wait_till_bit12_I0STATUS_set;
writestringln(PROBER,'SM2Q2'); {sets up quadrant=2}
wait_till_bitl2_I0STATUS_set;
untalk (7);

unlisten (7);
end; {end of procedure to set micron units}

procedure step_to_next_die (var present_diex,present_diey:integer;
var initial_jump,end__of_wafer :boolean);

var i,j:integer;
next_diex,next_diey:integer;

begin
{if initial jump then find the first die}

next_diex: =0;
next_diey: =0;
end_of_wafer:=false;
if initial_jump=true then begin

for j:=l to 8 do
for i:=l to 8 *do

if (step_array[i,j]<>'0') and (next_diex=0) then begin
next_diex:=i;
next_diey:=j;

end;

initial_jump:=false;
end {end of handling for initial jump}
else begin

{check present row}
for i:=present_diex+l to 8 do

if (step_array[i,present_diey]<>'0') and
(next_diex=0) then begin

next_diex:=i;
next_diey:=present_diey;

end;

if next diex=0 then {next die not in the same row}

for j:=present_diey+l to 8 do c cf
for i:=l to 8 do

if (step_array[i,j]<>'0') and (next_diex=0) then begin
next_diex:=i;
next_diey:=j;

end;

end; {if initial_jump ... else begin}
if next_diex=0 then

end_of_wafer:=true
else begin

{move to next die}
prober_move(next_diex-present_diex, next_diey-present_diey,Zup);
present_diex:=next_diex;
present_diey:=next_diey;

end;

end; {end of procedure to step to next die}

procedure unload_wafer;
{this procedure brings the wafer back to the unload position}

begin
talk__to__hpib (hpib_addr__prober);
writestringln(PROBER,'HO');
wait_till_bitl2_IOSTATUS_set;
writestring(PROBER,'MEOVER 1 BILLION BSIM EXTRACTION ');
writestringln(PROBER,' CUSTOMERS SERVED');
wait_till_bitl2_IOSTATUS_set;
untalk(7);

unlisten(7);
end; {end of procedure to unload wafer}

j***}

/**********************fj^ijj BSIM PROGRAM**********************************}
j***}

begin {this is the main anne3 program}
TRACEMD:=false; {for measure_device trace}
TRACE_linear_ext:=false;
TRACE_sat_ext:=false;
TRACEselftest:=true;

TRACEiv:=false;

TRACEpf:=false;

j***}

{HERE IS WHERE HPIB ANALYZER AND PROBER ADDRESSES CAN BE CHANGED GLOBALLY }
j***}

minutes_per_device_above_thresh:=1.8;
number_of_increments:=37;
minutesjper__device_subth:=1.9;

init_global_variables; {set hpib addresses for 4062, prober}

DCS:=723;

SWC:=722;
first_time_thru_program:=true;
end_of_program:=false;
ioinitialize; {initializes all of the I/O devices and interfaces}
repeat {until end_of_program}

initial_bsim_j?age; {provides menu, and determines operation mode}
minutes^per_device: =minutes_per_device_above_thresh;
if (mode='l') then {if a measurement mode}

begin

initial_status_inputs; {this requests all necessary inputs} £$
first_time_thru_program: =false;
if printer then

rewrite(userout2,'#6:')
else

begin
rewrite(userout2,output_file);
close(userout2,'save'); {create first}
reset(userout2,output_file);
close(userout2,'purge'); {then destroy it}
rewrite(userout2,output_file); {now create again}

end;

end;
case mode of {this calls sequence of routines to service mode}

'l':begin {this is for automatic prober mode}
read_prober_file(xdie_size,ydie_size,origin_diex,

origin_diey,number_die, number_devices);
initial_jump:=true; {go from origin to first die}
end_of_wafer:=false;
set_up_prober_initial_conditions;
set_die_size (xdie_size,ydie_size);
present_diex:=origin_diex;
present_diey:=origin_diey;
step_to_next_die (present__diex,present_diey,

initial_jump,end_of_wafer);
{now the prober is at the first die to be tested}
present_die:=1;
writeln(userout2,'Process: ',process);
writeln(userout2(
writeln(userout2,
writeln(userout2,
writeln(userout2,
writeln(userout2,
writeln(userout2 \
writeln(userout,
writeln(userout,
writeln(userout,
writeln(userout,
writeln(userout,
writeln(userout,
writeln(userout)
writeln(#12);
while not(end_of_wafer) do

begin {here is where a die is tested}
writeln(userout);
writeln(userout,'Die Location ',present_diex,

present_diey);
writeln(userout);
set_die_size(l,1); {micron units}
for present_device:=l to number_devices do

begin
measure_error:=0; {just to be sure}
if not(present_device=l) then begin

if not ((mx[present_device] =
mx[present_device-l]) and

(my[present_device] =
my[present_device-l])) then

prober_move(mx[present_device]-
mx[l],

my[present_device]-
my[l],

Zup) ;
{if mx's and my's are equal, don''t move}

end; {if not(present_device=l) ... }
initial_status_display;
writeln(userout,' ');

'Wafer: ',wafer);
'Lot: ',lot);
'Date: ',date);
'Operator: ',operator);
'Input File: ',prober_file)

Process: ',process);
Wafer: ',wafer);
Lot: ',lot);
Date: ',date);
Operator: ',operator);
Input File: ',prober_file);

writeln(userout,'Device ',devices[present_device]); 4 /
writeln(userout,'Test Coordinates: ',

trunc(mx[present_device]/xmult) ,
trunc(my[present_device]/ymult));

writeln(userout,comment[present_device]);
time_count:=1; {for bsim_timer routine}

{now at present device}
measure_device (measure_error, present_device);
new_die:=false;
end_of_die:=false;
if present_device=number_devices then

end_of_die:=true;
end; {for present_device:=l to number_devices do begin}

{end of testing all devices on the die}
{NY} present_device:=number_devices; {prober at last device}

proberjmove(0, 0, Zdown);
set_die_size (xdie_size, ydie__size);
step_to__next_die(present_diex,present_diey,

initial_jump, end_of_wafer);
present_die:=present_die+l;

end; {while not end_of_wafer, which is set in procedure
step_to_next_die}
{now prober is at next die or wafer is done}
{the wafer is now complete}

close(userout,'SAVE');
if not(printer) then close(userout2,'SAVE');

end; {end of case mode '1' - automatic probing mode}

'4' : end_of_j?rogram: =true;
end; {end of case statement}

until end_of_jprogram=true;
writeln (#12); {clears the display}
iouninitialize; .{uninitializes all of the I/O interfaces}

end.

Appendix C
AUTOPRB short ouput format

The short format is ~ 1/10 as long as the long format, but criptic.

Process: AWIS

Wafer 21 (POS)
Lot 1

Date: 8/S/88

Operator JAY FLEISCHMAN
Input File: SMLPRB.TEXT

0.8uvi 1 1 4 19 8.58066E-O04

0.8uva 1 1 4 19 5.96461E-004

l.Ouvi 1 1 4 19 9.05827E-0O4

l.Ouva 1 1 4 19 5.82259E-004

0.8uvi 21 4 19 8.01800E-004

0.8uva 21 4 19 6.43550E-004

l.Ouvi 21 4 19 L04074E-003

l.Ouva 21 4 19 5.96461E-004

0.8uvi 31 4 19 5.51310E-007

0.8uva 31 4 19 2.O6350E-006

LOuvi 31 4 19 6.66238E-007

l.Ouva 3 1 4 19 1.65414E-006

0.8uvi 4 1 4 19 4.21173E-007

0.8uva 4 1 4 19 4.35256E-007

LOuvi 41 4 19 5.25089E-007

l.Ouva 4 1 4 19 5.31671E-007

0.8uvi 5 1 4 19 3.69529E-007

0.8uva 51 4 19 3.64079E-007

LOuvi 5 1 4 19 4.77818E-007

l.Ouva 51 4 19 4.78333E-007

0.8uvi 61 4 19 3.36190E-007

0.8uva 61 4 19 3.32428E-007

LOuvi 61 4 19 4.50842E-007

l.Ouva 61 4 19 4.43242E-O07

0.8uvi 7 1 4 19 0.00000E+000

0.8uva 71 4 19 0.00000E+000

l.Ouvi 7 1 4 19 3.97800E-007

l.Ouva 7 1 4 19 3.87704E-007

0.8uvi 12 4 19 8.28979E-004

0.8uva 12 4 19 6.43550E-004

LOuvi 12 4 19 9.98159E-004

l.Ouva 12 4 19 6.03824E-004

62

Appendix D
AUTOPRB long ouput format

The long format is unwieldy, but descriptive.

Process: ELTTHO

Wafer: 290-3

Loci

Date: 7/28/88

Operator Jay Fleischman
Input Rle: 290SMIL.TEXT

Die Location 1 1

Device LINEWIDTH

Test Coordinates: 4 17

l.Ou line

Pin # Voltage Current

46 6.81600

48 0.44070

42 8.87400 0.0010000

6 0.00000 -0.0009930

LOu 11 4 17 7.61654E-007

Device LINEWIDTH

Test Coordinates: 4 17

liu line

Pin # Voltage Current

36 4.15400

38 0.46160

32 5.67500 0.0010000

16 0.00000 -0.0009956

1.5u 11 4 17 L31851E-006

Die Location 2 1

Device LINEWIDTH

Test Coordinates: 4 17

LOu line

Pin # Voltage Current

46 7.50900

48 0.49180

42 9.48300 0.0010000

6 0.00000 -0.0009922

LOu 2 1 4 17 6.91424E-007

63

Appendix E

Parser Code

bH

65
/* This program parses the input from the automatic prober into a file that
* can be plotted. It acts on keywords from the user so the input file
* must be compatible. Input is from smileplot.data */

#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];

{

FILE *input,*outplot,*output;

static int dotype[] ={0,2,3,4,5,6,11,10,9};

static char *outnames[] = {
"plot.inl",
"plot.in2",
"plot.in3",
"plot.in4",
"plot.in5",
"plot.in6",
"plot.in7"

};

int diex,diey,i, j;
float lw[8][8],y,tres,dumj,range;
char wafer[20],date[20],infil[20],wordl[30],keywrd[40],line[80];
char inputfile[30];

/* diex is the x co-ord of the die and corresponds to a given exposure
diey is the y co-ord of the die and corresponds to a given focus */

if (argc > 2) strcpy(inputfile,argv[2]);
else strcpy(inputfile,"smileplot.data");

if ((input = fopen(inputfile,"r")) == NULL)
{
printf("input data (%s) not found\n",inputfile);
return(1);

}

if (argc > 1)
strcpy(keywrd,argv[1]);
else { printf("no keywrd to parse to\n");

return(2);

}
range = 0.0;
while (fgets(line, 80, input) != NULL) {

sscanf(line,"%s",wordl);
if (strcmp("Wafer:",wordl) == 0){

strcpy(wafer,line+6);
wafer[strlen(wafer)-1] = '\0';

}
if (strcmp ("Input", wordl) == 0) {

strcpy(infil,line+11);
infil[strlen(infil)-l] = '\0';

}
if (strcmp("Date:",wordl) == 0){

strcpy(date,line+5);
date[strlen(date)-1] = '\0';
}

if (strcmp(keywrd,wordl) ==0) {
sscanf(line,"%*s %d %d %*d %*d %e",&diex,&diey,&tres);

}

lw[diex][diey] = tres * 1E6; ^
if (lw[diex][diey] > range) range = lw[diex][diey];
}

}
if (range > 2.0) range = 2.0;
fclose(input);

output = fopen("smile.plot","w");

fprintf(output,"plotter;\nappend = on;\nwindow 600 400;\n");
fprintf(output,"autor = off;\n");
fprintf(output,"set uxlabel = \"W: %s, D: %s",wafer,date);
fprintf (output,", I: %s, K: %s\"\n"., infil,keywrd);
fprintf (output, "set lxlabel = \"Focus (by Row) V;\n");
fprintf(output,"set lylabel = \"Linewidth (microns)\"\n");
fprintf(output,"r plot.inl;\nget__range;\ny_range 0 %-f;\n",range);

for (i = 1; i < 8; i++) {
fprintf(output,"set lmark = \" C%-d\"\n",i) ;
fprintf(output,"pi = 1;\n");
fprintf(output,"psplot plotout;\n");
fprintf(output,"pi = 11;\n");
fprintf(output,"pt = %-d;\n",dotype[i]) ;
fprintf(output,"psplot plotout;\n");
if (i < 7) fprintf(output,"r plot.in%-d;\n",i+l) ;

outplot = fopen(outnames[i-1],"w");
for (j = 7; j > 0; j—) {

dumj = 8 - j;
if (lw[j][i] > range) y = range;

else y = lw[j][i];
if ((y > 0) || (j == 1) II (j — 7))

fprintf(outplot,"%e %e\n",dumj,y);
}
fclose(outplot);

}

fprintf(output,"!/od/sample/jef/bin/psplt plotout;\n");
fprintf(output,"!rm plotout;\nkill_p;\n");
fclose(output);

/ 7
/* This program parses the input from the automatic prober into a file that
* can be plotted. It acts on keywords from the user so the input file
* must be compatible. Input is from explor.data. Output is simply
* explor.out. This version is for the "lower left" orientation of the
* wafer. The only change necessary for this is to rearrange the order of
* the indecies and counting up/down (see below) */

#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];

{

FILE *input,*output;

int diex,diey,i,j;
float r[8][8],tres;
char wafer[20],date[20],infil[20],wordl[30],keywrd[40],line[80];
char outputfile[30],inputfile[30];

/* diex is the x co-ord of the die and corresponds to a given exposure
diey is the y co-ord of the die and corresponds to a given focus */

if (argc > 3) strcpy(outputfile,argv[3]);
else strcpy(outputfile,"explor.out");

if (argc > 2) strcpy(inputfile,argv[2]) ;
else strcpy(inputfile,"explor.data");

if ((input - fopen(inputfile,"r")) = NULL)
{
printf("input data (%s) not found",inputfile);
return(1);

}
if (argc > 1)

strcpy(keywrd,argv[1]);
else { printf("no keywrd to parse to\n");

return(2);

}
while (fgets(line, 80, input) != NULL) {

sscanf(line,"%s",wordl);
if (strcmp("Wafer:",wordl) == 0){

strcpy(wafer,line+6);
wafer[strlen(wafer)-l] = '\0';
}

if (strcmp ("Input",wordl) ='= 0){
strcpy(infil,line+11);
infil[strlen(infil)-l] = '\0';

}
if (strcmp("Date:",wordl) == 0){

strcpy(date,line+5);
date [strlen(date)-1] =* '\0';

}
if (strcmp(keywrd,wordl) ==0) {

sscanf(line,"%*s %d %d %*d %*d %e",&diex,&diey,Stres);
r[diex][diey] = tres;
}

}
fclose(input);

output = fopen(outputfile,"w");

fprintf(output,"\nW: %s, D: %s",wafer,date);
fprintf(output,", I: %s, K: %s\n\n",infil,keywrd);
fprintf(output,"%16s%10s%30s\n","Column","|","Column");

fprintf(output," CI C2 C3 C4 C5 C6 C7 | CI C2 C3 C4") ;
fprintf(output," C5 C6 C7\n");

/* Simply adjust the indecies i and j to reflect the coordinate transfer
* from the orientation of the wafer when probing to the orientation when
* the flat is at the top (so focus/exposure correctly corresponds to "Rows"
* and "Columns" in the plot (or table as in this case) */

for (i =1; i < 8; i++){
fprintf(output," R%-d",i);
for (j = 1; j < 8; j++){

if (r[j][i] > 3E3)
fprintf(output," 0");

else

fprintf(output," 1") ;
}
fprintf(output," | R%-d",i);
for (j = 1; j < 8; j++){

if (r[j][i] > 999999) r[j][i] = 999999;
fprintf(output,"%7.Of",r[j][i]);

}
fprintf(output,"\n");

}
fprintf(output,"%26s\n%18s%8s%32s\n\n\n","|","Continuity","I","Resistance");
fclose(output);

	Copyright notice1988
	ERL-88-60

