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Abstract

Circuit simulation is one of the most valuable tools available to the circuit designer,

providing him with accurate information about the electrical behavior of a particular

circuit without the need of building it. Unfortunately the CPU time required to per

form each simulation grows very quickly with the circuit size, making it problematic

to simulate circuits containing more than a few hundred nodes. One of the methods

suggested to overcome this hurdle is the use of macromodels for functional blocks such

as operational amplifiers or logic gates. AH the methods to generate macromodels that

have appeared in the literature so far make very stringent assumptions about either

the type of circuits to be modeled or the shape of the waveforms involved. The mod

els generated in this way are therefore unsuitable for circuit simulation. This thesis

describes a general purpose algorithm that can be used to generate models for an arbi

trary circuit without any restrictions on the waveforms. Experimental results indicate

that the algorithm requires reasonable amounts of CPU time and that the models are

accurate enough to be used for standard circuit simulation.
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Chapter 1

The Macromodeling Problem

1.1 Introduction

Circuit simulation is one of the most valuable tools available to the circuit designer,

providing him with accurate information about the electrical behavior of a particular

circuit without the need of building it. Unfortunately the CPU time required to perform

each simulation grows very quickly with the circuit size, making it problematic to

simulate circuits containing more than a few hundred nodes. Several methods have

been suggested to overcome this hurdle, the most successful of which is the use of

relaxation techniques [1]. However their effectiveness is mostly confined to circuits

that do not contain tight feedback loops (typically digital circuits), and the presence

of a capacitance from each node to ground is usually required to ensure convergence.

We will show that another solution to this problem can be found by exploiting the

modular structure exhibited by most circuits. By "modular structure" we refer to a

particular design style, in which several instances of a limited number of functional
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blocks are connected together to build a circuit meeting the design specifications. This

technique is widely used in the design of analog, digital and mixed integrated circuits,

because it reduces dramatically the design time at every stage, from synthesis to layout.

When performing a simulation it is often the case that the designer is not interested

in the waveforms that are internal to a block, but only in those relative to nodes or

branches connecting two or more different blocks. In other words, it is the input-output

behavior of each block that matters, not its internal dynamics. In the case of electrical

circuits, a block can always be described by a dynamical system whose order is related

to the number of nodes contained in that block. If we manage to find another system

of lower order but exhibiting the same input-output behavior, we can use it as a model

for every instance of that block occurring in the circuit that we want to simulate. In

this way, we can reduce the number of differential equations that must be solved to

simulate the circuit, at the same time retaining all the relevant information.

In practice it is not possible to preserve the input-output relationship exactly, and

we must settle for a reduced order model that approximates the original block within

certain margins. This is perfectly acceptable, because the actual performance of an

integrated circuit after fabrication cannot be predicted with total accuracy, due to the

presence of many factors whose influence on the behavior of the physical chip cannot

be controlled or predicted.

The approaches to the macromodeling problem that have been published so far

are very varied, ranging from empirical methods suitable for a specific application to

sophisticated mathematical techniques applicable to broad classes of systems. After

reviewing briefly the existing literature on this topic, I will point out the advantages and
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disadvantages of the methods proposed by others, and motivate my approach, which,

from a mathematical point of view, can be described as an approximation problem in

an abstract space whose elements are dynamical systems.

1.2 Previous Work In Circuit Modeling

The advantages of using simplified models of functional blocks for special purposes

have been pointed out. Many timing verifiers model MOS transistors as switched

resistors. The resistor value is determined empirically to take several factors into

account, including the shape of the input waveform; this is the approach followed for

instance in Crystal [2]. This drastic simplification reduces the problem of computing

the delay through a circuit containing MOS transistors to the much easier task of

estimating delays through an RC network. Rubinstein, Penfield and Horowitz [3] gave

an algorithm that could be used to compute upper and lower bounds for the delays in

an RC tree. A slightly different approach was used by Lin and Mead [4], who started

from Elmore's definition of delay [5] : let y(t) be the step response at some node of a

linear network. Then the delay at that node is denned as :

TD= Hty'tydt
Jo

(see Fig. 1.1). This definition is very close to the intuitive notion of "delay" of a

monotonically increasing (or decreasing) waveform. It has also the big advantage of

being easy to compute: under fairly mild assumptions, it can be shown that Tp =

&i —ai, where a\ and b\ appear in the Laplace transform y(s) of y(t) :

l + ais + ... + amsm
£M =

3(l + M + ... + Mn)
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Figure 1.1: Elmore's definition of delay

Lin and Mead give a slightly more general definition of delay and an algorithm that

can be used to compute the delay for any node in a general RC network.

Although very useful for the particular purpose of timing analysis (Crystal's accu

racy is reportedly within 10% of SPICE results), this approach has its obvious limita

tions. Matson [6] notes that the delay introduced by an MOS gate varies substantially

with the slope of the input waveform. For instance, an inverter's delay can be com

puted fairly accurately by representing each transistor with a linear resistor if the input

transition is fast enough (compared to the output transition) (see Fig. 1.2(a) ). If the

input varies slowly the inverter's behavior can be better described as a linear amplifier

(Fig. 1.2(b) ). Using a detailed case analysis, the author shows how those two basic

models can be combined to give an estimate of the inverter's delay which is accurate for

all input and output waveforms, which he approximates with time-shifted ramps with

exponential tails. He also shows how that approach can be extended to approximate

the delays of general MOS gates.

The idea of approximating waveforms with exponentials is also used in WASIM, an
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Figure 1.2: Matson's models to compute an inverter delay

event-driven, waveform-based simulator [7]. In this case the approximation is chosen

to be a sum of exponentials of the form £,- c"^, where

*. = ((<-'..)Av)rai

The authors note that, with the use of nonlinear parameter fitting, the waveforms

actually found in digital integrated circuits can be approximated with good accuracy.

Under these assumptions, the behavior of a cell can be represented as a function of the

type

Rou* = ^"(RmjLjP)

where Rtn and R^t are vectors of parameters for the input and output waveforms

respectively, L is a vector representing the cell's loading and P is another vector con

taining relevant cell parameters such as device sizes. The function T is represented

using a table : a circuit simulator is used to compute the output waveforms correspond-



CHAPTER 1. THE MACROMODELING PROBLEM

voo

rv' >u

•INTERNAL NODE n

Figure 1.3: Schematic of a NAND gate

ing to a certain number of values for R,„, L and P. The corresponding values for Rou*

are obtained by nonlinear parameter fitting on the corresponding output waveforms.

Polynomial interpolation is used to approximate the function for other values of its

arguments.

In all the examples of macromodeling that we have presented so far, the actual input

and output waveform shapes have been either completely neglected or parametrized by

approximating them with exponential functions. This approach is obviously inadequate

to represent the behavior of a cell when more detailed information about its dynamical

behavior is needed (e.g. in circuit simulation). An approach to macromodeling that

does not impose any a-priori limitations on the shape of the waveforms has been

presented in [8]. There the authors build a static macromodel for a NAND gate in the

following manner : let voltages vi, v2 and v$ be applied to the input and output nodes

respectively (Fig. 1.3). The output voltage of the unloaded NAND gate is a function

of vi and v2 : vwt = f(vi>v2). If t>3 = Vout, no current flows from the voltage source

V3 into the output node; in all other cases, there is a residual current i'o which is a
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function of vi1v2 and u3 :

»0 = ^(«l,V2,U3)

The values of the function g corresponding to certain values of vi, v2 and V3 can be found

by simulating the gate in the appropriate conditions and monitoring the corresponding

value of io. Piecewise cubic splines are then used to represent the function for other

voltage values. If the NAND gate is a part of a bigger circuit, its behavior at the output

node can be represented by the function g, eliminating the need to solve an additional

equation corresponding to the internal node. It can be seen that no assumptions are

made concerning the actual waveform shapes.

1.3 Previous Work In Model Order Reduction

The topic of order reduction for the realizations of a dynamical system has also been

dealt with extensively in the system theory literature. Moore [9] notes that, when the

system is linear, the problem of approximating it with a lower order model is strongly

related to its Kalman decomposition [10]. Recall that for any linear system controllable

and unobservable subspaces of the spacestate [11] can be defined, and that there exists

a -realization

x = Ax + Bu

y = Cx
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where

such that

A =

B =

An 0 A13 0

A2i A22 A23 A24

0 0 A33 0

0 0 A43 A44

/ ^
Bi

B2

0

v ° j

C = Ci 0 c3 0

• the subsystem {An,Bi, Ci} is completely controllable and observable;

• the subsystem {A22,B2,0} is controllable but not observable;

• the subsystem {A33,0,C3} is observable but not controllable;

• the subsystem {A44,0,0} is neither controllable nor observable.

This decomposition is very elegant from a theoretical point of view; unfortunately it is

"structurally unstable", in the sense that arbitrary small perturbations of the system

can change the dimensions of its controllable and unobservable parts. This implies,

for instance, that we can perturb slightly a model whose controllable part is a proper

subspace, and make that subspace not proper. Strictly speaking, this means that the

impulse responses of the two systems are different, but Moore remarks that from a
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practical point of view they have almost the same behavior. He goes on to show that,

if F(<) is a matrix-valued function of time, its Gramian

't2W2= [2T(t)FT(t)dt
Jh

has the following properties :

• F(t) = £JLi vi^r(*) waere Vi is tae *-& uai* eigenvector of W2 corresponding

to the eigenvalue of, and f,(t) is defined as £(<) = v^F(t).

. Let F*(t) = SLi v.lf(t). Then Jf ||F(i)-F*(<)||J.dt =Y,U» <r?, where ||-||f

denotes the Frobenius norm of a matrix and the eigenvalues are supposed to be

ordered so that a\ > —> a\. Moreover Ffc(t) is optimal in the following sense :

if G(t) is any piecewise continuous matrix-valued function such that dim span{v :

t; <= imG(t), t 6 fo.fc]} = *, then J* \\T(t)-Fk(t)\\2Fdt < j£ \\F(t)-G(t)\\jrdt.

If T(t) is the impulse response of the system, the above inequalities give bounds on

the error resulting from the reduction of the order of the model. Moore also notes

that the v,'s and <Tj's can be effectively computed using a very stable algorithm [12]

for the singular value decomposition of a matrix [11,13]. This makes Moore's approach

interesting both from a theoretical and practical point of view.

Other authors have approached the problem directly from an input-output point

of view. This approach involves the Hankel norm of a transfer function F(t), defined

in the following way. Let u(t) G£2[-oo,0], and let y(t) be

y(t)= f°F(t-r)u(-r)dr
Jo
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If F(t) is stable, y(t) € X2[0, +00]; the Hankel norm of F(t) is defined as

||P(t)||H= sup ||y(t)||2
||U||2<1

In other words, the Hankel norm of F(t) is its operator norm, when F(t) is considered a

linear mapping from the space of past inputs to the space of future outputs. Its practical

significance resides in the fact that it lies between the more traditional L2 and L°°

norms [14]. Therefore the problem of computing approximations in the Hankel norm

can be viewed as a compromise between the easy, but sometimes unsatisfactory, least

squares criterion and the computationally difficult min-max approximation. When

F(t) is the transfer function of a linear time-invariant system a complete solution to

this problem was published by Glover [15], who gave a characterization of all best

approximations to F(i) of given degree. In the same paper, he gives also £°°-norm

bounds for the error of optimal Hankel-norm approximations, which is a more useful

indication of their performance in practical applications.

1.4 Our Approach

All the approaches to macromodeling that we have discussed in the previous sections,

although valuable in particular situations, cannot be used to generate general purpose

models for circuit simulation for one or more of the following reasons :

• They are often based on a case-specific analysis, and they cannot be extended to

systems other than those for which they were specifically developed.

• Some models, like those proposed by Matson, are too simple, and their use for

circuit simulation purposes would result in gross inaccuracies in the computed
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waveforms.

• Those models that try to take waveform shapes into account, like the table lookup

approach used in [7], make particular assumptions about them (e.g. exponential

like behavior). There are no guarantees about how a given model would behave

under different circumstances.

• Static models, like those used in [8], make no assumptions about waveform shapes

(exactly because they arecomputedin static conditions), but nothing can be said

a priori about their accuracy for time-domain analysis.

• Unfortunately those methods, suchas principal componentanalysis [9] or Hankel-

norm approximation, that do provide information about the model's accuracy

from a dynamical point of view rely heavily on the linearity of the system to be

approximated. There does not seem to be any clearextension of those algorithms

to nonlinear systems.

Our goal was to come up with an algorithm to generate macromodels with the

following characteristics :

• The macromodels had to be general and accurateenough to be used for standard

circuit simulation.

• No particular conditions had to be imposed on the system to be approximated,

other then those usually assumed for electrical networks.

• The algorithm could not be purely empirical in nature, but it had to have some

theoreticalgrounds. At the sametime, it had to be implementable on a computer.
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For these reasons I chose to look at the macromodeling problem exclusively from

an input-output point of view. In other words, both the original system and its model

are regarded as maps from the space of input signals to the space of output signals,

so that, from a mathematical point of view, the task of finding a macromodel for a

given system becomes an approximation problem in an abstract space whose elements

are maps between function spaces. The next step is to define a notion of distance in

this space that gives an indication of how close two systems are from the point of view

of their input-output relationships. In principle this involves comparing the output of

the system and that of its model for every possible input. It is a somewhat surprising

result that, because of the particular structure of the equations describing electrical

circuits, only a much smaller class of inputs needs be considered, namely those that are

piecewise constant (see Chapter 4). It is this result that gives practical significance to

an approach that would otherwise be interesting only from a theoretical point of view.

The metric structure induced by the above definition of distance will be used to

develop an iterative algorithm that, given a dynamical system and an approximation to

it, will modify it to generate another approximation which is locally optimal. For the

sake of simplicity, we will assume that the set of admissible reduced order models can be

parametrized by a point in Rr (i.e. every admissible model is completely characterized

by r real numbers ai,... ,ar). However it should be pointed out that the underlying

mathematical theory can be extended almost verbatim to deal with arbitrary classes

of admissible models.

From the above description it is clear that the macromodeling problem is recast into

an optimization problem. This requires computing the time-domain derivatives of a
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certain cost functional with respect to variations in the model parameters. In Chapter

4 it is shown that they can be computed in terms of an integral containing a certain

Hamiltonian function. Similar formulas were derived by Hachtel and Rohrer [16] in

a different context and using different mathematical techniques. In their paper, they

consider the problem of minimizing a scalar performance function (for instance delay

or switching time) of an electrical circuit by an appropriate choice of certain design

parameters. From a mathematical viewpoint this translates into the minimization of

a functional

rT
c(p)= / /i[x(t,p),p,t]d*

Jo

where p is the vector of the design parameters, and x is the vector of the state variables,

which is assumed to satisfy the differential equation

x = F(x,p,t)

The authors' choice for the mathematical setting of this problem is the calculus of

variations, instead of optimal control theory. For this reason their starting point is the

Lagrangian function

X(x, p,A,ix, t) = /i(x, p, t) + Ar[x- F(x, p,<)] + fiTj>

where A and /x are the adjoint variables. If weintroduce the vectorz = (x, p, A, fi), the

theory of the calculus of variations requires that the following differential equations,

known as Euler equations, be satisfied

dL__£ (dL\
dz dt\dz)~
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which in this case become

-_-F(x,p,t) = 0

dt

dh xTdF d\T
#x ax dt

dp 0p d* ""

and after some algebra the authors derive the following expression for the derivative

of the performance function :

which is identical to the expression that we will derive in Chapter 4 (apart from a sign

change, deriving from a different definition of the Lagrangian function). Nevertheless

we believe that our approach along the lines of optimal control theory lends itself

better to a unified treatment of variational calculus, because it brings to light the fact

that the formulas involved are substantially the same, whether we are varying circuit

parameters or functions of the time. As a matter of fact, the computer implementation

of our algorithm exploits the fact that one single backward integration can be used to

compute derivatives with respect to both model parameters and input waveform, with

a significant saving of CPU time.



Chapter 2

Mathematical Preliminaries

This chapter contains miscellaneous mathematical results which will be used in the

following chapters. Almost all the theorems presented here axe well known, and are

therefore stated without proofs. The proofs as well as more in-depth treatment of each

topic can be found in the references given in each section.

2.1 Topological Spaces

A topological space is a pair (X,T) where X is a set and T is a collection of subsets

of X satisfying the following axioms :

(Al) X and 0 (the empty set) belong to T.

(A2) If {Va} isanarbitrary collection ofelements ofT, the intersection (\ Va belongs

toT.

15
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(A3) If Vi and V2 belong to T, the union Vi (JV2 belongs to T.

The elements of T are called open sets; by definition, a subset of X is closed if its

complement is open.

In many cases the topology T is defined in terms of a so-called basis. A basis for

a topology on X is a collection B of subsets of X (called basis elements) satisfying the

following axioms :

(A4) For each x € X there is at least one element B £ B such that x 6 B.

(A5) If B\ and B2 belong to 5, for every x 6 B\ f\ B2 there exists B$ € B such that

ze-BsCBif)^.

Definition 2.1 If B is a basis for a topology on X, the topology T generated by B is

the collection of subsets of X which are the union of elements of B.

In other words, a set V C X belongs to T if and only if it is the union of elements of

B. For instance, the topology of the real numbers R is usually defined in terms of a

basis, the elements of which are the open intervals (a, 6).

In a topological space there are certain sets which are of particular interest because

of their special properties. Those sets are called compact and are defined in the following

way.

Definition 2.2 Let A be a subset of the topological space X. An open covering of A

is a collection {Va} of open sets such that AC Ua^a-

Definition 2.3 Let A be a subset of the topological space X. A is compact if every

open covering of A contains a finite subcollection that is also a covering for A.
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It can be shown [17, p.174] that a subset of Rn is compact if and only if it is closed

and bounded. A useful property of compactness is that it is preserved by cartesian

products.

Definition 2.4 Let X,Y be two sets. Their cartesian product, denoted by X xY,

is the set of ordered pairs (x,y), where x € X and y € V.

Theorem 2.1 ([IT, p. 167]) The cartesian product of two compact sets is compact.

Let / be a function from the real numbers R into R. The classical definition of

continuity for / formalizes the intuitive notion that /(a?) is "close" to f(y) whenever

x is "close" to y. It is possible to generalize the definition of continuity to functions

between topological spaces in the following way.

Definition 2.5 Let X, Y be two topological spaces. A function f : X -* Y is contin

uous if the inverse image under f of every open set of Y is open in X.

It can be shown (but we will not do it here) that this definition is equivalent to the

classical one when X = Y = R.

Continuous functions have many interesting properties. One of them, which we will

make use of, is stated in the following theorem.

Theorem 2.2 ([17, p. 175]) Let f :X -> R be a continuous function from the topo

logical space X into the real numbers, and let K be a compact subset of X. Then f has

a maximum and a minimum on K, i.e. there exist points xm,XM € K such that

/(*«) < f(x) < f(xM)Vx e K
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Another useful property of continuous functions on compact subsets of Rn is uni

form continuity.

Definition 2.6 Let X be a subset of Rn. A function f : X -* Rm is uniformly

continuous on X if for every e > 0 there exists a 6e > 0 such that ||f(x) —f(y)|| < e

whenever x,y £ X and ||x —y|| < 6e.

Theorem 2.3 ([17, p. 180]) Let X be a compact subset o/Rn, and let f : X -• Rm

be a continuous function. Then f is uniformly continuous on X.

2.2 Derivatives in Banach Spaces

If f(x) is a real function of a real variable x, its derivative /'(xo) at xo can be described

informally as the best linear approximation to f(x) in a neighborhood of xo. The idea

of "best linear approximation" can be generalized to a much wider class of functions,

and it is a very useful tool whenever one has to deal with "small variations". Because

I will need it in the sequel, this generalized derivative will now be defined. A rigorous

and complete analysis of this topic can be found in [18].

2.2.1 Banach Spaces

Let X be a vector space over the reals. A norm on X is a real valued function || • || :

X -* R which satisfies the following conditions :

||x||>0,||x|| = 0ox = 0

l|x+y||<||x|| + ||y||

lloxll = klllxll
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A vector space on which a norm has been defined is called a normed vector space, or

simply a normed space. The most common example of normed spaces is Rn with the

Euclidean norm
i

IMI-(£>?)
Examples of Banach spaces whose elements are functions will be given in Section 2.3.

In a normed space we can also define a notion of distance between two points x and y,

given by ||y —x||. A Cauchy sequence in a normed space Xis a sequence of points {x„}

such that for every e > 0 we can find an index Ne such that we have ||xn —xm|| < £

whenever n,m > e. A sequence {xn} is said to converge to x £ X if for every e > 0

we can find an index Ne such that ||x —x|| < e whenever n > Ne; in this case we

write x = limn_00 x„. A normed vector space X is said to be complete if every Cauchy

sequence has a limit in X. A complete normed vector space is called a Banach space.

Rn is a Banach space.

2.2.2 Duals of Banach Spaces

Let X be a Banach space over the reals. A function <f>: X —• R is linearif *(ax+6y) =

a<£(x) + b<f>(y) for all x, y € X and a, b 6 R. A continuous linear function from a real

Banach space into R is often called a functional. The set of all functional over X form

another Banach space with the norm

IMI = sup |#x)|
l|x||<l

This Banach space is called the dual of X and is denoted by X*.

Beside the topology defined by the norm, X* is often given another topology, called
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the weak-* topology, which is defined as the topology induced by the basis whose

elements are sets of the form

J5(0O,Xl,...,X„, £!,...,£„) = {<j>£Xm : \<j>(Xi) - <f>o(xi)\ < ei,i= l,...,n} (2.1)

where <f>o £ X*,Xi,... ,xn £ X and £i,...,en are positive real numbers.

One of the most important features of the weak-* topology is stated in the following

theorem [19, p. 174]:

Theorem 2.4 (Alaoglu) The closed unit ball S = {<j> £ X* : \\4>\\ < 1} of X* is

compact in the weak-* topology.

2.2.3 The Frechet Derivative

Let X, Y be two Banach spaces, f a function from X into Y and xo a point of X. The

Frechet derivative of f at xo is a linear operator F : X —• Y such that

lim l|f(XO +AX)-fiXO)~FAX"=0 (2-2)Ax-0 ||Ax||

As in the case of real-valued functions, the Frechet derivative of f may or may not

exist. However, if it exists, it is unique [18]. Just to give a concrete example, let

X = Rn, Y= Rm, f = (/i,... ,/m)r- Assume that all the partial derivatives |£- exist

and are continuous in a neighborhood of xo- Then the Frechet derivative F of f at xo

is the Jacobian matrix

f a/, at, \

F =

\ Sxi ' *• dxn /

7X1 " * " OXn
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where all the partial derivatives are intended to be evaluated at xo. To check that F

does indeed satisfy eqn. (2.2), remember that under the stated assumptions for each

£ > 0 we can find positive numbers 6i,...,Sn such that

|/i(xo +Ax) - /.(xp) - ZUWj^xi\ J_
||Ax|| KV5

whenever ||Ax|| < Si. If ||Ax|| < 6 = min(£i,... ,6n) then

||f(x0 + Ax)-f(xo)-FAx|| =

£(/,(xo +Ax) -/.(xo) -£ J|az,OjJ <
< e||Ax||

which proves (2.2). The Frechet derivative of a vector-valued function is often denoted

by ££, and this is the notation that we will use from now on.

2.2.4 The Gateaux Derivative

There is another derivative which is often used in optimization, and it is defined in

the following way. Let xq £ X; the Gateaux (or weak) derivative of f at xo is a linear

operator G(xo) such that the equality

G(xo)Ax =Urn *(*° +'**)-f(*°) (2.3)

is satisfied for all Ax, provided that the above limits exist. If f has a Frechet derivative

g|(xo) then it also has a Gateaux derivative G(xo) = J£(xo). However a function can

have a Gateaux derivative but not a Frechet derivative ([18, p. 67], example E 3.1-6).
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2.3 Function Spaces

In this section, I give the definitions of some Banach spaces whose elements are func

tions. In addition I state some properties of these spaces which will be needed in the

following chapters.

Let [0,T] be a closed bounded interval of the real line. C([0,T],Rn) denotes the

set of all continuous functions from [0,T] into Rn, and it is a Banach space under the

norm

||x|| = sup HxWII
t€[0,Tj

Convergence in C([0,T]7Rn) is called uniform convergence : a sequence {x„} con

verges to x if for every e > 0 we can find an index Ne such that

sup ||xn(t) - x(t)|| < £
t€[o,T\

whenever n > Ne. This is a stronger requirement than pointwise convergence, which is

defined as

J&m xn(t) = x(i) Vt £ [0,T]

However if additional restrictions are imposed on the sequence {xn}, pointwise conver

gence becomes equivalent to uniform convergence.

Definition 2.7 A collection {xa(i)} of functions on [0,T] is calledequicontinuous

if, for every e > 0, there exists a 6e > 0 such that the inequality ||xa(<i) —xa(*2)|| < s

is satisfied for every \h —t2\ < Sc and every a.

Theorem 2.5 Let{xn} be a sequence in C([0,T],Rn). If thesequence {x„} is equicon

tinuous and converges pointwise to x, then it converges to x uniformly.
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Proof. First we prove that if we add the limit function x to the se

quence {x„} we still get an equicontinuous collection. Under the stated

assumptions, given e > 0 there exists 6e > 0 such that ||x„(ti) —

xn(*2)|| < s/3 if |*i —t2\ < 6e. If we take the limit of this inequal

ity for n —• oo, we obtain ||x(ti) —x(<2)|| < e/3, which proves our

claim. Now choose M + 1 points 0 = to < t\ < ... < tM = T such that

\U—ti-i| < 8e,i = 1,..., M. Because the sequence converges to x point-

wise, for every Uwecan find an index N{such that ||xn(t;)—x(t;)|| < £/3

if n > N{. Let N = max(JV,0,...,iVA/). Let t be any point in [0,T] :

there exists a point ti such that \t —U\ < Se. Then if n > N we have

l|x„(i) - x(t)|| < ||xn(t) - x„(t,)||+

+ IMti) - X(ii)|| + ||x(*,) - x(t)|| <

£ £ £

< 3+3+3=£

which proves that {xn} converges to x uniformly. •

Twoother function spaces which will bementioned are i1([0, T],Rn) and X°°([0, T],Rn),

which are the spaces of measurable functions1 from [0,T] into Rn which satisfy the fol

lowing conditions

IMI= /r||x(*)H<f* < +oo forJ^ao^R") (2.4)
Jo

||x|| = ess sup ||x(*)|| < +oo forX°°([0,r],Rn) (2.5)
*€[0,T]

LFor the definition of measurable function and related terminology see [20].
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The quantities appearing on the left hand side of eqns. (2.4) and (2.5) define the norms

on L1 and L°° respectively. Under these norms both spaces are Banach spaces, and

X°°([0,r],Rn) is the dual of X^O^R") [19, p. 145], in the sense that every func

tional ^ on X1([0, T],Rn) can be uniquely identified with a function u £ Z°°([0, T],Rn)

satisfying the following identity :

</>(*)= [ <x(<),u(*)> dt Vx£L1([0,T],Rn)
Jo

Therefore L°°([0,T],Kn) has a weak-* topology; sequences that converge in this topol

ogy are characterized by the following theorem.

Theorem 2.6 Let {u„} be a sequence in £°°([0,r],Rn). {un} converges to u £

£°°([0,T],Rn) in the weak-* topology if and only if

lim / <x(t),un(t)> dt= f <x(t),u(t)dt> Vx€£1([0,T],Rn) (2.6)
n-»oo Jq Jq

Proof. We can assume u = 0 (otherwise replace u„ with u„ —u). For

every x£ L1 and every e > 0 the set 2?(0,x, £) (eqn. (2.1) ) is an open

neighborhood of 0 in the weak-* topology. Therefore if un —• 0 there

exists an index Ne such that n > Ne implies un £ B(0,x,e), which is

equivalent to

/ <x(*),un(t)> dt < e
Jo

To prove the converse let £(0,xi,... ,xp, £i,... ,ep) be a weak-* open

neighborhood of 0. Because eqn. (2.6) holds, we can find indices

Ni,...,Np such that n > Ni implies

fT
/ <x,(*),un(t)> dt <£,-, t=l,...,p

./o
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Therefore n > max(iNT1,...,Np) implies x £ B(0, xi,...,xp, £1,...,£p).

D

The following theorem can be used to establish the equicontinuity of a collection

of functions that are difFerentiable almost everywhere.

Theorem 2.7 Let {xa} £ C([0,T],Rn) be a collection of functions that are differen-

tiable almost everywhere in [0,T]. Suppose that Xa £ X°°([0,T],Rn) for every a and

that there exists a constant M > 0 such that \\ka\\ < M Va. Then the collection {xa}

is equicontinuous on [0,T].

Proof. For every h,t2 £ [0,T] we can write

||Xa(*l)-X«(*2)|| =
r2/ Xa(t)dt

Jti
<M\h-t2\

Therefore given £ > 0 we will have ||xa(*i) - xa(t2)|| < £ for every a if

\t2-h\<e/M. D

2.4 Differential Equations

In this section we will prove existence and uniqueness theorems under assumptions

applicable to our specific problem. Most textbooks study the differential equation

x(t) = f[x(t),t]

assuming that f is continuous in both x and t. However we are only interested in a

special type of differential equation, namely one of the form

x(*) = f[x(t)] + Bu(*) (2.7)
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where B is an n x m matrix and u € X°°([0,T],Rm). We will see that under certain

assumptions we can still prove the existence and uniqueness of a solution of eqn. (2.7)

satisfying the initial condition x(0) = xo, i.e. of a function x £ C([0,T],Rn) which is

differentiate a.e. in [0, T] and which satisfies eqn. (2.7) a.e. in [0,T].

First of all we note that any solution of eqn. (2.7) such that x(0) = xo is a solution

of the integral equation

x(t) =xo +/' f[x(r)] dr +B/' u(r) dr (2.8)
Jo Jo

and viceversa. Therefore it is equivalent to study the properties of eqn. (2.8).

To prove our theorems we will need to use the following two lemmas, known as

GronwalVs inequality and generalized GronwaU's inequality [21, p. 36].

Lemma 2.1 If b{t),<f>{t) are continuous functions with b{t) > 0 and if a is a real

number such that the following inequality is satisfied

<i>(t) <a+ / b(r)<f>(r) dr t €[ti, h]
Jh

then <f>(t) satisfies

#<)<ae£6(r)dT te[h,t2]

Lemma 2.2 If a(t),cf>(t) are real-valued continuous functions on [ti,^],

b(t) £ X1([t1,t2],R), b(t) > 0 and

then

<f>{t) <a{t) + J b{r)4>{T) dr t£[h, t2]
Ju

4>{t) <a(t) + ['a(T)b(T)efr 6(u) du dr t£ [tj, t2]
Ju
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The existence of a solution of eqn. (2.8) will be proven by taking the limit of

sequence of functions. In order to show that the limit exists we will rely on the fact

that the sequence satisfies the inequality defined in the following lemma.

Definition 2.8 The function f : Rn —• Rn is Lipschitz continuous if there exists a

number L > 0 such that

||f(xi) - f(x2)|| < X||Xl - x2|| VXl,x2 £ Rn

Lemma 2.3 Let u £ X°°([0,T],Rm) and let f be Lipschitz continuous on Rn. Recur

sively define the following sequence offunctions :

Xo(t) = x0

xjfe+iM = xo+ / f[xk(r)]dr+B f u(r)<fr
Jo Jo

Then there exists a constant C > 0 such that the following inequality is satisfied :

IK+1(t) - xfc(t)|| <c^£ vte[o,r]

Proof. Define

C= sup HxjW-xoII
t€[0,T\

Then the inequality is satisfied for k = 0 by construction. Using induc

tion on k we obtain

||xfc+1(t)-x,(t)||= Aflx^r)]-^.!^)])^ <
./o

< /oW)-xt_lW||dr <LfoC^dr =C&f.
which completes the proof. •



CHAPTER 2. MATHEMATICAL PRELIMINARIES 28

We are now ready to prove the existence theorem.

Theorem 2.8 Let u 6 X°°([0,T],Rm) and let f be Lipschitz continuous on Rn. Then

eqn. (2.8) has a solution on [0,T].

Proof. Let {x*} be the sequence defined in lemma 2.3 : then {x*}

is a Cauchy sequence in C([0, T\, Rn). To prove this, let p > q; from

lemma 2.3 we have

IM*) - x,MII < E l|x*+iM - x*(i)|| <

P-l

fc, - «! £*(*-l)...(9 +l)
W f, (Lt)t-" _ (.(£t)« fv (It)*-« _ <Lt)< u

It follows that

||xp - xj = sup ||xp(0 - x,(<)|| <C^-eLT

Because lim^o© *-%?- = 0, for every e > 0 we can find an index JVe

such that C^p?-eLT < e whenever q> Ne. But then we must also

have ||xp - x^H < e for p,q > Ne, which shows that {x*} is a Cauchy

sequence.

Because C([0,T],Rn) is a Banachspace, the sequence {x^} must have

a limit x. Therefore we can write

x(t) = lim xfc(t) = lim (x0 + / f[xjt_!(r)]dr+
k—•<» k—*oo \ Jq

j\(T)dr} =
( f[x(r)]dr +B/ u(r)<fr

Jo Jo

+ B

= Xq +
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which means that x is a solution of eqn. (2.8). •

After establishing existence we prove the uniqueness of the solution.

Theorem 2.9 Under the same assumptions as in theorem 2.8 the solution of eqn.

(2.8) is unique.

Proof. If both xi and x2 solve eqn. (2.8) we can write

INW - *»(*)ll = [\t[Xl(T)]-f[MT)])dT\\
Jo

< f'L\\Xl(r)-Mr)\\dr
Jo

If welet <j>(t) = ||xi(i)-X2(t)||, wesee that the assumptions oflemma 2.1

are satisfied with b(t) = L and a = 0. Therefore we conclude that

<j>(t) = 0on[0,T]. D

2.5 Optimal Control

This section deals with the classical theory of optimal control. We follow substantially

the arguments given in [22].

2.5.1 Problem Formulation

The classical optimal control problem can be formulated in many equivalent ways;

the one that best suits our purposes goes under the name of Meyer's problem. I will

not have to deal with its most general form, and I will describe just one particular

case (fixed terminal time, fixed initial conditions), which is the one that I will have to

consider later on.
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A dynamical system is given, described by the set of differential equations

x(*) = f[x(t),u(t)] (2.9)

where x(t) £ Rn,u(t) € Rm, a vector xo £ Rn, a positive number T, a real-valued

function <p : Rn —• R usually called cost function or performance index, and a set U

of admissible inputs. Meyer's problem consists of finding that input u(t) £ U that

minimizes v?[x(T)] where x(t) satisfies eqn. (2.9) with the initial conditions x(0) = xo-

In formulas

minu<EM¥>[x(r)]

x(*) = f[x(*),u(t)] (2-10)

x(0) = x0

2.5.2 The Lagrange Multipliers

Of all numerical algorithms that can be used to solve Meyer's problem (or any other

minimization problem for that matter), the most efficient ones require the knowledge

of the first derivative of the cost function with respect to.the independent variable,

which in this case is the time function u(t). This can be done in the following manner.

Let A : Rn —• Rn be a yet unspecified vector-valued function and define

JJ(x,A,u) = Arf(x,u).

H is a real-valued function, called the Hamiltonian, and it plays an important role

in both the theoretical characterization and the numerical solution of this and other

optimal control problems. We can now write the following equation, which holds for
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all functions A of class C1 :

¥>[x(T)] =<p[x(T)] + f Ar(t)(f[x(t), u(t)] - x(t)) dt =
Jo

= <p[x(T)]+ [ \Tfdt-[\Tx]\z0r+ f XTxdt =
Jo Jo

= <p[x(T)]+ fTH[x(t),\(t),u(t)]dt-
Jo

- [\TX]\ZT +[T fxdt
Jo

Let us now consider a small perturbation 8u(t) of the input u(t) and a small per

turbation 6x(Q) of the initial condition xo, while keeping the function A fixed. As

a consequence, the solution of eqn. (2.9) changes by a small amount Sx(t), and the

corresponding variation in the cost 6<p is given by

*-[(8-AT)faL+IATfal~+
rT\(dH <\ c a? •

(ft

This expression can be simplified by requiring the function X(t), so far left unspecified,

to satisfy conditions which will cause a number of terms to cancel out. It is easily seen

that, if A(t) satisfies the differential equation

and the "initial conditions"

then the expression for 6<p reduces to

Sip =AT(0)*x(0) +/ ^uA (2.12)
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In our particular case, the initial conditions are fixed, so eqn. (2.12) can be further

simplified to

6<p= I —6udt (2.13)

The components of A are called the Lagrange multipliers of the problem, and eqn.

(2.11) is often referred to as the adjoint equation for (2.9). From eqn. (2.12) we see

that A(0) is the gradient of <p with respect to variations in the initial conditions :

Ar(0) =̂ (2.14)

The same property holds for any t' £ [0, T], as can be seen from the following argument.

Let x(i) be the solution of eqn. (2.9) on the interval [0,T] subject to the initial

conditions x(0) = xo, and fix if £ [0,T]. Then x(t) also solves (2.9) on [t',T] with

the "initial conditions" x(t') = x(t'). Therefore the Lagrange multipliers for the two

problems are the same, and applying eqn. (2.14) to the second case, where the initial

time is not 0 but t\ we conclude that

Ar(0=^ (2-15)
This property of the Lagrange multipliers will be used later to give an intuitive expla

nation of an integral formula that gives the gradient of ip with respect to variations in

parameters appearing in eqn. (2.9).

To summarize, the derivative of <p with respect to u can be computed from eqn.

(2.12) after solving the following differential equations :

x(t) = f[x(t),u(t)] (2.16)

XT = -A'- (2.17)
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x(0) =xo , A'm-(g)
x=x(T)

This is formally a two-point boundary value problem, but in this particular case its

solution can be found by first integrating eqn. (2.16) forward in time, and then eqn.

(2.17) backward. Eqns. (2.16, 2.17) can be put in the equivalent form

x = dH
** (2.18)

\T - OH
A - "3x

This latter form is commonly known as the Hamiltonian formulation of the equations

for the optimal control problem. In Chapter 4 we will prove that eqns. (2.18) can

also be used to compute the derivative of (p with respect to variations in parameters

appearing in the differential equation (2.9).

2.5.3 Pontryagin's Minimum Principle

An interesting consequence of eqn. (2.13) is that, if u is a minimizer for <p, we must

have Jq ^Su dt > 0for all admissible 6vl. This suggests that the following statement

might be true

Proposition 2.1 Let U(t) C Rm be the set

U{t) = {u(t): u £ U)

Ifuo(t) solves the optimal control Problem (2.10), then it also satisfies the inequality

H[x(t),X(t),u0(t)] < H[x(t),X(t),u(t)]

for all u £ U(t) and for almost all t £ [0,T].
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In other words, the Hamiltonian is minimized along the optimal trajectory. This

proposition is indeed true, as was first proven by Pontryagin [23]; for this reason it is

commonly known as Pontryagin's minimum principle. It has many" applications, both

theoretical and practical, in classical optimal control problems. Especially interesting

is the case when the function f (x, u) is linear in the inputs

f(x, u) = g(x) + Au

and the set U is defined as

U = {u(t): \ui(t)\ < Mi,i = 1,..., m}.

Under these assumptions Pontryagin's minimum principle can be used to give a very

stringent characterization of the optimal control.

Corollary 2.1 Let f and U be given as above, and let uo(<) = {uo,\{t),...,uo,m(t))

be the control that minimizes <p[x(t)]. Denote the i-th column of A by a,-. Then, for

almost all t £ [0,T], either uo,i(*) = Mi or tfo,;(<) = -Mi, unless AT(*)at- = 0.

Proof. In this particular case the Hamiltonian is given by

m

JT(x, A, u) = ATg(x) + ATAu = ATg(x) + £ ATa,Wi
«'=1

The corollary is then an immediate consequence of Pontryagin's mini

mum principle. •

If A (t)a,- = 0, no conclusions about wo.t can be drawn from the above corollary; in

this case, the control uo is called singular.



Chapter 3

The Circuit Equations

3.1 Preliminary Assumptions

Throughout the rest of this dissertation I will restrict my attention to circuits satisfying

the following assumptions :

• The only elements contained in the circuit are independent current sources, re

sistors, capacitors and voltage-controlled current sources.

• Branch currents and branch voltages are given the standard orientation (positive

current flowing from the positive to the negative node) except in the case of

independent current sources, for which the opposite convention is assumed.

• Resistors, capacitors and controlled sources are not required to be linear. How

ever it is assumed that nonlinear resistors and controlled sources are voltage con

trolled, i.e. they can be described by branch equations of the form id = fd(vd),

where id is the current flowing through the device, fd is a function of class C1

35
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which depends on the device and vj is the controlling voltage. Similarly it is

assumed that nonlinear capacitors can be described by equations of the type

Qd = 9d{yd)i where qd is the charge on the capacitor, gj is a function of class C1

depending on the device and vj is the voltage across the capacitor. Furthermore

we assume that there exists a constant cmin > 0 such that -^ > cmin for all

voltages Vd and for all capacitors in the circuit.

• There are capacitors connecting the ground node to all other nodes of the circuit.

3.2 Charge Formulation of the Node Equations

To analyze the behavior of a circuit belonging to the class defined in the previous

section we can use Node Analysis [24]. This means that we write KirchhofTs Current

Law at each node in the circuit other than the ground node. For our purposes it is

convenient to give the resulting equations the following particular form.

Let Qc be the graph generated by the capacitive elements of the circuits (i.e. there

is an edge connecting nodes i and j of Qc if and only if there is a capacitive element

connecting nodes i and j of the circuit). Because of the assumptions made in the

previous section, there is an edge of Qc connecting each node to ground. Give those

edges the customary orientation (negative sign to the ground node); give arbitrary

orientation to the remaining edges of Qc- For a concrete example look at Fig. 3.1,

which shows a very simple network and its capacitance graph.

For each node i in the circuit different from the ground node define the following
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Figure 3.1: An RC network and its capacitance graph

quantity

i

where gtJ- is the charge corresponding to the capacitive element connecting node t to

node j, and the index j ranges over the set of nodes that are connected to node t by

an edge of Qc- In the above sum cy = 1 if the edge of Qc connecting i to j is oriented

so that the positive sign corresponds to node i; otherwise ey = —1. Because of our

assumptions the sum always contains the term +g,o corresponding to the capacitive

element connecting node i to ground.

Let us look again at Fig. 3.1 for an example. The network contains three node in

addition to the ground nodes, so we have three variables : qi,q2 and 93. Using the

above rules we obtain the following equations :

?i = 010 + 012

q2 = 020 - 012

03 = 030

With these conventions, it is easy to see that the quantity ^ corresponds to the
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current flowing out of node i through the capacitive elements. For convenience, we will

call qi the charge at node i, and the vector q = (01,..., qn)T will be referred to as the

vector of the node charges.

Kirchhoff's current law at node i generates an equation of the form

Y^eijUjzzO
j

where ty is the current flowing through an element connecting nodes i and j, and

Cij = 1 or dj = —1 according to the same convention used above. Let us split the

sum in three separate terms, corresponding respectively to the capacitive elements,

the resistive elements and the independent current sources. Then the above equation

becomes

cap.elts res.elta sources

(the sign - before the last sum is due to the fact that independent sources have opposite

orientation respect to the other elements). The first sum is equal to 0,-, as explained in

the previous paragraph, while for eachterm in the second sum we have itJ- = fij{vi-Vj).

Therefore the equation generated by Kirchhoff's current law at node i can be put in

the following form

0t + /i(vi,...,t>n) = *i

where fi = J^res.eits ±fij and U = £aource* ±Uj> Gathering all the equations for

i = 1,..., n we obtain a set of differential equations of the form

q = -f(v) + i

Similarly for each qij appearing in eqn. (3.1) we have qij = gijiyi —Vj), which means
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that 0t- has an expression of the form

qi = 9i(vl,...,vn)

In this way we obtain a set of algebraic equations that can be written as :

q = g(v)

We conclude that the dynamical equations describing our circuit can be put in the

following form :

q = -f(v) + i (3.2)

• q = g(v) (3.3)

As is, eqn. (3.2) contains n differential equations in 2n unknowns (the vectors q

and v). We will now show that eqn. (3.3) can be inverted, i.e. that there exists a

function g""1 of class C1 such that v = g_1(q). This means that eqn. (3.2) can be put

in normal form :

q + f[g-1(q)] = i (3.4)

The existence of a normal form for the differential equations (3.2,3.3) is useful from a

theoretical point of view, because then Theorems 2.8 and 2.9 can be applied to eqn.

(3.4) (assuming that f""1[g(q)] is Lipschitz continuous). However from a computational

point of view it is preferable to integrate eqns. (3.2,3.3) directly.

I begin by reporting a definition and a few theorems taken from [25, pp. 141 - 145],

where all the proofs can be found.

Definition 3.1 Let g : D -> R" be a C1 function, where D is an open subset o/Rn.
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Then g is monotone in D if

[g(x) - g(y)]T(x - y) > 0 Vx, y € D. (3.5)

f is strictly monotone on D if the above inequality is strict whenever x ^ y. f is

uniformly monotone on D if there exists a 7 > 0 such that

[f(x) - f(y)]r(x - y) > 7(x - y)r(x - y) Vx,y £ D. (3.6)

The following statements are obvious:

• A function which is strictly monotone on D is one-to-one on D (i.e. g(x) ^ g(y)

whenever x ^ y).

• A uniformly monotone function is also strictly monotone.

Theorem 3.1 Let g : D —• Rn be of class C1 on the open convex set D C Rn. Then

• g is monotone on D if and only if -^ is positive semidefinite for allx£ D.

• $ Sx ** positive definite for allx£ D then g is strictly monotone on D.

• g is uniformly monotone on D if and only if there is a 7 > 0^ such that

AxT|̂ Ax >7||Ax||2 Vx £D, VAx £Rn
dx

Corollary 3.1 If g : D —• Rn is of class C1 on the open convex set D CRn and £

is positive definite for allx £ D, then g is one-to-one on D.

Theorem 3.2 If g : Rn -* Rn is of class C1 an uniformly monotone on Rn, then g is

a homeomorphism o/R" onto Rn, i.e. g has a C1 inverse g"*1 : Rn —• Rn.
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Let us now apply these theorems to the function g(v) appearing in eqn. (3.3).

The derivative C(v) = gf (v) is by definition the capacitance matrix of the circuit. A

capacitive element connected between nodes t and j of the circuit contributes a quantity

+%£ to the elements cu and Cjj of C(v) and aquantity -^ to the elements c0 and

Cji; acapacitive element between node i and ground contributes aquantity +^- tothe

element c,-,-. Because it is assumed that gj > cmin for all capacitive elements and that

there is a capacitive element from each node to ground, all the diagonal elements of

C(v) are positive, all the off-diagonal elements are negative (or zero), and the matrix

C(v) is diagonally dominant and positive definite. Furthermore we can prove that

Av^vjAv^CninHAvH2

for everyvector Av = (Avi,..., Avn)T. This can be done by brute force algebra orby

reasoning as follows. Let us fix v and let us replace every nonlinear capacitive element

with a linear capacitance in the following way : if the branch equation of the nonlinear

capacitance is qd = fd(vd)i the value of the linear capacitance replacing it is $*-. In

this way way we obtain a linear capacitive network whose capacitance matrix is exactly

C(v). If we now apply voltages Avi,..., Avn to the nodes of the network, the energy

stored in all the capacitances is |"AvrC(v)Av. This iscertainly larger than the energy

stored on the grounded capacitances, which is equal to jEJLi cuAvj. But c,,- > cmtn,

so that jEJLi clt-Au2 > jcmi„||Av||2, which proves our claim. Theorem 3.2 can now

be applied to the function g(v) and we can state the following

Proposition 3.1 The function q = g(v) has an inverse v = g_1(q) of class C1 which

is defined for all q £ Rn.
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As mentioned before, this means that eqns. (3.2,3.3) can be put in normal form

(3.4), at least from a theoretical point of view. We will use this fact in Chapter 4.

3.3 Numerical Integration of the Circuit Equations

3.3.1 General Properties of Numerical Integration Methods

The issues involved in the numerical solution of a differential equation are countless,

and the literature that deals with this topic is immense. Here I will only mention briefly

those aspects that are relevant to my specific case, trying at the same time to make the

reader aware of the reasons underlying my selection of a particular integration method.

Throughout this section, I will assume that an approximation to a scalar function x(t)

satisfying the initial value problem

' = /(*'° (3.7)
x(0) = xo

has to be computed over a finite time interval [0,T]. The extension to vector-valued

functions can be done without difficulty.

Almost all numerical integration methods generate a finite sequence x(U),i =

0,..., N where x(U) approximates x(ti) with a certain accuracy. The quantity x(U) —

x(ti) is called the global error at time ti, and in general it is not possible to re

duce it to zero. However it is natural to expect it to tend to zero as the mesh

{0 = to, ti,...,tpr = T} thickens. This leads to the following definition [26, p. 172] :

Definition 3.2 Let us define h = maxi<i<Ar(*i - U-i). An integration method is
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convergent if

lim max \\x(ti) —x(ti)\\ = 0

The global error is the most natural way to describe the accuracy of an integration

method; unfortunately it is practically impossible to estimate it in any useful way.

For this reason another quantity, called the local truncation error [26, p. 59] (often

abbreviated LTE), is used in its place.

Definition 3.3 The local truncation error at time U is the quantity x(U) —£(£,)

computed under the condition that x(tj) = x(tj) for j = 0,..., i —1.

It is intuitive that the local truncation error at time ti depends on the timestep hi =

U —*,_i. Therefore one of the most widely used techniques to control the accuracy of

an integration method is to estimate the local truncation error at each timepoint and

to check that it does not exceed certain bounds. This consideration favors the choice

of a method whose local truncation error can be estimated easily. We will see that this

can be done trivially for a particular class of methods which are commonly referred to

as Backward Differentiation Formulae (or BDF).

3.3.2 Linear Multistep Methods

The Backward Differentiation Formulae belong to a wider class of methods known as

Linear Multistep Methods. The name arises from the fact that the sequence {x(ti)}

generated by one of these methods is required to satisfy a hnear recurrence relation of

the form

p p

J2ajxiti-j) =hi 2 bjf[HU-j), ti-j] (3.8)
i=o j=o
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where ao = 1. Assuming that x(*,_i)>..., £(<i-p) are available , eqn. (3.8) can be used

to compute £(<,). If &o = 0, this can be done trivially, because then

p p

*(*«) = - £ *jx(U-j) + hi Y, &;/[*(*»-;)> U-j]
i=i i=i

If bo £ 0, computing x(ti) requires the solution of the following nonlinear equation

p p

i=i j=i

For this reason linear multistep methods for which bo = 0 are called explicit, while

the others are called implicit. The coefficients aj, bj, j = 0,..., p cannot be chosen

arbitrarily. For instance it is customary to impose the exactness constraints of order k

[27, p. 480], where k < 2p+ 2 : if x(t) is a polynomial of degree k or less, it is required

that x(ti) = x(ti) for all tfs. If the timestep t,- —*,-_i is constant, this requirement

translates into the following equations :

p

Eai = °
i=o

j'=0 j=0

An important characteristic of a linear multistep method is its region of absolute

stability. The motivation for its definition will become clear after looking at the fol

lowing example. Suppose that the differential equation

x = -2.02a: (3.9)

has to be integrated over the interval [0,10] with the initial condition x(0) = 1. We

want to compare the results given by two linear multistep methods : the first one is

known as the Forward Euler method, and is defined by the recurrence relation

x(U) - £(<,_!) + fc,-/[*(<.-i),*.-i] (3.10)
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while the second is the Backward Euler method, defined by

*(*,-) = xfc-i) + hif[x(ti), U] (3.11)

In both cases, we use a fixed timestep ti —i,_i = 1. The points generated by both

methods are plotted in Fig. 3.2, together with the values of the exact solution x(U) =

exp(-2.02tj). It can be seen that the difference between the two integration methods

is not simply a matter of accuracy, but also a matter of different qualitative behavior

of the corresponding sequences : the Backward Euler method generates points that

approach zero as U —• oo, and thus resemble the general qualitative behavior of the

exact solution. On the other hand the Forward Euler method generates an oscillating

and divergent sequence.

If the experiment is repeated with a smaller stepsize U —tj_i = 0.25, we obtain

the results plotted in Fig. 3.3. In this case the qualitative behavior of the sequences

generated by both integration methods is the same. This simple example suggests

that the timestep size can have a remarkable effect on the behavior of an integration

method. The definition of stability region formalizes this fact.

Definition 3.4 Consider the differential equation

x = -As (3.12)

x(0) = x0 ^ 0

where X is a complex number. Let x(U) be the sequence generated by a linear multistep

methodusing a fixed timestep ti - <,_i = h. Theregion of absolute stability S of the

method is that subset of the complex plane such that ifhX £ S then lim,_oo x(U) = 0.
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The region of absolute stability of a linear multistep method can be computed fairly

easily [27]. As an example, the regions of absolute stability of the Forward and Back

ward Euler methods are shown in Fig. 3.4. If we pick A = 2.02 and h = 1, we see that

hX = 2.02 falls inside the absolute stability region of the Backward Euler method, but

just outside that of the Forward Euler method, while if h = 0.25 then hX = 0.505 is

inside both regions, confirming the results that we obtained in our simple test example.

It is now clear that the region of absolute stability of an integration method can

play an important role in determining the largest timestep that is safe to use. Methods

whose regions of absolute stability do not pose any restrictions on the timestep size

are therefore of particular interest. Because most differential equations of interest are

stable, this translates into the requirement that the region of absolute stability should

include the whole right half-plane of C. This is formalized in the following definition

Definition 3.5 A linear multistep method is A-stable if its region ofabsolute stability

includes the right half-plane of C.

Thus A-stable methods have the desirable property of having their timestep size

limited only by accuracy requirements. A more refined analysis of the properties of

integration methods [26] shows that this property is shared by a wider class of methods,

called stiffly stable.

Definition 3.6 A linear multistep method is stiffly stable if there exist numbers

6 > 0, fj, > 0 and 9 > 0 such that, with reference to Fig. 3.5, the method is accurate in

regions I and II and stable in region III.

At the end of the previous section we also mentioned that a particular class of



CHAPTER 3. THE CIRCUIT EQUATIONS 49

linear multistep methods, called.Backward Differentiation Formulae, are particularly

attractive because the local truncation error can be estimated very easily. The next

section contains a precise definition of those methods and a brief illustration of their

stability properties.

3.3.3 Backward Differentiation Formulae

The Backward Differentiation Formulae are obtained from eqn. (3.8) by setting bo = l

and &i = &2 = ... = bp = 0 :

1 pf[x(ti),U] = T-^ajxiU-j) (3.13)

The coefficients aj are determined by the requirement that »(t,-) = x(ti) whenever

x(t) is a polynomial of degree p or less. Because /[s(*i),*«] = £(*;), the requirement

x(U) = x(ti) means that the equation

1 p

*'&
(3.14)

must be satisfied for all polynomials of degree less than or equal to p (hence the name

of Backward Differentiation Formulae). It can be shown [27] that this is equivalent to

asking that the coefficients aj satisfy the following set of linear equations

/

Because 60 = 1, BDF methods are implicit; this means that a nonlinear equation

must be solved every time x(t,) has to be computed. Most algorithms used to solve

\ / \ / \
ao

Ol

\a" J \ ° }
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nonlinear equations, such as the Newton-Raphson method [27], require an approxima

tion to the solution as a starting point; the closer the initial approximation, the faster

the algorithm will solve the nonlinear equations. For this reason it is convenient to

have an a-priori estimate of £(t('), which can be computed using a so-called predic

tor method. The predictor commonly used in conjunction with BDF methods is an

interpolating polynomial through the points x(t,_i),... ,a;(*t_p_i) :

p

»P(*.0 =E^(*»-i-i) (3«15)
i=o

Aside from simplicity, the main advantage of using this predictor comes from the

following theorem [28] :

Theorem 3.3 Let xp(U) and x(U) be computed from eqns. (3.15) and (3.13) respec

tively. Neglecting higher order terms, the local truncation error at U is given by

LTE(U) 2 ''-*'-* [a(tt.) _a-Pft.)]
*t — *•—p—l

Using the above formula the local truncation error can be computed trivially, in con

trast to other approaches which require approximating higher order derivatives of the

solution with finite differences, a computationally expensive and notoriously inaccurate

process.

We now turn to the question of stability of BDF methods. We will not enter into the

computational details, which can be found elsewhere [27]. For our purposes it suffices

to show the regions of absolute stability of BDF methods with p from one through four

(Fig. 3.6). We see that all of them are stiffly stable and that methods with p = 1 and

p — 2 are A-stable. The BDF method with p = 2 offers a good compromise between
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stability, accuracy and storage requirements and is therefore a reasonable choice for

the numerical integration of eqns. (3.2,3.3).

3.4 The Adjoint Network

An often occurring problem in circuit design is to minimize or maximize a certain per

formance function of a network (e.g. power consumption) by giving appropriate values

to some design parameters (for instance, the values of selected elements of the net

work). This goal can be achieved using an optimization algorithm, provided that the

derivatives of the performance function with respect to the parameters are available.

Several algorithms for the computation of those derivatives (often called network sen

sitivities) have appeared in the literature. We will conclude this chapter by illustrating

briefly one of them, known as the Adjoint Network Method [27]. The reason for this

digression is that from a mathematical point of view our approach to macromodeling

has many points in common with the network performance minimization problem; in

particular, the formulas for the computation for the derivatives are the same in both

cases. Chapter 4 contains a rigorous mathematical justification of this fact, but at

this point we would like to interpret the computation of network sensitivities from the

point of view of circuit theory. This can be done by introducing the concept of adjoint

network, and showing that the computation of sensitivities is equivalent to performing

an analysis on it. We will confine ourselves to the stationary case, even if the macro-

modeling problem involves the computation of derivatives in the time domain, because

the underlying ideas remain the same. A detailed treatment of the Adjoint Network
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Method in its most general setting can be found in [29]. Here we follow a simplified

approach along the lines of [30].

Suppose that we are given the equation

f(v) = 0 (3.16)

where f : Rn —• Rn is of class C1. Let vo be a solution of eqn. (3.16), and assume

that §7(vo) is nonsingular. Let c : Rn -* R be a real-valued function also of class

C1. Assume now that f is perturbed by a small amount £f, and let 6v and 6c be the

corresponding perturbation of vo and c(vo). Our goal is to give an expression for 6c

as a function of 6f. Because

Sc =|£(vo)*v (3.17)

we have to compute £v first. This can be done in the following way : we have

f (v0 + 6v) + 6i(y0 + 6v) = 0

Taking a Taylor expansion for f and 6f and neglecting terms of order higher that one,

the previous equation becomes

df^(v0)*v-Mf(v0) =0

because f(vo) = 0. This equation can be readily solved for £v :

*v=-(|£)"1(vo)*f(vo)

Substituting this expression in eqn. (3.17) we obtain the formula we were looking for :

Sc =-?^v°) (|£)_1 (v°)*f(v°) (*M)
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We now want to put this equation in a slightly different form : let A be the solution of

r / *„ \ T

(©»-«>
where it is understood that all the derivatives are to be evaluated at vq. It is easily

seen that eqn. (3.18) can be rewritten as

6c = AT*f(v0) (3.19)

The advantage of writing the equation in this second form is that A can be computed

independently of 6i. Once A is known, eqn. (3.19) can be used to calculate 6c for an

arbitrarily given 6f.

Consider now a network Af containing only linear resistors and current sources

which are either constant or linearly voltage-controlled. Let v be the vector of node

voltages, and let c(v) be a performance function depending on the dc solution vo of the

network. We want to compute first-order variations of c(vo) corresponding to small

perturbations of one or more elements of the network. Specializing the conclusions

of the previous paragraph to this case we have f(v) = Yv —i, where Y is the node-

admittance matrix of the network [27] and i is the vector representing the independent

current sources. The computation of A requires solving the linear system

YrA=-(|i)r(vo) (3.20)
We will now show that there is a network whose node-admittance matrix is YT : it is

called the adjoint network of JV".

Recall that the contribution of each element of A/" to Y can be described by an

element stamp or pattern [31]; for instance, the element pattern for a linear resistor of
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* 3

i G - G

j -G G

54

Table 3.1: Element pattern for a linear resistor

conductance G connecting nodes i and j is shown in Table 3.1. This means that this

resistor contributes a quantity +G to the elements yu and yjj of Y and a quantity

—G to the elements yij and yji. Therefore to build the adjoint network of A/* we can

take every element of A'' and replace it with another element having a pattern which

is the transposed of the original one. The pattern of a linear resistor is symmetric,

so to every linear resistor of A/" corresponds a linear resistor of equal value in the

adjoint network. On the other hand the pattern for a linear voltage-controlled current

source of transconductance Gm, shown in Table 3.2, is not symmetric. The transposed

k I

i Gm - Gm

3 - Gm Gm

.. k

D<=!
". 1

Table 3.2: Element pattern for a voltage-controlled current source

pattern is shown in Table 3.3 and it is readily seen that the corresponding element is

i 3

k Gm - Gm

I - Gm Gm

Table 3.3: The transposed pattern for a voltage-controlled current source
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another voltage-controlled current source with the controlling and controlled branches

interchanged. Therefore voltage-controlled current sources of J\f are reversed in the

adjoint network.

Eqn. (3.20) also shows that the independent sources in the adjoint network are

related to the performance function : if c depends on v,-, then the adjoint network

contains and independent current source between node i and ground whose value is

_ dc

We can therefore conclude that the computation of network sensitivities is equiv

alent to performing an analysis of the adjoint network. Although these results have

been derived assuming stationarity, they are representative of a more general fact. In

Chapter 4 the macromodeling problem will be formulated as an optimization prob

lem in the time domain, and it will be proven that the derivatives of the function to

be performed can be computed by performing a time-domain analysis of the adjoint

network.
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Figure 3.4: Stability regions (shaded areas) for Forward and Backward Euler methods.
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Figure 3.5: Definition of stiff stability
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Figure 3.6: Stability regions (shaded areas) for BDFs.
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Chapter 4

Theoretical Framework

In this chapter we characterize our approach to the macromodeling problem from a

mathematical point of view. We assume that the class of models can be parametrized by

a vector a belonging to a set V of admissible parameters. We introduce a cost function

c(«, u) which measures how different the output of the original system corresponding

to the input u is from the output of the model corresponding to the same input. Then

we show that the macromodeling problem can be given the following mathematical

formulation

min max c(ac, u)
ctev ue« v '

where U is the set of admissible inputs. Finally we give expressions for the differential

of c with respect to variations in the input u and in the parameters ct.

59
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1A/PUTS OUTPUTS

Figure 4.1: Abstract representation of the block to be modeled

4.1 Circuits as Dynamical Systems

Let us assume that the circuit we want to find a macromodel for contains n nodes, m of

which are to be considered inputs and p outputs (fig. 4.1). The input and output nodes

may partially or totally overlap, or be completely distinct. Number the nodes so that

the inputs have numbers 1 through m; the outputs will then be k\,..., kp. As input

to this system we take the vector i = (t'i,... ,im)T of the currents flowing from the

outside into the input nodes, while the output is the the vector v^°^ = (v^,..., Vkp)T

of the voltages at the output nodes. Under the assumptions stated at the beginning of

Chapter 3, the vector q = (gi,... ,qn)T of the node charges can be used to represent

the state of the circuit, and there exists a C1 function g : Rn —• Rn such that v = g(q),

where v = (ui,..., vn)T is the vector of the nodevoltages. We havealso seen that the
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state equations can be written in the following way:

q. = -tWqOJ + BJ

vio) = gi(qi)

where fi is a C1 function, and Bi is a rectangular matrix given by

Bi =

/ \
I,*-mXm

(4.1)

l V{n-m)xm j

The reason for using the subscript 1 in the above equations will become apparent in a

moment.

At this point we have to keep in mind that the macromodel for the system described

by eqn. (4.1) will be used in the simulation ofa bigger circuit of which it will be a part.

Most circuit simulators are based on Modified Node Analysis, in which the equations

describing the circuit are derived by applying KCL to each node. If we require the

macromodel to have a structure that lends itself easily to that type of analysis, we are

led to the conclusion that it would be convenient for the macromodel to be described by

a set of differential equations having the same structure as eqn. (4.1). The difference

of course will be in the number of equations needed to represent the model.

Having determined what the structure of the model will be, we still need to define

a class of admissible models in a practical way. Because the model itself is an electrical

circuit, it is natural to choose the values of some of its elements (e.g. resistances or

capacitances) as parameters. In this way each model will be represented by a vector

of parameters a = (ai,..., ar), and the class of admissible models will be determined

by the definition of a set V € Rv of admissible parameter values.
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Under these assumptions we conclude that the model should be represented by a

set of equations of the form

6j = -f2[v2(q2), <*] + B2i
(4.2)

V2 = g2(q2,«)

We will differentiate between the original system and the macromodel by appending

the subscript 1 to variables and equations pertaining to the former and the subscript

2 to those pertaining to the latter.

It is readily seen that both eqn. (4.1) and eqn. (4.2) represent dynamical systems

where i is the input vector, q is the state vector and v is the output vector. "

4.2 Macromodeling as a Min-Max Problem

In the previous section we have seen that both the original circuit and its model can

be regarded as dynamical systems of a particular kind. In this and in the following

sections we prove theorems that hold for all systems having the same structure. For

this reason we temporarily switch to the notation commonly used in system theory,

where u denotes the input, x the state and y the output.

In this notation eqns. (4.1) and (4.2) become

xi = fi(xi) + Biu
(4.3)

yi = gi(xi)

x2 = f2(x2,a) + B2u
(4.4)

y2 = g2(x2,a)

We will make the following assumptions :
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• gi and g2 are continuous functions of their arguments.

• i\ is Lipschitz continuous.

• f2 is Lipschitz continuous in x uniformly in a, i.e. there exists a constant L > 0

which does not depend on a such that

||f2(x, a) - f2(y, a)|| < ||x - y[| Va 6 V.

Let 5i,52 be the dynamical systems represented by eqns. (4.3) and (4.4) respec

tively. We want to define a notions of "closeness" between them which is related to

the difference in their input-output behaviors, and does not depend on their internal

dynamics. For this purpose we fix a time interval [0,T], as well as a subset U of

X°°([0,T],Rm), which will be referred to as the set of admissible inputs. It will be

convenient to regard U as a topological spacewith the topology induced by the weak-*

topology of i°°([0,T],Rm). We can now apply Theorems 2.8 and 2.9 to eqns. (4.3)

and (4.4) and state the following

Proposition 4.1 Fix Xito,X2,o- For every u 6 U and ct € V there exist unique

functions Xi(t),X2(t) satisfying eqns. (4-3,4-4) and ^e initial conditions xi(0) =

xi,o,x2(0) = x2,0.

For a given u G U let yi(*)»y2(*) be the corresponding outputs of S\ and 52

respectively, and define

c(«,u) =ij[T||y2(t)-y1(*)||2d*

cis a function of a and u becausey\(t) and y2(t) depend implicitly on a and u through
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eqns. (4.3) and (4.4). Then the distance d(5i,52) between Si and 52 is defined as

d(Si,S2) = sup c(ct, u) (4.5)

In the next section we will state conditions on U which ensure that the above supremum

is finite. This is the case, for instance, if U is the set

U = {u(t) € X°°[0,r]: |ti,-(t)| < Mht e [0,T1,« = 1 m}

In this case the supremum is in fact a maximum, i.e. there exists umax GU such that

d(5i,52) = c(a,umax)

It is immediately recognized that the computation of umax is equivalent to solving the

following optimal control problem :

maxu€W|/0T||y2(t)-yiW||2d<
( \ ( \

yi

\V2J
( \ ( . \

xi

The corresponding Hamiltonian is

g(*0

^ g(Xa»«) )

^(xa,a) + Bau

(4.6)

tf(x, A,u,a) = i||g3(x3,a) - g^xJI]2 +A^f^) +Bau] +A;f[f2(x3,a) +B3u]

Making use of Pontryagin's maximum principle we can give the following characteri

zation of umax :

Let Umax be (ui(t),..., um(t))T- For every i = 1,..., m and for almost all t G [0, T]

we have eitherU{(t) = Mi or U{(t) = -Mi, provided that umox is not a singular control

(see Corollary 2.1).
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This result is somewhat surprising, because it goes against the natural expectation

that the worst case input could be almost any function, depending on the specific

structure of S\ and 52- Instead, because the systems that we are considering are linear

in the input, we see that we can restrict our attention to a much smaller class of

functions, those that are piecewise constant in the interval [0,T]; only the number and

the location of the switching points remain unknown. From a computational point of

view this is a big advantage, which we can exploit in the numerical implementation of

a macromodeling algorithm.

Now that we have a measure of the difference in the dynamical behavior of the

original system and of the model, it is natural to look for the model that minimizes

this difference. In our notation this requires solving the following problem

in maxc(a.u))
IV \uew v V

nun

4.3 The Existence of an Optimal Model

We have seen that our macromodeling problem can be given the following mathematical

formulation

minmaxc(a.u)
ctev u€W

In this section we prove that the problem so stated does have a solution provided that

V and U satisfy the following hypotheses :

• The set V is compact in the usual topology of Rr.

• U is compact in the weak-* topology of X°°([0,T],Rm).
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• There exists a constant Mo > 0 such that

||u|| < M0 Vu6W

The first step is to prove that c is a continuous function of its arguments. This is not

hard to do, once we have established the fact that xi(tf) and X2(*) in eqns. (4.3) and

(4.4) depend continuouslyon (a,u).

Because the considerations that follow apply to xi and X2 indifferently we will drop

the subscripts and refer simply to the following integral equation :

x(t) =xo + /'f[x(r),ct]dr +Bf u(r)dr (4.7)
jo Jo

(see section 2.4). First we prove a few lemmas.

Lemma 4.1 Let {uk} C I°°([0,r],Rra) be a sequence such that \\uk\\ < M0 Vfc and

limfc_>oo uk = u in the weak-* topology o/I°°([0,r],Rm). Define

vjk(t) = / uk(r)dT
Jo

v(t) = / u(r)dr
Jo

Then linu^o© vk = v uniformly in [0,T].

Proof. Let ukj , m be the i-th component of ujt and u respectively.

By definition of weak-* limit, we have

lim / g(r)ukii(T)dT= g{r)ui{T)dT
fc-KX> Jo JO

for any function g e I1([0,T],R). In particular we can take g to be

the characteristic function X[o,t] of the interval [0,t] (X[o,t]iT) = 1 if
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r 6 [0,<], Xfo,t](r) = 0 otherwise). Then the above equation becomes

lim / uki(r)dT= / Ui(r)dr
k-KX Jo Jo

which shows that vkti converges to «,- pointwise in [0, T]. But the se

quence {vjfe.i} is equicontinous, because

(Theorem 2.7). Therefore {*>*,,} converges to v; uniformly in [0,T]

(Theorem 2.5). Because this is true for all the components of vk, it

follows that yjfe converges to v uniformly. O

Lemma 4.2. Let a 6 V , u € W, and Zei x(t) be a solution of the integral equation

(4.7). Then there exists a constant Mi which is independent of a and u such that

\\x(t)-xQ\\<M1 V*<=[0,r].

Proof. We know that f satisfies the Lipschitz inequality

||f(x)-f(xb)||<X||x-xo|| Va<E7>

As a consequence we have

||f(x)|| < ||f(x0)|| + ||f(x) - f(xo)|| < ||f(Xo)|| + £||x - Xo||

Using this inequality in the differential equation we obtain

IWO - xoll < f ||f(xo|| dr + f X||x(r) - xo|| dr+
Jo Jo

+ l|B||/'||u||<ir<
Jo

< T(||f(xo) +||B||M0) + f X||x(r) - x0|| dr
Jo
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We can now use Gronwall's inequality (Lemma 2.1) to obtain the fol

lowing bound for ||x(t) —xo||

llx(t) - xo|| < r(||f(xo)|| + ||B||Af0)<=£'

which proves the theorem if we take

Mi = r(||f(xo)|| + ||B||M0)e£T

Lemma 4.3 Let a 6 V , u 6 U, and let x(t) be a solution of the integral equation

(4>V' Let {ctk} e V be a sequence converging to a, and let {uk} € U be a sequence

converging to u in the weak-* topology. Let xk(t) be the solution of the equation

xfc(*) =xo+ / f[x*(r),afc]aV +B/ u(r)aY
Jo Jo

Then

lim / (f[xfc(r), afc] - f[x*(r), a]) dr =0
k-kx> Jq

uniformly in [0,T].

Proof. Let K be the set

/C = {(x,a):||x-x0||<M1,ae7>}

where Mi is the constant defined in the previous lemma. K is compact,

because it is the cartesian product of two compact sets (Theorem 2.1).

Since f is uniformly continuous on K (Theorem 2.3), for every e > 0

there exists 6e > 0 such that ||f(x2,a2) - f(xi,ai)|| < e whenever
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||x2 - xi|| < 6ei \\ct2 - ociH < 6e and (xi,ai),(x2,a2) 6 K. The

previous lemma proves that wehave ||x*(*) —xo|| < Mi forevery k and

for every * 6 [0,T]. Therefore if \\ctk - ct\\ < 6e we have

||f[*fc(t),oJ - f[x*(t),a]|| < e Vt € [0, T]

The lemma is then an easy consequence of this inequality. •

We can now prove that the solution of eqn. (4.7) depends continuously on (a,u).

Theorem 4.1 Let {xjk},{afc},{ufc},x,a,u satisfy the same assumptions as in the

previous lemma. Then limfc_»oo xk(t) = x(t) uniformly in [0, T].

Proof. We have

xk(t) - x(t) =/*(f[xfc(r), ajb] - f[x(r), a]) dr+
Jo

+ B f\uk(T)-u(T)]dT =
Jo

= /t(f[xfcW,a]-f[x(r),a])(fr +
Jo

+ /'(f[xfc(r), afc] - f[xfc(r), a]) dr +
Jo

+ B[\uk(T)-u(T)]dT
Jo

Exploiting the fact that f is Lipschitz continuous we obtain the following

inequality

||xfc(t) - x(t)\\ < f L\\xk(r) - x(t)\\ dr +ak(t)
Jo

where

«*(*) =II /f(f[xfc(r),afc] - f[xfc(r),a])dr +B/*[ufc(r).- u(r)Jdr||
7o ^o
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Lemmas 4.1 and 4.3 imply that -lim^oo ak(t) = 0 uniformly in [0,T].

We now use the generalized Gronwall inequality (Lemma 2.2) to obtain

IM*) " "Mil <<**(*) +Lf a*MeL('-T) dr
Jo

It follows that ||xjk(t) - x(*)|| tends to zero uniformly on [0,T]. •

Corollary 4.1 c(a,u) is a continuous function of its arguments.

Proof. The definition of c :

1 fT(«>*) =tl lly*(*)-yiMlla*

shows that c is a continuous function of yi(t) and y2(t) as defined in

eqns. (4.3) and (4.4). The same equations also show that yi(t) and

y2(t) depend continuously on xi(t) and.X2(<), and we know from the

previous theorem that x\(t) and X2(t) depend continuously on a and

u. D

Now that we have established the continuity of c we can prove the following lemma

Lemma 4.4 Define

ib(ct) = maxc(a.u)

Then tp is a continuous function of a..

Proof. First of all we note that ip is well defined because for every

fixed a. c(a, u) is a continuous function of u on the compact set U and
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has therefore a minimum there (Theorem 2.2). Let ao be any point in

V; in order to prove the lemma we have to show that given arbitrarily

e > 0 we can find a 6e > 0 such that

|V<a) - ip(ct0)\ < e

whenever ||a - ao|| < 6e. Because c is continuous, for every e > 0 and

every point ueV there exist a number 6(u) and a neighborhood A/*(u)

of u such that

|c(a,v)-c(ao,u)| < e

whenever ||a - ao|| < 6(u) and y G A/*(u). The collection {jV(u)} as

u ranges over U is an open covering of the compact set U. Therefore

there exists a finite subcollection A/"(uj) : i = 1,... ,q which still covers

U. Let

6 = min{£e(u;): i = 1,..., q}

and assume that ||a —ao|| < 6e. Every u € U belongs to some A/"(uf);

therefore we have :

|c(a,u)-c(a0,u)| <

< |c(a,u)-c(a0, u,-)| +

+ |c(a0,ut)-c(a0,u)| <

e e

2 2

Because c(a, u) = c(olq, u) + [c(ct, u) - c(ao, u)], we conclude that

c(ao, u) - e < c(a, u) < c(qq, u) + e
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and taking the maximum with respect to u we get

ij>(olo) -e< ip(a) < V>(<*o) + e

which proves the continuity of iff. •

It is now a simple matter to conclude that ifi must have a minimum on the compact

set V (Theorem 2.2), which proves our claim that the our macrmodeling problem has

always a solution under the stated the conditions. We can summarize this result in the

following

Proposition 4.2 Let V be the set of admissible parameters and let U be the set of

admissible inputs. If both V and U are compact there exist ao G V and uo € U such

that

c(ao,uo) = min [maxc(a, u)) (4.8)
v ' ctev \ueu J

4.4 Computation of Derivatives

Having proven that modeling can be regarded as a min-max problem, we are now

faced with the task of actually computing the pair (ao, uo) appearing in eqn. (4.8).

It must be said immediately that finding the global optimum of a real valued function

is almost always impossible, even when such optimum is known to exist. Therefore

we should not expect to be able to find the optimal model. The best we can hope for

is to compute a local optimum, starting from a given initial model. For this purpose

we must be able to compute the gradient of the distance with respect to variations in

the equations describing the system. In this section we will give an expression for the

gradient that can be used for numerical computations.
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The computation of the derivative of c with respect to u has already been dealt

with in section 2.5. In this sectionwewill showhowto compute gjj. By definition, this

requires keeping u fixed; therefore we can drop explicit dependence on u everywhere,

which has the advantage of simplifying notation considerably.

Eqns. (4.3,4.4) can be gathered together in the following way :

/ \
yi

Vy2y
/ \

Xi

vx2/

giOO

^ ga(x3,a) J

fx(Xl) + Bxu(t)

^ £(x,,a) +Bau(t) J

where (xi,X2)T 6 Rn and a € Rr. For theoretical purposes it is convenient to add

two more state variables, xq and xn+i> and two equations :

/ \

Xq = 1

Xn+l = |||g2(x2,a)-gi(xi)||2

If we impose the initial conditions x0(0) = xn+1(0) = 0, we can combine eqns. (4.9)

and (4.10) to obtain an equivalent system of the form :

x= f(x,a)

where x = (zo>Xi,X2,xn+i)T € Rn+2 and

/

f =
t1(x1) + Blu(x0)

f3(x2,a) + B2u(a:0)

^ j||g2(x2,a)-gi(xi)||2 }

\

(4.9)

(4.10)

(4.11)

(4.12)
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Note that c(a) = x„+i(T, a). If we now define

<f>{x) = xn+i

we can write the obvious identity

0c__ &ft[x(r,a)]
da ~ da

Therefore computing the gradient of c is seen to be a particular case of the following

problem: evaluate a*[*(r,a)] where <j>: Rn -> R subject to eqn. (4.11) with x(0) given

and fixed.

There is a striking similarity between this problem and a classical optimal control

problem, in which we have to compute the variation in <f> with respect to changes in

the input u(t). We will show that this similarity is not coincidental, because most

results of optimal control theory can be extended to our case. In particular, we will

show that the gradient of <f> can be computed by means of a path integral involving

the Hamiltonian function associated to eqn. (4.11).

As in a classical control problem, the Hamiltonian associated to eqn. (4.11) is

defined to be

JH'(x,A,a) = Arf(x,a)

XT is the vector of the Lagrange multipliers, which satisfies the equation

with the "initial" condition X(T) = f|(x[T,a)]. Our goal is to give an expression for

the difference c(ai) - c(a0) that involves the function f(x,a); the gradient of c will

be obtained as the limit of that expression asai-> ao. For this purpose we introduce
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e

7e

So 6t

7o T t
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Figure 4.2: The rectangle Re

a real parameter 6 and we let a vary as a(6) = (1 —0)ao + 0a\. For brevity, we

will write f$(x) and iT^(x,A) for f[x,a(0)] and J5"[x, A, a(0)], respectively. We also

introduce the 1-form £«Ai<tan which we will abbreviate as ATdx. Let Re be the

rectangle [0,T] x [0,e] in the (t,0) plane, i.e.

Re = {(M) e R2 :0 < t < T,0 < 9 < e}

and let dRe be the boundary of Re oriented counterclockwise (see Fig. 4.2). Let x(*,0)

and A(i,0) be the functions defined by eqns. (4.11) and (4.13) with the specified

boundary conditions. We want to evaluate the integral §p^ Ardx. dRe consists offour

line segments :

• the segment 70 = {0 < t < T,B —0}. On this segment 6 is constant, so x and

A depend only on t. They are the trajectories described by the solutions of eqns.
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(4.11) and (4.13) when a = a0. The corresponding value of the integral is

/ ATdx= / \Tf0[x(tiao)]dt= f H0(x,\)dt
Jfn Jfa J'TQ

• the segment 7e = {0 < t < T,9 —e}. Reasoning as in the previous case, we

conclude that

/ ATdx= / He(x,\)dt
Jtt J-tt

• the segment 60 = {t = 0,0 < 9 < e}. On this segment x is constant, because

x(0,a) is supposed to be the same for every a. Therefore dx = 0, and the

corresponding value of the integral is zero.

• the segment 6t = {t =T, 0<9<e}. In this case we have A(T, a) = §£[x(T, a)]

so that

/ AT dx =/ |£dx = I"' d<f> =c(ac) - c(a0)
JSt JSt ^x J xq

Adding up all the contributions from the various segments, we obtain the following

equation

/ ATdx = [ \Tdx+ f \Tdx- [ \Tdx- [ \Tdx =
JdRt J-ro JsT Jft JSo

= [ H0dt +c(ae) - c(a0) - / Hedt (4.14)

Now we make use of Green's formula :

In our case the integrand is

XT(t, t) dx(«, 6) =XT(t, »)(|E dt +£ M) =
= XT(t, 9)[fe(x) dt-r^ dO] =H0(x, X) dt +\T-±dB
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so that we can write

But

J.(Arf*) = _A^^+Ar^(x) =
dV d9J dxd9 d9 K '

_ Tdfodx Tdfodx .T^
~ 0x~00+A ax"^ + A ~d7w~

and eqn. (4.15) becomes

/ ATdx= / \T?kdtdB- f ^'dtd9 (4.16)
/a*. Jr. 99 Jr. d9 K }

Combining eqns. (4.14) and (4.16) together and rearranging the terms we obtain the

following expression for c(ae) —c(ao) :

c(ae)-c(a0)= f Hedt- f H0dt- f ^±dtd9-r f \T^dtd9 (4.17)
Jfe Jf0 JRt Off jRe Off

This expression can be further simplified because

/ ^±dtd9= f (fe^-d9)dt= f (Hc-H0)dt= [ Hedt- f HQdt
Jrc off Jo Jo Off Jo J-fc J-f0

Therefore the first three terms on the right hand side of eqn. (4.17) cancel out, and

we obtain the following final equation :

c(ae) - c(a0) =Jr AT|| dtd9 (4.18)

Let 6a = ai —ao. The weak differential ofc at ao in the direction 6a is

6c(a0; to) =lim c(o,t) ~c(ao) (4.19)
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which in our case becomes

6c(a0; 6a) =Urn - f (T AT^|d9) dt (4.20)
e-+o e Jq Jo off

Because all the functions involved are of class C1, we can interchange the operations

of limit and integration, and we obtain the following expression for 6c :

6c(aQ;6a)= f \T^-(x,a0)6adt= I ^-6adt (4.21)
Jf0 ua Jf0 oa

It is immediate to recognize the similarity between eqn. (4.21) and the corresponding

expression for the variation of <f> in the classical optimal control problem, which is

6<f>= j XT^-[x(t),u(t)]6u(t)dt = I ^-6udt (4.22)
Jtt\ OU Jfn OU"to w" 'to

After deriving eqn. (4.21) in a rigorous way, it might be of some interest to give

a less correct but more intuitive explanation of why it is true. For this purpose, let

X(t,xo) be the general integral of eqn. (4.11), i.e. the value of the solution of eqn.

(4.11) with initial condition xo at time t. Recall that the Lagrange multipliers give the

derivative of c with respect to variations in the initial conditions :

_ dc(X[T-t,x(t)])
A{t) - dxjt)

Now let x(t) be the trajectory of eqn. (4.11) when a = ao; if we add a small perturba

tion £f to f we obtain a nearby trajectory, say x(t) + 6x(t). The corresponding change

in the value of c can be obtained by adding up all the contributions of each individual

perturbation 6x(t), as t varies from 0 to T :

sc =fT a<(x[T-t,x(t)j)fx(t) =fT XT{t)Sx(t) (4.23)
Jo dx{t) Jo
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But 6x(t) = 6xdt» 6fdt, and we get

6c =/ XT(t)6f[x(t)] dt =J *T|^(x, <*o)6a dt (4.24)

which is eqn. (4.21).

It is also interesting to point out that eqn. (4.21) can be regarded as the extension

to the time domain of a well-known expression for the sensitivity of node voltages of

an electrical circuit with respect to variations in the value of the components valid for

the stationary case. In fact it can be shown that if xo satisfies the equation

f(xo) = 0

and c(x) is a real-valued function, the variation 6c = c(xo + 6x) —c(xo) when f is

perturbed by a small amount <5f can be computed as

6c = XT6i(x0)

where A satisfies the equation

Tdi dc
~Xdx- = Sx"(X0)

4.5 Application to Circuit Equations

We now want to specialize the results of the previous section to the case of circuit

equations; therefore we return to the notation used at the beginning of this chapter.

The Hamiltonian becomes :

B(q,A,i,a) =i||vW - v<°>||2 +Af[-ft(v.) +B,i] +^,[-t(v„«) +Bai]
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where the dependence on q is implicit through the voltages vi,V2. The Lagrange

multipliers satisfy the differential equations

•T dH dHdvi . , „ ,A oCx

But & is by definition the inverse of the capacitance matrix C,(v), andwecanrewrite

equations (4.25) in the following form

CfAx-l^x =v*0,-v'<" (4-26)
C^-g^A, =-v<°» +vW (4.27)

In order to compute the derivative of the cost function with respect to variations in

the circuit elements, we have to distinguish between two cases : variations in memory-

less elements, and variations in elements with memory. Let a be a parameter appearing

in the branch equations of some memoryless element. H is a function of a through <2,

and eqn. (4.21) becomes

6c=-JT A^(v2,a)6a dt (4.28)

For example, suppose that the element which depends on a is a resistor or current

source (independent or controlled) connected between nodes i and j, and denote its

branch current by Iij (see Fig. 4.3). Then the equation relative to node i contains the

term +Iij, and the equation relative to node j contains the term —Iij , and those are
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Iij

Figure 4.3: Computation of sensitivities : memoryless element

the only equations affected by Iij. Therefore we have

and

dh

da

I o X

dig

dig

81

(4.29)

For instance, in the case of a linear resistor Iij = G(v,- —Vj). If the resistor conductance

or.,

is takenas parameter wehave -^j- = (vi—Vj), sothat the derivative of the cost function

with respect to variations in G is

6c =~ I (A,- - \j){vi - vj)6G
JfQ

dt (4.30)



CHAPTER 4. THEORETICAL FRAMEWORK 82

«U

Figure 4.4: Computation of sensitivities : capacitive element

The case of an element with memory is slightly more complex, because a affects

the equations relating the charges to the currents, i.e. we have q2 = q2(v2,a) and

v2 = V2(q2,a). By definition, the function q2[v2(q2> <*)><*] does not depend on a, so

by taking its total derivativewith respect to a we obtain the following equation

_ 0q2#V2 dq2
dv2 da da

8Hrgjj- can now be computed as follows :

•Tdq2 dv2 _ iTdq2
"A2 oT2 da ""2 da

(4.31)

dH _ aff av2 _ _yT £yi
da ~ dv2 da ~ 2 2da

^ (4.32)

To make a concrete example, let a be the capacitance Cof a linear capacitor connected

between nodes i and j (Fig. 4.4). Then the charge on the capacitor is g,j = C(vi - Vj),

and the charge equation (eqn. 3.1) at node i contains the term +gy, while the charge
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equation at node j contains the term —qij. Then

and

0q2
dC

1 0 ^

(Vi - Vj)

~(Vi - Vj)

*»Tfc =(Ai" ki){Vi" 0j)
Substituting this expression in eqn. (4.28) gives the following equation for 6c

6c = [ (\i-\j)(vi-Vj)6C
Jfo

dt

83

(4.33)



Chapter 5

Saddle Point Algorithm

In this chapter I explore the issues involved in solving

minmaxc(a,u) (5.1)
ae? ugw

from a numerical analysis point of view. It is apparent that this problem can be tackled

in many different ways; in order to justify our choice of a particular algorithm, I first

explore other possible alternatives, and I explain why they have to be discarded. Then

I present the chosen algorithm, and I give proofs for some of its numerical properties

which are relevant to our case. The actual computer implementation will be dealt with

in the next chapter.

84
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5.1 A Conceptual Algorithm

We now return to the problem of finding the gradient of d(S\, S2) (eqn. (4.5)). Because

d is defined to be the supremum of a family of functions, in general it will not have

a gradient in the usual meaning of the term. However it can be shown that it has a

so-called generalized gradient, which is a set of vectors forming a closed convex cone in

Rn. The generalized gradient of a function /is usually denoted by df. The following

theorem is relevant to our case :

Theorem 5.1 (Clarke) Let d : Rn -♦ R be defined as

d(x) = sup f(x,w)

where Wis a compact set and f :Rn x W -*• R. Suppose that f(x, w) and §£(x, w)

are continuous functions of(x,w). Define

M(x) = {w e W : f(x,w) = d(x)}

Then dd(x) is the closed convex cone generated by the vectors §£(x, w) as wranges in

the set M(x).

There are several algorithms that can be used to find local minima of a non-

differentiable function that has a generalized gradient [32]. Therefore we could try

to solve our macromodeling problem using the following

Algorithm

Step 0 : Choose an initial set of parameters a for the model. Si.
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Step 1 : Compute all inputs u 6 U that maximize the function c(a, u). Call the set

of such inputs M(a).

Step 2 : Compute dd as the closed convex cone generated by the set

{dc/da : u € M(a)}.

Step 3 : Compute a new set of parameters using an algorithm suitable for minimizing

a non-differentiable function. Repeat from Step 1 until a local minimum is found.

Although theoretically feasible, this algorithm cannot be implemented in practice,

mainly because Step 1 requires solving a global optimization problem. Moreover the

actual numerical implementation of an algorithm for non-differentiable optimization

presents several problems; for these reasons we decided to take a completely different

approach.

It can be noted immediately that any point that solves eqn. (5.1) is a saddle point

for the function c(a, u). This observation prompted the search for an algorithm that

could find saddle points of a differentiable function. It is true that very little can be

said a priori about a solution computed in this way; however finding global extrema of

a general function is almost an impossible task, so, from a practical point of view, this

is the best that we can do. On the other hand we can now work with functions which

are differentiable, and this makes a difference as far as the actual implementation is

concerned. In the following sections I show how several algorithms that are normally

used to find local minima of a function can be modified to find saddle points.

Another problemthat must be tacklednowis the fact that u belongs to X°°([0, T],Rm),

which is an infinite dimensional vector space. In the next chapter we will see that the
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set U of admissible inputs can be restricted to a point where it can be parametrized by

a finite dimensional set of parameters. Thus c becomes an ordinary function defined on

RrXa, where r is the dimension of a and s is the dimension of the parameter defining

u. To stress this point we will recur to a slight change in notation, and denote the

arguments of c by x and y. Throughout the rest of this chapter it will be assumed that

c(x, y) is twice continuously differentiable; we introduce the joint variable z = (x, y)T,

and we denote the Hessian matrix of c by

F(z) =
d<? d<?
Sx2" 3x3y P(z) R(z) \

(5.2)
df_
dz2

9c2 d<?
\ 5y3x Sy7 /

We willassumethat there exists aconstant m > 0 suchthat <P(z)wx, wx >> m||wi||2,

<Q(z)wa,wa> > m||w2||2 for all z,wi,w2. g(z) will denote the gradient of c

g(z) = (||J . Explicit dependence on z will be omitted whenever it is not essential.

We also introduce the matrix

/
I 0

0 -I

and we note that the following inequality is also satisfied

\

U =

V /

<w,UFw> = -<w,(UF + FU)w> =

(wf w2r) P 0
> m(||w1||2 + ||w2||2) = m||w||

v° *) Vw'/

In other words, the symmetric matrix |(UF + FU) is positive definite uniformly

in (x,y). An interesting result which will be needed later is that so is the matrix

|(UF_1 + F*"1!!). This can be readily seen from the identity

F_1(UF + FUJF"1 = (UF-1 + F-1U)
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and from the well-known fact that A > 0 implies CTAC > 0 for any nonsingular

matrix C.

5.2 A Modification of the Steepest Descent Algorithm

The classical steepest descent algorithm can be easily modified in the following way to

find a saddle point :

Modified Steepest Descent Algorithm

Data : zo,e,c.

Step 0 : Set k = 0.

Step 1 : Set g* = g(zfc),djb = -Ugfc.

Step 2 : Compute Zfc+i = Zfc + tfcd* such that the equation < Ug/.+i,dfc >= 0 is

satisfied.

Step 3 : If ||gfc+i|| < £ stop. Else set k = k + 1, and go to Step 1.

It is easy to prove the following

Theorem 5.2 Let {zjj be a sequence generated by the above algorithm, and suppose

that limjt_>oo z* = z. Define g = g(z). Then g = 0.

Proof. Because of the continuity of |§, we have lim*—«> gfc = g. We

also have < Ugfc+j,dfc >= 0 for all k. Therefore

0 = lim < Ugfc+i,dfc >= - lim < Ug^+^Ug* >=

-lim < gjk+i,gfc >= -| i.ll2
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D

This is probably the easiest algorithm one could think of to find a saddle point.

Unfortunately, unlike the original steepest descent algorithm, it does not always con

verge, not even locally, as can beseen if we take cto bec(x, y) = x2 +20xy -y2. It can

be easilyverified that if (a?o, yo) # (0,0) the algorithm will always generate a divergent

sequence. A different algorithm is therefore needed, and one that comes to mind im

mediately is Newton's method, because of its well-knownlocal convergence properties

[18]. Unfortunately computing the Hessian matrix is prohibitively expensive in our

case, and this rules out a straightforward implementation of Newton's method. On

the other hand the local convergence property should be retained, which suggests that

an appropriate algorithm would be one that builds an approximation to the Hessian

matrix using information obtained exclusively from the function and its first deriva

tives. There is a wide class of such algorithms, normally referred to as quasi-Newton

or variable metric algorithms.

5.3 A Variable Metric Algorithm

As mentioned in the previous section, the idea underlying all variable metric algorithms

is to build an approximation to the Hessian using information obtained esclusively

from the first derivatives of the function. A detailed analysis of those methods was

first published by Huang [33], and it can be found in most modern texts on nonlinear

optimization (e.g. [34]). Such a general analysis is beyond the scopeof this dissertation,

and we will confine ourselves to a much more limited presentation of one specific
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algorithm, namely the Davidon, Fletcher and Powell (or DFP) method. This will be

sufficient to illustrate the basic idea common to all variable metric algorithms. We

will substantiallyfollow the presentation ofthe DFP method given by Luenberger [35].

The algorithm is defined as follows:

Davidon-Fletcher-Powell Method

Data : Ho,zo,£,c.

Step 0 : Set k = 0.

Step 1 : Set gk = g(zfc), dk = -H^g*.

Step 2 : Compute Zfc+i = z* + tkdk such that the equation < g*+i)<U >= 0 is

satisfied.

Step 3 : If ||gjk+i|| < e stop. Else set

Pfc = Zfc+l - Zfc

qfc = gfc+i - Sfc

H H . Pfcpfc Hfcqfcq^H^
fc+1 k <Pfc,qjfe> <HJfcqfc,qfc>

k = fc + 1

and go to Step 1.

When applied to the minimization of a convex function this algorithm has many

attractive properties. We will mention those that are potentially interesting for the

problem at hand, without giving proofs.
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Theorem 5.3 Suppose that c=j<Fz-b,z>, with F > 0 and constant. Then

Zjb+i = F-1b and Hfc+i = F"1 for some k <n.

Theorem 5.4 LetY{z) be Lipschitz continuous. Suppose that Hq > 0 andthat F(z) >

0 for all z. Then Hfc > 0 for all k.

Theorem 5.5 LetF(z) be Lipschitz continuous. Suppose that there exists z € Rn such

that g(z) = 0 and that F(z) > 0 for all z. Let Ho be any symmetric positive definite

matrix. Then the sequence {zfc} converges superlinearly to z for every choice of the

initial point zo.

Theorem 5.3 says that the DFP method can find the minimum of a positive definite

quadratic function and the inverse of its Hessian matrix in a finite number of steps.

Theorem 5.5 asserts that the same algorithm will generate a sequence that converges

superlinearly to the minimum of a general convex function. This makes the DFP

method a very attractive candidate for our purposes, and indeed it has been used to

find saddle points of some special functions [36]. Unfortunately the method cannot

be proved to converge to a zero of the gradient if the Hessian is not positive definite,

and numerical experiments confirm this. A brief explanation of why this is the case

follows. Suppose that lim^oo z*. = z; under the not unreasonable assumption that

lim^oo Hfc = F(z)-1 = H, we have

0= lim <gfc+i,dfc>= - lim <gfc+i,Hjfcg*>= - lim <g,Hg>
k—t-oo k—*oo k—»oo

Because H is not positive definite, <g,Hg> does not imply that g = 0.

These results make it clear that the DFP algorithm as is cannot be used to find

stationary points of a function where the Hessian is indefinite. One possibility is to
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modify the line search in Step 2 so that gfc+i satisfies the equation < Ugfc+1, d* >= 0.

This implies that0= limjfe_oo <Ugfc+1,Hjkgfc>=<Ug,Hg>= \ <g,(UH+HU)g>

and now we can conclude that g = 0 because |(UH + HU) > 0. Unfortunately most

properties of the matrices H* rely on the equation < gjk+i, dk >= 0, so any changes in

the line search will most likely destroy the usefulness of the algorithm.

Let us summarize what we have learned from this seemingly endless string of neg

ative results :

• A straightforward modification on the steepest descent method does not work,

therefore we need to compute the Hessian matrix in some way.

• Computing the Hessian matrix directly is too expensive.

• Variable metric algorithms compute an approximation of the Hessian matrix from

the first derivatives, but the equation used in the line search does not guarantee

convergence if the function is not convex.

• The equation used in the line search can be changed to ensure that any limit

point will be stationary, but this destroys the other properties of the variable

metric algorithms.

• Therefore we need an algorithm that can compute an approximation to the Hes

sian without relying on any particular properties of the fine searches.

A few algorithms of this type exist, and among them we have chosen one that has

proven to have good numerical performance in our case.
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5.4 Broyden's Method

This algorithm was first proposed by Broyden [37] as an iterative method to solve

nonlinear systems of equations. Like variable metric algorithms it approximates the

inverse of the Hessian matrix by successive updates generated from the vectors p* =

Zfc+i —Zfc and q*. = gfc+i —gfc. Its starting point,which it shares with other methods, is

the following approximate equality, which can be obtained from the Taylor expansion

of c

g(zfc+i) - g(zjfc) = F(zjb+1)(zjb+i - zfc)

Suppose that we are trying to build a sequence {Bk} *nat approximates F(zjt). The

above equation suggests that the matrices B* should be required to satisfy the following

equation, commonly known as the secant relation:

qjk = Bjk+ip* (5.3)

It has been noted [38] that eqn. (5.3) is equivalent to the following one

/Zfc+1(BJk+iF-1(z)-I)dz =0 (5.4)
Jzk

In this form, the secant relation can be interpreted as an attempt to find the best

approximation to F on the segment [z*,Zfc+i]. Broyden's method is characterized by

two additional requirements : the difference between Bfc+i and B)t should be a rank-

one matrix, and we should have Bjt+ir = Bjtr for every vector r orthogonal to p*.

This translates into the following equations

Bfc+i = Bk + upl (5.5)

qjk = Bfcqjfc + u < pjfc, pfc > (5.6)
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which, solved for u yield the following formula, commonly known as Broyden's update

ti - -r _l (qfc ~ BfcPfc)Pfc (~ 7xBfc+i = Bk + — (5.7)
< PfciP* >

It is important to point out that eqn. (5.7) does not rely on any particular assumptions

about z'fc or z&+i; this leaves us complete freedom of choice for the line search algorithm.

Because we want an approximation to F"1 instead ofF, we let Hfc = Bj^"1 and we

make use of the following result, known as the Sherman-Morrison formula [39] :

Proposition 5.1 If the matrix A is nonsingular and < v,A"*1u >^ —1, the matrix

A + uvT is also nonsingular, and its inverse is given by

v J l+<v,A-1u>

Applying this formula to eqn. (5.7) leads to the following updating relation for the

matrices H* :

H», =IU-^-'»***». (5-8)< Pfc,Hfcqjfe >

which is the one actually used in our computer implementation of the algorithm. The

following result is worth mentioning

Theorem 5.6 ([38]) Let z be a stationary point for c, and suppose that F(z) is non-

singular and that F(z) is Lipschitzcontinuous in a neighborhood ofz. Then there exist

positive constants e, 6 such that the sequence

Zfc+i = Zfc - Hjkg(zjb)

converges to z whenever ||z0 - z|| < e,||Ho - F_1(z)|| < 6 and the matrices Hfc are

updated according to eqn. (5.8).
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Incorporating Broyden's updates in the modified version of the steepest descent

algorithm produces the following algorithm to find a saddle point of c.

Saddle Point Algorithm

Data : Ho = U,zo,e,c.

Step 0 : Set fc = 0.

Step 1 : Set g* = g(zfc),dfc = -Hfcgfc.

Step 2 : Compute z*+i = z* + tkdk such that the equation < Ugj.+i,dfc >= 0 is

satisfied.

Step 3 : If ||gfc+i|| < £ stop. Else set

P& = Zfc+l - Zfc

<lfc = gfc+i - Sib

Hfc i = Hfc - (Hfcqfc ~Pfc)PfeHfe
fc+1 k < Pfc, Hjtqjb >

fc = fc + 1

and go to Step 1.

The behavior of the algorithm can be summarized in the following

Theorem 5.7 Let{zk} be a sequence generated by the previous algorithm, and suppose

that limfc-.oo Zfc = z and lim*.^ Hfc = F-1(z) . Then z is a stationary point for c.

Proof. Because limfc—ooHfc = F_1(z), the matrices j(UHjt + HfcU)

will be positive definite for large enough fc. The rest of the proof follows

the same argument used at the end of the previous section. D
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From a practical point of view, it is not possible to be sure that the matrices

|(UHfc+HfcU) remain positive definite. A tentative check can bemade by monitoring

the sign of the inner product < Pfc,Hfcqfc >=< pfc,HfcF(zfc)pfc >, which should be

positive at least for large fc, because Hfc is supposed to approximate F_1(zfc). In

the computer implementation, the algorithmis restarted whenever that inner product

becomes negative. As mentioned previously, the numericalperformanceof this method

has proven to be very satisfactory, even if at the moment no theoretical results about

its global convergence properties are available.



Chapter 6

Computer Implementation

In this chapter I explain how I implemented the algorithms presented in the previous

chapters in a computer program that can be used to find macromodels for different

types of functional blocks occurring in the design of integrated circuits. First I give

some details of certain features of the programthat are relevant from a computational

point of view, such as parametrization of the input functions. Then I present a few

circuits and the corresponding macromodels computed by the program, and I discuss

the results so obtained.

6.1 Input Parametrization

In the previous chapter I developed an algorithm that can be used to find a saddle

point of the cost function. This means that at the same time we can try to maximize

the cost with respect to the input and minimize it with respect to the macromodel.

97
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Figure 6.1: Input parametrization according to switching points

In order to apply this algorithm to ourcase, the inputs must be parametrized in some

way. This can be done following an idea of Gonzalez and Rofman [40].

We havealready seenthat onlyinputs that are piecewise constants and that oscillate

between their upper and lower bounds have to be considered. Therefore the only

unknowns that remain are the number and the positions of the switching times for

each component Ui(t) of the input vector u. Arbitrarily fix the maximum number of

switching points that each component can have; this is a parameter (let us call it N)

that the user can set in the input deck describing the circuit. For each input «,- we

denote its switching points by (i,-,i,.. .,tifN) and its bound by Mi > 0 (see Fig. 6.1);

for notational convenience we define Ui0 = 0 and *,-,n+i = T. Obviously we must have

U,o < <i,i < •••< U,N+i' For every t G[0,T] the value of «,-(t) is computed as follows

: let jhe that index such that titj < t < tiJ+1; then t*,-(t) = (-l)jMi. This completely

determines the input, which can be therefore parametrized by a vector (ti,i,... ,tm,iv)
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containing mN components, where m is the number of inputs.

After finding a parametrization for the input, we have to compute the gradient

of the cost with respect to parameter variations; this can be done in the following

way. Suppose that ^7 has to be computed; in order to simplify notation, drop the

index i and denote the switching point simply by tj. The input u (actually only its

i-th component u,-) depends both on the time variable t and on the parameter tj; to

distinguish clearly between the two, we will use the notation u(t; tj) (or u,(t; tj)). In

this particular case, eqn. (4.21) becomes

I = Hm fT J[v(r), A(r), n(r; tj +At)] - iT[v(r), A(r), u(r; tj)] ^
tj At—0./0 At

The input w,- will be connected to node n\ in the original system and to node n2 in

the macromodel; let Ani and A„2 be the corresponding Lagrange multipliers. Then we

have

H[v(T),\(T),u(r;tj + At)] - J[v(r),A(r),a(T;ti)] =

= AT(f[v(r)] + u(r;*,- + At)) - XT(i[v(r)] + u(r;*,-)) =

= AT(u(r;ti+ At)-u(r;ti)) =

= (Ani + *m)(ui(T\tj + At) - Ui(r;tj))

But Ui(r;tj + At) —Ui(r;tj) is equal to zero, unless r G [tj + At,tj], in which case it

is equal to (—iy+1Mi. Therefore eqn. (6.1) becomes

dr 1 ftj+^tg- =(-l)'+1Jl/.Alimo —yt (Ani(r) +A„2(r))dr =(-l)>+1Mi(A„l(ti) +A^(«,.))

(6.2)

This gives us the expression for Jjr- that we were looking for.
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Figure 6.2: RC ladder model for a neuron

6.2 Experimental Results

6.2.1 Distributed RC Line

In the study of biological neurons [41], one direction of investigation is the develop

ment of mathematical models suitable for simulating the behavior of the neuron on a

digital computer [42]. One of the components of the neuron, the dendrite, is usually

represented by a distributed RC line. Because distributed elements are difficult to sim

ulate using standard techniques, the RC line itself is approximated with an RC ladder

containing N identical cells (see Fig. 6.2). The element values are determined by the

equations G\ = NGa,G2 = Gi/N,C\ = C/N, where Ga is the axial conductance of

the distributed line, Gi is the longitudinal conductance and C is the total capacitance.

Obviously the larger N is, the closer the ladder approximates the behavior of a dis

tributed line. However it is conceivable that a ladder whose cells are allowed to be

different could achieve the same degree of accuracy as one containing a larger number

of cells which are all identical. To test this hypothesis as well as the performance of

the macromodeling algorithm we took an RC ladder as in Fig. 6.2 with N = 40. The
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Figure 6.3: Reduced RC ladder model for a neuron

values of Ga, G\ and Care 4.71e-2 mho, 1.13e-2 mho and .452 farad respectively, giving

values for Ci,C?2 an(i ^of 1.88 mho, 2.83e-4 mho and 1.13e-2 farad. We modeled this

ladder with a smaller one containing only 3 cells (Fig. 6.3). The initial element values

were computed using the above formulas with N = 3, giving an initial model with 3

identical cells, but all the element values were allowed to vary, for a total of 9 model

parameters to be optimized. Both end nodes were inputs as well as outputs, with node

1 in Fig. 6.2 corresponding to node ml in Fig. 6.3 and node N + 1 corresponding to

node m4- Optimizing this model took approximately 670 seconds of CPU time on

a Microvax II running Ultrix1 V2.0. The element values of the optimized model are

reported in Table 6.1.

The accuracy of the optimized model can be judged by looking at the following

graphs. Fig. 6.4 shows the output voltages at nodes 1 and ml before optimization; the

graph of their difference is shown in Fig. 6.5. The output voltages at nodes 41 and m4

and their difference are plotted in Figs. 6.6 and 6.7 respectively. The corresponding

inputs are square current waveforms chosen arbitrarily as an initial guess to the worst-

1Ultrix is a trademark of Digital Equipment Corporation.
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Figure 6.4: Voltages at nodes 1 and ml before optimization
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Figure 6.5: Difference between voltages at nodes 1 and ml before optimization
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Figure 6.6: Voltages at nodes 41 and m4 before optimization



CHAPTER 6. COMPUTER IMPLEMENTATION 105

v(2)-v(43)

0.1

-0.3

-0.5

unknovnl

Figure 6.7: Difference between voltages at nodes 41 and m4 before optimization
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G12 1.81e-l mho

G2o 3.82e-3 mho

C2 1.62e-2 F

C?23 6.15e-l mho

G30 3.78e-3 mho

c3 1.59e-l F

G34 7.19e-2 mho

&40 3.69e-3 mho

c4 1.33e-l F

Table 6.1: Element values for the optimized neuron model

106

case inputs. After optimization the waveforms at the output nodes of the two ladders

are indistinguishable, and therefore they are not plotted. An idea of the improvement

in the approximation is given by the change in the cost function, whose value decreased

from 10.995 (before optimization) to 0.245 (after optimization). The improvement is

shown graphically in Figs. 6.8 and 6.9, which show the voltage differences at the end

nodes after optimization. The input currents are those computed by the program as

being the worst-case input (of course we are not guaranteed that this is true globally,

but only with respect to neighboring inputs). It can be seen that while the maximum

values of the differences remain substantially the same, the area decreases substantially,

corresponding to the fact that we are optimizing the L2 norm.

The performance of the optimized model as a part of a complete neural circuit is

displayed in Fig. 6.10, which shows the voltage waveforms at one end of the neuron

modeled in three different ways : with an RC ladder of 40 identical cells (40ident),

with the optimized 3-cell model computed above (3-cell model) and with RC ladder

of 3 identical cells (3ident). The two spikes are blown up in Figs. 6.11 and 6.12.

The improvement is noticeable, especially as far the amplitude of the two spikes is
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Figure 6.8: Difference between voltages at nodes 1 and ml after optimization
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Figure 6.9: Difference between voltages at nodes 41 and m4 after optimization
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Figure 6.10: Voltages corresponding to three different neuron models
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concerned : apart from a small amount of time lead, the waveform corresponding to the

optimized model is an almost identical copy of the waveform generated by the 40-cell

ladder. The difference in time is explained by the fact the the spikes are generated by

two highly nonlinear elements placed at both ends of the neuron : when the voltage at

one end of the neuron reaches a certain threshold the spike is triggered. Because this

threshold is reached by the 3-cell model before the 40-cell ladder, the corresponding

spikes occur at different times. It can be argued that including the nonlinear elements

when performing the model optimization could result in improved accuracy.

6.3 Conclusions

In this thesis, a new approach to the macromodeling problem was introduced. A

review of the existing literature on this topic showed that the methods proposed by

other authors suffer from limitations that make them unsuitable for general purpose

circuit simulation. The algorithm presented in this thesis is based exclusively on an

input-output representation of the circuit to be modeled. Because no reliance on any

particular properties of the circuit is assumed, the algorithm can be used to model a

very wide class of circuits.

From a mathematical point of view, this approach to the macromodeling problem

is equivalent to solving a min-max problem in an abstract space whose elements are

dynamical systems. The distance between two systems in this space is denned in

terms of the maximum difference of their outputs as the input ranges over a set of

admissible waveforms. In one of the main results of this thesis, it is shown that only
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a relatively small class of inputs need be considered: it is this result that makes the

approach pursued here attractive from a practical point of view as well as theoretically

interesting.

The practical implementation of the algorithm requires the computation of the

derivatives of the distance functional. This the same problem as the computation

of network sensitivities in the time domain, discussed for instance in [29] and [16].

However in this thesis the relevant formulas are derived following a different approach,

which is based on an extension of the Hamiltonian formulation of a classical optimal

control problem. In this way variations in the input and in the model parameters can

be dealt with in a unified setting.

The method used for the numerical solution of the min-max problem is a modi

fication of an algorithm originally developed for the solution of nonlinear systems of

algebraic equations. This particular choice was dictated by the need to satisfy con

flicting requirements about speed and computational cost, while at the same time

guaranteeing convergence to a stationary points. It was shown that variable metric al

gorithms, which are very popular for minimizing functions, rely heavily on the positive

definiteness of the Hessian and cannot be modified easily to solve min-max problem.

Broyden's method, on the other hand, does not depend on any particular properties

either of the Hessian or of the line search, and is therefore much more flexible. It

was shown that the modified version of Broyden's method presented here generates

sequences whose limit points are stationary points of the cost function.

The algorithm was implemented in a computer program that generates models of

electrical networks. Both the input and the output are circuit descriptions in ordinary
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SPICE format, so that the models can be read by any circuit simulator using the

same interface. Numerical tests were performed on a 40-cell RC ladder representing

the dendrite of a neuron. The results obtained show that a 3-cell ladder generated by

the program can attain almost the same accuracy. It is conceivable that even greater

accuracy could be achieved if two highly nonlinear elements present at both ends ofthe

dendrite were included in the simulations performed during the modeling process. The

CPU time required was modest and certainly worth the savings that can be obtained

using the smaller model in just a few simulations.

From a theoretical point of view, there are several points that are worth investigat

ing further into. In particular, it would be helpful to have more detailed information

about the convergence properties, both local and global, of the algorithms for the

location of saddle points of functions. Another interesting question concerns the in

tegration of the differential equations after a change in the parameters describing the

model : the algorithm, as currently implemented, does not use any information that

could be gained from the waveforms corresponding to the previous values of the model

parameters. This approachis clearly simple-minded, because it is conceivable that the

old waveforms could be used as a starting point for the computation of the new ones,

especially in the final phases of the modeling process, when the changes in the model

parameters are likely to be very small.

From a practical point of view, the algorithm needs to be tested on nonlinear

circuits, both analog and digital, in order to assess its effectiveness as a generalpurpose

tool to generate models for circuit simulation. This requires the implementation of

nonlinear devices such as MOSFETS. Another useful feature would be the capability
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to sweep one or more parameters in the system to be modeled, and to generate a

corresponding table of models. This would make it particularly easy to generate models

for whole classes of circuits having the same topology but different electrical parameters

(e.g. NMOS inverters with different values of the pull-up/pull-down ratios). Once

generated, the models could be stored in a cell library and thus be ready for use

whenever a simulation of a circuit containing that particular cell is required.
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