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Abstract

It is well known that optimal logic synthesis can ensure fully testable combinational logic

designs. In this paper, we show that optimal sequential logic synthesis can produce irredundant,

fully testable finite state machines. Test generation algorithms can be used to remove all the

redundancies in sequential machines resulting in a fully testable design. However, this method

may require exorbitant amounts of CPU time. The optimal synthesis procedure presented in

this paper represents a more efficient approach to achieve 100% testability.

Synthesizing a sequential circuit from a State Transition Graph description involves the

steps of state minimization, state assignment and logic optimization. Previous approaches to

producing fully and easily testable sequential circuits have involved the use of extra logic and

constraints on state assignment and logic optimization. In this paper, we show that 100%

testability can be ensured without the addition of extra logic and without constraints on the

state assignment and logic optimization. Unlike previous synthesis approaches to ensuring fully

testable machines, there is no area/performance penalty associated with this approach. This

technique can be used in conjunction with previous approaches to ensure that the synthesized

machine is easily testable.

Given a State Transition Graph specification, a logic-level automaton that is fully testable

for all single stuck-at faults in the combinational logic without access to the memory elements

is synthesized. This procedure represents an alternative to a Scan Design methodology without

the usual area and performance penalty associated with the latter method.

'Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technologj', Cambridge



1 Introduction

Test generation for sequential circuits has long been recognized as a difficult task [3]. A popular

approach to solving this problem is to make all the memory elements controllable and observable, i.e.

Complete Scan Design [7] [l]. Scan Design approaches transform the sequential testing problem

into one of combinational test generation which is considerably less difficult. They also remove

all sequential redundancies in a circuit, since direct access is provided to the memory elements.

However, there are situations where the cost in terms of area and performance of Complete Scan

Design is unaffordable. Also, the testing time associated with Scan Design is high because values

have to be sequentially scanned into and out of the memory elements one clock cycle at a time.

It is well known that optimal logic synthesis can ensure fully testable combinational logic de

signs. In this paper, we show that optimal sequential logic synthesis can produce fully testable

non-scan finite state machines. Test generation algorithms can be used to remove all the redun

dancies in sequential machines resulting in fully testable designs. However, in general, this method

requires exorbitant amounts of CPU time. The optimal synthesis procedure presented in this paper

represents a more efficient approach to achieve 100% testability.

Synthesizing a sequential circuit from a State Transition Graph description involves the steps

of state minimization, state assignment and logic optimization. Previous approaches (e.g. ; [6])

to producing fully and easily testable sequential circuits have entailed the use of extra logic and

constraints on state assignment and logic optimization. In this paper, we show that 100% testability

can be ensured without the addition of extra logic and without constraints on the state assignment

and logic optimization. This technique can be used in conjunction with previous approaches to

ensure that the synthesized machine is easily testable.

The finite automaton is represented by a State Transition Graph, truth table or by an in

terconnection of gates and flip-flops. The synthesized/re-synthesized logic-level implementation is

guaranteed to be fully testable for all single stuck-at faults in the combinational logic without access

to the memory elements. This procedure represents an alternative to a Scan Design methodology

without the usual area and performance penalty associated with the latter method.

Basic definitions and terminologies used are given in Section 2. Various types of redundant

faults in sequential circuits are described in Section 3. In Section 4, we outline an optimal synthesis

procedure of state minimization, state assignment and logic optimization that produces a highly

testable Moore or Mealy finite state machine beginning from a State Transition Graph description.



Any existing sequentially redundant faults in this machine are implicitly removed using extended

don't care sets in repeated combinational logic minimization. These don't care sets are derived using

techniques that check for state equivalence. We give theorems which prove the correctness of these

procedures. In Section 5, we discuss the effects of redundancy removal on the state encoding of the

machine. In Section 6, we describe how this approach can be used in conjunction with a previously

proposed synthesis technique to ensure easily testable machines. In this case, test sequences which

detect all single stuck-at faults in the combinational logic can be derived using combinational test

generation techniques alone. Preliminary results, which indicate that these procedures are viable

for large circuits, are given in Section 7.

2 Preliminaries

A variable is a symbol representing a single coordinate of the Boolean space (e.g. a). A literal

is a variable or its negation (e.g. o or a). A cube is a set C of literals such that x E C implies

x i C (e.g., {a,6,c} is a cube, and {a. a} is not a cube). A cube represents the conjunction of its

literals. The trivial cubes, written 0 and 1, represent the Boolean functions 0 and 1 respectively.

An expression is a set / of cubes. For example, {{a}. {&,£}} is an expression consisting of the

two cubes {a} and {6,c}. An:expression represents the disjunction of its cubes.

A cube may also be written as a bit vector on a set of variables with each bit position representing

a distinct variable. The values taken by each bit can be 1, 0 or 2 (don't care), signifying the true

form, negated form and non-existence respectively of the. variable corresponding to that position.

A -minterm is.a cube with only 0 and 1 entries.

A finite state machine is represented by its State Transition Graph (STG), G(V,E, W(E))

whereV is the set of vertices correspondingto the set of states 5, where ||5|| = Na is the cardinality

ofthe set of states of the FSM, an edge joins Vi to vj if there Is a primary input that causes the

FSM to evolve from state i>,- to state vy, and W(E) is a set of labels attached to each edge, each

label carrying the information of the value of the input that caused that transition and the values

of the primary outputs corresponding to that transition. In general, the W(E) labels are Boolean

expressions. The number of inputs and outputs are denoted iV,- and N0 respectively. The input

combination and present state corresponding to an edge or set of edges is (i, s), where i and $ are

cubes. The fanin of a state, q is a set of edges and is denoted fanin(q). The fanout of a state q

is denoted fanout(q). The output and the fanout state of an edge (i, s) E E are o((i, s)) and



n((z, s)) E V respectively.

Given JVt- inputs to a machine, 2^' edges with minterm input labels fan out from each state.

A STG where the next state and output labels for every possible transition from every state are

defined corresponds to a completely specified machine. An incompletely specified machine

is one where at least one transition edge from some state is not specified.

A starting or initial state is assumed to exist for a machine, also called the reset state. Given

a logic-level finite state machine with Nf, latches, 2^6 possible states exist in the machine. A state

which can be reached from the reset state via some input vector sequence is called a valid state in

the STG. The input vector sequence is called the justification sequence for that state. A state

for which no justification sequence exists is called an invalid state. Given a fault F, the State

Transition Graph of the machine with the fault is denoted GF.

A State Transition Graph Gi is said to be isomorphic to another State Transition Graph G2

if and only if they are identical except for a renaming of states.

The fault model assumed is single stuck-at. A finite state machine is assumed to be imple

mented by combinational logic and feedback registers. Tests are generated for stuck-at faults in

the combinational logic part.

• A primitive gate in a network is prime if none of its inputs can be removed without causing

the resulting circuit to be functionally different. A gate is irredundant if its removal causes the

resulting circuit to be functionally different. A gate-level circuit is said to be prime if all the gates

are prime and irredundant if all the gates are irredundant. It can be shown that a gate-level

circuit is prime and irredundant if and only if it is 100% testable for all single stuck-at faults.

We differentiate between two kinds of redundancies in a sequential circuit. If the effect of

the fault cannot be observed at the primary outputs or the next state lines, beginning from any

state, with any input vector, the fault is deemed combinationally redundant. A sequentially

redundant fault is a fault that cannot be detected by any input sequence and is not combinationally

redundant.

To detect a fault in a sequential machine, the machine has to be placed in a state which can

then excite and propagate the effect of the fault to the primary outputs. The first step of reaching

the state in question is called state justification. The second step is called fault excitation-

and-propagation.

An edge in a State Transition Graph of a machine is said to be corrupted by a fault if either

the fanout state or output label of this edge is changed because of the existence of the fault. A



path in a State Transition Graph is said to be corrupted if at least one edge in the path has been

corrupted.

3 Origin of Redundant Faults in Sequential Circuits

There are two classes of redundant faults in a sequential circuit, namely, combinationally and se

quentially redundant faults. Combinationally redundant faults (CRFs) are due to the presence

of lines/wires in the logic circuit that do not contribute to the primary output or the next state

functions. Replacement of these lines by constants will not change the functionality of the combi

national logic in the sequential circuit. CRFs cannot be detected even if all the memory elements

of the sequential circuit are made scannable. Sequentially redundant faults (SRFs), on the other

hand, are related to the temporal characteristics of the sequential circuit. Although SRFs alter the

next state functions and hence the State Transition Graph (STG), or the State Transition Table

(STT), representing the sequential circuit, they cannot be detected without making some of the

latches scannable.

A stuck-at fault is sequentially redundant if

1. It causes only interchange and/or creation of equivalent states in the STG of the finite state

machine (type 1 SRF) or

2. It is not combinationally redundant but does not corrupt any fanout edge of a valid state

that is reachable from the reset state (type 2 SRF) or .

3. It transforms the original machine isomorphically, i.e. the faulty machine is equivalent to the

good machine but with a different encoding (type 3 SRF). (There exists an isomorphism

between the original and the faulty machine.)

While the CRF, type 1 and type 2 SRF redundant faults are common occurrences during design

process due to improper utilization of don't cares, the type 3 SRF is relatively unlikely to exist.

We will use an example to illustrate the existence of sequentially redundant faults.

The State Transition Table of a finite state machine is shown in Figure 1. The machine has 5

states and the states 010 and 110 are equivalent. The logic implementation of the combinational

part of the machine is shownin Figure 2. The fault wl stuck-at-0 (s-a-0) changes the original STT

to the one shown in Figure 3. The third field (next state) of the second row is changed from 110

to 010 by the fault. Since 010 and 110 are equivalent states in the original STT, the fault wl s-a-0
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Figure 1: Original Finite State Machine
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Figure 3: Faulty FSM with wl s-a-0
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0 110 010 1

1 110 000 0

0 000 001 0

1 000 110 1

0 001 000 0

1 001 100 1

0 111 010 1

1 111 000 0

Figure 4: Faulty FSM with w2 s-a-1



0 100 010 1

1 100 110 0

0 010 110 1

1 010 001 0

0 110 010 1

1 110 001 0

0 001 000 0

1 001 110 1

0 000 001 0

1 000 100 1

Figure 5: Faulty FSM with a type 3 SRF

only causes an interchange of two equivalent states of the machine and is therefore sequentially

redundant. The fault w2 s-a-1 changes the machine to the one shown in Figure 4. The fault creates

an extra state 111 and changes the third field of the third row of the original STT from 110 to 111.

However, it can be proved that 111 is equivalent to 010 and 110 and therefore the fault w2 is also

sequentially redundant.

If the detection of a fault in the combinational logic requires the machine to be brought to an

invalid state (e.g. 101), then the fault is a SRF of type 2. A type 3 SRF may change the original

machine to the one shown in Figure 5. Note that the faulty machine represents an equivalent

machine with a different encoding. The encodings for the states 000 and 001 in the original machine

have been swapped. An isomorphism exists between the original and the faulty machine.

Theorem 3.1 : A redundant fault in a finite state machine is either a CRF or type 1 or type 2 or

type 3 SRF.

Proof (by contradiction): Assume a fault, F, is a redundant fault but not a CRF or type 1 SRF

or type 2 SRF or type 3 SRF. Since F is not a CRF or a type 2 SRF, there must be an input

sequence, beginning from the reset state, that will bring the machine to a state that can excite the

fault and propagate its effect at least to some of the next state lines. Since F is not a type 1 or

type 3 SRF, the fault effect on the next state lines will not cause an interchange or creation of
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Figure 6: General Sequential Machine Model

equivalent states or an isomorphic mapping of states. This means the good state and the faulty

state can be differentiated by a propagation sequence, i.e. the fault effect is propagated to the

primary outputs, which means that the fault is testable. D

To synthesize a fully testable finite state machine, we must ensure that none of those redundant

faults described above exist in the synthesized machine. Steps in our synthesis procedure are

designed to achieve this goal.

4 Irredundant Fully Testable Sequential Machines

A general model for a Mealy finite state machine is shown in Figure 6. It is realized by a com

binational logic block, which implements the output and next state logic functions, and feedback

registers. The Moore machine can be viewed as a special case of a Mealy machine, where the

outputs depend only on the present state of the machine.

We first describe the optimal synthesis procedure in Section 4.1. In Section 4.2, we prove that

the resulting machine has no CRFs, type 2 or type 3 SRFs. Experimental results indicate that

the machine has very few redundancies. In Section 4.3, we present a modified synthesis procedure

using extended don't care sets in repeated combinational logic minimization which ensures that

type 1 SRFs do not exist in the synthesized machine. The machine can be thus made fully

testable. In Section 4.4, we briefly discuss how finite automata represented at the truth table or at

the logic-level can be made fully testable.



4.1 The Synthesis Procedure

The procedure consists of the steps of state minimization, state assignment and combinational logic

optimization. These steps are described in the sequel.

1. State Minimization: Given an original, possibly incompletely specified, State Transition

Graph specification G° we obtain a state minimum representation, GM, using algorithms

similar to those proposed in [13]. GM has Na valid states and satisfies the property that

no two states are equivalent. State minimization for completely specified State Transition

Graphs can be accomplished in 0(Nlog(N)) time where Ar is the number of states in the

machine, but is NP-complete for incompletely specified machines.

2. State Assignment: We encode the states in GM, namely Q. The number of encoding bits

Nb can be arbitrarily large (Nb > log2(\\Q\\)). State assignment algorithms like those in [8]

and [o] can be used, which find a state assignment that heuristically minimizes the area of

the combinational network after optimization.

3. Combinational Logic Optimization: Given the encoded machine, which is now a com

binational logic specification, we synthesize a prime and irredundant combinational logic

network which implements both the next state logic and output logic functions. The tran

sitions from the unused state codes, are used as don't cares during the minimization. The

number of inputs to the network will be iVt- + Nb and the number of outputs will be N0 + Nb.

Prime and irredundant two-level networks can be produced using two-level logic minimizers

like ESPRESSO [2]. Prime and irredundant multi-level networks can be synthesized using

techniques like those in [9].

We will have Nb latches in the synthesized sequential machine (denoted SM) and 2^ valid and

invalid states in the completely specified State Transition Graph (denoted G).

4.2 Correctness of Procedure

We can prove that the sequential machine synthesized by the procedure of the previous section is

irredundant for all CRFs, type 2 and type 3 SRFs.

The following theorem follows from the definition of state minimality. It is given in [11].

Theorem 4.1 : Given a state minimized (reduced) machine M with Ns states, no machine with

fewer states can realize the same terminal behavior. Also, any machine with the same number of
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states that realizes the same behavior has to be M or isomorphic to M.

We can show that stuck-at faults cannot produce a faulty State Transition Graph that is iso

morphic to the true State Transition Graph if the combinational logic implementing the next state

and output logic functions is prime and irredundant. Isomorphic faulty and true State Transition

Graphs imply that the fault has no other effect than changing the state encoding of the machine.

Theorem 4.2 : If the combinational circuit implementing the next state and output logic functions

is prime and irredundant, then any fault F in the circuit cannot produce a GF that is isomorphic

toG.

Proof: For GF to be isomorphic to G. no two edges e\, e2 EG should be merged in GF. Consider

a prime and irredundant circuit, C\, implementing G. The circuit is levelized from the primary

outputs to the primary inputs. Gates generating primary outputs are assigned level 0 and a gate

that drives gates with levels l\, l-i .., ln has a level equal to MIN(li) + 1. The gates at level j

a-re 9j\-> 9j2> -djNj- The outputs of these gates constitute a set of Nj variables v(j). Without

loss of generality, consider a fault F at the output of gj\. We have vectors (v\, t^), corresponding

to values of the v(j), that differ in bit 1 such that v\ detects F and V2 does not. Obviously, V2

produces the same output as the faulty output of v\. Since the circuit is irredundant, primary

input combinations (ti, 12) have to exist that produce a (v\, V2) satisfying this property.

Next, consider a fault, F, at the input of gj\. This fault has to be propagated to the primary

outputs via the output of gj\. Since the circuit is prime, we have an input vector, t*i, that detects

the fault and produces vector v\ corresponding to the variables v(j). Also, there has to exist a V2,

produced by t2, which differs from v\ in bit 1 for some vi that detects F. Obviously, i2 produces

the same output as the faulty output of i\.

Thus, for any fault in the circuit, we have a input vector pair (ii, 2*2) such that ii detects the

fault, £2 does not and the output of t'2 is equal to the faulty output of ii (and different from the

true output of ii). (ti, 22) correspond to twoedges (ei, €2) E G. These edges have merged in GF.

This means GF and G are not isomorphic. •

Theorem 4.3 ; If GM contains 2Nb states where Nb is the number of latches in SM. SM is fully

testable.

Proof: No fault in the machine can result in an increase in the number of states, since the true

machine has the maximum possible number of states, namely 2^6. Since GM is reduced, we

11



know that no machine with fewer than 2^ states can realize the behavior of GM. All faults

are combinationally irredundant, since the combinational logic is prime and irredundant. For a

combinationally irredundant fault F to be sequentially redundant, the faulty machine GF has to

be isomorphic to the true machine G. By Theorem 4.2, this is not possible. Therefore, SM is fully

testable. •

The above theorem is quite a strong result. Given a State Transition Graph GM, if extra states

can be added to GM such that the resulting graph GM' is reduced and has 2n states, then the

synthesized machine SM is guaranteed to befully testable. Ofcourse, adding the extra states and

edges to GM constitutes an area overhead. If GM has less than 2Nb states, the unused state codes

can be used as don't care states to minimize the combinational specification.

Lemma 4.4 : An invalid state in the State Transition Graph is never required to detect a fault in

SM.

Proof: All unused state codes are used as don't cares during logic minimization. Invalid states

can only correspond to some unused state code. Since the combinational network is prime and

irredundant, there always exists a valid state that detects any fault that the invalid state detects.

D

We now use the preceding results to prove the partial irredundancy theorem for machines whose

GM has 'Ns < 2N* states.

Theorem 4.5 ; The sequential machine SM produced by the synthesis procedure may contain only

type 1 SRFs.

Proof: Follows directly from Theorem 3.1, Theorem 4.2 and Lemma 4.4. D

We can also show that a subset of the faults in the machine are alwavs testable.

Theorem 4.6 ; All primary input (PI) and primary output (PO) line stuck-at faults are testable

in S . Further, if SM has been obtained using a minimum bit encoding on GM, all present state

(PS) and next state (NS) line stuck at faults are also testable.

Proof: A primary input i exists in GM, if and only if thereexists a pair ofedges ei and 62 that differ

in bit i alone which go to different next states in GM or assert different outputs. A primary input

stuck-at fault, F, cannot increase the number of states, i.e. ||C?F|| < ||<?||. GF is not isomorphic

to G since ei and e2 have merged in GF. Therefore, F is testable.

12



A primary output o exists in GM, if and only if there exists a pair of edges ei and e2 which

assert both values of the output, 0/1. When the machine makes the transition corresponding to the

edge which asserts the value of the output different from the stuck value, the fault will be detected.

A stuck-at fault on a present state line results in a faulty machine with a maximum of 2n_1

states, where n is the number of latches in the machine. Since SM has been obtained via a minimum

bit encoding, the number of states in the reduced machine GM is N3 > 2n~1. This means that GF

cannot realize the behavior of SM (GM).

The argument that the next state line faults are testable is similar to the argument that the

present state line faults are testable. •

4.3 Eliminating Redundancies Via Extended Don't Care Sets

In this section, we show how the testability of the synthesized machine SM can be increased by

removing possible type 1 SRFs through succeeding logic minimization steps, without explicitly

identifying these redundancies. Redundancies are identified and removed implicitly via the use of

extended don't care sets.

A simple type 1 SRF was illustrated in Section 3. We have a situation where an invalid state

q has identical fanout to some valid state v\. An edge from V2 to vi is corrupted to go to q. F

only corrupts one edge in the State Transition Graph and propagates only one time-frame. In

the general case, a type 1 SRF can propagate multiple time-frames, when the invalid state q is

equivalent to the true valid state i>i, but does not have identical fanout.

These redundancies are likely to occur, especially if a large number of unused state codes exist.

One can ensure that these redundancies do not occur by specifying an extended don't care set. The

following steps are taken in an extended synthesis procedure:

1. State assignment and logic optimization are performed as before. Logicoptimization uses the

invalid states as don't cares.

2. Giventhe prime and irredundant logicnetwork, the State Transition Graph, G, corresponding

to the network is extracted. All invalid states iv E G that are equivalent to valid states v E G

are found. It should be noted that G is a completely specified combinational logic function,

which also represents an encoded State Transition Graph.

3. Given a valid state v\ and invalid states ivi, iv2, •• iv^ that are equivalent to v\, then

the fanin of v\ is re-specified as n(fanin(vi)) = DC(v\, iv\, iv2, .. ivx). DC() implies

13



that any of the enclosed state entries can be used. In practice, if v\ and some or all of the

ivk, 1 < k < K can be merged into a single cube, c, then every occurrence of v\ in the next

state field of G is replaced by c. G with this extended don't care set is made prime and

irredundant via logic minimization to produce G'.

4. G' may have some invalid states, which could be different from the invalid states in G. These

invalid state codes are used as don't cares and G' is made prime and irredundant under this

new don't care set to produce G".

5. If G' = G", exit. Else G <— G", go to Step 2.

Theorem 4.7 : The procedure above converges, and the resulting machine after convergence will

not have any simple type 1 SRFs, type 2 SRFs or type 3 SRFs.

Proof: The procedure converges when succeeding logic minimizations have produced the same

result. Each logic minimization operates on the result of the previous logic minimization with the

additional don't care set that is provided. We are guaranteed that the overall cost function (e.g. the

number of lines in the network) has a finite decrease if the logic function is altered. Therefore, the

sequence of logic minimizations must eventually converge, and on the last call, return an unchanged

network, n. No type 3 SRFs will exist in the prime and irredundant network n by Theorem 4.2.

Since the invalid states have been used as don't cares to produce n and the network is unchanged"

since then (even though additional minimizations may have been performed), no type 2 SRFs can

exist.

Finally, using the don't care sets corresponding to the equivalent states, ensures that for each

fault F there will exist at least one corrupted edge that goes to a state, qF, that is not equivalent

to the true next state, q, in the true machine G, regardless of whether the qF is invalid or valid.

rj is unchanged since the use of the invalid states as don't cares, so an edge fanning out of a valid

state has to exist with this property. qF E GF has to become equivalent to q E G for F to be

redundant, but that would mean that F is not a simple type 1 SRF. Therefore, F is testable or

not a simple type 1 SRF. •

More complicated type 1 SRFs may exist, though experimental evidence indicates that this

is extremely rare. These redundancies correspond to the case, where qF E G is not equivalent to

q E G but qF E GF becomes equivalent to q E G, making jP redundant. A larger set of don't

cares can ensure that these type 1 SRFs do not occur in the machine. The synthesis procedure

14



described above is unchanged except for introducing an additional don't care set in Step 3 where

G' is produced, as described below.

Step 3b: Given an invalid state #2 that is not equivalent to a valid state q\, the set of input

combinations ine(qi, 92) are found which make this pair not equivalent. If 52 were equivalent to q\

then ine = <f>- The don't care specification is n(fanin(q{)) = DC(q\, 52)5 with a constraint on a

subset of fanout edges of q2 if 92 is picked rather than q\. The constraint is that

o(ine(qi, ^2), 92) = o(i'ne(?i> #2), ?i) A n(*ne(?i» to), <ti) = n(iw(qx, q2), qi)

This set of don't cares and associated constraints are found for each valid and invalid state pair

that are not equivalent. Optimal use of the don't cares while satisfying these constraints ensures

full testability.

Theorem 4.8 : Using the additional don't care set in the synthesis procedure will result in a fully

testable machine.

Proof: We know by Theorem 4.7, that no simple type 1 SRFs, type 2 SRFs or type 3 SRFs

will exist in the machine. Using the additional don't cares will ensure that there will always be

an edge from a valid state that is corrupted to qF instead of q such that qF E G 5^ q E G and

qF EGF -^ q EG. Therefore, GF and G can be differentiated by distinguishing qF and q and F

is testable. D

The enhanced procedure will remove all type 1 SRFs in the machine which has been synthesized

as described in the previous section. In practice, only the simple don't cares of Step 3 suffice to

ensure full testability, allowing a locally optimal solution with no redundancies to be reached; the

more complicated don't cares of Step 3b are not required. That is fortunate, since current logic

optimization programs are quite restricted in the specification and optimal usage of don't cares.

The procedure is quite CPU-intensive since repeated combinational logic minimizations have

to be performed. Experimental results (Section 7) indicate that the machine prior to using the

extended don't care sets is highly testable, and in some cases, fully testable. Removing the few

redundancies can be accomplished using reasonable amounts of CPU time. The fact that a network

has to repeatedly made prime and irredundant in order to ensure full testabihty for a sequential

circuit, indicates that synthesizing irredundant sequential circuits is more difficult than synthesizing

irredundant combinational circuits.
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4.4 Synthesis from Logic-Level Descriptions

In this section, we describe how complete or partial re-synthesis of logic-level circuits can be per

formed so as to ensure irredundant sequential machines. Given a combinational specification, of a

circuit in the form of a truth table, i.e. a previously encoded finite state machine, the following

steps are performed in re-synthesis. The combinational specification has Ni+Nb inputs and N0+Nb

outputs, where Nb is the number of encoding bits used (latches) in the state assignment process.

1. The combinational specification is made disjoint in the present state field (the last Nb inputs).

A cube entry in the field is identical to another cube entry or does not intersect it. A two-level

cover can be made disjoint using the SHARP operation in [2].

2. The specification is now treated as a State Transition Table, with each distinct entry in

the present state and next state field representing a distinct state. If some states cannot

be reached from the reset state (invalid states), they are deleted from the description. The

State Table is now state minimized. Some states (represented by cubes or minterms) may be

removed because of being equivalent to other states.

3. The encoded State Transition Table represents a combinational logic specification that can be

made prime and irredundant. A fully testable machine can be synthesized via the procedures

of Section 4.2 and 4.3.

The re-synthesis procedure can be extended to begin from aUogic-level description. In this

case, the State Transition Graph of the machine is extracted using the efficient cube-enumeration

techniques presented in [4]. Given this (encoded) State Transition Graph, Steps 1-3 described above

are carried out as before.

5 Effect of Redundancy Removal via Logic Minimization on State

Encoding

If a combinationally redundant line is removed from a logic network, network functionality re

mains unchanged. Similarly, when a sequentially redundant but combinationally irredundant line

is removed from a sequential machine, the terminal behavior of the machine remains unchanged.

However, the State Transition Graph of the machine, and the state encoding are affected by redun

dancy removal via repeated logic minimization.
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Two things may happen during redundancy removal:

1. A state may be added to the State Transition Graph, which is equivalent to some other valid

state. An edge is redirected from some valid state to this originally invalid state.

2. A valid state may be replaced by an originally invalid state. In effect, the encoding of a

symbolic state is changed.

Removing a redundant line decreases network complexity. Therefore, both these effects are due to

a sub-optimal state assignment.

The occurrence of the first effect is due to the fact that state assignment is performed on a

state minimized Graph. It is well known [10] that state splitting may be required for an optimal

state assignment. Unfortunately, the state assignment problem is difficult enough as it is without

adding the extra degree of freedom of being able to split states. The faulty, but equivalent, State

Graph corresponds to a "better" state assignment with (at least) one state split into two (or more)

components.

The occurrence of the second effect is due to a state assignment that is not locally optimal for

the reduced State Graph, even without the addition of extra states. The replacement of a state

code by an unused state code results in a "better" machine. Since all state assignment techniques

(e.g. [5] [8]) are heuristic and attempt to predict a complicated logic optimization process.that

follows, it is quite possible that redundancies producing this effect of replacing a state code by

another will exist. We have found in our experience, however, that the first effect is much more

frequent.

When a reduced machine has 2n states, and the number of encoding bits used is n, states

cannot be split and no unused state codes exist. Thus, any state assignment is locally optimal

and the machine will be fully testable by Theorem 4.3. If an optimal state assignment can be

found exploiting the freedom of state splitting, then the resulting logic implementation will be

fully testable. Repeated logic minimization, as described in Section 4.3, has the effect of changing

a sub-optimal state encoding to a locally optimal encoding that corresponds to a fully testable

machine.

6 Easily Testable Sequential Machines

The proposed optimal synthesis procedure ensures full testability. Optimal synthesis, typically

results in a machine that is relatively easy to test. However, sequential test generation can be a
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time-consuming process even for fully testable machines.

Previously, an approach to ensure easy testabihty of sequential machines via constrained state

assignment and logic optimization was proposed [6]. While the constraints on synthesis result in

some area overhead, test sequences to detect all single stuck-at faults in the combinational logic of

the machine can be obtained via combinational test generation techniques alone. This approach can

bound the length of the propagation sequence of any fault to be less than or equal to a prescribed

value (e.g. < 1).

The approach presented in this paper can be used in conjunction with the approach in [6] to

produce fully and easily testable sequential machines. The state assignment and logic optimization

constraints for easy testability can be accommodated without sacrificing full testability.

Thus, irredundant sequential machines with minimal area overheads can be synthesized and

the test sequences for all faults in the machine can be obtained without resorting to sequential test

generation. •

7 Results

In this section, we present some preliminary results obtained using the synthesis procedures de

scribed in Section 4. Intensive optimization is necessary to obtain fully testable designs. If this

optimization can be carried out, then the synthesized machine will occupy minimal area. There is no

area/performance overhead associated with this procedure. However, the CPU time requirements

have to be evaluated.

We chose some examples in the MCNC 1987 Logic Synthesis Workshop as test cases, whose

statistics are given in Table 1. Beginning from a State Transition Graph description, G, the

following steps were performed in the synthesis procedure.

1. State Assignment: Binary codes were assigned to the states in G using the program KISS

[8]. The encoding length in some cases was greater than the minimum required. The codes

were all minterms, and some minterms were not used. The combinational logic specification,

a truth table, after encoding is denoted T.

2. Logic Optimization: T, with all the unused state codes specified as don't cares, was op

timized using ESPRESSO, and algebraically factored to produce a multi-level logic network

C. C was prime and irredundant.
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EX #inp #out #states #edges

exl 2 2 6 24

ex2 2 1 13 57

si 8 6 20 110

planet 7 19 48 118

dfile 2 1 24 96

scf 27 54 128 168

Table 1: Statistics of Benchmark Examples

EX #lat: #gate fault

cov.

%abo.

fault

l.o.

time

TPG

time

%red..

fault

r.i.

time

exl 2 23 97.92 2.08 0.5s 2.0s 2.08 1.1s

ex2 5 35 98.15 1.85 2.2s 41.8s 1.85 6.1s

si 5 105 99.79 0.21 5.5s 303s 0.21 4.0s

planet 6 193 100.0 0.0 10.5s 141.8s 0.0 0.0s

dfile 6 77 97.80 2.20 6.2s 331.8s 2.20 41.8s

scf 8 402 100.0 0.0 121.4s 82.2m 0.0 0.0s

Table 2: Synthesis Procedure Results

Tests were generated for the resulting sequential machine M whose combinational logic is imple

mented by C. Test generation was accompUshed using the program STALLION [12]. The number

of encoding bits used in state assignment (#lat), the number of gates in C (#gate), the fault

coverage obtained (fault cov.) by STALLION and the percentage of aborted/possibly redundant

faults (%abo. fault) are given in Table 2. The CPU times logic optimization (l.o. time) and

test generation (TPG time) are also given. All the aborted faults were checked for redundancy

using algorithms in STALLION. The number of redundant faults (%red. fault) and the CPU time

expended during redundancy identification (r.i. time) is given in Table 2. The CPU times for

state assignment and the initial state minimization were negligible are not given. In the tables, s

stands for CPU seconds on a VAX 11/8650 and m for CPU minutes. For all the cases, the machine

produced is highly testable, > 99% fault coverage. The larger examples, scf and planet which

have significantly more outputs than latches are fully testable.

The examples of Table 2 with < 100% fault coverage were re-synthesized using the extended

don't care set as described in Section 4.3. The CPU time to check for equivalence between invalid

and valid states (s.e. time), number of logic minimizations (#logic mini.), CPU time spent in

19



EX s.e.

time

#logic
mini.

1. o.

time

fault

cov.

TPG

time

exl 0.5s 1 0.5s 100.0 2.1s

ex2 6.5s 7 22.4s 100.0 ; 40.6s

si 1.0s 1 6.1s 100.0 298.2s

dfile 10.2? 3 25.5s 100.0 747.7s

Table 3: Results using Extended Don't Care Sets in Synthesis

logic minimization (l.o. time), the final fault coverage (fault cov.) using STALLION and the

test generation time (TPG time) are indicated in Table 3. The CPU time required for the state

equivalence checks and the extra logic minimization steps are less than sequential test generation

and redundancy identification (Table 2). Using the simple don't cares (Step 3 in Section 4.3)

resulted in fully testable designs in all'cases. We have yet to find an example where this is not the

case.

8 Conclusions

We have described a synthesis procedure that produces an optimized logic implementation of a

sequential machine from a State Transition Graph description of the machine. This procedure

typically results in a highly testable machine, with very few redundancies. These redundancies can

be implicitly eliminated using state equivalence checking and combinational logic minimization to

produce a fully testable machine. No direct access to the memory elements is required.
<

The optimal synthesis procedure described involves the steps of state minimization, state as

signment and logic optimization. It is applicable to Moore or Mealy finite state machines. This

procedure has no associated area/performance overhead unlike Scan Design methodologies. It can

be used in conjunction with previous synthesis approaches to ensure easily testable sequential ma

chines. In this case, test sequences which detect all single stuck-at faults in the sequential machine

can be obtained via combinational test generation and depth-first search on the State Transition

Graph.

Ongoing work includes the generalization of these methods to arbitrary interconnections of finite

state machines.
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