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ABSTRACT

A multi-manipulator system provides greater lifting and manipulation capa

bility and higher flexibility in automated manufacturing. The main problem in

controlling such a system is to coordinate all manipulators such that they work in

a cooperative way. In this paper, we propose a coordinated control law for a

multi-manipulator system performing parts-matching tasks. This control law

enables the manipulators to perform the pre-planned parts-matching maneuver

while the entire parts-matching system is driven to follow a desired path. When

the parts-matching system consists of only a single object, the control law degen

erates to an expression that will drive a group of manipulators transporting a sin

gle object. The proposed control law also includes internal force control and a

load distribution mechanism. The load sharing scheme minimizes the weighted

norm of the force applied to the object. In this way, a heavily weighted direction

tends to get less load distribution. This scheme does not require a force sensor.

We also discuss issues of choosing the weighting factor and show that the pro

posed control law can be implemented in a decentralized fashion.
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1. Introduction

A multi-manipulator system provides greater lifting and manipulation capability and higher

flexibility in automated manufacturing. The main problem in controlling such a system is to coor

dinate all manipulators such that they work in a cooperative way. More specifically, the control

problem includes system formulation, internal force control, and load distribution. These prob

lems have been studied by many researchers [1-12]. The following is a brief review of recent

literature.

In the master-slave control scheme proposed by Alford and Belyen [1], one of the manipu

lators is assigned to be the 'master' arm and the other, the 'slave' arm. The master arm is posi

tion controlled to follow a given trajectory while the slave arm is servoed to follow the master

arm with a fixed relative position/orientation to accommodate the object This scheme was gen

eralized to a multi-manipulator system by Arimoto [2]. Nakamura et al. [5] suggested the posi

tion control of each manipulator to follow a trajectory that precisely matches the trajectory of the

object and at the same time, manipulators are force controlled to exert forces on the object so that

the desired body trajectory is achieved. Hayati [3] derived the dynamic equation of a multi-

manipulator system using the position/orientation of the object as the generalized coordinate.

This approach yielded a 6-dimensional, 6-variable differential equation describing the system

dynamics. Based on this equation, Hayati extended Mason's force control scheme [14] to the

multi-manipulator case. Tarn et al. [7] linearized each manipulator by a non-linear feedback. A

master-slave scheme was then developed based on this linearized model. Zheng and Luh derived

an force expression [9] that drives two manipulators to follow two trajectories satisfying a set of

motion constraint equations imposed by an object. This scheme also has a master-slave structure.

Zheng and Luh [10] proposed a load distribution scheme for a two-manipulator system. This sys

tem was set up to minimize either the energy consumption or the exerted force on the object.



Pittelkau suggested in [6] the use of a load sharing force controller to distribute control forces

between two linearized manipulators. An adaptive algorithm was included in his scheme to

search for the optimum load sharing ratio.

In this paper, we study the control strategy of a multi-manipulator system performing parts

matching tasks. When the parts-matching system consisting only a single object, the system

degenerates to a group of manipulators transporting an object. We combine the Lagrange equa

tion of the parts-matching system and that of a group of manipulators to form a complete multi-

manipulator system equation. Based on this equation, a load distribution scheme and internal

force control are studied. The system equation is then transformed to the generalized coordinate

space of the parts-matching system by a projection map which removes all internal forces from

the equation. A computed-torque-like controller is then added to this reduced order equation to

ensure trajectory tracking. The proposed load distribution scheme minimizes the weighted norm

of the force applied to the object. In this way, a heavily weighted direction tends to get a smaller

share of the load. This scheme does not require a force sensor. The following four considera

tions arediscussed in the choice of load sharing weighting factors: (1) Ratio of maximum output

torque of eachjoint (2) Configuration of eachmanipulator (3) Contact positionson the object and

(4) Type of contactbetween the manipulator andthe object

When manipulators are not rigidly attached to the object or the object consists of loosely

fitted parts, it is desirable to squeeze the object slightly when manipulating it. For example, in

the case of a multi-fingered hand, a large 'squeezing' force is essential to guarantee that the con

tact forces lie in a friction cone [15] so as to prevent slippage of the object relative to the fingers.

This squeezing force can be generated by applying a large internal force to the object and this

internal force control term is included in the proposed control law. We will also show that the

proposed control law can be implemented in a decentralized fashion.

The following is an outline of this paper. In section2, we develop a system dynamic equa

tion. In section 3, we introduce acoordinated control law. A brief summary is given in section4.



2. System Dynamic Equation Formulation

In the process of matching parts (e.g. screwing a nut onto a bolt), the position constraints on

the parts imposed by their geometries are often holonomic. The problem concerned with the

engaging of parts due to the uncertainty of the system configuration is not treated in this paper.

This problem (known as the peg-in-hole problem) has been a popular research area [16] in recent

years. The dynamic equation of a mechanical system with holonomic constraints can be derived

by way ofLagrange formulation. This formulation yields an equation of the form:

M(q)ij + N(q,q) = J(q)TF (1)

whereM(q) is usually referred to as the inertia matrix, N(q,q) contains Coriolis, centrifugal, and

gravitational forces, F contains all the externally applied forces (except the gravitational force),

and J(q)T is the matrix relating the force F to its equivalent generalized force. In this section,

we combine the Lagrange equations of a system consisting a number of matching parts and those

of a group of manipulators to form a complete multi-manipulator system equation which will

then be used to develop a coordinated control law in section 3.

2.1 Dynamic Equation of Parts-matching Systems

For a system consisting a number of matching parts, we may chose the position of one of

the parts together with the relative position between this part and all other parts as the generalized

coordinates. For example, we may chose

x k [a,&,c,<t>,y,e,oc,p,Y]7' (2)

as the generalized coordinate of the system shown inFigure 1 where [a Jb ,c]T is the position of

the bolt, [<j>,\f,6]r is a local parametrization ofthe orientation ofthe bolt, yis the arc-length ofthe

bolt thread between the nut and the bolt head, and a, p are the relative position between the nut

and the bolt.
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Figure 1

The dynamic equation generated based on the generalized coordinate x is represented by the fol

lowing expression

M0{x)x +NJxtx)=J0(xYFc (3)

where F0 = [F\, ••• ,Fj]T and where F-t is the force that the /thmanipulator applies tothe parts

(as shown in Figure 1).

In general, the matrix J0(x) is not square (i.e, not one-to-one). Therefore, there is a set of

F's that satisfy equation (3) with a given trajectory x(t). It can be verified [see Appendix] that

these F 's have a general expression of the form:

_ jy-lrTfT D-lrT\-lF0 =P-lJi(J0P-lJi)-H M0(x)x +Noix&l+Ft £ J£j M0(x)x +N0{xj) Y+F,(4)

whereF7 can be any vector in the null space of J0 and P is a positivedefinite 'weighting' matrix.

The purpose of this weighting matrix will be clear inthe next section. Note that the term J0P~ljJ

is invertible only if (1 )J0 is full rankand (2)P is positive definite. Intuitively, the full rankcondi

tion on J0 means that, through the force F, we can directly control all degrees of freedom of the

system. In a parts-matching system, this condition implies that each part in the system has at

least one manipulator attached to it We assume that this condition is satisfied through out this

paper.

As mentioned earlier, J0(x) is not square in general. We call an applied force which lies in

the null space of J0(x), an internal force. Note that an internal force produces zero generalized



force and, hence does not affect the motion of the system.

2.2 Dynamic Equation of the Manipulators

The most convenient choice of generalized coordinate for a manipulator is its joint posi

tions, i.e.,

8 = [9i, 02, • • • ,9g] (5)

With this set of generalized coordinate, the Lagrange equation of a manipulator takes the form

[17] of

AfiCeM +iv-,(Mi) = Zi +Jj^i)Fi (6)

where the subscript i denotes the assigned number of this manipulator, Ft is the interaction force

between the /th manipulator and the object x is the torque generated by the joint motor, and Jt is

the Jacobian matrix of the forward kinematic function. A dynamic equation of a multi-

manipulator system is obtained by aggregating all such equations:

or simply

where

Mm($) ±

Mi 0 . o
0^2. .

0 0 .Mk

AfiOO 0
0 M2O2)

f6i"
e2

+

N2
"xi"
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+
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o o .jj

(8)
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2.3 Complete System Equation

Since manipulators' grippers are rigidly attached to the parts, the velocity of the reference

frame fixed at contacts (vcont) can be derived from either the joint velocity (0) or the generalized

velocity (i). From the the duality of the force space and the velocity space, we know that these

three velocities are related by

Vcont = Jn& = J0x. (9)

By differentiating this equation, we obtain the following acceleration equation:

Jm®+Jme = j0x+J0x. (10)

In the case that Jm is non-singular, we can express © as

Q=J-l\}0x+J0x-Jm^. (11)
Furthermore, from the fact that the reaction force equals the negative of the action force, we have

Fn = -F0 (12)

whereFm andF0 aredefinedin (3) and(8). Now, combining(4), (8), (11), and (12) we get

Mm<&Vml[i0X +Jo* -Jm®\ +Wm(0,0) =T-J*J0+p\m0(x)X +N0(Xj) I-/Jf/03)

We abbreviate this equation in the following form:

Mhx+Nh=%-jlFh (14)

where Mh and Nh are defined as

Mh k Mm(®y-lJ0+Jlj0+PM0(x) (15)

and

Nh k Mm(&)jf[j0x-Jm^ -Jlj:PN0(xjc) +Nm(®&) (16)



3. The Control Algorithm

The main control objective is to specify a set of joint torque inputs x so that the desired

parts-matching maneuver and the desired trajectory of the overall parts-matching system are

achieved; or, in short, the desired trajectory xd(t) in the generalized coordinated space is realized.

There are two secondary control objectives: (1) load distribution and (2) internal force control. In

this section, we introduce a dynamic control law which guarantees motion tracking of the parts-

matching system. This control law also contains two vector variables which can be adjusted

(independently from the motion control loop) to optimize the secondary control objectives. We

then show that the proposed control law can be implemented in a decentralized fashion.

3.1 Coordinated Control Law

In this section, we propose a coordinated control law for a multi-manipulator system per

forming parts matching tasks. When the parts-matching system consists of only a single object,

the control law degenerates to an expression that drives a group of manipulators transporting an

object

Proposition (Coordinated control law):

Assume that

(1) Jm (as defined in (8)) is non-singular, i.e., the manipulators do not go through any singular

configurations,

(2) the part-matching system does not go through a parameterization singularity (i.e., the gen

eralized coordinate remains valid) and

(3) the matrix J0 is non-singular, i.e., each part in the parts-matching system has at least one

manipulator attached to it

Define the position error ee/?6 to be e = x -xd where x is the generalized coordinate of the

parts-matching system and xd is the desired parts-matching system trajectory. Then, the control

law specified by (17) guarantees that (I) x converge to xd exponentially and (Il)the internal force

term Ft (as defined in (4)) equals the commanded internal force FIc in the control law.

xd -Kve -Kpt = Mu \xa -K„e -Kpe +Nh +jlFfc (17)
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where Mh and Nh are defined in (15) and (16).

Remark:

The first term is the position loop error compensation. The second term in (17) is used for

cancellation of Coriolis, gravitational and centrifugal forces; this term behaves exactly like

the nonlinearity cancellation terms in the computed torque control for a single manipulator.

FIc is the internal force feedforward term.

Proof:

First we substitute (17) into (14) to get

Mhx +Nh =Mh \xd -Kve -*,*] +Nk +/£F/c -/£F/. (18)
This equation can be simplified to

Mh[ed+Kve+Kp^ =/I(F/c-F7). (19)
Multiply this equation by J0 D/J]"1, we obtain the following equation.

J0VlTlMh [e +Kve +Kpe\ =J0(FIc -Fj) =0 (20)
where we have used the fact that both Ft and FIc lie in the null space ofJ0, i.e.,

Jo(FIc -Ft) = 0. (21)

Since J0 [Jl]~lMh = J0 [J*]'1 M(0)J~ljJ+M0 ispositive definite, (20) implies that

e +Kve +Kpe = 0 (22)

Thus, we have shown that the tracking error e can be driven to zero with proper choice of

the feedback gain matrices Kv and Kp. If we substitute (22) into (19) and notice that/m is

non-singular by assumption, we get the following relation

Fie = Ft (23)

which says that the component Fj in the actual interaction force between the object and the

manipulator equals to the force term Flc in the control law. This relation is used later in the

Internal Force Control section.

Q.E.D.
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Note that the dynamics of the trajectory tracking control loop is independent of the choice of P

and is decoupled from the internal force feedforward term Flc.

3.2 Load Distribution

We will first show that the forces applied to the object by control law (17) is distributed

between the manipulators according to the weighting matrix P. We will then discuss several con

siderations in the choice ofP.

Consider the control law (17) without the internal force term, i.e.,

x=[Mn(&y-lJ0 +JlJ0+PM0(x)\ (xd +Kve +Kpe) +Mm(ey-X[j0x -7m©] (24)

-J*J+pN0(xj) +Nm(9,e)

This control law can be decomposed into two terms xm and iQ:

xOT =Nn(ete) +Mm(Q)J-l[j0[xd+Kve+Kp^ +/0i-/me] (25)

x0 =J*J01>[N0+M0[x^-Kve-Kp^y (26)
Note that xm interacts with the manipulator body and x0 provides the necessary forces to realize

the desired parts-matching system motion. This partition of control force is illustrated in the fol

lowing figure which gives a graphic representation of the control law (17).
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Desired generalized forece

N0 +M0 \xd-Kve-Kp el

Nm+MnJ-l{J0[xd+Kve+Kpe]
+Jo_x-JS}

xm cancels the manipulator dynamics so that i0 and the actual generalized force are related by a

algebraic relation as will be shown later. This point can be seen from combining equation (11)

and (22) and realizing that xm, in fact, equals to

Xm =Wm(0,0) + Mm(0)0 (27)

Similar to the computed torque control law for a manipulator, the desired input generalized

force to the parts-matching system is

N0+M0\xd-Kve-Kpe\ (28)

From Figure 2, we see that this desired generalized force is distributed to three branches (for three

manipulators). To generate the control force component x0, we multiply each of the force

branches by the matrix jj which undoes the transformation [Jf]~x that occurs when the control

force propagates through the manipulator body. Note that the transfer function between the

desired generalized force (input) and the actual generalized force (output) is simply an identity

function, i.e.,

Jo ifml JmJoP ~ *o*oP ~ ' (29)

and the effect of the weighting matrix P is completely transparent to this input-output pair. This

is the reason that the P was not used in the proof of tracking property of the control law. Now let
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us concentrate on the force distribution operator /<£. It is easy to verify [see Appendix] thatJgp

(as defined in (4)) distributes a given desired generalized force (f0) to each forceAorque direction

at each contact (between a manipulator and the parts-matching system) according to the weight

ing matrix P. More precisely,

F* k J£f0 (30)

minimizes the cost function C = FTPF over all solutions, F's, that satisfy the equation

fd-J0F. Consider the case that P = diag [p i, • • jjs } where s is the dimension of the force

vector F. In this case, the cost function is

C =p]f?+'-+Psfs2. (3D

Suppose p i is chosen to be much greater than all other entries, since F* minimizes C, it must

contain a relatively small /J. Note that only the relative magnitude of each diagonal entry of P

affects the load distribution and the smaller the value of the weighting the greater the load share.

The off-diagonal terms of P do not have any known physical meaning and, are therefore set to

zero.

We consider the following four questions when determining the load distribution: (i) Which

manipulator is capable of exerting greater force? (ii) Which manipulator is in a better posture

(manipulator configuration) to exert the required force? (iii) Which contact position is structurely

more suitable to apply the required force? and (iv) Which direction of a contact can stand higher

stress without breaking the contact?

The following formulation deals with the first two considerations. The magnitude of the

maximum force that the /th manipulator can exert on an object along the x direction in frame Ct

is

aj =maxj pI<jfi)j I<tij^-it^j, for all ji (32)
where i is the unit vector in the x direction in C4. (j[x)j is the yth element of the vector jjx

and x^ is the torque limit of the actuator at yth joint of the /th manipulator, x^ is the /th seg

ment of the composite torque vector xm defined in (26), i.e., the part of the joint torque that

interacts withthemanipulator itself. Loosely speaking, x^-fr^),- is the 'left over' jointtorque.
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In a two-manipulator case, the weighting matrix is constructed as follows:

p-H- J_L _L_L_LJ__L_L_L_LJL_L JL.1 rwr —uiag-s ., ., ., ., ., ., 2, 2, 2, 2, 2, 2 \ \33)
I otj cty1 a/ aj c^ c^ a? a; a/ a| a* a; J

where * is the moment about the direction of*.

Remarks:

(1) a in (33) is a function of both joint position and velocity since x^ contains velocity terms.

In practice, if the joint velocity is small, we can ignore the 'velocity square' terms, i.e., cen

trifugal and Coriolis force. With this simplification, x-m contains only the torque that is

required to counter balance the manipulator's own weight and, hence, a is a function of

joint positions.

(2) Since the percentage of load sharing is inversely related to the relative magnitude of diago

nal elements of P, an alternative way of constructing P is to take the complement of a's

with respect to a fixed large number, e.g., ?n = (q-o^) where q is a number greater then

all a's.

The questions (iii) and (iv) concern the structure of the object positions of contacts and the

type of contacts. These considerations, though intuitively clear, are difficult to formulate. A

case-by-case study is probably the best approach. Let us consider the following examples:

Example (1)

X aJ> manipulator #1
manipulator #2 \\ ( \J)

Figure 3 V /

Figure (3) shows two manipulators holding a pitcher. Clearly, we should assign greater share of

the load to manipulator #1 since the pitcher handle is structured to carry the pitcher body. Mani

pulator #2, although it can only apply very limited forces to the pitcher for obvious reasons,

greatly helps with the control of the orientation of the pitcher. One other example of structure
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dependent load sharing is that in the case the object consists of two parts rigidly connected by a

joint In ordernot to put too much stress on thejoint the manipulator attached to the heavierpart

should carry higher load. In fact the stress on the joint will be minimized if the load sharing ratio

between the two manipulators equals the ratio of the masses of two parts.

Example (2)

Figure 4

In this example, it is easy to see that the manipulator can apply a higher force in the z direction

than in the x and y directions because the interaction force in these two directions are mainly due

to friction. Also the manipulator can apply a higher moment about the x direction than the y

direction because of the shape of the contact area. The total maximum applicable force of a con

tact depends on the contact area. With a larger contact area, the manipulator can apply a higher

force to the object while keeping the force/area ratio low. It is certainly possible to derive a pre

cise ratio of maximum applicable force in all directions by a careful analysis but, in practice a

rough estimate should be sufficient

Thus the final P is determined based on the weighting factors from all four of the aforemen

tioned considerations. If all weighting factors are based on the same unit (e.g. maximum applica

ble force), they can be combined in a precise way such as a linear combination or product of all

the factors. However, as mentioned earlier when considering the object structure and contact

type, a rough estimate of weighting factor is usually sufficient. In this case, integrating all the

weighting factors may be based on experience and personal judgement.

Remark:

The load distribution mechanism described in this section can be easily modified to distri

bute control forces in the joint force/torque space. Instead of using J0+ as the force
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distributor, we use the operator defined by

•Cp *i»-,[/.yIr,)T{/.yir1i-I[/.M:r1)
With this new force distributor, the modified x0 becomes

X0 =J^p[N0+M0[xd-Kve-Kp^Y

-l

(34)

(35)

3.3 Internal Force Control

When manipulators are not rigidly attached to the object or the object consists of loosely

fitted parts, it is desirable to squeeze the object slightly when manipulating it. The objective of

internal force control is to produce such a 'squeezing' force. For example, in the case of a multi-

fingered hand, an sufficiently large 'squeezing' force is essential to guarantee that the contact

forces lie in the friction cone [15] so as to prevent slippage of the object relative to the fingers. In

the case that the object consists of loosely fitted parts, we can eliminate relative motions by press

ing, pulling, or twisting them against each other, and thus prevent undesirable collisions between

parts and excessive stresses on the joints. In the example given in Figure (5), we might want to

push the plate against the bolt head while manipulator A screws on the nut This squeezing force

eliminates the relative motion between the bolt and the plate and therefore, these two objects

should be considered as a rigid body when formulating the control law.

internal force

Figure 5

In general, a multi-robot system cannot achieve both desired load distribution and desired

internal force if the motion tracking task is to be accomplished first This point can be easily seen

when the desired object velocity is zero and a large squeezing force is desired. In this case, in
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order to maintain a static equilibrium, two manipulators must exertequal and opposite forces on

the object(i.e., an even distribution of control force between two manipulators) regardless of the

desired load distribution. This is the reason that the internal force term was ignored when dis

cussing the load distribution issue in section 3.2.

In this sectionwe first show a method of determining the required contact force to produce

a desired squeezing force underequilibrium conditions. We then discuss how motion and gravity

affects the actual squeezing force.

In the following figure, we show a two-manipulator system holding an object consisting of

two loosely attached parts.

y

manipulator #1 ^
11

11

i i

1
^

11

11

r
4p f" ^

manipulator #2

Figure 6

In this example, the desired squeezing force // consists of two opposing forces (as shown in the

figure), i.e.,

// =H/u 'fd where /u+/<i=0.

It is clear that fd should be exerted by manipulator 1, so the applied force is given by

/i = w?fd

and similarly, manipulator #2 should apply the following force

fi = w;lfH

(36)

(37)

(38)

where W\ and W2 are the matrices relating the applied forces to their equivalent forces at the

junction. It is clear that the force [f\>fi ]T is an internal force of the entire system. Now, we

set the commanded internal force FIc in the control law (17) to be

Fic=\f\Jl\T (39)
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As we just proved, the control law guarantees that the internal force term F/ (in (4)) equals

[f\>fi ]T- But does this mean that the desired squeezing force is produced? The answer is no,

unless F/c is the only force acting on the object This point can be seen from the following exam

ple.

Junction

manipulator #1 n 1*1 e=i manipulator #2

Figure 7.

In the above figure, the desired squeezing force (marked (a)) is a compression force in the x

direction. This force can be achieved by applying the internal force (b) when the object is at rest.

When the object is accelerated, the total contact force is the sum of the internal force (b) and the

force (c) that is required to accelerate the object As shown in (d), the total applied force does not

'squeeze' the object. In this case, the actual force acting on the junction depends also on the

masses of both parts. In the case that the part on the right is much lighterthan the other, the junc

tion tends to be pulled apart. We have the following three solutions to this problem:

(1) If the actual force at the junction can be measured, we can adjust the magnitude of the

applied internal force as needed.

(2) If the inertia properties of both objects are known, we can derive the actual force acting on

the junction and then adjust the internal force term accordingly.

(3) We can simply apply a large enough internal force that will overwhelm the maximum iner

tia force that can occur and thus a squeezing force at the junction is guaranteed. For exam

ple, in figure (7), if the internal force is increased from (b) to (e), then the total applied force

(f) will produce a squeezing force at the junction.
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Approaches (1) and (2) are not very practical since approach(1) requires the measurement of the

force at the junction, and approach (2) requires a complete knowledge of the inertia property of

each of the parts plus extensive computation. The third alternative is a feedforward open loop

approach. Since the magnitude of the desired squeezing force is usually not critical, this approach

appears to be the most practical one provided the object is not fragile.

3.4 Decentralized Control Architecture

Control law (17) may look simple in the symbolic form, the actual computation involved is,

in fact very complex. In order to minimize the effect of sampling, when implementing such a

continuous control law, we must keep the execution cycle time to a minimum. A solution to this

problem is to divide the program into several modules so that each of them is executed by a less

powerful processor in parallel This partitioning of the task not only speeds up the computation

time but also simplifies the program structure. But for this parallel computation scheme to work

effectively, the control law itself must have a 'nice' structure. As we will show later in this sec

tion, control law (17) has a natural structure as shown in figure 8. It can be divided into a coordi

nator level and manipulator module level. At the manipulator module level, each module is

closely associated with a manipulator. Each manipulator module can be further divided into sub-

modules [19]. In this section, we will concentrate only on the partition of tasks between the coor

dinator level and manipulator module level.

The basic idea of dividing a large computation task is to minimize communication between

modules and to evenly distribute the computation load to each module. With this guideline in

mind, we first divide the control law x into two parts xm and JTFS (i.e., x=xOT +J*FS) where xm

is defined as follows (same as the definition given in (26))

xm =Nm(Q,e)+Mm(Q»m'l[jo[xd -Kve -Kp<^ +j0x -/me] (40)
and Fs is defined as

Fs =/Ji^+Af^^-^-J^e]] +Fle. (41)
Note that except for the first two terms in the bracket, each segment of xm is only a function of

the state variables of the corresponding manipulator. For example, the /th segment of xm (i.e.,
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the torque vector of the ith manipulator) has the following form.

X; =NiQiM+MiQiVr^Vi -*i\
where \ft is the i th segment of

J0\xd+Kve+KpA +j0x

(42)

(43)

On the other hand, Fs contains only the variables associated with the parts-matching system.

Now, it is clear that the coordinator module should evaluate Fs and each manipulator module

should carry out the following computation

xt. =^(e£fei)+Afi(e,vr1(v« -J*] +JlFS( (44)

where Fs. is the ith segmentofFs, and yf and FSi are supplied by the coordinator. The following

diagram shows the decentralization of the control law and the signal flow between modules.
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Figure 8 To other manipulator modules

Note that manipulator modules do not require direct access of the state of the parts-

matching system and the coordinator module does not require access to the state of the
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manipulators except for the load distribution purpose for which timing is not critical.

In a parts-matching process cycle, manipulators do not always work in the cooperative

mode. When a manipulator is not interacting with other manipulators, it should be controlled as a

individual system. This change ofcontrol mode of a manipulator module can be easily carried out

by doing the following substitutions:

FSi <=> 0, and w <=> yd + Vy, + V* <45>

where y is the work space coordinate of the end effector of the / th manipulator. Note that after

these substitutions each manipulator module has the form of

which is precisely the 'resolved acceleration control law' [18]. Any combination of manipulators

can be switched in or out of the coordinated control mode without changing the basic structure of

the control algorithm. This simple transition from coordinated control to individual control

makes this controller structure a decentralized control architecture rather than a parallel process

ing architecture.

4. Summary

We have proposed a cooperative control law for a multi-manipulator system. The feedback

loop in this controller is closed around the generalized coordinate of the part-matching system.

Manipulators are essentially treated as six degree of freedom actuators with some non-linear

dynamics which exert a set of contact forces on the object so that trajectory tracking is achieved

and desired internal force is realized. We have shown that this control law can be implemented in

a decentralized fashion. The proposed control law contains a weighting matrix P which is used

to determine load sharing among the manipulators. We then discussed several issues on choosing

the weighting factors in P. We have also shown a way of determining the required contact forces

for generating the desired squeezing forces.
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Appendix

Claim:

Assume J0 is full rank. For a given f0, any F that satisfies the equation

fo = JoF (Al)

can be expressed in the following form

F = P'xJlV0P-xJlTxf0 k Joyo +F, (A2)

where Fj belongs to the null space ofJ0.

Proof:

First, we must show that J0P~xjJ is invertible. In case F=/, J0J^ is clearly full rank

because the range of JJ (denoted by R(/J)) 'misses' the null space of J0 (denoted by

N(/0)). In fact, these two subspaces form an orthogonal decomposition of the domain of

J0. To prove J0P~xjJ is also full rank, we must show that R(P~xjJ) does not intersect

N(/0) except at0. Suppose ueR(P'xjJ)r^S(J0) and u*Q. This implies that u andPu are

orthogonal (i.e., uTPu =0) since ue N(/0) and Pu e R(/J). This contradicts the fact that P is

positive definite.

It is easy to verify that the expression of F given by (A2) satisfies (Al). We simply substi

tute (A2) into (Al) to obtain

J0F = Johffo +J0F, = JoplJl(JoP~^lTlfo = fo (18)
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where we use the fact that F/ belongs to the null space of J0, i.e., J0F/=0.

Since these two sets are hyper-planesin a linear space and we have shown that one contains

the other, to prove they are in fact the same plane we just need to verify that they have the

same dimension. It is clear that the dimension of the plane defined by (A2) has the same

dimension as N(/0) and the dimension of the solution set of equation (A2) is also the

dimension of N(/0). This completes the proof.

Q.E.D.

Claim (2):

For a given f0, the solution of the equation f0 = J0F that minimizes the cost function

a 1 vT:C2i~F 'FFis
2

f* = p-xjjv0p-xjjrxf0, = j0+Pfc

Proof:

The Lagrangian of this optimization problem is

1^7;L(F,\)=jFlPF-UJ0F-f0)

where Xis the vector of Lagrangian multiplier. The minimizing F* must satisfies the fol

lowing two equations:

H =PF -Jl% =0

and

f -J.F-f.-0.
Solving these two equations simultaneously, we get

F* = P-ljJ(J0P-ljJrlf0 =J&f0.

Q.E.D.
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