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Hierarchical Placement for Macrocells

with Simultaneous Routing Area Allocation

Bernhardt Eschermann

University of California, Berkeley
Department of Electrical Engineering and Computer Sciences

ABSTRACT

This report describes the placement and routing area estimation

program of the BEAR macrocell layout system. A combination of

top-down and bottom-up heuristics is employed to make best use of a

hierarchical description. The interdependency of placement and rout

ing is considered explicitly. The program was implemented in C

under the UNIXt operating system. Experimental results show that

significant area and wire length reductions over previous approaches

are possible.

t UNIX is a trademark of Bell Laboratories.
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Chapter 1. Introduction

1.1. Problem Description

Integrated circuit fabrication technology advanced rapidly over the last 3 decades.

Three major design styles - full custom design, standard cells and gate arrays - tar

geted towards different applications evolved. Hierarchical decomposition is neces

sary in any of these approaches to deal with the complexity of VLSI circuits. At

some level of abstraction the different parts of a circuit, be they developed manu

ally, with module generators or composed of standard cells, can be viewed as rec

tangular or rectilinear objects with given shapes and sizes. These objects then have

to be placed on a plane, oriented in one of the 8 possible ways and connected with

each other at fixed terminal locations.

The objective of the placement is to provide an arrangement of blocks that -

after having been routed - fits into an enclosing rectangle of minimum area with

given height, width or aspect ratio. To get a high performance circuit a concurrent

goal is to minimize the length of connections.

However, such a task is not well defined. For "significant solutions" (Fig. 1.1)

wiring length generally increases when the area is decreased and vice versa.



wiring length

min

area
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Fig. 1.1 Area / wire length trade-off

Furthermore, the impact of placement decisions on the final result cannot be

predicted accurately without actually doing the detailed routing. Therefore iterations

in the design process are common although they are very costly and not guaranteed

to converge.

In this report a hierarchical placement algorithm for rectangular macrocells is

described. The algorithm combines the goal orientation of a top-down approach

with the module orientation of bottom-up techniques. The result is a "meet in the

middle" strategy. It considers the mutual dependency between placement and rout

ing explicitly by incorporating a novel method of hierarchical routing area estima

tion. Thus a more uniform design flow is achieved, reducing the need for iterations.

The general idea can be summarized as follows: At a given point in the design

process make maximal use of all the available information. Estimate the effects of

pending decisions on subsequent steps of the design. Do not optimize a local cost

function that on the whole may produce a suboptimal solution unless the computa

tional cost of a more global view is excessive.



1.2. Overview

This work is based on the general approach described in [Dai87]. The following

description should give the reader a global view of the whole placement process

before a more detailed description of the different parts is given.

As a first step, a hierarchical representation of the problem is generated.

Macrocells that are strongly connected with each other are clustered together in

clusters of some maximum size. This step is recursively repeated and thus produces

the different hierarchical levels of a clustering tree.

In the placement step, this tree is traversed top-down. Given an overall aspect

ratio goal and possibly the location of I/O terminals, at each level of the hierarchy

all possible topologies for the clusters on that level of the hierarchy are examined.

The objective function for choosing a particular possibility is a linear combination

of a geometry cost and a connection cost. The user controls the trade-off. The

chosen configuration then, in turn, sets the shape goals and the VO goals on the

next lower hierarchical level. The same decision process can be repeated.

To provide the geometry cost function on higher levels with more information,

the clustering also passes shape information from the leaves towards the root of the

tree. Additionally, during the top-down traversal of the tree, a lookahead is possible

so that the decision on some level is not restricted by the available block shape

information on the immediately following level of the hierarchy.

For each of the topological possibilities the routing space necessary to imple

ment the connections between different clusters is estimated. This area and its loca

tion together with the cluster areas / block shapes is used to compute the value of

the geometry cost function. It also helps to determine the goal shape of the clusters



on the next lower level of the hierarchy. In that way space for global connections is

provided on higher levels of the hierarchy, when the rough position of clusters is

known. The allocation of space for local connections is deferred until later in the

process when the detailed block positions in the clusters are to be generated.

1.3. Related Work

In a sense the described algorithm is a generalization of the mincut algorithm

[Lau79] where the number ofelements per cluster is not restricted to 2. The advan

tages are

• With the larger degree of freedom to group elements together, an artificial

separation of related blocks is less likely. This is enhanced by the fact that the

binary mincut tree is generated by a top-down pardoning, whereas in this work

a data-driven clustering is used. In this way "natural clusters" of blocks are

preserved as much as possible.

• A binary tree already determines the eventual placement to a great extent.

Hence it is crucial to partition the blocks in such a way that the shapes of the

rectangles after the last cut match the shapes of the actual building blocks as

much as possible. Because this is very difficult to achieve, an iterative improve

ment step [Pre86] or restructuring the tree [Mue87, Koz84] is necessary.

• If the number of blocks in a cluster is 5 or greater, non-slicing topologies

become possible. Since it is possible to effectively handle the routing of non-

slicing structures by introducing L-shaped channels [Che87], there is no reason

to preclude the placement from using these topologies to optimize area and / or



interconnection length for special cases *.

The price to pay is that more time has to be spent in the enumeration and the pro

grams become more complex.

To draw comparisons with other approaches, the notion of a search space is

useful (see Fig. 1.2). The rectangle encloses the set of all possible placements. The

curves represent the contour lines of some objective function.

The proposed algorithm works on a subspace of the search space given by the

clustering tree (Fig. 1.2.a). On the top level of the hierarchy all the possible topolo

gies are enumerated exhaustively, however, only a subset of these possibilities is

further explored on lower levels of the hierarchy.

a. cluster enumeration b. iterative improvement c. simulated annealing

Fig. 1.2 Exploration of the search space in different algorithms

1 The following topology seems to give a non-slicing
structure for a 4-block cluster. However it does not consti
tute a rectangle dissection [Ott82], its polar graph [Oht70]
actually represents the 5-block non-slicing case. It is ob
tained by "squeezing*' [Lau79] a slicing structure.

y/A
•///,



Iterative improvement heuristics [Han76, Koz84, Ued85] start with some initial

placement and try to monotonically improve it by performing local changes. This

method might well lead to a neighboring local optimum that is far away from the

global optimum (Fig. 1.2.b).

Simulated annealing programs [Sec85] avoid this problem by allowing changes

that lead away from local optima on a random basis (Fig. 1.2.c). Nonlocal changes

like the swapping of modules become necessary. For regular geometries like stan

dard cells this works well, although CPU time requirements are very high. For

macrocells the situation becomes more involved, because the solutions obtained

after the changes are generally not feasible due to block overlaps.

Analytical techniques derive a nonlinear programming problem that can be

solved with a penalty function method [Sha85]. The initial solution minimizes some

wire length estimate without caring about geometrical constraints. An iteration

eventually leads to an approximately feasible solution by successively increasing a

penalty for block overlaps in the objective function. The solution is only approxi

mately feasible because corner overlaps are still possible. CPU times are in the

same order of magnitude as for simulated annealing. It is difficult to incorporate the

allocation of routing area in the formulation.



Chapter 2. Clustering

The clustering algorithms used in the placement process have been described in

[Khe87, Esc87]. In the first pan of this chapter some criteria to evaluate the quality

of a clustering based on the intra-cluster connectivity are introduced. In the second

part the incorporation of geometrical constraints in the clustering is discussed.

2.1. Evaluation of Cluster Quality

It is difficult to compare two clustering trees obtained by one algorithm with

different parameters or by two different algorithms unless some common evaluation

method is available. Since the primary objective of the clustering is to combine

blocks that are strongly connected, in this section criteria to examine the clustering

performance with respect to that objective are proposed.

The problem is represented as a weighted graph where the nodes represent the

macrocells and the number of connections between them determines the weight of

the edges, n-point nets are split up into —^-—- 2-point nets (edges) - the clique of

2
the n terminals of the net - with a weight of —-—— each. In this way a net as a

n (n-1)

whole always has the same weight, no matter how many blocks it connects. For the

clustering that is a desirable property [Esc87].

Let i and j be nodes, c/;- the weight of the edge between i and j. Let P(i) be

the cluster to which i belongs (see Fig. 2.1).



Fig. 2.1 Blocks, clusters and connections.

The number of connections within the clusters is

/= Z clJt

the number of connections between different clusters

P(i)*P(j)

An easy way to compare two results of aone-level clustering then is

/
ATi =

E +/
x 100%, 0% < KY < 100%.

This number tells what percentage of connections is no longer visible on the next

higher hierarchical level. The criterion is very clear, but it has its shortcomings.

Consider the example in Fig. 2.2. Although there is no obvious reason to prefer

either of the clusterings, the evaluation criterion shows a bias towards case b.

E = 4

a. 2 2-block clusters
b. 1- and 3-block cluster

Fig. 2.2 Clusters with different sizes.

E = 3



In general, clusters of different sizes are always hard to compare based on this

approach. Therefore a normalization is necessary. Let nk be the size of cluster k

and mthe number of clusters. Then f,nk =n is the total number of nodes. The
m

Z
*=1

possible number of connections between nodes within the same cluster is

m nk (titr-l)
c(/)= L-^—.

*=i L

the possible number of connections between nodes of different clusters

C(£)= «illll- C(I).

The possible number of connections is taken, because non-existing edges can be

interpreted as edges of weight 0. Then the improved criterion is

ijcjj) 100% 0% <. K ^ 100%
2 I/C(I) + E/C(E) 2

I/C(I) (E/C(E)} is the average weight of an edge connecting a node to another node

in the same {a different} cluster.

It does not make much sense to sum up the results on different levels of the

hierarchy in one number. It is better to compare the ATX or K2 - values of the two

clustering trees level by level.

2.2. Geometrical Constraints

A clustering only based on connectivity information can result in a block shape

mismatch that makes it impossible for the placement algorithm to avoid big dead

space areas. On the other hand it is very difficult to decide for a pair of blocks

whether they fit together if the other cluster elements are unknown. Even the
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number of other cluster elements is not yet determined. Therefore heuristics are

used.

It is our conjecture that two blocks do not match if

a) their areas and

b) the lengths of their longer sides

are sufficiendy different. A very simple implementation then is to prohibit the

merging of block pairs whose areas or lengths differ by more than some factor. If

one block is much smaller than all the other blocks, that leads to the unfavorable

result that this block is left alone until all the other blocks are clustered together.

A better way is to use a threshold area. Only blocks with areas smaller than

the threshold are clustering candidates. In that way clusters on each level of the

hierarchy tend to become similar in their area requirements. A method to set the

threshold based on the statistical distribution of block areas is described in Appen

dix A.l.

Whatever approach is taken, if the constraints are enforced rigorously, the

cluster sizes become smaller and additional hierarchical levels may be introduced.

This in turn means fewer degrees of freedom for the placement enumeration and

typically leads to worse final results. Because of that it is better to implement the

constraints as "soft" constraints. They should only be enforced as long as other

clustering possibilities are open.
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Chapter 3. Placement: A "Meet in the Middle" Strategy

In this chapter routing area is neglected. Chapter 4 contains a thorough treatment of

this subject.

3.1. Representation of Connections

To be able to evaluate many different placement possibilities efficiendy, the

connectivity information has to be represented in a more versatile form than as n-

point nets between geometrical pin locations. The accuracy required to obtain

satisfactory results is different on different levels of the hierarchy.

Independent of the hierarchical level, nets with n terminals are represented by

n (n ~~ ^ connections between every pair of terminals. A spanning tree for this
2

2
n-clique has n - 1 edges. Every edge of the n-clique has a probability of —to be

2
in the spanning tree. Therefore each of the edges is assigned a weight of —. That

is different from the edge weight for the clustering.

On the non-leaf level, all the connections within the clusters are invisible. The

connections between different clusters are assumed to connect to the center point

(but see section 3.6). In that way all the connections of current interest can be

summed up in one matrix attached to the parent node in tne hierarchy. The element

Cu in row i and column j of this connectivity matrix contains the number of

connections between cluster i and cluster j (see Fig. 3.1).
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Fig. 3.1 Cluster of blocks with connectivity matrix.

If a block has a link to another cluster, this link is split up into two links of

pertinent weight in the applicable I/O-directions as shown in Fig. 3.2.

dy

=>

dx

N

I

dy
c

dx + dy

dx „

h dx + dy

I B

Fig. 3.2 Canonical representation of inter-cluster connections.

On the leaf level this representation is not exact enough since the optimal

orientation of a block depends on the actual pin positions. However, it would be

very costly to search through a list of all pin positions every time, e.g. a new block

E
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orientation is evaluated. Some accuracy has to be given up to gain efficiency. A

very convenient scheme is to distinguish only between different pin directions. All
the connections summarized in one number ctj in previous levels of the hierarchy

are now split up into a set of 4 numbers representing the connections between each

of the sides of block i and block j. In this way the data structure does not have to

be augmented. As shown in Fig. 3.3, the information can be held by the leaf level

connectivity matrices.

Fig. 3.3 Storage of pin connection information.

3.2. Non-Leaf Level Enumeration

A

0

1

2

3

0 12 3 >• W S E

3 0 12 3 V W S E

N
W

s

E

The algorithm assumes that an aspect ratio goal is given or one of the sides has to

be of a certain length. I/O pad directions are also assumed to be given, but this is

not absolutely necessary: If an I/O connection is assigned a weight of — for all
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four directions, the placement tries to place the connected block somewhere close to

the periphery of the chip without a bias as to the direction.

The properties of each basic possible topology are stored in a set of functions,

each one of them tailored to perform a specific task for that topology. Fig. 3.4

shows the possible template topologies for clusters with 4 elements (templates

having 4 rooms).

\
room

Fig. 3.4 Library of 4-room templates.

On each hierarchical level the algorithm starts with a rectangle whose aspect

ratio is determined by the user or the preceding hierarchical level. The area of this

rectangle is the sum of the areas of all the blocks that have to be placed in it. The

rectangle then is divided into subareas corresponding to the areas of the cluster

elements. A particular orientation of a template and an assignment of cluster

elements to rooms in the template is considered. An objective function helps to

determine a cost value representing the undesirability of the room shapes and the

general configuration. This is carried out for all the possibilities (see Algorithm

3.1). The process is recursively repeated for every cluster.
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non-leaf enumeration

input: area and shape goal, connectivity matrix, afl ,0^,

output: template, template orientation, room assignment

for all templates

for all template orientations

for all assignments of cluster elements to rooms

subdivide the area in the proportion of the areas of the cluster elements

compute a wire length cost function fw

compute an area cost function fa

choose the possibility with min: (X^ fw + Cta fa

Algorithm 3.1

The number of executions f(k) of the inner loop is strongly dependent on the

cluster size k. The number of possible assignments of cluster elements to rooms is

k!. The number of possible topologies t(k), i. e. the number of templates and

rotational variants of templates, grows exponentially with k. The resulting f(k) is

shown in Table 3.1. Currendy the cluster size is restricted to 4.
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t(k) 22 92

f(k) = k! t(k) 36 528 11040

Table 3.1 Number of non-leaf topologies f(k) for diff. cluster sizes k.

The function fw sums up the number of connections between blocks / I/O

directions multiplied by their "topological distance". The topological distance is

hardwired into the template functions and provides a crude estimate of the

desirability of acertain room assignment for minimizing wire lengths (see Fig. 3.5).

By computing the inner product with the connectivity matrix from Fig. 3.1 and

summing up all the elements of the resulting matrix it is possible to produce the

result for fw very fast. This is indispensable considering the size of f(k).

W

N

0 1

3

2

0 1 2 3 N w S E

0 0 1 1 0 0 0 2

1 0 0 0 1 0 1

2 0 1 2 0 0

3 1o 2 1 0

Fig. 3.5 Example of a template with topological distances.
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The function fa penalizes all the topologies in which the biggest dimension of

one of the children exceeds the length of the longer side of its room. Besides that,

it also discourages room shapes with aspect ratios much bigger or smaller than 1:1.

In general the number of good placement alternatives on levels of the hierarchy will

be smaller for extremely long goal shapes.

The overall cost function is a linear combination of the functions fw and fa.

The weight factors for fw and fa are o^ and aa respectively. The user controls

the trade-off ratio —— between optimization for minimum area and optimization

for minimum wire length.

3.3. Leaf Level Enumeration

On the leaf level the objective functions have to be changed. Additionally, not only

the block locations but also their orientations have to be determined. An inner loop

has to be added to Algorithm 3.1 in which all the possible block orientations are

examined (Algorithm 3.2). Note that some cost computations are independent of the

block orientations.
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leaf enumeration

compute a wire length cost function fw

for horizontal and vertical block orientation

compute an area cost function fa

for all 4 orientations achievable by mirroring

compute a neighbor penalty function /„

choose the possibility with min: 0^ (fw + fn ) + CLa fa

Algorithm 3.2

The wire length cost function stays the same, but a new function fn that

examines the pin positions for blocks with a topological distance of 0, i. e. adjacent

blocks, is added.

The area cost function fa' now has the exact dimensions of the blocks at its

disposal. The step 'subdivide the area' from Algorithm 3.1 is no longer necessary in

Algorithm 3.2. The shape of the enclosing rectangle obtained by packing the

macrocells in the cluster as close as possible for the current topology is compared

to the shape goal for the whole cluster set by the higher-level placement decisions.

x- and y-dimensions are examined independendy. In the following the x-dimension

is considered. If the necessary width xn exceeds the goal width xgt

(Xn -xg)x Ychip is added to the area penalty, because in the absence of other
overlaps, the chip area will increase by this much (see Fig. 3.6).



Xn
chip

^^^^^^
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Fig. 3.6 Leaf level area cost function.

In the case that xn <xgt (xg -xn) xyg // is subtracted from the area

penalty, because an overlap in another cluster may be accommodated in this area.

Since this is uncertain, the heuristic factor f decreases the effect of this subtraction.

3.4. Target Shapes and Lookahead

In many cases the heuristics for computing fa on the non-leaf level do not lead to

the best solution. It is clear that more information about the desirable shapes must

be available on higher levels of the hierarchy to be able to define a better objective

function.
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The easiest way to do this is to find out about the optimal shape goal for the

lowest level clusters and to propagate this information recursively up the clustering

tree. The optimal shape goal (target shape) of a cluster can be derived by

enumerating all the possible topologies to combine the cluster elements. The same

procedure as in the top-down enumeration can be used. During the top-down

enumeration the target shapes of the clusters can be used like the actual shapes of

macrocells in section 3.3.

Some modifications to this scheme are necessary to make it work.

• Target shapes with aspect ratios far away from 1:1 are pretty useless, even if

they represent the optimal way to place, e.g. 4 very long blocks with the same

width. Strange aspect ratios have to be penalized in the same way as in section

3.2 during the enumeration process.

• If optimal goal shapes are combined, the result of this combination might be far

from being optimal. The objective function has to account for this effect. The

more dead space a target shape contains, the lower should be its impact on the

choice of a placement topology.

• Real-world macrocell layout examples by and large consist of less than 50

blocks. Predictions for future "superchips" are in the range of 100 blocks. In

any case, with 5 blocks per cluster, 125 blocks can be accommodated in a

clustering tree with a depth of 3. The dimensions of macrocells are known, the

target shapes on the hierarchical level above the macrocells are optimal. A 1-

level lookahead therefore is enough to totally avoid the problem described in the

last paragraph (see Fig. 3.7).



Fig. 3.7 Clustering tree and lookahead.

lookahead

(1 = 2)

target shapes optimal

exact shapes known

21

Although the search tree is shallow, its branching factor turns out to be very

high. Under the assumption that the clustering tree is a k-tree, an 1-level lookahead

(see Fig. 3.7) has a complexity of

n -1

k -1
/(*)

/+1 ;,/

The formula is derived in Appendix A.2. Although this is still linear in the number

of blocks n, f(k) is very large (see Table 3.1) and therefore makes some scheme to

speed up the program necessary.

Pruning of the search tree to reduce the effective branching factor can be done

with the help of the previous objective function. The disadvantage of that function

was that, although it could rule out solutions that were clearly undesirable, it was

not able to pick a good solution from the set of solutions not highly penalized. This

decision is now no longer necessary. If only solutions within some percentage

range of the "optimum" are kept as candidates that reduces the search space.

Possibilities that are very unlikely to lead to desirable placements are excluded.

Good topologies are not locked out arbitrarily, the number of branches to follow is

never restricted. In this way it is made highly probable that the optimal solution
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within the region bounded by the clustering tree in Fig. 1.2.a is encountered during

the search process.

By adjusting the parameter that controls the width of the search, the user can

trade off the quality of the final solution against run time on the computer. This is

of advantage both in the beginning of the design process, when only a fast upper

bound on area and wire lengths is needed and in the end, when the best possible

result is to be obtained, no matter how long the program runs, as long as the time is

reasonable. In principle the program allows a complete enumeration of the whole

solution space given by the clustering tree, by setting the lookahead to d-1 levels

where d is the depth of the clustering tree and not specifying any pruning.

3.5. Pseudo-Leaf Level Enumeration

Pseudo-leaf level nodes are clusters with target shapes. They have to be treated

differendy because of the problems with target shapes described in section 3.4.

Since the quality of the target shapes of different cluster elements varies, it is not

appropriate to combine them like real macrocell shapes and compare the resulting

shape with the goal shape of the parent cluster. Like on the non-leaf level, the goal

area is subdivided first. Then the target shape of every cluster is compared to its

own goal shape independent ofthe other cluster elements (see Algorithm 3.3).



pseudo-leaf enumeration

subdivide the area in the proportion of the areas of thecluster elements

compute a wire length cost function fw

for every cluster element i

for horizontal and vertical target shape orientation

compute an area cost function fa

choose the possibility with min: OC^ fw + 0Ca J) fa

23

Algorithm 3.3

Because the cluster elements are examined individually, only 2 k orientation

possibilities instead of all 2* have to be evaluated.

The area cost function fa consists of two parts

/i = P/.+0-P)/a'. o<;p<i.

As indicated by the indices, fa is the same as in section 3.2, fa' the same as in

section 3.3. The weighting factor P is a function of the wasted area in the target

shape of the cluster under consideration: If a lot of area was wasted in the target

shape, it is as good as having no information about it and P is close to 1. If the

target shape does contain information that is valuable in guiding the placement into

a direction that makes lower level decisions better, p is close to 0.
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Besides that the penalty contributed by fa is much lower than that contributed

by fa' for an equal geometrical constellation. In that way the placement is biased to

provide adequate goal shapes for clusters of which good target shapes are known;

clusters for which nothing better is known must take whatever shape the context

assigns to them.

Because the clusters behave like "soft blocks", it is not indispensable to

match all the target shapes on the first level. To mediate between the aspect ratio

provided by the user at the root of the tree and the dimensions of leaf blocks, the

target dimensions only have to latch on to desirable room dimensions on some

intermediate level of the hierarchy.

3.6. Intra-Level Dependencies

In the way the algorithm was described up to now, after the placement for one level

of the hierarchy was done, all the clusters on the next level of the hierarchy are

processed independently in an arbitrary sequence. This can lead to undesirable

results for the wire length as indicated in Fig. 3.8, because the center points of the

parent clusters are taken as reference point for all the connections between the

clusters.
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Fig. 3.8 Mutual dependency of room assignments.

It was not attempted to find an optimal solution for this case, but one that was

practical from acomputational point of view and would work well for most of the

cases. First of all it is clear, that once one cluster was placed, the center points of

the cluster elements, which now have a fixed location, should be used to compute

the edge weight of I/O connections of other clusters (Fig. 3.2 and 3.3). This is

easily achieved by attaching a 'placed'-bit to every cluster. When the I/O-goals for

a cluster are computed, all the connections to other clusters are iterated. If the

connected cluster is already placed, its center point is taken as reference point. If a

cluster is not yet placed, the center point of the parent is examined. During the

lookahead it is possible that the examination of parent clusters is repeated

recursively until an element is found of which the position is already known.

This procedure introduces an ordering dependency. The later a cluster is

placed, the stronger is the influence of already completed partial placements.

Therefore the cluster with the largest area is placed first. Alternatively the cluster

with the longest common boundary with other clusters could be taken first.
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All the clusters, of which the parents are placed, are kept in a queue data structure.

So this is simply amatter of sorting the queue whenever anew hierarchical level is

started.

3.7. Analysis

It is somewhat artificial to evaluate a placement without the routing. Nonetheless

some measure of performance must be defined to be able to show the effect of the

various procedures introduced in this chapter. Two figures of merit are needed to

compare the effects with respect to area and wire length minimization.

The figure of merit used for the first goal is area utilization. It is defined as

the proportion of the sum of all block areas to the area of the enclosing rectangle

for the placement result. The estimate for achievements with respect to the second

goal is the sum ofnet half perimeters (although without routing area no net could

actually be implemented). The maximal net half perimeter is not explicidy

optimized in the implemented algorithm and only shown for comparison purposes.
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original version with target shapes

aa /a* area sum of net max. net area sum of net max. net

(normal.) mil. half perims. half perim. util. half perims. half perim.

0.1 76.02% 10497 354 77.98% 10412 350

1 77.58% 10188 350 84.12% 10795 335

10 79.63% 10719 346 87.23% 11441 328

Table 3.2 Experim. results (33-block example) with diff. cost function parameters.

Table 3.2 supports two assertions:

• The behavior claimed in Fig. 1.1 really shows up. As soon as the weight of the

wire length cost function goes above a certain threshold, the dimensions of the

circuit due to additional dead space have grown so much, that the gain in

relative positions of blocks is overcompensated by the additional wire length

needed to bridge the gaps between blocks.

• Target shapes help the objective function to find out rectangle dissections that

lead to a better match between goal shapes and block shapes on the lowest level

of the hierarchy. Up to five blocks per cluster should offer so many degrees of

freedom for combinations that the objective function usually finds useful target

shapes.

Even though the target shapes are better than the original heuristic, they may be

misleading since in the bottom-up shape enumeration the eventual context, in which
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the cluster will be placed, is unknown. In these cases and of course in those cases

where target shapes include too much dead space, a lookahead can help to avoid

unfavorable template choices. Table 3.3 gives some experimental results for a 1-

level lookahead employed in the placement of a 33-block example. Originally a

complete search was done, the result appears in the last line of Table 3.3. Then

only branches within some percentage of the best cost value on the current level

were considered on the next level of the hierarchy. This percentage, the pruning

threshold, was decreased until only the best solution on the current level was left.

In this case the result is the same as if no lookahead were specified.

pruning area sum of net max. net elapsed time

threshold utilization half perims. half perim. (normalized)

0% 87.23% 11441 328 1

50% 88.59% 10937 324 2.07

200% 90.09% 10607 339 4.67

oo 90.09% 10607 339 75.56

Table 3.3 Experimental results (33-block example) for 1-level lookahead.

After restricting the search space to approximately 6% of its full size by

cutting away all solutions whose cost function on the current level is more than

200% larger than the local optimum, the globally optimal solution is still found.

After decreasing the search space further, at least a solution that is better than the

original one was detected.
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Chapter 4. Routing Area Estimation

4.1. Motivation

If the technology provided a spare couple of interconnection layers above the

macrocells, placement and wiring would be independent of each other, the block

packing results as shown in the last section would be satisfactory. Since typically

this is not the case, routing area has to be interspersed between the blocks.

Even when the spare interconnection layers are available, it might be necessary

to provide space between the blocks. After the first metallization layer is deposited

on the chip, the chip surface is quite ragged. To avoid problems ofelectromigration,

the second layer ofmetal typically has to follow other design rules with wider wires

and more space between the wires. Contacts between one of the active layers and

metal2 also need more space. As a result, there might not be enough space to com

plete the routing on the layers above the functional blocks.

The area needed for a chip basically consists of the 3 components block area

(BA), routing area (RA) and dead area (DA) [Ued85]

A = BA + RA + DA.

The classic objective for the placement is to minimize the total wire length (RA).

An algorithm that tries to minimize the area (A) should only increase RA if this can

be compensated by a larger decrease in DAl.

1 It is assumed that the block area (BA) is constant.
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If the placement does not include an explicit estimation of the routing area, its

results will suffer from the fact that it cannot distinguish between dead space that

later can be used for routing and dead space in DA that can lead to an increase in

routing area because the blocks are further apart from each other.

A second reason why routing area estimation during the placement is neces

sary rather than including the routing area after the placement, is shown in Fig. 4.1.

A placement that was optimized to have a rectangular shape of a given aspect ratio

is probably neither rectangular any more, nor does it conform to the desired aspect

ratio after routing area was added.

=>

B

Fig. 4.1 Scenario for a placement before and after routing area estimation.

4.2. Previous Approaches

It was seen earlier that the placement has to take care of the routing area as well in

addition to block areas and the dead space between them. However, most placement

programs do not deal with this problem. There are several reasons:

•

•
•
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• The problem of placing arbitrarily sized rectangles in a minimal enclosing rec

tangle in an optimal way is already difficult enough; it is NP-complete [Sha85].

• It is not enough to just estimate the routing area. For the estimation of dead

space and to get a rectangular shape of the final layout, the location of the rout

ing space also has to be determined.

• A good estimate for the space needed for routing has to have some information

about the route a particular wire takes. The exact information is not available

before the detailed routing is done, an approximate information that would be

good enough is produced by the global routing. To compute an objective func

tion for a placement in a program then would require global routing every time

the objective function has to be evaluated. This is clearly not feasible because of

its computational cost.

• If a program has a way to estimate the location of interconnection area and the

estimate is not exact enough, that might mislead the objective function so much

that the result becomes worse than without routing area estimation. This was

true for an early version of the program described here, that introduced a lot of

unnecessary dead space.

There are, however, some approaches that - with different degrees of sophistication

- tackle the problem. In [Sec85] and [Wip85] heuristics are applied to each block

before the placement to derive a hypothetical block shape including some routing

area based on the number of pins of the block. In [Che83] a pseudo-routing of

pairs of modules is performed to derive the necessary distance between the two

modules in a row-based placement Both solutions fail to account for connections

outside of the immediate neighborhood of their terminals.
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For gate arrays, Burstein et al. introduced an algorithm that merges placement

and routing in a hierarchical fashion [Bur83]. Because of the simple array structure,

this grid-based approach is feasible. In [Sze86] a simultaneous placement and global

routing of restricted slicing structures was proposed. A method to generate the glo

bal routing at the same time as the placement, suited to the more general topologies

used in this work, was described in [Dai87]. In both cases no attempt was made to

estimate the routing area based on the global routing information. Because of their

representation of global routing paths as links between the center points of adjacent

blocks, that would not be straightforward.

More literature exists on the topic of routing area estimation after the place

ment is finished. Statistical approaches [Hel78, E1G81] use a Poisson model for the

generation of wires along block edges and assume an exponential distribution of

wire lengths. They do not take actual pin positions or detailed connectivity informa

tion into account Therefore their usefulness for the problem described in section

4.1 is questionable. Most programs perform a global routing after the placement is

finished and then estimate the necessary routing area [Lau79, Fow85, LaP85].

4.3. Top-Down Space Allocation

Besides using the hierarchical decomposition of the problem, the basic idea is to

avoid a dynamical shortest path or Steiner tree determination by precomputing the

paths for the finite number of templates and storing the information in the library of

floorplan templates.
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For every template and for each connection between blocks / clusters / I/O-

goals all the channels on the shortest topological paths are marked with a probabil

ity. This probability represents the likelihood that the connection will really pass

through that channel (see Fig. 4.2). pfj is the probability that aconnection between

i and j will pass through the channel between k and 1.

N

w

02
PIN = 0.5

/ /

0

72 '/
/ /

' A /

1

Fig. 4.2 Hierarchical routing area allocation.

2E
P in =0.5

Sjd
Then the required normalized "channel" width — ("channels" on higher

levels consist of many real channels; w is the design-rule dependent track width)

can be estimated as

skl

i j

where c^ is the pertinent element of the connectivity matrix and tu a heuristic fac

tor that accounts for track sharing. This requires exacdy the same operations as the

computation of the topological wire length cost function fw from section 3.2,

although it has to be done for all the channels (bottlenecks [Che83]) in a template.
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The storage requirements for the library ofparameters are acceptable (see Appendix

A.3.). Thus it can be done very fast in the inner loop of Algorithm 3.1, 3.2 or 3.3

before the area penalty /« /// « evaluated. In this fashion routing area is treated

equivalendy to block area. It not only influences the choice of templates on the

current level of the hierarchy, but also the shape goal for the next level.

The estimation takes advantage of all the information gathered about the posi

tion and connectivity of clusters of blocks up to that level. Earlier in the process

space for global connections between different clusters is provided, later on more of

the internal connections within the clusters become visible.

The allocation of space along the shortest path makes the job of a global

router easier, but does not constrain it in doing whatever is recognized as optimal

after the complete topological information produced by the placement is available.

Besides that, this approach is very flexible; for "over-the-block wimble" cells

[Ued85] the probabilities can be easily adjusted.

Before refining the basic idea, it seems appropriate to describe how the

numbers pjf and tu are derived. In general the numbers to be assigned to pff are
pretty obvious as in Fig. 4.2, since most of the time only two distinct shortest paths

exist. For fine-tuning, statistics can be compiled that characterize the behavior of the

global and detail routers used. It is likely that different routing algorithms will yield

slighdy different results for the parameters. It is one of the strengths of this

approach that without changes in the program it can be applied to different design

technologies and methodologies.

For the non-leaf levels it is assumed that the connections leave the clusters on

the side that is closest to the end point of the connection. In Fig. 4.2 that means

that a connection between blocks 0 and 2 would leave the right side of block 0 and
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enter the left side of block 2. It is the task of the next lower level to provide the

space to get to this side. On the leaf level, this is no longer possible. In this case
the pin position information already needed for the determination of block orienta
tions comes in handy. For a given block orientation, if needed, additional space has

to be provided along the sides of the block to bring the wires around the block to

the location that is closest to the end point of the connection.

4.4. Bottom-Up Estimation

Due to the nature of the objective function used, area taken away from the cluster

area to account for the space needed by the wiring must have been added before

hand. Instead of just assigning the sum of the areas of the children to aparent node

in the clustering tree, a routing area estimate has to be included as well. Note that

at this stage it is not necessary to know the routes that connections take (that would

be impossible anyway because the placement is not done yet), only the approximate

area needed for connections has to be estimated.

The task of predicting the space needed for routing before invoking a floor-

planner or placer has gained some attention recendy [Kur86, Che88, Zim88].
Unfortunately the reported results applicable to the macrocell layout style are not

very encouraging: Errors of 20% (of the whole layout area, much more if the

known block area is excluded) seem to be the current state of the art ([Che88],

[Zim88]). This would be unacceptable to the area penalty functions described in

sections 3.2 and 3.3 and would lead to very strange results.
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Fortunately a bit more information to estimate the routing area is available

here. After having done the clustering on one level of the hierarchy, we know all

the connections between the cluster elements and from cluster to cluster. On the

lowest level of the hierarchy the number of pins along the 4 sides of a block is

known as well. When the optimal target shape is chosen, a reasonable way of

arranging the blocks topological^ is generated as abyproduct. All this information

can be used to produce arouting area estimate that exactly mirrors the more sophis

ticated top-down routing area estimate with respect to its hierarchical decomposi

tion.

Since the exact constellation that tries to minimize the number of connections

between non-adjacent blocks / clusters is not known, aworst case approach is taken

by building ahypothetical connectivity matrix C with identical connection strengths

c~i and c~e for all intra-cluster and inter-cluster connections respectively. That means

that all c]j are set to c] for j e [0,...,k-!] and to ce for ; e {N,W,S,E}.

ci = u />, _i\ X X cij

c~e = "77 ^ ^ Ci*4 K ijE [N.WJ.E]

With this connectivity matrix and the target shape topology the top-down wiring

space allocation function is called. The exact distribution of the wiring space gen

erated by that function is of no interest here, the only thing that is extracted is the

total area of the space needed for routing. It is not necessary that in the top-down

placement process the same topology is chosen for the routing area estimate to be

reasonably close, although that helps of course and really happens on lower levels

of the hierarchy if the wasted area in the target shape is small. The routing area,

contrary to its exact allocation, is very similar for different good topologies, i. e.
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topologies without too much dead space.

On the leaf level the block areas are inflated in both dimensions based on the

number of pins of the module in each direction.

In the final result connections between non-adjacent blocks tend to be weaker

than connections between adjacent blocks. Therefore the initial routing area esti

mate is reduced by some heuristic factor. If with the default value the routing area

is consistently over- or underestimated, it can be adjusted by the user.

Table 4.1 provides some evidence that the method described yields a satisfac

tory match between the routing area estimated in the bottom-up phase of the pro

gram and the routing space allocated top-down. In none of the cases the default

value referred to in the last paragraph had to be adjusted.

aspect ratio 1 : 1 aspect ratio 1 : 1.5

example level # clusters area ratio bu/td std. dev. area ratio bu/td std. dev.

primBBLl 0 1 1.000 1.005

1 3 1.045 0.028 0.998 0.062

primBBL2 0 1 1.000 0.986

1 3 0.994 0.022 0.990 0.014

2 9 1.008 0.120 1.014 0.104

Table 4.1 Comparison between bottom-up (bu) and top-down (td) estimation.
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4.5. "Fuzzy" Rectangle Dissection

The function 'subdivide the area' in Algorithm 3.1 becomes somewhat more

involved now. Its task is, given X, Y and the area of the cluster elements at (see

Fig. 4.3), to generate the shape goals x{ and yt for the cluster elements. IfX x Y is

equal to £ ai Plus the muting area given by the su, that is easy because then a
i

greedy algorithm is successful. Starting with yx =Y in Fig. 4.3, all the unknowns

can successively be computed.

xl

s13 y3

X3

s23

812
y2

*2

Fig. 4.3 Example problem for rectangle dissection with routing area.

If the bottom-up routing area estimation is not 100% exact, the last cluster ele

ment gets all the space that is left, even if that space is negative. For the area cost

computation to work right it would be better to reduce or increase each side of all

the cluster elements by the same factor r. Under the assumption that the area pro

vided is too small, r has to be smaller than 1. Then the rectangle dissection problem

for the template of Fig. 4.3 can be represented in the following form:
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MAXIMIZE r

X = r Xi + max Cs12 + r x2> sX3 + r *3)

Y = max (r yh r y2 + *23 + r y3)

xt- y,- = fl/, i = 1, 2, 3

Since there is no closed solution even for the simple case shown, an iterative

method is employed. First the greedy algorithm is applied (r° = 1); fl3 therefore

does not fit into the space left for the last room. If in the j-th iteration the area

difference between the last cluster and the last room is Aaj, r*+1 is set to

r,+i =(1_A£i)r;.v x Y j

In the next call of the greedy algorithm, the cluster element areas are set to

fl/+i = (ri+1)2ai.

The stopping criterion for the iteration is

Aaj < 0.02 a3.

It can be proven that this kind of iteration converges for all the templates and in

fact, it converges quite fast because the initial guess r° = 1 is very good and the

stopping criterion is not very demanding.

4.6. Advantages and Shortcomings

To analyze the behavior of the proposed routing area allocation scheme, con

sider the example in Fig. 4.4 and specifically the routing paths provided for the

connection from 1 to 2.
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Fig. 4.4 Placement example with routing paths.

The picture only gives a conceptual overview, lower probability paths are

not included and the paths shown differ with respect to their probability. That

means that for a given number of connections between block 1 and block 2,

different numbers of tracks are assigned to different "channels'* on different

paths. In spite of this, several properties of the algorithm become evident:

• Because the internal structure of clusters is unknown on higher levels of the

hierarchy, space for global connections is not provided in "cluster

feedthroughs" (like in cluster B). This disadvantage is not too serious,

because if the global router decides to use the feedthrough in cluster 3 for

the connection shown, that merely makes a local move of block 3 towards

cluster C necessary. The main property is that the space for the horizontal

connection between clusters A and D was taken into account and influenced

the choice of the templates so as to accommodate the connection without

making block moves outside of the enclosing rectangle necessary (like in
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Fig. 4.1) or having to change the relative placement.

• Because the space generated between cluster B and D is eventually added to

all the channels along this boundary, non-leaf level estimates tend to be too

high. The algorithm accounts for this fact by normalizing the spacing

requirements on different hierarchical levels with different constants.

• Another disadvantage that cannot be seen in Fig. 4.4 is that blocks that fit

together by abutment cannot be distinguished from other blocks having

many connections between adjacent sides. That is a general limitation of the

simplified representation of connections introduced in chapter 3.1. Since

abutment is very special and given the savings in CPU-time with the

simplified representation of terminal locations, it is excusable that too much

routing space is provided for that case.
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Chapter 5. Sensitivity

5.1. Introduction

Since CAD programs do not produce a global optimum solution for most problems,

incremental changes in the problem description should not yield solutions that are

radically different from the original ones. Small changes in the input occur quite

frequendy. To overcome functional problems, connections are changed, added or

removed; to optimize the timing of the circuit or to lower heat dissipation in critical

areas, sizes of transistors are changed. If the CAD program is very sensitive to

these changes and produces a totally different layout, this might defeat the purpose

for the input modifications, possibly causing further changes in the input, requiring

many iterations until the solution is stable again (see Fig. 5.1). On the other hand

the algorithm should be able to react to significant changes in the input I, otherwise

it could not find at least near-optimal solutions. Furthermore, it should be sensitive

to the control input C, otherwise a designer could not influence the program to con

sider his particular requirements.
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I: layout input
C: program control input
0: layout output

S = dO/dl : sensitivity

Fig. 5.1 Symbolic representation of automatic layout processes.
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The approach taken in the presented placer can in its major parts be followed

by a floorplanner as well. Iffloorplanning and placement were treated independently

and the result of the placement was significandy different from the floorplanning

result, the shape optimization for soft blocks would have been done for the wrong

topology and it might become necessary to repeat the block generation or design

process.

Maintaining the global layout without sacrificing the ability to optimize it, is

possible by taking the original clustering tree again for the changed input data. The

clustering tree still allows the placement to adapt to changes in the design in vari

ous ways, whereas a binary slicing tree is already quite restrictive. The sensitivity

can be controlled in still another way: When looking for the minimum of the objec

tive function, a better solution is only accepted if its cost is significantly lower than

that of the best solution up to date. What is significant, is determined by the user,

according to how important this issue is for him. This introduces a bias towards the

solutions produced earlier, so the templates are enumerated in a sequence
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corresponding to their general "desirability".

Changes in the placement due to the addition of routing area are minimized by

the simultaneous placement / routing area estimation described in chapter 4.

5.2. Analysis

To be able to evaluate the effectiveness of various measures to decrease the sensi

tivity S, the formula for S has to be changed to S=-^y and input and output

changes have to be clearly defined.

AIC can be defined as the proportion of nets that are changed, added or

deleted to the total number of nets1. Similarly AIB can be defined as the propor

tion of area changes to the sum of all block areas1. To avoid that positive and

negative area changes cancel each other out, they both have to be added to AIB
with a positive sign.

Since the program under consideration is a placement program, AO is

measured in terms of deviations from the original block positions: For the origin

always lying in the lower left hand corner of the chip, AO can be defined as

ao = E«xi-V)2 +<y.--tt')2)
i

where (*;, yt) is the original position of block i and (x/, jO is the position after

the changes. The argument to use the squares of a.U distances is to make a few large

movements count more than many small ones.

1 If the changes are small, the denominator can be treated as being constant
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•c,_ aoIt is practical to split up the sensitivity into two parts: S (= —j-), the sen-

), the sensitivity forsitivity for changes in the connectivity input and SB (= —y

changes in the block area input2. Symbolically this can be written as

dO = Sc dlc +SB dIB,

where dlc and d IB represent the respective input changes.

The following Table 5.1 shows the effect of some sensitivity reduction

mechanisms of section 5.1. The results in the first row were obtained by changing

two connections (A /c), the results in the second row by changing two block

shapes (A IB).

clustering tree

significance threshold for changes

A O (1 net deleted, 1 changed)

AO (2 blocks resized)

no constraint original tree

none (0.00)

596

2988

0

2988

0.01

0

2154

0.05

0

504

Table 5.1 Effect of some sensitivity reduction mechanisms (primBBL2).

2 Other sensitivities - like the sensitivity for block shape changes - could be readily incor
porated as well, but are not considered in this report
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Chapter 6. Examples and Results

The program has been tested with several examples. The placement results are com

pared with those obtained by the BBL program [Che83] and MOSAICO [Cas86] for

the two benchmark examples for macrocell layout used at the 1988 MCNC Interna

tional Workshop on Placement & Routing.

Table 6.1 shows the results for primBBLl, Table 6.2 the results for

primBBL2. The numbers are normalized with respect to the BEAR placement, e. g.

the column 'area' is obtained by computing the ratio of the total layout area for the

program in question and the area obtained with the BEAR placement. Actual layout

plots can be found in Appendix B.

The time needed to obtain the placements by the BEAR placement program

was 131 seconds for primBBLl and 762 seconds for primBBL2 (elapsed time on a

VAX 8800 with a workload between 10.5 and 12.5).



example primBBLl

after routing

area sum of

wire lengths

number

of vias

BEAR 1.000 1.000 1.000

BBL 1.077 1.179 n/a

MOSAICO 1.019 1.026 1.308

Table 6.1 Comparison of results for the 10-block example primBBLl.

example primBBL2

after routing

area sum of

wire lengths

number

of vias

BEAR 1.000 1.000 1.000

BBL 1.047 1.211 n/a

MOSAICO 1.117 1.157 1.019

Table 6.2 Comparison of results for the 33-block example primBBL2.

47
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Table 6.3 helps to determine how well the routing area estimation predicts the

area actually needed by the routing. The areas in the first column are given by the

output of the placement program, the results in the second column reflect the final

areas after the global and detailed routing were completed. The routing area needed

by the ring router is not included because it is not taken into account in the routing

area estimation during the placement either.

example

primBBLl

primBBL2

apte

area after placement

2384 (40.4x59.0)

235.3 (15.9x14.8)

5060 (74.9x67.6)

area after routing (core)

2470 (41.3x59.8)

246.1 (16.3x15.1)

5560 (73.9x68.4)

Table 6.3 Mismatch between estimated and actual layout areas.

A%

+3.6

+4.6

-1.2
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Chapter 7. Possible Extensions

All the results described were obtained with clusters of a maximal size of 4. It is

not advisable to run the program with only a very small subset of 5-room templates,

because as soon as 5 elements per cluster are allowed, the clustering makes exten

sive use of this opportunity. It is a time-consuming but otherwise straightforward

process to add the 5-room templates to all the sets of template specific functions

and data structures.

The addition of 5-room templates would have two positive consequences:

• New topological possibilities not achievable with the current set of structures

would be made possible by the use of non-slicing templates.

• For certain numbers of blocks the number of hierarchical levels could be

decreased, making the information available at the higher decision levels more

accurate.

However, there would also be a major disadvantage: As can be seen in Table 3.1,

the time needed to decide about the placement of a 5-block cluster is about 20

times higher than the time for a 4-block cluster.

A possibility to improve the block shape information that is propagated up is

to replace the single target shape with a set of target shapes, i. e. a shape function

[Lau88]. In that case no more lookahead step would be necessary. The top-level

goal shape could be chosen from a finite set. Shape functions can be combined

efficiendy for slicing structures [Ott83]. For non-slicing structures however, it seems
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that there is no way to find the composite shape function other than enumerating all

the possibilities1. If 5 clusters with 10 possible shapes each had to be combined in a

non-slicing structure, the number of possibilities would be huge (105 x 11040 > 1
billion). The problem could be avoided by restricting the non-slicing structures to

the leaf level of the hierarchy.

Even though as indicated in section 3.6 there are some dependencies within a

hierarchical level, the algorithm lends itself to an implementation on a multiproces

sor. At least the lookahead could be done in parallel for the different cluster ele

ments without many modifications. A substantial increase in speed could also be

achieved for the leaf level block orientation determination.

1 In [Sto83] it was proven that finding the optimal orientations of blocks for a given floor-
plan is NP-complete for non-slicing structures. Because the problem of finding the shape func
tion - lower area bound of all possible rectangles - of a cluster involves finding the optimal
orientations of its children, that problem is clearly NP-complete as well.
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Appendix A. Supplementary Material

A.l. Threshold Value for Clustering Constraints

The distribution of block areas may be arbitrary with a minimum block area am]n

and an average block area \ia. The threshold value ath is set to ath =a^ +Aa.

The Markov inequality states that for arbitrary distributions u(X) > 0

P[u(X)*c]ZE[u(X)] , c>0.
c

The random variable X is identified with the block area a,

u(X) = a - fl^, c = Aa. Hence

Pla-a^Aa]^ ^ .

For a given distribution, Cj < 1 can be introduced so that

. _ M-a-flmin(1) Pla- a^ZAa] = cx ^ .

In any clustering step, at least k blocks should be available for clustering (k = max

imal cluster size, n = total number of blocks)

k
(2) Pia-a^Aa]^ 1 -P[a -a^ ZAa] > -.

With the introduction of c2 £ 1representing the relative importance of similar block

areas in a cluster, (1) and (2) can be converted to

*_= Va-amm
c2n * Aa

Aa = Cj

2

\ra~~^min

i—<-
c2n
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Ci and c2 can be user inputs to control the clustering process.

Example: n = 13 blocks, k = 5 blocks / cluster

minimum area amin = 20, average area \ia = 100

d = c2 = 0.5 -> Aa = 170, a,/, = 190.

Because the matching of block areas is most important on lower levels of the

hierarchy, c2 can be changed on every level i to yield a weaker Aa-restriction, e. g.

c2 = r x c2_1.

A.2. Complexity of Lookahead Search

Let n be the number of blocks, k the number of elements per cluster, f(k) the

number of topological possibilities as in Table 3.1. For a node in a k-tree f(k) possi

bilities have to be enumerated (lookahead 1= 0). For each of the possibilities, each

cluster element itself has f(k) possibilities to be placed. Therefore

kf(k)

possibilities have to be examined for a given goal shape. If the effect of the leaf
level, where the lookahead cannot go on, is neglected, for a lookahead depth of 1

levels,

f(k)(kf(k))1

computations of the objective function are necessary.

A k-tree of depth d contains

n =kd

leaf nodes and



I+k+ ... +*« = ^-—-
k - 1

non-leaf nodes (clusters). Hence the complexity is bounded by

4^ f(k)^ f^1 =JF~T ^k)M kl-k - 1 * - l
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A.3. Storage Space for Routing Area Estimation Parameters

Every botdeneck kl in a template with r rooms requires the storage of

(1) MLz!i +4r +l

numbers for the probabilities pjf and for tu. The following two theorems help to

determine the number of botdenecks in a template:

Theorem: In every floorplan graph1 with r rooms there are v = 2r + 2 vertices.

Proof: Every room is a rectangle bounded by 4 corners. Each comer is the site of

a node of the floorplan graph. Seeing that all the nodes2 (except for the 4

nodes at the comers of the floorplan) are of degree 3, every node is in the

corner of exactly 2 rooms (see Fig. A.3.1). The 4 comer nodes are only in

the corner of one room. Hence

4r -4
v = + 4 = 2 r + 2.

1 Floorplan graphs are defined in [Dai87].
2 A V-intersection is interpreted as a degenerate case of two arbitrarily close "T-

intersections.



54

no corner

corner comer

Fig. A.3.1 'T'-intersection at a node of the floorplan graph.

3
Theorem: Every floorplan graph with v vertices has e - —- v - 2 edges.

Proof: Nodes only exist at the 'T'-intersections in the floorplan graph2 and at the

4 comers of the floorplan. Therefore 4 nodes are of degree 2, v - 4 nodes

are of degree 3. Every edge is incident to two nodes. Hence

e =((v-4)x3 +4x2)| =| v- 2.

All the templates in the library produce rectangle dissections, none of them intro

duces empty rooms. For that case every edge of the floorplan graph corresponds to

a botdeneck in the layout. The number of bottlenecks is therefore

(2) e =|- (2 r+2) - 2=3r+1.

(1) and (2) combined result in

-2- r3+ll r2+^r- r +1
2 2

numbers to be stored with each template. In the case of r = 5 rooms under the

assumption that each number is stored as a 2-byte short integer (e. g. the probabili

ties are normalized to a number between 0 and 100) that is approximately 1 kByte

per template.
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Appendix B. Layout Examples

.•AV.%ViVtVt'.»V«»»:«>:OMlMllllK

aaaRB^

Fig. B.1.1 Block packing of example primBBLl.
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Fig. B.1.2 Placement of example primBBLl.
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Fig. B.1.3 Layout of example primBBLl after routing.
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Fig. B.2.1 Block packing of example primBBL2.
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Fig. B.2.2 Placement of example primBBL2.
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clfplot* Window: 0 8.89 -0.035 9.115 0 u=200 Scale: 1 micron Is 0.3 Inches (7620x)

Fig. B.2.3 Layout of example primBBL2 after routing.
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Appendix C. User's Manual

CI. User Interface

The following description of the user interface of the BEAR placement program

assumes that a chip window has been opened and the clustering is done. The placer

then can be invoked by typing pi while the curser is in the chip window. The reader

should be familiar with the general approach taken in the placement program before

continuing to read here.

To start the placer, 3 types of input parameters are requested from the user.

They will be described in the sequence the program prompts for them.

• Determination of the goal shape.

The desired shape of the final layout can be specified in either of two ways: As

goal aspect ratio (ratio of width to height) or as a fixed width or height of one

dimension of the layout The default shape in either case is a square. Although

it cannot be guaranteed that the specified goal can be achieved exacdy, the

results are never far away from the desired value.

Because the goal shape plays an important role in the computation of the objec

tive function, it is often helpful to play around with this number to get the best

result (a change from 1.1 to 1.15 may have a big impact). This problem is

alleviated if a 1-level lookahead (see below) with reasonably large search region

is specified.
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• Trade-off between area and sum of wire lengths.

On a scale from 0.0 to 1.0 the relative weight of the objective functions for area

minimization and for wire length minimization can be influenced. 0.0 means that

area minimization is most important, 1.0 emphasizes wire lengths.

It is very difficult to know exactly what the optimal weighting for minimal wire

lengths is, because the dead space that is introduced by moving strongly con

nected blocks closer to each other may have a detrimental effect. The internal

weight factors are adjusted so as to make it probable that a value of 1.0 gives

the optimal solution, for some examples however, it might be better to choose

0.8 or even 1.2.

• Lookahead and pruning of the search tree.

To improve the placement results, the breadth-first traversal of the hierarchy can

be complemented by a depth-first lookahead to improve the reliability of the

objective function. The user is free to specify different lookahead depths from

different levels of the hierarchy and to narrow down the search space more or

less drastically.

Because of the additional computational complexity of the lookahead, most of

the time only 0 and 1 will be considered as relevant If a lookahead (> 0) is

selected, the user is prompted for a constant that determines the width of the

search. On every level the objective function of that level is computed. Only

those possibilities that lie between its minimal value and (1 +pruning constant)

x minimal value are further explored.

For a lookahead of 0 (no lookahead) most time is spent in the last level to
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determine the orientations of the macrocells. To make the time spent on higher

levels comparable to that time, a pruning constant of 0.5 is OK (but that

depends very much on the example). A constant of 1.0 most of the time gives

near-optimal results; only in few cases can the result be improved above values

of 2.0.

After that the program actually begins to run. At the end ofeach hierarchical level,

information concerning the match between bottom-up and top-down routing area

estimation is printed out. If it rums out that the routing area allocated does not

match with the area needed, the routing area estimate can be increased with the

routing area adjustment factor (value > 1.0) or decreased (value < 1.0) before a

new clustering. If the crude bottom-up estimation is wrong, it can be adjusted with

the bottom-up adjustment factor in the same way. Although a mismatch does not

cause any errors, it may produce strange results (especially if too much area is

made available by the bottom-up estimation).

At the end of the program the dimensions of the produced layout are printed

out. To transfer the placement from the internal data structure of the placement to

the data base (and the chip window) an additional operation is necessary.

C.2. File Interface for Clustering

To make it possible to keep the clustering tree constant after input changes, a clus

tering tree can be stored to and retrieved from a file. That file also offers the oppor

tunity to edit the clustering tree. An example shows best how the file is organized:
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9

1 18 23 24

3 45 30

6 7 20 27

2 31 32 33

11 12 0 0

8 9 10 0

13 17 28 29

14 15 16 19

21 22 25 26

3

1900

2340

5678

1

1 230

A blank line starts a new clustering level, the lowest level appearing first. The

second line gives the number of clusters on that level. Every cluster occupies one

line with as many numbers as elements are allowed per cluster. If there are less ele

ments than the maximal cluster size, zeros are used to pad the input lines to the

standard length. The numbers on the first clustering level correspond to the

sequence in which the blocks are stored in the input file. On the following cluster

ing levels the numbers indicate the position in the preceeding clustering level. For

example on the second clustering level the first cluster consists of clusters 1(blocks

1, 18, 23, 24) and 9 (blocks 21, 22, 25, 26) of the preceeding level.
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