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Easily Testable PLA-based Finite State Machines

Srinivas Devadas*and A. Richard Newton

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Abstract

In this paper, we outline a synthesis procedure, which beginning from a State Transition

Graph description of a sequential machine, produces an optimized easily testable PLA-based

logic implementation.

Previous approaches to synthesizing easily testable sequential machines have concentrated

on the stuck-at fault model. For PLAs, an extended fault model called the crosspoint fault

model is used. In this paper, we propose a procedure of constrained state assignment and

logic optimization which guarantees testability for all combinationally irredundant crosspoint

faults in a PLA-based finite state machine. No direct access to the flip-flops is required. The test

sequences to detect these faults can be obtained using combinational test generation techniques

alone. This procedure thus represents an alternative to a Scan Design methodology. We present

results which illustrate the efficacy of this procedure —the area/performance penalties in return

for easy testability are small.

1 Introduction

Test generation for sequential circuits has long been recognized as a difficult task [3]. Several

approaches [2] [18] [16] [15] [17] [19] have been taken in the past to solve the problem of test

generation for sequential circuits. They are either extensions to the classical D-Algorithm or based

on random techniques [18] [17]. When the number of states of the circuit is large and the tests

demand long input sequences, they can be quite ineffective for test generation.

For sequential circuits, design for testability has been a synonym for the use of full Scan Design

techniques, such as the LSSD approach [S] pioneered by IBM.. This method converts the difficult
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problem of testing sequential circuits, into a much easier one, that of testing a combinational circuit.

However, there are cases where the area and timing penalty associated with LSSD techniques are

not acceptable to designers.

Logic synthesis and minimization techniques can, in principle, ensure fully and easily testable

combinational and sequential circuit designs. In [10], a synthesis procedure which guaranteed fully

testable irredundant combinational logic circuits was proposed. In [6], a procedure which produced

a fully and easily testable logic-level sequential machines from State Transition Graph descriptions

was proposed. The work in [6] showed that state assignment has a profound effect on the testability

of a sequential machine.

Programmable Logic Arrays (PLAs) are used extensively in the design of complex VLSI sys

tems. Sequential functions can be realized very efficiently by adding feedback registers to the PLA.

Numerous programs for the optimal synthesis of PLA-based finite state machines have been devel

oped (e.g. [9], [5]). Test generation and design-for-testability techniques for PLA structures have

been active areas of research.

Due to a PLA's dense layout, PLA faults other than conventional stuck-at faults can occur easily

and must be modeled. An extended model, the crosspoint fault model, has been proposed in [4]

and [12]. The crosspoint-oriented test set covers many of the frequently occurring physical faults,

including shorts between lines. Several PLA test generation techniques aimed at the crosspoint

fault model have been proposed (e.g. [13], [7]). In particular, an exact and efficient technique

which guarantees maximum fault coverage and identification of all redundant faults was proposed

in [20].

Design-for-testability techniques (e.g. [ll]) for PLAs require controllability of all inputs and

observability of all outputs of the PLA. Synthesis approaches to producing easily testable sequential

machines, without requiring direct access to the inputs/outputs of the circuit's memory elements,

have not been aimed at the crosspoint fault model.

In this paper, we outline a synthesis procedure, which beginningfrom a State Transition Graph

description of a sequential machine, produces an optimizedeasily testable PLA-based logicimple

mentation. We propose a procedure of constrained state assignment and logic optimization

which guarantees testability for all combinationally irredundant crosspoint faults in a PLA-based

finite state machine. No direct access to the flip-flops is required. The test sequences to detect these

faults can be obtained using combinational test generation techniques alone. This procedure thus

represents an alternative to a Scan Design methodology. We present results which illustrate the



efficacy of this procedure —the area/performance penalties in return for easy non-scan testability

are small. .

Basic definitions and terminologies used are given in Section 2. The crosspoint fault model is also

described. In Section 3, the relationship between state assignment and testability of a sequential

machine is discussed and the necessary conditions required for an easily testable PLA-based Moore

or Mealy finite state machine are stated. In Section 4, we discuss how an existing state assignment

algorithm can be modified to produce a constrained encoding satisfying the testability criterion.

Results obtained thus far for the synthesis technique are presented in Section 5.

2 Preliminaries

2.1 Definitions

A variable is a symbol representing a single coordinate of the Boolean space (e.g. a). A literal

is a variable or its negation (e.g. a or a). A cube is a set C of literals such that x G C implies

x (. C (e.g., {a,6,c} is a cube, and {aya} is not a cube). A cube represents the conjunction of its

literals. The trivial cubes, written 0 and 1, represent the Boolean functions 0 and 1 respectively.

An expression is a set / of cubes. For example, {{a},{&?c}} is an expression consisting of the

two cubes {a} and {6,c}. An expression represents the disjunction of its cubes.

A cube may also be written as a bit vector on a set of variables with each bit position representing

a distinct variable. The values taken by each bit can be 1, 0 or 2 (don't care), signifying the true

form, negated form and non-existence respectively of the variable corresponding to that position.

A minterm is a cube with only 0 and 1 entries.

A minterm mi is said to dominate another minterm mi (written as mi D mi) if for each

bit position in the second minterm that contains a 1, the corresponding bit position in the first

minterm also contains a 1.

A finite state machine is represented by its State Transition Graph (STG), G(V,E, W(E))

whereV is the set of vertices correspondingto the set of states S, where ||5|| = Ns is the cardinality

of the set of states of the FSM, an edge (v,-, Vj) joins u; to Vj if there is a primary input that causes

.theFSM to evolve from state «,- to state vj, and W(E) is a set of labels attached to each edge,each

label carrying the information of the value of the input that caused that transition and the values

of the primary outputs corresponding to that transition. In general, the W(E) labels are Boolean

expressions.



Figure 1: PLA-based Finite State Machine

Given n inputs to a machine, 2" edges with minterm input labels fan out from each state. A

STG where the next state and output labels for every possible transition from every state is defined

corresponds to a completely specified machine. An incompletely specified machine is one

where at least one transition edge from some state is not specified.

Given n latches in a sequential machine, 2n possible states exist in the machine. A starting or

initial state is assumed to exist for a machine, also called the reset state. A R-reachable finite

state machine has a STG such that input sequences exist which place the machine in any of the 2"

states, beginning from the reset state.

A finite state machine is assumed to be implemented using a PLA and feedback registers

as shown in Figure 1. The PLA implements both the output logic (OL) and next state logic

(NSL) functions. Direct access is provided only to the primary inputs (PI) and primary outputs

(PO). Tests are generated for faults in the PLA. A fault in the sequential machine is said to

be combinationally irredundant if a primary input vector and present state exist that detect

the fault at either the primary outputs or the next state lines. A fault in the PLA is said to be

sequentially irredundant if a primary input test sequence exists which detects the fault at the

primary outputs (The machine is assumed to be initially at the reset state).

An edge in a State Transition Graph of a machine is said to be corrupted by a fault if either*

the fanout state or output label of this edge is changed because of the existence of a fault. A

path in a State Transition Graph is said to be corrupted if at least one edge in the path has been

corrupted.



2.2 Crosspoint Faults

The following faults are considered in the crosspoint fault model.

1. Growth/Missing contact faults in the input plane

2. Shrinkage/Extra contact faults in the input plane

3. Appearance/Extra contact faults in the output plane

4. Disappearance/Missing contact faults in the output plane

5. Output stuck-at-one faults

Except for fault type 5, essentially two types of faults are present, namely, the missing contact

and extra contact faults. In the input plane, an additional contact on a row reflects an additional

constraint placed on the cube corresponding to the row and has the effect of shrinking the set of

vertices covered by the cube. On the contrary, a missing contact in the input plane removes a

constraint and thus expands the set of vertices covered by the cube. A missing contact on the tth

column of the output plane reflects a removal of a cube from the ON-set cover of the ith output

function. The effect is then the shrinkage of the ON-set of that ith output function. By the same

token, an extra contact in the output plane adds an additional cube to the output ON-set cover

and thus enlarges the ON-set. In the sequel, to adopt a unified point of view on these faults, we

call fault types 1 and 3 as GROWTH faults and fault types 2 and 4 as SHRINKAGE faults.

3 Easily Testable PLA-based Finite State Machines

Synthesizing a logic-level implementation of a finite state machine from a State Transition Graph

description involves the steps of state minimization, state assignment and logic optimization. All

three steps have a profound effect on the testability of the resulting logic implementation. In

this section, we will first describe the relationships between state assignment and testability of a

sequential machine. We will then focus on PLA-based finite state machines and give a synthesis

procedure of constrained state assignment and logic optimization which ensures testability for all

combinationally irredundant crosspoint faults in the machine. The procedure does not require that

the State Transition Graph (STG) description be state minimal - equivalent states can exist in

the original STG. However, for area efficiency and performance reasons, it is better to begin from



a state minimal representation. Finally, we will describe the origin of combinationally redundant

crosspoint faults in a PLA.
»

3.1 Relationship between State Assignment and Testability

In order to detect a fault in a sequential machine, the machine has (1) to be placed in a state that

can excite the fault and (2) the effect of the fault has to be propagated to the primary outputs.

State assignment does not affect the first step, i.e. state justification but can have a profound effect

on the second step of fault propagation.

We will concentrate on PLA-based Mealy finite state machines, since a Mealy machine can be

viewed as a more general case of a Moore machine. The PLA implements both the output logic

and next state logic functions. We will focus on combinationally irredundant crosspoint faults in

the PLA —combinationally redundant faults cannot be made testable in a sequential machine even

using full Scan Design or via state assignment.

For any combinationally irredundant fault, a present state, s, and a primary input vector, i,

exist, which can propagate the effect of the fault to the next state lines (NS) or the primary outputs

(PO). If the effect of the fault is propagated to PO, then the fault can be detected in the non-scan

sequential machine via a justification sequence for s. That is, when the machine is in s, applying i

will detect the fault. On the other hand, if the effect of the fault is propagated to NS but not PO,

then we obtain a faulty next state q^ instead of the fault-free (true) next state q. We need to be

able to distinguish q and qF at the primary outputs. If q and qF are equivalent states in the faulty

machine then we cannot detect the fault.

Depending on the type of crosspoint fault under test, the codes of q and qF will have certain

relationships. If we can ensure via state assignment that any two states produced as a faulty fault-

free pair are not equivalent (in the faulty machine) then any fault which is propagated to the next

state lines will always be detectable at the primary outputs. The synthesis procedure described in

the next section, does precisely this, in order to ensure testability for all combinationally irredundant

crosspoint faults in the sequential machine.

3.2 The Synthesis Procedure

.Definition 3.1 : Two minterms m\ and mi are said to be mutually-dominant if mi.D mi or

mi D mi. Two minterms mi and mi which are not mutually-dominant are said to be mutually-

nondominant if mi ^ mi.



Lemma 3.2 : For any kind of irredundant crosspoint fault in a PLA, the faulty output vector and

the true output vector are mutually-dominant

Proof: Consider a fault, F, in the PLA. If the fault is a GROWTH fault, then F adds to the

.ON-set of some outputs, but does not subtract from the ON-set of any output. Therefore, if F is

detected by some input vector t, then for some subset of the outputs whose true value is 0 for t,

the faulty value is 1. Outputs whose true value is 1, remain at 1. This means that oF, the faulty

output vector for t, dominates o, the true output vector for i.

If F is a SHRINKAGE fault, then F subtracts from the ON-set of some outputs, but does

not add to the ON-set of any output. Therefore, if F is detected by some input vector i, then for

some subset of the outputs whose true value is 1, the faulty value is 0. Outputs whose true value

is 0, remain at 0. This means that o D oF.

Finally, a crosspoint fault of type 5, namely an output stuck-at-one fault if detected will produce

a oF which differs in one bit from o (a 1 instead ofa 0). Again, oF Do. D

We now give a procedure of constrained state assignment, summarized in Theorem 3.3, which

ensures that faulty fault-free next state pairs are always propagated to the primary outputs within

one clock cycle.

Theorem 3.3 ; Given a n-latch logic-level implementation of a PLA-based finite state machine

(shown in Figure 1), if (1) the machine is R-reachable and (2) if the state encoding of the machine

is such that each pair of states which do not produce mutually-nondominating primary outputs for at

least one primary input vector are assigned mutually-nondominating codes, the machine is testable

for all combinationally irredundant crosspoint faults.

Proof: Consider a fault jP in the PLA. Since the fault is combinationally irredundant a primary

input vector i*i and a present state s exist which detect the fault at either the primary outputs

or at the next state lines. If the fault is detectable at the next state lines, then the faulty next

state produced qF instead of the true next state q are mutually-dominating by Lemma 3.2. By

Condition 2, a primary input vector %i will exist which will distinguish qF and q in the next cycle,

since states which cannot be distinguished in the true machine are given mutually-nondominating

codes and never allowed to appear as faulty fault-free pairs. We know that s can be justified in the

true machine because of Condition 1. However, the justification sequence may have been corrupted

by the fault. Also, we have to show that the distinguishing vector %i also holds in presence of the

fault.



The distinguishing vector ii is such that q and qF produce mutually-nondominating primary

output vectors oi and 01 on applying ii in the true macliine. Oi may be corrupted due to the

fault, the vector produced may be oiF ^ oi. By Lemma 3.2, oiF and oi are mutually-dominating.

Therefore, oi has to be different from oiF, since oi and 02 are mutually-nondominating. This

means that the distinguishing vector ii holds in faulty conditions as well. Note that if oj and oi

were distinct but mutually-dominating this is not the case.

We have a justification sequence for s, namely I. This path may or may not be corrupted due

to F. If the path is not corrupted, we can detect F by applying ii on reaching s. If the path is

corrupted, it means that for some edge in the path, F has been propagated to the primary outputs

or next state Hues. If F is propagated to the primary outputs, we detect F even before reaching s.

Else, if jP has been propagated to the next state lines, we obtain a faulty and fault-free next state

pairn and nF. We know that n and nF can be distinguished with some input vector 1*3 even under

faulty conditions. •

We now show that Condition 2, which requires mutually-nondominating codes to be assigned

to some state pairs can be satisfied quite easily.

Lemma 3.4 ; Given n bits, there areCni , Cni , .. Cnn_i sets of mutually-nondominating codes,

where Cnp = , ";, .. The maximum number of mutually-nondominating codes given an n bits

is Cnn/2 ifnis even and Cn(n+1y2 if n is odd.

For example, givena 3 bits, wehave the following sets ofmultiple mutually-nondominating codes

(001, 010, 100) and (Oil, 101, 110) whose cardinalities correspond to C3i and C3i respectively.

In general, State Transition Graph specifications of machines have reset states. However, a

STG specification of a macliine need not necessarily have Ns = 2k states, k = 1, 2.. etc. Given the

number of encoding bits to be used, n ( n > \log(N8)] ), the number of states in a STG can be

raised to 2". We have to ensure that these new states are reachable from the reset state to satisfy

the R-reachabiHty condition. Given a single unspecified transition edge (minterm or cube) from a

single state in the original STG, edges can be added to the STG so as to ensure that all the added

states are reachable ( K the macliine is completely specified, an extra input has to be added ). Most

STGs encountered in practical design have a large number of transitions that are not specified. It

should be noted that these extra states may be equivalent to other previously existing states in

the STG. We do not require state minimality as a condition for easy testability, but we require all

states to be reachable.



There are thus three steps in producinga PLA logic specification for the output logic and next

state logic functions. This specification is then optimized using a two-level logic minimizer like
*

ESPRESSO [l]. These steps are (1) raising the number of states in the State Transition Graph

to 2n, where n is the number of latches (2) obtaining constraints for the state assignment on

the basis of state fanouts and (3) state assignment obeying the constraint relations generated. A

straightforward solution exists for Step 1, however the optimality of the eventual implementation

depends on the choices made during this step. For example, in Step 1, transition edges connecting

original states in the STG to the new states can be added in a variety of ways. The new states

can be connected in a chain or separately connected from the original states. In Step 3, an optimal

state assignment which minimizes combinational logic while meeting the dominance constraints has

to be found. This step is further discussed in Section 4.

To generate tests for the sequential machine, test vectors are generated for all irredundant

crosspoint faults using a program like PLATYPUS [20]. Then, justification paths are obtained

from the STG using simple breadth-first search. These paths concatenated with the test vectors

applied to the primary inputs of a non-scan sequential machine will detect all the crosspoint faults

in the macliine so as to be observable at the primary outputs.

This procedure has ensured that a faulty state is always propagated to the primary outputs •

in a single clock cycle via state assignment. This can, in fact, be generalized to multiple-vector

propagation. That is, state assignment constraints can be derived which ensure that a faulty state

is propagated to the primary outputs in at most P clock cycles (P > 1). A state assignment

algorithm can construct an optimal encoding which satisfies these constraints. For large P, the

constraints are less stringent but more difficult to state succinctly.

A re-statement of Condition 2 in Theorem 3.3 to ensure testability via P-vector propagation

sequences can be made. The re-statement for P = 2 is given below.

Definition 3.5 : Two states q\ and qi are said to be m-distinguishable if a primary input vector

exists which produces two mutually-nondominating primary outputs Oi and oi when the machine is

in qi and qi respectively.

The state encoding of the machine should be such that each pair of states which cannot be

m-distinguishable should be assigned mutually-nondominating codes or the following should hold

for any pair of states (ft, qi) which are not m-distinguishable and have mutually-dominating codes.

An input combination should exist which drives the fault-free macliine from ft and ft to states Si



and $2 respectively, such that

1. si and 52 are m-distinguishable and

2. If ft D ft, then for all si D s2, $2' should be m-distinguishable from si. Similarly, if ft C ft,

then for all si C $2, sj should be m-distinguishable from s\.

3.3 Combinationally Redundant Crosspoint Faults

A two-level or multi-level circuit can be made irredundant for all single stuck-at faults. Such circuits

are called prime and irredundant circuits. Logic minimization programs like ESPRESSO can ensure

prime and irredundant two-level covers. However, since the crosspoint fault model is a superset of

the stuck-at fault model, PLAs implementing prime and irredundant covers may not be testable

for all possible crosspoint faults. However, typically a large percentage of crosspoint faults can be

made testable via optimization [20]. All crosspoint faults of type 1, 4 and 5 can be guaranteed to

be testable via logic minimization.

4 Constrained State Encoding

State assignment is the process of assigning binary codes to the internal states of a finite automaton.

The problem of optimal state assignment is to find an encoding of states which minimizes the

combinational logic part of the sequential machine.

The combinational logic part of the sequential machine can be implemented using a Pro

grammable Logic Array (PLA) or using multi-level logic. State assignment techniques targeting

both these implementations have been proposed (e.g. [9] [5]). The program MUSTANG [0] pro

duces a state assignment that heuristically minimizes the number of literals in the combinational

logic after multiple-level logic optimization. However, it is also effective in minimizing the number

of product terms in an optimized PLA implementation.

The technique used by MUSTANG is based on maximizing common factors in the logic in an

effort to reduce the area of the network. A weighted graph whose nodes represent each state of the

machine is-constructed. The weights between the edges in the graph reflect the "gains" in coding

the corresponding states with uni-distant codes.

An embedding algorithm is used to assign binary codes to the states (nodes in the graph) so

as to maximize the overall gain. The algorithm iteratively selects groups of states to be encoded.

These states are given minimally-distant codes from the unassigned codes.
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For our problem, the graph construction part remains the same. During embedding, when a

group of states is selected, they are checked for mutual-nondominance constraints.- A minimally-

distant set of codes satisfying these constraints is then assigned to the states. The more complex,

but less stringent, constraints given by multiple-vector propagation can also be accommodated.

5 Results

Results obtained on five State Transition Graphs from the MCNC 1987 Logic Synthesis Workshop

benchmark set, whose statistics are given in Table 1, are given in Table 2. First, the machines were

encoded and optimized disregarding testability. The number of product terms in the PLA, the

fault coverage obtained and the test generation time are given in Table 2 under the column labeled

OPTIMIZE. In Table 2, m stands for CPU-minutes and s for CPU-seconds on a VAX 11/8650.

Then, each of the machines were synthesized using the procedure described in Section 3. Again,

the number of product terms, fault coverage obtained and the test generation time are given. The

example scf is a Moore machine, the others Mealy machines. In all cases, single-vector propagation

constraints were placed on the state assignment program.

For the optimized machine, sequential test generation was accomplished as follows:

1. A present state and a primary input vector which propagates the effect of the fault to the

primary outputs or the next state lines is found, if such a vector exists, using PLATYPUS

[20].

2. A fault-free justification sequence for the required present state is found via breadth-first

search on the State Transition Graph of the machine.

3. If the fault has been propagated to the next state lines, then a fault-free distinguishing

sequence is found for the true and faulty states in the State Transition Graph. Such a

sequence may not exist if the true and faulty states are equivalent. If this is the case, a new

test vector is generated which produces a different true and faulty state pair, if possible.

4. The justification sequence, the combinational test vector and the distinguishing sequence are

concatenated to produce a possible test sequence for the fault. The sequence may not be valid

because the justification and/or distinguishing sequence may be invalid under fault conditions.

The sequence is fault simulated on the circuit to check if the fault is indeed detected at the

primary outputs.
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5. If the sequence does not detect the fault, a different distinguishing sequence for the true-faulty

state pair is tried, if possible.

A combinationally irredundant fault may not be detected using this procedure because (a) a distin

guishing sequence may not exist for a true-faulty state pair since no constraints have been placed

on the state assignment and (b) even if a distinguishing sequence exists, it may not hold under

fault conditions.

The constrained synthesis procedure ensures that distinguishing sequences always exist and

always hold under fault conditions. Test generation for the testable machine was accomplished as

follows:

1. Same as Step 1 described above.

2. Same as Step 2 described above.

3. A single distinguishing vector which produces mutually-nondominating outputs is found for

each true-faulty state pair (such a vector is guaranteed to exist).

4. The justification sequences are checked to see if they are valid under fault conditions. If

the sequence is valid, a test sequence is constructed by concatenating the sequence with

the combinational test vector and the distinguishing vector. If the justification sequence is

invalid, and is not a test sequence for the fault by itself, a new distinguishing vector (which

is guaranteed to exist) is found for the true-faulty state pair that is generated by the first

corrupted edge in the. sequence. The shortened justification sequence concatenated with the

distinguishing vector constitutes a test sequence for the fault.

Sequential test generation for the testable machine is faster because typically more than one distin

guishing sequence has to be tried tc produce a test sequence for the fault in the optimized machine.

Also, rather than having to fault simulate the entire test sequence in the optimized machine, only

the justification sequences have to be fault simulated in the testable machine.

In all cases, the maximum possible fault coverage was achieved in the testable machine, i.e. all

combinationally irredundant crosspoint faults are detectable in the sequential machine. The area

penalties incurred are due to two reasons: (l) the constraints imposed during state assignment (2)

the addition of extra edges to the STG to obtain It-reachability. As can be seen the area penalties

are quite small, and compare favorably to Scan Design approaches. The gain in fault coverage and

test generation times more than offsets the area penalty.
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EX #inp #out #states #latches #edges

sse 7 7 13 4 59

tbk 6 3 16 4 787

scf 27 54 97 7 168

dfile 2 1 24 5 99

planet 7 19 48 6 118

Table 1: Statistics of Benchmark Examples

EX I - OPTIMIZE II - TESTABLE

#prod. fault

cov.

tpg
time

#prod. fault

cov.

tpg
time

sse 33 89.56 6.4s 36 92.12 3.6s

tbk. 56 90.21 22.1s 61 95.83 15.8s

scf 145 93.31 6.2m 154 96.07 3.3m

dfile 51 94.12 16.2s 54 98.81 6.1s

planet 97 91.72 93s 104 95.67 59.5s

Table 2: Synthesis for Testability Results

The number of test sequences required varied between 70-300 for these examples. The average

length of each sequence was 5. Since the test vectors only access the primary inputs and only the

primary outputs are observed, each vector can be applied in one clock cycle.

6 Conclusions .

Previous approaches to synthesizing easily testable sequential machines from State Transition

Graph descriptions have concentrated on the stuck-at fault model. For PLAs, an extended fault

model called the crosspoint fault model is used. We have proposed a procedure of constrained state

assignment and logic optimization which guarantees testability for all combinationally irredundant

crosspoint faults in a PLA-based finite state macliine. No direct access to the flip-flops is required.

The test sequences to detect these faults can be obtained using PLA test pattern generation tech

nique and breadth-first search on the State Transition Graph. This procedure thus represents an

alternative to a Scan Design methodology. PreHminary results indicate that the area/performance

penalties in return for easy testability are small.
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