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Abstract

Many difficult problems do not lend themselves to recipe-like solutions characteris-
tic of the traditional algorithmic approach. An effective alternative for solving these
problems is the rule-based approach. Rule-based systems often utilize a state-space
problem formulation in which rules are used to move between states in search of the
goal, or solution, states. Directing this search is the responsibility of the control strat-
egy. In this report the use of probabilistic hill-climbing techniques as the basis for a
powerful, generalized control strategy is described. Probabilistic hill-climbing over-
comes many of the inherent weaknesses of other control strategies which complicate
the rule-based solution to difficult problems. One such problem is logic synthesis—
the process of converting a functional description of a digital circuit into an optimal
implementation. A rule-based system for logic synthesis has been developed to study
and assess the quality of the PHC control strategy. The quality of the solutions

generated by the system indicate the effectiveness of this technique.
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Chapter 1

Introduction

1.1 Overview

Many difficult problems do not lend themselves to recipe-like solutions character-
istic of the traditional algorithmic approach. Combinatorial complexity, numerous,
conflicting constraints, and limited understanding of the problems make them in-
tractable. An alternative to the traditional algorithmic approach is the rule-based
approach|[WH78,DK76]. Rule-based systems are data-driven—that is, the order of
steps in solving the problem are determined. in part, by the state of the problem and
are not fixed as in a recipe. Because knowledge about the problem is encapsulated
in the rules, rule-based systems can easily incorporate new knowledge by introduc-
ing new rules. One other important characteristic of rule-based systems is that they
separate rule knowledge from the control structure—the mechanism that determines
how rules are selected. Because of this separation, many rule-based sj*stems can ef-
fectively utilize general-purpose control strategies. This report describes the use of
probabilistic hill-climbing (PHC) techniques in rule-based system control strategies.
PHC techniques have demonstrated success in obtaining near optimal solutions for
combinatorial optimization problems. Their eﬁ'ectiveness is demonstrated by applying
them to a rule-based system for logic synthesis. Logic synthesis involves the transfor-
mation of a functional description of a digital circuit into an optimal implementation

consisting of components and their interconnections. This topic has received much



attention[McCSG.HCOT4.BHH*82,DBG*84,GBdH86] and programs for logic synthe-
sis [BRSWS8T7.dC85] are available. Since these programs present different approaches
to the problem, they can serve as a basis for determining the quality of the PHC

rule-based approach.

1.2 Rule-Based Systems

Rule-based systems contain three distinguishing components: a set of if-then, or
antecedent-consequent, pairs known as rules; a separate database, or working-memory,
containing problem information; and a control strategy, or inference engine, defining
the order and selection of rules to be applied to the database. Presented in Figure
1.1 is the structure commc;n to all rule-based systems. The most common type of
rule-based system used in problem-solving is the production system. These systems
can be characterized by a recognize-act cycle [WH78]. The recognize phase deter-
mines which rules can be applied to the database by matching rule antecedents with
database elements. If more than one rule is applicable, the control strategy must
determine which rule to “fire”—a process known as conflict resolution. The act phase
involves executing the action indicated by the selected rule’s consequent. This se-
quence is repeated until the solution is obtained. Only rule-based systems with these

characteristics will be considered in this report.

Problems to be solved by rule-based systems are often formulated as state-space
searches. A state-space is the set of all possible configurations of the problem being
solved. The problem as presented to the system defines the initial state; one or more
goal states define the solution. The control strategy, then, directs a search on a graph
whose nodes are states and edges are rules. Since a wide variety of problems can
be formulated in this manner, rule-based systems define a powerful problem-solving

paradigm.



Control Strategy
(Inference Engine)

\

Database - Rule Base
(Working Memory) (Knowledge Base)

Figure 1.1: Structure of Rule-based Systems

1.3 Controlling the State-Space Search

Most interesting problems have a state-space which grows exponentially with the size
of the problem being solved. The selection of the proper problem representation
can dramatically reduce the extent of the state-space [Ama68]. However, bounding
the problem-solving procéss fn both space and time necessitates a limited search.
This task is accomplished through the use of knowledge about the problem. Such
knowledge can be expressed in the rule base or it can exist in an intelligent control
strategy.

The expert system school of thought has been that “in the knowledge is the
power” and “the interesting action arises from the knowledge base, not the inference
engine.” [Feg79]. This approach emphasizes the use of high-level macromoves which
can eliminate unproductive paths and provide a more rapid traversal of the state-
space than can simpler rules [BAE*83]. Unfortunately. little information is available
concerning how various rule-based expert systems control their search with knowledge
[Hay83). Thus, it is unclear as to how effective rule knowledge by itself can limit
the state-space search. In addition, the number of macromove rules necessary for
a particular problem is often quite large. With so many rules, determining their

sufficiency for solving all problem instances becomes very difficult if not impossible.



Also. the efficiency of rule matching and the complexity of conflict resolution become
a major concern.

The other possibility is to incorporate knowledge into the control stratégy. Ap-
proaches to this task include rule orders [MF78], metarules [DK76], state transitions,
and feedback [Zuc78]. These methods tend to be inflexible for the general case of
the problem—working well on some examples but not on others. Also, the addition
of new knowledge to these control strategies often requires a deep insight into both
the problem being solved and the operation of the control mechanism. In addition
to these methods, knowledge can exist within evaluation functions. These functions
provide a numeric indication of the desirability, or cost, of a state. Rule desirability is
thus based on the state it generates given the current state. Using this information,
useless searching can be reduced. In situations where rule desirability is a dynamic
property of the state-space, evaluation functions are essential.

If evaluation functions were perfect, the correct path to the goal state would
be obvious and no search would be required. However, this situation is most often
not the case and the evaluation function must be combined with an appropriate
search procedure.- The appropriateness of a particular search procedure is defined by
characteristics of the desired solution and the state-space graph. For some problems,
a minimal path to the goal state is desired. Branch-and-bound procedures are useful
for this purpose. For other problems, only obtaining the solution state is important.
In this case, general-purpose procedures such as steepest-descent and best-first search
can be used.

Steepest-descent! is based on the assumption that the evaluation function provides
a good indication of how close a particular state is to the goal. It is often called a
greedy algorithm because rules are ordered according to the desirability of the states
they generate and the best choice is always selected. The other possible states are not

stored for later consideration, and thus memory utilization is minimal. Unfortunately,

!Steepest-descent here refers to the case where the purpose of the search is to minimize the
evaluation function. The term hill-climbing is sometimes used when such methods are used on a
function where the maximum is required. This use of “hill-climbing” should not be confused with the
hill-climbing of PHC methods—here, “hill-climbing” refers to a move away from the local minimum,
for a function where the minimum solution is the goal. ’



there is no guarantee that the search will converge to the best solution, the globél
optimum. It is too easy for the algorithm to choose a path which leads to a locally
optimal state for which no rule can be applied to improve the situation. One technique
for overcoming this problem requires that the algorithm backtrack to a state which has
a more promising path. Unfortunately, the amount of backtracking necessary cannot
be determined in advance. Another technique is to explore a local space consisting of
the states reachable by sequences of rules. Rules that appear undesirable at one level
might provide for significant improvements at future levels. Once again however. the
number of levels required cannot be determined in advance. In addition, this “look-
ahead™ technique suffers from exponential growth—often restricting sequences to only
two or three rules.

The best-first search strategy overcomes locally optimal states by remembering
the unselected states along the search path. When selecting the next configuration
state, the algorithm selects the best choice from previously unselected states as well
as those derivable from the current state. In so doing, the algorithm can always locate
the globally optimal solution. Unfortunately, if many nearly equivalént paths exist,
the memory requirement increases exponentially. This situation then requires that
only a fraction of possible next states be maintained—thus, optimality is traded off
against practicality. Another difficulty with best-first and other search procedures
is coping with redundant, or reconvergent, paths in the state-space graph. Ifitis
too costly to detect this situation, the search may waste a lot of time covering old
territorv. An additional concern is the efficiency of expanding a node completely—
that is, determining the set of states which can be obtained by a rule instantiation
on the current state. Procedures which require that a node be expanded completely
before making a rule selection decision can waste a lot of time generating unfruitful
states.

Problems which suffer from these characteristics have been restricted to concen-
trating the knowledge in the rule base and using a simplified control strategy with
little search. Design and optimization problems often fall into this category. For
example, WEAVER [Joo83] is a rule-based expert system which performs detailed

routing of VLSI circuits. Its routing knowledge is concentrated in the rule base—



utilizing a simple control strategy of rule ordering and greedy search. According to
Joobbani, the reason for adopting such a control strategy was that expert human
designers do not utilize the simple backup-to-a-previous-state-and-continue approach
characteristic of current search techniques. Instead. designers often work forward from
their current state, taking short cuts to another state without considering the previous
states and how they arrived at them. This report describes a control strategy which
searches the state-space in this same manner but is able to overcome many of the
difficulties associated with current search techniques. This control strategy utilizes

the combinatorial optimization technique of probabilistic hill-climbing.

1.4 Probabilistic Hill-Climbing

Probabilistic hill-climbing (PHC) unlike steepest-descent, is able to escape locally op-
timal states by occasionally accepting moves which appear to move away from the
goal [RS85). Because PHC techniques have traditionally been applied to optimiza-
tion and design problems, the evaluation function is called the cost function. Thus,
moving away from the goal increases the cost of the system. The difference between
various PHC techniques is the probability of moving to, or accepting, a state with a
higher cost. Simulated annealing is the best-known PHC technique in the electronic
CAD area and utilizes the Boltzmann probability distribution as its acceptance crite-
rion [KGv83]. This distribution is used in statistical mechanics to model the atomic
behavior of a material as it undergoes the annealing process. In the annealing pro-
cess, displacements of atoms which increase the energy state are very likely to occur
at high temperatures. As the material is cooled, these displacements are less likely
and the material takes on atomic configurations with lower energy states. The mini-
mum energy state (the desired result) is called a crystal. However, if the material is
not cooled properly, the result is a higher energy state called a glass. In simulated
annealing, changes in energy state of materials are analogous to changes in the cost
function of an optimization process. Moves which increase the cost are likely at the
beginning of the process and less likely as the process proceeds. The global optimum

is the crystalline state and local optimums are glasses. With certain assumptions on

-]



the rules governing the generation of moves and on the time spent at each temper-
ature, simulated annealing has been proven to locate the globally optimal solution
with probability 1 [RS83]. Probabilistic hill-climbing, in a manner similar to expert
designers. continually moves forward from the problem state and does not consider
previous actions. In addition. since PHC does not perform explicit backtracking or
look-ahead. memory demand is proportional to problem size.

In problems such as integrated circuit layout, simulated annealing has achieved
results superior to other techniques [KGv83,VEK83.5584.5586.ATMS84,DN86). and.
in some cases, using comparable computing resources (time, memory) has achieved
better results than algorithmic techniques [DN86]. Most applications of PHC tech-
niques share a similar state-space formulation. First, a constructive procedure is
used to generate an initial configuration. New configurations are derived by applving
simple moves on randomly selected elements of the configuration. For partitioning
and placement, these elements are circuit modules and the possible moves are inter-
change and relocation. These moves can be considered to be simple rules with null
antecedents. By expanding the formulation to the more general case of rule-based
systems, simulated annealing and other PHC techniques can be used to solve a much
broader class of problems.

Probabilistic hill-climbing possesses features which overcome many of the defi-
ciencies of current general-purpose search techniques. PHC techniques explore the
state-space in much the same manner as backtracking and look-ahead approaches.
However, the extent of backtracking and look-ahead is controlled by the process and
problem states and is not specified in advance. PHC and best-first search share the
characteristic of being able to locate the globally optimal solution given sufficient time.
However, unlike best-first and standard hill-climbing approaches, PHC search is not
hindered by reconvergent paths. The similarities between current general-purpose
search and PHC techniques indicate their potential usefulness as control strategies in
rule-based systems. Furthermore. problems which were difficult to solve using stan-
dard hill-climbing or best-first search may benefit from the use of a PHC control

strategy. An example of such a problem is logic synthesis.



1.5 The Problem of Logic Synthesis

An important and difficult part of the design of combinational digital circuits in-
volves the transformation of a functional description to a circuit implementation con-
sisting of components and their interconnections. Constraints are placed on this
process to ensure an implementation which is both cost and performance effective.
This process is called logic synthesis. A special case of logic synthesis involves the
minimization of two-level combinational logic and the subsequent mapping to PLAs
[McC56,HCO74,.BHH*82]. However, even this subset of the logic synthesis problem
contains subproblems known to be NP-complete. Because of the complexity of the
general case of multi-level logic synthesis. no single heuristic technique is clearly supe-
rior. Often the synthesis process is separated into several steps to make the problem
more tractable. Rule-based systems have been applied to individual steps of the
process [DBG*84,GBdH86). However, the complexity of the state-space demands a
powerful control strategy. The availability of results from these systems in addition
to those of recently developed algorithmic approaches provide a means of determining
the quality of a new approach. Thus, logic synthesis serves as a useful problem for

studying and assessing the effectiveness of the PHC control strategy.

1.6 Organization of the Report

This report is organized as follows. Provided in Chapter 2 is a detailed description of
probabilistic hill-climbing. In Chapter 3 the framework for a PHC control strategy is
presented; necessary considerations for rule-based system components are described.
Detailed aspects of PHC rule-based syvstems are illustrated through a rule-based sys-
tem for logic synthesis, OPAL. The logic synthesis problem is described in Chapter
4. A system description of OPAL follows in Chapter 5. Provided in Chapter 6 is
a comparison between results obtained from using probabilistic hill-climbing as the
control strategy and results of traditional descent strategies with fixed degrees of
look-ahead. Results indicate that fixed look-ahead strategies do not provide consis-

tent results over a set of problem instances or evaluation functions. However, the



probabilistic hill-climbing control strategy not only performs consistently, but also
obtains better results in almost all comparisons. Comparisons between OPAL and
the MIS Logic Synthesis System[BRSW87] point out the strengths and weaknesses of
both rule-based and algorithmic-based problem-solving. Conclusions and directions

for future study are presented in Chapter 7.
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Chapter 2

Probabilistic Hill-Climbing

Probabilistic hill-climbing techniques are a generalization of the simulated annealing
technique proposed by Kirkpatrick et al. [KGv83] as a technique for solving combina-
torial optimization problems [RS85). Simulated annealing is based on the Metropolis '
procedure [MRRT33] which simulates the thermal motion of atoms of a substance
at a given temperature. The motion of the atoms is determined as follows: random
displacements of atoms which éa.use a decrease in the energy of the system are al-
ways accepted; displacements which increase the energy are accepted probabilistically.
This probability is f(AE,T) = ezp(',;’;—-:f where AFE is the change in energy, kp is
Boltzmann’s constant, and T is the temperature of the system. As the temperature
decreases, the probability of an increase in energy decreases. In simulated annealing
and other probabilistic hill-climbing techniques, AE is equivalent to the change in
cost, AC. The temperature, T, becomes a controlling parameter without any specific
meaning. The basic PHC technique does not specify that the acceptance function,
f(AE,T), be an exponential probability distribution. The parameter T is assumed

to be > 0 and is updated according to some monotonically decreasing function.

2.1 The Structure of PHC Techniques

The basic procedure and acceptance function structures characteristic of all proba-

bilistic hill-climbing techniques are presented in Figures 2.1 and 2.2.
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PHC(jo. To)

{

T =Ty

X = Jjos

while (“stopping criterion” is not satisfied)

while (“inner loop criterion” is not satisfied)
{ -
j = generate(X):
if (accept(C(j), C(X), T))
X=7

Figure 2.1: Basic PHC Structure

The basic PHC procedure is provided with the initial configuration state, jo, and
the initial value of the controlling parameter, Tp. Two nested loops control. the state-
space search. Each iteration of the outer loop is associated with a progressively smaller
value of T provided by the update() function. The “stopping criterion” is usually
based on the extent of cost improvement made by recent iterations. The inner loop
performs a process of randomly generating successor states and deciding to accept or
reject them. An “inner loop criterion” determines when the process terminates. This
criterion attempts to identify when a condition of equilibrium is established[RS85.
HRS86). Equilibrium is established when the probability distribution of accessible
states reaches steady-state.

The accept() function computes the difference in cost, AC;j, between a current
state i and a successor state j. The function f() returns the probability of accepting
the new state. For AC;; < 0, this probability is 1. The probability of accepting
an increase in cost, AC;; > 0, is dependent on AC;; and the process parameter T.
Accepting the new state is then determined by generating a random number between

0 and 1 and comparing it to the value returned by f().
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accept(C(j), C(i), T)

AC;; = C(j) - Cli)

y = 1(ACi;. T);

r = random(0. 1);

if (r <)
return(TRUE);

else ]
return(FALSE);

}

Figure 2.2: Acceptance Function

The process parameter’s initial value, Tg, is selected such that the probability of
accepting an increase in cost is large. Thus. in the first few iterations of the outer
loop. most generated states are accepted. This phase of the process is referred to as
the “melt” phase. As the value of T decreases, increases in cost are less frequent. In
the limit as T approaches 0, probabilistic hill-climbing eventually becomes greedy like

steepest-descent—only accepting cost-improving states.
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Chapter 3

Framework for a PHC Control
Strategy

Described in this chapter is the framework for a rule-based system which utilizes a
probabilistic hill-climbing control strategy. Although the components of rule-based
systems in general are inherently modular, practical considerations for dependencies
between the components must be made. In the process of describing each componeni,
considerations pertaining to the use of a PHC control strategy are presented. Rather
than constraining the use of the approach, these considerations provide for exploiting

its characteristics.

3.1 The Control Strategy

The function of the control strategy in a rule-based system is to direct a search on
a space S utilizing a set of rules R. Each state, s;, in S is defined uniquely by a
database configuration, d;. Elements within d; exist which “trigger”, or match, rule
antecedents in R. The elements necessary to match a particular rule are collectively
called a location. For some problems, a rule will only trigger at one location. However,
the general case provides for multiple triggering by a single rule. The set of all rule-
location pairs which trigger in d; is called the conflict set, C;. The “firing” of a

rule r;, or the application of that rule, at a location ! in d; defines a new database

14



configuration and state:
dt'+l = Tj(Ldi)

Firing a rule consists of performing the actions specified by the rule’s consequent. In
deciding which rules to fire, the control strategy utilizes an evaluation function, £,
to ascertain the quality of a particular state in §. This function assigns a numeric
value to a state according to estimated distance to a goal, value as a solution. or other
criteria.

A PHC control strategy procedure is presented in Figure 3.1. Parameters to the
procedure are the starting state, specified by do and the initial process parameter
value, Tp.

The function generate_conflict_set() creates the set of all applicable rule-location
pairs given the database and rule set. An additional inner loop (contained in the
standard PHC “inner loop”) iterates until a rule is accepted. The select() function
randomly selects from the set C a rule to be applied. To ensure that selected rule-
location pairs are not chosen again, they are removed from C. The expression E(r(l,d))
returns the evaluation of the state generated by tl}e invocation of the rule-r. Thus,
the value of the rule is determined by the state it generates. If the rule is accepted,
the database receives the new state description. Note that it is possible that C will
become empty before a rule is accepted. The “inner loop criterion” must account for
this possibility.

For problems where the conflict set is large, generating the complete set is inef-
ficient—for as soon as a rule is accepted, the remaining conflict pairs are discarded.
For this reason, the procedure of Figure 3.1 is a naive one. A more efficient variation
of this procedure is given in Figure 3.2. This variation is suitable for rule-based
systems containing rules which match at only one or a small number of locations in
the database. The function select_location() randomly selects from matching locations
or returns @ if matching locations for the rule do not exist. Note that iterations of
the “inner loop” may occur without a rule being fired. At most only one location of
each rule is tested, so it is possible that other acceptable locations exist. If a rule

is not fired, the database remains unchanged and the process of selecting a rule and
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Naive.PHC_control(dp. Tp)
{
T =To;
d = do;
while (“stopping criterion” is not satisfied)

while (“inner loop criterion” is not satisfied)
{
C = generate_conflict.set(d,R);
fired = FALSE;
while (fired is FALSE and C # 0)
{
{r,1} =select(C);
C=C-{rl}
if (accept(&(r(l,d)),E(d), T));
{

d = r(l,d);
fired = TRUE;
}

}

T = update(T);

Figure 3.1: PHC Control Strategy Procedure: Naive Approach

location starts over. Thus, other acceptable locations for each rule will be considered.

Other variations of the PHC control strategy can easily be realized according

to the characteristics of the rules and database in the system. For instance, in a

problem such as logic synthesis, each rule can match at a large number of locations

in the database. In this case, it is appropriate to first randomly select a location and

then test each rule at that location.
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3.2 The Evaluation Function

The evaluation function, £, indicates the “quality” of a state in the state-space. This
“quality” may be an estimation of how close the state is to a goal, or it may be the
quality of the state as a solution (i.e., as a goal state itself). As is the case with all
heuristic search methods, the accuracy of the evaluation function has a significant
impact on the effectiveness of the search. Of special concern to PHC rule-based
systems is how the evaluation function can improve the accessibility of states and the
efficiency of the search.

A state s; is said to be accessible to a state s; if the probability P} of a transition
from s; to s; in some n > O steps is non-zero and therefore the probability P;; of
eventually reaching state s; from s; is non-zero. Accessibility of states is an important
theoretical requirement of PHC techniques [RS85] which impacts both the rule base
and the evaluation function. Certainly, if a goal state is not accessible from the initial
state, then the state-space search is wasted effort. Just as important is the accessibility
of a goal state, sg, from a locally optimal state, s;. The probability Py is directly
related to the number of cost increasing rules which need to be accepted to escape
the local optimum. A useful technique to increase Pjq is to allow illegal states—states
which contain inconsistent assertions or violate problem constraints. These states
can reduce the necessary number of cost increasing rules by providing “short-cuts” to
better locally optimal and correct states. Because these states are usually undesirable,
the evaluation function must be able to identify them and impose a penalty on their
value. This technique has been successfully applied to various simulated annealing
applications[DN86,5S86).

The evaluation function is often the most time-consuming task of PHC rule-based
systems. The PHC strategy relies on moving quickly through a large state-space. The
number of calls made to the evaluation function is usually several times the number
of accepted rules. In addition, since states are not remembered, re-evaluations are
often necessary. Making efficient state evaluations is therefore essential. For some
problems, it may be possible to determine the value of a new state using the value of

the current state and the rule being considered. Because the rule defines a change from
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the current state's value. the time complexity of the evaluation for these problems
is independent of database size. This method also alleviates the cost of applying a
rule and then having to reverse it if not accepted. In more complex systems, the
effect of rules on the database cannot be determined a priori. However, incremental

evaluations are still possible if the effect of the rule can be sufficiently isolated.

3.3 The Rule Base

The proper selection of rules for the rule base is often the critical difference between
systems that work well and those that fail. As distinct from conventional rule-based
systems, issues such as state accessibility and rule granularity deserve special attention
in PHC-based systems.

Asnoted in the previous section, accessibility of states is an important requirement
of the PHC control strategy. The PHC strategy is to perform a forward-moving
traversal through the state-space. Therefore, the goal state must be reachable from
any intermediate state. Since a goal state is not known beforehand, this requirement
implies that any state be accessible from any other state. That is, for T > 0, there
exists some m,n > 0 such that P]; > 0 and P} > 0. Thus, both “forward-" and
“hackward-" moving rules are necessary. If a forward-moving rule generates the state
s; from the state s;, then a backward-moving rule must exist which will allow the
generation of s; from s;. Some rules are naturally symmetric and can move in either
direction. In other cases, the generation of s; can be performed by a sequence of rules
which move through intermediate states.

Another consideration concerns the “granularity” of the rule set. The question is
whether the rules should perform high-level operations which make major transfor-
mations in the database or should they enact primitive operations. Neither of these
extremes is necessarily the correct approach. One criterion for determining the ap-
propriate granularity is the rule set’s completeness. A set of rules is complete if they
can always generate a goal state for any instance of the problem domain. High-level
rules are often oriented toward special-case configurations which implies that a large

number be present in R to solve problems in the general-case. Often the number of
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rules alone makes it impossible to say anything about completeness. A primitive rule
set is often small enough that their completeness can usually be determined. However,
high-level rules can traverse the problem space more rapidly than primitive rules.
Another constraint on the granularity of a rule set is the ability to ascertain the
quality of rules independent of other rules. Since the decision to accept a rule is
according to how it alone affects the database, useful rules whose eventual benefit
is not seen immediately may not be accepted. Of course, this problem cannot be
completely avoided. If it could, a greedy search would be sufficient for solving the
problem. However, the rule set should be closely matched with the evaluation function

for optimal results.
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PHC_control(dy.Tp)

{
T = To;
d = do;
while (“stopping criterion” is not satisfied)
{
while (“inner loop criterion” is not satisfied)
{
R, =TR;
fired = FALSE;
while (fired is FALSE and R, # 0);
r = select(R,);
R,=R,—1;
| = select_location(d, r);
if (1 #0) o
if (aécept(f(l‘(l, d)),£(d),T));
{
d = r(l,d);
fired = TRUE;
}
}
}
T = update(T);
}
}

Figure 3.2: PHC Control Strategy Procedure #2



Chapter 4
Logic Synthesis

4.1 Introduction

Because of the sheer size of today’s digital electronic systems, VLSI designers have
become more dependent on automatic synthesis tools. The first widely used synthesis
tools performed the layout tasks of placement, routing, and compaction. Increasing
circuit complexity haslead to the demand for higher levels of automatic synthesis. One
such task which has received much attention is logic synthesis [BRSW87,5as86,Kv81.
DBG*84,GBdH86). Logic synthesis is the process of transforming a functional descrip-
tion of a combinational circuit into an optimal implementation consisting of circuit
components and their interconnection. Early work on logic synthesis has concerned
itself with the special case of two-level logic minimization [McC36.HCO74.BHH*82].
Two-level logic is especially attractive since it can be easily implemented using PLAs.
However, multi-level logic representations are often more area efficient and can pro-
vide a higher level of performance. Unfortunately, area and timing constraints often
conflict, making the optimal synthesis of multi-level logic a very difficult problem.
The functional description of a circuit supplied to a logic synthesis tool is usu-
ally a set of logic equations or truth tables extracted from a register-transfer level
description. Area and timing requirements are often supplied as well. Because these
constraints conflict, the most that can be expected from the synthesis tool is for it

to make appropriate tradeoffs (e.g. “generate the smallest circuit with a critical path
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delay less than 10ns”). Unfortunately, the techniques used in many logic synthesis
tools can consider only one of these constraints at a time.

The synthesis process is also constrained by the desired technology. Standard
cell and gate array designs limit suitable components to those provided in a cell
library. Characteristics of these cells cause one technologv's implementation to be
very different from another. For instance, the use of NAND gates in CMOS designs
is preferable to NOR gates.

These issues can overwhelm a designer attempting to synthesize manually anything
but the simplest circuit. Optimization is often only attempted on the most critical
portions of a design, resulting in needlessly larger and slower chips. Clearly, the
demand for shorter design times and higher performance requires the utilization of

automatic logic synthesis.

4.2 Approaches to Multi-Level Logic Synthesis

Algorithmic solutions to multi-level logic synthesisiBRSW87,5as86] have not yet at-
tained the acceptance that they have had with two-level logic. Algorithmic approaches
perform most—if not all—of their optimization in a technology-independent manner.
A common circuit representation used by these tools is the boolean network. After
technology-independent optimization is performed on the network, it is mapped into a
particular technology by assigning appropriate gates from a library[DGR*87,Keu87}.

Part of the difficulty experienced by algorithmic approaches is determining a suit-
able technology-independent abstraction which represents an accurate picture of the
design goal (e.g., minimum area, delay, etc). In the case of two-level logic, PLAs
are often the realization of the circuit and can serve as the basis for the abstraction.
Minimizing the number of product terms is a good approximation to minimizing the
size of the PLA; minimizing the number of literals present in the product terms mini-
mizes the number of connections in the AND-plane. In addition, fewer product terms
and connections imply a faster circuit. In contrast, multi-level logic is implemented
in many different ways (e.g. static, dvnamic logic; standard cell, gate matrix). The

result being that a set of equations minimal with respect to literal count does not
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always provide for a minimal area implementation. Since little can be done outside
of transistor sizing and layout issues to minimize PLA delays, timing was never a
major considefation in two-level logic synthesis. However, logic delays vary consid-
erably with multi-level network implementations. The most common abstraction for
network delay used in algorithmic approaches today is the number of logic levels.
Unfortunately, the variety of gates used to implement the network and the impact
of fanout delay make the logic level approximation far from accurate in most cases.
Current algorithmic approaches do not provide solutions that are both optimal in
area and timing. ’

Rule-based systems, unlike algorithmic approaches, do not require a technology-
independent abstraction but can optimize the target implementation directly [DBG*84,
GBdHS6). Rules consist of transformations from subnetworks of library components
to other equivalent subnetworks. The generality of the rules allow complex modules,
such as full adders, to be used effectively during the optimization. In addition, rule-
based logic synthesis can incorporate timing optimization easily due to the availability
of correct delay information and the use of a flexible control strategy.

However, problems exist in current rule-based logic synthesis systems which hinder
their effectiveness. Because of the local nature of rules, global optimiza.tioxis, such
as the identification of common subexpressions. are often missed. If the domain of
rules is limited to library modules, optimization can also be hindered by the limited
fanin of available gates. The use of a technology-specific rule library also has an
impact on the flexibility of the system. Because typical libraries contain hundreds of
rules, providing for a different technology can be a formidable task. An additional
problem with many rule-based systems is that the desire for generality often results
in an inefficient implementation. Thus, in the same amount of computer time that a
rule-based system requires, an algorithmic, problem-specific approach may be able to
perform a much larger search of the solution space. Finally, the choice of a control
strategy can have a significant impact on solution quality.

Some rule-based systems such as LSS[DBG*84] use greedy, steepest-descent strate-
gies. However, de Geus and Cohen[dC83] note that this strategy is not sufficient for

timing optimization because the benefit of a timing rule is often not immediately obvi-
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ous. Look-ahead techniques are suggested as a means to overcome this problem. They

also note that area reduction can suffer from the same “short-sightedness™ when less

desirable rules lead to more powerful ones. As noted previously, exponential growth

of the look-ahead tree requires that the number of levels be restricted to two or three
rules.

Thelack of a successful algorithmic approach to the multivariate ob jectives of logic
designers and the potential of rule-based systems make the logic synthesis problem
an appropriate test case for the probabilistic hill-climbing control strategy. A rule-
based logic synthesis tool, OPAL, has been developed which attempts to overcome
many of the problems associated with current rule-based approaches. In particular,
it utilizes the PHC control strategy for performing technology-independent and -
dependent area/timing optimization. The application of simulated annealing to logic
synthesis has been reported in the literature[LD86.Gon86]. However, in both cases,
simulated annealing was only applied to subproblems of the synthesis process. In
addition, the logic transformations performed by these approaches are not complete.
These limitations restrict the state-space search and effectiveness of the simulated
annealing technique. Finally, these efforts did not formulate the problem using the
rule-based paradigm nor did they identify simulated annealing as a useful control
strategy for rule-based problem solving in general. For these reasons, OPAL represents

a new approach to the logic synthesis problem.



Chapter 5

OPAL: A Rule-Based System
for Logic Synthesis

Dlustrated in Figure 5.1 are the relationships between the major components of the
OPAL Logic Synthesis System. A similar structure would exist for rule-based systems
for solving different problems and where the PHC control strategy was applied. Be-
cause the system is inherently data-driven, the network (database) is located centrally.
The PHC control mechanism calls upon the evaluation function for rule selection. A
technology library is utilized by the evaluation function to determine a mapping and

associated area and delay.

5.1 Network Representation

The state-space for logic synthesis and optimization is the set of all networks which are
composed of combinational modules and their interconnection and are functionally
equivalent to a given logic description. Although it is possible to construct combina-
tional networks which contain cycles!, such configurations are not considered. Due to
the limitations of such networks, little is lost by ignoring them.

As stated previously, a Boolean network can serve as the network representation.

lhowever, their Boolean functions do not contain feedback
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Figure 5.1: PHC Rule-Based System for Logic Synthesis



A Boolean network is a directed, acyclic graph where each node in the graph is a
Boolean function represented by a disjunction of product terms. Associated with
each node 7, is a variable name N;. For each node n; with a product term containing
a reference to the variable N, there exists an arc from nj to #;. Implicit in this
representation is the eventual mapping of the network into the target technology.
The advantage of Boolean networks is the ease they provide in performing Boolean
minimization and common subexpression extraction.

Since the focus of the rules is on literals, each variable is internally represented by
a subgraph of product terms and literals. The actual network representation for the
function a & b & ¢ is shown in Figure 5.2. In addition to nodes that specify variables,
term and literal nodes have been added.

The algebraic representation for the graph of Figure 5.2 is:

Vi = avz7+av;

Va = be+be

Because of thé simplicity of the algebraic form, henceforth it will be used to
describe both networks and rules.

The advantages of using a Boolean network representation are realized in OPAL
without the limitations of a technology-independent evaluation function. Each time
the network is evaluated, a mapping to the module library is performed. Because
many one-to-one mappings exist from the Boolean network to a realizable circuit. an
optimal mapping requires a difficult search. This search would have a large impact
on run-time and is thus undesirable.

To overcome this potential problem, the optimality of the mapping is relaxed
by defining an easily-obtained, direct mapping which is almost one-to-one. Thus,
changes to the Boolean network correspond directly to changes in the implementation.
This technique has the advantage of providing immediate feedback for rule selection
but imposes some constraints on the node functions. These constraints come in the
form of penalties rather than restrictions on illegal configurations of the network

(“illegal states” in the state-space). For instance, a product term with 10 literals
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Figure 5.2: Network Representation of a ® b & ¢



may not be directly implementable because a 10-input AND or NAND gate may
not be available. Mapping to these gates is allowed but a penalty is imposed to
discourage their use. Legal solutions are ensured by increasing the penalty during
the optimization. However, optimization is not hindered by the module library as is
the case with technology-dependent representations. The direct mapping approach
provides a great deal of accuracy but without a loss of efficiency because remapping
can occur incrementally.

A definition which will be of use later is the fanout of a variable. In the above
network for a § b & ¢. V5 is said to fanout to ¥; and V; is a fanout variable of 13, or
simply V7 references V3. In addition, V is said to have both a positive and negative
reference because of the literals 7 and v, respectively. It is often useful to refer to
the reference count of a variable. V; has a negative reference count of 1, a positive
reference count of 1, and a total reference count of 2. This definition of fanout and
reference pertains to the Boolean network. The mapped network also has a definition
of fanout. If V; is mapped to an exclusive-OR gate, the gate that represents V; would
have a positive fanout count of 1 and a negative fanout count of 0 since v; is an input
to the gate and 73 is not. The difference between the Boolean network meaning of
fanout and the mapped network meaning is an important one. To avoid confusion,
reference counts will always correspond to the Boolean network and fanout counts to

the mapped network.

5.2 Rule Base

As stated in Section 3.3, the criteria that must be met by the rule base are that it pro-
vide state accessibility and completeness. Since all legal transformations of Boolean
networks must be derivable in terms of the Boolean algebra identities, they certainly
meet the completeness requirement. Unfortunately, some of these transformation (e.g.
A = Al, meaning the literal(s) A replaced by 4 - 1) require more direction than can
be achieved using a generalized control strategy. This problem is circumvented by
replacing such rules with frequently used theorems (e.g. 4 + AB = A). Obviously,

such a strategy trades off completeness for efficiency. However, by minimizing the
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Forward Rule Inverse Rule
A0=0
A+0= A4
Al= 4
A4+1=1
A+4=4 A=>A4+ 4
44=0
A+4=1 X=>XA4+X4

8| 4= 4 A= 4

9 | A(BC)= ABC ABC = A(BC)

10| A+(B+C)=> A+B+C|A+B+C=>4+(B+C)
11| A(B+C)= AB+ AC AB+ AC = A(B+C)
12| 4+ AB=> A4
13| A+4AB=A+B

~1 O O bW

14|A+B=4B AB=>A+B

15| AB=>4+B A+B=4B

16 A+BC=(4+B)4+C)
17 A(B+C)= A(AB +C)

Table 5.1: Rule Set

introduction of “higher-level” rules, confidence in the degree of rule completeness can
be maintained. The complete list of rules used in OPAL is presented in Table 5.2.
By providing both a forward and inverse rule for the identities, state accessibility is
maintained. In several of the theorems. the forward or inverse rule is left out because

it can be easily obtained from simpler rules.

These rule specifications are symbolic and not literal. The variables (4, B. C, X))
which appear in the rules are defined by their context and apply to the most general
situation. For example, the variable 4 in the rule 41 = A would “match” one or
more literals of a product term. In addition, this particular term can be part of a
disjunction of several terms. The rule A+ (B +C) = A+ B+ C should be interpreted
as matching Y = 4 + z; X = B + C. That is, a single literal term z is defined by
one or more product terms (indicated by B + C). A represents all the product terms

of the variable ¥ except the one containing z. Rules such as ABC = A(BC) select
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a variable number of literals to represent BC and A is simply the remainder for the
product term. In general this selection occurs randomly and is made by the rule.?

Given the flexibility inherent in the rule specification and the “fixed” nature of
the rules, it was decided to implement them as test/fire compiled functions. Since
the rules are mostly problem and technology-independent, the benefit provided by
interpreted rules—the ability to change the rule base without recompilation—is not
apparent. Network locations are identified by literal nodes. A rule test function
quickly determines if the rule is applicable at that location. If the rule test succeeds,
the fire function is executed so that the evaluation function can accurately determine
the effect of the rule on the network. All the rules are specified in terms of primitive
operations on the Boolean network which create and remove variable, term, and literal
nodes. If a rule is not accepted, it is necessary to “undo” the modifications to the
network. This task is accomplished efficiently by maintaining a transaction stack
of the primitive operations performed by the rule. Each primitive operation is then
reversed individually. This technique is rule-independent and thus eliminates the need
to specify individual “undo” functions for each rule.

The rules in Figure 5.2 only provide for local transformations. In logic synthesis,
an essential global operation is to identify and share common subexpressions in the
network. In so doing, area is significantly reduced. Unfortunately, current rule-
based logic synthesis systems either do not provide this optimization or do so in a
limited manner. Algorithmic techniques which explicitly seek out the optimal set of
subexpressions for extraction are not easily incorporated into the rule-based paradigm.
The strategy taken with OPAL is to identify common subexpressions as they are
generated by the rules. This operation is performed through the use of a specialist.
Specialists are normally passive mechanisms which are independent of the control
mechanism and the rule base. Their purpose is to provide global direction to the
optimization by modifying or extending the effect of rules as they are fired. The
acceptance of the global operation is determined by the acceptance of the extended

rule. Thus, the control strategy ultimately determines which global operations are

2additional heuristics are incorporated which weight favorable selections
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Before After rule AB = A+ B on p
m=a+b |m=a+b
n = ab p=a+mec
p=a+Tnc

Figure 5.3: Merge Operation

Before Afterrule AB = A+ B on P
m=4a+b [m=T+b
n=ab p=a+mc
o=mc+al|lqg=p+7
p=a+Tc
g=o+r

Figure 5.4: Effect of Merging on Transitive Fanout

to be made. This technique has proven to be very effective in performing common
subexpression extraction.

After a rule is fired, new and modified variables may define Boolean functions
which exist elsewhere in the network. The common subexpression specialist maintains
a hash table to identify equivalent variable nodes quickly. Two variable nodes are
equivalent if they contain equivalent product terms (order independent). Equivalent
product terms must contain the same literals (order independent). Thus two functions
with the same functionality may not be considered equivalent. Because equivalent
subexpressions are variable nodes in the Boolean network. only the combination. or
merging, of variables is required. Figure 5.3 is an example of the merge operation. The
merge operation is defined recursively since the merging of two intermediate variables
may result in equivalence among the transitive fanout variables. An example of this

situation is shown in Figure 5.4.



5.3 The PHC Control Mechanism

5.3.1 Conflict Resolution

Typically, rule-based systems test each rule with the database and select from those
that match. a single rule which is to be fired. This selection process is conflict res-
olution. and is essential to state-space search. Potentially, the number of rule tests
that must be made for each state of the database is |R||£| where R is the set of rules
and £ is the set of database test locations. The actual number of tests is substan-
tially reduced if R is decomposed into subsets of rules containing common antecedent
components—a conflict resolution technique known as contest limiting. For the logic
synthesis problem, £ usually contains all of the nodes in the Boolean network. Thus
|R||£] is prohibitively high. Consequently, the number of rule-location pairs in the
conflict set, |C], is also quite large. [dC835) indicates that in Socrates, a circuit with 100
gates and a rule base of 50 rules typically generates a conflict set size of 50. Because
high-level rules such as those used in Socrates are less likely to match as often as the
fine-grain rules used by OPAL, the conflict set size for OPAL can be expected to be
even larger. Clearly, avoiding generation of the entire conflict set is desirable.

Fortunately, conflict resolution in probabilistic hill-climbing is inherently simple.
The rule to fire is simply any of the members of C which meet the acceptance criteria—
no ordering of “acceptable” rules is necessary. Improved location selection is achieved
by placing a user-specified amount of emphasis on locations near the previously ac-
cepted location and locations on the critical path. Methods for obtaining the rule to
fire iterate through rule-location pairs until one is accepted. An appropriate method is
one which performs efficiently but does not hinder the search by biasing the selection.
Four selection methods are implemented in OPAL. Their procedures are contained in
Figures 5.5-5.8. Because they all have a common PHC “outer” loop (the “stopping
criterion” loop of Figure 2.1), only the inner loops are given. Methods #1 and #4
have been experimentally determined to be superior than the other two methods in
solution quality and run-time efficiency.

A very useful conflict resolution strategy in rule-based systems is size ordering.

Rules are classified according to their number of antecedent conditions and the like-
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for (“a certain number of iterations”)

{

I = select_location(d);

fired = FALSE;
R'=R;
r.count = 0;

while (fired is not FALSE and r_count < “maximum tries”)
{
r-count + +;
r = select_rule(R’);
Rr=RI—-1;
if (triggers(r, 1, d) and accept(&(r(l,d)),£(d), T));

d =r(l.d);
fired = TRUE;
}

Figure 5.5: Rule-Location Selection Method #1

for (“a certain number of iterations™)

{

| = select_location(d);

r = select.rule(R);

if (triggers(r. 1, d) and accept(E(r(l,d)).£(d),T));
d=r(l.d);

b

Figure 5.6: Rule-Location Selection Method #2
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for (*a certain number of iterations™)
{
I = select_location(d);
fired = FALSE;
R ' =TR;
while (fired is not FALSE and R’ # 0)

r = select_rule(R');
R =R —r;
if (triggers(z, 1, d) and accept(£(r(l,d)),£(d), T));

{

d =r(l,d);
fired = TRUE;
} .

Figure 5.7: Rule-Location Selection Method #3

for (“a certain number of iterations”)

r = select_rule(R’);
fired = FALSE;

loc.count = 0;
while (fired is not FALSE and loc_count < “maximum tries”)

{
| = select_location(d);
loc.count++;
if (triggers(r, 1, d) and accept(£(r(l,d)),E(d). T));
{
d=r(l.d); .
fired = TRUE;
}

Figure 5.8: Rule-Location Selection Method #4
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lihood of matching. This strategy encourages the acceptance of highly constrained
rules over those which match more easily—often improving the search efficiency and
solution quality. However, introduction of size ordering into PHC systems hinders the
control strategy by reducing state accessibility. The benefits of size ordering can be
achieved by rule weighting. According to the match frequency of a rule j, a weight w;
representing selection frequency is specified. These weights define a selection proba-
bility function:
w;
pi= _“T'T
j=1Wj
where p; is the probability of select_rule() returning rule . Table 5.3.1 indicates
typical match frequencies and possible rule weights for OPAL's rule base (Absence
of the forward or reverse rule is indicated in the table by “-”). For OPAL, selection
of rule weights were experimentally determined. It was found that extremely low
and high weights are undesirable, and that precision in weight selection does not
effect efficiency and solution quality. In addition to approximating size ordering, rule

weights provide a method for discouraging rules which detract from the optimization.

5.3.2 Process Control

Probabilistic hill-climbing techniques are distinguished by a choice of stopping and
inner loop criterions and an acceptance function. The control parameter T is defined
by an initial starting point 7o and an update function. The process of selecting these
PHC parameters is known as “tuning” and can be considered both an advantage
and disadvantage. Tuning provides the flexibility and customization which make
PHC techniques useful. However, tuning is inherently an iterative and experimental
process, often requiring a substantial amount of time.

The initial “temperature” Ty affects the extent of the melt. Too high a value of T
wastes CPU time; too low a value may result in solutions that are far from the global
optimum. Determination of Tp requires consideration of the quality of the initial
network configuration. A locally optimal network requires a higher temperature than

required by a poor starting configuration. A variable which is independent of the
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Forward Rule

% Match Weight

400

A+06 4

Al A

A+1e1

A+ A A

4460

§+I¢1

Ae A

A(BC) & ABC
A+(B+C)® A+B+C
A(B+C) & AB+ AC
A+ AB &S A
A+AB& A+ B
A+B & 4B
AB& 44+ B

A+BC & (4+B)4+C)
AB+C)® A(AB+C)

<1 0.1
<1 0.1
<1 0.1
<1 0.1
<1 0.5
<1 0.1
<1 0.5
3 1.0
9.7 1.0
<1 1.0
11 1.0
<1 1.0
<1 1.0
13.9 1.0
31.3 1.0

Inverse Rule

% Match Weight
100 0.1
61.1 0.1
48.9 0.1
38.9 0.5
61.1 1.0
26.2 0.1
<1 1.0
34.3 0.01
60.9 1.0
25.6 1.0
4.8 0.01
8.2 0.01

Table 5.2: Rule Match Frequencies and Typical Weights
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initial network is P,, the desired probability of accepting any cost increasing rule at
To. The value of Tp is then defined as:

To = =)/ log P,

where ) is the average cost increase for the network. Determination of A is accom-
plished by choosing rule-location pairs randomly and evaluating their effect on the
network. The sample size— number of matching rule-location pairs which increase
the network cost—is equal to |£||R|/4. This sample size is conservative but has been
experimentally found to perform reliably.

The control parameter T is updated after each iteration of the outer PHC loop.

The general form of the update function is:
Tn+1 = a(Tn) . Tn

Where 0 < a(T,,) < 1. OPAL divides the search process into three phases: melt,

main search, and greedy search. a(Ty) is defined as:

a; until Caue(Th) < (Co + Bc)/2, then
o(TR) =14 az until Craz(Th) < Crmin(Tn) + Az, then

ag

and subject to the condition that returning ai+1 inhibits a; from being returned
at a later 7. Cmin(Th); Cave(Tn), and Cmaz(Ts) are, the minimum, average, and
maximum evaluated network costs for outer loop iteration n, respectively. Co is the
initial network cost and B, is the cost upper bound (which will be explained later in
this section). 8, is a fractional multiplier for the average increase in cost, A, which
specifies a window on the cost variation. The transition from as to az occurs when
the cost variation drops to such a small amount that further significant cost reduction
is unlikely. At this point, it is desirable to perform a greedy search which will locate
a minimal solution quickly and exit. Typical @ values are: &y = 0.97, az = 0.99, and
a3 = 0.50.

Usually, no more than a few outer loop iterations of the greedy search phase are

required before the cost ceases to change. At this point, T is so low that only cost
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improving rules are being accepted. The termination criterion is then specified by the
number of constant cost iterations desired. To prevent the search from terminating
when cost improvements can still be made, a local minimum check is also part of the
termination crit.erion.

The PHC inner loop criterion requires that the process reach equilibrium at each
value of 7. Equilibrium is defined as the establishment of the steady-state probability
distribution of the accessible states[RS85,HRS86]. Since the set of accessible states is
not known beforehand, only an approximation is possible. The number of iterations
of the inner loop is according to the number of rule tests performed. Minimum and
maximum rule test counts are defined as:

Nin = EulRIICol(1 -~ 50 57

and
Npaz = 6aaArm.in

where K,, (typically 8) and éss (typically 1.3) are experimentally determined
constants and Lg is the set of initial network locations. As T decreases, Npnin increases
to the asymptotic value of Kys|R||Co]. The maximum value, Nmaz is specified to
ensure the termination of the inner loop, although equilibrium is usually attained
before Nmaz iterations have occurred. Equilibrium is considered to have been reached

when at least N,n;n iterations have occurred and the following condition is met:
|C - Cave(Tn)l < 610‘(T,,)

C is the cost of the network, 6; (typically 0.6) is an experimentally determined
constant and o(T,) is the standard deviation of network cost at temperature T,
[HRSS6]. The idea of this restriction is to make sure the inner loop terminates with
a cost representative of the given temperature. It has been experimentally found to
provide much more robustness to the process than the iteration count alone.

The acceptance criterion is another parameter of PHC whose purpose is to control
the acceptance of rules. OPAL uses the Boltzmann function which characterizes

the simulated annealing technique. In addition, an upper bound on the cost of the
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network is imposed to restrict the growth of the network during the melt phase. A
large majority of rules in the conflict set incur a cost increase which, if unrestricted
at high temperatures, would result in needlessly large networks during the melt. The
purpose of bounding is to reduce the required optimization from the melted state but
not eliminate desirable paths to the globally optimal state. The upper bound used in
OPAL is:

B. = Co + LA

where Cy is the initial network cost and L > 0 is a constant which can be specified
at run-time. ) was defined earlier as the average increase in cost. ) captures the circuit
dependent information which provides the robustness in the bound calculation.

One possible method for enforcing the bound is to simply prevent cost increases
over B.. This method is undesirable because the cost approaches B, soon after the
melt is initiated. Henceforth, the network tends to “sit” at the bound until the
temperature drops to a point where cost decreasing rules are accepted more often
than increasing rules. To prevent this problem, the AC is increasingly weighted
(penalized) as the network approaches the bound. This weight, v is defined as:

v = B, — Cmin
Bc - Cnew

where Crmin and Crew are the minimum network cost for all configurations up to

the current state and the network cost incurred by the rule being considered. The

acceptance probability is then defined as:

CHAC.T,) = esp(“3)/1

5.4 Network Evaluation

The evaluation function used in OPAL measures the cost of a particular network as
a solution rather than indicating a distance from the optimal solution. The fact that
each configuration in the state-space may represent a goal state and that the cost

of the optimum solution is unknown implies that this solution cannot be identified
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during the search. However, experimental evidence suggests that there are often
many configurations similar in cost to the global optimum. If these configurations are
considered acceptable solutions and are thus goal states, the accessibility of a goal
state is naturally greater than if only the global optimum is acceptable. Because of the
large state-space of equivalent network configurations, this consideration is essential
to a PHC rule-based solution to logic synthesis.

The cost of a Boolean network is defined in terms of the area and/or delay of
its implementation. Boolean networks possess a simple, technology-independent cost
estimate: area is the number of literals and delay is the number of logic levels. The
disadvantages of these estimates were mentioned in Section 4.2. However, it may
be advantageous to perform an efficient technology-independent optimization first.
The result of such an optimization can then be re-optimized using detailed area and
timing information. This approach is possible with OPAL because of the flexibility
of the evaluation function. Area and timing optimization can occur at many levels of
technology-dependence. The type of area/delay estimate can be specified according’
to a tradeoff between accuracy and run-time efficiency.

Two models of technology-dependent optimization are used. The first maps the
Boolean network into a set of simple gates (AND, NAND, OR, NOR, INV). The
second method allows for the complex gate forms AND-OR, OR-AND, and exclusive-
OR in addition to the simple gates. The definition of available gates and their area
and delays are specified in a technology library.

For timing optimization, the cost of the network becomes a function of the critical
path delays through the network. Given a mapping, approximate input to output
propagation delays based on gate and fanout delays can be readily determined. The
fanout delay model is an RC model based on the equivalent resistance of the driving
gate and the total capacitance of the load gates. For an improvement in efficiency. a
second model exists which assumes all gates have equivalent input capacitance. Both
rise and fall delays are calculated for improved accuracy. External influences such as
the arrival times and drive of the primary inputs and the primary output load can be
specified.

The tradeoff between area and delay is reflected in the evaluation function by
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assigning different weights to the different components.

5.4.1 Technology Mapping

In order to perform technology-dependent optimization, the Boolean network must
be mapped into a network containing components available in the given technology.
By using a direct map, this process is very efficient. If the mapping is one-to-one,
transformations of the Boolean network are always reflected as transformations in
the mapped network. Thus, the value of the rule is always defined. In mappings
which are not one-to-one, a transformation may not reflect a change in the mapped
circuit and cannot be effectively evaluated. The mapping performed by OPAL is
nearly one-to-one. The reason it is not one-to-one concerns NAND trees. A treeis
defined as a directed, acyclic graph under the constraint that all nodes have a fanout
(or reference) count of one. In the case of simple gate mappings, the following two
Boolean networks, represented algebraically, can both be mapped into a two-level tree
of NAND gates: -

X = ab+ecde+ fg

and
X =7
Y = mM7o
M = ab
N = ccde
0 = fg

However, since no single rule can transform either of these networks into the other,
evaluation of a rule is always possible. The structure of the first Boolean network is
more desirable than the second because more powerful transformations can be applied
to it given the rule set in OPAL. In inverting logic styles, a NAND tree is much more
area and time efficient than the more obvious AND-OR tree. By mapping and-

or expressions into NAND trees, the manipulation of the Boolean network is not
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hindered. The extent of using NAND gates over AND/OR gates is controlled by a
parameter to the program.

The specifics of how a particular part of the Boolean network is mapped to a set
of gates is largely dependent on the optimization model used. However, fundamental
commonalities exist between all models. In all cases, only variable and product term
nodes of the Boolean network can have a gate counterpart—Iliteral nodes can only be
associated with inputs to a gate. In addition, a product term (product term node)
cannot be “shared” by multiple gates. That is, the conjunction of literals in a product
term must be contained in a single gate mapping. However, a variable (variable node)
can be shared between gates. For instance, the disjunction of product terms which
define a variable can map to a gate as well as each of the product terms of that
disjunction. Furthermore, any subnetwork of the Boolean network can be mapped to
a single gate. Additionally, a legal mapping is defined to be the mapping obtained by
starting from the primary outputs and successively mapping transitive fanin nodes.
The root of a gate is defined as the variable or term node whose fanout corresponds to
the output of the gate. Thus. the primary outputs (variable nodes) are always roots.
Only one root is allowed per gate. This restriction prevents the mapping of multiple
output gates. ’

The conditions mentioned above do not require a direct mapping. Further con-
straints provided by the optimization model are necessary to fully define the mapping.

However, these conditions do provide a basis for the definition of incremental mapping.

Incremental Mapping

The time involved in mapping the entire network is proportional to the number of
variable and term nodes in the Boolean network. Even this linear time complexity
cannot be considered acceptable because the Boolean network must be mapped for
each rule instantiation. It is obvious that each rule affects only a limited number of
nodes in the Boolean network and therefore in the mapping. Remapping the entire
network is duplicating work already performed. Fortunately, the set of affected nodes
can be isolated and remapped without requiring the mapping of the remainder of the

network nodes. The mapping process can thus be performed in constant time.
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For simplicity, remapping occurs on a variable node basis. That is, if any variable’s

immediate fanin term nodes and their literals are affected by a rule, that variable and

the immediate fanin term nodes are remapped. The following rules define when a

variable node is remapped:

1.

2

[41]

When a variable is created.

. When a product term and/or literal of a product term for the variable is modified

(created or removed).

_If a variable's reference count becomes 1 and the technology mapping model

allows complex gates. the fanout variable is remapped (if complex gates exist
which can span more than two variable nodes, additional fanout variables are

remapped ).

. If the variable’s reference count becomes greater than 1 and if the variable node

is internal to a complex gate tree, that variable and all variable node members

of that complex gate are remapped.

. If a variable’s positive or negative fanout counts becomes zero or non-zero. that

variable is remapped. Thus, remapping a node may effect the remapping of

fanin nodes.

Variables to be remapped are recorded in a stack to approximate a desired ordering

where transitive fanout variable nodes are mapped before predecessor nodes. This

ordering of nodes is required to meet the conditions of the direct map. The algorithm

for remapping the network is given in Figure 5.9.

mapping.model is the specific technology mapping model desired (e.g. simple

gates). Maintaining the ordering constraint may result in a fanout variable being

moved to the top of the stack. Rather than deleting the previous stack entry. the

variable is duplicated in the stack. For each variable to be remapped, it is therefore

necessary to determine if it was already processed. The for-loop ensures that the

ordering constraint is met for the top-of-stack variable, V. V is marked as a root

node by makeroot to prevent fanout nodes from being placed on the stack again. V"

is finally mapped when all fanout nodes have been mapped.
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inc_map(mapping.model)
{ while (stack_erppty(unmapped))

{
V = top(unmapped);
if (mapped(V))
pop(unmapped);
else
{
foreach (fanout variable Vy of V)
if (mapped(V}))
push(unmapped, V3); /* maintain ordering */
else if (I is not root node)
.
total_area -= area(V});
push(unmapped,y);
b :
makeroot(V);
if (top(unmapped) is V) /* i.e., all fanout nodes mapped * /
pop(unmapped();
map(mapping-model, V);
}
}

Figure 5.9: Incremental Mapping Algorithm
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5.4.2 Technology Mapping Models

OPAL has three mapping models. These include the simple gate and complex gate
models as mentioned previously. In addition. there exists an AND-OR model which is
used for technology-independent timing optimization. Technology-independent area
optimization does not require mapping since the total number of literals is maintained
in the database. However, mapping is required to perform network leveling which is

described later.

The AND-OR Model

The AND-OR model is not really a technology-dependent mapping model but is
presented here since it contains the same concepts as the more complex models.
The three basic gates of this model are generic-AND, generic-OR, and generic-buffer.
This model can be considered a dual-rail model because inverting and non-inverting
outputs are present on the gates. In all models. a gate configuration which provides
an inverting and non-inverting output must exist for all gates. This constraint is

usually met by adding an inverter to the output of a gate available in the library.
" Each disjunction in the Boolean network is mapped to a generic-OR gate and each
conjunction to a generic-AND. The generic-buffer gate is used when a variable contains
a single product term which in turn contains a single literal. The area of the gates is

irrelevant since the literal count is used as the technology-independent area estimate.

The Simple Gate Model

The simple gate model maps the Boolean network using only the available AND.
NAND, OR, NOR, and inverter gates in the technology library. Because only these
simple gates are considered, the mapping is very efficient. Inaccuracies are only
introduced when complex gates would have provided a more area or delay efficient
implementation.

Given just these few gates, there are many possible configurations that perform
the same basic function. For instance. a NAND gate can be combined with an inverter

to derive an AND gate. Fortunately, there is often a “best” configuration given the
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particular fanout requirement of the gate. For instance. consider a CMOS standard
cell technology. If a variable contains only positive fanout. the AND gate might be
the desired configuration (possibly less area than a two-cell NAND-INV). If both
negative and positive fanout exist, the NAND-INV configuration is better since it
provides both the inverting and non-inverting outputs in less area than would the
AND-INV configuration. These decisions are made once (by the library developer)
and are stored in the technology library. The assumption of a “best” configuration
fails when a tradeoff exists between drive capability and area. In such cases, the
appropriate configuration can only be decided dynamically. The selection of a gate
in the library is made according to the generic function of the gate (e.g. AND, OR).
the fanin of the gate, and the positive and negative fanout counts.

Given a variable node to be remapped, there are three cases to be considered: the
variable contains multiple product terms, a single product term, or, if it defines an
input, no product terms. For multiple product terms, the variable node is the root of

a sum-of-products tree and two possible mappings exist: a two-level NAND tree or
| an AND-OR tree. The decision to accept the NAND tree is based on the parameter
nand.nand_cutof f specified in the user’s configuration file. For each multiple product
term variable, a sum of the number of literals less one of each term is calculated. If
this sum is greater than nand-nand.cutoff, the NAND tree mapping is used. Low
sums correspond to trees with only one literal in most product terms. These Boolean
network configurations can be easily transformed by arule into different configurations
which are mapped identically. Thus the one-to-one correspondence in mapping is
violated. When the sum is less than or equal to the cutoff, the AND-OR tree is used.

In the case of the AND-OR trees, the positive and negative fanout counts of the
variable and term nodes are the positive and negative reference counts, respectively.3
For NAND trees, the assignment is the opposite (e.g. positive fanout count set to
negative reference). Thus, single literal terms are essentially inverted. Gate configu-
rations are easily obtained from the library utilizing the fanout counts and the fanin

requirements of the nodes.

3of course, term nodes always have a positive reference count of 1 and negative reference count of
0 due to the restrictions imposed by the Boolean network model
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Variables defined with a single term containing a single literal are mapped to a
buffer gate. According to the fanout counts, the gate will either be an inverting buffer

or a non-inverting buffer.

The Complex Gate Model

Complex gates which match a tree structure in the Boolean network can be completely
defined in the library. Currently, defining complex gates that are not of this structure
requires compiled code in addition to the library specification. Typical libraries con-
tain only a small number of gates (such as the exclusive-OR ) which do not meet this
criteria and thus optimization is not significantly weakened. To take advantage of
gates not recognized by OPAL requires a postprocess technology mapping, and thus
optimality may be lost.

Mapping a variable node proceeds by checking the library for a complex gate which
matches the Boolean network tree structure rooted at the variable. The number of
term nodes connected to the root node is used to reduce the number of gates which
need to be checked. Priority among complex gates which may match the same network
configuration is according to the definition order in the library. If no complex gates

match the variable node, a simple gate mapping is determined using the simple gate
model.

5.4.3 Delay Evaluation

In many situations, the logic network will be connected between register banks that
are clocked according to the maximum path delay of the network. For critical net-
works, the configuration with the smallest maximum output delay represents the goal
configuration state. For gates which are off the critical path, area is important and
therefore always a part of timing optimization. OPAL uses a weighted sum of critical
path delay and area as the evaluation function for timing optimization. In other situ-
ations, some outputs are considered more critical than others and must meet required
arrival times. In these cases OPAL will minimize the sum of the differences between

output arrival times and required arrival times for outputs which do not meet their
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constraints.

The calculation of the output arrival times is performed in a quick two-pass pro-
cess of network leveling and delay summing. During leveling, the gates of the mapped
network are placed in a list. The order of placement is defined by the relation that
a gate occurs in the list after the positions of all its transitive fanout gates. The
network leveling process serves the dual purpose of connecting together the gates of
the mapped network. Gate mapping only assigns gates to Boolean network nodes;
connection among the gates is implied but not explicitly provided. Maintaining con-
nectivity relationships between input/output pins of mapped gates during mapping
is too expensive since it is only required for timing optimization. A standard critical
path computation which performs leveling concurrently with delay computation must
proceed from the Boolean network inputs to the outputs and would require substantial
graph searching to extract gate connectivity. The network leveling pass proceeds from
circuit outputs to inputs which is more suited to the structure of the Boolean network
and mapping information. In addition, since only leveling is required for obtaining
logic levels of the network, technology-independent optimization can be performed
efficiently by omitting the delay summing pass.

The delay summing pass proceeds through the leveling list from the end of the
list (the circuit inputs) to the beginning (the circuit outputs). The rise (fall) arrival
times, af (a.ft ) for each gate output i are the sum of the maximum fanin arrival times
aj, the intrinsic delay of the gate I, and the fanout loading delays (loads Li, drives
D;). The equations for computing a; and a;-f for positive unate, negative unate, and

non-unate gate outputs are presented in Equations 5.2, 5.3, and 5.4 respectively.

al = mas. (aJ)+I"+ E L; D (5.1)
jer JEFOLi)

f ! ! b

a] = max(q)+I]+ Z L;- D;
JEFI) FEFO(i)

o = max(a)+IfT+ ) Lj-Dj (5.2)
JEFIG) JEFO(i)
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od = Jénax (aJ)+I‘f+ Z L;. Df

JEFOLi)
ad = max (ma.\(aj,af))+I'+ > L;-Df (5.3)
Jer jEFO(i)
al = max (ma.x(a,,af))-%-If > L;-Df
JEFIL J€FO(i)

The technology library contains capacitive loading and drive information for cal-
culating fanout delays. The efficiency of fanout delay computation is improved if an
average input capacitance can be assumed for all gates (e.g., V outputs 4, L; = 1.0).
The delay model used provides sufficient accuracy for obtaining optimal circuits in
most cases. However, the evaluation function can easily support more accurate delay

models if required.

5.5 The Technology Library

The technology library characterizes the various logic gates available for a particular
technology. This library usually corresponds to gates which have been predefined for
use with Standard Cell and Gate Array layouts. Because of the restrictions placed
on technology mapping during cost evaluation, not all available gates can be utilized
‘during logic synthesis. To take advantage of special gates, a postprocessing technology
mapping step should be performed.

The technology library defines four classes of gates: AND, OR, BUFFER. and
COMPLEX. For the first three classes, gate entries are classified according to fanin
count. The COMPLEX gate class classifies entries according to the corresponding
Boolean network tree. In all classes, a further classification according to fanout count

exists:
1. positive fanout count > 0, negative fanout count = 0

2. positive fanout count = 0, negative fanout count > 0

3. positive fanout count > 0, negative fanout count > 0



For instance, a two-input AND gate configuration should be specified in case 1. In
case 2, a two-input NAND gate is specified and in case 3. 2 two-input AND/NAND
(both inverting and non-inverting outputs). If a configuration can be formed from
an available gate and possibly an inverter, the gate configuration is said to be legal.
Gate configurations which are illegal are usually specified with an area and delay
which would be realistic if the configurations were available. Hllegal configurations are
commonplace early on in the synthesis process and are eventually eliminated as the
penalties they incur are not tolerated by the acceptance function. As stated earlier,
illegal configuration states improve the search by increasing the accessibility of the
state-space. The specification of the library allows for a default entry which can be
extrapolated to form gate configurations of fanin not specified explicitly. The default
gate configuration can be used to specify illegal configurations beyond the “fanin
limit” implied by the library.

The specification of a gate configuration contains the following information: area,
input capacitance, rise/fall delays to negative and positive fanout, rise/fall drives of

positive and negative fanouts, positive and negative dependence relationships, logic
. levels to positive and negative outputs, and the number of inverters required in the
configuration. The only constraint on the units for input capacitance and drive are
that they form time when multiplied together. The output delays are intrinsic delays
except when one output is inverted to obtain the other. In this situation, the fanout
load of the inverter is accounted for in the output delay. The non-inverting, or positive
output, is said to depend on the inverting, or negative output, if it is derived from
the negative output with an inverter. Likewise, the negative output depends on the
positive output if it is formed with an inverter attached to the positive output. Since
the fanout delay of the true output will affect the delay of the dependent output,
dependency information is necessary.

Appendix A contains a typical library specification.
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5.6 Synthesis Process Configuration

The user of OPAL can control and customize the synthesis process using parameters
specified in a configuration file. Five parameter classes are defined: PHC process.
network evaluation. rule base. network I/0, and reporting. Many of the PHC process
and network evaluation parameters have already been described. In addition to these
parameters, rule weighting can also be specified. OPAL can read and write networks
specified as equations or in the LIF.3 logic interchange format[MCN87a]. Statistics
can be generated at each value of T and also at the end of the synthesis run. The

complete list of parameters is provided in Appendix B.
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Chapter 6

System Performance

Presented in this chapter are performance comparisons between the Probabilistic Hill-
Climbing Control Strategy and alternative strategies. Although these comparisons
and evaluations are made with respect to performance in rule-based logic synthe-
sis, the conclusions and insights obtained can be applied more generally. In addi-
tion to control strategy comparisons, the issue of rule-based versus algorithmic-based
problem-solving is a.ddressec_l. Results obtained with the rule-based system OPAL are
compared to the MIS Logic Synthesis System.[BRSW87,DGR*87)

6.1 Comparison Between PHC and Alternative Strate-
gies

The alternative control strategy model used in comparisons is the steepest-descent
strategy with varying degrees of look-ahead. The traditional steepest-descent strategy
is “greedy”—only the best rule is selected. Consequently, this approach obtains a
locally optimal solution that is very semsitive to the initial problem configuration.
Look-ahead provides a means of escaping local minima by accepting rules which are
not individually acceptable. However, when associated with other rules in a sequence,
a better overall configuration is obtained. This model was selected since it is used in
most rule-based logic synthesis systems(GBdH86.DBG*84]. In addition, a spectrum
of strategies can be constructed by adjusting the breadth and depth of the look-ahead
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search. Each strategy will be defined by its associated breadth and depth pair: (b.d).

Five different steepest-descent /look-ahead strategies are used in comparisons: (1.1).
(1,3), (n,1), (70,3), and (23.4). (1,1) represents a strategy which randomly tests rule-
location pairs in the network and accepts only those which improve the cost. (1,3)
tries sequences of 5 rules and accepts those which improve the cost. (n.1) accepts the
best of n rule-location pairs. When n is the number of unique rule-location pairs for
the current configuration, this strategy represents the standard “greedy” approach.
(70,3) searches 3 rules deep and 70 rule-location pairs at each depth level—accepting
the best three rule sequence. (25,4) performs more look-ahead but at the expense of
fewer rule-location pairs per depth level.

Since only the control strategies are being compared, other rule-based system
components such as the rule set and evaluation function are left unchanged. The only
exception to this is that the weights applied to individual rules for the steepest-des-
cent/look-ahead strategies differ from those of the PHC strategy and were adjusted
experimentally for optimal performance..

The steepest-descent/look-ahead strategy models represent “pure” strategies since
the breadth/depth parameters are static. Of course, it is possible to optiin.ize per-
formance for a particular problem by adjusting the breadth and depth during the
process. For example, in logic optimization and synthesis, it may be desireable to
use a minimal amount of look-ahead during early stages of the process before local
minima are reached. Later stages may increase the look-ahead to help escape local
minimas. However, the optimal breadth and depth to use on a given problem con-
figuration is indeed the problem to be solved. What this report intends to convey is
that the Probabilistic Hill-Climbing control strategy provides a robust solution to this
problem.

The measure of performance between the various strategies is solution quality
given comparable run-times. However, because each strategy continues until improve-
ments in cost are no longer possible, obtaining comparable run-times is a difficult task.
This problem is addressed by requiring the run-times for the steepest-descent/look-
ahead strategies to be identical to the PHC strategy run-time. In some cases, the

solution converges rapidly and is not helped much by the extra time provided. In
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Name Description Tormat | Inputs | Outputs | Literals
5xpl-hdl | 3-z+1 multi-level T 10 117
S5xpl 5.z+1 2-level 7 10 296
9sym-hdl | ‘1" if 3.4,5, or 6 inputs=1 multi-level 9 1 169
9svm ‘1’ if 3,4.5, or 6 inputs=1 | 2-level 9 1 522
9symml | ‘1"if 3.4,5, or 6 inputs=1 multi-level 9 1 277
alupla 4 bit ALU w/muxes multi-level 25 5 173
bw N/A 2-level 5 28 324
2 N/A multi-level 4 4 36
£51m-hdl | (5 -z + 1)mod256 multi-level 8 8 116
f51m (5-z + 1)mod256 multi-level 8 8 153
misex1 control multi-level 8 7 123
misex?2 control multi-level 25 18 166
rd53-hdl | counts 1’s multi-level 5 3 33
rd33 counts 1’s 2-level 5 3 144
rd73-hdl | counts 1’s multi-level T 3 91
wdcent counter multi-level 7 8 114
z4ml-hdl | 2-bit adder w/cin.cout multi-level 7 4 68
z4ml 2-bit adder w/cin.cout multi-level 7 4 58

Table 6.1: Benchmark Circuits

other cases. a better solution may have been obtained if the run continued. To indi-
cate such discrepancy, the solution at convergence (and required run-time) for each
strategy is also presented.

A summary description of the benchmark circuits is contained in Table 6.1. The
circuits whose names end in “-hdl” were initially specified using a hardware descrip-
tion language rather than a sum-of-products (2-level) specification. Many of these
examples are part of the Microelectronics Center of North Carolina (MCNC) bench-
mark set from the 1987 International Workshop on Logic Synthesis(MCNS87b].

6.1.1 Technology-Independent Optimization

The least computationally expensive and least accurate optimization is literal count
optimization. Results obtained for literal count optimization are presented in Tables

6.2 and 6.3. For each circuit benchmark, the initial area (literal count) is specified. For
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each control strategy, optimized solution areas and required run-times are presented.
Run-times here and in all comparisons with the exception of timing optimization are
VAX 8650 minutes. Timing optimization run-times are in VAX 8800 minutes.! For
the PHC runs. a best and average of 3 runs is presented. The purpose of averaging
multiple runs is to provide an expected value for the solution quality. Multiple runs are
not useful for the steepest-descent/look-ahead strategies since the effect of the random
number sequence is less pronounced. All PHC runs utilize the same set of process
parameters but with different random number seeds. The CPU, time corresponds to
the best run. For each alternative strategy, two areas are specified. area; is the
comparable run-time result. areas and CPU, represent the result when the run-
time constraint is removed. Runs without the time constraint terminate after a fixed
number of rule-location pairs have been unsuccessful in reducing the cost of the final
configuration. This rule-location limit is based on the number of rules in the network,

the initial size of the network, and an experimentally determined multiplier.
Area and CPU time totals for each control strategy are presented in Table 6.4.

For the steepest-descent/look-ahead strategies it is observed that better results are
often obtained for the time limited runs over those of the unconstrainted runs. This
behavior occurs when the time limit is greater than the unconstrained run-time, in
which case the termination criterion is ignored. Since the termination criteria is based
on the rate of rule-location pair acceptance rather than the exact, and computationally
prohibitive, determination of a local minimum, it is very likely that the unconstrained
runs will complete before an acceptable rule-location pair is found.

Comparing results among the steepest-descent /look-ahead strategies indicates that
in many cases increasing the breadth/depth of the search decreases solution quality.
The advantages gained by the ability to escape local minima do not overcome the
disadvantage of accepting fewer rules. An examination of the rule sequences accepted
by the extended look-ahead models indicates that most sequences consist only of
cost-decreasing (improving) rules. The scarcity of local minima often renders the

look-ahead useless. A practical implementation of the steepest-descent/look-ahead

1the VAX 8800 has been experimentally determined to be about 10% faster than the VAX 8650
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Circuit PHC (1.1) (n,1)

name area || best CPU, ave CPU; | areay areaz CPU, | area; areay CPU2
3xpl-hdl 117 81 4.8 83 4.8 88 83 0.4 104 104 1.2
5xpl 296 || 172 15.8 181 15.3 190 190 14 193 193 8.6
9sym-hdl | 169 90 9.9 98 9.4 139 139 0.5 132 132 1.8
9sym 522 || 345 36.5 350 38.2 343 347 3.3 423 325 61.8
9symml 277 || 271 14.6 273 14.2 266 266 . 1.0 266 266 3.0
alupla 173 || 145 8.8 148 9.7 152 152 1.3 152 152 27
bw 324 || 251 18.6 234 18.3 235 235 0.9 224 224 6.7
f2 36 26 7.1 029 9.9 30 30 0.1 30 30 2.5
f5im-hdl | 116 78 4.7 81 4.5 87 87 0.3 104 104 1.2
f31m 1535 || 143 6.8 150 6.4 154 154 0.4 154 154 1.5
misex1 125 73 42 73 4.2 80 80 0.3 7 79 1.7
misex?2 166 142 9.4 143 9.2 155 155 - 0.7 154 154 2.3
rd53-hdl 53 44 2.4 48 2.2 47 47 0.1 47 47 0.4
rd33 144 || 104 6.4 110 6.2 86 95 0.4 72 73 2.9
rd73-hdl 91 60 39 T4 3.8 84 84 0.2 83 83 0.7
wdcnt 114 38 23 40 2.3 46 46 0.3 46 46 0.6
z4ml-hdl 68 52 3.1 58 2.7 55 55 0.2 54 54 0.5
z4ml 58 43 2.0 46 2.1 46 46 0.1 54 34 0.4

Table 6.2: Literal Count Optimization Results

strategy is suggested by these results: minimal look-ahead while many cost-decreasing
rules exist; increased look-ahead as cost-increasing rules appear more frequently.
The Probabilistic Hill-climbing strategv provides the best individual and collec-
tive results of the strategies compared. This observation is not surprising given the
conclusions concerning look-ahead strategies. Since cost-decreasing rules are always
accepted, the PHC strategy contains characteristics of the (1,1) model. However.
the occasional acceptance of cost-increasing rules provides local minimal escapes and
hence the better results. However, for several of the circuits, (1,1) optimization pro-
vided a better solution than the PHC optimization. The acceptance of cost-increasing
rules occasionally results in a move to a configuration subspace with a local minima
of higher cost. Such behavior can be controlled by increasing the allowed run-time

for the optimization or adjusting the process parameters.
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Circuit (1.5) (70.3) (25.4)

name area || area; areay CPU, | area; areay CPU, | area; area, CPU,
5xpl-hdl 117 88 103 1.0 106 106 4.3 106 105 )
3xpl 296 213 215 9.2 208 182 50.7 223 216 38.1
9sym-hdl | 169 135 146 2.2 148 149 7.3 153 148 T.7
9svm 522 377 385 15.1 373 368 62.1 373 366 59.4
9symml 277 266 269 3.9 270 270 15.0 270 270 19.7
alupla 173 152 152 1.9 154 154 7.4 154 155 10.7
bw 324 237 240 6.7 244 244 223 251 230 23.8
2 36 28 30 0.1 34 28 2.5 33 30 14
f51m-hdl 116 92 103 1.3 106 106 4.3 108 105 4.8
f51m 153 154 155 9.2 154 154 7.8 155 154 5.6
misexl 125 77 78 1.2 76 76 5.0 74 80 6.8
misex? 166 166 153 1.6 122 119 15.0 139 126 15.2
rd53-hdl 33 47 51 0.3 51 33 1.6 52 31 1.6
rd53 144 87 88 1.5 96 95 114 110 76 18.7
rd73-hdl 91 84 88 0.3 83 83 3.9 86 87 2.0
wdcnt 114 42 44 0.5 48 44 5.0 46 46 2.2
z4ml-hdl 68 35 64 0.3 63 63 3.0 64 64 1.6
z4ml 58 53 57 0.2 57 57 1.0 57 58 0.8

Table 6.3: Literal Count Optimization Results (cont.)

CPU limited | no CPU limit

Strategy | area CPU | area CPU
PHC (best) | 2159 135.1 | 2159 1535.1
PHC (ave) - - 12240 1543
(1,1) 2283 133.5 | 2296 11.7
(n.1) 2371 157.3 | 2274  98.2
(1,3) 2353 145.3 | 2421 48.2
(70,3) 2393 156.6 | 2351  229.8
(25.4) 2434 155.6 | 2367  227.7
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Delay Output Drive
Gate | Area | Input Load | rise fall | rise fall

INV1 1.0 1.0/ 0909} 03 0.3
AND2 3.0 1.0 19|19 03 0.3
NAND?2 2.0 1.0 1.0| 10| 0.1 0.1
NAND3 3.0 1.0} 11111} 03 0.3
NAND4 4.0 10| 14| 14| 04 0.4
NAND5| 5.0 - - - - -
OR2 3.0 10| 24| 24| 03 0.3
NOR2 2.0 10| 14|14 05 0.5
NOR3 3.0 1.0 24| 24| 0.7 0.7
NOR4 4.0 1.0 38|38 1.0 1.0
XR 5.0 20| 19|19 05 0.5
XN 5.0 20} 21211 05 0.5
AOI21 3.0 10} 16| 16| 04 0.4
AOI22 4.0 1.0| 20| 20| 04 04
OAI21 3.0 10| 16| 16| 04 0.4
0AI22 4.0 10| 20| 20| 04 04
AQI32 5.0 - - - - -
AOI222 6.0 - - - - -

Table 6.5: CMOS Standard Cell Gate Library

6.1.2 Technology-Dependent Optimization

The CMOS standard cell gate library described in Table 6.5 is used in technology-
dependent optimizations. The gates containing delay information represent the MCNC
benchmark set library and are used for timing optimization comparisons. The units
for area and delay are transistor pairs and nanoseconds respectively. Results for area

optimization are presented in Tables 6.6 and 6.7 and totals in Table 6.8.

The benefits of extended breadth/depth search are more apparent with mapped
area optimization than with literal count optimization. Examination of the accepted
rule sequences indicate considerably more cost-increasing rules were accepted than
with literal count optimization. The effects of using rules with a fine granularity are
more pronounced. Unlike the look-ahead models, the PHC control strategy demon-

strates insensitivity to these effects. The superior results of the this strategy suggest
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PHC (1.1) (n.1)
Circuit best CPU, ave CPU| areay area CPU, | area; areag CPUl,

5xpl-hdl || 104 9.7 1050 114 146 147 0.7 142 142 3.7
5xpl 242 46.3 247 56.9 300 325 3.1 293 258 19.5
9svm-hdl || 125 22.0 155 21.3 209 209 1.3 206 201 3.6
9sym 460 129.5 478 1209 541 596 6.9 423 447  115.0
9symml 344 319 348 53.7 346 356 3.2 346 358 16.5
alupla 190 23.8 196 23.2 204 208 21 213 220 3.3
bw 205 51.0 300 54.2 291 308 2.6 285 286 15.2
f2 35 2.0 38 1.8 42 42 0.2 48 30 0.4
f51m-hdl || 100 9.6 104 11.0 143 144 1.0 148 148 3.0
f51m 181 13.5 197 16.2 204 208 1.2 210 210 2.8
misex1 89 9.9 90 9.5 102 103 0.7 103 107 1.8
misex2 169- 263 174 29.8 200 217 1.5 203 216 6.6
rd53-hdl 60 4.3 63 4.3 69 71 0.2 68 68 0.7
rd33 133 17.7 137 19.3 154 159 1.2 103 109 3.5
rd73-hdl 103 9.2 112 7.9 116 115 0.4 117 117 1.1
wdcnt 44 5.2 49 5.2 64 64 0.4 61 63 1.1
z4ml-hdl 68 3.0 72 5.3 85 86 0.3 83 85 1.1
z4ml 48 4.2 62 4.1 71 71 0.3 75 75 0.6

Table 6.6: Area Optimization Results

that it was often more capable of avoiding local minima than the extended look-
ahead models. In some sense, a greater effective look-ahead was achieved with the

PHC control strategy.

Results for timing optimization are presented in Tables 6.9 and 6.10. Area and
critical output delays are presented for PHC area optimization, PHC timing opti-
mization, and (1.1) and (70, 3) timing optimization. The drives for all circuit inputs
and load of the circuit outputs were set to that of the INV1 gate. In all but the area
optimization runs. the required arrival time optimization model was used.

The column req’d indicates desired output arrival times. These numbers were
arbitrarily chosen with the criteria that they provide sufficient difficulty to the opti-
mization. The only circuit where the required arrival time was met was alupla. In
comparing timing optimization results, the tradeoff between area and delay must be
considered. Runs with comparable output delays should be compared according to

the areas of their solutions. The (1,1) model is clearly not as effective in timing
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Circuit (1,3) (70.3) (25,4)

name area; areaz CPU; | aree; areas CPU, | area; areay CPU,
3xpl-hdl 133 145 1.2 141 147 6.1 142 145 6.7
5xpl 280 305 10.2 304 301 57.0 325 348 25.8
9sym-hdl 201 206 2.2 207 207 11.7 206 204 18.4
9sym 535 370 18.1 495 542 88.4 541 556 75.8
9symml 351 364 3.2 346 366 15.1 347 365 13.9
alupla 205 210 2.6 205 220 10.4 220 226 6.2
bw 282 287 9.0 280 297 37.7 282 308 24.3
2 36 42 0.2 41 35 7.5 39 38 1.8
f51m-hdl 142 146 1.3 146 152 5.2 139 146 8.8
f51m 202 207 2.0 209 212 10.7 219 213 10.6
misex1 102 103 1.6 102 102 9.2 102 102 6.0
misex2 199 205 3.4 180 184 46.3 183 201 18.3
rd53-hdl 65 68 0.3 68 69 1.5 68 68 2.0
rd33 139 154 1.5 148 146 13.1 151 156 15.6
rd73-hdl 116 119 0.4 116 118 3.8 115 119 2.9
wdent 63 67 0.6 68 70 6.3 67 71 2.3
z4ml-hdl 86 7 0.5 86 88 3.6 84 87 1.8
z4ml 68 72 0.6 72 75 4.2 72 78 2.5

Table 6.7: Area Optimization Results (cont.)

CPU limited | no CPU limit

Strategy | area CPU | area CPU
PHC (best) | 2790 441.3 2790 4413
PHC (ave) - -1 2920 456.0
(1.1) 3287 441.8 | 3429 27.28
(n.1) 31290 442.7|3160 201.7
(1.5) 3205 441.6 | 3357 58.9
(70,3) 3214 444.0 13331 337.9
(25.4) 3302 441.9 § 3431 243.6

Table 6.8: Totals for Area Optimization
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Area Optimized PHC
circuit | area  delay | redd | area delay CPUy
9sym-hdl | 125 42.8 22 1 251 29.1 53.1
alupla 190 30.3 201 241 20.0 45.3
f51m-hdl 100 373 10| 176 144 18.6
rd53-hdl 60 22.3 13 80 15.7 8.1
z4ml-hdl 68 15.1 8 89 10.9 3.3

Table 6.9: Timing Optimization Results - PHC

z4ml-hdl 87 11.1 87 11.1 0.8 96 9.9 92 9.2

66.2
95.1
90.2
18.5
32.0

(1.1) (70.3)
circuit area; delay; area; delay, C PU, | area; delay; areaz delays CPU,
9sym-hdl 232 34.5 232 34.5 12.3 248 321 248 32.1
alupla 238 22.9 240 22.9 9.7 254 213 256 20.8
f51m-hdl 184 16.6 184 16.6 10.9 193 16.4 184 15.7
rd53-hdl 80 16.7 80 16.7 0.7 96 15.3 96 15.3

Table 6.10: Timing Optimization Results - Look-ahead

optimization as it is in literal count optimization. This observation ié again explained
by the reduced effectiveness of single rules in improving the configuration. As could
be expected, the (70.3) model was able to overcome local minima and obtain consis-
tently good results. However, given comparable run-times, the PHC control strategy

performed the best overall.

6.2 Comparisons Between Rule-Based and Algorithmic

Logic Synthesis

Rule-based problem-solving can be expensive. Their use is justified when they pro-
vide better results than can be obtained with available algorithms. In recent years.
the quality of algorithms for multi-level logic synthesis has improved enormously.
The MIS logic synthesis system [BRSWST,DGR*ST] incorporates many of these new
algorithms. Presented here is a comparison between the OPAL rule-based system

utilizing the PHC control strategy and the MIS system. Since algorithms for tim-
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Circuit PHC . MIS
name area || area CPU | area CPU
5xpl-hdl 117 81 4.8 83 0.1
5xpl 296 172 15.8 | 155 0.2
9sym-hdl | 169 90 9.9 | 140 0.4

9sym 522 || 345 36.5| 261 0.9
9symml 27T | 271 146 | 233 0.9
alupla 173 || 145 881 179 1.5
bw 324 || 251 18.6 | 224 0.7
2 36 26 7.1 32 0.0
f51m-hdl | 116 78 4.7 78 0.1
f51m 135 || 143 6.8 160 0.3
misexl 125 73 4.2 72 0.1

misex2 166 || 142 9.4| 113 0.1
rd33-hdl 55 44 2.4 54 0.1

rd33 144 || 104 6.4 62 0.1
rd73-hdl 91 60 3.9 80 0.2
wdcent 114 38 2.3 41 0.0
z4ml-hdl 68 52 3.1 59 0.1
z4ml 58 43 2.0 42 0.1

Table 6.11: Literal Count Optimization Results for OPAL and MIS

ing optimization are still in their infancy, only literal count and mapped area results
can be compared. Literal count optimization results are compared in Table 6.11 and
mapped area optimization results in Table 6.12.

Although OPAL was often able to provide a better solution, it came at the cost
of one to two orders of magnitude increase in run-time. Furthermore, the quality
of results from algorithmic approaches can be considerably better—at the cost of in-
creased CPU time—-if more extensive Boolean operations are performed. Rule-based
systems for area optimization may no longer be cost effective given the quality of algo-
rithms currently available. However, due to the present lack of algorithms for timing
optimization, the need for rule-based approaches to this problem is still present. Fur-
thermore, it is unclear how successful algorithmic approaches will be when multiple
constraints are introduced in the problem. Algorithmic approaches tend to separate

the problem into subproblems which are solved individually. Often, the effectiveness of
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Circuit PHC MIS

name area CPU | area CPU
5xpl-hdl 104 9.7 101 0.1
5xpl 242 46.3 | 181 0.3
9sym-hdl | 125 22.0| 182 0.5
9sym 460 129.5| 328 1.0
9symml 344 519 | 310 1.0
alupla 190 23.8 | 219 0.7
bw 295 310 271 0.7
12 35 2.0 36 0.0
f51m-hdl || 100 9.6 96 0.1
f51m 181 135 191 04
misexl 89 9.9 90 0.1
misex?2 169 26.3 | 152 0.2
rd33-hdl 60 4.5 69 0.1
rd53 133 17.7 g 0.1
rd73-hdl 103 9.2 | 104 0.2
wdcent 44 5.2 54 0.1
z4ml-hdl 68 5.0 75 0.1
z4ml 48 4.2 33 0.1

Table 6.12: Mapped Area Optimization Results for OPAL and MIS
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this technique decreases as the number of separations increases. Current separations
introduce the following ma jor subproblems: two-level logic minimization. decomposi-
tion, resynthesis for timing, decomposition into a canonical 2-input nand gate struc-
ture, mapping into a technology. and gate-sizing [BRSWST,BMS?,KeuST,DGR*ST].
With the exception of gate-sizing, all of these subproblems are considered simultane-
ously by OPAL. Because optimizations which span these subproblems are not usually
possible, consideration of the entire problem can potentially obtain better solutions.
One algorithmic approach to spanning across problem divisions involves iterating each
step until some convergence criteria is achieved. As this technique suggests, algorith-
mic methods which attempt to overcome non-optimal problem divisions possess a

structure and efficiency approaching that of rule-based systems.

65



Chapter 7

Conclusions

A particularly interesting class of rule-based problem-solving involves performing
searches of a complex state-space. Various methods, such as hill-climbing and best-
first search. exist for controlling the state-space search and were presented. Problems
with these methods have been described and used as justification for the appropri-
ateness of the Probabilistic hill-climbing (PHC) control strategy. A model of PHC-
controlled rulé-ba.sed systems was described and the impact of the control strategy on
aspects of the system was addressed. A rule-based system for logic synthesis, OPAL,
has been developed which utilizes the simulated annealing PHC control strategy.

Comparisons with different models of the steepest-descent/look-ahead control
strategy indicate the robustness of the PHC strategy. Overall, the PHC control
strategy provides better solutions than can be achieved by fixed breadth/depth look-
ahead models. Because the degree of necessary look-ahead varies across problem
instances and for different evaluation functions, static look-ahead approaches are not
very robust. The PHC control strategy is able to dynamically adapt its search to suit
the problem being solved. Thus, PHC control strategies are able to achieve a more
effective search of the state-space and obtain better solutions.

Finally, the issue of Rule-based versus algorithmic approaches was addressed by
considering the logic synthesis problem. Although solution quality of the two ap-
proaches are comparable, the required execution time for the rule-based approach

was identified as prohibitively expensive. However, some problems, especially those
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with many constraining factors, can not be solved optimally when separated into
subproblems which are solved individually. When optimal results are required. the
rule-based paradigm is a useful approach. Rule-based systems for logic synthesis are
useful when a) there exists a lack of good algorithms for a given subproblem (such as
timing optimization). and b) many conflicting constraints are imposed on the synthe-
sis process which must be dealt with simultaneously.

Important work left for future study include improvements in timing optimization.
In particular, the currently existing rule base in OPAL appears to be best suited for
area optimization. The value of individual rules can not be easily determined inde-
pendently of other rules. Rules suited for timing optimization should be investigated
and incorporated into the existing rule base. Also, the sharing of common subex-
pressions is not always desirable when delays are being minimized. Currently OPAL
always shares common subexpressions. Methods for identifying when this operation
is not desirable should be developed and incorporated.

Future work on PHC-based rule-based systems should investigate automatic meth-
ods for obtaining optimal sets of parameter values for a given evaluation function (e.g.,
area optimization, timing and area optimization, etc). In addition, automatic tech-
niques for obtaining rule weights should be investigated. Rule weighting can improve
both the quality of solutions as well as the efficiency of the search. One possible ap-
proach involves having the program discover for itself the appropriate set of weights
by obtaining feedback from solutions to selected instances of the problem to be solved.
Typical information which would be useful for this purpose are the frequency of rule
matcheé, the accept/reject ratio at different stages of the process, and the sequences

of rules which are often effective. .
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Appendix A

Technology Library Example

#

# enhanced MCNC benchmark library
# CMOS standard-cell

#

AND 5 51 0.6 0.6

# # # O

exists legal unate
name area
Y AND_ILLEGAL N P 6.
Y NAND_ILLEGAL N P 5.0
Y NAND_ILLEGAL N P 6.0
Y AND2 P 3.0
Y NAND2 2.
Y NAND2 .0
Y NAND3 YP4
Y NAND3 YP3
Y NAND3 YP 4.0

load delay drive

pos neg pos neg
1.0 3.2 3.2 0.0 0.0 3 0.3 0.0
1.0 0.0 1.8 1.8 .5
1.0 3.2 2.22.2 0.3 .5 0.5
1.0 1.9 1.9 0.0 0.0 0. .00
1.0 0.0 1.01.0
1.0 2.1 2.1 1.21.2 0.3
1.0 2.3 2.3 0.00.0 0.30 .0
1.0 0.00.0 1.1 1.1 0.
1,0 2.3 2.3 1.41.4 0.3 30.



Y NAND4 YP5.01.02.72.7 0.00.0 0.30.3 0.00.0 00201
Y NAND4 YP4.01.00.00.0 1.41.4 0.00.0 0.40.4 00010
Y NAND4 YP5.01.02.72.7 1.81.8 0.30.3 0.40.4 01211
5
Y NANDS YP6.01.03.23.2 0.00.0 0.30.3 0.00.0 00201
Y NANDS YP5.01.00.00.0 1.81.8 0.00.0 0.50.56 00010
Y NANDS YP6.01.0 3.23.2 2.22.2 0.30.3 0505 01211
OR 4 4 1 2.0 2.0
0
# exists legal unate load delay drive dep 1vl invs
# name area pos neg pos neg pnpn
# = —mmmmmmmmmem = = S e cmmmmmm  mmmmmee  mmmmmm—  mmmme—— = = = = =
Y OR_ILLEGAL N P 1.0 5.7 5.7 0.0 0 0.0 0 0
Y NOR_ILLEGAL . N P 1.0 0.0 0.0 3.8 3 1.001.0 00010
Y NOR_ILLEGAL ¥ P'5.0 1.0 5.7 5.7 3. 0.3 1.01 211
2
Y OR2 P 3.0 1.0 2.4 2.4 0.00.0 0.30.3 0.00.0 00200
Y NOR2 Y P 2.0 1.0 0.0 0.0 1.4 1. 0.0 0.5 0.
Y NOR2 YP3.01.02.42.4 1.91.9 0.30.3 0.50.5 01211
3
Y NOR3 YP 4.0 1.0 4.0 4.0 0.0 0.0 0.3 0.3 0.00.0 00201
Y NOR3 Y P 3.01.00.00.0 2.42.4 0.00.0 0.70.7 0 10
Y NOR3. YP4.0 1.0 4.0 4.0 3.1 3.1 0.30.3 0.70.7 01211
4
Y NOR4 YP5.01.05.75.7 0.00.0 0.30.3 000 020
Y NOR4 Y P 4.0 1.0 0.0 0.0 3 0.0 1.01.0 00010
Y NOR4 YP5.01.05.75.7 4.84.8 0.30.3 1.01.0 01211

BUFFER 21000

# 0 corresponds to primary outputs, 1 for internal buffers
0
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# exists legal unate load delay drive dep 1vl invs

name area pos neg pos neg PO PR
Y OUTPUT YP 0.0 0.00.00.0 0.00.0 0.00.0 0.00.0 00000
Y OUTPUT-INV Y P 1.0 1.0 0.0 0.0 0.9 0.9 0.00.0 0.30.3 00010
Y OUTPUT-INV Y P 1.0 1.0 0.0 0.0 0.9 0.9 0.0 0.0 0.30.3 01010
1

Y INV1-INV1 YP2.01.02.12.1 0.00.0 0.30.3 0.00.0 00201
Y INVi YP 1.0 1.0 0.0 0.0 0.9 0.9 0.0 0.0 0.3 0.3 00010
Y INV1-INV1 P 2.01.02.12.1 .21.2 0.30.3 .30.3 01211

-<
o
o

[y
o

# format for complex gate definitions:

#

# <graph> ::= <termlist> <gatecode>

# <termlist> .:= <termcnt> [<term_info> ...]

# <term_info> ::= 0 # literal cnt doesn’t matter

# .:= -<literal_cnt> # indicates graph termination
# e <1itera1-cnt>.<1itera1_info> .o

# <literal_cnt> ::= natural_int

# <literal_info>::= <sign> <termlist>

# <sign> .:= U # undefined, reqd for > 1 1lit

# ::= P # positive

# ::= N # negative

# <gatecode> ::= 0 # no special function

# .:= int # corresponds to special gate#

#

# note: term_info list is as long as termcnt specifies

# literal_info list is as long as literal_cnt specifies.

# undefined sign required for terms with > 1 literal (otherwise ambiguous)
# gate codes:

# 1 - xor/xmor

#

COMPLEX 10 30 0 O
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# #H ® N # #* # N

# # # N

-2 -2

exists

-2 -2

exists

i

0

name

N

Y AOI22

-2-10

exists

name

- emeven e amesenem . n Emam -  GSemes e

N
Y AOQI2

‘N

#+ # # N

-1 -2

exists

i

0

name

N
Y AOI2
N

1

legal unate load

area

delay

pos

drive dep 1lvl invs

neg pos neg pnpn

YUS5.02.01.91.9 0.
YUS5.02.00.00.0 2.
YU®6.02.01.91.9 3.

legal unate load

area

delay

pos

0 0.0 0.50.5 0.000 00100
12.14 0.00.0 0.50.5 00010
33.3 0.50.5 0.30.3 10121

neg pos neg pnpn

YP 4.01.00.00.0 2.

legal unate load

area

delay

pos

02.0 0.00.0 0.40.4 00010

neg - pos neg pnpnm

~

YP3.01.00.00.0 1.

legal unate load

area

delay

pos

6 1.6 0.00.0 0,.40.4 00010

neg pos neg pnpn

YP3.01.00.00.0 1.

12U2-1-10U2-1-10

# exists

name

legal unate load

area

pos

delay
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6 1.6 0.00.0 0.40.4 00010

drive dep 1lvl invs

neg pos neg papn



# # # N #* #® B - #*+ H O H =

#* # B N

N
Y 0AI22
N

202 -

exists

YP4.01.00.00.0 2.

1-10U00

legal unate load delay

name area pos

N
Y 0AI21
N

2000

exists

02.0 0.00.0 0,40.4 00010

neg pos neg pnpn

YP3.01.00.00.0 1.

2-1-10
legal unate load delay

name area pos

N
Y 0AI21
N

-2 -30

exists

6 1.6 0.00.0 0.40.4 00010

neg pos neg pnpn

Y P 3.01.00.00.0 1.

legal unate load delay

name area pos

N
Y AOI32
N

-3-20

exists
n

N

Y A0I32

6 1.6 0.0 0.0 0.40.4 00010

neg pos neg pnpmn

YP5.01.00.00.0 2.

legal unate load delay

ame area pos

s e - = = memes e

42,4 0,000 0.40.4 00010

neg pos neg pRnpnmn

YP5.01.00.00.0 2.

72

42.4 0.00.0 0,404 00010



#*+ # B W

-2-2-20 )

exists legal unate load delay drive dep 1lvl invs
name area pos neg pos neg pPnpn

N

Y A0I222 YP 6.0 1.0 0.0 0.0 2.8 2.8 0.0 0.0 0.40.4 00010
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Appendix B |

Configuration Parameters

alphal temperature update during melt phase.

alpha2 temperature update during main search phase.

alpha3 temperature update during greedy search phase.

delta multiplier for standard deviation of network cost to specify equilibrium bound.
p-accept desired probability of accepting a cost-increasing rule at T = To.
illegal_gate.penalty upper bound multiplier for determining penalty for an illegal gate.
delay_penalty penalty for delay bevond required arrival times.

rule_tries the number of rules to attempt per location (rule-location selection method #1).
step.sizefactor inner loop iteration count factor.

literal_threshold used to determine minimum inner count.

constant_iterations required number of outer loop iterations with a constant cost.
upper_bound._multiplier used to obtain the cost upper bound.

nand_nand_cutoff specifies when an and-or tree should be implemented as a NAND tree.
logiclevel factor multiplier for logic levels.

delay_factor multiplier for delay.

area_factor multiplier for area.

rule_weight_precision precision of specified rule weights.
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literal_.weight literal multiplier.

single_load load of one input if using common load fanout rnod'el.
breadth search breadth for steepest-descent/look-ahead control st.rat.eéy.
depth search depth for steepest-descent/look-ahead control strategy.
any_loc.prob probability of generating a random network location.
local_loc_prob probability of generating a location near the previously accepted rule.
critical_loc_prob probability of generaf;ing a location on the critical path.
verbosity extent of result and diagnostic reporting.

inputs.avail default input availability (negative, positive, or both phases).
bound_mode cost bounding mode.

simple_fanout selects efficient, common load fanout model.

do_ruleuse if rule statistics should be generated.

preoptimize if input network should be stripped of extra buffers.
output.mode netlist output format.

input.mode netlist input format.

random._seed seed for random number generator.

area_optimization area optimization model.

delay.optimization timing optimization model.

do_resources if resource usage report should be generated.

loop-mode method of generating inner loop jiteration limit.
selection_method selects the rule-location selection method.
rule_weight assigns a weight to a particular rule.

cpulimit maximum number of CPU seconds permitted.
literal_cnt.type type of literal count (sum-of-products or factored form).
process-circuit if optimization should be performed.

control_strategy type of control strategy (PHC or steepest-descent/look-ahead).
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timing_opt-model timing optimization model (required arrival, critical path delay).
checkpoint_rate number of outer loop iterations between checkpoint writes.
Iibrary._file name of the technology library file.

input_file name of the input file.
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