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Abstract

Many difficult problems do not lend themselves to recipe-like solutions characteris

tic of the traditional algorithmic approach. An effective alternative for solving these

problems is the rule-based approach. Rule-based systems often utilize a state-space

problem formulation in which rules are used to move between states in search of the

goal, or solution, states. Directing this search is the responsibility of the control strat

egy. In this report the use of probabilistic hill-climbing techniques as the basis for a

powerful, generalized control strategy is described. Probabilistic hill-climbing over

comes many of the inherent weaknesses of other control strategies which complicate

the rule-based solution to difficult problems. One such problem is logic synthesis—

the process of converting a functional description of a digital circuit into an optimal

implementation. A rule-based system for logic synthesis has been developed to study

and assess the quality of the PHC control strategy. The quality of the solutions

generated by the system indicate the effectiveness of this technique.
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Chapter 1

Introduction

1.1 Overview

Many difficult problems do not lend themselves to recipe-like solutions character

istic of the traditional algorithmic approach. Combinatorial complexity, numerous,

conflicting constraints, and limited understanding of the problems make them in

tractable. An alternative to the traditional algorithmic approach is the rule-based

approach[WH78,DK76]. Rule-based systems are data-driven—that is, the order of

steps in solving the problem are determined, in part, by the state of the problem and

are not fixed as in a recipe. Because knowledge about the problem is encapsulated

in the rules, rule-based systems can easily incorporate new knowledge by introduc

ing new rules. One other important characteristic of rule-based systems is that they

separate rule knowledge from the control structure—the mechanism that determines

how rules are selected. Because of this separation, many rule-based systems can ef

fectively utilize general-purpose control strategies. This report describes the use of

probabilistic hill-climbing (PHC) techniques in rule-based system control strategies.

PHC techniques have demonstrated success in obtaining near optimal solutions for

combinatorial optimization problems. Their effectiveness is demonstratedby applying

them to a rule-based systemfor logic synthesis. Logic synthesis involves the transfor

mation of a functional description of a digital circuit into an optimal implementation

consisting of components and their interconnections. This topic has received much



attention[McC56.HC074.BHH*82,DBG*84,GBdH86] and programs for logic synthe
sis [BRSWS7,dC85] are available. Since these programs present different approaches
to the problem, they can serve as a basis for determining the quality of the PHC

rule-based approach.

1.2 Rule-Based Systems

Rule-based systems contain three distinguishing components: a set of if-then, or

antecedent-consequent, pairs known as rules; a separate database, or working-memory,

containing problem information; and a control strategy, or inference engine, defining

the order and selection of rules to be applied to the database. Presented in Figure

1.1 is the structure common to all rule-based systems. The most common type of

rule-based system used in problem-solving is the production system. These systems

can be characterized by a recognize-act cycle [WH78]. The recognize phase deter

mines which rules can be applied to the database by matching rule antecedents with

database elements. If more than one rule is applicable, the control strategy must

determine which rule to "fire"—a processknown as conflict resolution. The act phase

involves executing the action indicated by the selected rule's consequent. This se

quence is repeated until the solution is obtained. Only rule-based systems with these

characteristics will be considered in this report.

Problems to be solved by rule-based systems are often formulated as state-space

searches. A state-space is the set of all possible configurations of the problem being

solved. The problem as presented to the system defines the initial state; one or more

goal states define the solution. The control strategy, then, directs a searchon a graph

whose nodes are states and edges are rules. Since a wide variety of problems can

be formulated in this manner, rule-based systems define a powerful problem-solving

paradigm.



Database

(Working Memory)

Control Strategy

(Inference Engine)

Rule Base

(Knowledge Base)

Figure 1.1: Structure of Rule-based Systems

1.3 Controlling the State-Space Search

Most interesting problems have a state-space which grows exponentially with the size

of the problem being solved. The selection of the proper problem representation

can dramatically reduce the extent of the state-space [Ama68]. However, bounding

the problem-solving process in both space and time necessitates a limited search.

This task is accomplished through the use of knowledge about the problem. Such

knowledge can be expressed in the rule base or it can exist in an intelligent control

strategy.

The expert system school of thought has been that "in the knowledge is the

power" and "the interesting action arises from the knowledge base, not the inference

engine." [Feg"9]. This approach emphasizes the use ofhigh-level macromoves which
can eliminate unproductive paths and provide a more rapid traversal of the state-

space than can simpler rules [BAE*S3]. Unfortunately, little information is available
concerning how various rule-based expert systems control their search with knowledge
[Hay85]. Thus, it is unclear as to how effective rule knowledge by itself can limit
the state-space search. In addition, the number of macromove rules necessary for
a particular problem is often quite large. With so many rules, determining their
sufficiency for solving all problem instances becomes very difficult if not impossible.



Also, the efficiency of rule matching and the complexity of conflict resolution become

a major concern.

The other possibility is to incorporate knowledge into the control strategy. Ap

proaches to this task include rule orders [MF78], metarules [DK76], state transitions,

and feedback [Zuc78]. These methods tend to be inflexible for the general case of

the problem—working well on some examples but not on others. Also, the addition

of new knowledge to these control strategies often requires a deep insight into both

the problem being solved and the operation of the control mechanism. In addition

to these methods, knowledge can exist within evaluation functions. These functions

provide a numeric indication of the desirability, or cost, of a state. Rule desirability is

thus based on the state it generates given the current state. Using this information,

useless searching can be reduced. In situations where rule desirability is a dynamic

property of the state-space, evaluation functions are essential.

If evaluation functions were perfect, the correct path to the goal state would

be obvious and no search would be required. However, this situation is most often

not the case and the evaluation function must be combined with an appropriate

search procedure. The appropriateness of a particular search procedure is defined by

characteristics of the desired solution and the state-space graph. For some problems,

a minimal path to the goal state is desired. Branch-and-bound procedures are useful

for this purpose. For other problems, only obtaining the solution state is important.

In this case, general-purpose procedures such as steepest-descent and best-first search

can be used.

Steepest-descent1 is based on the assumption that the evaluation function provides

a good indication of how close a particular state is to the goal. It is often called a

greedy algorithm because rules are ordered according to the desirability of the states

they generate and the best choice is always selected. The other possible states are not

stored for later consideration, and thus memory utilization is minimal. Unfortunately,

1Steepest-descent here refers to the case where the purpose of the search is to minimize the
evaluation function. The term hill-climbing is sometimes used when such methods are used on a
function where the maximum is required. This use of "hill-climbing'' should not be confused with the
hill-climbing of PHC methods—here, "hill-climbing" refers to a move away from the local minimum,
for a function where the minimum solution is the goal.



there is no guarantee that the search will converge to the best solution, the global

optimum. It is too easy for the algorithm to choose a path which leads to a locally

optimal state for which no rule can be applied to improve the situation. One technique

for overcoming this problem requires that the algorithm backtrack to a state which has

a more promising path. Unfortunately, the amount of backtracking necessary cannot

be determined in advance. Another technique is to explore a local space consisting of

the states reachable by sequences of rules. Rules that appear undesirable at one level

might provide for significant improvements at future levels. Once again however, the

number of levels required cannot be determined in advance. In addition, this "look-

ahead" technique suffers from exponential growth—often restricting sequences to only

two or three rules.

The best-first search strategy overcomes locally optimal states by remembering

the unselected states along the search path. When selecting the next configuration

state, the algorithm selects the best choice from previously unselected states as well

as those derivable from the current state. In so doing, the algorithm can always locate

the globally optimal solution. Unfortunately, if many nearly equivalent paths exist,

the memory requirement increases exponentially. This situation then requires that

only a fraction of possible next states be maintained—thus, optimality is traded off

against practicality. Another difficulty with best-first and other search procedures

is coping with redundant, or reconvergent, paths in the state-space graph. If it is

too costly to detect this situation, the search may waste a lot of time covering old

territory. An additional concern is the efficiency of expanding a node completely—

that is, determining the set of states which can be obtained by a rule instantiation

on the current state. Procedures which require that a node be expanded completely

before making a rule selection decision can waste a lot of time generating unfruitful

states.

Problems which suffer from these characteristics have been restricted to concen

trating the knowledge in the rule base and using a simplified control strategy with
little search. Design and optimization problems often fall into this category. For

example, WEAVER [Joo85] is a rule-based expert system which performs detailed

routing of VLSI circuits. Its routing knowledge is concentrated in the rule base—



utilizing a simple control strategy of rule ordering and greedy search. According to
Joobbani, the reason for adopting such a control strategy was that expert human

designers do not utilize the simple backup-to-a-previous-state-and-continue approach
characteristic of current search techniques. Instead, designers often work forward from

their current state, taking short cuts to another statewithout considering the previous

states and how they arrived at them. This report describes a control strategy which

searches the state-space in this same manner but is able to overcome many of the

difficulties associated with current search techniques. This control strategy utilizes

the combinatorial optimization technique of probabilistic hill-climbing.

1.4 Probabilistic Hill-Climbing

Probabilistic hill-climbing (PHC) unlike steepest-descent, is able to escape locally op

timal states by occasionally accepting moves which appear to move away from the

goal [RS85]. Because PHC techniques have traditionally been applied to optimiza

tion and design problems, the evaluation function is called the cost function. Thus,

moving away from the goal increases the cost of the system. The difference between

various PHC techniques is the probability of moving to, or accepting, a state with a

higher cost. Simulated annealing is the best-known PHC technique in the electronic

CAD area and utilizes the Boltzmann probability distribution as its acceptance crite

rion [KGv83]. This distribution is used in statistical mechanics to model the atomic

behavior of a material as it undergoes the annealing process. In the annealing pro

cess, displacements of atoms which increase the energy state are very likely to occur

at high temperatures. As the material is cooled, these displacements are less likely

and the material takes on atomic configurations with lower energy states. The mini

mum energy state (the desired result) is called a crystal. However, if the material is

not cooled properly, the result is a higher energy state called a glass. In simulated

annealing, changes in energy state of materials are analogous to changes in the cost

function of an optimization process. Moves which increase the cost are likely at the

beginning of the process and less likely as the process proceeds. The global optimum

is the crystalline state and local optimums are glasses. With certain assumptions on



the rules governing the generation of moves and on the time spent at each temper

ature, simulated annealing has been proven to locate the globally optimal solution

with probability 1 [RS85]. Probabilistic hill-climbing, in a manner similar to expert

designers, continually moves forward from the problem state and does not consider

previous actions. In addition, since PHC does not perform explicit backtracking or

look-ahead, memory demand is proportional to problem size.

In problems such as integrated circuit layout, simulated annealing has achieved

results superior to other techniques [KGv83,VK83,SS84,SS86,AJMS84,DN86]. and,

in some cases, using comparable computing resources (time, memory) has achieved

better results than algorithmic techniques [DN86]. Most applications of PHC tech

niques share a similar state-space formulation. First, a constructive procedure is

used to generate an initial configuration. New configurations are derived by applying

simple moves on randomly selected elements of the configuration. For partitioning

and placement, these elements are circuit modules and the possible moves are inter

change and relocation. These moves can be considered to be simple rules with null

antecedents. By expanding the formulation to the more general case of rule-based

systems, simulated annealing and other PHC techniques can be used to solve a much

broader class of problems.

Probabilistic hill-climbing possesses features which overcome many of the defi

ciencies of current general-purpose search techniques. PHC techniques explore the

state-space in much the same manner as backtracking and look-ahead approaches.

However, the extent of backtracking and look-ahead is controlled by the process and

problem states and is not specified in advance. PHC and best-first search share the

characteristic ofbeingable to locate the globally optimalsolution given sufficient time.

However, unlike best-first and standard hill-climbing approaches, PHC search is not

hindered by reconvergent paths. The similarities between current general-purpose

search and PHC techniques indicate their potential usefulness as control strategies in

rule-based systems. Furthermore, problems which were difficult to solve using stan

dard hill-climbing or best-first searcli may benefit from the use of a PHC control

strategy. An example of such a problem is logic synthesis.



1.5 The Problem of Logic Synthesis

An important and difficult part of the design of combinational digital circuits in

volves the transformation of a functional description to a circuit implementation con

sisting of components and their interconnections. Constraints are placed on this

process to ensure an implementation which is both cost and performance effective.

This process is called logic synthesis. A special case of logic synthesis involves the

minimization of two-level combinational logic and the subsequent mapping to PLAs

[McC56,HC074,BHH*82]. However, even this subset of the logic synthesis problem

contains subproblems known to be NP-complete. Because of the complexity of the

general case of multi-level logic synthesis, no single heuristic technique is clearly supe

rior. Often the synthesis process is separated into several steps to make the problem

more tractable. Rule-based systems have been applied to individual steps of the

process [DBG*84,GBdH86]. However, the complexity of the state-space demands a

powerful control strategy. The availability of results from these systems in addition

to those of recently developed algorithmic approaches provide a means of determining

the quality of a new approach. Thus, logic synthesis serves as a useful problem for

studying and assessing the effectiveness of the PHC control strategy.

1.6 Organization of the Report

This report is organized as follows. Provided in Chapter 2 is a detailed description of

probabilistic hill-climbing. In Chapter 3 the framework for a PHC control strategy is

presented: necessary considerations for rule-based system components are described.

Detailed aspects of PHC rule-based systems are illustrated through a rule-based sys

tem for logic synthesis, OPAL. The logic synthesis problem is described in Chapter

4. A system description of OPAL follows in Chapter 5. Provided in Chapter 6 is

a comparison between results obtained from using probabilistic hill-climbing as the

control strategy and results of traditional descent strategies with fixed degrees of

look-ahead. Results indicate that fixed look-ahead strategies do not provide consis

tent results over a set of problem instances or evaluation functions. However, the



probabihstic hill-climbing control strategy not only performs consistently, but also

obtains better results in almost all comparisons. Comparisons between OPAL and

the MIS Logic Synthesis System[BRSW87] point out the strengths and weaknesses of

both rule-based and algorithmic-based problem-solving. Conclusions and directions

for future study are presented in Chapter 7.
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Chapter 2

Probabilistic Hill-Climbing

Probabilistic hill-climbing techniques are a generalization of the simulated annealing

technique proposed by Kirkpatrick et al. [KGv83] as a technique for solving combina

torial optimization problems [RS85]. Simulated annealing is based on the Metropolis

procedure [MRRT53] which simulates the thermal motion of atoms of a substance

at a given temperature. The motion of the atoms is determined as follows: random

displacements of atoms which cause a decrease in the energy of the system are al

ways accepted; displacements which increase the energy are accepted probabilistically.

This probability is f(AE,T) = exp{^£) where AE is the change in energy, ks is
Boltzmann's constant, and T is the temperature of the system. As the temperature

decreases, the probability of an increase in energy decreases. In simulated annealing

and other probabihstic hill-climbing techniques, AE is equivalent to the change in

cost, AC. The temperature, T, becomes a controlling parameter without any specific

meaning. The basic PHC technique does not specify that the acceptance function,

f(AE,T), be an exponential probability distribution. The parameter T is assumed

to be > 0 and is updated according to some monotonically decreasing function.

2.1 The Structure of PHC Techniques

The basic procedure and acceptance function structures characteristic of all proba

bilistic hill-climbing techniques are presented in Figures 2.1 and 2.2.
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PHCOo* To)
{
T = T0;

A* = io;
while (''stopping criterion" is not satisfied)

{
while ("inner loop criterion" is not satisfied)

{
j = generate(A'):
if(accept(C(j), C{X),T))

X = j;

}
T = update(T);

}
}

Figure 2.1: Basic PHC Structure

The basic PHC procedure is provided with the initial configuration state, jo, and

the initial value of the controllingparameter, To- Two nested loops control the state-

space search. Eachiteration ofthe outer loop is associated with a progressively smaller

value of T provided by the updateQ function. The "stopping criterion" is usually

based on the extent of cost improvement made by recent iterations. The inner loop

performs a process of randomly generating successor states and deciding to accept or

reject them. An "inner loop criterion" determines when the process terminates. This

criterion attempts to identify when a condition of equilibrium is established[RSS5.
HRS86]. Equilibrium is established when the probability distribution of accessible

states reaches steady-state.

The acceptQ function computes the difference in cost, ACtj, between a current

state i and a successor state j. The function /() returns the probability of accepting

the new state. For ACtJ < 0, this probability is 1. The probability of accepting

an increase in cost, Adj > 0, is dependent on ACtJ and the process parameter T.

Accepting the new state is then determined by generating a random numberbetween

0 and 1 and comparing it to the value returned by /().

12



accept(C(j), C(t), T)
{
AC,-; = C(j) - C(i);
y = f(ACtJ,D;
r = random(0. 1);
if (r < y)

retum(TRUE);
else

return(JF\4IS£);

}

Figure 2.2: Acceptance Function

The process parameters initial value, To, is selected such that the probability of

accepting an increase in cost is large. Thus, in the first few iterations of the outer

loop, most generated states are accepted. This phase of the process is referred to as

the "melt" phase. As the value of T decreases, increases in cost are less frequent. In

the limit as T approaches 0, probabihstic hill-climbing eventually becomes greedy like

steepest-descent—only accepting cost-improving states.

13



Chapter 3

Framework for a PHC Control

Strategy

Described in this chapter is the framework for a rule-based system which utilizes a

probabihstic hill-dimbing control strategy. Although the components of rule-based

systems in general are inherently modular, practical considerations for dependencies

between the components must be made. In the process of describing each component,

considerations pertaining to the use of a PHC control strategy are presented. Rather

than constraining the use of the approach, these considerations provide for exploiting

its characteristics.

3.1 The Control Strategy

The function of the control strategy in a rule-based system is to direct a search on

a space 5 utilizing a set of rules 1Z. Each state, s,-, in 5 is defined uniquely by a

database configuration, d{. Elements within d{ exist which "trigger", or match, rule

antecedents in 11. The elements necessary to match a particular rule are collectively

called a location. For some problems, a rule will only trigger at one location. However,

the general case provides for multiple triggering by a single rule. The set of all rule-

location pairs which trigger in a\ is called the conflict set, Ct-. The "firing" of a

rule ry, or the application of that rule, at a location I in a\ defines a new database

14



configuration and state:

di+i = rj{l,di)

Firing a rule consists of performing the actions specified by the rule's consequent. In
deciding which rules to fire, the control strategy utilizes an evaluation function, S,
to ascertain the quahty ofa particular state in 5. This function assigns a numeric
value to a stateaccording to estimated distance to a goal, value as a solution, or other

criteria.

A PHC control strategy procedure is presented in Figure 3.1. Parameters to the

procedure are the starting state, specified by d0 and the initial process parameter

value, To.

The function generate-conflict.set() creates the set of all applicable rule-location

pairs given the database and rule set. An additional inner loop (contained in the
standard PHC "inner loop") iterates until a rule is accepted. The selectQ function
randomly selects from the set Ca rule to be applied. To ensure that selected rule-
location pairs are not chosen again, they are removed from C. The expression £(r(l,d))
returns the evaluation of the state generated by the invocation of the rule r. Thus,

the value of the rule is determined by the state it generates. If the rule is accepted,

the database receives the new state description. Note that it is possible that C will

become empty before a rule is accepted. The "inner loop criterion" must account for

this possibility.

For problems where the conflict set is large, generating the complete set is inef
ficient—for as soon as a rule is accepted, the remaining conflict pairs are discarded.

For this reason, the procedure of Figure 3.1 is a naive one. A more efficient variation

of this procedure is given in Figure 3.2. This variation is suitable for rule-based

systems containing rules which match at only one or a small number of locations in

the database. The function selectJocationQ randomly selects from matchinglocations

or returns 0 if matching locations for the rule do not exist. Note that iterations of
the "inner loop" may occur without a rule being fired. At most only one location of

each rule is tested, so it is possible that other acceptable locations exist. If a rule

is not fired, the database remains unchanged and the process of selecting a rule and

15



Naive_PHC_control(<20. T0)
{
T = T0;
d = d0:
while ("stopping criterion" is not satisfied)

{
while ("inner loop criterion" is not satisfied)

{
C = generate_conrlictjset(d,7v);
fired = FALSE;
while (fired is FALSE and C ^ 0)

{
{r,/} =select(C);
C = C-{rA}\
if (accept(£(r(/, d)), £{d)S))\

{
d = v{Ld)\

* fired = TRUE:

}
}

}
T = update(r);

}
}

Figure 3.1: PHC Control Strategy Procedure: Naive Approach

location starts over. Thus, other acceptable locations for each rule will be considered.

Other variations of the PHC control strategy can easily be realized according

to the characteristics of the rules and database in the system. For instance, in a

problem such as logic synthesis, each rule can match at a large number of locations

in the database. In this case, it is appropriate to first randomly select a location and

then test each rule at that location.

16



3.2 The Evaluation Function

The evaluation function, £, indicates the "quahty" of a state in the state-space. This

"quahty" may be an estimation of how close the state is to a goal, or it may be the

quahty of the state as a solution (i.e., as a goal state itself). As is the case with all

heuristic search methods, the accuracy of the evaluation function has a significant

impact on the effectiveness of the search. Of special concern to PHC rule-based

systems is how the evaluation function canimprove the accessibility of states and the

efficiency of the search.

Astate sj is said to be accessible to a state s, if the probabihty P* ofa transition

from S{ to Sj in some n > 0 steps is non-zero and therefore the probabihty PtJ of
eventually reaching state Sj from st- is non-zero. Accessibihty of states is an important

theoretical requirement of PHC techniques [RS85] which impacts both the rule base

and the evaluation function. Certainly, if a goal state is not accessible from the initial

state, then the state-spacesearchis wastedeffort. Just as important is the accessibility

of a goal state, sg, from a locally optimal state, si. The probabihty Plg is directly

related to the number of cost increasing rules which need to be accepted to escape

the local optimum. A useful technique to increase Pig is to allow illegal states—states

which contain inconsistent assertions or violate problem constraints. These states

can reduce the necessary number of cost increasing rules by providing "short-cuts" to

better locally optimal and correct states. Because thesestates are usually undesirable,

the evaluation function must be able to identify them and impose a penalty on their

value. This technique has been successfully applied to various simulated annealing

applications[DN86,SS86].

The evaluation function is often the most time-consuming task of PHC rule-based

systems. The PHC strategyrelies on moving quickly througha largestate-space. The

number of calls made to the evaluation function is usually several times the number

of accepted rules. In addition, since states are not remembered, re-evaluations are

often necessary. Making efficient state evaluations is therefore essential. For some

problems, it may be possible to determine the value of a new state using the value of

the current state and the rule being considered. Because the rule defines a changefrom

17



the current state's value, the time complexity of the evaluation for these problems

is independent of database size. This method also alleviates the cost of applying a

rule and then having to reverse it if not accepted. In more complex systems, the

effect of rules on the database cannot be determined a priori. However, incremental

evaluations are still possible if the effect of the rule can be sufficientlyisolated.

3.3 The Rule Base

The proper selection of rules for the rule base is often the critical difference between

systems that work well and those that fail. As distinct from conventional rule-based

systems, issues such asstate accessibility andrulegranularity deserve special attention

in PHC-based systems.

Asnoted in the previous section, accessibility ofstates is an important requirement

of the PHC control strategy. The PHC strategy is to perform a forward-moving

traversal through the state-space. Therefore, the goal state must be reachable from

anyintermediate state. Since a goal state is not known beforehand, this requirement

implies that any state be accessible from any other state. That is, for T > 0, there
exists some m,n > 0 such that PJ- > 0 and P* > 0. Thus, both "forward-" and
"backward-" moving rules are necessary. If a forward-moving rule generates the state

Sj from the state s;, then a backward-moving rule must exist which will allow the
generation ofs, from Sj. Some rules are naturally symmetric and can move in either
direction. In other cases, the generation of Si can be performed by a sequence of rules

which move through intermediate states.

Another consideration concerns the "granularity" of the rule set. The question is

whether the rules should perform high-level operations which make major transfor

mations in the database or should they enact primitive operations. Neither of these

extremes is necessarily the correct approach. One criterion for determining the ap

propriate granularity is the rule set's completeness. A set ofrules is complete if they
can always generate a goal state for any instance ofthe problem domain. High-level
rules are often oriented toward special-case configurations which implies that a large

number be present in 1Z to solve problems in the general-case. Often the number of
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rules alone makesit impossible to say anything about completeness. A primitive rule

set is often small enough that their completeness can usually be determined. However,

high-level rules can traverse the problem space more rapidly than primitive rules.

Another constraint on the granularity of a rule set is the ability to ascertain the

quality of rules independent of other rules. Since the decision to accept a rule is

according to how it alone affects the database, useful rules whose eventual benefit,

is not seen immediately may not be accepted. Of course, this problem cannot be

completely avoided. If it could, a greedy search would be sufficient for solving the

problem. However, the rule set should be closely matched with the evaluation function

for optimal results.
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PHC-control(d0.T0)

{
r = r0;
d = do;
while ("stopping criterion" is not satisfied)

{
while ("inner loop criterion" is not satisfied)

{
RU = K;
fired = FALSE;

while (fired is FALSE and R^ £ 0);

{
r = select(Ru);
Ru = Ru — r:
/ = select_location(d. r);
if(?^0)

if(accept(£(r(Z,<z)),£(<f),r));
{

}
}

T = update(T);

}
}

d = T(l,d);
fired = TRUE;

}

Figure 3,2: PHC Control Strategy Procedure #2
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Chapter 4

Logic Synthesis

4.1 Introduction

Because of the sheer size of today's digital electronic systems, VLSI designers have

becomemore dependent on automatic synthesis tools. The first widely used synthesis

tools performed the layout tasks of placement, routing, and compaction. Increasing

circuit complexityhasleadto the demand for higher levels of automatic synthesis. One

such task which has receivedmuch attention is logic synthesis [BRSW87,Sas86,Kv81,

DBG*84,GBdH86]. Logic synthesis is the process of transforming a functional descrip

tion of a combinational circuit into an optimal implementation consisting of circuit

components and their interconnection. Early work on logic synthesis has concerned

itselfwith the special case of two-level logic minimization [McC56.HC074,BHH*82].

Two-level logic is especially attractive since it canbe easily implemented using PLAs.

However, multi-level logic representations are often more area efficient and can pro

vide a higher level of performance. Unfortunately, area and timing constraints often

conflict, making the optimal synthesis of multi-level logic a very difficult problem.

The functional description of a circuit supplied to a logic synthesis tool is usu

ally a set of logic equations or truth tables extracted from a register-transfer level

description. Area and timing requirements are often supplied as well. Because these

constraints conflict, the most that can be expected from the synthesis tool is for it

to make appropriate tradeoffs (e.g. "generate the smallest circuit with a critical path
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delay less than 10ns"). Unfortunately, the techniques used in many logic synthesis

tools can consider only one of these constraints at a time.

The synthesis process is also constrained by the desired technology. Standard

cell and gate array designs limit suitable components to those provided in a cell

library. Characteristics of these cells cause one technology's implementation to be

very different from another. For instance, the use of NAND gates in CMOS designs

is preferable to NOR gates.

These issues can overwhelm a designer attempting to synthesize manually anything

but the simplest circuit. Optimization is often only attempted on the most critical

portions of a design, resulting in needlessly larger and slower chips. Clearly, the

demand for shorter design times and higher performance requires the utiHzation of

automatic logic synthesis.

4.2 Approaches to Multi-Level Logic Synthesis

Algorithmic solutions to multi-level logic synthesis[BRSW87,Sas86] have not yet at

tained the acceptance that they have had with two-level logic. Algorithmic approaches

perform most—if not all—of their optimization in a technology-independent manner.

A common circuit representation used by these tools is the boolean network. After

technology-independent optimization is performed on the network, it is mapped into a

particular technology by assigning appropriate gates from a library[DGR*87,Keu87].

Part of the difficulty experienced by algorithmic approaches is determining a suit

able technology-independent abstraction which represents an accurate picture of the

design goal (e.g., minimum area, delay, etc). In the case of two-level logic, PLAs

are often the realization of the circuit and can serve as the basis for the abstraction.

Minimizing the number of product terms is a good approximation to minimizing the

size of the PLA; minimizing the number of literals present in the product terms mini

mizes the number of connections in the AND-plane. In addition, fewer product terms

and connections imply a faster circuit. In contrast, multi-level logic is implemented

in many different ways (e.g. static, dynamic logic; standard cell, gate matrix). The

result being that a set of equations minimal with respect to literal count does not
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always provide for a minimal area implementation. Since little can be done outside

of transistor sizing and layout issues to minimize PLA delays, timing was never a

major consideration in two-level logic synthesis. However, logic delays vary consid

erably with multi-level network implementations. The most common abstraction for

network delay used in algorithmic approaches today is the number of logic levels.

Unfortunately, the variety of gates used to implement the network and the impact

of fanout delay make the logic level approximation fax from accurate in most cases.

Current algorithmic approaches do not provide solutions that are both optimal in

area and timing.

Rule-based systems, unlike algorithmic approaches, do not require a technology-

independent abstraction but canoptimizethe target implementation directly [DBG*84,

GBdH86]. Rules consist of transformations from subnetworks of library components

to other equivalent subnetworks. The generality of the rules allow complex modules,

such as full adders, to be used effectively during the optimization. In addition, rule-

based logic synthesis can incorporate timing optimization easily due to the availability

of correct delay information and the use of a flexible control strategy.

However, problems exist in current rule-basedlogic synthesis systems which hinder

their effectiveness. Because of the local nature of rules, global optimizations, such

as the identification of common subexpressions, axe often missed. If the domain of

rules is limited to library modules, optimization can also be hindered by the limited

fanin of available gates. The use of a technology-specific rule library also has an

impact on the flexibiHty of the system. Because typical Hbraries contain hundreds of

rules, providing for a different technology can be a formidable task. An additional

problem with many rule-based systems is that the desire for generaHty often results

in an inefficient implementation. Thus, in the same amount of computer time that a

rule-based system requires, an algorithmic, problem-specific approach may be able to

perform a much larger search of the solution space. Finally, the choice of a control

strategy can have a significant impact on solution quahty.

Some rule-basedsystems such as LSS[DBG*84] use greedy,steepest-descent strate

gies. However, de Geus and Cohen[dC85] note that this strategy is not sufficient for

timing optimization because the benefit of a timing rule is often not immediately obvi-
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ous. Look-ahead techniques are suggested as a means to overcome this problem. They

also note that area reduction can suffer from the same "short-sightedness" when less

desirable rules lead to more powerful ones. As noted previously, exponential growth

of the look-ahead tree requires that the number of levels be restricted to two or three

rules.

The lack of a successful algorithmic approach to the multivariate objectives of logic

designers and the potential of rule-based systems make the logic synthesis problem

an appropriate test case for the probabihstic hiU-cHmbing control strategy. A rule-

based logic synthesis tool, OPAL, has been developed which attempts to overcome

many of the problems associated with current rule-based approaches. In particular,

it utilizes the PHC control strategy for performing technology-independent and -

dependent area/timing optimization. The apphcation of simulated anneaHng to logic

synthesis has been reported in the literature[LD86,Gon86]. However, in both cases,

simulated anneaHng was only apphed to subproblems of the synthesis process. In

addition, the logic transformations performed by these approaches are not complete.

These Hmitations restrict the state-space search and effectiveness of the simulated

anneaHng technique. FinaHy, these efforts did not formulate the problem using the

rule-based paradigm nor did they identify simulated anneaHng as a useful control

strategy for rule-based problem solving in general. Forthese reasons, OPAL represents

a new approach to the logic synthesis problem.
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Chapter 5

OPAL: A Rule-Based System

for Logic Synthesis

Illustrated in Figure 5.1 axe the relationships between the major components of the

OPAL Logic Synthesis System. A similar structure wouldexist for rule-based systems

for solving different problems and where the PHC control strategy was appHed. Be

cause the system is inherentlydata-driven, the network(database) is locatedcentraUy.

The PHC control mechanism caHs upon the evaluation function for rule selection. A

technologj' Hbrary is utiHzed by the evaluation function to determine a mapping and

associated area and delay.

5.1 Network Representation

The state-space for logic synthesis and optimizationis the set of aU networks whichare

composed of combinational modules and their interconnection and are functionaUy

equivalent to a given logic description. Although it is possible to construct combina

tional networks which contain cycles1, such configurations are not considered. Due to

the limitations of such networks, little is lost by ignoring them.

As stated previously, a Boolean network can serve as the network representation.

1however, their Boolean functions do not contain feedback
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Figure 5.1: PHC Rule-Based System for Logic Synthesis
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A Boolean network is a directed, acychc graph where each node in the graph is a

Boolean function represented by a disjunction of product terms. Associated with

each node n, is a variable name JV,. For each node n; with a product term containing

a reference to the variable Nj, there exists an arc from nj to n,-. ImpHcit in this

representation is the eventual mapping of the network into the target technologj*.

The advantage of Boolean networks is the ease they provide in performing Boolean

minimization and common subexpression extraction.

Since the focus of the rules is on literals, each variable is internaUy represented by

a subgraph of product terms and Hterals. The actual network representation for the

function a ©b@c is shown in Figure 5.2. In addition to nodes that specify variables,

term and literal nodes have been added.

The algebraic representation for the graph of Figure 5.2 is:

\ i = av~2 + aV2

V2 = bc + bc

Because of the simphcity of the algebraic form, henceforth it will be used to

describe both networks and rules.

The advantages of using a Boolean network representation axe reaHzed in OPAL

without the limitations of a technology-independent evaluation function. Each time

the network is evaluated, a mapping to the module Hbrary is performed. Because

many one-to-one mappings exist from the Boolean network to a reaHzable circuit, an

optimal mapping requires a difficult search. This search would have a large impact

on run-time and is thus undesirable.

To overcome this potential problem, the optimaHty of the mapping is relaxed

by defining an easily-obtained, direct mapping which is almost one-to-one. Thus,

changes to the Boolean network correspond directly to changes in the implementation.

This technique has the advantage of providing immediate feedback for rule selection

but imposes some constraints on the node functions. These constraints come in the

form of penalties rather than restrictions on illegal configurations of the network

("Ulegal states" in the state-space). For instance, a product term with 10 Hterals
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Figure 5.2: Network Representation of a © b© c
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may not be directly implementable because a 10-input AND or NAND gate may

not be available. Mapping to these gates is aHowed but a penalty is imposed to

discourage their use. Legal solutions axe ensui'ed by increasing the penalty during

the optimization. However, optimization is not hindered by the module hbrary as is

the case with technology-dependent representations. The direct mapping approach

provides a great deal of accuracy but without a loss of efficiency because remapping

can occur incrementaHy.

A definition which wiU be of use later is the fanout of a variable. In the above

network for a © b © c, T2 is said to fanout to Vi and Vi is a fanout variable of 12, or

simply T'i references V2. In addition, V2 is said to have both a positive and negative

reference because of the Hterals vi and v2 respectively. It is often useful to refer to

the reference count of a variable. V2 has a negative reference count of 1, a positive

reference count of 1, and a total reference count of 2. This definition of fanout and

reference pertains to the Boolean network. The mapped network also has a definition

of fanout. If Vi is mapped to an exclusive-OR gate, the gate that represents V2 would

have a positive fanout count of 1 and a negative fanout count of 0 since v2 is an input

to the gate and v? is not. The difference between the Boolean network meaning of

fanout and the mapped network meaning is an important one. To avoid confusion,

reference counts will always correspond to the Boolean network and fanout counts to

the mapped network.

5.2 Rule Base

As stated in Section 3.3, the criteria that must be met by the rule base are that it pro

vide state accessibihty and completeness. Since all legal transformations of Boolean

networks must be derivable in terms of the Boolean algebra identities, they certainly

meet the completeness requirement. Unfortunately, some of these transformation (e.g.

A =*• .41, meaning the Hteral(s) A replaced by .4 • 1) require more direction than can

be achieved using a generahzed control strategy. This problem is circumvented by

replacing such rules with frequently used theorems (e.g. A + AB => A). Obviously,

such a strategy trades off completeness for efficiency. However, by minimizing the
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Forward Rule Inverse Rule

1 .40=J>0

2 A + 0=> A

3 .41 => .4

4 .4 + 1 =M

5 A + .4 => .4 .4 =t> A + A

6 .4.4 =*0

7 .4 + .4 =J> 1 X =» A"A + XA

S A=*.4 A=>A

9 A(£C) =* ABC ABC =* A(BC)
10 .4 + (B + C) => .4 + B + C A + B + C => A + (B + C)
11 .4(5 + C) => .45 + .4C AJ9 + AC =* .4(5 + C)
12 .4 + AB => .4

13

14

.4 + AB => A + B

A + B => AB AB=> A + B

15 AB => A + B A + B => AB

16 A + BC=>(A + B)(A + C)
17 A(B + C)=>A(AB + C)

Table 5.1: Rule Set

introduction of "higher-leveF rules, confidence in the degree of rule completeness can

be maintained. The complete Hst of rules used in OPAL is presented in Table 5.2.

By providing both a forward and inverse rule for the identities, state accessibihty is

maintained. In several of the theorems, the forward or inverse rule is left out because

it can be easily obtained from simpler rules.

These rule specifications are symbohc and not literal. The variables (.4, B. C, X)

which appear in the rules are defined by their context and apply to the most general

situation. For example, the variable .4 in the rule .41 => A would umatch" one or

more hterals of a product term. In addition, this particular term can be part of a

disjunction of several terms. The rule A + (B+C) =*• A + B + C should be interpreted

as matching Y = .4 + x;X = B + C. That is, a single Hteral term x is defined by

one or more product terms (indicated by B + C). A represents aU the product terms

of the variable Y except the one containing x. Rules such as ABC =>• A(BC) select
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a variable number of Hterals to represent BC and A is simply the remainder for the

product term. In general this selection occurs randomly and is made by the rule.2
Given the flexibiHty inherent in the rule specification and the "fixed" nature of

the rules, it was decided to implement them as test/fire compiled functions. Since

the rules axe mostly problem and technology-independent, the benefit provided by

interpreted rules—the ability to change the rule base without recompilation—is not

apparent. Network locations are identified by literal nodes. A rule test function

quickly determines if the rule is apphcable at that location. If the rule test succeeds,

the fire function is executed so that the evaluation function can accurately determine

the effect of the rule on the network. AH the rules are specified in terms of primitive

operations on the Boolean networkwhich create andremove variable, term, and Hteral

nodes. If a rule is not accepted, it is necessary to "undo" the modifications to the

network. This task is accomphshed efficiently by maintaining a transaction stack

of the primitive operations performed by the rule. Each primitive operation is then

reversed individuaUy. This techniqueis rule-independent and thus ehminates the need

to specify individual "undo" functions for each rule.

The rules in Figure 5.2 only provide for local transformations. In logic synthesis,

an essential global operation is to identify and share common subexpressions in the

network. In so doing, area is significantly reduced. Unfortunately, current rule-

based logic synthesis systems either do not provide this optimization or do so in a

limited manner. Algorithmic techniques which expHcitly seek out the optimal set of

subexpressions for extraction are not easily incorporated into the rule-based paradigm.

The strategy taken with OPAL is to identify common subexpressions as they are

generated by the rules. This operation is performed through the use of a specialist.

SpeciaHsts axe normaUy passive mechanisms which axe independent of the control

mechanism and the rule base. Their purpose is to provide global direction to the

optimization by modifying or extending the effect of rules as they axe fired. The

acceptance of the global operation is determined by the acceptance of the extended

rule. Thus, the control strategy ultimately determines which global operations axe

2additional heuristics are incorporated which weight favorable selections
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Before After rule AB =*• A + B on p
m = a + b

n = ab

p = a + nc

m = a + b

p = a + mc

Figure 5.3: Merge Operation

Before After rule AB =* A + B on p

m = a + b m = a + b

n = ab p = a + mc

o— mc + a q = p + r

p = a + nc
q = o + r

Figure 5.4: Effect of Merging on Transitive Fanout

to be made. This technique has proven to be very effective in performing common

subexpression extraction.

After a rule is fired, new and modified variables may define Boolean functions

which exist elsewhere in the network. The common subexpression speciaHst maintains

a hash table to identify equivalent variable nodes quickly. Two variable nodes are

equivalent if they contain equivalent product terms (order independent). Equivalent

product terms must contain the same Hterals (order independent). Thus two functions

with the same functionahty may not be considered equivalent. Because equivalent

subexpressions are variable nodes in the Boolean network, only the combination, or

merging, of variables is required. Figure 5.3 is an example of the merge operation. The

merge operation is defined recursively since the merging of two intermediate variables

may result in equivalence among the transitive fanout variables. An example of this

situation is shown in Figure 5.4.

32



5.3 The PHC Control Mechanism

5.3.1 Conflict Resolution

Typically, rule-based systems test each rule with the database and select from those

that match, a single rule which is to be fired. This selection process is conflict res
olution, and is essential to state-space search. PotentiaUy, the number of rule tests

that must be made for each state of the database is \H\\C\ where 1Z is the set of rules

and C is the set of database test locations. The actual number of tests is substan-

tiaUy reduced if 1Z is decomposed into subsets ofrules containing common antecedent

components—a conflict resolution technique known as context limiting. For the logic

synthesis problem, CusuaUy contains all of the nodes in the Boolean network. Thus

\1Z\\C\ is prohibitively high. Consequently, the number of rule-location pairs in the

conflict set, \C\, is also quitelarge. [dC85] indicates that in Socrates, a circuit with 100

gates and a rule base of 50 rules typicaUy generates a conflict set size of 50. Because

high-level rules such as those used in Socrates axe less likely to match as often as the

fine-grain rules used by OPAL, the conflict set size for OPAL can be expected to be

even larger. Clearly, avoiding generation of the entire conflict set is desirable.

Fortunately, conflict resolution in probabihstic hiH-chmbing is inherently simple.

The rule to fireis simplyany ofthe members ofCwhich meet the acceptancecriteria—

no ordering of"acceptable'' rules is necessary. Improved location selection is achieved

by placing a user-specified amount of emphasis on locations near the previously ac

cepted location and locations on the critical path. Methods for obtaining the rule to

fire iterate through rule-location pairs until oneis accepted. An appropriate methodis

one whichperformsefficiently but does not hinder the search by biasing the selection.

Four selection methods axeimplemented in OPAL. Their procedures axe contained in

Figures 5.5-5.8. Because they aU have a common PHC "outer" loop (the "stopping

criterion" loop of Figure 2.1), only the inner loops are given. Methods #1 and #4

have been experimentally determined to be superior than the other two methods in

solution quahty and run-time efficiency.

A very useful conflict resolution strategy in rule-based systems is size ordering.

Rules are classified according to their number of antecedent conditions and the Hke-
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for ("a certain number of iterations")
{
I = selectJocation(d);
fired = FALSE;

1Z' = K;
r.count = 0;

while (fired is not FALSE and r_count < "maximum tries")

{
rjcount + +;

r = select_rule(7£'):
Hi = 1Zf- r;
if (triggers(r. I, d) and accept(£(r(f,d)),£(d),r));

{
d=r(ld):
fired = TRUE;

}

}
}

Figure 5.5: Rule-Location Selection Method #1

for ("a certain number of iterations")

{
I = selectJocation(d);
r = select_rule(7£);
if (triggers(r, 1, d) and accept(£(r(Z,d)).£(d),r));

d=r{Ld);

}

Figure 5.6: Rule-Location Selection Method #2
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for ("a certain number of iterations")

{
/ = selectJocation(rf);
fired = FALSE]
11' = 1Z;
while (fired is not FALSE and W £ 0)

{
r = select-rule^');
1Z' = 11' - r;
if (triggers(r, 1, d) and accept(£(r(/, <*)),£(<*), I7));

{
d=r(l,d);
fired = TRUE;

}
}

}

Figure 5.7: Rule-Location Selection Method #3

for ("a certain number of iterations")
{
r = select jcnleilZ');
fired = FALSE;
loc-count = 0;

while (fired is not FALSE and loccount < "maximum tries")
{
/ = select_location(<Z);
loc-count++;
if (triggers(r, 1, d) and accept(£(r(Z,d)),£((f),r));

{
d = r(/,d);
fired = TRUE;

}
}

}

Figure 5.8: Rule-Location Selection Method #4
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Hhood of matching. This strategy encourages the acceptance of highly constrained

rules over those which match more easily—often improving the search efficiency and

solution quaHty. However, introduction ofsize ordering into PHC systems hinders the

control strategy by reducing state accessibiHty. The benefits of size ordering can be

achieved by rule weighting. According to the matchfrequency of a rule j, a weight Wj

representing selection frequency is specified. These weights define a selection proba

bihty function:

Wi
Pi =

E}=i wj

where pi is the probabihty of selectjruleQ returning rule i. Table 5.3.1 indicates

typical match frequencies and possible rule weights for OPAL's rule base (Absence
of the forward or reverse rule is indicated in the table by "-"). For OPAL, selection

of rule weights were experimentally determined. It was found that extremely low
and high weights axe undesirable, and that precision in weight selection does not
effect efficiency and solution quaHty. In addition to approximating size ordering, rule
weights provide a method for discouraging rules which detract from the optimization.

5.3.2 Process Control

Probabihstic hiH-cHmbing techniques axe distinguished by a choice of stopping and
inner loop criterions and an acceptance function. The control parameter T is defined
by an initial starting point T0 and an update function. The process of selecting these
PHC parameters is known as "tuning" and can be considered both an advantage
and disadvantage. Tuning provides the flexibiHty and customization which make
PHC techniques useful. However, tuning is inherently an iterative and experimental
process, often requiring a substantial amount of time.

The initial "temperature" T0 affects the extent ofthe melt. Too high a value ofT0
wastes CPU time; too low a value may result in solutions that axe fax from the global
optimum. Determination of T0 requires consideration of the quaHty of the initial
network configuration. AlocaUy optimal network requires a higher temperature than
required by a poor starting configuration. A variable which is independent of the
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Forward Rule Inverse Rule

% Match Weight % Match Weight

.40^0 <1 0.1 -

.4 + 0 <3> A <1 0.1 -

.41 & A <1 0.1 -

.4 + 1 <3> 1 <1 0.1 -

A + A O A <1 0.5 100 0.1

AAoO <1 0.1 61.1 0.1

.4 + A <3> 1 <1 0.5 48.9 0.1

A& A 3 1.0 38.9 0.5

A(BC) o ABC 9.7 1.0 61.1 1.0

A + (B + C)<* A + B + C <1 1.0 26.2 0.1

A(B + C)& AB + AC 11 1.0 <1 1.0

A + AB <* A <1 1.0 -

A + AB o A + B <1 1.0 34.3 0.01

A + B & AB 13.9 1.0 60.9 1.0

AB & A + B 31.3 1.0 25.6 1.0

A + BC&{A + B)(A + C) -
4.8 0.01

1A(B + C)&A(AB + C) 1 -
8.2 0.01

Table 5.2: Rule Match Frequencies and Typical Weights
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initial network is Pa, the desired probabihty of accepting any cost increasing rule at

T0. The value of T0 is then defined as:

Ib = -A/logPa

where Ais the average cost increase for the network. Determination of Ais accom

phshed by choosing rule-location pairs randomly and evaluating their effect on the
network. The sample size— number of matching rule-location pairs which increase

the network cost—is equal to |£||7£|/4. This sample size is conservative but has been

experimentally found to perform rehably.

The control parameter T is updated after each iteration of the outer PHC loop.

The general form of the update function is:

Tn+i = a{Tn)'Tn

Where 0 < a{Tn) < 1. OPAL divides the search process into three phases: melt,
main search, and greedy search. a(Tn) is defined as:

' Q! until Cave(Tn) < (Co + Bc)/2, then
a(Tn) = I q2 until Cmax(Tn) <Cmin{Tn) +A<52, then

and subject to the condition that returning at+i inhibits a,- from being returned
at a later n. Cmin(T„), Cave(Tn), and Cmas{Tn) axe, the minimum, average, and
maximum evaluated network costs for outer loop iteration n, respectively. C0 is the

initial network cost and Bc is the cost upper bound (which wiU be explained later in

this section). S2 is a fractional multiplier for the average increase in cost, A, which
specifies a window on the cost variation. The transition from a2 to q3 occurs when
the cost variation drops to such a small amount that further significant cost reduction

is unlikely. At this point, it is desirable to perform a greedy search which wiU locate
a minimal solution quickly and exit. Typical a values are: ai = 0.97, a2 = 0.99, and

a3 = 0.50.

Usually, no more than a few outer loop iterations of the greedy search phase axe
required before the cost ceases to change. At this point, T is so low that only cost
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improving rules are being accepted. The termination criterion is then specified by the
number ofconstant cost iterations desired. To prevent the search from terminating
when cost improvements can still be made, alocal minimum check is also part of the
termination criterion.

The PHC inner loop criterion requires that the process reach equiHbrium at each
value ofT. EquiHbrium is defined as the estabhshment ofthe steady-state probabihty
distribution ofthe accessible states[RS85,HRS86]. Since the set ofaccessible states is
not known beforehand, only an approximation is possible. The number of iterations

of the inner loop is according to the number of rule tests performed. Minimum and
maximum rule test counts are defined as:

Nmin =K88\H\\£0\(1 - exp -^)

and

where K88 (typically 8) and 6ss (typicahy 1.3) axe experimentally determined
constants and C0 is the set ofinitial network locations. AsT decreases, Nmin increases

to the asymptotic value of A'a5|ft||£0|. The maximum value, Nmax is specified to
ensure the termination of the inner loop, although equiHbrium is usuaHy attained
before Nmax iterations have occurred. EquiHbrium is considered to have been reached
when at least Nmin iterations have occurred and the foUowing condition is met:

\C - Cave(Tn)\ < h<r{Tn)

C is the cost of the network, Si (typically 0.6) is an experimentally determined
constant and a(T„) is the standard deviation of network cost at temperature Tn
[HRS86]. The idea of this restriction is to make sure the inner loop terminates with
acost representative ofthe given temperature. It has been experimentaHy found to
provide much more robustness to the process than the iteration count alone.

The acceptance criterion is another parameter ofPHC whose purpose is to control
the acceptance of rules. OPAL uses the Boltzmann function which characterizes
the simulated anneaHng technique. In addition, an upper bound on the cost of the
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network is imposed to restrict the growth of the network during the melt phase. A

large majority of rules in the conflict set incur a cost increase which, if unrestricted
at high temperatures, would result in needlessly large networks during the melt. The
purpose ofbounding is toreduce the required optimization from the melted state but
not eliminate desirable paths to the globally optimal state. The upper bound used in

OPAL is:

Bc = Co + A'bA

where C0 is the initial network cost and Kb >0is aconstant which can be specified
atrun-time. Awas defined earher as theaverage increase in cost. Acaptures the circuit

dependent information which provides the robustness in the bound calculation.
One possible method for enforcing the bound is to simply prevent cost increases

over Bc. This method is undesirable because the cost approaches Bc soon after the
melt is initiated. Henceforth, the network tends to "sit" at the bound until the
temperature drops to a point where cost decreasing rules are accepted more often
than increasing rules. To prevent this problem, the AC is increasingly weighted
(penalized) as the network approaches the bound. This weight, 7 is defined as:

•Pc ~ ^mtn

Bc — Cnew

where Cmin and Cnew axe the minimum network cost for aU configurations up to

the current state and the network cost incurred by the rule being considered. The

acceptance probabihty is then defined as:

-AC ,
C/(AC,r,7) =exp(-jr-)/7

5.4 Network Evaluation

The evaluation function used in OPAL measures the cost of a particular network as

a solution rather than indicating a distance from the optimal solution. The fact that
each configuration in the state-space may represent a goal state and that the cost
of the optimum solution is unknown imphes that this solution cannot be identified
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during the search. However, experimental evidence suggests that there axe often
many configurations similar in cost to the global optimum. If these configurations are
considered acceptable solutions and axe thus goal states, the accessibility of a goal
state is naturally greater than ifonly the global optimum is acceptable. Because of the
large state-space of equivalent network configurations, this consideration is essential
to a PHC rule-based solution to logic synthesis.

The cost of a Boolean network is defined in terms of the area and/or delay of
its implementation. Boolean networks possess a simple, technology-independent cost
estimate: area is the number ofHterals and delay is the number oflogic levels. The
disadvantages of these estimates were mentioned in Section 4.2. However, it may
be advantageous to perform an efficient technology-independent optimization first.
The result ofsuch an optimization can then be re-optimized using detailed area and
timing information. This approach is possible with OPAL because of the flexibiHty
of the evaluation function. Area and timing optimization can occur at many levels of

technology-dependence. The type of area/delay estimate can be specified according
to a tradeoff between accuracy and run-time efficiency.

Two models of technology-dependent optimization are used. The first maps the
Boolean network into a set of simple gates (AND, NAND, OR, NOR, INV). The
second method aHows for the complex gateforms AND-OR, OR-AND, and exclusive-

OR in addition to the simple gates. The definition of available gates and their area

and delays are specified in a technology hbrary.

For timing optimization, the cost of the network becomes afunction of the critical
path delays through the network. Given a mapping, approximate input to output
propagation delays based on gate and fanout delays can be readily determined. The
fanout delay model is an RC model based on the equivalent resistance ofthe driving
gate and the total capacitance of the load gates. For an improvement in efficiency, a
second model exists which assumes aU gates have equivalent input capacitance. Both
rise and fall delays axe calculated for improved accuracy. External influences such as
the arrival times and drive of the primary inputs and the primary output load can be

specified.

The tradeoff between area and delay is reflected in the evaluation function by
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assigning different weights to the different components.

5.4.1 Technology Mapping

In order to perform technology-dependent optimization, the Boolean network must
be mapped into a network containing components available in the given technology.
By using a direct map, this process is very efficient. If the mapping is one-to-one,
transformations of the Boolean network are always reflected as transformations in

the mapped network. Thus, the value of the rule is always defined. In mappings
which axe not one-to-one, a transformation may not reflect a change in the mapped

circuit and cannot be effectively evaluated. The mapping performed by OPAL is

nearly one-to-one. The reason it is not one-to-one concerns NAND trees. A tree is
defined as a directed, acyclic graph under the constraint that aU nodes have a fanout
(or reference) count of one. In the case of simple gate mappings, the foUowing two
Boolean networks, represented algebraicaUy, can both be mapped into a two-level tree

of NAND gates:

X = ab + cde + fg

and

X = y

Y = mHH

M = ab

jV = cde

0 = fg

However, since no single rule can transform either of these networks into the other,
evaluation ofa rule is always possible. The structure of the first Boolean network is
more desirable than the second because more powerful transformations can be appHed
to it given the rule set in OPAL. In inverting logic styles, a NAND tree is much more
area and time efficient than the more obvious AND-OR tree. By mapping and-
or expressions into NAND trees, the manipulation of the Boolean network is not
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hindered. The extent of using NAND gates over AND/OR gates is controUed by a

parameter to the program.

The specifics ofhow a particular part ofthe Boolean network is mapped to a set
of gates is largely dependent on the optimization model used. However, fundamental
commonaHties exist between ah models. In ah cases, only variable and product term

nodes of the Boolean network can have a gate counterpart—Hteral nodes can only be

associated with inputs to a gate. In addition, a product term (product term node)
cannot be "shared" bymultiple gates. That is, the conjunction ofHterals inaproduct
term must be contained in asingle gate mapping. However, avariable (variable node)
can be shared between gates. For instance, the disjunction of product terms which
define a variable can map to a gate as weU as each of the product terms of that

disjunction. Furthermore, any subnetwork ofthe Boolean network can be mapped to
asingle gate. AdditionaUy, alegal mapping is defined to be the mapping obtained by
starting from the primary outputs and successively mapping transitive fanin nodes.
The root ofagate is defined as the variable or term node whose fanout corresponds to
the output of the gate. Thus, the primary outputs (variable nodes) axe always roots.

Only one root is allowed per gate. This restriction prevents the mapping of multiple

output gates.

The conditions mentioned above do not require a direct mapping. Further con

straints provided by theoptimization model axe necessary to fuUy define themapping.

However, theseconditions do provide abasis for the definition ofincremental mapping.

Incremental Mapping

The time involved in mapping the entire network is proportional to the number of

variable and term nodes in the Boolean network. Even this linear time complexity

cannot be considered acceptable because the Boolean network must be mapped for

each rule instantiation. It is obvious that each rule affects only a Hmited number of

nodes in the Boolean network and therefore in the mapping. Remapping the entire

network is duphcating work already performed. Fortunately, the set of affected nodes

can be isolated and remapped without requiring the mapping of the remainder of the

network nodes. The mapping process can thus be performed in constant time.
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For simplicity, remapping occurs on avariable node basis. That is, ifany variable s
immediate fanin term nodes and their hterals are affected by a rule, that variable and
the immediate fanin term nodes axe remapped. The foUowing rules define when a

variable node is remapped:

1. When a variable is created.

2. When aproduct term and/or literal of aproduct term for the variable is modified
(created or removed).

3. If a variable's reference count becomes 1 and the technology mapping model
allows complex gates, the fanout variable is remapped (if complex gates exist
which can span more than two variable nodes, additional fanout variables are

remapped).

4. If the variable's reference count becomes greater than 1and if thevariable node
is internal to a complex gate tree, that variable and all variable node members

of that complex gate axe remapped.

5. If avariable's positive or negative fanout counts becomes zero or non-zero, that
variable is remapped. Thus, remapping a node may effect the remapping of

fanin nodes.

Variables tobe remapped axe recorded in astack toapproximate adesired ordering
where transitive fanout variable nodes axe mapped before predecessor nodes. This
ordering of nodes is required to meet the conditions of the direct map. The algorithm
for remapping the network is given in Figure 5.9.

mappingjmodel is the specific technology mapping model desired (e.g. simple
gates). Maintaining the ordering constraint may result in a fanout variable being
moved to the top of the stack. Rather than deleting the previous stack entry, the
variable is duplicated in the stack. For each variable to be remapped, it is therefore
necessary to determine if it was already processed. The for-loop ensures that the
ordering constraint is met for the top-of-stack variable, V. V is marked as a root
node by makeroot to prevent fanout nodes from being placed on the stack again. V
is finahy mapped when ah fanout nodes have been mapped.
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inc_map(mappingjnodel)
{ while (stack_empty(unmapped))

{
V = top(unmapped);
if (mapped(V))

pop(unmapped):
else

{
foreach (fanout variable Vf of V)

{
if (mapped(V)))

push(unmapped, Vf); /* maintain ordering*/
else if (V is not root node)

{
total-area -= area(V/)»
push(unmapped,V));

} •
}

makeroot(V);
if (top(unmapped) is V) /* i.e., all fanout nodes mapped */

{
pop(unmapped();
map(mappingjnodel, V);
}

}
}

Figure 5.9: Incremental Mapping Algorithm
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5.4.2 Technology Mapping Models

OPAL has three mapping models. These include the simple gate and complex gate

models as mentioned previously. In addition, there exists an AND-OR model which is

used for technology-independent timing optimization. Technology-independent area

optimization does not require mapping since the totalnumber ofHterals is maintained

in the database. However, mapping is required to perform network leveHng which is

described later.

The AND-OR Model

The AND-OR model is not reaUy a technology-dependent mapping model but is

presented here since it contains the same concepts as the more complex models.
The three basic gates ofthis model are generic-AND, generic-OR, and generic-buffer.
This model can be considered a dual-rail model because inverting and non-inverting

outputs axe present on the gates. In all models, a gate configuration which provides
an inverting and non-inverting output must exist for aU gates. This constraint is
usuaUy met by adding an inverter to the output of a gate available in the Hbraxy.
Each disjunction in the Boolean network is mapped to a generic-OR gate and each
conjunction toa generic-AND. The generic-buffer gate is used when avariable contains
a single product term which in turn contains a single Hteral. The axea of the gates is
irrelevant since the Hteral count is used as the technology-independent area estimate.

The Simple Gate Model

The simple gate model maps the Boolean network using only the available AND.
NAND, OR, NOR, and inverter gates in the technology Hbrary. Because only these
simple gates are considered, the mapping is very efficient. Inaccuracies are only
introduced when complex gates would have provided a more axea or delay efficient

implementation.

Given just these few gates, there axe many possible configurations that perform
the same basic function. For instance, a NAND gate can be combinedwith an inverter

to derive an AND gate. Fortunately, there is often a "best" configuration given the
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particular fanout requirement of the gate. For instance, consider aCMOS standard
ceU technology. If avariable contains only positive fanout. the AND gate might be
the desired configuration (possibly less area than a two-ceU NAND-INV). If both
negative and positive fanout exist, the NAND-INV configuration is better since it
provides both the inverting and non-inverting outputs in less area than would the
AND-INV configuration. These decisions are made once (by the Hbrary developer)
and are stored in the technology Hbrary. The assumption of a "besr configuration
fails when a tradeoff exists between drive capability and area. In such cases, the
appropriate configuration can only be decided dynamically. The selection of a gate
in the Hbrary is made according to the generic function of the gate (e.g. AND, OR),
the fanin of the gate, and the positive and negative fanout counts.

Given a variable node to be remapped, there are three cases to be considered: the

variable contains multiple product terms, a single product term, or, if it defines an
input, no product terms. For multiple product terms, the variable node is the root of
a sum-of-products tree and two possible mappings exist: a two-level NAND tree or
an AND-OR tree. The decision to accept the NAND tree is based on the parameter

nandjn.andjcutoff specified intheuser's configuration file. For each multiple product
term variable, a sum of the number of Hterals less one of each term is calculated. If
this sum is greater than nandjftand.cutoff, the NAND tree mapping is used. Low-
sums correspond to trees with only one literal in most product terms. These Boolean
network configurations can be easily transformed by arule into different configurations
which are mapped identicaUy. Thus the one-to-one correspondence in mapping is

violated. When the sumis less than or equal to the cutoff, the AND-OR tree is used.

In the case of the AND-OR trees, the positive and negative fanout counts of the

variable and term nodes axe the positive and negative reference counts, respectively.

For NAND trees, the assignment is the opposite (e.g. positive fanout count set to

negative reference). Thus, single hteral terms axe essentially inverted. Gate configu
rations axe easily obtained from the hbraxy utiHzing the fanout counts and the fanin

requirements of the nodes.

3of course, term nodes always have a positive reference count of1 and negative reference count of
0 due to the restrictions imposed by the Boolean network model
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Variables defined with a single term containing a single hteral axe mapped to a
buffer gate. According to the fanout counts, the gate will either be an inverting buffer
or a non-inverting buffer.

The Complex Gate Model

Complex gates which match atree structure in the Boolean network can be completely
defined in the Hbraxy. Currently, defining complex gates that axe not ofthis structure
requires compiled code in addition to the hbraxy specification. Typical Hbiaxies con
tain only a smaH number of gates (such as the exclusive-OR) which do not meet this
criteria and thus optimization is not significantly weakened. To take advantage of
gates not recognized by OPAL requires apostprocess technology mapping, and thus
optimahty may be lost.

Mapping avariable node proceeds by checking the Hbrary for acomplex gate which
matches the Boolean network tree structure rooted at the variable. The number of
term nodes connected to the root node is used to reduce the number of gates which
need to be checked. Priority among complex gates which may match the same network
configuration is according to the definition order in the Hbrary. Hno complex gates
match the variable node, a simple gate mapping is detexmined using the simple gate

model.

5.4.3 Delay Evaluation

In many situations, the logic network will be connected between register banks that
are clocked according to the maximum path delay of the network. For critical net
works, the configuration with the smaUest maximum output delay represents the goal
configuration state. For gates which are off the critical path, area is important and
therefore always apart of timing optimization. OPAL uses aweighted sum of critical
path delay and axea as the evaluation function for timing optimization. In other situ
ations, some outputs axe considered more critical than others and must meet required
arrival times. In these cases OPAL will minimize the sum of the differences between
output arrival times and required arrival times for outputs which do not meet their
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constraints.

The calculation of the output arrival times is performed in a quick two-pass pro
cess of network leveHng and delay summing. During leveHng, the gates of the mapped
network are placed in aHst. The order of placement is defined by the relation that
agate occurs in the Hst after the positions of ah its transitive fanout gates. The
network leveHng process serves the dual purpose of connecting together the gates of
the mapped network. Gate mapping only assigns gates to Boolean network nodes:
connection among the gates is imphed but not expHcitly provided. Maintaining con
nectivity relationships between input/output pins of mapped gates during mapping
is too expensive since it is only required for timing optimization. Astandard critical
path computation which performs leveHng concurrently with delay computation must
proceed from the Boolean network inputs to the outputs and would require substantial
graph searching to extract gate connectivity. The network leveHng pass proceeds from
circuit outputs to inputs which is more suited to the structure of the Boolean network
and mapping information. In addition, since only leveHng is required for obtaining
logic levels of the network, technology-independent optimization can be performed
efficiently by omitting the delay summing pass.

The delay summing pass proceeds through the leveHng Hst from the end of the
Hst (the circuit inputs) to the beginning (the circuit outputs). The rise (faU) arrival
times, ar{ (a{) for each gate output i are the sum of the maximum fanin arrival times
aj, the intrinsic delay of the gate I-, and the fanout loading delays (loads L{, drives
Di). The equations for computing a\ and a{ for positive unate, negative unate, and
non-unate gate outputs are presented in Equations 5.2, 5.3, and 5.4 respectively.

a] = max(a;) +j;+ £ L3;• D\ (5.1)
j€F/(i) i6F0(t)

a{ = max («<) +//+ £ Ls -D*

oj = max (aj) +i?+ £ Lj •Ar (5'2>
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a{ = max (a;) +j/+ £ Li'D\
i€F/(0 i6Jg(0

of = max(max(a5,a^)) +Jr+ £ I; •Ar <5'3>
i€F/(t) j€FO(i)

a/ = max(max(aj.,aj)) +j/+ £ I; •/>/
i€F7(.) j€FO(t)

The technology Hbraxy contains capacitive loading and drive information for cal
culating fanout delays. The efficiency of fanout delay computation is improved if an
average input capacitance can be assumed for aU gates (e.g., Voutputs i, I, =1.0).
The delay model used provides sufficient accuracy for obtaining optimal circuits in
most cases. However, the evaluation function can easily support more accurate delay

models if required.

5.5 The Technology Library

The technology Hbraxy characterizes the various logic gates available for a particular
technologj'. This hbraxy usuahy corresponds to gates which have been predefined for
use with Standard CeH and Gate Array layouts. Because of the restrictions placed
on technology mapping during cost evaluation, not aH available gates can be utiHzed
during logic synthesis. To take advantage of special gates, apostprocessing technology
mapping step should be performed.

The technology Hbrary defines four classes of gates: AND, OR, BUFFER, and
COMPLEX. For the first three classes, gate entries are classified according to fanin
count. The COMPLEX gate class classifies entries according to the corresponding
Boolean network tree. In all classes, a further classification according to fanout count

exists:

1. positive fanout count > 0, negative fanout count = 0

2. positive fanout count = 0, negative fanout count > 0

3. positive fanout count > 0, negative fanout count > 0
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For instance, atwo-input AND gate configuration should be specified in case 1. In
case 2, a two-input NAND gate is specified and in case 3, a two-input AND/NAND
(both inverting and non-inverting outputs). If aconfiguration can be formed from
an available gate and possibly an inverter, the gate configuration is said to be legal
Gate configurations which axe illegal axe usuahy specified with an axea and delay
which would bereaHstic if theconfigurations were available. IUegal configurations are
commonplace early on in the synthesis process and are eventually ehminated as the
penalties they incur are not tolerated by the acceptance function. As stated earlier,
iUegal configuration states improve the search by increasing the accessibility of the
state-space. The specification of the Hbraxy ahows for adefault entry which can be
extrapolated to form gate configurations of fanin not specified expHcitly. The default
gate configuration can be used to specify Ulegal configurations beyond the "fanin
Hunt" impHed by the Hbraxy.

The specification ofagate configuration contains the foUowing information: area,
input capacitance, rise/faU delays to negative and positive fanout, rise/faU drives of
positive and negative fanouts, positive and negative dependence relationships, logic
levels to positive and negative outputs, and the number of inverters required in the
configuration. The only constraint on the units for input capacitance and drive axe
that they form time when multiphed together. The output delays axe intrinsic delays
except when one output is inverted to obtain the other. In this situation, the fanout
load ofthe inverter is accounted for in the output delay. The non-inverting, or positive
output, is said to depend on the inverting, or negative output, if it is derived from
the negative output with an inverter. Likewise, the negative output depends on the
positive output if it is formed with an inverter attached to the positive output. Since
the fanout delay of the true output wiU affect the delay of the dependent output,

dependency information is necessary.

Appendix A contains a typical Hbraxy specification.
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5.6 Synthesis Process Configuration

The user of OPAL can control and customize the synthesis process using parameters

specified in a configuration file. Five parameter classes are defined: PHC process,
network evaluation, rule base, network I/O, and reporting. Many of the PHC process

and network evaluation parameters have already been described. In addition to these

parameters, rule weighting can also be specified. OPAL can read and write networks
specified as equations or in the LIF.3 logic interchange format[MCN87a]. Statistics
can be generated at each value of T and also at the end of the synthesis run. The
complete Hst of parameters is provided in Appendix B.
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Chapter 6

System Performance

Presented in this chapter are performance comparisons between the Probabihstic HiU-
Climbing Control Strategy and alternative strategies. Although these comparisons
and evaluations are made with respect to performance in rule-based logic synthe
sis, the conclusions and insights obtained can be appHed more generaUy. In addi
tion to control strategy comparisons, the issue of rule-based versus algorithmic-based
problem-solving is addressed. Results obtained with the rule-based system OPAL are
compared to the MIS Logic Synthesis System.[BRSW87,DGR*87]

6.1 Comparison Between PHC and Alternative Strate

gies

The alternative control strategy model used in comparisons is the steepest-descent
strategy with varying degrees of look-ahead. The traditional steepest-descent strategy
is "greedy"—only the best rule is selected. Consequently, this approach obtains a
locahy optimal solution that is very sensitive to the initial problem configuration.
Look-ahead provides a means of escaping local minima by accepting rules which axe
not individuaUy acceptable. However, when associated with other rules ina sequence,
abetter overaU configuration is obtained. This model was selected since it is used in
most rule-based logic synthesis systems[GBdH86.DBG*84]. In addition, a spectrum
of strategies can be constructed by adjusting the breadth and depth of the look-ahead
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search. Each strategy wiH be defined by its associated breadth and depth pair: (b.d).
Five different steepest-descent /look-ahead strategies are used in comparisons: (1.1),

(1,5), (n,l), (70,3), and (25,4). (1,1) represents astrategy which randomly tests rule-
location pairs in the network and accepts only those which improve the cost. (1,5)
tries sequences of 5rules and accepts those which improve the cost. (w,l) accepts the
best ofn rule-location pairs. When n is the number ofunique rule-location pairs for
the current configuration, this strategy represents the standard "greedy" approach.
(70,3) searches 3rules deep and 70 rule-location pairs at each depth level—accepting
the best three rule sequence. (25,4) performs more look-ahead but at the expense of
fewer rule-location pairs per depth level.

Since only the control strategies are being compared, other rule-based system
components such as the rule set and evaluation function axe left unchanged. The only
exception to this is that the weights apphed to individual xules for the steepest-des
cent/look-ahead strategies differ from those of the PHC strategy and were adjusted
experimentaUy for optimal performance.

The steepest-descent/look-ahead strategy models represent "pure" strategies since
the breadth/depth parameters are static. Of course, it is possible to optimize per
formance for a particular problem by adjusting the breadth and depth during the
process. For example, in logic optimization and synthesis, it may be desireable to
use aminimal amount of look-ahead during early stages of the process before local
minima are reached. Later stages may increase the look-ahead to help escape local
minimas. However, the optimal breadth and depth to use on a given problem con
figuration is indeed the problem to be solved. What this report intends to convey is
that the Probabilistic Hill-Climbing control strategy provides a robust solution to this

problem.

The measure of performance between the various strategies is solution quaHty
given compaxable run-times. However, because each strategy continues until improve
ments in cost axe no longer possible, obtaining comparable run-times is adifficult task.
This problem is addressed by requiring the run-times for the steepest-descent/look-
ahead strategies to be identical to the PHC strategy run-time. In some cases, the
solution converges rapidly and is not helped much by the extra time provided. In
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Name Description Format Inputs Outputs Literals

5xpl-hdl 5-ar + l multi-level 7 10 117

5xpl 5*1 + 1 2-level 7 10 296

9sym-hdl '1* if 3,4,5, or 6 inputs= 1 multi-level 9 1 169

9sym *r if 3,4,5, or 6 inputs= 1 2-level 9 1 522

9symml T if 3,4,5, or 6 inputs= 1 multi-level 9 1 277

alupla 4 bit ALU w/muxes multi-level 25 5 173

bw N/A 2-level 5 28 324

£2 N/A multi-level 4 4 36

f51m-hdl (5 •x + l)mod256 multi-level 8 8 116

f51m (5 -x + l)mod256 multi-level 8 8 155

misexl control multi-level 8 7 125

misex2 control multi-level 25 18 166

rd53-hdl counts l's multi-level 5 3 55

rd53 counts l's 2-level 5 3 144

rd73-hdl counts l's multi-level 7 3 91

wdcnt counter multi-level 7 8 114

z4ml-hdl 2-bit adder w/cin,cout multi-level 7 4 68

z4ml 2-bit adder w/cin,cout multi-level 7 4 58

Table 6.1: Benchmark Circuits

other cases, a better solution may have been obtained if the run continued. To indi
cate such discrepancy, the solution at convergence (and required run-time) for each

strategy is also presented.

Asummary description of the benchmark circuits is contained in Table 6.1. The
circuits whose names end in "-hdlr were initiaUy specified using a hardware descrip

tion language rather than a sum-of-products (2-level) specification. Many of these
examples are part of the Microelectronics Center of North Carohna (MCNC) bench
mark set from the 1987 International Workshop on Logic Synthesis[MCN87b].

6.1.1 Technology-Independent Optimization

The least computationaUy expensive and least accurate optimization is Hteral count
optimization. Results obtained for hteral count optimization axe presented in Tables
6.2 and6.3. For each circuit benchmark, theinitial axea (hteral count) is specified. For
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each control strategy, optimized solution areas and required run-times axe presented.
Run-times here and in aU comparisons with the exception of timing optimization axe
VAX 8650 minutes. Timing optimization run-times are in VAX 8800 minutes.1 For
the PHC runs, a best and average of 3 runs is presented. The purpose of averaging
multiple runs is to provide an expected value for the solution quaHty. Multiple runs are
not useful for the steepest-descent/look-ahead strategies since the effect ofthe random
number sequence is less pronounced. All PHC runs utilize the same set of process
parameters but with different random number seeds. The CPUY time corresponds to
the best run. For each alternative strategy, two areas axe specified, areai is the
comparable run-time result. area2 and CPU2 represent the result when the run
time constraint is removed. Runs without the time constraint terminate after a fixed
number of rule-location pairs have been unsuccessful in reducing the cost of the final
configuration. This rule-location limit is based on the number of rules in the network,
the initial size of the network, and an experimentally determined multipHer.

Area and CPU time totals for each control strategy axe presented in Table 6.4.

For the steepest-descent/look-ahead strategies it is observed that better results axe
often obtained for.the time limited runs over those of the unconstrained runs. This
behavior occurs when the time limit is greater than the unconstrained run-time, in
which case the termination criterion is ignored. Since the termination criteria is based
on the rate of rule-location pair acceptance rather than the exact, and computationally
prohibitive, determination of alocal minimum, it is very likely that the unconstrained
runs wUl complete before an acceptable rule-location pair is found.

Comparing results among the steepest-descent/look-ahead strategies indicates that
in many cases increasing the breadth/depth of the search decreases solution quahty.
The advantages gained by the ability to escape local minima do not overcome the
disadvantage of accepting fewer rules. An examination of the rule sequences accepted
by the extended look-ahead models indicates that most sequences consist only of
cost-decreasing (improving) rules. The scarcity of local minima often renders the
look-ahead useless. A practical implementation of the steepest-descent/look-ahead

ithc VAX 8800 has been experimentally determined to be about 10% faster than the VAX 8650
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Circuit PHC (1.1) (n,l)

name area best CPUi are CPU2 area i area 2 CPlh areai area2 CPU2

oxpl-hdl 117 81 4.8 83 4.8 88 88 0.4 104 104 1.2

5xpl 296 172 15.8 181 15.3 190 190 1.4 193 193 8.6

9sym-hdl 169 90 9.9 98 9.4 139 139 0.5 132 132 1.8

9sym 522 345 36.5 350 38.2 343 347 3.3 423 325 61.8

9symml 277 271 14.6 273 14.2 266 266 1.0 266 266 3.0

alupla 173 145 8.8 148 9.7 152 152 1.3 152 152 2.7

bw 324 251 18.6 254 18.3 235 235 0.9 224 224 6.7

f2 36 26 7.1 29 9.9 30 30 0.1 30 30 2.5

folm-hdl 116 78 4.7 81 4.5 87 87 0.3 104 104 1.2

folm 155 143 6.8 150 6.4 154 154 0.4 154 154 1.5

misexl 125 73 4.2 75 4.2 80 80 0.3 79 79 1.7

misex2 166 142 9.4 143 9.2 155 155 0.7 154 154 2.3

rd53-hdl 55 44 2.4 48 2.2 47 47 0.1 47 47 0.4

rd53 144 104 6.4 110 6.2 86 95 0.4 72 73 2.9

rd73-hdl 91 60 3.9 74 3.8 84 84 0.2 83 83 0.7

wdcnt 114 38 2.3 40 2.3 46 46 0.3 46 46 0.6

z4ml-hdl 68 52 3.1 55 2.7 55 55 0.2 54 54 0.5

z4ml 58 43 2.0 46 2.1 46 46 0.1 54 54 0.4

Table 6.2: Literal Count Optimization Results

strategy is suggested by these results: minimal look-ahead while many cost-decreasing
rules exist; increased look-ahead as cost-increasing rules appear more frequently.

The Probabihstic HiU-chmbing strategy provides the best individual and coUec-

tive results of the strategies compared. This observation is not surprising given the
conclusions concerning look-ahead strategies. Since cost-decreasing rules are always
accepted, the PHC strategy contains characteristics of the (1,1) model. However,
the occasional acceptance ofcost-increasing rules provides local minimal escapes and
hence the better results. However, for several of the circuits, (1,1) optimization pro

vided abetter solution than the PHC optimization. The acceptance of cost-increasing

rules occasionaUy results in a move to a configuration subspace with a local minima
ofhigher cost. Such behavior can be controUed by increasing the aUowed run-time
for the optimization or adjusting the process parameters.
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Circuit (1.5) (70,3) (25.4)

name area areai area2 CPU2 areai area2 CPU2 areai area2 CPU2

5xpl-hdl 117 88 103 1.0 106 106 4.3 106 105 1.0

5xpl 296 213 215 9.2 208 182 50.7 223 216 38.1

9svm-hdl 169 135 146 2.2 148 149 7.3 153 148 <./

9svm 522 377 385 15.1 373 368 62.1 373 366 59.4

9svmml 277 266 269 3.9 270 270 15.0 270 270 19.7

alupla 173 152 152 1.9 154 154 7.4 154 155 10.7

bw 324 237 240 6.7 244 244 22.3 251 230 23.8

f2 36 28 30 0.1 34 28 2.5 33 30 1.4

f51m-hdl 116 92 103 1.3 106 106 4.3 108 105 4.8

f51m 155 154 155 9.2 154 154 7.8 155 154 5.6

misexl 125 77 78 1.2 76 76 5.0 74 80 6.8

misex2 166 166 153 1.6 122 119 15.0 139 126 15.2

rd53-hdl 55 47 51 0.3 51 53 1.6 52 51 1.6

rd53 144 87 88 1.5 96 95 11.4 110 76 18.7

rd73-hdl 91 84 88 0.3 83 83 3.9 86 87 2.0

wdcnt 114 42 44 0.5 48 44 5.0 46 46 2.2

z4ml-hdl 68 55 64 0.3 63 63 3.0 64 64 1.6

z4ml 58 53 57 0.2 57 57 1.0 1 57 58 0.8

Table 6.3: Literal Count Optimization Results (cont.)

CPU limited no CPU limit

Strategy axea CPU area CPU

PHC (best) .2159 155.1 2159 155.1

PHC (ave) - -
2240 154.3

(1,1) 2283 155.5 2296 11.7

(n,l) 2371 157.3 2274 98.2

(1,5) 2353 145.3 2421 48.2

(70,3) 2393 156.6 2351 229.8

(25.4) 2454 155.6 2367 227.7

Table 6.4: Totals for Literal Count Optimization
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Delay Output Drive

Gate Area Input Load rise faU rise faU

INV1 1.0 1.0 0.9 0.9 0.3 0.3

AND2 3.0 1.0 1.9 1.9 0.3 0.3

NAND2 2.0 1.0 1.0 1.0 0.1 0.1

NAND3 3.0 1.0 1.1 1.1 0.3 0.3

NAND4 4.0 1.0 1.4 1.4 0.4 0.4

NAND5 5.0 - - -

-

0R2 3.0 1.0 2.4 2.4 0.3 0.3

N0R2 2.0 1.0 1.4 1.4 0.5 0.5

N0R3 3.0 1.0 2.4 2.4 0.7 0.7

N0R4 4.0 1.0 3.8 3.8 1.0 1.0

XR 5.0 2.0 1.9 1.9 0.5 0.5

XN 5.0 2.0 2.1 2.1 0.5 0.5

A0I21 3.0 1.0 1.6 1.6 0.4 0.4

AOI22 4.0 1.0 2.0 2.0 0.4 0.4

0AI21 3.0 1.0 1.6 1.6 0.4 0.4

OAI22 4.0 1.0 2.0 2.0 0.4 0.4

AOI32 5.0 - - - -
-

AOI222 6.0 - - - -

•

Table 6.5: CMOS Standard CeU Gate Library

6.1.2 Technology-Dependent Optimization

The CMOS standard ceU gate Hbrary described in Table 6.5 is used in technology-
dependent optimizations. The gates containing delay information represent the MCNC
benchmark set Hbrary and are used for timing optimization comparisons. The units
for axea and delay axe transistor pairs and nanoseconds respectively. Results for area
optimization axe presented in Tables 6.6 and 6.7 and totals in Table 6.8.

The benefits of extended breadth/depth search are more apparent with mapped
area optimization than with hteral count optimization. Examination of the accepted
rule sequences indicate considerably more cost-increasing rules were accepted than
with Hteral count optimization. The effects of using rules with a fine granularity are
more pronounced. Unhke the look-ahead models, the PHC control strategy demon
strates insensitivity to these effects. The superior results of the this strategy suggest

59



PHC (1,1) (n.l)

Circuit best CPl'i are CPU2 areai area2 CPU2 a7*eai area2 CPU2

5xpl-hdl 104 9.7 1050 11.4 146 147 0.7 142 142 3.7

5xpl 242 46.3 247 56.9 300 325 3.1 293 258 19.5

9sym-hdl 125 22.0 155 21.3 209 209 1.3 206 201 3.6

9sym 460 129.5 478 120.9 541 596 6.9 423 447 115.0

9symml 344 51.9 348 53.7 346 356 3.2 346 358 16.5

alupla 190 23.8 196 23.2 204 208 2.1 213 220 3.3

bw 295 51.0 300 54.2 291 308 2.6 285 286 15.2

f2 35 2.0 38 1.8 42 42 0.2 48 50 0.4

folm-hdl 100 9.6 104 11.0 143 144 1.0 148 148 3.0

folm 181 13.5 197 16.2 204 208 1.2 210 210 2.S

misexl 89 9.9 90 9.5 102 103 0.7 103 107 1.8

misex2 169- 26.3 174 29.8 200 217 1.5 203 216 6.6

rd53-hdl 60 4.5 63 4.3 69 71 0.2 68 68 0.7

rd53 133 17.7 137 19.3 154 159 1.2 103 109 5.5

rd73-hdl 103 9.2 112 7.9 116 115 0.4 117 117 1.1

wdcnt 44 5.2 49 5.2 64 64 0.4 61 63 1.1

z4ml-hdl 68 5.0 72 5.3 85 86 0.3 85 85 1.1

z4ml 48 4.2 62 4.1 71 71 0.3 75 75 0.6

Table 6.6: Area Optimization Results

that it was often more capable of avoiding local minima than the extended look-
ahead models. In some sense, a greater effective look-ahead was achieved with the

PHC control strategy.

Results for timing optimization are presented in Tables 6.9 and 6.10. Area and
critical output delays are presented for PHC axea optimization, PHC timing opti
mization, and (1.1) and (70,3) timing optimization. The drives for aU circuit inputs
and load of the circuit outputs were set to that of the INVI gate. In aU but the area
optimization runs, the required arrival time optimization model was used.

The column req'd indicates desired output arrival times. These numbers were
arbitrarily chosen with the criteria that they provide sufficient difficulty to the opti
mization. The only circuit where the required arrival time was met was alupla. In
comparing timing optimization results, the tradeoff between area and delay must be
considered. Runs with comparable output delays should be compared according to
the areas of their solutions. The (1,1) model is clearly not as effective in timing
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Circuit I

name

(1.5) (70.3) (25,4J

areai area2 CPU2 areai area2 CPlh areai area2 CPU2

5xpl-hdl 133 145 1.2 141 147 6.1 142 145 6.i

5xpl
9svm-hdl

280 305 10.2 304 301 57.0 325 348 25.8

201 206 2.2 207 207 11.7 206 204 18.4

9svm 535 570 18.1 495 542 88.4 541 556 75.8

9svmml 351 364 3.2 346 366 15.1 347 365 13.9

alupla 205 210 2.6 205 220 10.4 220 226 6.2

b\v 282 287 9.0 280 297 37.7 282 308 24.3

f2 36 42 0.2 41 35 7.5 39 38 1.8

folm-hdl 142 146 1.3 146 152 5.2 139 146 8.8

folm 202 207 2.0 209 212 10.7 219 213 10.6

misexl 102 103 1.6 102 102 9.2 102 102 6.0

misex2 199 205 3.4 180 184 46.3 183 201 18.3

rd53-hdl 65 68 0.3 68 69 1.5 68 68 2.0

rd53 139 154 1.5 148 146 13.1 151 156 15.6

rd73-hdl 116 119 0.4 116 118 3.8 115 119 2.9

wdcnt 63 67 0.6 68 70 6.3 67 71 2.3

z4ml-hdl 86 87 0.5 86 88 3.6 84 87 1.8

z4ml 68 72 0.6 1 72 75 4.2 72 78 2.5

Table 6.7: Area Optimization Results (cont.)

CPU limited no CPU limit

Strategy axea CPU axea CPU

PHC (best) 2790 441.3 2790 441.3

PHC (ave) - - 2920 456.0

(W) 3287 441.8 3429 27.28

(n,l) 3129 442.7 3160 201.7

(1.5) 3205 441.6 3357 58.9

(70,3) 3214 444.0 3331 337.9

(25,4) 13302 441.9 3431 243.6

Table 6.8: Totals for Area Optimization
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Area Optimized PHC

circuit area delay req'd area delay CPt/'i

9sym-hdl 125 42.8 22 251 29.1 53.1

alupla 190 30.3 20 241 20.0 45.3

f51m-hdl 100 37.3 10 176 14.4 18.6

rd53-hdl 60 22.3 13 80 15.7 8.1

z4ml-hdl 68 15.1 8 89 10.9 3.3

Table 6.9: Timing Optimization Results - PHC

circuit areai delayi
(1,1)

area2 delay? CPU2 areai delayi

(70.3)
area2 delay2 CPlh

9sym-hdl
alupla
f51m-hdl

rd53-hdl

z4ml-hdl

232

238

184

80

87

34.5

22.9

16.6

16.7

11.1

232

240

184

80

87

34.5

22.9

16.6

16.7

11.1

12.3

9.7

10.9

0.7

0.8

248

254

193

96

96

32.1

21.3

16.4

15.3

9.9

248

256

184

96

92

32.1

20.8

15.7

15.5

9.2

66.2

95.1

90.2

18.5

32.0

Table 6.10: Timing Optimization Results - Look-ahead

optimization as it is in Hteral count optimization. This observation is again explained
by the reduced effectiveness of single rules in improving the configuration. As could
be expected, the (70,3) model was able to overcome local minima and obtain consis
tently good results. However, given comparable run-times, the PHC control strategy
performed the best overall.

6.2 Comparisons Between Rule-Based and Algorithmic

Logic Synthesis

Rule-based problem-solving can be expensive. Their use is justified when they pro
vide better results than can be obtained with available algorithms. In recent years,

the quaHty of algorithms for multi-level logic synthesis has improved enormously.
The MIS logic synthesis system [BRSW87,DGR*87] incorporates many of these new
algorithms. Presented here is a comparison between the OPAL rule-based system
utilizing the PHC control strategy and the MIS system. Since algorithms for tim-
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Circuit PHC MIS

name area area CPU area CPU

5xpl-hdl 117 81 4.8 83 0.1

5xpl 296 172 15.8 155 0.2

9sym-hdl 169 90 9.9 140 0.4

9sym 522 345 36.5 261 0.9

9symml 277 271 14.6 253 0.9

alupla 173 145 8.8 179 1.5

bw 324 251 18.6 224 0.7

f2 36 26 7.1 32 0.0

f51m-hdl 116 78 4.7 78 0.1

f51m 155 143 6.8 160 0.3

misexl 125 73 4.2 72 0.1

misex2 166 142 9.4 113 0.1

rd53-hdl 55 44 2.4 54 0.1

rd53 144 104 6.4 62 0.1

rd73-hdl 91 60 3.9 80 0.2

wdcnt 114 38 2.3 41 0.0

z4ml-hdl 68 52 3.1 59 0.1

z4ml 58 43 2.0 42 0.1

Table 6.11: Literal Count Optimization Results for OPAL and MIS

ing optimization axe stiH in their infancy, only Hteral count and mapped area results
can be compared. Literal count optimization results axe compared in Table 6.11 and
mapped area optimization results in Table 6.12.

Although OPAL was often able to provide abetter solution, it came at the cost
of one to two orders of magnitude increase in run-time. Furthermore, the quality
of results from algorithmic approaches can be considerably better—at the cost of in
creased CPU time—if more extensive Boolean operations are performed. Rule-based
systems for area optimization may no longer be cost effective given the quahty of algo
rithms currently available. However, due to the present lack ofalgorithms for timing
optimization, the need for rule-based approaches to this problem is stiH present. Fur
thermore, it is unclear how successful algorithmic approaches will be when multiple
constraints axe introduced in the problem. Algorithmic approaches tend to separate
the problem into subproblems which are solved individuaUy. Often, the effectiveness of
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Circuit PHC MIS

name area CPU area CPU

5xpl-hdl 104 9.7 101 0.1

5xpl 242 46.3 181 0.3

9sym-hdl 125 22.0 182 0.5

9sym 460 129.5 328 1.0

9symml 344 51.9 310 1.0

alupla 190 23.8 219 0.7

bw 295 51.0 271 0.7

£2 35 2.0 36 0.0

f51m-hdl 100 9.6 96 0.1

f51m 181 13.5 191 0,4

misexl 89 9.9 90 0.1

misex2 169 26.3 152 0.2

rd53-hdl 60 4.5 69 0.1

rd53 133 17.7 77 0.1

rd73-hdl 103 9.2 104 0.2

wdcnt 44 5.2 54 0.1

z4ml-hdl 68 5.0 75 0.1

z4ml 48 4.2 53 0.1

Table 6.12: Mapped Area Optimization Results for OPAL and MIS
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this technique decreases as the number of separations increases. Current separations
introduce the foUowing major subproblems: two-level logic minimization, decomposi
tion, resynthesis for timing, decomposition into a canonical 2-input nand gate struc
ture, mapping into a technology, and gate-sizing [BRSW87.BMS2,Keu87,DGR*87].
With the exception of gate-sizing, all of these subproblems are considered simultane
ously by OPAL. Because optimizations which span these subproblems axe not usually
possible, consideration of the entire problem can potentially obtain better solutions.
One algorithmic approach to spanning across problem divisions involves iterating each
step until some convergence criteria is achieved. As this technique suggests, algorith
mic methods which attempt to overcome non-optimal problem divisions possess a

structure and efficiency approaching that of rule-based systems.
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Chapter 7

Conclusions

A particularly interesting class of rule-based problem-solving involves performing
searches of a complex state-space. Various methods, such as hiU-chmbing and best-
first search, exist for controlhng the state-space search and were presented. Problems
with these methods have been described and used as justification for the appropri
ateness of the Probabihstic hiU-chmbing (PHC) control strategy. Amodel of PHC-
controUed rule-based systems was described and the impact ofthe control strategy on
aspects of the system was addressed. Arule-based system for logic synthesis, OPAL,
has been developed which utihzes the simulated anneaHng PHC control strategy.

Comparisons with different models of the steepest-descent/look-ahead control
strategy indicate the robustness of the PHC strategy. OveraU, the PHC control
strategy provides better solutions than can be achieved by fixed breadth/depth look-
ahead models. Because the degree of necessary look-ahead varies across problem
instances and for different evaluation functions, static look-ahead approaches are not
very robust. The PHC control strategy is able to dynamicahy adapt its search to suit
the problem being solved. Thus, PHC control strategies are able to achieve a more
effective search of the state-space and obtain better solutions.

FinaHy, the issue of Rule-based versus algorithmic approaches was addressed by
considering the logic synthesis problem. Although solution quaHty of the two ap
proaches axe compaiable, the required execution time for the rule-based approach
was identified as prohibitively expensive. However, some problems, especially those
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with many constraining factors, can not be solved optimally when separated into
subproblems which are solved individuaUy. When optimal results axe required, the
rule-based paradigm is auseful approach. Rule-based systems for logic synthesis are
useful when a) there exists alack of good algorithms for agiven subproblem (such as
timing optimization), and b) many conflicting constraints are imposed on the synthe
sis process which must be dealt with simultaneously.

Important work left for future study include improvements in timing optimization.
In particular, the currently existing rule base in OPAL appears to be best suited for
area optimization. The value of individual rules can not be easily determined inde
pendently of other rules. Rules suited for timing optimization should be investigated
and incorporated into the existing rule base. Also, the sharing of common subex
pressions is not always desirable when delays are being minimized. Currently OPAL
always shares common subexpressions. Methods for identifying when this operation
is not desirable should be developed and incorporated.

Future work on PHC-based rule-based systems should investigate automatic meth
ods for obtaining optimal sets of parameter values for agiven evaluation function (e.g.,
area optimization, timing and area optimization, etc). In addition, automatic tech
niques for obtaining rule weights should be investigated. Rule weighting can improve
both the quaHty of solutions as weU as the efficiency of the search. One possible ap
proach involves having the program discover for itself the appropriate set of weights
by obtaining feedback from solutions to selected instances of the problem to be solved.
Typical information which would be useful for this purpose axe the frequency of rule
matches, the accept/reject ratio at different stages ofthe process, and the sequences

of rules which are often effective.
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Appendix A

Technology Library Example

#

# enhanced MCNC benchmark library

# CMOS standard-cell

#

AND 5 5 1 0.6 0.6

0

# exists legal unate load delay drive dep lvl invs
# name area pos neg pos neg p n p n

#

Y AND.ILLEGALN P 6.0 1.0 3.2 3.2 0.0 0.0 0.3 0.3 0.0 0.0 0 020 1
Y NAND.ILLEGAL NP 5.0 1.0 0.0 0.0 1.8 1.8 0.0 0.0 0.5 0.5 000 10
Y HAND.ILLEGAL NP 6.0 1.0 3.2 3.2 2.2 2.2 0.3 0.3 0.5 0.5 0 12 11

2

Y AND2

Y NAND2

Y HAND2

3

Y NAND3

Y NAND3

Y NAND3

Y P 3.0 1.0 1.9 1.9 0.0 0.0 0.3 0.3 0.0 0.0 0 0 2 0 0

Y P 2.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.2 0.2 0 0 0 10

Y P 3.0 1.0 2.1 2.1 1.2 1.2 0.3 0.3 0.2 0.2 0 12 11

Y P 4.0 1.0 2.3 2.3 0.0 0.0 0.3 0.3 0.0 0.0 0 0 2 0 1

Y P 3.0 1.0 0.0 0.0 1.1 1.1 0.0 0.0 0.3 0.3 0 0 0 10

Y P 4.0 1.0 2.3 2.3 1.4 1.4 0.3 0.3 0.3 0.3 0 12 11
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4

Y NAND4 Y P 5.0 1.0 2.7 2.7 0.0 0.0 0.3 0.3 0.0 0.0 0 0 2 0 1

Y NAND4 Y P 4.0 1.0 0.0 0.0 1.4 1.4 0.0 0.0 0.4 0.4 0 0 0 10

Y NAND4 Y P 5.0 1.0 2.7 2.7 1.8 1.8 0.3 0.3 0.4 0.4 0 12 11

5

Y NAND5 Y P 6.0 1.0 3.2 3.2 0.0 0.0 0.3 0.3 0.0 0.0 0 0 2 0 1

Y NAND5 Y P 5.0 1.0 0.0 0.0 1.8 1.8 0.0 0.0 0.5 0.5 0 0 0 10

Y NAND5 Y P 6.0 1.0 3.2 3.2 2.2 2.2 0.3 0.3 0.5 0.5 0 12 11

OR 44 1 2.0 2.0

0

# exists legal unate load delay drive dep lvl invs
# name area pos neg pos neg p n p n

#

Y OR.ILLEGAL N P 5.0 1.0 5.7 5.7 0.0 0.0 0.3 0.3 0.0 0.0 0 0 2 0 1

Y N0R_ILLEGAL J P 4.0 1.0 0.0 0.0 3.8 3.8 0.0 0.0 1.0. 1.0 0 0 0 10

Y NOR.ILLEGAL N P 5.0 1.0 5.7 5.7 3.8 3.8 0.3 0.3 1.0 1.0 0 12 11

2

y 0R2 Y P 3.0 1.0 2.4 2.4 0.0 0.0 0.3 0.3 0.0 0.0 0 0 2 0 0

Y N0R2 Y P 2.0 1.0 0.0 0.0 1.4 1.4 0.0 0.0 0.5 0.5 0 0 0 10

Y N0R2 Y P 3.0 1.0 2.4 2.4 1.9 1.9 0.3 0.3 0.5 0.5 0 12 11

3

Y N0R3 Y P 4.0 1.0 4.0 4.0 0.0 0.0 0.3 0.3 0.0 0.0 0 0 2 0 1

Y N0R3 Y P 3.0 1.0 0.0 0.0 2.4 2.4 0.0 0.0 0.7 0.7 0 0 0 10

Y N0R3 Y P 4.0 1.0 4.0 4.0 3.1 3.1 0.3 0.3 0.7 0.7 0 12 11

4

Y N0R4 Y P 5.0 1.0 5.7 5.7 0.0 0.0 0.3 0.3 0.0 0.0 0 0 2 0 1

Y N0R4 Y P 4.0 1.0 0.0 0.0 3.8 3.8 0.0 0.0 1.0 1.0 0 0 0 10

Y N0R4 Y P 5.0 1.0 5.7 5.7 4.8 4.8 0.3 0.3 1.0 1.0 0 12 11

BUFFER 2 10 0 0

# 0 corresponds to primary outputs, 1 for internal buffers

0
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# exists legal unate load delay drive dep lvl invs
# name area pos neg pos neg p n p n

#

Y OUTPUT

Y OUTPUT-INV

Y OUTPUT-INV

1

Y INV1-INV1

Y INV1

Y INV1-INV1

Y P 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0

Y P 1.0 1.0 0.0 0.0 0.9 0.9 0.0 0.0 0.3 0.3 0 0 0 10

Y P 1.0 1.0 0.0 0.0 0.9 0.9 0.0 0.0 0.3 0.3 0 10 10

Y P 2.0 1.0 2.1 2.1 0.0 0.0 0.3 0.3 0.0 0.0 0 0 2 0 1

Y P 1.0 1.0 0.0 0.0 0.9 0.9 0.0 0.0 0.3 0.3 0 0 0 10

Y P 2.0 1.0 2.1 2.1 1.2 1.2 0.3 0.3 0.3 0.3 0 12 11

# format for complex gate definitions:

#

# <graph> ::= <termlist> <gatecode>

# <termlist> ::= <termcnt> [<term_info> ...]
# <term_info> ::= 0 # literal cnt doesn't matter

# ::= -<literal_cnt> # indicates graph termination
# ::= <literal_cnt> <literal_info> ...

# <literal_cnt> ::= natural.,int

# <literal_info>::= <sign> <termlist>

# <sign> ::= U # undefined, reqd for > 1 lit
# ::= P # positive

# ::= N # negative

# <gatecode> ::= 0 # no special function
# ::= int # corresponds to special gate*

#

# note: term_info list is as long as termcnt specifies
# literal_info list is as long as literal_cnt specifies.
# undefined sign required for terms with >1literal (otherwise ambiguous)
# gate codes:

# 1 - xor/xnor

#

COMPLEX 10 3 0 0 0
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2-2-2 1

# exists legal unate load delay drive dep lvl invs
# name area pos neg pos neg pa p n

#

Y XR Y U5.0 2.0 1.9 1.9 0.0 0.0 0.5 0.5 0.0 0.0 0 0 10 0
Y XN Y U5.0 2.0 0.0 0.0 2.12.1 0.0 0.0 0.5 0.5 0 0010
Y XR Y U6.0 2.0 1.9 1.9 3.3 3.3 0.5 0.5 0.3 0.3 10 12 1

2-2-2 0

# exists legal unate load delay drive dep lvl invs
# name area pos neg pos neg p n p n

# -

Y A0I22

N

Y P 4.0 1.0 0.0 0.0 2.0 2.0 0.0 0.0 0.4 0.4 0 0 0 10

2-2-10

# exists legal unate load delay drive dep lvl invs
# name area pos neg • pos neg p n p n

#

Y A0I21

N

Y P 3.0 1.0 0.0 0.0 1.6 1.6 0.0 0.0 0.4 0.4 0 0 0 10

2-1-2 0

# exists legal unate load delay drive dep lvl invs
L# name area pos neg pos neg p n p n

#

N

Y A0I21 Y P 3.0 1.0 0.0 0.0 1.6 1.6 0.0 0.0 0.4 0.4 0 00 10

N

1 2 U 2 -1 -1 U 2 -1 -1 0

# exists legal unate load delay drive dep lvl invs
# name area pos neg pos neg p n p n
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#

N

Y 0AI22 Y P 4.0 1.0 0.0 0.0 2.0 2.0 0.0 0.0 0.4 0.4 0 0 0 10

N

12U2-1-1U00

# exists legal unate load delay drive dep lvl invs
# name area pos neg pos neg p n p n

#

N

Y 0AI21 Y P 3.0 1.0 0.0 0.0 1.6 1.6 0.0 0.0 0.4 0.4 0 0 0 10

N

12U0U2-1-10

# exists legal unate load delay drive dep lvl invs
# name area pos neg pos neg p n p n

#

N

Y 0AI21 YP 3.0 1.0 0.0 0.0 1.6 1.6 0.0 0.0 0.4 0.4 00010

2-2-3 0

# exists legal unate load delay drive dep lvl invs
# name area pos neg pos neg p n p n

# -

N

Y A0I32 Y P 5.0 1.0 0.0 0.0 2.4 2.4 0.0 0.0 0.4 0.4 00010

N

2-3-2 0

# exists legal unate load delay drive dep lvl invs
# name area pos neg pos neg p n p n

# ;

N

Y P 5.0 1.0 0.0 0.0 2.4 2.4 0.0 0.0 0.4 0.4 0 0 0 10
Y A0I32
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3-2-2-2 0

# exists legal unate load delay drive dep lvl invs
# name area pos neg pos neg p n p n

#

N

Y A0I222 YP 6.0 1.0 0.0 0.0 2.8 2.8 0.0 0.0 0.4 0.4 00010
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Appendix B

Configuration Parameters

alphal temperature update during melt phase.

alpha2 temperature update during main search phase.

alpha3 temperature update during greedy search phase.

delta multiplier for standard deviation of network cost to specify equUibrium bound.

p_accept desired probability of accepting a cost-increasing rule at T= T0.

illegal-gate-penalty upper bound multiplier for determining penalty for an illegal gate.

delay-penalty penalty for delay beyond required arrival times.

rule-tries the number of rules to attempt per location (rule-location selection method #1).

step-size-factor inner loop iteration count factor.

literal-threshold used to determine minimum inner count.

constant-iterations required number ofouter loop iterations with a constant cost.

upper-boundjnultiplier used to obtain the cost upper bound.

nand-nand_cutoff specifies when an and-or tree should be implemented as a NAND tree.

logicJeveLfactor multiplier for logic levels.

delay-factor multiplier for delay.

area-factor multiplier for area.

rule-weight-precision precision ofspecified rule weights.
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literal-weight literal multiplier.

singleJoad load of one input if using common load fanout model.

breadth search breadth for steepest-descent/look-ahead control strategy.

depth search depth for steepest-descent/look-ahead control strategy.

anyJoc-prob probability of generating a random network location.

locaUocprob probability of generating a location near the previously accepted rule.

critical-loc-prob probability of generating a location on the critical path.

verbosity extent of result and diagnostic reporting.

inputs-avail default, input availability (negative, positive, or both phases).

bound-mode cost bounding mode.

simple-fanout selects efficient, common load fanout model.

do-ruleuse if rule statistics should be generated.

preoptimize if input network should be stripped of extra buffers.

output-mode netlist output format.

input-mode netlist input format.

random-seed seed for random number generator.

area-optimization area optimization model.

delay-optimization timing optimization model.

do-resources if resource usage report should be generated.

loop-mode method ofgenerating inner loop iteration limit.

selectionjmethod selects the rule-location selection method.

rule-weight assigns a weight to a particular rule.

cpuJimit maximum number ofCPU seconds permitted.

Uteral-cnt-type type of literal count (sum-of-products or factored form).

process-circuit ifoptimization should be performed.

control-strategy type of control strategy (PHC or steepest-descent/look-ahead).
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timing-optjmodel timing optimization model (required arrival, critical path delay).

checkpoint-rate number of outer loop iterations between checkpoint writes,

library-file name of the technology library file.

input-file name of the input file.
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