
 

 

 

 

 

 

 

 

 

Copyright © 1988, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



DESIGN AND IMPLEMENTATION OF INTEGRATED

CIRCUITS FOR A REAL-TIME FLEXIBLE CHANNEL

EMULATOR APPLYING SILICON ASSEMBLY TOOLS

by

Jane S. Sun

Memorandum No. UCB/ERL M88/43

14 June 1988



DESIGN AND IMPLEMENTATION OF INTEGRATED

CIRCUITS FOR A REAL-TIME FLEXIBLE CHANNEL

EMULATOR APPLYING SILICON ASSEMBLY TOOLS

by

Jane S. Sun

Memorandum No. UCB/ERL M88/43

14 June 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



DESIGN AND IMPLEMENTATION OF INTEGRATED

CIRCUITS FOR A REAL-TIME FLEXIBLE CHANNEL

EMULATOR APPLYING SILICON ASSEMBLY TOOLS

by

Jane S. Sun

Memorandum No. UCB/ERL M88/43

14 June 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Acknowledgements

Many thanks to my sister for her spirit, to my mother for her concern,
and to my father for giving me a sense of independence, and to all of them
for encouraging me to do my best.

I would like to thank Professor Brodersen for his advice and academic

guidance, and also to Rajeev Jain for his sustaining counsel and technical
support thoughout this project. The suggestions and circuit designs from
S. Khalid Azim, Alex Lee, and Robert Neif were valuable to this research.

This research was sponsored by DARPA under the contract N00039-87-
C-0182 .



Contents

Table of Contents 1

List of Figures 3

List of Tables 5

1 Introduction 6

2 Overview of the Channel Emulator 8

2.1 System Architecture 9

3 IC Design Approach 13

4 Tap Switch 18
4.1 Architecture 18

4.2 Macrocell Design and Descriptions 24
4.3 Timing Requirements 29
4.4 Chip Synthesis from Macrocells 31
4.5 Simulations 31

4.6 Testing 35

5 Variable Register Delay Line 37
5.1 Architecture 37

5.2 Macrocell Design and Description 41
5.3 Synthesis from Macrocells 50
5.4 Simulations 55

5.5 Testing 58

6 Crossbar Switch 62

6.1 Architecture 63

6.2 Macrocell Design and Description . 67
6.3 Synthesis from Macrocells 76



6.4 Simulations 80

6.5 Testing 84

7 Masked OR Crossbar Switch 89

7.1 Architecture 90

7.2 Macrocell Design and Description 92
7.3 Synthesis from Macrocells 103
7.4 Simulations 105

7.5 Testing 109

8 Impact of LAGERIII Tools and Suggestions 111

9 Future Work 114

10 Conclusion 116

Bibliography 118

A Macrocell Library 119

B Tap Switch Design Example 124



List of Figures

1.1 (a) Hardware Facility Organization, (b) conceptual networks .... 7

2.1 Channel Emulator Architecture 10

4.1 High Level View of the Tap Switch 19
4.2 Tap Switch Architecture 20
4.3 Examples of Tap Configurations 21
4.4 Tap Switch PLA Layout 27
4.5 Latch LeafceU Circuitry 28
4.6 Latch LeafceU Layout 29
4.7 Timing Diagram for the Tap Switch 30
4.8 Photograph of Tap Switch, Version 1 32
4.9 Photograph of Tap Switch, Version 2 33

5.1 High Level View of Delay Line 38
5.2 Variable Register Delay Line Architecture 38
5.3 Delay Unit 40
5.4 Register Leafcell Circuitry 42
5.5 Register LeafceU Layout 43
5.6 Clock Distribution in Delay Unit 46
5.7 Multiplexer LeafceU Circuitry 48
5.8 Multiplexer LeafceU Layout 49
5.9 Two Phase Non-Overlapping Clock Generator 51
5.10 Delay Unit Layout 52
5.11 Photograph of Variable Register Delay Line 54
5.12 Timing of Delay Line Signals 59

6.1 Conceptual View of the Crossbar Switch 63
6.2 Crossbar Switch Architecture 64

6.3 Crossbar Switch Architecture in Detail 65

6.4 Interconnection LeafceU Circuitry . 68
6.5 Interconnection LeafceU Layout 69



6.6 Shift Register LeafceU Circuitry 71
6.7 Shift Register LeafceU Layout 72
6.8 Pointer LeafceU Circuitry 74
6.9 Pointer LeafceU Layout 74
6.10 Floorplan for Programming Control MacroceU 75
6.11 Control Signal Logic • • • 77
6.12 Timing Diagram for Configuration Programming 78
6.13 16x16 Crossbar Switch Chip 82

7.1 Conceptual View of the Masked OR Crossbar Switch 90
7.2 Architecture of Masked OR Crossbar Switch 91
7.3 "Wired Or" Array Circuitry 93
7.4 Timing of Array Signals 94
7.5 Interconnection LeafceU Circuitry 96
7.6 Interconnection LeafceU Layout 97
7.7 Input Buffer Circuitry 98
7.8 Input Buffer Layout 98
7.9 (a)Output Buffer Circuitry (b)Precharge Circuitry 99
7.10 Output Buffer Layout 10°
7.11 4x4 Array Layout 101
7.12 WrctJ Control Signal Logic 102
7.13 Timing Diagram for Configuration Programming 104
7.14 Core Layout 106



List of Tables

4.1 Configuration Address Assignment 23
4.2 Tap Switch Boolean Equation 23
4.3 tap.parval -"
4.4 Pads on North Side of Pad Frame 34
4.5 Pads on East Side of Pad Frame 34
4.6 Pads on South Side of Pad Frame 34
4.7 Pads on West Side of Pad Frame 35

5.1 delay line sdl description 44
5.2 Pads on North Side of Pad Frame 55
5.3 Pads on East Side of Pad Frame 56
5.4 Pads on South Side of Pad Frame 56
5.5 Pads on West Side of Pad Frame 57

6.1 Pads on North Side of Pad Frame 80
6.2 Pads on East Side of Pad Frame 81
6.3 Pads on South Side of Pad Frame 81
6.4 Pads on West Side of Pad Frame 83

7.1 Pads on North Side of Pad Frame 107
7.2 Pads on East Side of Pad Frame 107
7.3 Pads on South Side of Pad Frame 108
7.4 Pads on West Side of Pad Frame 108

10.1 Circuit Information Summary II7



Chapter 1

Introduction

In designing a computer network, two critical design issues are how the

computers should be connected and how to organize the transfer of information.

The first issue is an architectural or network topology problem. The second con

cern deals with the communications protocol. In the end, developing or studying

networks then involves network architecture performance testing and protocol ver

ification. As an alternative to conventional methods, the UCB Protocol Workroom

examines network performance and operation through a digital hardware faciHty

that emulates network features and properties. The hardware faculty consists of

node emulators and a channel emulator, as shown in Figure 1.1. The node emulators

imitate the protocol behavior of modeled network node stations. The channel em

ulator emulates the physical characteristics of the transmission medium that links

the network nodes, including the network topology. A previous channel emulator

implementation using discrete components occupied the areas of several boards but

linked just a few nodes. And, herein, lies the motivation for the topic of this report:

a VLSI approach toward implementing the channel emulator, which should be a

more viable method than through discrete components. A channel emulator, im

plemented through dedicated hardware, can be applied as an accurate research tool

in studying a variety of communications network linking a large number of nodes.

This report describes the ICs for the integrated 10MHz channel emulator

implementation, in a scalable cmos process. This includes the chip designs and the



(a)

Q O

(b)

Figure 1.1: (a) Hardware Facility Organization, (b) conceptual networks

design approach. The report focuses on eight areas.

First, it provides an overview of the channel emulator system. At the top

level, the system architecture was developed by Amanda Kao and Lester Ludwig

[1]. Previously, this architecture was realized with a design geared toward TTL

implementation. In this next implementation, the same system architecture is used,

but it is realized with VLSI design.

Second, this report places an emphasis on the design approach used to

develop the channel emulator hardware. The approach is based on macrocell devel

opment, and it applies LAGERIII layout generation tools to assemble macrocells

and perform routing.

Next, it describes the four chips developed for the channel emulator. This

covers from chip architectural to logic description, and circuit to layout design.

Also included are simulation and test procedures, and results from the silicon. This

paper pays particular attention to design considerations influenced by design tools

and the LAGERIII tools.

The report concludes with comments and suggestions regarding the project

and the tools, and areas for future work. It includes a full design cycle example for

a chip in the channel emulator system, and a macrocell library listing.



Chapter 2

Overview of the Channel

Emulator

A computer network has node stations and the channel, which physically

links the stations and transports data. From the moment a node presents data to

the channel, the channel has three major features. These are the physical interface

between the node and the transmission medium, the network interconnection among

the nodes or network point-to-point requirements, and the propagation delay that a

signal experiences while traveling through the transmission medium between nodes.

The channel emulator emulates those three physical characteristics of the channel

in real time at 10MHz.

Although all computer networks have nodes and a channel as a common

trait, different networks can use different types of transmission mediums, such as

coaxial cable or atmosphere, and they can have different network topologies, such

as a ring or bidirectional bus. Their point-to point requirements are also different.

Since these networks will behave differently, the channel emulator is programmable

so that network interface, delay and connections are reconfigurable, thus avoid

ing the need to change hardware to study different networks. The emulation is

performed digitally, assuming that data emerging from the node emulators to the

channel emulator is a bit stream. In this manner, the channel emulator is accom

plished entirely with digital logic and is capable of emulating the behavior of various

8



transmission mediums and network topologies.

2*1 System Architecture

The channel emulator architecture is shown in Figure 2.1. The system

transports a 3-bit wide signal in parallel between the nodes; the three bits are

known as data, carrier and code violation. The system is partitioned into four

sections: the Tap block, Delay-Input Router, Delay Block and the Delay-Output

Router. Each block emulates one of the three channel properties discussed above.

The Tap block acts as the node to channel interface in a network. It emu

lates how the nodes access or "tap" the network transmission medium. More specif

ically, it takes signals emerging from network nodes and from the Delay-Output

Router to derive the signals transmitted to the nodes and the Delay-Input Router.

The block contains Tap Switches placed in parallel, one for each node that the

channel must interface with. The Tap Switch is programmable, permitting a recon

figurable interface. It has three ports, and each has input and output lines which

are 3-bits wide. There is the node emulator port for the transmit and receive signals

of the node emulator, known as nxmt and nrcv, respectively. The two other ports

are called pathl and path2 ports. These two are used only in the channel emulator.

Extending throughout the emulator, pathl and path2 lines carry the 3-bit wide

signal from the nodes through the next three blocks for distribution and processing,

terminating at their Tap block ports. Figure 2.1 shows these lines and the signal

flow through the system.

The Delay block emulates the propagation delay introduced by a trans

mission medium. The block is a collection of individual Delay Lines which insert

programmable delays into the 3-bit wide data stream traveling between nodes. In

this system, the propagation time is quantized into clock cycle units, even though

transmission times are continuous on a real network channel. The range of delay

times extends from 0 to 1023 clock cycles. At a 10MHz clock rate, this translates

to a 102.3/xs maximum propagation delay in 100ns increments. The outputs of the

Delay-Input Router are connected to the inputs of the Delay block with a one-to-



pathl

nrcv

nodel

interface

nxmt

Xs Xz

Tap Switch 1 TAP

path2

pathl path2

^t.

/ 3 / 3 ,'3 / 3

DELAY-INPUT ROUTER

DELAY UNES

DELAY-OUTPUT ROUTER

d.c.cv signals form a 3-bit wide signal

d-data c-carrier cv-code violation

node32

interface

/Z /*

Tap Switch 32

10

/'3 /"3 /Z

\f \f

x3

x3

012888

Figure 2.1: Channel Emulator Architecture



11

one correspondence. After performing its delay operation, the Delay block passes

the signals to the Delay-Output Router.

The Delay-Input and Delay-Output Routers realize the point-to-point re

quirements of the network. Both blocks are programmable, allowing for reconfig-

urable network connections. The Delay-Input Router takes the signals from the

Tap block pathl and path2 ports and delivers eachsignal to an assigned delay line,

hence its name as a router. Functionally, an input to the Delay-Input Router is

routed to one or more of the Router output terminals. This allows for broadcast or

point-to-point networks where a source node connects to several destination nodes.

To complete the node connections, the Delay-Output Router relays the

3-bit wide delayed signal from the Delay block output terminal to the specified

Tap Switch interface. Functionally, the Delay-Output Router behaves just like the

Delay-Input Router except for an additional "masked OR" feature. This means

that the Delay-Output Router can connect several input signals to one of its output

terminals. Through the "masked OR" mechanism, the channelemulator can imitate

collisions on a network channel such as broadcast or bidirectional bus, where data

from several sources on the network may collide at one node. When the output signal

from the Delay-Output Router reaches the Tap block, the Tap Switch interface

passes the signal to the node emulator or returns it back to the channel emulator.

Data from a node may circulate through the channel emulator several times until

reaches the destination node.

Overall, the Channel Emulator architecture has a modular structure. For

every node that interfaces with the channel emulator, there are the same number

of Tap Switches in the Tap block. Processing a 3-bit signal, the Tap Switch is

implemented on one chip, and all Tap Switches are identical with input and output

ports as described previously. Since the channel emulator has a pathl and path2

line for each Tap Switch, the Delay block incorporates two Delay lines for every

node the system must interact with. A Delay Line is implemented on one chip, and

all Delay lines share the same chip design. Unlike the Tap Switch and Delay Line,

the two Router Blocks must gather and distribute data from and to all the pathl

and path2 lines, rather than processing them individually. Because of this, there is



12

one router for each of the signal types in the 3-bit wide signal. This is shown as

three router planes in Figure 2.1. Each Router is implemented on one chip, so a set

of three identical chips completes the Delay-Input or the Delay-Output portions.

If the number of nodes interfacing with the channel emulator is considered as a

parameter n, then implementing an n node channel emulator system with the four

IC designs requires n-r-2n+3-r-3=3n+6 chips. The ultimate goal is a system that

supports a 32 node network. The current work on this project supports an eight

node system.

The system architecture discussed provides a brief and adequate descrip

tion for the purposes of this paper. A detailed treatment is covered in a report

authored by Kao and Ludwig [1]. The following sections in this paper describes the

Tap Switch, Delay Line and the two Router circuits, which are Crossbar Switches,

and the chip design approach.

The designs share common specifications. 10MHz data from the nodes

are assumed to be synchronized. The IC designs use a 10MHz two-phase non-

overlapping clock. They are implemented in 3/nn or 2/*m scalable cmos process,

and use a +5V power supply.



Chapter 3

IC Design Approach

As functionally unlike the chips may be, all the ICs for the channel emu

lator were developed with the same design approach. This approach integrates the

use of CAD tools into VLSI design. For these circuits, their design can be separated

into functional design and physical design. Functional design involves developing

the architecture and the logic which carry out the chip's purpose. Here, logic level

tools aided in designing the Tap Switch. Physical design includes circuit and layout

design. For all the ICs, this design phase heavily applied CAD tools, especially

the LAGERIII layout generation tools. Altogether, from architecture to final lay

out, IC design for the channel emulator was a multistage process. The guideline

discussed in this chapter describes the design methodology developed for the chips

while clarifying the terminology associated to the CAD tools.

Upon defining the purpose of the chip and its specifications, the designer

develops an architecture. Functional blocks called macrocells and their intercon

nections form the architectural structure, such as a pointer macrocell or memory

unit. Smaller functional blocks assembled together make up the macrocell. These

blocks may be other macrocells or some unit cells called leafcells. Leafcells are at

the bottommost level of the hierarchical structure. For example, a memory macro-

cell is composed of single bit memory leafcells and periphery circuit leafcells. The

hierarchical approach provides a methodical way of translating the the structure

into a high level description in sdl language or in .c routine format, both of which

13



14

will be explained later.

At this point in the design cycle, a set of necessary macrocells has been

defined. Designing the macrocells is the next task. In developing the Crossbar

Switches and Delay Line, a bulk of the design effort lies in designing reliable macro-

cells, since they implement the function of the IC design. In the Tap case, most

of the macrocells came from another designer. For all cases, the macrocells are

physically constructed by TimLager, a parametric module generator program in

LAGERffl. TimLager creates the macrocell layout by tiling predesigned leafcells

together. It uses a .c routine for specific tiling instructions and reads a .pdl file for

parameter values that describe the macrocell. The .c routine describes how leaf-

cells are oriented and abutted to form the macrocell. For example, an n-stage shift

register macrocell is essentially n register leafcells serially abutted. The abutment

is described in the .c routine. The shift register design applies to a, say, 4 or 8

stage register by assigning the parameter value n=4 or n=8, respectively, in the pdl

description.

Before applying TimLager, the first step in macrocell design is defining and

designing the leafcells. This includes logic and circuit design. The circuit simulators,

spice and spice3, are used to choose proper transistor sizes based on estimated load

capacitances and speed or timing requirements. Quality of the design using spice

depends on the accuracy of the designer's circuit and device model. Leafcell layout

is designed manually with magic, an UCB layout editor. The layout is extracted

with the magic extractor, and the output file is converted into a format acceptable

to esim or spice. Esim is a switch level simulator and is next applied to confirm

the leafcell's functionality at the logic level. With input test patterns provided

by the user, esim applies the patterns to the extracted layout and observes the

output node vectors produced during esim evaluation. The output should match

predicted results. Spice can be applied again to verify the circuit performance. In

the experience of the writer, the leafcell design methodology discussed here is an

iterative process. Normally, none or a few iterations were performed. Though it

may seem time consuming, it is worth the gain in a reliable leafcell design.

To complete the macrocell design, the designer provides a ,c routine and



15

a parametric description. At this design stage, macrocell design may be optimized

if its logic design is optimized. CAD tool that perform logic minimization, such

as eqntott and espresso programs, are useful here. TimLager generates the final

macrocell layout in magic format. For added confidence in the macrocell design, the

layout is often extracted, followed by logic level simulation to verify the layout and

logic design. Errors detected at the point are normally due to high level logic design

faults or connectivity errors at boundaries of abutted leafcells. Again, redesign may

be necessary at the leafcell or the macrocell level, reiterating the design methods

described so far.

All the macrocells developed for the channel emulator chips reside in a

library created by the writer except for those from other designers. Appendix A

lists all the macrocells and provides information about their directory location and

describing parameters. Detailed discussions about the macrocell logic, circuit and

layout appear in the chapter that describes the chip which contains the macrocell.

Since a group of macrocells must communicate, the next step is placing the

macrocells and routing the signals between them. Flint is an interactive placement

and route tool, requiring information about the macrocells and there interconnec-

tivity from hdl files. These files contain macrocell dimension, terminal location

along the macrocell boundary, and interconnect information. Fortunately, the hdl

descriptions files are created by TimLager. The layout generated by Flint can be

considered as another macrocell. Flint also creates a hdl description for the module

it produced. Sometimes, manual place and route can produce better results than

this tool sometimes. If manual layout does not require a huge effort or if the tools

give results which compromise design reliability, then the manual method is chosen.

To generate the layout for silicon realization, Flint or Padroute are two

applicable layout generation techniques. Padroute is an automatic placement and

route tool that is dedicated to routing from the functional circuitry in the core of

the chip to the pad circuitry along the chip boundary, also known as a pad frame.

Treating each side of the pad frame as macrocells and the functional circuitry as

another macrocell, Flint or Padroute assembles the final layout, given the macrocell

hdl descriptions. Preceding this, TimLager assembles the four pad groups from



16

leafcells in an existing LAGERIII cell library.

As the macrocells are designed, the designer must write the input files and

individually call the layout generators, whether TimLager or Flint or Padroute, to

produce the modules. Design manager(DM), another LAGERIII program, coor

dinates the efforts if the various layout generators to create the modules in one

session. The input to DM is a sdl description which describes the architecture of

the module to be generated. This is a list of the lower level macrocells, parameter

values, and a net list describing the macrocell terminal connectivity. With just the

sdl description, DM produces all the pdl input files necessary to create the macro-

cells and invokes the appropriate layout generator, so, oncea macrocell library with

leafcells and .c routines has been created, all the separate efforts accorded to each

macrocell can be reduced into a single effort by using DM. Macrocells should be

completely debugged before applying DM.

The layout produced in the last stage(with Flint or Padroute) is hopefully

the final layout. But, errors can creep in here also. These include design rule

violations in the layout or functional design errors which originate at the designer's

end. For instance, specifying the wrong terminal in a netlist would cause two

terminals to be mistakenly connected. Layout errors are normally detected through

magic design rule checks and manual connectivity checks using magic. To test the

logic of the entire chip design, the layout should be extracted and simulated with

esim. Even if simulation results match predicted results this type of simulation

does not detect all error possibilities or simulate the circuit performance. But,

importantly, it does give the designer confidence in the logic design. This is at least

reassuring when beginning tests of the silicon after fabrication.

The approach discussed applies CAD tools as a valuable resource in de

signing and simulation. It uses an hierarchical layout design based on leafcells and

macrocells. As a matter of design reliability, it is wise to monitor the CAD tool

results because of bugs in some tools and in the designer's input or faulty design.

Although the guideline provided is step by step in nature, the writer emphasizes

that designing the ICs was an iterative process. Within any major phase, the design

was corrected or adjusted to achieve satisfactory results.



17

This chapter has stressed the design method. The following chapters de

scribe the chip designs which were developed with the discussed approach. The
circuits use minimum size transistors, unless otherwise noted. In the diagrams, Wp

denotes the channel width of a pmos device and Wn denotes the width of a nmos

device. Lp or Ln signifies channel length.



Chapter 4

Tap Switch

As the node emulators exchange information through the channel emula

tor, the Tap Switch emulates the interface between the node and the transmission

medium, and it transports the 3-bit wide signal (data, carrier and code violation)

through its'input and output ports at a 10MHz rate. The Tap is programmable so

that a variety of interface structures, called tap configurations, can be realized from

the same chip design. For example, the bidirectional bus and ring network do not

share the same type of interface, as shown in Figure 4.3.

Simulating the node/channel signal interface, the tap switch essentially

transforms the signals transmitted from the node or received from the channel into

signals passed onto the channel or to the node. At a high level, this transformation

can be viewed as the black box of Figure 4.1 which has three outputs - nrcv, plxt,

p2xt - and each output is a combination of the three inputs - nxmt, plrv, p2rv.

Depending on what type of interface is being realized, the specific combination is

specified by the 9-bit configuration address, D.

4.1 Architecture

Since the data, carrier and code violation signals propagate between node

stations in parallel, the node links to the channel with identical tap configurations

for all three signals. Accordingly, the Tap Switch architecture, shown in Figure

18



nrcv

A

3/

to node emulator

nxmt

Y
/ 3

Tap Switch

V /

p1rv p2rv

V
3

XT

,3

v

plxt p2xt

Figure 4.1: High Level View of the Tap Switch

19

configuration

address

4.2 contains three identical macrocells that separately realize the interface for each

signal in the 3-bit wide data stream. The macrocell is referred to as a tap switch and

the three instances are called the data, carrier, and the code violation tap switch. In

addition to the tap switches, a 9-bit latch stores the common configuration address

which controls all three switches. The latch accepts a new address when the signal,

Id, is true. The address lines are the only interconnections necessary between the

macrocells. All other signal lines are purely input and output lines to and from the

chip. Figure 4.2 can be considered an expanded view of the block box representation

in Figure 4.1.

To digitally implement the tap switch function, the transformation men

tioned above can be represented as a boolean expression for each output signal. The

nrcv, plxt, and p2xt output signals are a logical OR combination of the nrcv, plxt,

and p2rv inputs. Different tap configurations use different input combinations. For

example, as shownin Figure4.3, the bidirectional bus interfaceuses the input combi

nations, expressedin booleanlogic: nrcv = nxmt-\-plrv-\-p2rv, plxt = nxmt+plrv,



nrcv <-

plxt <r
p2xt <r

nxmt>-

plrv >•
p2rv >•

9

D >—7^

Id >•

carrier

tap

switch

configuration

latch

/ 9

data

tap
switch

code

violation

tap

switch

Figure 4.2: Tap Switch Architecture

20

-> nrcv

-*> plxt
-> p2xt

-< nxmt

•< plrv
•< p2rv

-> nrcv

-> plxt
-> p2xt

-< nxmt

•< plrv
•< p2rv



network logic

nxmt

f j nodes f \
plrv >-

tap

channel
> <

tap

p2xt <- <3±

Bidirectional bus tap configuration

node^tap

channel

plrv >-

Ring tap configuration

nrcv nxmt

A Y

Figure 4.3: Examples of Tap Configurations

21

nrcv

+ plxt

-< p2rv

-> plxt



22

and p2xt = nxmt-\-p2rv. While, the input combinations that represent the ring in

terface are: nrcv = plrv, plxt = nxmt, and p2xt = don'tcare(not used). To make

the tap switch applicable over a wide range of network architectures, the tap switch

contains the unique and necessary input combinations to cover the input-to-output

transformations from all network types.

The nrcv output needs only five input combinations and two default values

to choose from, depending on the tap configuration. These are:

plrv, p2rv, plrv + nxmt, p2rv + nxmt, plrv + p2rv + nxmt, 0, and 1.

The p2xt and p2xt outputs also select from only five input combinations

and two defaults to account for all the existing network types. These combinations

are:

plrv, p2rv, plrv + nxmt, p2rv + nxmt, nxmt, 0, and 1.

For each of the three output signals, a 3-bit configuration address is suffi

cient to determine which input combination the output selects. These three sets of 3-

bit signals collectively form the 9-bit configuration address, D = d^d^^d^d-ido,

which specifies the tap configuration for a particular network type. The three least

significant bits in the configuration address, d2did0, control selection for the plxt

output; the d6d5d4 address bits selects for the p2xt output; the three most signifi

cant bits, dgdgdj, correspond to the nrcv output. Table 4.1 shows the set of input

signal combinations supported by the tap switch, and it shows the address assigned

to the each input combination. To realize the tap interface, the complete boolean

equations which describes the tap switch are listed in Table 4.2.

The tap switch logic is implemented with PLA circuitry. There are then

three identical PLAs in the chip. This choice of implementation is explained in the

next section.



input combination config. address
dkdjdi

0 000

1 111

plrv 001

p2rv 010

nxmt Oil

plrv+nxmt 100

p2rv+nxmt 101

pirv+p2rv-fnxmt 110

Table 4.1: Configuration Address Assignment

output

nrcv=

p2xt=

plxt=

boolean function

d&d7d6 + JgJydeplrv + d8d7d6p2rv-\-
dgd7de(plrv + nxmt) + dgd7de(p2rv + nxmt)+
d%d7ds(plrv + p2rv «+• nxmt)

d5d4d3 + d5d4d3plrv + 35d433p2rv+
d5d4d3(plrv + nxmt) + d5d4d3(p2rv + nxmt)+
dsd4d$nxmt

d2<hdo + d.2d\doplrv + e?2^idop2ri;-f
d2d1d1(plrv -\-nxmt) + d2did0(p2rv + na:m<)-r-
d2didonxmt

Table 4.2: Tap Switch Boolean Equations

23



24

4.2 Macrocell Design and Descriptions

Tap Switch

Realizing the tap switch logic uses PLA design techniques and circuits.

This choice of approach over other approaches, such as random logic or standard

cell design, was motivated by two reasons. First, a PLA design integrates the

tap switch control logic and interface logic into one compact structure, avoiding

configuration address decoding in a separate macrocell.

Second, CAD tools applicable toward PLA generation from logic repre

sentation to final layout were readily available. At the logic level, the eqntott and

espresso programs can convert a set of boolean equations into truth table format

and minimize the truth table, optimizing the PLA design. Furthermore, given the

truth table description as input, the layout generator tool TimLager can synthesize

the final PLA layout from an existing tiling routine and leafcells in a cell library,

both developed by Robert Neff [2]. A circuit generated from that cell library had

already been fabricated and tested to confirm its circuit operation, adding to con

fidence in the reliability of the chosen cell library. Overall, the designer needs only

to provide the boolean expressions, and the aforementioned CAD tools accomplish

PLA design optimization and layout generation, passing a bulk of the design effort

to the tools. In the long run, this approach minimizes the redesign effort in case the

boolean equations are redefined in the future. This advantage owes to the paramet

ric nature of the applied layout generator. The immediate motivation, however, is

drastically reducing chip design time from logic definition to layout phases without

compromising circuit performance.

Implementing the boolean expressions in Table 4.2, the tap switch PLA

has twelve inputs, since there are nine configuration address bits coming from the

9-bit latch and three tap inputs. It also has three PLA outputs, one for each of

the tap outputs. The original boolean equations collectively contained 26 product

terms. The PLA truth table was reduced to 20 product terms after transforming

the equations into a truth table and minimizing the logic with eqntott and espresso.



25

Macrocell Description

In the next step toward generating the three PLA macrocells, the Os and

Is in the minimized truth table are treated as parameters in the TimLager pdl

description file. TimLager selects the leafcells which corresponds to a 0 or 1 in

the truth table, and then tiles them to create the final macrocell layout. Overhead

circuitry includes the precharge and evaluate transistors, and the input and output

drivers. The PLA circuit is clocked with a two phase non-overlap clock signal. Its

AND and OR planes are implemented with NOR circuitry in the PLA.

This completes the tap switch physical layout, resulting in a tap switch

with physical dimensions 348Ax 435A. The 12 inputs and 3 output terminals appear

on the same side of the macrocell. For this tap switch macrocell, the parameters

in the TimLager pdl description are m(number of inputs), outnumber of outputs),

mmierm(number of rows in truth table), out-plane (contents of output plane in truth

table), and in-plane(contents of input plane in truth table). The tapcore.parval file,

shown in Table 4.3 lists the assigned parameter values describing this tap switch.

The PLA layout generated by TimLager is shown in Figure 4.4. The input and

output terminals appear at the top edge of the PLA structure. Just below these

terminals are the input and output drivers. The truth table contents are in the

bottom half of the layout. The transistor locations can be seen from inspection.

Address Latch

The address latch stores the 9-bit tap configuration address. It consists of

9 individual latches stacked so that the address bits can be accepted in parallel, as

instructed by a control signal, and read out in parallel.

Leafcell Design

The circuit for the one bit latch is shown in Figure 4.5 It is a two stage

dynamic register with two extra cmos transmission gates. The dynamic register is

clocked by a two phase non-overlapping clock signal at the input of inverters A and



Table 4.3: tap.parval

;tap switch paramaters and values

(in 12)
(out 3)
(minterm 20)
(nbits 9)
(output-plane
; array: nrcv p2xt plxt

((array 100| )
(array 0101 )
(array 001| )
(array 010 1 )
(array 0101 )
(array 001| )
(array 0011 )
(array 1001 )
(array 0101 )
(array 001| )
(array 0101 )
(array 0011 )
(array 100 1 )
(array 1001 )
(array 0101 )
(array 0011 )
(array 1001 )
(array 1001 )
(array 0101 )
(array 0011 ))

(input-plane
array: d8 d7 d6 d5 d4 d3 d2

((array OOlxxxxxxxxl| )
(array xxxOlOxxxxlxj )
(array xxxxxxOlOxlxj )
(array xxxlOOxxxxxlj )
(array xxxxllxxxlxxl )
(array xxxxxxlOOxxlj )
(array xxxxxxxlllxxl )
(array lxlxxxxxxxlx1 )
(array xxxOOlxxxxxll )
(array xxxxxxOOlxxlj )
(array xxxlxlxxxxlx| )
(array xxxxxxlxlxlxl )
(array lllxxxxxxxxxl )
(array IxlOxxxxxxxlxj )
(array xxx11lxxxxxx j )
(array xxxxxxlllxxxj )
(array lxOxxxxxxxxl| )
(array lxxxxxxxxlxx| )
(array IxxxlOxxxxlxxl )
(array |xxxxxxlOxlxx| )

26



27

Figure 4.4: Tap Switch PLA Layout

S3E3E3B H H

HffitS H M



28

d > > d

Figure 4.5: Latch Leafcell Circuitry

B. The two transmission gates Tl and T2 load a new address bit into the register

from the input D during the high of the Jd signal, which must cover a pii2 phase

pulse; the feedback loop is disconnected when the latch loads a bit. At the falling

edge of the Id signal, the new address bit is fully latched in and the output at the

d terminal is valid; the feedback loop is connected during the low of Jd, preventing

charge leakage at the dynamic nodes within the register. Latching in a new address

bit requires one clock cycle. In addition to the latch cell, there is an extra cell which

produces the phi-, ph2- and Id- signals from the true signals.

The layout for the latch leafcell appears in Figure 4.6. Transistors are

located in the center. The clock and Jd or Jd- control lines run vertically along the

sides while the power and ground lines run vertically through the center. These

lines will naturally join with the matching lines in the cell above and below it in

the final multibit latch layout, forming straight and continuous clock, control, and
power lines.

Macrocell Description

The address latch is physically laid out as instances of the latch leafcell



29

Figure 4.6: Latch Leafcell Layout

stacked on top of each other. To create this structure, TimLager uses the parameter

nbits which is the number of one-bit latches in the macrocell. The parameter is

assigned a value of nine in this case.

4.3 Timing Requirements

The tap switch and latch macrocells have been described. For these circuits

to work together they must follow the requirements shown in the timing diagram

of Figure 4.7. An external source supplies the two clock phases, pnl and pJi2. At

the time of this design, no circuits were included to generate these phases locally.

According to the convention set for the channel emulator hardware, data appearing

at a clockedcircuit input must be valid overthe entire ph2 pulse; data appearingat

a clocked circuit output changes within the phi pulse. In this way, clocked outputs

are compatible as inputs to other clocked cells. This convention applies to the Tap

Switch inputs, which are Id for programming, the nine address bits, and the nine

data bearing signals. Programming the address into the latch requires one clock

cycle. The Tap Switch PLA also requires one full clock cycle to evaluate the boolean

functions for each set of sampled inputs.



D

2)

3)

4)

5)

6)

7)

8)

ph2

phi

Id

30

/ \ I I I l_J l__

/ \ / v_^/ \_/—\

\

D K\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

p, \ \ \ \ \ \t

sp /

X X

\n/ v_^

ou, \ \ \ \ \ \ \ \T

V

in input to tap switch

Pt product terms

sp sum of products

out output from tap switch

/ V.

X

Figure 4.7: Timing Diagram for the Tap Switch



31

4.4 Chip Synthesis from Macrocells

So far, generating the address latch and the three tap switches only par

tially realizes the Tap architecture. Placing and interconnecting the four macrocells

together and routing the chip input and output signals to the proper input or output

pads completes the chip layout.

In the first Tap chip generated by the designer, these last two phases were

performed manually with the magic layout editor. In the second chip version, the

chip layout was completely automated with the LAGERIII tools; the last two phases

were performed by Flint and Padroute, respectively. The macrocell design remained

unchanged. As a comparison, Figure 4.8 and Figure 4.9 shows the fabricated chip

for both versions. The core circuitry of the first version has dimensions 945A x 1090A

after interconnections. The core circuitry of the second version has dimensions 945A

x 1115A, comparable to the first version. Both versions have the same floorplans,

but their macrocells are oriented differently. Routing in the second version was hand

edited in magic to eliminate design rule violations and unnecessary jogs created by

the automatic layout tools. The routing between macrocells looks neater in the

first chip than the second chip, and the same observations hold true for routing

between the core and the I/O pads. However, with the full aid of the LAGERIII

tools, chip design time is significantly reduced compared to the time required for a

semi-automated design approach, which makes the automated approach preferable

from a development time standpoint.

A list of the pads in each side of the pad frame appears in Tables 4.4, 4.5,

4.6, and 4.7. This list applies to the second version of the Tap Switch.

4.5 Simulations

Verifying the Tap design with esim, a switch level simulator, was a two

stage process. First, the macrocell layouts and latch leafcell were extracted with

the magic extractor and converted into a format acceptable to esim. Results from

esim confirmed the functionality of the address latch and the Tap Switch PLA. Spice



32

Figure 4.8: Photograph of Tap Switch, Version 1

'•;%^^&&K\totf :&.



*
m

t
JI

N
K

u
n

a
m

m
*

M
M

j*
m

c
jm

m
*

w
*

_
,i

i!

•
w

o
..

-
it

a
!

lJ
st

^

O
T

u
].

j,
I?

D
h

I'll
1

^
M

il
u

C
lb

D
iff

lfl
P

.

u-
i
i
m

m
:<]

io
|a

|d
n

|d
_

a|
g

.
b

|q
|a

_
^
£

4

8 50 o I 13
-

c
/i

o M
. s 1

0

C
O

C
O



North Side Pads from Left to Right

name type description
D5 input d5 bit of configuration address
D6 input de bit of configuration address
D7 input d7 bit of configuration address
D8 input ds bit of configuration address
Id input load signal, resets address latch
GND GND

plrv.v input plrv signal to code violation tap switch
p2rv.v input p2rv signal to code violation tap switch
nxmt.v input nxmt signal to code violation tap switch
plxt.v output plxt signal from code violation tap switch

Table 4.4: Pads on North Side of Pad Frame

East Side Pads from Top to Bottom

name type description
p2xt.v output p2xt signal from code violation tap switch
nrcv.v output nrcv signal from code violation tap switch
Vdd Vdd

phil input phi clock phase
substrate dummy

V
chip substrate contact

phi2 input ph2 clock phase
nrcv.d output nrcv signal from data tap switch
p2xt.d output p2xt signal from data tap switch
plxt.d output plxt signal from data tap switch

Table 4.5: Pads on East Side of Pad Frame

name

plxt.c
p2xt.c
nrcv.c

GND

Vdd

plrv.d
p2rv.d
nxmt.d

South Side Pads from left to right

type

output

output

output
GND

Vdd

input
input
input

description
plxt signal from carrier tap switch
p2xt signal from carrier tap switch
nrcv signal from carrier tap switch

plrv signal to data tap switch
p2rv signal to data tap switch
nxmt signal to data tap switch

Table 4.6: Pads on South Side of Pad Frame

34



West Side Pads from Top to Bottom

name

D4

D3

D2

Dl

DO

plrv.c
p2rv.c
nxmt.c

type

input
input
input
input
input
input
input
input

description
d4 bit of configuration address
d3 bit of configuration address
d2 bit of configuration address
di bit of configuration address
do bit of configuration address
plrv signal to carrier tap switch
p2rv signal to carrier tap switch
nxmt signal to carrier tap switch

35

Table 4.7: Pads on West Side of Pad Frame

confirmed the circuit performance of the latch. Second, the entire chip was extracted

and simulated from the I/O pads. To emulate real node to channel interfaces, tap

configurations were specifically set to the bidirectional bus and ring configurations.

Random input test vectors were applied and the output nodes were monitored for

discrepancies between expected results and simulated results.

4.6 Testing

The first Tap circuit was fabricated in 3/im pwell scmos technology, re

turned in April, 1987, and was fully functional. Testing the silicon followed the

same philosophy as for logic simulation on the extracted layout. Copies of the latch

and a tap switch PLA were placed on a separate test chip. Although latch outputs

connect to the PLA inputs in the Tap design, the test chip maintained independent

input and output lines. After fabrication, the latch and PLA were tested indi

vidually and their performance and functionality confirmed. With confidence in

the macrocells, the fabricated Tap circuit was tested next using random input test
vectors and various tap configurations.

The chip test pattern consists of test vectors for the data bearing input

signals - nxmt, p2rv and plrv and the programming signals - the latch Id signal

and configuration address D. An objective of testing is to simulate the real work

ing environment that the IC functions in. A sufficient test pattern, which was not



36

exhaustive, was designed with this in mind. In a normal operating environment,

the data bearing signals are random. To simulate the randomness, the three bit

wide pattern which represents nxmt, p2rv and plrv signals cycles through all eight

possibilities. One cycle is applied for various tap configurations. When the configu

ration changes, the load and address vectors take on the proper bit pattern for one

clock cycle and then become a pattern of Os until the Tap circuit is reprogrammed

again. This tests if the latch accepts and stores the address properly. The test

patterns cover eight tap configurations including the bidirectional bus and ring.

Testing the chip begins at low clock rates, say 1MHz. The purpose is to

verify functionality. Then, to test circuit performance, the test pattern described is

repeatedly applied as the clock rate is adjusted toward 10MHz. From test results,

the first Tap circuit worked up to 7MHz. Beyond that speed, two of the three

identical tap switches worked up to 9MHz while one fails, exhibiting wrong output

bits . Reexamining the layout did not provide a reason. It is known that the larger

ROM designed by Robert Neff using the same leafcells as the PLA tap switch had

worked up to 11MHz. So, the writer suspects that the first tap switch was fabricated

on a slow run.

The second Tap circuit, which was fully laid out with CAD tools, was

submitted for fabrication in 2fim pwell scmos technology. It was returned in October

of 1987. Using the same test methods and test patterns as in the previous Tap

Switch, the second Tap Switch was verified to be fully functional at speeds up to

20MHz. The increase in operational speed compared to the first Tap is attributed

largely to the down scaled technology used for the second Tap.



Chapter 5

Variable Register Delay Line

To simulate the propagation delay introduced by the transmission medium,

the Variable Register delay Line inserts an artificial delay into an input signal.

From a DSP viewpoint, it transforms and input signal X into the output Y using

the relation Y = z~N, where N is the amount of delay. The delay operation is

implemented with shift registers, hence, its name. Figure 5.1 shows the Delay Line

at at the top level. The input signal is three bits wide, consisting of the data,

carrier and code violation bits. The amount of delay the signal experiences is

variable, ranging from 0 to 1023 clock cycles of delay in increments of one clock

cycle. The delay is derived from a 10MHz two phase non-overlapping clock signal.

A 10 bit address, Q, called the delay value address, specifies the amount of delay.

5.1 Architecture

Just as in the Tap Switch design, the Delay Line architecture contains four

structures, as shown in Figure 5.2. In this partition, The Delay Value Address Latch

loads and stores the ten bit address, as instructed by the reset signal. The address is

directly distributed to the delay units. A delay unit introduces the programmable

delay into the input bit stream and sends the signal out. It contains the shift

registers and control circuitry. Since the input signal to the Delay Line carries

three parallel bits, the delay unit is repeated three times for the data, carrier, and

37



X

Q

Y

10/

reset

Y

/1

IM v

Variable Register

Delay Line

z-n

Y

IN r~ ' /

3 3

/ V

> OUT

clock

Figure 5.1: High Level View of Delay Line

data OUT data IN car IN car OUT

1/

reset

data

delay unit

delay value

address latch

10.-
4 .

Q

delay value
address

10

carrier

daisy unit

code violation

delay unit

cvIN cvOUT

Figure 5.2: Variable Register Delay Line Architecture

38



39

code violation bit, so each unit has identical circuitry dedicated to delaying its bit

stream. For simplicity, only one delay unit needs to be described in detail.

To understand how the delay unit works, we can compare it to the following

basic algorithm. Suppose the amount of delay N inserted into the data stream is

represented by a 10 bit delay value Q = qg... qo. These 10 bits specifies delays up

to 210 - 1 = 1023, or the range 0 < N < 1023. Arithmetically, the relationship

between N and the 10 bit number is:

N = q9 •29 + q8 •28 + ... + q2 •22 + gi •21 + qQ •2°.

where q9 is the most significant bit.

Simply stated, the value N is the sum of the appropriate powers of two.

For example, the delay value of 9 is specified by the address, Q = 0000001001 since

9 = 1 • 23 + 1 •21. The delay unit in a similar fashion converts the 10 bit address

into the assigned delay of N.

Figure 5.3 shows an expanded view of the architecture and illustrates the

delay unit. The delay unit has 1023 registers partitioned into successive powers of

two. Each partition is called a delay line and is implemented with a shift register

of length 2m. So, the delay unit contains 10 shift registers of lengths 512, 256,

128, 64, 32, 16, 8, 4, 2 and 1. To introduce the desired amount of delay, the input

data stream is successively directed through the appropriate delay lines as specified

by the delay value address, starting at the least significant delay line. For the

aforementioned example, the input signal passes through the delay line of lengths

1 and 8.

Directing data to the proper delay lines is managed by the 2:1 multiplexers

in a ten stage control section. A multiplexer is assigned to each delay line. The

inputs to the multiplexer are the output of the assigned delay line and the output

from the previous multiplexer. The multiplexer select signal, s, is the address bit,

qi, corresponding to the delay line with the appropriate power of two. As a specific

example, the fourth delay line which has length 8 = 23 is assigned a multiplexer

which is controlled by the address bit q3. For the first stage, the signal IN arrives

at an input to the first multiplexer and also propagates through the first delay line.



40

>OUT
IN >

Figure 5.3: Delay Unit



41

The multiplexer selects the incoming signal if the least significant address bit is a

0, or it selects the delayed version if the address bit is a 1. The multiplexer output

appears at the input of the second stage. This stage makes the same decision based

on the value of q2, and the same applies to the subsequent stages based on their

address bit. In this manner, the multiplexers force the input data stream to bypass

delay lines or to pass through them depending on their assigned address bit. The

signal accumulates the appropriate delays until it is delayed by N clock cycles. The

fully delayed signal OUT is delivered at the output of the tenth multiplexer.

Albeit 1023 registers occupy more area than say a RAM based implemen

tation, the architecture described is easy to implement since a delay unit requires

only a shift register macrocell, of which there are 10 instances, and a multiplexer

control macrocell to carry out the delay operation. It also avoids decoding the 10

bit delay value address, considerably simplifying control circuitry.

5o2 Macrocell Design and Description

Delay Line

The delay line macrocell is a shift register formed from a chain of register

leafcells. A register delays its input by one clock cycle, and its output is the input

to the following register. At the last register in the chain, the output signal is a

delayed version of the input to the first.

Register Leafcell

The leafcell circuit of Figure 5.4 is a two staged dynamic register which

stores the signal level at the inverter inputs. Rather than using conventional cmos

pass gates, data is clocked through nmos pass gates. In the long run, this choice

over the full cmos choice reduces cell area since two pmos transistors, the phi- and

ph2- clock signals, and associated contacts are eliminated. Of course, this design

compromises noise immunity because it suffers from body effect at the nmos drains.

But, the tradeoff is well worth the gain in layout compactness, especially when the



in >

ph2

I

J
phi

Wn=5

42

J

•> out

Wn=5

_L

Figure 5.4: Register Leafcell Circuitry

architecture requires 1023 registers in each of the three delay units.

Focusing on circuit design, the nmos pass gate transmits a low level per

fectly, so the inverter output can fully achieve a 5V level. According to spice

simulations, body effect degrades a 5V signal level at the nmos pass gate input to

2.7V at the output which appears at the input to the inverter. To maintain logic

integrity, the inverter nmos device must sink more current than the pmos device

so that the inverter pulls its output node sufficiently low. Fortunately, with nmos

W/L=5/2 and pmos W/L=3/2(minimum size), the inverter pulls its output node

down to .2V, safely below the threshold voltage of the next nmos transistor.

The register leafcell layout is shown in Figure 5.5. Clock lines run in metal2

perpendicular to the metall ground and power lines. Input and output terminals

are naturally at opposite ends of the cell. All these lines are placed so that they

meet the same signal lines in neighboring cells.

Macrocell Description

For the delay line macrocells of longer lengths, strictly laying the cells in

series would be dimensionally ridiculous. Instead, the leafcells are placed in series



43

iiiiiiiiiiiiiiui

Figure 5.5: Register Leafcell Layout

and "snaked" into multiple rows to physically achieve a rectangular macrocell. The

parameters in the TimLager pdl description are rows, cols, and indx. TimLager

generates a macrocell with 2m leafcell instances arrangedin a rowsxcols array, where

2m = rowsxcols and m = indx. The indx parameter serves labeling purposes.

TimLager labels the input of the first register as X[m] and the output of the last
register asYCm]. The delay lineoflength1and2are manually created. For example,

the delay line of length32 has 32registers cascaded into 4 rows and 8 columns, and
X[5] and Y[5] designate the input and output terminals, respectively.

Table 5.1 shows the sdl description for the Delay Line core. It lists the 10

delay line macrocells, referred as dm which identifies their length, in the delay unit

and the specific parameter values that describe their dimensions.

Clock Driver

Inside the delay unit, the clock driver macrocell takes an incoming two

phase clock signal and generates the buffered version from it for the delay line



44

Table 5.1: delay line sdl description

;dcore.sdl
; use Flint to call TimLager from macrocell .sdl files.
(layout-generator Flint)
(parent-cell dcore)
(sub-cells

(ckdriver ckdriver (parameters (cols 32)))
; * dline dl and d2 are manually created *

(dline d4 (parameters (indx 2) (cols 2) (rows 2)))
(dline d8 (parameters (indx 3) (cols 2) (rows 4)))
(dline dl6 (parameters (indx 4) (cols 4) (rows 4)))
(dline d32 (parameters (indx 5) (cols 8) (rows 4)))
(dline d64 (parameters (indx 6) (cols 32) (rows 2)))
(dline dl28 (parameters (indx 7) (cols 32) (rows 4)))
(dline d256 (parameters (indx 8) (cols 32) (rows 8)))
(dline d512 (parameters (indx 9) (cols 32) (rows 16)))
(pgmux muxctl (parameters (m 10)))

)

;—delay unit internal and external connectivity specifications
;give net_name parameter connectivity: -parent means connection

to outside world.

; -subcell means internal connection

(net D 10 ((parent D) (dvalue_latch D)))
(net d 10 ((dvalue_latch d) (muxctl S)))
; * X0 and XI are manually created
(net X2 1(muxctl X 2) (d4 X 2)))
(net Y2 ( (muxctl Y 2] (d4 Y 2)))
(net X3 1k(muxctl X 3] (d8 X 2)))
(net Y3 1(muxctl Y 3]) (d8 Y 2)))
(net X4 <(muxctl X 41> (dl6 X 4)))
(net Y4 (muxctl Y 4 ) (dl6 Y 4)))
(net X5 ;(muxctl X 5 > (d32 X 5)))
(net Y5 I(muxctl Y 5 ) (d32 Y 5)))
(net X6 !(muxctl X 6 ) (d64 X 6)))
(net Y6 ;(muxctl Y 6 ) (d64 Y 6)))
(net X7 ;(muxctl X 7 ) (dl28 X 7)))
(net Y7 [(muxctl Y 7 ) (dl28 Y 7)))
(net X8 [(muxctl X 8 ) (d256 X 8)))
(net Y8 [(muxctl Y 8 ) (d256 Y 8)))
(net X9 ;(muxctl X 9 ) (d512 X 9)))
(net Y9 [(muxctl Y 9 ) (d512 Y 9))) •
(net IN [(parent IN) (muxctl IN)))
(net OUT ((parent OU'D (muxctl OUT)))



45

registers. So far, the clock drivers that have been described produced one set of

buffered phi and ph2 signals for distribution to their macrocell. Unlike the previous

design, the delay unit clock driver produces several sets of the buffered clock signals

in parallel, and it distributes the sets to the 1023 registers in a branched style. This

clock distribution and clock driver layout scheme is shown in Figure 5.6. In the

lower portion, the rows and columns in the delay line are graphically represented

as a snaked line. The clock driver is at the top. The figure shows two levels

in generating the local phi and pjb2 signals. At the first level, the clock driver

redundantly inverts and buffers the input phi signal in parallel. This is done for the

input ph2 signal also. Then, at the second level, eachinverted plil signal branches

to two subsequent inverters. Here, the clock driver recovers the true state of the

clock signal, producing several instances of buffered phi signals for the registers.

Instances of the ph2 signal are generated through its own branch. In the clock

driver layout, the pbl and ph2 branches are interleaved. In this manner, a pair of

phi and ph2 signals emanating from the clock driver conveniently meets the pill

and ph2 lines that run vertically through a column of the registers.

The clock driver uses a odd and even leafcell to implement the first level of

buffering. The odd cell inverts the phi input signal. The even cell inverts the ph2

signal. At the second level, the clock driver circuit uses one leafcell which produces

a pair of phi and pli2 signals for a column of registers. Phi- and ph2- lines internal

to the leafcells abut with the corresponding terminal of an adjacent cell to complete

the interleaving. The parameter cols defines the number of columns the clock driver

must span. In this case, cols is 32.

If all 1023 registers shared one clock line, the clock path will have a large

load capacitance and long path length. This may be sufficient to cause clock skew.

In addition, data that propagates between delay lines, especially at extreme ends

of the 1023 register chain, accumulates delay introduced by several multiplexers.

Because of this, the data arriving at a delay line register may not be synchronized

relative to a skewed clock signal that arrives. The purpose of dedicating clock

drivers to a column of registers is to prevent clock skew among the delay lines

by reducing the load capacitance and length of the clock lines. The buffered pill



46

ph2

phi

V V

V V V^ V V
ph2 ph2 ph2 ph2

phi phi phi phi

IN

c
}

Figure 5.6: Clock Distribution in Delay Unit



47

and ph2 signals sent to the registers are in phase with each other, since they are

generated in parallel.

Multiplexer Control

The multiplexer control section in each delay unit selects the proper delay

lines, as specified by the delay value address, and guides the input data through

them. As it was previously discussed, there are ten multiplexers in the delay unit,

one assigned to each of the ten delay units. For implementation, the multiplexers

are considered as leafcells and are cascaded into one macrocell. The delay unit

illustration in Figure 5.3 shows exactly how the multiplexers are connected.

Multiplexer Leafcell

The 2:1 multiplexer circuit of Figure 5.7 uses two cmos pass gates to select

one of its two inputs, A or B. Input A corresponds to the "1" terminal and input

B corresponds to the "0" terminal. The pass gates are controlled by a select signal,

sel, which is complementary to the select signal of the second gate. The pass gates

output nodes are both connected to a stage of two inverters, which buffers the

selected input signal and restores the waveform at the output node C. The select

signal is complemented within this leafcell.

Although the circuit is not clocked, it does receive data clocked out from

a delay line register on the rising edge of phi, and it sends its output signal to a

register input which is sampled on the rising edge of the following ph2 pulse. If there

is a long string of 0s in the delay value address, data passing from a delay line to the

next one must propagate through several multiplexers before it is resynchronized by

a clocked register. To satisfy timing requirements, data has to propagate through

the series of multiplexers within the time of a phi pulse. For the worst case situation,

the address is Q=1000000000(N=512), and the delay unit input signal propagates

through nine multiplexers before reaching the 512 length delay line input. With

the aid of spice and using conservative values for the spice model parameters, the

multiplexer circuit is designed to have a 4ns propagation delay from input to output,



S

. V.

Wp=10

a p n I

Wn=8(D 1
S*

s*

i* v. 1

Wp=10

IB p- 1 J
(0) 1 " Wn=8

s

sel p-

Wp=12

48

Wp=12

» C

Wn=10

•> S

-> s*

Figure 5.7: Multiplexer Leafcell Circuitry

which explains the large transistor widths for the pass gates. For the worst case, the

propagation delay time through nine multiplexers extends to 36ns. In the special

case where the delay unit is programmed to insert no delay(N=0), the propagation

time through all 10 multiplexers is 40ns.

The multiplexer leafcell layout is shown in Figure 5.8. The B and C

terminals are placed such that the C terminal will naturally abut against the B

terminal in the subsequent multiplexer. The A, B, and C signal lines are extended

to the cell boundary for eventual routing to the delay lines.

Macrocell Description

The 10 stage multiplexer macrocell is physically laid out as 10 instances

of the multiplexer leafcells stacked on top of each other. The select signal terminals

all appear on one side of the macrocell; the input signal terminals which connect to

the delay lines are on the opposite side. The delay unit IN and OUT terminals are



49

Figure 5.8: Multiplexer Leafcell Layout

located at the bottom and top side of the macrocell, respectively. All the control

circuitry in the delay unit resides in this macrocell.

The describing parameter in the TimLager pdl description is m. The value

of to is the number of multiplexers in the control macrocell, and to is 10 for this

Delay Line. For variable Delay Lines realizing maximum delays other than 1023,

the parameterized multiplexer design can be used to generate control macrocells

with the appropriate number of stages.

Address Latch

The delay value address latch uses the same leafcell and macrocell design

as the address latch described in the Tap Switch chapter. The parameter nbits is

set to 10, so TimLager can generate a 10-bit latch. At the macrocell level, the Delay

Line signal reset is the load signal Id for the latch.



50

Clock Generator

The registers in the delay units and the address latch requires a 10MHz

two phase non-overlapping clock. A clock generator cell is incorporated into the

Delay Line to supply the two phases, phi and ph2. This cell was designed by Alex

Lee [3] and was known to have been working on silicon at the time of inclusion. As

seen in Figure 5.9 the cell consists of a chain of inverters which progressively delays

the input signal, elk, a 10MHz symmetric square wave. One NAND circuit creates

the phi2 phase from the elk signal and a logically true version, while another NAND

gate creates the phil phase from versions which have experienced an odd number

of inversions. Both NAND circuits use the inherent propagation delay introduced

by the inverters to create the non-overlap property in the two phases.

5o3 Synthesis from Macrocells

Delay Unit

Physically creating the delay unit involves generating the ten delay lines,

the multiplexer control, and the clock driver, followed by placing and routing the

twelve macrocells together. The delay unit sdl description, shown in Table 5.1

is a list of these macrocells, their parameter values, and a net list. From this

description, the Design Manager tool creates the parameter descriptions and invokes

TimLager to construct each macrocell. With DM, one initial effort from the designer

is required to create the twelve macrocells.

Instead of applying Flint, the macrocells were placed and routed manually

with magic. Here, the designer felt that manual work could produce a more opti

mally placed and tightly packed structure than what Flint could produce. Routing

the macrocells input or output signals is relatively easy, since a macrocell terminal

is connected to at most one other macrocell terminal.

Figure 5.10 shows the physical layout of the delay unit. All the delay

lines and the clock driver are abutted together into a rectangular area, sharing

contacts to phi and ph2 terminals at the abutting edges. This abutment style is



51

elk

Figure 5.9: Two Phase Non-Overlapping Clock Generator



5t
ei

"5
tl)

"S
tZ

]^
S[

31
"S

m
'S

(5
]-

S[
G

)-
'S

(?
J"

S(
8J

'S
l9

H
jr

ar

dc
or

e-
im

jx
ct

l
*f

yd
d

M
1

T
-,

ig
aa

^g
gg

g^
g^

^;
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^

d
c
o

r
e
-
d

Z
S

S
d

c
o

r
e
-
d

5
1

2
d

c
o

r
e
-
c
k

d
r

iv
e
r

ft
*

1
'

'-
"
-
'i

•
r
"

"
-*

•
—

«
«

*
r;

•
•>

•
,4

i
4:

•
.

.
11

.•
•«

•
,

,*
,

.
k

.
.4

,1
.

.
,1

1
,.

x
^

g
;

1
..

j\
..

».
,

.:
;,

,
Jl

,
,

11
,,

1
,

,
.i

|—
.-

,n
,'.

.1
1.

..
4

..
J
I

.
.

11
.,

,1
,1

..
.n

.
,

,1
.

•
.

u-
14

1
,

,7
^

—
~

~

CW
*

c M C
D

O
r

d 0
)

I—
*

P> 5
.

pa o Pi

t
o



53

not permitted by Flint because of its nature as a channel router. If the macrocells
were expanded, the clock lines would run vertically, while the ground and power

lines run horizontally contacting the ground and power busses at the left and right

edges of the larger delay line macrocells. The multiplexer control is placed at the
lower left corner. Overall, the interconnect lines occupy a small space in the entire

delay unit area. The delay unit layout has dimensions 1498Axl360 A, almost square

in shape.

A special TimLager .c routine instructs TimLager to place one instance

of the delay unit and to label its terminals, formally transforming the delay unit

into a macrocell from the perspective of the Lagerlll tools. More significantly, an

hdl description is also produced, containing the delay unit dimensions and terminal

location information. This is the real motive behind this step in layout design, since

manually extracting that information is time consuming and tedious.

From this point on in the design process, CAD tools assemble the layout

for silicon realization.

Delay Line Core

. To fully implement the Delay Line architecture, three delay units, an ad

dress latch and a clock generator are placed and routed, forming the Delay Line

Core. Through Design Manager, TimLager creates delay unit macrocells and the

latch macrocell. Following, Flint generates the core layout. Power and ground lines

were widened manually to carry more current, since all 1023 registers in three delay

units switch simultaneously. The dimensions of the core circuitry is 2878Ax3055A.

Chip Layout

The chip layout is assembled from the pad frame and the core circuitry

by Padroute. The routing performed by the tool required manual adjustments to

produce an acceptable layout for fabrication. Figure 5.11 shows the resulting chip.

The Delay Line occupies an area of 4062Ax4462A. The frame design includes several

ground and power pads. This reduces the effective inductance introduced by metal



54

Figure5.11:PhotographofVariableRegisterDelayLine

+«»H3°beocuhjoaa»ai>aci.-.n»y*.aiigcQois

$*i\*&

"'••,TV'--

r^$A-ui:'•'
n•n•nd

?<7r*y
ainina;?•-?:



North Side Pads from Left to Right

name type description
Vdd Vdd

Vdd Vdd

Vdd Vdd

GND GND

GND GND

GND GND

reset input resets address latch

clock input single square wave clock
GND GND

Vdd Vdd

55

Table 5.2: Pads on North Side of Pad Frame

bonding wires and metal traces in the packaging which lead the external power

and ground supply to the IC power and ground pads. Tables 5.2, 5.3, 5.4 and 5.5

describe the pads appearing on each side of the pad frame.

5.4 Simulations

After extracting the layout, logic simulations with esim were performed

throughout the layout hierarchy to confirm that the various cells were logically

functional. Circuit simulation was carried out during the circuit design phase, but

not after the cell layout, relying on the switch level logic simulation to detect any

bugs in the layout. Leafcell logic simulations were simple and straight forward, as

was simulating the delay line and multiplexer control macrocells.

Simulating the delay unit was only slightly more complex. The input test

patterns for the delay lines and the multiplexer control were applied, and the output

vectors from the output nodes were observed and then verified to be a delayed

version of the input test vectors.

Instead of performing logic simulation at the next level in the layout hier

archy, the subsequent simulation occurred at the top level. Since the delay unit is

the heart and majority of the Delay Line design, and since delay unit simulations



East Side Pads from Top to Bottom

name

GND

Vdd

q9
q8

q7
q6
q5
substrate

q4
q3
q2

ql.
qO
GND

Vdd

out.c

type

GND

Vdd

input
input
input
input
input
dummy
input
input
input
input
input
GND

Vdd

output

description

$9 bit of delay
qs bit of delay
q7 bit of delay
q6 bit of delay
gs bit of delay
chip substrate
q4 bit of delay
53 bit of delay
q2 bit of delay
qx bit of delay
qo bit of delay

value address

value address

value address

value address

value address

contact

value address

value address

value address

value address

value address

output from carrier delay unit

Table 5.3: Pads on East Side of Pad Frame

South Side Pads from left to right

name type description
Vdd Vdd

GND GND

GND GND

Phi2 output ph2 phase from clock generator
Phil output phi phase from clock generator
GND GND

Vdd Vdd

Testln input for testing
TestOut output for testing
GND GND

Vdd Vdd

in.c input input to carrier delay unit

Table 5.4: Pads on South Side of Pad Frame

56



West Side Pads from Top to Bottom

name type description
Vdd Vdd

GND GND

in.v input input to code violation delay unit
out.d output output from data delay unit
out.v output output from code violation delay unit
in.d input input to data delay unit
GND GND

Vdd Vdd

Table 5.5: Pads on West Side of Pad Frame

57

and latch simulations were favorable, the writer felt that another simulation to con

firm logic validity could be postponed until the final layout was generated. After

extracting the layout, logic simulation with esim did not converge. Esim delivered

"don't care" states from all the output nodes of the delay units. Regressing step by

step in the layout hierarchy, the bug was discovered at the core layout level. The

problem was not due to faulty circuit or layout design, but rather due to oversight

on the designer's part. In simulating the delay units and the address latch, the

phi and ph2 clock patterns were explicitly provided as phi =0010 and pii2=1000

for one clock cycle. The non-overlap property is observed in the second and fourth

position. However, at the core level, the clock generator provides the two phases

to the delay unit and address latch. As discussed, the clock generator relies on

the inherent propagation delay of a transistor to produce the non- overlap. But

esim models transistors as devices which respond instantaneously to its stimulating

input, causing the extracted clock generator to deliver pill as 0011 and ph2 as 1100

during simulation. Driven by two phases whose non-overlap is not well defined, the

simulations on the extracted delay line and latch fail to converge at the chip level.

Logic simulations do converge to the predicted results by forcing the phi and ph2

signals to take on the proper pattern in the simulation.

The lesson learned from this simulation exercise is two-fold. First, it

demonstrates how the hierarchical layout style aids debugging a design. By simulat

ing from the low level leafcells up to the top level, this approach facilitates locating



58

the cause of a problem as compared to locating the bug in a flattened layout which

can be an exhaustive effort. Second, it serves as a warning that CAD tools, as

powerful as they may be, should not be applied with blind faith which can lead

to misuse and misinterpretation of results. In this example, familiarity with the

limitations of esim could have prevented the oversight on the designer's part.

The extracted Delay Line layout was simulated for delays in the range

of N=0 to N=50 clock cycles of delay. The fabricated chip went through more

exhaustive testing as will be described in the next section.

5,5 Testing

The Delay Line circuit was fabricated in 3/xm pwell scmos technology and

the finished silicon was tested for functionality and performance in October of 1987.

This section describes the test strategy, test patterns and results.

Delay Line operation obeys the timing diagram shown in Figure 5.12. It

follows the clocking convention set for the Channel Emulator. The Delay Line timing

requirements are identical to the Tap timing requirements, except that the delay

line generates its two phase clock from a square wave rather than using external

pill and ph2 sources.

Testing the Silicon

To aid in troubleshooting the logic, circuit and layout design, subcells

within the Delay Line are duplicated in a separate chip created for testing purposes

only. The philosophy is that testing the smaller cells separately simplifies locating

the source and determining the cause of a design error as compared to testing at the

higher level. After all, high level cells will not work if their subcells do not work.

This is similar to the logic simulation strategy. Register and clock buffer leafcells

as well as a clock generator, address latch and multiplexer control macrocells reside

in the test chip. These circuits have their input and output nodes connected to

Input or Output pads for observation. The phi and ph2 clock phases needed by



1) elk

2) ph2 / \ I \ | \ | I
/ i / i / i / \

m YTTTT

3) phi

4) reset

5) Q

7) IN \\ \\ \)CZUCT(

8) our \\ v v u\yw

program Delay

Line(latch in

delay value address)

IN data

sampled

on rising

edge of phl2

YTTTT

KH

OUT data

valid over

ph2 pulse

\ \ \ \ \

XXXI

Figure 5.12: Timing of Delay Line Signals

59



60

the cells are provided by an external source. This ensures that the circuits are

tested independently of the clock generator circuit.

For the Delay Line circuit in the finished silicon, testing is essentially sim

ulating the real working environment the chip operates in. The procedure involves

applying input test patterns and observing the output nodes from I/O pads. In

ternal nodes are not probed, since this is accounted for in the separate test circuit.

Hopefully and fortunately, the observed outputs are as expected, and the silicon

testing determined that the circuit was fully functional.

The Delay Line has a straight-forward purpose: to delay the 3-bit input

signal by N clock cycles. Testing is also straight- forward. An 10-bit address is

sent to the address input pins, specifying the amount of delay. Then, a pattern

is applied to the data, carrier and code violation input pins. For each of the 3

bits in the signal, the input pattern is a short stream of 0s and then a burst of Is

followed by a long trail of Os. The burst of Is in the long stream of 0s serves as

a time "marker." Comparing the observed output to the applied input, the input

and output signals are identical in sequence but the first occurring l's are spaced N

clock cycles apart in time. This test is repeated for various values of N. As in the

Tap chip, testing begins at low clock rates to confirm functionality, and continues

to 10MHz to confirm that the circuit satisfies the speed specification.

Performance Results

Besides verifying the design functionality, measurements were collected to

assess the chip performance. Performance results depend on the particular run the

chip was fabricated from. So, the test results to be discussed are influenced by the

run properties as well as the design.

An input pad terminal is tied to an output pad terminal. With this setup,

the input and output pad propagation delay combined was measured at 20ns. This

figure is useful in determining the macrocell propagation delays.

The pn2 and phi output nodes of the clock generator are connected to

an output pad. There is a 6ns delay from the elk node to the ph2 node. The two



61

phases have an non-overlap time of 5ns and a 40ns pulse width. This was measured

from the output pads which buffer the internal phi and ph2 signals that is actually

distributed to the circuitry.

Programming N=0 into the circuit, a signal propagating through all 10

stages in the multiplexer control exhibited a 35ns delay. This gives 3.5 ns propa

gation delay per multiplexer cell. At operating frequencies above 10MHz the 35ns

delay becomes comparable to the pulse width of a phase. This propagation delay

will eventually limit the speed at which the circuit can operate while conforming to

timing requirements at the same time.

Out of all the dies in the batch returned, half of the ICs worked properly

at 10MHz. Among the others, the clock generators always tested properly, and one

or two delay units in the die worked while the other demonstrated a "stuck at 0"

or "1" condition. The cause is suspected to be associated to the run, or it could be

in the design. Overall, the results were quite satisfying for a first pass design. It

is confident to conclude from direct testing that the Delay Line worked at speeds

up to 15MHz for any delay value. The limiting frequency is at least 20MHz. Tests

were not carried out beyond this rate due to equipment limitations.



Chapter 6

Crossbar Switch

The Crossbar Switch has a set of 16 input channels and a set of 16 output

channels. It routes 10MHz data received at each input channel to selected output

channels. The single constraint is that each output can be connected to at most one

input. But, data from one source can be transported to more than one destination.

Essentially, the crossbar switch is functionally a set of sixteen 16:1 multiplexers that

have their inputs tied.

Figure 6.1 shows only one of many ways to interconnect or route data from

the input channels to the output channels. The interconnection pattern is referred

to as the crossbar switch configuration. So, the interconnection arrangement, shown

in the illustration, is just a particular crossbar configuration. The crossbar switch

is programmable in the sense that its configuration can be changed by the user; in

other words, the user can reconfigure the current point-to-point requirements of the

application.

The crossbar switch implements the Delay-Input Routing block of the

channel emulator. The 16x16 switch can carry signals from eight tap switch outputs

to the Delay Lines. The crossbar design is parameterized so that it can be expanded

into an nxn crossbar switch, where n is an even value. The ultimate goalis a crossbar

switch that accommodates 64 input and 64 output channels, fitting into a 32 node

channel emulator system.

62



Output

Channels

out 16 <•

out 15 <—:

out 4 <-

0Ut3 <r^

out 2 <-

OUt1 <-

Input Channels

in 1 in 2 in3 in4

V V V V

In 15 in 16

V V

Figure 6.1: Conceptual View of the Crossbar Switch

6.1 Architecture

63

The crossbar switch performs a routing function and its configuration must

be programmable. Accordingly, the chip architecture is is divided into blocks that

provide these functions separately, as illustrated in Figure6.2. The physical arrange

ment of the blocks is also the floor plan of the chip. The architecture consists of

two main sections, the Routing section which transmits data from multiple sources

to their assigned destinations and stores the input-to-output configuration, and the

Programming section which programs the input-to-output configuration.

A more detailed illustration of the architecture is shown in Figure 6.3,

which is actually an expansion of the block diagram in Figure 6.2. Figure 6.3

shows the flow of information within and among each block. It also illustrates

the design approach for the crossbar switch which takes advantage of what VLSI

technology can best produce: a regular structure of identical cells, with a minimum

of communication lines required between them. This architecture design allows



Output Data
Channels <-h

16

configurationJt^

Routing

Section

Input Data Channels
y

' 16

Crossbar Switch Array

/ 16

Shift Register

l6

Programming

Section

Pointer

T—

2

Control

Figure 6.2: Crossbar Switch Architecture

64

1

-j*—< reset

for modular increases in routing capacity and is well suited toward parameterized

layout generation using TimLager. The following discussion explains further details

of the architecture and how routing and programming is implemented.

As Figures 6.2 and 6.3 indicate, the crossbar switch is composed of two

main sections. First, the routing section interconnects the input and output data

channels, shown as Din and Dout. This is implemented by the crossbar switch

Array. The Array consists of interconnection cells; each cell has a memory element

and a switch element. The switch is in either the ON state(connect=l) or the

OFF state(no connect=0). This state is stored in the memory element by a one-bit

RAM cell. The array of l's and O's stored in the RAM cells represents the crossbar

configuration. A 1 bit held in the (i,j) interconnection cell causes the switch to

connect the ith output channel to the jth input channel, and a 0 bit in the (i,j)

cell disconnects them. For example, if the interconnection cells in the bottom row

contained all 0s except a 1 in the last cell, then the first output channel selects data

from the 16th input channel. By using the RAM circuit, the state of the switch



From Input Channels

j=1

Din
r

^ r

4 )< *
\

-* / ->/
^ Dout + I

* k > r * k yt

i=16 <*

65

j=16

To

Output

Channels

Crossbar Switch Array

i=2 *•

1=1 «
Dout

SWDin

latch

register

configuration

Shift Register

SWDin

2
control

t

reset

Figure 6.3: Crossbar Switch Architecture in Detail



66

can be changed and, hence, the crossbar configuration becomes programmable. The

crossbar switch Array contains 16x16=256 interconnection cells.

The second section programs the the crossbar configuration into the Array.

To carry out its function, this section uses a Shift Register of length 16, a 16 stage

Pointer and a Programming Control unit. The Shift Register serially accepts the

crossbar configuration bits, representing the switch states, and then transfers them

in parallel to the RAM. The bit lines are shown as SWDin in Figure 6.3. The

Shift Register serially brings in the configuration bits for the switches in row 1

first, followed by the bits for row 2, then row 3 and so on. When the ith/ row

of configuration bits has been shifted in, latches within the Shift Register capture

the row of states and then write the signals onto the RAM bit lines . The row of

RAM cells is addressed by the Pointer, and all of its cells receive their bit signals

in parallel. While the latches write the states into the ith row of memory elements,

the register serially shifts in the sixteen (i+l)th row of configuration bits over a

time of 16 clock cycles.

The Pointer simultaneously addresses all the memory elements in an row.

It delivers a write(=l) signal to row 1, then to row 2, until row 16. Thereby, the

crossbar configuration is programmed into the RAM structure in a row by row

fashion. The Pointer is basically a 16 stage shift register that shifts every 16th

clock cycle. The first register passes a 1 bit to the next stage followed by a stream

of Os. This 1 bit is the signal that "points" to the rows sequentially. Since it takes

16 clock cycles to bring in a row of states into the Register, the Register and the

Pointer writes the previous row of states into memory in that amount of time.

The Control block uses a 4 bit counter and logic gates to generate the

proper control signals required to program the configuration into the Array. To

initiate programming, the reset signal initializes the control block which, in turn,

provides the initial 1 bit to the Pointer.

Altogether, the crossbar switch needs one macrocell to implement routing

and three macrocells to perform programming. In this design, the input signals on

the individual channels may be asynchronous among each other, because the switch

in the crossbar Array macrocell is not clocked. The macrocells for programming,



67

however, use clocked circuitry and require a two phase non-overlapping clock signal.

6.2 Macrocell Design and Description

Crossbar Switch Array

This macrocell contains the interconnection cells tiled into an array. These

cells do not communicate with each other, but they do share common data and con

trol fines.

Leafcell Design

The interconnection leafcell integrates the memory circuit and the switch

into one structure. Figure 6.4 shows the leafcell circuit. For its application, the

writing speed of the RAM is not a critical issue, but storing the configuration

bit for an indefinite amount of time is a design requirement. Taking these into

consideration, the memory cell uses a five transistor static RAM design, rather

than the typical six transistor circuit. The design has two cross coupled inverters

and one write transistor, and brings data into the memory from one bit line. This

choice consumes lesslayout spaceand simplifies the routing task compared to using

a bit and bit* line. The leafcell application also does not require reading out the

stored data. This introduces more freedom in sizing the transistors, and makes it

possible to exclude any circuitry for a read operation. The impact of this on testing

the fabricated circuit is discussed in the testing section. In designing the memory

circuit, the emphasis is in determining the ratio of transistor Nl channel width to

N2 channel width. To write from 1 to 0, Transistor Nl can discharges a high level
at node X quicker with a larger W. In writing from 0 to a 1, transistor Nl charges

node X to an intermediate level because of body effect and the the tendency of the

N2 device to sink charge. With the aid of Spice simulations, the circuit writes a

0 in 70ns and a 1 in 100ns using the transistor sizes of Figure 6.4. This falls well

within the time limit imposed by the programming scheme.

The switch in the interconnection cell is a cmos pass gate. Minimum



SWDin

N1

write
<

2

3.
6

N2

unless specified, W/L= •§-

Dout

Figure 6.4: Interconnection Leafcell Circuitry

Din
v

68

transistor sizes minimize the parasitic drain and source capacitances on the data

input and data output lines. A high level stored at node X in the memory circuit

turns the pass transistors on, forming an electrical connection between the data

input and the data output line. The pass gate disconnects the electrical path if

node X is at a low state.

The interconnect leafcell layout is shown in Figure 6.5. The write, Dout

data output and ground lines run horizontally in metal2, while the lines carrying

the SWDin switch configuration and power run vertically in metall. Ground and

power contacts are shared with the adjacent cell in the macrocell, as are the Din

data in and write signal contacts. This approach compacts the layout and reduces

parasitic drain capacitances on the signal lines.

There is also another leafcell which contains a weak pmos pullup. This

device is attached to the end of each Dout output line. In case an output is not

connected to any input line, this device maintains a definite high signal at the out

put, preventing the output node from floating.



69

Figure 6.5: Interconnection Leafcell Layout

Macrocell Description

The Array macrocell is laid out as instances of interconnect leafcells ar

ranged in a 16x16 matrix structure. Also in the macrocell, a column of pullup
leafcells abuts against the right edge of the matrix. To form the the interconnect
array from one leafcell layout, leafcells in even numbered rows or columns are mir

rored about the Xor Y axis, respectively, So, as they are placed byTimLager, the
leafcells in the first row are alternately mirrored about the Y axis. In the second

row, all the leafcells are oriented upside down, or mirrored about the X axis, and
alternately mirrored about the Y axis. This placement pattern is repeated for the
remaining rows. Cells share contacts and their I/O lines meet properly with those
in adjacent cells. At the macrocell edges, the data input terminals lie on the top
edge and the data output terminals appear at the left edge; the write signal from
the Pointer enters at the right edge, and the switch state terminals are located on
the bottom edge. This placement evenly distributes the macrocell Din and Bout
signal lines around its sides.



70

The describing parameter used by TimLager is nodes. To generate a cross

bar Array for an n node channel emulator, the parameter is assigned a value of

nodes=2n. For this case, nodes is specified as 16.

Shift Register

The configuration bits enter the Crossbar Switch serially. To program

these into the crossbar Array by rows, the Shift Register macrocell converts the bit

stream into parallel format and drives all the bit lines. The register consists of 16

stages containing the same circuit. A two phase non-overlap clock signal controls

the shifting.

Leafcell Design

Figure 6.6 shows the circuit for a single stage. The basic register at the

bottom of the figure stores input data for one clock cycle and shifts it to the input of

the next stage. Meanwhile, the next configuration bit is brought into the register.

The latch at the top is the same circuit seen in the address latches discussed in

previous chapters. Its input taps the data stored in the register, accepting it when

the Id signal is high. Supplied by the Programming Control cell, the Idcontrol signal

pulses high on every 16th clock cycle and covers the ph2 pulse. After one clock cycle,

the particular configuration bit is latched in. The latch output is connected to a

bit line in the Array and the top inverter writes the data into the addressed RAM

cell.

The leafcell's layout, in Figure 6.7 has clock, id, and Id- lines running hor

izontally in metal2, and the power and ground lines running vertically in metall.

The register srin input and srout output terminals .are placed so that the output ter

minal of one cell naturally joins with the input terminal of the adjacent cell. Special

effort was made to ensure that the width of this leafcells matches the interconnect

cell width. For the higher level layout, this allows systematic routing between the

Shift Register and Array macrocells and avoids awkward macrocell sizes relative to

one another.



73

is implemented with a 16 stage shift register and extra write operation logic. A 1

bit moves through the registers to select the assigned row of RAM cells for writing.

All other rows remain unselected. At the beginning of the programming process,

the Control cell supplies the 1 bit to the first register at a terminal called Pin.

Leafcell Design

A Pointer stage contains the circuit shown in Figure 6.8. The familiar

latch circuit appears in this cell. With the same Id signal used in the Shift Register,

the circuit shifts in a new bit when the Id signal is high. This occurs once every

16th clock cycle. The output of the latch, Pout, is connected to the latch input,

Pin, in the next stage and to the input of an AND gate. The second input to the

AND gate is the wrctl signal. This is the actual write enabling signal that specifies

the exact write time period, and comes from the Control cell. A wrctl signal pulse

falls between the Id pulses without overlapping them. The inverter output of the

gate drives the write line in the Crossbar Array. The AND logic is implemented in

its own leafcell, so that two leafcells realize one Pointer stage.

The layout for the latch and the AND gate have the same height. As in the

Shift Register leafcell, this height matches the vertical pitch of the interconnection

cell. Figure 6.9 shows the layout for a stage. Clock and control lines run vertically,

and the write terminal appears at the left edge. The clock signal drivers for the

Pointer are placed in a separate leafcell.

Macrocell Design

The Pointer macrocell is laid out as 16 stages stacked on top of one another.

The id, wrctl and Pin control signals enter from terminals at the bottom of the

macrocell. The describing parameter for TimLager is again nodes. For this case,

nodes is assigned the value 16 since there are 16 stages.



74

Pin> >Pout

^write

Figure 6.8: Pointer Leafcell Circuitry

Figure 6.9: Pointer Leafcell Layout



d
A

Id-

I
wrctl

A

Pin
A

control signal logic

A Jk Jk ik

cr>

00

adder

stage

Q1

adder

stage

02

adder

stage

03

adder

stage
reset>

r»l-»#* S—pnz *^
pm *^

counter

Figure 6.10: Floorplan for Programming Control Macrocell

75

Programming Control

The Programming Control section produces the control signals that the

Shift Register and Pointer needs to program the crossbar configuration into the Ar

ray. It derives the signals, Id, Id-, wrctl, and Pin, from a two phase non-overlapping

clock and the reset pulse. These functions are implemented with a 4-bit counter

and combinational as well as sequential logic. The floor plan for this macrocell is

shown in Figure 6.10.

When the counter is initiated by the reset pulse, it counts from 0 to 15,

cyclically. The counter design uses a 4-bit carry ripple adder that increments its

sum every clock cycle. This sumis the 4-bit binary count, Q3Q2Q1Q0, appearing at
the outputs of the counter. The counter is based on a design made by Alex Lee [3]
and was used to save development time. The logic and layout design was modified
to fit the particular application. Four slices make up the full counter. Each stage
is a halfadder followed by a clocked output register whose output is the sum. The



76

sum signal is fed back to the addend of the adder. To increment by one, the first

half adder always carries in a one. This signal ripples through all four adders for

the new sum. There is an odd and even slice to minimize the logic that produces

the carry out signal. The only difference between them is a NOR gate in the even

slice to produce the carry out while the odd slice uses a NAND gate. Each bit of

the counter output is delivered from the registers to logic that generates the control

signals.

The generating logic is shown in Figure 6.11, and the timing diagram

for configuration programming is in Figure 6.12. Both the Shift Register and the

Pointer use Id and Id- to control their latching action. These two signals are derived

from the four counter outputs resulting in a pulse every 16th clock cycle. The four

input AND gate is a conventional cmos AND circuit using four pmos and four nmos

devices. The transistor sizes are indicated in the figure. Only the Pointer requires

wrctl and Pin to control memory writing. The wrctl signal covers 10 clock cycles,

allowing 1000ns to write the memory cell. Sequential logic similar to parity checking

derives Pin from the Id and reset signals. The high of Pin covers only the first Id

pulse, placing a 1 in the first Pointer stage.

Overall, the programming circuitry completes configuration programming

over 17x16=272 clock periods.

Test Cell

For debugging purposes during testing, leafcells from the Array, Pointer

and Shift Register are placed together into a test structure which is included in the

final Crossbar Switch submitted for fabrication.

6o3 Synthesis from Macrocells

Again, the crossbar switch architecture contains the four macrocells dis

cussed. Of these four, three are completely described by one parameter, nodes.

Providing this parameter, TimLager constructs the all the macrocell layouts. Like



Q2 >

Q3 >

Q2 >

Q1 >

QO >

Wp-14

Q4>-

XNOR=

A

Q3 >^-* I 1

out

Figure 6.11: Control Signal Logic

i <

*> Id.

*>ld-

wps18

> wrctl

Wn=10

-*-< Q3



1) ph2

2) phi

—v—v—v—v—V
3) config A A A A A

4) reset

5) Pin

6) Id

7) wrctl 10 dock cyctes

"v y y y y
A A A A A

config configuration bit
Input to Control

reset input to Control

Pin output from Control

Id output from Control

wrctl output from Control

Figure 6.12: Timing Diagram for Configuration Programming

78

£



79

the Tap and Delay designs, a nxn crossbar switch can be generated from the same

architecture using this parameterized design and, conveniently, one parameter.

Crossbar Switch Core

For the core layout, the macrocells were manually placed and routed ac

cording to the floorplan shown in the architecture of Figure 6.2. In designing the

macrocells, the I/O terminals were positioned along particular sides, giving con

sideration to the floor plan and future routing tasks. The decisions were made to

ensure that signal lines connecting macrocells will cross the channel space naturally

during routing, minimizing amount of crossovers, metal contacts and signal line

lengths. For instance, the Pointer write signals wire directly to the corresponding

Array write signal in metall, since the macrocell terminals are positioned across

from each other. Similarly, in metall, the Shift Register output lines directly con

nect to the Array bit lines within a narrow channel between the two macrocells.

The Pointer control signal terminals are located at the bottom edge, and the Shift

Register control terminals are at its right edge. They connect to the matching Con

trol cell signals appearing at the cell's top edge. Clock lines run along the bottom

and left edge of the floor plan. Besides these internal signals, the input channel data

Din, output channeldata Dout, reset and con£guration input terminals reside along

the outer boundaries of the core. Overall, signal lines tend to run across ground or

power lines rather than other switching signal lines. The neatness and compactness

of the routing is mostly attributed to forethought put into the leafcell layout. The

crossbar switch serves as a good example of the benefits of careful leafcell design.

Chip Layout

Manual Routing from the core to the pad frame, created by TimLager,

completes the final layout. Tables 6.1, 6.2, 6.3, and 6.4 describe the pads and

their assigned signal for each side of the frame. A picture of the fabricated circuit

appears in Figure 6.13. Because the Crossbar Switch has a large number of inputs

and outputs, the chip area is determined by the perimeter of pad frame rather



North Side Pads from Left to Right

name

Dinl

Din2

Din3

Din4

Din5

Din6

Din7

Din8

Din9

DinlO

Dinll

Dinl2

Dinl3

Dinl4

Dinl5

Dinl6

type

input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input

description
channell input
channel2 input
channel3 input
channel4 input
channel5 input
channel6 input
channel7 input
channel8 input
channel9 input
channell0 input
channell1 input
channell2 input
channell3 input
channell4 input
channell5 input
channell6 input

80

Table 6.1: Pads on North Side of Pad Frame

than the area of the core circuitry. The 16x16 Crossbar Switch, fabricated in 3/zm

technology, occupies a 61mm x 61mm area.

6o4 Simulations

While creating the crossbar switch, the leafcell and macrocell designs were

simulated to verify the logic and circuit operation, and the layout connectivity.

The leafcells were first simulated with Spice during their design phase.

To meet timing requirements, Spice aided the designer in chosing transistor sizes

for driving estimated capacitive loads in sufficient time. In the Pointer and Shift

Register cases, the circuits were modeled as two connecting leafcells to simulate the

circuit operation in a macrocell environment. Such simulations are more realistic,

since the input of one cell depends on the output of another. In the case of the

crossbar Array, the interconnect cells are essentially independent of one another.

So, it suffices to model the effects of neighboring cells in the macrocell as capacitive



East Side Pads from Top to Bottom

name type description
Pout output output from Pointer, for test
wr output from test structure

PoutT output from test structure

Id input to test structure

swdl output from test structure

GND GND

swd2 output from test structure

substrate dummy chip substrate contact
sroutT output from test structure

Vdd Vdd

Testin input to test structure

phi input phi clock phase
ph2 input ph2 clock phase
Din input to test structure

sw- output from test structure

Dout output from test structure

Table 6.2: Pads on East Side of Pad Frame

South Side Pads from left to right

name type description
Vdd Vdd

srin input configuration, serial input
SWDinl output from Shift Register, for test
GND GND

srout output from Shift Register, for test
ph2-.s output from Shift Register, for test
phl-.s output from Shift Register, for test
writel output from Pointer, for test
reset input initiates configuration programming
Pout2 output from test structure

wrctl input to test structure

inv output from test structure

passout output from test structure

Table 6.3: Pads on South Side of Pad Frame

81



82

Figure 6.13: 16x16 Crossbar Switch Chip



West Side Pads from Top to Bottom

name type description
Doutl6 output channell6 output
Doutl5 output channell5 output
Doutl4 output channell4 output
Doutl3 output channell3 output
Doutl2 output channell2 output
Doutll output channell1 output
DoutlO output channell0 output
Dout9 output channel9 output
Dout8 output channel8 output
Dout7 output channel7 output
Dout6 output channel6 output
Dout5 output channel5 output
Dout4 output channel4 output
Dout3 output channel3 output
Dout2 output channel2 output
Doutl output channell output

Table 6.4: Pads on West Side of Pad Frame

83

loads.

After leafcell layout and extraction, only logic simulation was performed

with esim to confirm functionality. For the most part, the logic simulations were

simple. The only difficulty encountered was in steering the esim simulator toward

a convergence for the RAM circuit and an EX-OR circuit. In the static RAM, a

pmos device pulls an internal node up while a nmos device pulls down when writing

from a 0 to a 1. Since esim prefers only one pulling direction on a node during

an event, the contention condition in the RAM causes convergence problems. The

EX-OR design has four devices used as pass gates which share a common node.

Though the input and output nodes of the pass devices are evident to the designer,

esim does not have such a clear concept and treated an intended input node as an

output node. Both RAM and EX-OR problems were solved by having esim initialize

internal nodes or by applying kesim as the logic simulator. Kesim is a version of

esim modified especially for cmos technology.

After the macrocells were designed and assembled with TimLager, esim



84

simulations were performed to verify the logic design and connectivity between

leafcells. To keep the input and output test vectors at a tractable length, the Id

signal pattern did not pulse every 16 clock cycles, but rather every say 3 cycles.

The Pointer, Shift Register and Control macrocells were easily simulated. The chip

layout, however, was not extracted and simulated because input test vectors in esim

format would be unmanageably long for the designer to produce.

6.5 Testing

A 16x16 Crossbar Switch using the described design was fabricated in

3//m pwell scmos technology. The fabricated circuit was received and tested in

April, 1987. The design was fully functional and met speed requirements.

To locate design faults and to fully verifying the macrocell design, dupli

cates of the Shift Register, Pointer and Control circuits were placed on separate

silicon for testing. As an additional debugging measure, leafcells were also dupli

cated in a test structure included in the Crossbar Switch silicon. Test results from

silicon applying both these test methods confirmed correct leafcell and macrocell

performance.

The Crossbar Switch operation conforms to the given timing diagram. The

two clock phases are supplied from a source external to the silicon.

Testing the Silicon

Testing the fabricated Crossbar Switch involves brief leafcell and macrocell

tests, followed by a thorough test of the Array. After these macrocells, the Crossbar

Switch is tested with various network configurations, and results are drawn from

measurements and observations. This section describes the test patterns accompa

nying this procedure and the results from silicon.

Preliminary Tests

In the programming section, selected macrocell output terminals were con-



85

nected to output pads. This precaution provides a means for quickly checking the

programming macrocells in the Crossbar Switch and electrical connectivity between

the macrocells. It also helps to isolate errors to the programming section if a failure

were to occur there, otherwise the designer may be clueless as to where a potential

failure has occurred in the Crossbar Switch.

Checking the Pointer involves observing the register output of the last

stage, Pout. Since the Control unit sends a 1 bit and subsequently 0 bits to the first

stage input, the output exhibits the same sequence occurring 256 clock cycles after

the reset pulse. This test confirms that the cascade of registers circuits works and

that the Pointer is receiving the properPin and Id and Id- signals from the Control
unit.

The registeroutput of the Shift Register's last stage is alsoobservable from

an output pad. The input test pattern is a bit stream applied at the configuration
input. To confirm its operation as a shift register, the srout output signal should
follow the applied input signal, srin, 16 clock periods later. The latch output of
the first stage is the 16th bit in the input stream, but held for 16 clock periods,
verifying proper operation and connectivity between the Control cell Id terminal

and the Shift Register Id terminal.

Observing the wrctl signal relative to the reset pulse from an output pad
completes the Control cell check.

Before testing the Array, the interconnect cell operation was confirmed.

An instance of this leafcell appears in the test structure and its internal memory
node as well as its terminals were connected to I/O pads for input or observation.

Testing this circuit follows the same method as for the Array, which is discussed
next.

Crossbar Array Test

In testing the Crossbar Switch Array, the main objective is verifying the
full programmability of the Array. This means testing eachof the 256 interconnect
cells to confirm the writing and switching operation. The cells are independent of
one another, but they do share common input, output and control signal lines. The



86

test configuration and input test patterns are designed to verify cell functionality

and to detect interference between cells.

Providing the reset pulse, a crossbar configuration is programmed into the

Array by the programming macrocells. The test configuration pattern' allows only

one switch, say the (i,j) switch, in the Array to be enabled at a time. So, only

one output channel is connected to any input using this test configuration. The

configuration input into the Shift Register is then a stream of 0 bits with a one bit

inserted in the proper position. For example, an input pattern with a one bit in

the first position followed by 0 bits results in a configuration where the first output

channel is connected to the 16th input channel. This is seen from inspection of the

architecture illustration in Figure 6.2.

Next the test patterns for the 16 input channels are applied to the cor

responding input Pin, and the signals from the 16 output channels are observed.

Since the crossbar design has no read mechanism, the (i,j) RAM cell and switch con

nection are both tested by applying a toggling pattern to the Din(j) input channel

and watching the Dout(i) output channel for a toggling output signal. Meanwhile,

all the other input channel test patterns are constant 0 signals. A toggling Dout(i)

output indicates that the RAM cell can store a one bit and the switch can connect

the data input and output line. Because of the chosen input patterns, it should also

suggest that the active output channel Dout(i) depends only on the selected input

Din(j). Since only one output channel is active in this test, the other output chan

nels should exhibit a constant 1 signal due to the action of the pullups on the output

data busses. This observation shows that these outputs are independent of any in

put, confirming that the other 255 RAM cells have stored a 0 and the switches are

disabled. Using the example above, the test pattern applied to the Din(l) through

Din(15) input channels are constanly 0 bits. The Din(16) input signal toggles ev

ery clock cycle. Watching the output channels, Dout(2) through Dout(16) exhibit

constantly high levels, while the Dout(l) signal follows the toggling pattern of the

16th input signal.

The test method and patterns described above are applied another 255

times, enabling a different switch in the Array each time. If all 256 test runs produce



87

output patterns which match the expected results, this confirms that each RAM

cell is completely writable and controls its attached switch, and that the switch can

connect or disconnect its input and output. Hopefully, the devised patterns thor

oughly test the Array for errors such as shorts or opens and faulty interconnection

cells.

Crossbar Switch Test

To complete functional verification, the Crossbar Switch is programmed

with more realistic crossbar configurations and tested with differing input patterns.

Here, the purpose was to test the silicon performance in true environments. The

programmed configurations covered cases where several switches were enabled im

plementing various point-to-point connections. This included input signals routed

to multiple outputs. Again, output channel signals should exactly match the se

lected input signals.

Performance Results

During testing, circuit performance was measured in addition to the func

tional verification. As mentioned before, circuit performance is dependent on the

particular run the chip was fabricated from. The following test results are repre

sentative for its particular 3//m pwell run.

The programming circuitry functions at a clock rate of up to 12.5MHz,

which is safely beyond the 10MHz requirement. The test chip which contained the

separate programming test cells were fabricated on a 2/x run. Upon testing, they

functioned up to 15MHz. Based on these results, it is expected that the circuit

design will support programming rates in excess of 12.5MHz, depending on the

run's feature length. While testing the crossbar Array at 10MHz, the Din(j) input

was toggled during RAM programming. As an observation, the Dout(i)signal starts

to follow the input signal within one clock period after the write line is selected,

indicating that the RAM cell is written within one clock cycle time. This is well

within the 1000ns allotted write time, since the RAM circuit was designed with



88

conservative guidelines.

Performance related to the switch connection was also considered. The

propagation delay through the input and output buffer pads were approximately

30ns. The measured delay between the input channel pin and the output channel

pin was 40ns. So, the switch, which is a minimum sized cmos pass gate, introduces

a 10ns propagation delay into the data stream. The minimum size devices of the

switch limits the current available to charge or discharge the input and output data

busses, which area loaded with large capacitances. These factors contribute to the

10ns delay of the switch. Although programming was achieved at a 12.5MHz rate,

data passing through a switchconnection maintains its integrity up to a 15MHz rate,

at least. The throughput was not tested beyond this rate due to limitations in the

test equipment. In the Crossbar Switch design, the realizable switch data rate and

the realizable programming rate are practically independent of one another,because

the switch pass gate is an asynchronous circuit design, whereas programming cells

use clocked circuitry.

For broadcast network configurations, one data input signal is connected

to all 16 output channels. In this case, the signal experienced a 45ns propagation

delay through the I/O pads and switch. The input pad here must drive 16 switch

outputs. The accumulated capacitive load on the 16 output busses contributes the

additional 5ns delay.



Chapter 7

Masked OR Crossbar Switch

Functionally, the Masked OR Crossbar Switch routes information from

16 source channels to 16 destination channels. Compared to the Crossbar Switch

described in Chapter 6, this version has the same features and one extra capability.

As before, it connects an input to multiple output ports, and, in addition, it allows

an output to be connected to more than one input port. This relieves the constraint

imposed on the Crossbar Switch of Chapter 6. These concepts are illustrated in

Figure 7.1.

To implement multiple input selections, each output signal, Dout(i), can

be represented as a logically "ORed" combination of the Din inputs, and hence

the name for the design. In the previous Crossbar design, the output Dout(i) was

logically one or none of the inputs Din(j).

The design to be described in this chapter is an inplementation of the

Delay-Output Router in the channel emulator. It routes signals from the Delay

Lines to the Tap Switches, and the input to output interconnection requirements are

reconfigurable. Because of the masked OR feature, this Crossbar Switch supports

emulation of multi-source broadcast reception and collision events, where several

data signals collide at onereceiving nodeof a network. A parameterized design once

again implements the 16x16 Switch, anticipating its expansion into a 64 input/64
output router.

89



Output

Channels

out 16 <-

out 15 *=*•

out 4 <-

out 3 «-=*=

out 2 <-

outl 4-=*=

Input Channels

in 1 in 2 in3 in4

V V V V

•"—4

in 15 in 16

V V

collision

Figure 7.1: Conceptual View of the Masked OR Crossbar Switch

7ol Architecture

90

At a high level, this Masked OR crossbar works on the same principles

as the previous Crossbar Switch. The architecture consists of the Crossbar Array,

Pointer, Shift Register and Programming Control. Each is made up of their respec

tive leafcells placed into a structure of repeated cells, as shown Figure 7.2. The

Array interconnection cells has a memory and switch element. The memory circuit

is a static RAM circuit, just as before. But, the switch circuit uses the "wired or"

circuit technique to implement the logical OR connection. Along the periphery of

the Array, input buffers and output buffers support the "wired or" circuitry inside

the Array. The input data bus that is internal to the Array is referred to as din,

and the output data bus in the Array is called dout.

In summary, each row of interconnection cells has switch elements which

selects data from one of many input channels and directs it to its output channel.

The selection of a particular input channel is controlled by the memory elements.



Dout
io16

To

Output

Channels

i-2

1.1
Dout

J-1

Din

From InputChannels

J-2
v

input

buffer

Cfin

+ * ±

-> / *- -> / «-

dout 1 +

'

^

A i r 1

output
buffer

dout

swd

latch

register

. Crossbar Switch Array

I

Shift Register

configuration

Figure 7.2: Architecture of Masked OR Crossbar Switch

91

reset



92

The (i,j)th memory element contains a "1" to select data from the jth input channel

for the ith output line and, "0" otherwise. The configuration is programmed in a

row by row fashion, as directed by the programming macrocells.

7.2 Macrocell Design and Description

Crossbar Switch Array

To implement the Array's routing function, the switch design uses the

"wired or" circuit technique. The switch in the interconnection cell is two nmos

transistors connected in series, as shown in Figure 7.5. Device N4 constantly mon

itors a din input bus at its gate and tries to drive the data onto the output bus

dout. Transistor N3 conditionally passes the input data to its output node, which

is the device drain, depending on the state of the switch stored at its gate. Within

in Array, all the switches in a row have there output node attached to the same

output bus. The N4 sources are connected to a ground path. This is the "wired or"

circuit which implements the logical OR of the selected inputs. Figure 7.3 illustrates

the array circuitry, and Figure 7.4 shows the Array timing diagram. Each row of

switches share an output bus, and each column of switches shares an input bus.

To meet speed requirements, the routing design uses precharge and evaluate circuit

techniques. Accordingly, the output bus is precharged for during half a clock period

and evaluated during the next half. The input buffer synchronizes the Din data and

drives the din input bus, and the output buffer releases the valid dout signal and

inverts it to recover the true data at the Dout node. The clocking scheme inserts

a delay of one clock period between the input occurrence and the valid output oc

currence. A more detailed description of the Array circuit appears in the following

discussion.

In the previous Crossbar Switch design, the switch was a cmos pass gate.

There, the input was electrically connected to the switch output. The driving input

directly charged or discharged the output bus. For this reason, multiple inputs

connected to one output interfered with other output channels. In comparison,



93

Dout'
write

write

Dout

swd swd

Figure 7.3: "Wired Or" Array Circuitry



1) elk

2) ph2

3) phi

4) Din

5) dout /

6) Dout

/ \ I \ 1 \ I \

I \ / \ / \

XX5X K3d
precharge \ evalualaV

I

Din data

sampled

on rising

edge of phi2

r

X

Dout data

valid over

ph2 pulse

/

3EXI

V

r

Figure 7.4: Timing of Array Signals

/ V

I

94



95

the "wired or" design "isolates" the switch input from the output bus because

the input is at the device gate. The output bus is charged or discharged by the

switch itself, rather than the input driver. For this reason, one output channel can

select several input signals without interference from other unwanted signals. For

example, Din(l) and Din(2) inputs can be routed to the Dout(l) output channel;

at the same time, the Dout(2) channel can select data from the Din(2) input and

remain independent of the Din(l) input. In the pass gate Crossbar Switch, Dout(2)

would suffer interference from the Din(2) input.

Unlike the previous design, the routing operation in this design is clocked,

so all the inputs are synchronous. The circuits which synchronize the input and

output signals and clock the switch operation lie along the Array periphery.

Leafcell Design

For the masked OR design, the interconnection leafcell circuit is shown in

Figure 7.5. The leafcell contains a five transistor static RAM and the masked OR

switch, incorporating the memory and switching functions into one structure. The

RAM circuit works on the same principles as that described in Chapter 6. The

RAM's internal node, sw, controls the gate of N3, turning the switch on or off. The

output bus, dout is precharged during the high of ph2, and a low din signal during

this time prevents loss of charge through N4. The evaluation phase occurs when

the ph2 phase is low. Valid input data appears at the gate of N4, and the switch

conditionally discharges the output bus. If only one input channel is selected, then

an dout signal is the complement of the chosen din signal.

The RAM circuit for this Crossbar Switch has different transistor sizes

compared to the RAM discussed in the previous chapter. With the new sizes, the

RAM layout area is more compact than before, while write time is decreased. The

switch transistors' dimensions were chosen to minimize the output bus capacitance,

due mainly to drain diffusion, while maximizing the available current through the

switch to discharge the bus within half a clock cycle. With the aid of spice3 sim

ulations which includes the bit line load capacitance for a 16x16 array, the RAM

circuit writes a 0 in 10ns and a 1 in 31 ns. For a 64x64 array, the write times are



96

din

dout

N3

T
PI

SW

_L
i\ a | 2

N2

j: 1

•< write

swd

Figure 7.5: Interconnection Leafcell Circuitry

28ns and 50ns, respectively. The two switch devices discharge the 5V precharged

output bus within 25ns.

The layout for the interconnection cell is shown in Figure 7.6. The dimen

sions of this cell are the same as that for the Crossbar Switch in Chapter 6. Also,

like the interconnection cell for the first Crossbar Switch , the write, dout output,

and ground lines run horizontally, while the swd bit, din input, and power lines run

vertically. These dimensional and routing features are preserved in the masked OR

interconnection cell so that the Pointer and Shift Register designs from the original

Crossbar Switch can be re-used, reducing the design effort put into the masked

OR Crossbar Switch. For the Array macrocell, adjacent interconnection cells share

power contacts and data out contacts.

The periphery circuits that support the "wired or" circuitry include an

data input buffer, a data output buffer, and a precharge cell. Figure 7.7 shows

the input buffer circuit. There is one of these cells for every input channel. The

right-hand cmos pass gate samples the input signal, Din, on the rising edge of the



97

Figure 7.6: Interconnection Leafcell Layout

ph2 phase. On this edge, the circuitry to the left pulls node Y high and, hence,

discharges the internal din bus low, irrespective of the external input signal. While

ph2 is low, the sampled data is stored at node X and the signal propagates through

the right pass gate to the internal input bus din. The pmos pullup is turned off.

Transistors for the left inverteraresizedto drivethe input bus between high and low

within half a clock period. The parasitic capacitance present on this bus is modeled

as cumulative gate oxide capacitances from the 16 switches connected to a bus.

The layout for this cell is shownin Figure 7.8. The terminal for the external input,

Din, appears at the top, while the data terminal din resides at the bottom. The

placement of the second terminal aligns with the din line of the interconnection cell

placed just belowit. Power lines run vertically in metall, and they areperpendicular

to the ph2, ph2- and ground lines which are metal2.

Data on the output bus in the Array is evaluated during the low of ph2.
So, the output buffer cell, shown in Figure 7.9, samples the bus signal at the dout
node during the high of the phi phase and inverts that signal. If the output bus



98

Din> > din

Wn.14

Figure 7.7: Input Buffer Circuitry

Figure 7.8: Input Buffer Layout



99

dout > > Dout

(a)

dout

(b)

Figure 7.9: (a)Output Buffer Circuitry (b)Precharge Circuitry

signal should be high, the weak pullup attached to the dout node helps to maintain

this state. Otherwise, the bus is floating and may drift from its high level' due to

capacitive noise in the Array. Upon the falling edge of phi, the buffer holds the

data at node A and the output signal is valid at the Dout node. The layout for the

output cell is shown in Figure 7.10. There is one output buffer for each output bus,

and adjacently placed cells share contacts to power and ground. The dout terminal

aligns with the output bus line of the interconnection cell placed to the right. Based

on spice3 simulations using estimated load capacitances on the output bus, output

data switches from high to low within 13ns after the rising edge of phi, and from

low to high in 11ns.

The Array macrocell also includes a precharge cell which is a single pmos

device with W/L=14/2 that precharges the output bus to 5V during the ph2 pulse.

In addition, there are two cells that drive the clock signals to the input and output

circuits, and the precharge circuits.



100

Figure 7.10: Output Buffer Layout

Macrocell Design

The Array macrocell is layouted out as a 16x16 matrix of interconnection

cells. As in the previous Array, the leafcells are mirrored about the X and/or Y
axis and abutted against neighboring cells to share contacts. Along the macrocell
periphery, 16 input and 16 output buffers are set along the top and left edge,
respectively. The precharge cells are located at the right edge. The two clock signal
drivers are placed at the upper left and right corners. Figure 7.11 illustrates the cell
placement to construct a 4x4 Array macrocell. The data input terminals and data
output terminals are distributed along the top and left edge, respectively; the write

signal terminals, included in the precharge cell layout, appear at the right and the
configuration signals, swd, enter the macrocell from the bottom.

Shift Register and Pointer

In programming the crossbar configuration, the Array at the macrocell
level behaves just as that for the previous Crossbar Switch. This makes it possible



-*— &" &" «~ #*** -ST*** sp #~w

5*»

S5"

• &<•<(«]

BE

• j)«tta]

e

• £«tci]

EJI

•£«tu

clkdr.oaaplo

clkdr.saaplo.8

out

out_2

out

out.l

out

out.B

out.bta

out.bta_B

.eu—fe

In

1n_0

1c

1c_8

1c

1c_4

1c

1c_B

Ic.bta

lc.bta.8

1n.l

1c

1c_9

tc

1c_5

1c

1c„l

Ic.bta

1c.bta_l

ftillll m

In

1n_2

ic

1c_18

ic

1c_6

Ic

1c_2

Ic.bta

1c.bta_2

ft»«i»i

Figure 7.11: 4x4 Array Layout

IT™ £

In

1n_3

Ic

1c.ll

Ic

1c_7

Ic

lc.3

Ic.bta

1c.bta_3

"mill ft

101

»-*•

clkdr.pro
$VM

c1kdr.pro_9

pre

pre_2

pro

pro_l

pro

pre„8

5 «••

J IK

JR..WIMC«]

•rititll

5

«

wttttlj

M-itttt)

pro.bta SsJ-

pre.btm.B

m SyVi.



102

Wp-7

Q3 >

> wrctl

Q2>

Wn-10

Figure 7.12: WrctJ Control Signal Logic

to reuse the same Shift Register and Pointer circuit and layout design, discussed

in Chapter 6, for the programming section of the masked OR Crossbar Switch.

Also the RAM design for this Array presents an estimated bit and write line load

capacitance that is less in value than those for the previous Array. So, for the

masked OR Array, the Register and Pointer circuits' driving capability should be

more than adequate to charge and discharge these line capacitances in the required

time. There is practically full confidence in their circuit and layout design reliability,

since a fabricated original Crossbar Switch demonstrated a Shift Register and a

Pointer macrocells that performed within requirements.

Programming Control

The Programming Control macrocell generates the control signals to pro

gram the configuration into the Array memory. It derives the Id, Id-, Pin, and

wrctl signals from a two phase non-overlapping clock and the reset pulse. This is

implemented with the 4-bit counter and the logic that generates the Id, Id- and

Pin signals described in Chapter 6. The wrctl signal logic was redesigned for the

masked OR Crossbar Switch. Here, the wrctl circuit is a NAND gate followed by

and inverter to produce the logical AND of the Q2 and Q3- output signal from the

counter. This is shown in Figure 7.12, and the resulting wrctJ pulse covers four clock

cycles, allowing 400ns to write a memory cell. The previous Crossbar memory write

time lasted 1000ns. According to spice3 simulations of the RAM circuit, the 400ns

time is more than sufficient to write the circuit. Tests results for the fabricated



103

Crossbar Switch demonstrated that the memory cell content could change within

one clock cycle, reinforcing the choice for a shorter write time. Figure 7.13 shows

the timing requirements for configuration programming.

Clock Generator

The Array, Shift Register, Pointer and Control macrocells operate from a

two phase non-overlapping clock signal. The clock generator described in Chapter

5 is placed into the masked OR Crossbar design to supply the two phases. The

four macrocells include local clock drivers to generate their own phi and ph2 phase

complements.

Test Cell

Anticipating debugging during future testing, the five leafcells that com

prise the Array are placed into a test structure. This test block is included in the

final masked OR Crossbar Switch submitted for fabrication.

7.3 Synthesis from Macrocells

Crossbar Switch Core

Other than the test structure, the functional circuitry realizing the masked

OR architecture consists of the five macrocells discussed above. Through Design

Manager, these macrocell layouts are generated automatically by TimLager given

the one parameter, nodes. Including the test cell, they are placed and routed man

ually to form the Core circuitry, which is treated at a higher level as a macrocell

also. The core layout is shown in Figure 7.14. The floor plan follows the same

placement as in the previous Crossbar Switch. The clock generator and test cell is

placed along the left side of the core. The layout produced uses the same routing

strategy as described for the core circuitry of the previous Crossbar. The Din input

terminals are at the top edge of Figure 7.14, while the Pout output terminals are



1) ph2

2) phi

—v—v—v—v—V
3) config A A A A A

4) reset

5) Pin

6) Id

7) wrctl

\

jooooc

\

\

4 dock cycles

config configuration bit
input to Control

reset input to Control

Pin output from Control

Id output from Control

wrctl output from Control

Figure 7.13: Timing Diagram for Configuration Programming

104

x.

Y



105

located along the right side of the core boundary. The con£guration, reset and

clock signal terminals are distributed along the bottom and right edges. Several

terminals included for test purposes reside along these edges also.

Chip Layout

The chip layout is generated with Flint. Since the place and route from

core to pads was performed manually for the previous chip, this chip was generated

at one higher level of automation. Using an sdl description that treats the core and

each side of the pad frame as macrocells, Design Manager invokes TimLager which

generates the macrocells. Then it calls Flint which places the four pad groups into

a frame structure surrounding the core and routes from the core terminals to the

corresponding pads. For each pad group in the frame, Table 7.1, 7.2, 7.3, and 7.4

describes the pad types residing in that group and the signal assigned to the pad.

To reduce inductive voltage drops during current switching, the pad frame includes

several ground and power pads distributed evenly through the frame. The area

consumed by the Crossbar Switch is pad limited for the 16x16 case. A fabricated

masked OR Crossbar switch, in 3/zm scmos technology, occupies 61mmx61mm of

silicon area. The original Crossbar switch occupied the same amount of area.

7.4 Simulations

Circuit simulation aided in designing the leafcell circuits. Logic simulations

verified the leafcell logic and layout connectivity. The simulations simulations used

the same input test patterns and encountered the same difficulties as in the original

Crossbar Switch.

At the macrocell level, layouts were extracted and then logically simulated

to confirm their functionality. For the Array, Shift Register and Pointer macrocells,

TimLager generates the layout by tiling the leafcells according to a repeated pat

tern. Specifically, leafcells are stacked vertically to create the Pointer, odd and

even leafcells are alternately abutted to form the Shift Register, and interconnec-



106

Figure 7.14: Core Layout



North Side Pads from Left to Right

name type description
Vdd Vdd

Dinl input channell input
Din2 input channel2 input
Din3 input channel3 input
Din4 input channel4 input
Din5 input channel5 input
Din6 input channel6 input
Din7 input channel7 input
Din8 input channel8 input
Din9 input channel9 input
DinlO input channellO input
Dinll input channell1 input
Dinl2 input channell2 input
Dinl3 input channell3 input
Dinl4 input channell4 input
Dinl5 input channell5 input

Table 7.1: Pads on North Side of Pad Frame

East Side Pads from Top to Bottom

name type description
Dinl6 input channell6 input
Pout output output from Pointer, for test
in input to test structure

out.ip output from test structure

out.op output from test structure

GND GND

pre.ic input to test structure

substrate space chip substrate contact
wr.ic input to test structure

Vdd Vdd

out.ic output from test structure

swd.ic input to test structure

elk input single square wave clock
Pin output control signal from Control macrocell
reset input initiates configuration programming
testout output for test

Table 7.2: Pads on East Side of Pad Frame

107



South Side Pads from left to right

name type description
Doutl output channell output
Vdd Vdd

config input configuration, serial input
GND GND

srout output from Shift Register, for test
Id- output control signal from Control macrocell
ld output control signal from Control macrocell
wrctl output control signal from Control macrocell
phi2 output from clock generator
phil output from clock generator
Vdd Vdd

GND GND

testout* output for test

testin input for test

Table 7.3: Pads on South Side of Pad Frame

West Side Pads from Top to Bottom

name type description
GND GND

Doutl5 output channell5 output
Doutl4 output channell4 output
Doutl3 output channell3 output
Doutl2 output channell2 output
Doutll output channell1 output
DoutlO output channellO output
Dout9 output channel9 output
Dout8 output channel8 output
Dout7 output channel7 output
Dout6 output channel6 output
Dout5 output channel5 output
Dout4 output channel4 output
Dout3 output channel3 output
Dout2 output ch'annel2 output

Table 7.4: Pads on West Side of Pad Frame

108



109

tion leafcells are alternately mirrored and abutted to generate the Array. Actual

simulation used macrocells formed by tiling with the prescribed pattern once. This

should suffice as a substitute for the full sized macrocell, since simulating an ex

tracted 16x16 array or 16 cell Pointer/Shift Register with the esim or kesim tool is

practically unmanageable. A 4x4 Array was extracted and simulated with kesim.

The simulation verified that an output could be connected to none, one, two or

three inputs after the memory cells were programmed. To ensure that mirroring

of the array's leafcells did not cause errors at the macrocell level, logic simulations

were performed with various configurations. A two cell Shift Register and Pointer

was created by their TimLager routines and then extracted and simulated. These

simulations were straight forward.

7o5 Testing

A 16x16 Masked OR Crossbar Switch implemented with the described

design has been placed on a chip, and submitted in November, 1987 for fabrication

in Zftm. pwell scmos technology. After return from fabrication in March, 1988, the

silicon was tested and performed properly at 20MHz. Tests beyond this rate give

unreliable results due to equipment limitations. On chip, an input pad terminal was

connected to an output pad terminal. Testing this structure, a 14ns propagation

delay through the two pads combined was measured.

The submitted chip provides output pins for quick macrocell checks. The

output of the last register in the Shift Register is connected to an output pad.

During testing, this output signal should be the configuration signal delayed by 16

clock periods. The Pointer also has its last register's output brought off chip for

observation. All four control signals produced by the programming control unit

have their terminals connected to output pads also. These signals should match

those shown in the timing diagram of Figure 7.13. The test strategy is the same

as that described in Chapter 6. This type of testing will help isolate errors to

their respective macrocell if any were to occur during testing, although it may not

help in finding the cause of the problem to a great extent. The test structure has



110

its input and output terminals connected to I/O pads. The Array leafcells can be

directly tested by applying test patterns to the input pads and watching the leafcells

response at the output pad. After verifying that the programming macrocells and

the Array leafcells work, the next step is testing Array operation.

The purpose in testing the Crossbar Switch Array is to check that each

RAM cell is fully programmable and that each switch can be turned on to pass

the selected input signal or turned off. The test method and test vectors discussed

for the Crossbar Array test in Chapter 6 are also applicable for this case. The

input signal applied to the selected channel is a stream of alternating 1 and 0 bits.

Because signals processed by the Array switches are clocked, the toggling signal

observed from an output pad is delayed by one clock cycle relative to the toggling

input signal. The outputs Dout which are independent of any data input exhibit a

constant 0 signal due to action of the pullups on the output bus inside the Array.

To complete functional testing, the fabricated chip should operate with

realistic configurations. Importantly, to test the masked OR feature, configurations

where an output is dependent on several inputs are used, as well as the case where

an output is connected to one or no input channel. The observed output data is

expected to be the logical OR of the selected input data. Strictly speaking, the

Masked OR Crossbar specifications do not require that the output be the logical

OR. Since, in an collision event where data from multiple sources collide at one

destination node, the received data would be considered as invalid anyway. But, for

this Crossbar Switch, the "wired or" circuitry preserves the logical integrity of the

output signal during a collision. During testing, this helps to show that unselected

inputs are not interfering at the observed output.



Chapter 8

Impact of LAGERIII Tools and

Suggestions

Throughout this project, IC design tools were applied to logic minimiza

tion, simulation, leafcell abutment and tiling, and macrocell placment and routing.

These tools saved development, redesign, and debugging time throughout all levels

of the design hierarchy, and this savings was their greatest benefit. Specifically,

the LAGERIII system reduced the time devoted to layout generation, allowing the

designer to place more effort on architectural, logic and circuit design, and simula

tions.

Design Manager provided a structured and tractable implementation of

the design process. For the Tap Switch design, the numerous parameters that

describe the PLA contents and the connectivity specifications between PLAs, the

address latch, and the I/O pads were systematically listed in the sdl description.

This provided an organized way to manage the design information. The same holds

for the Delay line and the Crossbar Switches. Because the described chips have

highly modular architectures, the LAGERIII tools, TimLager and FHnt, were well
suited to generate the macrocells.

TimLager is the most frequently used of all the tools. The flexibility of the

chip designs is extended by TimLager's notion of a parameter. In the Tap Switch

example, a change in the PLA contents and the size of the address latch can be

111



112

easily reflected in layout by reassigning the parameter values. For the Delay design,

delay lines of different lengths are generated from predesigned leafcells and the same

module .c routine. The Crossbar Switch macrocells are described by the one param

eter, nodes. Given the parametric descriptions of the modules, the LAGERIII tool

can generate Crossbar Switches, that accommodate different numbers of channels,

from the same architectural and circuit design.

TimLager also reduces redesign time of macrocell layouts. In a few cases,

during macrocell development, the designer modified a leafcell layout that meant

changing the amount of overlap during abutment. To generate the new macrocell

layout, the designer needs only to make minor modifications to the .c routine place

ment instructions and invoking TimLager. Currently, the designer must check that

terminals along leafcell boundaries, whether signal, power or ground, abut properly

after TimLager tiles the cells. This is done by manual inspection while in magic, or

extraction and simulation. If TimLager supports a program that looks at a termi

nal netlist and extracted terminal positions, and then checks that terminals meet

corresponding ones along neighboring cells, it could be an even more powerful tool

and could save macrocell development time.

For placing and routing macrocells including core and pad groups, Flint

was also useful. Many times during first passes, it produced results that contained

design rule violations or awkward routing that compromised design reliability. Nev

ertheless, it at least gave a good initial place and route solution. From there, the

designer manually edited the initial result into an acceptable final layout. This saved

development time in floor planning and in connecting large amounts of signal ter

minals, since first pass placement and route performed manually is error prone and

time consuming. Overall, custom effort was most frequently applied to distributing

clock lines and widening power and ground lines to ensure design reliability.

As a suggestion, a tool that performs electrical connectivity checks would

enhance LAGERIII system capabilities. Before logic simulation of the layout, con

nectivity between macrocell signals was visually verified during a magic session.

Similar in concept to the leafcell terminal check, the tool could use the netlist pro

vided in the sdl or hdl descriptions to check signal connectivity in an extracted



113

layout. Connectivity verification will give the designer added confidence in the

design prior to logic simulation, and it will save design time in the long run by

detecting connectivity errors at an earlier stage.



Chapter 9

Future Work

To be truly useful and meaningful, the set of chips needs to be incorporated

into a channel emulator system. After all, this application is their intended purpose.

Future work is in system level design, and further work with these ICs should be

directed toward adjusting the chip design to support a 32 node system.

System level design will include development of the interface between the

channel emulator chips and the node emulator according to specifications. Behav

ioral modeling and system level simulation will aid the design. At a higher level,

the Input and Output Router address is up to six bits wide and provided in par

allel. So, to program the channel emulator, system design also requires developing

software that converts the address into a decoded, bit serial configuration address

for the Crossbar Switches. Board design issues include definition of hardware spec

ifications, hardware design, distribution of global clock signals, and testing and

debugging the fabricated board with and without the chips.

To implement a 32 node system, a 64x64 crossbar switch could be gen

erated from the described design. The parameter nodes is reassigned from 16 to

64. The Array, Pointer, and Shift Register design for the 16x16 case is generic

and applies to a 64x64 case. But, since parasitic capacitances that load the write,

bit, and data lines increase linearly with the parameter value nodes the line drivers

in the Shift Register, Pointer and Array I/O buffers may need their W/L ratios

to be increased. Presently, the drivers are designed to surpass speed requirements

114



115

for a 16x16 operating environment. Nevertheless, to implement a 64x64 Crossbar

Switch, re-evaluating the driver designs and increasing the driving capability will

ensure that the Crossbar Switches still function at 10MHz. This consequently means

modifying existing leafcells.

In addition, the program control macrocell needs to be redesigned for the

64x64 Crossbar Switches. The Jd, Id-, Pin, and wrctl control signals will be derived

from new logic and a 6-bit counter. The same leafcell circuits provided by Alex

Lee's counter design can be used again for the new counter.

Interestingly, the Masked OR Crossbar Switch can also be substituted for

the regular Crossbar Switch, without violating system specifications. The difference

is that the Masked OR Crossbar synchronizes its data inputs and outputs, whereas

the regular Crossbar Switch can handle inputs and outputs that are asynchronous.

Unlike the Crossbar Switch, the Tap Switch and Delay Line design is

independent of the number of nodes in the channel emulator system. So, their circuit

design is completely applicable to any nxra emulator. Of the four chips designed, the

Delay Line and Masked OR Crossbar Switch have local two-phase non-overlapping

clock generators. A Tap Switch that includes a clock generator could be placed

on a chip and submitted for fabrication. Since the current Tap Switch area is pad

limited, an additional clock generator would occupy area that is now unused. With

clock generators placed in every chip, the clock signal generation and distribution

problem at the board level will be simplified, since a 10MHz symmetric waveform

needs to be routed to the ICs rather than two waveforms.



Chapter 10

Conclusion

This report has described the chip designs for a reconfigurable channel

emulator system, and it has discussed the design methodology which integrates the

use of CAD design tools.

First, all the ICs are programmable, and they can implement a variety of

network topologies. The Tap Switches interface the node emulator to the channel

emulator. The Delay Lines insert variable delays into a bit stream, and the Crossbar

Switches provide reconfigurable network connections. The modular architecture of

each design realizes a channel emulator which can be incremented to any number of

nodes, n, and exploits the parametric nature of the LAGERIII tools. This minimizes

the chip redesign effort for implementing an n node system. The four chip designs

have been fabricated and tested, and are fully functional at the required 10MHz

operating frequency. The results of the chip designs are summarized in Table 10.1.

Second, generating the chips with automatic layout tools used a hierar

chical design approach for organization, design flexibility, and development time

savings. This project demonstrated the importance and usefulness of CAD tools

in IC design, as the chips evolved from the conceptual stage into layout. It has

shown that fast, efficient and reliable chip design is made possible by applying the

LAGERIII tools in a structured approach.

116



117

circuit comment feature area1 # of xtors2 speed

Tap Switch version 1

version 2

Zfim
2fim

2.3mm2

1.1mm2

1,110
1,110

9MHz

20MHz

Delay Line 0 < N < 1023 Zfim 19.8mm2 19,744 15MHz

Crossbar Switch 16 inputs/
16 outputs

3//m 3.3mm2 3,220 12.5MHz

Masked OR

Crossbar Switch

16 inputs/
16 outputs

3/an 4.2mm2 3,466 20MHz

1 area of core circuitry
2 in entire chip area

Table 10.1: Circuit Information Summary



Bibliography

[1] A. M. Kao, L. F. Ludwig, "A Flexible Channel Emulator for Communications

Protocol and Architecture Research", ERL M85/83, November 1985, U.C.

Berkeley EECS Department.

[2] Neff, Robert, "Design of a Custom IIR Filter using LAGER", M.S. Report,

May 1987, U.C. Berkeley EECS Department.

[3] Lee, Chang-Chuan Alex, Unpublished Work.

[4] R. Jain, TimLager USERS MANUAL, U.C. Berkeley, September 1986.

[5] C. S. Shung, R. Jain, Design Manager for Lager-III, U.C. Berkeley, January

1987.

[6] Mukherjee, Amar, Introduction to nMOS and CMOS VLSI Systems Design,

Prentice-Hall, Englewood Cliffs, NJ, 1986, pp. 211-223.

[7] J. Rabaey, S. Pope and R. Brodersen, "An Integrated Automatic Layout

Generation System for DSP Circuits", IEEE Trans. Computer-aided Design,

CAD-4(3):285-296, July 1985.

[8] P. Ruetz, et al, "Automatic Layout Generation of Real-Time Digital Image

Processing Circuits", CICC 1986.

118



Appendix A

Macrocell Library

The macrocells related to the Tap Switch, the Delay Line, the Crossbar
Switch, and the Masked OR Crossbar Switch are listed below for each design. The
list is arranged in hierarchical order, showing how the cells are composed of macro-
cells down to the lowest level macrocell. Each macrocell entry starts with the
instance name, which is usually shown as it appears in the brodersuns file system,
and it is then accompanied by at most four descriptive pieces of information. First,
the generic macrocell name, if one exists, follows the instance name. Second, if
the macrocell was developed by the author, parameters associated to the generic
cell are given. Then a brief explanation about the macrocell appears in brackets
[]. Finally, the entry may give names of .sdl or .parval files that contain important
netlist information and assigned parameter values.

All the files related to the macrocells reside in subdirectories of the "sun

or "lager directories. After the hierarchy of macrocells, a list of paths to the related
directories are given. This includes paths to the .sdl, .parval, and TimLager .c and
.0 files. Paths to magic layout files throughout the layout hierarchy appear last. All
the magic files for leafcells contained in a macrocell are located together in the same
directory. These leafcell directories are under their respective TimLager directories.

Leafcell layout designs follow scmos design rules. Their circuits are de
scribed in preceding chapters of this report.

119



120

Tap Switch
tapcore [core circuitry]: tapcore.sdl tapcore.parval

data.tap fsm [data PLA]
carrier.tap fsm [carrier PLA]
violation.tap fsm [code violation PLA]
config_latch latch(parameter nbits) [configuration address latch]

pad frame

north40 scpads2 [top group of 2u pads]
south40 scpads2 [bottom group of 2u pads]
east40 scpads2 [right group of 2u pads]
west40 scpads2 [left group of 2u pads]

(sdl-parval ~sun/tap/tap_rev2/core)
(TimLager "sun/Tim/fsm "sun/Tim/latch ~lager/LagerIII/lib/TimLager/scpads2)
(magic ~sun/tap/tap_rev2/chip ~sun/tap/tap_rev2/frame/layout
~sun/Tim/scpads2/leafcells ~sun/tap/tap_rev2/core/layout
~sun/Tim/fsm/leafcells "sun/Tim/latch/leafcells)



121

Variable Register Delay Line
core: dlay.sdl

data.du du [data Delay Unit] : dcore.sdl
dl dline(manually created) [shift register of length 1]
d2 dline(manually created) [shift register of length 2]
d4 dline(parameter indx cols rows)[shift register of length4]
d8 dline(see above) [shift register of length 8]
dl6 dline(see above) [shift register of length 16]
d32 dline(see above) [shift register of length 32]
d64 dline(see above) [shift register of length 64]
dl28 dline(see above) [shift register of length 128]
d256 dline(see above) [shift register of length 256]
d512 dline(see above) [shift register of length 512]
muxctl pgmux(parameter m) [multiplexer control]

carrier.du [carrier Delay Unit]: dcore.sdl
see data.du

violation.du [code violation Delay Unit]: dcore.sdl
see data.du

dvalue.latch latch [Delay Line address latch]: dcore.sdl
see data.du

cu clock [two phase non-overlapping clock generator]
pad frame

north64 scpads3 [top group of 2u pads]
south64 scpads3 [bottom group of 2u pads]
east64 scpads3 [right group of 2u pads]
west64 scpads3 [left group of 2u pads]

(sdl ~sun/delay/core "sun/delay/core/cells)
(TimLager ~sun/delay/core/cells "sun/Tim/dline "sun/Tim/pgmux "sun/Tim/latch
(magic "sun/delay/chip "sun/delay/frame/layout
~lager/LagerIII/lib/TimLager/scpads3 ~sun/delay/core/layout
"sun/delay/core/cells/layout 'sun/Tim/dline/leafcells "sun/Tim/pgmux/leafcell
~sun/Tim/latch/leafcells ~sun/Tim/clock/leafcells)



122

Crossbar Switch

core

cbarrayl6 cbarray(parameter nodes) [array of interconnect cells]
shiftregl6 shiftreg(parameter nodes) [shift register that transfers

configuration bits onto the bit lines in array]
pointerl6 pointer(parameter nodes) [pointer that controls write

lines in the array]
Ctrl [programming control unit, contains control logic and counter]

pad frame [created before scpads library existence]
in [buffered input pad]
out [buffered output pad]
gnd [GND pad]
vdd [Vdd pad]
dummy [dummy pad]
corner [cornerpiece for pad frame]

(TimLager ~sun/Tim/cbarray "sun/Tim/shiftreg **sun/Tim/pointer)
(magic ~sun/cb21ay/3u_lib ~lager/LagerIII/lib/TiinLager/scpads3(may use))



123

Masked OR Crossbar Switch*

Crossbar Switch [highest level in hierarchy]: crossbar.sdl crossbar.parval
CBcore cbcore [core circuitry]: cbcore.sdl

array cbar3(parameter nodes) [array of interconnect cells]
shiftreg shiftreg(parameter nodes) [shift register that writes

configuration bits onto the bit lines in array]
pointer pointer3(parameter nodes) [pointer that controls write

lines in the array]
pcu cbpcu [programming control unit]

ctlog [logic that generates programming control signals]
prcount pc(parameter width) [counter]

clkgen clock [two phase non-overlapping clock generator]
pad frame

north64 scpads3 [top group of pads]
south64 scpads3 [bottom group of 2u pads]
east64 scpads3 [right group of 2u pads]
west64 scpads3 [left group of 2u pads]

(sdl-parval "sun/crossbar/chip "sun/crossbar/core)
(TimLager "sun/crossbar/core/CBcore "lager/LagerIII/lib/TimLager/scpads3
"sun/Tim/cbar "sun/Tim/shiftreg "sun/Tim/pointer "sun/Tim/cbpcu "sun/Tim/cloc
(magic "sun/crossbar/chip/layout "sun/crossbar/core/layout
"sun/Tim/cbar/leafcells "sun/Tim/shiftreg/leafcells "sun/Tim/pointer/leafcell
"sun/Tim/cbpcu/leafcells "sun/Tim/clock/leafcells
"lager/LagerIII/lib/TimLager/scpads3/leafcells)

* the .c routines are used with TimLager3



Appendix B

Tap Switch Design Example

In Chapter 4, a hierarchical design approach applying macrocell generation
techniques was discussed. The Tap Switch design provides a good example of the
design process. This appendix contains a tutorial on generating the Tap layout
with the LAGERIII tools. These tools construct the layout given a high level
architectural description, this section illustrates how the architecture is described,
and it specifies the particular LAGERIII tool employed at each stage in the layout
design.

The tutorial was prepared in July, 1987 as part of a comprehensive docu
ment on the LAGERIII system.

124



1.TAP

The Tap Switch — J. Sun

A. Introduction

A computer network has node stations and the channel which physically links the nodes. The Tap
Switch emulates the interface between the node and the tansmission medium, simulating how the
nodes access or "tap" the physical channel. At the interface, the node can transmit or receive data,
and data can be transmitted to or received from the channel. This is.shown in the high level view of
theTap SwitchinFig. A.l. To connectthenodeand thechannel, eachof theTapoutputportsignals
~ nrcv, plxt, p2xt - can be set to 0,1 or somecollection of the inputport signals- nxmt,plrv, p2rv
- ORed together. A particular collection is the tap configuration, and it is specified with a 9 bit
configuration address. The signals are 3 bits wideand are individually knownas data, carrier, and
code violation.

Since the threebits propogate between nodes in parallel, the node "taps"into the physicalchannelat
the interfacewith identical tap configurations for all three signals. This means that the Tap Switch
interface can be composed of three identical structures, one for each signal in the 3-bit wide data
stream. Each structure is also referred to as a tap switchand is implemented through a PLA circuit
All the PLAs contain the same logic. In addition to the tap switches, a 9 bit latch stores the
configuration address whichcontrols the tap switches. The "Id" signal resets the latch for loading a
new address.

Generating the chip layoutwith the aid of automatic layouttoolsusesa hierarchical layoutdesignfor
organization, tractabilityand to introduceflexibility. Amongthe LAGER tools, the Tap Switch lay
out process applies TimLager, Flint and Padroute. DesignManager (DM) coordinates the flowof
layoutgeneration to realizethechip architecture throughout the hierarchy.

A

P1RV

NRCV

A

3 ,'

node

NXMT

Y
/ 3

TAP SWITCH

A

P2RV

channel

Fig.A.1

V

P1XT P2XT

9 address

configuration

-/-«- Id
1



B. Describing the Chip Architecture Using sdl

A description of the chip architecture precedes the generationofany layout

Using the hierarchical design approach for the Tap, the chip architecture is split into three levels.
Each level is viewed as a macrocell, or parent-cell, composed of interconnecting sub-cells. Smaller
cells can make up the sub-cell, qualifying it as a macrocell also. The highest level is known as the
root level. As the hierarchy propagates down, the architecture is furthercontained in the second and
third levels. This section illustrates how the chip architecture is hierarchically described using sdl
(structural design language). At each level, the sdl description containsa list of the sub-cells, a net-
list specifying connectivity between sub-cell terminals, and the layout generator that physically
creates the macrocell. This desciption also includes parameter information that is passed onto Tim
Lager.

For clarity. Fig. B.O shows the hierarchical breakdown of the chip design and the sdl descriptions
which complete the architectural description. All the sdl files mentioned in this example appear at
the end of partB. The parameter file is appended to partC.

Root Level:

Second Level:

instance name

(generic name)

Third Level: configjatch

(latch)

Tap Chip Design Hierarchy

tapcore

(tapcore)

north40, south40, east40, west40

(scpads2)

carrier_tap, data_tap, violation_tap

((sm)

Fig. B.O

sdl files describing chip architecture: tap.sdl
scpads2.sdl
tapcore.sdl
latch.sdl

fsm.sdl

parameter file: tap.parval



RootLevel-

At the root level, the Tap Switch is basically seen as fourpadgroups, which buffer the the chip input
and output signals,and the internal corecircuitry which is actually the functional partof the chip. So,
a set of five subcells form the parent, known as tap,at the top level of the architecture. The subcells
are shown in the Root Level FloorPlan of Fig. B.l, and listed in the tableof Root Level Subcells in
Table B.l. At the root level, the applied layout generator is Padroute, which assembles the pad
frame from the four groups, places the core and connects corresponding signals between the pads
and the core. With Padroute, each subcell hasa special parameter called "fplan," and its assigned
value is shown in the fplan values Table B.2.

Using the floor plan and thetables, theroot level architecture is transformed intoits sdl description
as shown in the tap.sdl file. Since this is the root level description, all parameter names appearing
throughout all hierarchical levels are listed under parent-cell. These parameter names are grouped
undertheir proper subcells as shown in the sub-cells section of the sdl description. In this section,
the parameter namesarealsomatched with thecorresponding generic parameter name. Instances of
generic subcells have their names assigned in this section also. Parameter values are specified with
the sdl description, or in a separate parameters list file, or interactively when running Design
Manager. Besides the subcells, sdl also describes the signal connections between the I/O pads and
the core as shown in the netlist section.

Root Level Floor Plan

tap

north40

* \

w

e

s

t

4
0

^ t

e

a

s

4

0

< \, tapcore

i <

._j t

south40

Fig. B.1



Root Level Subcells

generic-name instance-name

tapcore tapcore

scpads2 north40

scpads2 south40

scpads2 east40

scpads2 west40

Table B.l

fplan values

subcell fplan value

core 'middle

top pad group 'top

bottom pad group 'bottom

left pad group •left

right pad group 'right

Table B.2

Second Level-

Byexpanding the subcells inthe parent, tap, wereach the next level below root within the chip archi
tecture. At this second level of hierarchy, the four pad groups and tapcore arc considered as
parents(they were subcellsat the root level).

Thepad groups are instances of the generic parent scpads2, and there isa sdldescription for it also.
Scpads2 iscomposed of 10 individual pads as shown inFig. B.2, and the pads are abutted using the
layout generator TimLager. Since TimLager deals with leafcells, there are really no subcells within
the parent cell scpads2, and there are no more levels of hierarchy under this parent Thus, the sdl
description for the pad groups contain only the parent cell data with the list of parameter names. The
sdl description is shown in the scpads2.sdl file, and the assigned parameter values appear in the
tap.parval fileat the end of partC.

Scpads Pad Group Plan

(insecond level of design hierarchy)

padO padl pad2 pads pod4 padS pads pad7 pads pad9

parameters:

number - number of outputs

padO- type ol pad In posUon 0

pad9 «type ol pad in position 9

Fig. B.2



Also in the second levelof design hierarchy, the parent tapcore consists of four subcells which are
three tapswitches anda configuration latch. The tap switches direct andcontrol data flow. They are
basically three identical instances of a generic PLA circuit under thenameof "fsm." The latch stores
the9-bitconfiguration address and is an instance of a general n-bitlatch by the nameof "latch." The
Tapcore Floor Plan andthe accompanying listof subcells is shown in Fig. B.3andTable B.3. With
this floor plan and subcell list the tapcore architecture is described with sdl as shown in the
tapcore.sdl file. Layoutgeneration at thislevelapplies Flint, which interactively places the subcells,
routes signals between subcells and connects internal signals to theboundary of the parent cell tap-
core. Using Fig.s B.4 and B.5 which illustrate the internal structure of the subcells, fsm and latch,
the signal connection information thatFlint needs to perform routing is described in the netlist. As
in therootlevelsdl description, all parameters used in thechiparchitecture extending from this level
to the level below arelisted underthe parent cell section. These parameters are grouped undertheir
respective subcell in the subcell section of the sdl description.

Tapcore Floor Plan
(in second level of design hierarchy)

nrcv *•

plxt <-
p2xt 4-

nxmt>-

plrv >-
p2rv >-

9-bit
configuration

address >_

earner

tap

switch

configuration
latch

tapcore

Fig. B.3

data

tap

switch

code

violation

tap

switch

Tapcore Subcells

generic-name instance-name

fsm carrierjap

fsm data_tap

fsm violationjap

latch configjatch

Table B.3

-> nrcv

-> plxt
-*• p2xt

-< nxmt

-< plrv
-< p2rv

•> nrcv

-* plxt
-> p2xt

-< nxmt

-< plrv
•< p2rv



Third Level-

At the second level, fsm and latch were considered as subcells within tapcore. At the third and
lowest level in the design hierarchy, fsm and latch are treated as parent cells. Since there are two
parents - latch and fsm, of which three instances occur, there isaccordingly two sdldescriptions -
latch.sdl and fsm.sdl. The 9-bit configuration address latch and the tap switch PLAs are both gen
erated through application of TimLager, and are illustrated inFig.s B.4 and B.5. Because there are
nomore levels of hierarchy under these parents, it suffices tojust specify the parent cell information
and parameter names as the sdl description. These two sdl files complete the sdldescription of the
entire Tap Switch architecture.

For TimLager to generate the address latch and the PLA, the number of bits stored in the latch and
thecontents of thePLA(logic Is andOs) are treated as parameters. The parameter values are shown
in the tap.parval file.

da >-

07 >-

d8 •-

d5 >-

d4 >-

43 >-

d2 >•

dl >-

dO >•

rami >-

p2rv >-

plrv >-

fsmtnll

fsminIO

fammfl

tsmtnS

fsmtn7

fsmtn6

fsmtn5

fsmln4

(tmtn3

Ismin2

fsmlnl

taminO

parameters:

Tap Switch FSM(PLA) Plan

Input plane

(AND plane)

In - number ol Inputs

out - number of outputs

mlnterm • number of mlnterms

Input-piano - contents of Input plane

output-plane - contents ol output plane

tarn

Fig. B.4

output plane

(OR plane)

out2

nrev

p2xt

plxt



do >

D1

02

D3

D4

D5

D6

D7

08

9-Bit Latch Plan

Fig. B.5

parameters:

nbits-« of stored bits



Jul 27 13:23 1987 tap.sdl Page 1

(layout-generator Padroute)
(parent-cell tap

(parameters in out minterm nbits output-plane input-plane
^ast-padO east-padl east-pad2 east-pad3 east-pad4 east-pad5 east-pad6
aast-pad7 east-pad8 east-pad9 east-number
west-padO west-padl west-pad2 west-pad3 west-pad4 west-pad5 west-pad6
west-pad7 west-pad8 west-pad9 west-number
south-padO south-padl south-pad2 south-pad3 south-pad4 south-pad5
south-pad6 south-pad7 south-pad8 south-pad9 south-number
north-padO north-padl north-pad2 north-pad3 north-pad4 north-pad5
north-pad6 north-pad7 north-pad8 north-pad9 north-number)

)
(sub-cells

(tapcore tapcore
(parameters (fplan 'middle) (in in) (out out) (minterm minterm) (nbits nbits!
(output-plane output-plane) (input-plane input-plane)))

(scpads2 north40 (parameters (fplan 'top) (number north-number)
(padO north-padO) (padl north-padl) (pad2 north-pad2) (pad3 north-pad3)
(pad4 north-pad4) (pad5 north-pad5) (pad6 north-pad6) (pad7 north-pad7)
(pad8 north-pad8) (pad9 north-pad9)))

(scpads2 east40 (parameters (fplan 'right) (number east-number)
(padO east-padO) (padl east-padl) (pad2 east-pad2) (pad3 east-pad3)
(pad4 east-pad4) (pad5 east-pad5) (pad6 east-pad6) (pad7 east-pad7)
(pad8 east-pad8) (pad9 east-pad9)))

(scpads2 west40 (parameters (fplan 'left) (number west-number)
(padO west-padO) (padl west-padl) (pad2 west-pad2) (pad3 west-pad3)
(pad4 west-pad4) (pad5 west-pad5) (pad6 west-pad6) (pad7 west-pad7)
(pad8 west-pad8) (pad9 west-pad9)))

(scpads2 south40 (parameters (fplan 'bottom) (number south-number)
(padO south-padO) (padl south-padl) (pad2 south-pad2) (pad3 south-pad3)
(pad4 south-pad4) (pad5 south-pad5) (pad6 south-pad6) (pad7 south-pad7)
(pad8 south-pad8) (pad9 south-pad9)))

)

; tap chip pads to core connectivity specifications-

; nbits is implicitly assumed to be 9.
(net DO ((tapcore D 0) (west40 DO))
(net Dl ((tapcore D 1) (west40 Dl))
(net D2 ((tapcore D 2) (west40 D2))
(net D3 ((tapcore D 3) (west40 D3))
(net D4 ((tapcore D 4) (west40 D4))
(net nxmt_c ((tapcore nxmt__c) (west40 nxmt__c)))
(net p2rv__c ((tapcore p2rv_c) (west40 p2rv_c)))
(net plrv_c ((tapcore plrv_c) (west40 plrv_c)))

(net D5 ((tapcore D 5)
(net D6 ((tapcore D 6)
(net D7 ((tapcore D 7)
(net D8 ((tapcore D 8)
(net Id ((tapcore Id)
(net nxmt_v ((tapcore
(net p2rv_v ((tapcore
(net plrv_v ((tapcore
(net plxt_v ((tapcore

(north40
(north40
(north40

(north40

D5)))
D6)))
D7)))

D8)))
(north40 Id)))
nxmt_v) (north40
p2rv_v) (north40
plrv_v) (north40
plxt v) (north40

nxmt_v)))
p2rv_v)))
plrv_v)))
plxt_v)))



Jul 27 13:23 1987 tap.sdl Page 2

(net nrcv_d
(net p2xt_d
'net plxt_d
et nrcv_v

(net p2xt_y

(net nxmt_d
(net p2rv__d
(net plrv_d
(net nrcv_c
(net p2xt_c
(net plxt_c

(tapcore nrcv_d)
(tapcore p2xt_d)
(tapcore plxt__d)
(tapcore nrcv_v)
(tapcore p2xt_v)

(tapcore nxmt_d)
(tapcore p2rv_d)
(tapcore plrv_d)
(tapcore nrcv__c)
(tapcore p2xt_c)
(tapcore plxt c)

(east40 nrcv_d)))
(east40 p2xt_d)))
(east40 plxt_d)))
(east40 nrcv_v)))
(east40 p2xt_v)))

(south40
(south40
(south40
(south40
(south40
(south40

nxmt_d)))
p2rv_d )))
plrv_d )))
nrcv_c)))
p2xt_c)))
plxt_c)))



Jul 27 13:52 1987 scpads2.sdl Page 1

(layout-generator TimLager)
(parent-cell scpads2
(parameters

number padO padl pad2 pad3 pad4 pad5 pad6 pad7 pad8 pad9)



Jul 27 13:55 1987 tapcore.sdl Page 1

(layout-generator Flint)
(parent-cell tapcore (parameters in out minterm

nbits output-plane input-plane))
ub-cells

(fsm data_tap (parameters (in in) (out out)
(minterm minterm) (output-plane output-plane)
(input-plane input-plane)))

(fsm carrier_tap (parameters (in in) (out out)
(minterm minterm) (output-plane output-plane)
(input-plane input-plane)))

(fsm violation_tap (parameters (in in) (out out)
(minterm minterm) (output-plane output-plane)
(input-plane input-plane)))

(latch config__latch (parameters (nbits nbits)))
)

; tapcore internal and external connectivity specifications
;give net_name parameter connectivity:-parent signifies connection to

outside world.

; -subcell signifies internal connection,

(net d nbits ((config_latch d) (data_tap fsmin 3) (carrier_tap fsmin 3)
(violation_tap fsmin 3)))
(net D nbits ((parent D) (config_latch D)))
(net Id ((parent Id) (config_latch Id)))

(net nxmt d (
(net p2rv_d (
(net plrv_d (
(net nrcv d (
et p2xt d (

..iet plxt_d (

(net nxmt__c (
(net p2rv__c (
(net plrv_c (
(net nrcv c (
(net p2xt_c (
(net plxt_c (

(net nxmt_v (
(net p2rv_v (
(net plrv_v (
(net nrcv v (
(net p2xt_v (
(net plxt_v (

(parent nxmt_d
(parent p2rv__d
(parent plrv_d
(parent nrcv_d
(parent p2xt_d
(parent plxt__d

(parent nxmt_c
(parent p2rv__c
(parent plrv__c
(parent nrcv_c
(parent p2xt_c
(parent plxt_c

(parent nxmt_y
(parent p2rv_v
(parent plrv_v
(parent nrcv_v
(parent p2xt_v
(parent plxt_v

(data_tap
(data_tap
(data_tap
(data_tap
(data_tap
(data_tap

fsmin 2)))
fsmin 1)))
fsmin 0)))
out 0)))
out 1)))
out 2)))

(carrier__tap fsmin 2)))
(carrier_tap fsmin 1)))
(carrier_tap fsmin 0)))
(carrier_tap out 0)))
(carrier_tap out 1)))
(carrier_tap out 2)))

(violation_tap fsmin 2)))
(violation_tap fsmin 1)))
(violation_tap fsmin 0)))
(violation_tap out 0)))
(violation_tap out 1)))
(violation_tap out 2)))



Jul 27 15:31 1987 fsm.sdl Page 1

(layout-generator TimLager)
(parent-cell fsm (parameters in out minterm output-plane input-plane))



Jul-27 13:56 1987 latch.sdl Page 1

(layout-generator TimLager)
(parent-cell latch (parameter nbits))



C. Generating Layout With Design Manager

The sdldescription embodies the Tap Switch architecture. DM essentially takes thesdldescription
and the parameter values to form a complete hierarchical description of the design and directs the
Lager tools to generate the layout.

The sdl files are set up before invoking DM, however the assigned parameter values need not be
specified before that. The parameter values are either given in the sdl files directly, or listed in a
parameter file which DM is instructed to call, or entered interactively while in DM. For this Tap
Switch example, the parameters are given withthesecond option above. All thevalues are specified
asshown in the tap.parval file. The parameter names were explained in part B. To generate thislay
out, the flag options c mIwere entered into DMtospecify thescmos, magic and TimLager labelling
options. Given the sdldescriptions and upon reading theassigned parameter values, DM can invoke
TimLager to generate the layout for the 9-bit latch and the three PLAs at the lowest level of the
design hierarchy. To realize tapcore, DM calls Flintand givesthatlayout generator thesignal termi
nal information necessary for routing. Finally, after invoking TimLager to layout the four pad
groups, DM calls Padroute to complete the chip layout DM produces a dm.log and lg.log file
where it dumps its diagnostic messages.

The use of parameters introduces flexibility into the Tap architecture. With the sdl descriptions set
up, only the parameter values need to be modified to generate Tap Switches with different logic
functions. Specifically, for the caseof theTap Switch,generating the layout for a new design using
a different number ofaddressbits and different PLA contents is conveniently handled by entering the
appropriate new parameter values. The sdl description does not change except for thoseassociated
with scpads2 and Padroute. DM takes the new values and coordinates the same layout process as
before with the Lager tools to create a new layout



:21 1988 tap.parval Page 1

(in 12)
(out 3)

(minterm 20)
'nbits 9)
utput-plane
array: nrcv p2xt plxt

((array 1100 | )
(array 1010 I )
(array 001| )
(array 0101 )
(array 1010 I )
(array 10011 )
(array 001| )
(array 1001 )
(array 0101 )
(array 001| )
(array 010| )
(array 001| )
(array 100 1 )
(array 1001 )
(array 0101 )
(array 001| )
(array 1001 )
(array 1001 )
(array 0101 )
(array 0011 ))

(input-plane
; array: d8 d7 d6 d5 d4 d3 d2 dl

((array OOlxxxxxxxxl| )
(array xxxOlOxxxxlxl )
(array xxxxxxOlOxlxj )
(array xxxlOOxxxxxl| )
(array xxxxllxxxlxxj )
(array xxxxxxlOOxxl1 )
(array xxxxxxxlllxxj )
(array lxlxxxxxxxlx1 )
(array xxxOOlxxxxxlj )
(array xxxxxxOOlxxlj )
(array xxxlxlxxxxlxj )
(array xxxxxxlxlxlx| )
(array lllxxxxxxxxxj )
(array xlOxxxxxxxlxl )
(array xxxlllxxxxxxj )
(array xxxxxxlllxxxl )
(array IxOxxxxxxxxlj )
(array lxxxxxxxxlxxl )
(array xxxlOxxxxlxxj )
(array xxxxxxlOxlxxl ))

(east-mimber (10))
(east-psidO (out p2xt_v ))
(east-psidl (out nrcv v ))
(east-psid2 (Vdd))
(east-psid3 (in phil phil*)
(east-psid4 (dummy))

nxmt p2rv plrv



Feb 18 20:21 1988 tap.parval Page 2

(east-pad5 (in phi2 phi2*))
(east-pad6 (dummy))
(east-pad7 (out nrcv_d ))
(east-pad8 (out p2xt_d ))
(east-pad9 (out plxt_d ))
(west-number (10))
(west-padO (in nxmt c nxmt c*))
(west-padl
(west-pad2
(west-pad3
(west-pad4
(west-pad5
(west-pad6
(west-pad7
(west-pad8
(west-pad9
(north-number
(north-padO
(north-padl
(north-pad2
(north-pad3
(north-pad4
(north-pad5
(north-pad6
(north-pad7
(north-pad8
(north-pad9
(south-number
(south-padO
(south-padl
(south-pad2
(south-pad3
(south-pad4
(south-pad5
(south-pad6
(south-pad7
(south-pad8
(south-pad9

(in p2rv_c p2rv_c*))
(in plrv_c plrv__c*))
(dummy))
(dummy))
(in DO DO*))
(in Dl Dl*))
(in D2 D2*))
(in D3 D3*))
(in D4 D4*))

(10))
in D5 D5*))
in D6 D6*))
in D7 D7*))

in D8 D8*))
in Id Id*))
GND))
in plrv_v plrv_v*))
in p2rv_v p2rv__v*))
in nxmt_v nxmt_v*) )
out plxt_v ))
(10))

in nxmt_d nxmt_d*))
in p2rv_d p2rv_d*))
in plrv_d plrv__d*))
Vdd))
dummy) )
dummy))
GND) )
out nrcv_c ))
out p2xt_c ))
out plxt c ))


	Copyright notice1988
	ERL-88-43 (1 of 2)
	ERL-88-43 (2 of 2)

