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OPTIMAL DIAGONALIZATION STRATEGIES

FOR THE SOLUTION OF A CLASS OF OPTIMAL DESIGN PROBLEMS*

L. He and E. Polak

ABSTRACT

The determination by iterative optimization algorithms of both open and closed loop optimal con

trol laws requires discretization of time and/or frequency intervals. Various approaches to discretization

are possible. We define a successive approximation algorithm which consists of a sequence of progres

sively finer stages of discretization, with a prescribed number of iterations of the optimization algorithm

carried out in each stage. In the optimization literature, this type of algorithm is often called a diago

nalization method. We associate with the successive approximation algorithm two optimal discretiza

tion problems and propose methods for their solutions. The solutions of these problems are discretiza

tion strategies which minimize the time needed to reduce the initial cost-error by a prescribed amount.

Since optimal diagonalization strategies depend on a number of problem parameters which are not

directly available, we present an implementation scheme based on estimates and show by experiment

that it is quite effective.
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1. INTRODUCTION

The numerical simulation of any dynamical system usually involves some form of discretization.

In a design optimization process, as in the design of control systems, seismic resistant structures, elec

tronic circuits, and shapes of structural elements (see [Pol.2, Pol.6, Bha.1, Nye.l, Ben.l] for examples),

discretization is used not only in the simulation of the system responses, but also in the finitization of

various semi-infinite (continua) constraints. Since many iterations of an optimization algorithm are

needed to solve a design problem, each iteration involving several simulations and constraint function

evaluations, it is intuitively clear that the selection of a discretization strategy must have a substantial

effect on the overall computing time.

To fix our attention on a particular type of optimal design problem that we shall consider in this

paper, consider the design of a finite dimensional parametrized controller, as in Fig. 1, which stabilizes

a linear feedback-system, suppresses output disturbances and yields satisfactory step responses. First

(see [Pol.5]), closed-loop stability is ensured by satisfying the semi-infinite inequality

max Re [ x(x,j<a)ID{%,j<£>) ] 2> o, (1 la)

where x e IR" is the controller-parameter, ^ e IRm is an auxiliary parameter, %(x,s) is the closed loop

characteristic polynomial, and D(Z,,s) is a stable parameterized polynomial of the same degree as x(x,s),

and the components I*1 of § are required to remain in certain intervals, [£',£'].

Next, output disturbance rejection is ensured by imposing a semi-infinite inequality of the form

max { 3[ Hyjxja) ] - bJ.(o) } <0 . (llb)

Finally, the step response yfit.x,!*), in the j-th output channel, resulting from a step input r*(t)t in

the i-th reference input channel, can be confined between two bounding functions, £#(/) < b^t), over

the interval [0,71, by requiring that

rm[?V| (y/(''*'r') "Wto&tixri - fy(O) ^0. (1.1c)

In addition, we can expect that the i-th controller parameter must be confined to an interval [xj,jt],

i = 1,2 n. Let X £ [x e Rrt I* e \£X\, i = 1,2 n) and let S ^ {£ e Rw I£' e [£,?],



i = 1,2 m). The three inequalities (l.la-c) can be solved for an x e X and a %e E by applying a

minimax optimization algorithm (such as one of those described in [Pol.3]) to the problem

mm _ max{ max - Re [%(xJco)/D(4ja)) ],
x 6 X,\ e a o)e [O.coJ

max a[ HJ[pcj<o) ] - fc^co),

max max (v^rO - bift))W(t,xf) - F^fl) J. (12)

until the value of the minimand becomes negative. When the inequalities (l.la-c) are consistent and

can be satisfied strictly, this is a finite process.

It should be clear that a numerical solution of (1.2) entails discretization of the frequency and

time intervals over which the inequalities (l.la-c) were defined. Although for finite dimensional

dynamics the step responses y(f,;c,/i) can be computed without discretization of dynamics (see

[Wuu.l]), when the dynamics involve PDEs, the use of the finite element method for response evalua

tion does require discretization of dynamics.

We see that problem (1.2) is a special case of a general design problem in the form

min max max 6*(z,ti*) . n o\
ze Z kem „*,= # \*-3)26 Z kem r\t6 ,

There are basically two approaches possible. The first is to select a sufficiently fine (safe) discret

ization of the intervals Ik and to solve the resulting discretized version of problem (1.3) until a termina

tion test is satisfied. The second approach is to start out with a coarse discretization and to increase

discretization progressively, as a solution is approached. This approach is justified by two empirical

observations. The first is that when far from a solution, cost reduction is possible even with coarse

discretization; the second observation is that the work per iteration for a minimax algorithm is propor

tional to a polynomial in the number of discretization points. Hence the more discretization points are

used, the more expensive the iterations become. The mechanism for increasing the discretization can

be either closed-loop or open-loop. Closed-loop techniques (see, e.g., [Pol.l], [Kle.l], [Sch.l]), increase

precision whenever the cost-reduction in an iteration drops below a moving floor. Open-loop tech

niques use preassigned discretization rules to decompose the original semi-infinite minimax problem
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into an infinite sequence of finite minimax problems whose solutions converge to the solution of the

original problem. A minimizing sequence is started for each of the approximating problems and is

abandoned progressively closer to a solution, with the last point of one sequence serving as the first

point of the next one. The result is a process which can be visualized as a diagonal progression along

minimizing sequences. Hence they are often referred to as diagonalization techniques (see [Tap.l],

[Dun.l]). Although there appear to be no optimal discretization strategies to be found in the literature,

there is a considerable amount of empirical evidence to indicate that substantial computational savings

can be obtained by increasing the number of discretization points slowly, either by open- or by closed-

loop techniques.

In this paper we will deal only with diagonalization techniques. In Section 2, we propose a for

mulation of an optimal diagonalization problem (for design problems of the form (1.3)) and describe an

algorithm for its solution. In Section 3 we impose additional structure on the optimal diagonalization

problem, proposed in Section 2, to obtain a simplified optimal diagonalization problem, which is much

easier to solve. It can be seen from the numerical results in Section 5 that the total work, resulting

from the use of the optimal strategies for the simplified diagonalization problem, is quite close to that

resulting from the use of the optimal strategies for the original diagonalization problem. In Section 4,

we show that when the work function is monomial, the simplified optimal diagonalization problem, pro

posed in Section 3, has a particularly elegant solution. In Section 5, we propose an implementation of

our optimal diagonalization strategies and present numerical results which illustrate the effectiveness of

our implemented optimal diagonalization strategies in solving two control design problems.

2. AN OPTIMAL DIAGONALIZATION PROBLEM

To simplify notation, we shall consider optimal design problems in the abstract form

P : min{ y(x) \ x e X } , (2.1a)

where y : R* -» R is a locally Lipschitz continuous function andX c R" is a compact set defined by

X £ {x € R" I£l<> x11<, x4, i = 1,2,...* }, (2.1b)



Referring to (1.3), we see that the function \j/(-), can have the form

Y(*) £ maxjken.xifV), (2.1c)

where m ^ { 1,2 m } and

\K*(*) ^ max tffrrft, (2 ld)

the Ik are intervals and the functions <{>*(;c,T|*) are locally Lipschitz continuous, with Lipschitz constant,

with respect to t\*, Lk on Ik.

Next we introduce a parametrized family of approximating problems, with parameter q > 0:

P, : min {x^(x)ljceX} , (2.2)

where \jr, : R" -> R is a locally Lipschitz continuous function for 4 > 0.

We will assume that the approximations y^(•) are accurate to at least first order in IIq, as follows:

Assumption 2.1. There exists a constant K < <» such that for all x e Rn and all q > 0

lH**)-YfCx)l£A7*. (2.JJ

Suppose that \|/*Q is defined as in (2. Id), with Ik k Cno.'nil' F<>r any integer p > 0, we define

\$x) 4 max,, 6,M <J>*(jc,ti*), where /,, * 4 {ti{ ,^ +IJp , ti§ +2Vp,..., r\\ } and /* ^ T|f - tiJ.

Suppose that we select a set of positive weights, { ak )ke m, which determine the relative fineness of

discretization of the various intervals. If for any q >0, we define pk(q) = [atfl + 1 1* ke m, then

the function y,(x) ^ max^myJ^Ct) satisfies Assumption 2.1 with K = max^mLtJiiJlGk. In prac

tice, a sensible assignment of weights ak would be to make ak proportional to £*/*, the product of a

Lipschitz constant and the interval length, as a means for ensuring that the smallest number of discreti

zation points is being used.

The above assumption is also satisfied when the functions <!>*(•, •) are time responses, and the func

tions ^(v) are approximations obtained by means ofan integration procedure, provided that the preci

sion parameters in the numerical integration procedure are suitably keyed to the discretization

1We denote by (o| thesmallest integer larger than orequal to a, and by \a\ the largest integer smaller than orequal to a.
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parameter q.

Let $ ^ min{ y(x) Ix e X } and let yq £ min{ yq(x) \xeX). The effect of Assumption 2.1

is to make the problems P,, consistent approximations to the problem P in the following sense.

Lemma 2.1. Suppose that x e X solves P, that xq e X solves P,, and that the Assumption 2.1 holds.

Then, for all q > 0,

y <£ y(r,) £ y,£?)+Klq =y, +JGTfl , (2-4a)

V, <S y,(r) <y® +JTA? =y +*/? . (2.4b^

We assume that the approximation problems P^ will be solved by a linearly converging minimax

algorithm, defined by an iteration map A: R* x C (R",R) x 2R" -> Rn, which constructs a minimizing

sequence {jc;}r»o according to the formula xi+x= A(xityqJC). Referring to [Pol.4], we see that the

rate constant, 0, of a number of linerly converging minimax algorithms is independent of the number of

discretization points used in the intervals /*, in (2.Id). The fineness of discretization of dynamics also

has no effect on the rate constant. Hence we are justified in making the following assumption.

Assumption 2J. There exists a 9 e (0,1) such that for all x e Rn and all q > 0,

y^Cr.v,JO) - fy <Q(yq(x) - $J , (2.5)

i.e., the algorithm converges linearly in cost, uniformly on the family of approximating problems P,. •

Assumption 23. For any x e R", q > 0, let W(x,yq) denote the amount of computational work

required to evaluate A(x,yq,X). We assume that it is a polynomial function of the discretization parame

ter used and that it is independent of the current value of the iterate, i.e., that for all x e Rn and all

<7>0,

WQcwj =wfo) 4 £ af1 , (2.6)p

i
«» i

where, for i = l,2,...,p, a > 0 and P,- > 0 are integers, such that p£ > p,-_ ls •

We can now state a diagonalization scheme in the form of a successive approximation algorithm

for solving the problem P. The successive approximation algorithm generates an infinite sequence of
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stages, each defined by Step 2, below, and indexed by /, in which the discretization parameter qt is kept

constant and in which a finite number\ nit iterations of a linearly converging algorithm are performed on

the problem Pq.. The algorithm, below, does not include a rule for determining nt and <&. We will pro

vide rules for their determination later.

Successive Approximation Algorithm 2.1.

Data: jcq e Rn .

Step 0: Set no =0, x^ =xq and / =1.

Step 1: Determine the number of iterations nt and the discretization parameter qt to be used in the

i-th stage.

Step 2: Set .4 a 4"_\ • For j = 1,2 nt, compute

aj = A(^.1 ,\fq. ,X). (2.7)

Step 3: Replace 1 by i + 1, go to Step 1. •

Before we can formulate the problem of determining the number of stages s and the i-th stage

parameters nt and qit i = 1,2 s, which minimize the total computational work required to reduce the

initial deviation from optimal cost by a specified amount, we must establish what information can be

extracted from the assumptions we have introduced. Our first observation is that Assumptions 2.1 and

2.2 do not lead to a necessary condition which must hold whenever a relation of the form

V(4;-V<e(#0)-ft (2-8)

is satisfied after s number of stages of Algorithm 2.1. Hence we now establish a sufficient condition.

Lemma 2.2. Suppose that Assumptions 2.1 and 2.2 hold and that Algorithm 2.1 has generated the

sequence {Jtj };".y To'* fr°m me starting point xq . Let et = y(xjj ~V ♦'■ =0.1,2,.... Then

e-i < 4 Klqi + 6"*' en. / = 1,2.... (2.9)

Proof: Since xj = A(xj-i,yq. , X) for i = 1,2,... and j - 1,2 n,-, it follows from Assumption

22 that



V«&0 - Vf( ^ 8 (Yf#-1) - ¥*) , V; = 1,2 nit V/ =1,2,... (2.10)

Hence

¥*(<) " *f, * e"'' (^,(4) - V,,) , V/o 1,2,... (2.U)

Since <?,- = {v(4,) - ¥9| 0^,3 J+ {V*,. - ¥ ) + ( Vq{?&) - % )» il follows from Assumption 2.1,

(2.4b) and (2.11) that

«lsS2»ft+e^(vfJ0*-vf|)

=2A7fc +9"' {(v„(4) - V(4)) +(V - V,,) +(¥(4) - ¥) ) . (2.12)

Since by construction, xq =xj,~_\ , it follows from Assumption 2.1 and (2.4a) that

et < 2 Klqi + e"'' (2 tf/?,- + <?,• _x). (2.13)

Consequently, (2.9) follows from the fact that 0n'" < 1 . •

Corollary 2.1 (Sufficient Condition). Let r0 = \j/(xo) - $ and let

rt = 4A7ft + 8n»' rf _x, i = 1,2 (2.14a)

e,-= ',.//•,-!, i»U (2.14b)

where m and <& are as in Step 1 of Algorithm 2.1. Then (2.8) is satisfied after s stages if rs £ e r0, or,

equivalently, if J"JJ0 i Ei ^ e« •

Definition 2.1. We shall refer to rt and e,- in (2.14a-b) as the estimated cost-error at the point x*n. and

cost-reduction ratio at the i-th stage, respectively. •

Optimal Diagonalization Problem 2.1. Given r0 > 0 and e e (0,1) , find an optimal strategy

S = (s , {nt}fai , {$i }foi), where 3 is the number of stages to be executed, n,- and $« are the

number of iterations and discretization parameter, respectively, to be used in the i-th stage,

i = 1,2,...Xof Algorithm 2.1, which solves the problem

s

D(r0,e) : min{ £ ni w(qd \rs£tr0 , n(e N+ , ft > 0 , j € N+ } , (2.15)
/= l



where rs is determined by means of (2.14a) and 1N+ is the set of positive integers. •

Problem D(r0,e) is a mixed integer programming problem which can be solved using a combina

tion of branch-and-bound and embedding methods. Alternatively, making use of (2.14a) to replace rs in

(2.15), we can rewrite D(r0,e) in the form

* * AK k. kn s
D(r0,e) : min min{ £ nt w(qd I £ —61 + r0Q^ £ e r0 , kt = £ n}, me N+ , qt >0 }{2.16)

*€lN+ «-i i-i ft y-i +i

where fc, 4 0. When the number of iterations used in each stage is likely to be at least 10, a very

good approximate solution to D(r0,e) can be obtained by using a nonlinear programming algorithm on

the inner problem in (2.16), with m relaxed to be a real number, for increasing values of s, until the

cost starts to increase, and then rounding upwards the final values of the n,-. Although we are not able

to prove it analytically, our experimental results indicate that the optimal value of the inner problem in

(2.16) is unimodal in s and hence the enumeration approach, incorporated in the algorithm below, is a

practical, but costly tool for solving D(r0,e).

Algorithm 2.2.

Data: e 6 (0,1), tq.

Step 0: Set w0 = +«> and s = 1.

Step 1: Compute the strategy Ss = (s , { n]} fa x , { qi } f„t) and value ws = JV- i "? w(ffl> by

solving

* * AK k kn *
min{ 2 ^ w(qd I £ —6 ' +ro9 £ e r0 . *,- = 2 ty »*i>° • ft >° J • (2.17)

i=l i o1 ft / =i +1

Step 2: If vv, <w,_1, replace s by j + 1 and go to Step 1. Else, set3 = s - 1, nt = [nf ~H and

ft = <f?"** for i = 1,2,...,j, and S = (J , { A }?• i , { ?,-} ?= i), to be an approximate solu

tion to D(r0,e), and stop. •



3. A SIMPLIFIED OPTIMAL DIAGONALIZATION PROBLEM

We will now show that if we impose the additional requirement on D(r0,e) that the fractional

cost-error reductions in each stage be equal, then we obtain a simplified optimal diagonalization prob

lem which decomposes into an easily solvable sequence of one stage problems. As we will see in Sec

tion 5, the resulting optimal strategies are much cheaper to compute and almost as effective as those of

D(r0,e). The simplified optimal diagonalization problem can be stated as follows:

Simplified Optimal Diagonalization Problem 3.1. Given r0 > 0 and e e (0,1), find an optimal

strategy 5 = (s , a , { n{} J„ x , (};)fol), which solves the problem

SD(r0,£) : min{ £ nt w(qd I AKlq{ +Q\ a1"l =a r0 a1'"l ,
/» 1

nt e N+, qt > 0 ,cr* <> e, s e N+ }. (3.1)
•

The theorem below shows that problem SD(r0,£) decomposes into a sequence of one-stage prob

lems of the form:

One-Stage Optimal Diagonalization Problem 3.2. Given r>0 and ee (0,1), find the optimal

solution S\ = (n,q) to the problem

l-D(r.e) : min{ nw{q) IAKIq + 8n r£ er, ne N+, q>0 }. (3.JJ

Theorem 3.1. Suppose that S = (5, a, { n,-} ?» i. {qi} 1<=, i) is an optimal strategy of SD(r0,e), then

(i) a' = e.

(ii) faqd is a solution of 1-D(r0a'~ l,a).

Proof: (i) Suppose that a *< e, then, from % we can construct another strategy

5 = Cs , a . {nt } fa t , {qt }f=,) , where a = eiyS and qt = AKIr^- l(E - 9"') for i = 1,2,...,!

Making use of the fact that.% = AKIr<$-l(v. - 8"') and 5 > a, we obtain that qt < q{ for / = l,2,...,j.

Since w(-) is monotone increasing, w(qi) < w(5,) for i = 1,2,...,3. Therefore, the cost associated with
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the strategy S is smaller than the cost associated with S, which contradicts the optimality of S.

(ii) First, because the cost in (3.1) is a separable sum, and the constraints are decoupled, we note that

SD(r0,e) can be rewritten in the decoupled form

SD(r0,e) : min i T. min{ n£ w(<fc) IAKIqx +9% «'"1 =a r0 a1'"l, n,- 6 1N+, qt >0 }>. n^
*6N+l« =i J V'*}
a'se

Next, it is obvious that if (/»,?) is a solution to 1-D(r,e), then AKIq + Qnr = er must hold. Hence (ii)

follows from (3.3). •

We will now show that a method for finding a solution of the problem l-D(r.E) can be obtained

from an examination of the following relaxed one-stage problem in which n is a real number.

One-Stage Relaxed Optimal Diagonalization Problem 33. Given r > 0 and e € (0,1), find the

optimal solution Si = (n,q) to the problem

l-RD(r,£) : min{ n w(q) I AKIq + 9" r £ er, n > 0, q > 0 } . (3.4)

Lemma 3.1. Problem l-RD(r,e) has a unique solution (n.J) which is given by

n = In z(r,e)/ln 9 , q = AK/r(e - z(r,z)) , (3.5a)

where z(r,z) e (O.e) is the unique minimizer of the strictly convex function y(z) defined by

7(z) £ £ [c, In z/ln 9] [4K7r(e - z)]P>, z6 (0,e). (3.5b)
/-i

Furthermore, we have that 4K/$+ 9* r = er holds.

Proof: Let z = 9". Then n = Inz/ln 9. Assuming that q satisfies the constraints in (3.4), we must have

that q £ 4£7r(e - z). Hence, for any feasible pair (n.q), the objective function in (3.4) satisfies

nw(q) > Dn z/ln 9] £ Cj [AK/r(e - z)fi = £ [Cj In z/ln 9] [4A7r(e - z)f>'. (3.6a)
/ = 1 y - 1

Since In 9 < 0 and z € (0,e), we conclude from Lemma A.2 that each term in the right hand side of

(3.6a) is strictly convex in z. Making use of the fact that the sum of strictly convex functions is still a
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stricdy convex function, we claim that the right hand side of (3.6a) is stricdy convex in z. Since it

goes to +°o as z goes to 0 or e, the right hand side of (3.6a) has a unique minimizer z(r,z) e (0,e).

Thus, for any feasible pair (n,q),

n*>(q) > £ [cj In z(r,e)/ln 9] [AKIr{z - z(r,e))]P;. (3.6b)
j a l

In addition we conclude that for any feasible pair («,<?), equality holds in (3.6b) if and only if

z = z(r,z) and q = AKIr{z - z), which is equivalent to equality holding in (3.6b) if and only if

n « lnz/ln9 and q = AK/r(z - z) for z = z(r,z). Therefore the solution to the problem l-RD(r,e) is

unique and it has the form of (3.5a-b). •

The following theorem shows that the one-stage optimal diagonalization problem l-D(r.e) can be

solved by scanning the positive integers until a decrease in cost is followed by an increase.

Theorem 3.2. (i) Problem 1-D(r,e) is equivalent to the problem:

min{ n w(AK/r(z - 9")) I n > In e/ln 8 , n e N+ } . (3.7)

Furthermore, if n is a solution of (3.7) and q = AK/r{z - 9B), then (n,<J) is a solution of 1-D(r,e).

(ii) The objective function nw(AK/r(z - 9n)), in (3.7), is unimodal in n.

Proof: (i) The equivalence follows from the constraints that q > AK/r(z - 9") and and that q > 0 in

(32).

(ii) Let z = 9", then

nw(AK/r(z - 9")) = £ [cy In z/ln 9] [4K7r(e - z)]P;. (3.8)
j a \

Since the right hand side of (3.8) is unimodal in z and since n decreases as z increases, we conclude

that the objective function in (3.7) is unimodal in n. •

In view of the above, it is clear that the following algorithm provides an efficient means for

obtaining a solution of the problem SD(r0,e), assuming that the total work function is unimodal in the

number of stages s. Our computational results indicate that such an assumption is valid. If any doubt

exists, a larger range of integer values of s should be scanned than by the algorithm below.
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Algorithm 3.1.

Data: e e (0,1), r0.

Step 0: Set wo = +°° and s = 1.

Step 1: Set a = e1/J. For i = l,2,...,.y, compute the solution (nsitqf) to the problem 1-D(r0 a1"1,a)

and value ws = 2£„ xn?w(<ff).

Step 2: If Wj< w,-i, then replace s by j + 1 and go to Step 1. Else, set $ = s - 1, a = e ,

nt - nsi~l and qt = q\"* for i = l,2,...,j, and 3 = (j , a , {nt} ?„ : , {$,}?„ i), to be

an optimal strategy for SD(r0,e), and stop. •

4. A SPECIAL CASE

In this section we will consider a special case of the simplified optimal diagonalization problem

SD(r0,e), which we will denote by SDM(r0,e), obtained by assuming that the work function in (3.1) is

monomial, i.e., w(q) - cq^ , where c> 0 and p > 0. We will show that a very good approximation to a

solution of problem SDM(r0,e) can be obtained without scanning the positive integers for the optimal

number of stages. There are two reasons for considering this special case. The first is that for large

values of q, the work function is often quoted as a monomial (in the form 0(q^)); the second is that the

approximations to optimal strategies for SDM(r0,e), that we will construct in this section, lead to an

efficient scheme for obtaining very good approximations to the optimal strategies for the general case of

SD(r0,e).

To obtain a good approximation to the solution of problem SDM(r0,e), we relax the requirement

that the n,- be integers, and thus embed it into the following relaxed problem:

SDM'(ro.e) : min{ £ nt w(q$ I AKIq{ +Q\ a1'"l = a r0 a1'"l ,
« = l

m> 0 , qx > 0 , of < z , s e IN+ } , (4.1)

where r0 > 0 and e e (0,1) are given, w(q) = cq^ and c> 0, P > 0.
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First we note that the following result is a direct consequence of Lemma 3.1 and Lemma A.2.

Lemma 4.1. If w(q) = cq?, with c, P>0, then

(i) t(z) = [c In z/ln 9] [AK/r(z - z)]p and z(r,z) =arg minz 6 (0,e) 7(z) =zp(e), the unique solution of

e-z + Pzlnz = 0, ze (0,e). (4.2a)

(ii) The unique solution (ji,q) of l-RD(r.e) (defined in (3.4)) and the associated cost, are given by

na In zp(e)/ln 9 , (4-2b)

q =AKIr{z - zp(e)) =-4A7p r zp(e) In zp(e) , (4.2c)

nw(q) =[c In zp(e)/ln 9] [-4/57P r zp(e) In zp(e)]p . (4.2aJ

Remark 4.1. Since zp(e) does not depend on c, £, 9 and r, it follows that if w(q) - cq^ and (n,q) is

optimal for l-RD(r,e), then n does not depend on c, AT and r, and q does not depend on c and 9. •
♦

The following theorem can be established by following the reasoning used to prove Theorem 3.1.

Theorem 4.1. Suppose that S =(J , a . { n,-} ]=, i , { ?,- }?01) is an optimal strategy for

SDM'(r0,e), then

(i) a* = e.

(ii) (/»,-,$,) is the unique solution of l~RD(r06V" 1,a), and has the following form:

%=In zp(el5)/ln 9, 3, =(-4/T/proz^e1^ In zp(e1/5)) (l/e '̂*" *. (4-g

It is clear from Theorem 4.1 that the optimal number of stages3 uniquely determines all the other

quantities, a, «,-, and qh i - 1,2,3,....3. Hence the optimal cost has the form

FCs) £ Z (mzp(e1^/ln9)c[M^/pr0zp(e1/blnzp(e1/S))(l/e1/3)'-1]p
to 1

= [c In zp(e1/3)/ln 9] [-4K^r^(zirs) In zp(e1/5)]p [e^l - ep)/ep(l - e^] . (4.4)
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Note that (4.4) defines a function FQ on (0,<»). We will now prove that F(-) is continuous and

unimodal on (0 ,<*>).

Lemma 4.2. Function F(-) defined in (4.4) is a continuous, unimodal function in (0,o°) and has a

unique minimizer s*:

/ = In e/ln [(yp + 1) exp (-% /p)] , (4.5a)

where yp is the unique solution of the equation

1 + y - exp (y/(P + 1)) = 0, y € (0,~). (4.5b)

Proof: From Lemma A.5 and the facts that e1/J is stricdy increasing and transforms s from (0,«») to

(0,1) and that -p In (•) is stricdy decreasing and maps (0,zp*) onto (yp*,«) ( where zp* is defined in

Lemma A.5 and yp* £ -P In zp* ), we conclude that -p In (zp(e1/J)) is stricdy decreasing as a function

of s and maps (0,<») onto (yp*,°o). Now, let y - -p In (zp(e1/4)). Then zp (e1/J) = exp (-y/p) and

zVs = (y+ 1)exp (-y/p). Hence

F(s) = [-c (1 - ep)/p ep In 9] [AK/r0f (y+l)p
yp-l(l-(y+l)pexp(-y))

Since y e (yp*,«>) and In 9 < 0 , we conclude from Lemma A.8 that the right hand side of (4.6) is a

continuous, unimodal function of y and has unique minimizer yp, which is the unique solution of (4.5b).

Making use of the fact that the variable transformation y = -p In (zp(e1Ar)) is stricdy decreasing, we

claim that F(-) is unimodal function in (0,») and has a unique minimizer satisfying (4.5a). •

The unimodality of FQ and Theorem 4.1 lead to the following theorem.

Theorem 4.2. Suppose that s* is defined as in (4.5a). Let3 = argmin{ F(s) \se { L*J.fr*l J )» let

a = e1*, and let nit qh i = 1.2.....J be defined by (4.3). Then 5 = G . a . {%}]a x, { $,•} ?. 0 is an

optimal strategy for SDMVo.e)- •

Remark 4.2. Note that if s*t defined by (4.5a), is an integer, then s* is the optimal number of stages

for SDM'fo.e). In this case, it follows from (4.5a) and the fact that a = eiy5, that

a = c^ = (yp + 1) exp( -yp/p), which depends only on p.
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Theorem 4.2 leads to the following fast algorithm for the solution of problem SDM(r0,e).

Algorithm 4.1.

Data: rQ, z e (0,1), p > 0.

Step 1: Find the solution % of (4.5b) and set 6$ =(yp + 1) exp (-yp /P).

Step 2: If F([ln e/ln otfjj) ^ F(\)n e/ln 6^1), set3 = Lin e/ln OjjJ. Else set3 = fin e/ln afl.

Step 3: Set a =el/;. For i = 1,2,....3, compute the solution faqd to the problem 1-D(r0a'"l,6c).

Set 3 =(S , a , { n»-} ?«i . {$i) !<= i)» to be an approximate solution to SDM(r0,e), and

stop. •

One can also modify Algorithm 4.1 to obtain an algorithm which yields an approximate solution

to the problem SD(r0,e). This modification, stated below, in stage i, approximates the work function

a

w(?)» by a monomial of the form c# '', and then calls Algorithm 4.1, as a subprocedure. The algorithm,

below, requires an initial discretization parameter q0.

Algorithm 4.2.

Data: ee (0,1), r^qQ.

Step 0: Set r0 = r0 and / = 1.

Step 1: Set p; = qt_j w'(?,-_i)/w(5,-_t) and c,- = w(3,--i)/?,-Li, which yields the monomial Ciq (

matching the value and derivative of w(-) at 5« - i-

Step 2: Find the solution yt of (4.5b), for p = P,-, and set a,- = (y, + 1) exp ( -y/Pi).

Step 3: Set jf to be the nearest integer to In (e r0 /r,_ j)/ln af and e,- = (e r0 /r,_ x) *'. Compute the

solution («,-,$;) to the problem 1-D&_x,%) where w(q) = c,- ? .

Step 4: Set %=e,-r,-_ i. If rt- ^ e r0, set 3 = /, and S=(5 , { n\ } }=i , { $,- }?a i), to be an

approximate solution to SD(r0,e), and stop. Else, replace / by i + 1 and go to step 1. •
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5. IMPLEMENTATION OF DIAGONALIZATION ALGORITHMS

In the first part of this section we will report on computational experiments aimed at comparing

the solutions to the problems D(r0,e) and SD(r0,e), as well as on the performance of Algorithms 2.2,

3.1 and 4.2, and draw conclusions as to their relative merits. In the second part of this section we will

present an implementation of the Successive Approximation Algorithm 2.1, and report on its use in

solving two control design problems. The implementation supplements the Successive Approximation

Algorithm 2.1 with procedures for estimating the constant K in (2.3), the convergence constant 9 in

(2.5), the work function w(q) and the cost-errors %

In our computational experiments, Algorithm 2.2 was implemented using a penalty method in

conjunction with the global, multi-start optimization routine ZXMWD, in the IMSL library (see

[IMS.l]), for solving (2.17). Our computational experiments indicate that Algorithms 3.1 and 4.2 yield

almost as good diagonalization strategies as Algorithm 2.2, but require much less cpu time to compute.

In particular, our computational experiments indicate that the assumption, that the estimated cost-

reduction ratios are the same in each stage, results in very little degradation of the resulting diagonali

zation strategy.

Table 5.1, below, presents a comparison of the results yielded by Algorithm 2.2, Algorithm 3.1

and Algorithm 4.2, on a typical diagonalization problem, where K - 10.0, 9 = 0.8, e = 0.001,

r0 = 100.0, ?o = 16.0/<:/r0 and w(q) ^AOq + q2. In Table 5.1, w £ j£m l ^ w(5i>- The algorithms

were executed on a VAX-11/780 computer.

Algorithm
A,

w
A.

s
A.

r cpu time (sees.)

Algorithm 2.2 3.631724e+06 5 0.1022 389.67

Algorithm 3.1 3.710678e+06 7 0.1000 0.32

Algorithm 4.2 3.75401 le+06 6 0.1000 0.14

Table 5.1. Results for a Typical Diagonalization Problem

As we have already indicated, one may have to estimate some or all of the data, i.e., K, 9, w(-)

and% needed for computing an optimal diagonalization strategy. Since in Algorithm 4.2 we obtain the
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number of iterations n,- and the discretization parameter qt one stage at a time, we can estimate the

required data as we go along. This fact is incorporated in the following algorithm which is an imple

mentation of the Successive Approximation Algorithm 2.1, for solving problem (2.1a) where

y(;c) =max* 6mmaxTljk6 [l]kiyk] <t>*(jc/n.*). For a given set of positive weights {ck }ke m> the approxi

mating functions yq(x) are defined as follows:

yq(x) = max max <t>*(*.T|o + fcfc / fatf!) . (5.1)
kem tk-0,l.~..\Clfl\ v '

where lk = T\f - rto.

Algorithm 5.1.

Data: x0 e Rn, e e (0,1), q0 > 0, 90 e (0,1), \p0 and p0 > 0.

Step 0: Set x% = x0, no = 0. Compute K0 and r0 according to (5.8a) and (5.8c), respectively, with

i = 0. Then, set i = 1.

Step 1: Find the unique solution y,- of following equation:

l+y-exp(y/(Pl_1 + l)) = 0. y e (O.oo). (52)

Set otf = (yt+ 1) exp( -yi /p,-.,).

Step 2: SetSi to be the nearest integer to In (e r0 /r,- _0/ln a,- and %= (e r0 /r,- _{) *'. Compute 2

a

(%.$,-) = arg min { n? '-11 2^,_1/^ +9?.! r^ <V. -1 }• /<•*>>
ne N+ W-J.J

Step 3: Setxo - j~l. For ; = l,2,...,n,-, compute
"i-i

xj^Aix).! ,^ ,X) , (54)

and store wj, the cpu time needed to compute xj.

2Since \y?(x) S v(x) for all x and ?,the inequality (2.9) can be tightened by replacing AK by 2K. Hence we use 2K{ instead
of AK{in (5.3).
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Step 4: Set the average computational work per iteration, for q = qit to be

Step 5: For i = 1, set p,- = p0. For i > 1, solve the linear least squares minimization problem,

below, to obtain

i

( P«.c,-) = arg min £ [In (wy) - p In ($y) - ln(c)]2 . (5.6)

Step 6: Compute the estimate 0; of 9 as follows:

(a) setao = 0»-i.

(b) For t a 1,2,..., until I a, - a,_ i I < 0.001, solve the linear least squares minimization

problem

( at,bt) = arg min £ [In (yA (j0- 4) - yln(a) - b]2 , (5.7a)
«•* / =0 it

where

— i

(c) Set 9,- = at.

Step 7: Compute the estimates Kit\^i,r0 and r,- of K, \j), r0» and r,-, respectively, as follows:

(5.7b)

K, = max max

\*6m y-<uA 2(J* ' (5-8a)

frL. /jM/ri qVAVi = min [Va(<) - e,rV(#]/[l - 9/~'] - Kt fa , (5.8b)
>=o.„..Vi * "l *

ro = V.(*b) + Ki fa - y,- , (5.8c)

19-



r*»V*Gd) +*i/$i-Yi. (5.8d)
ii nt

Step 8: If rt £ er0, stop. Otherwise, replace i by i + 1 and go to step 1. •

In Steps 1 and 2 of Algorithm 5.1, Algorithm 4.2 is used to compute ntand q-t in terms of £,•_ lt

9,_ i, P,_i, r0 and rf_ lt which are the successively improved estimates of the quantities K, 9, p, r0 and

rj-i. In Steps 4-7 of Algorithm 5.1, all the quantities are estimated in terms of the previous estimates

and the stored function values. Note that the procedure for obtaining 9,- in Step 6 is very robust and

gives the exact rate of convergence 9 provided that the sequence { yA (xj) }/„ 0is exacdy linear.
ii

In our numerical experiments, the solution y(- of algebraic equation (5.2) was found by bisection;

on the basis of Theorem 3.2, the solution of (5.3) was computed by scanning the positive integers. The

iteration map A in (5.4) was defined as one iteration of the Pshenichnyi minimax algorithm (see [Psh.l,

Pol.3 (Algorithm 5.2 modification)]). The left hand sides in (5.6) and (5.7a) were calculated by solving

linear least squares problems in two unknown variables, (p,ln c) and On a,b), respectively. The left

hand side of (5.8a) was obtained in the process of computing \|/A(rp for j - 0,1,...,«,- in the Step 3.
ii

Therefore the computational cost incurred in Steps 1-2 and Steps 4-7 is quite small, compared with the

computational cost incurred in Step 3, where the design parameters are iterated.

To evaluate the effectiveness of Algorithm 5.1, we have compared it with a fixed discretization

scheme, in which the precision parameter q was set to be the smallest value compatible with the preci

sion required, as well as with the well-tried adaptive precision method in [Kle.l], below.

Adaptive Precision Algorithm 5.2.

Data: x0 e Rn , q0 > 0, 6q > 0, Yi e (0,1), y2 > 1.

Step 0: Set n0 =0, x^ =x0, i =1, 5,- =50 and qt =Jo-

Step 1: Set xq =4," \ andy =0.

Step 2: Compute xj +1 =A(xj , \\r„ ,X).
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Step 3: If \j^ (xi^.i) - \|fA (jtf) > - 8,-, setm= y+ 1 and go to Step 5. Else, go to step 4.
ii ii

Step 4: Set; = j + 1, go to Step 2.

Step 5: Set i = / + 1, 5,- = Yi 8,_ i and$ = y2 $,_ i. Go to Step 1. •

Tables 5.2 and 5.3 below, compare results obtained using Algorithms 5.1, 5.2 and the Pshenichnyi

minimax algorithm (see [Psh.l]), with a fixed discretization, in two designs of a stabilizing controller

which minimizes frequency domain tracking error, for the 2-input, 2-output feedback system in Fig.l.

In the first design the plant was defined by (5.9a), while in the second one it was defined by (5.9b),

below:

I s2 + 8s+ 10 3.S2 + 7* + 4
?l(5)= (s +2)2(s +3) [ 2s +2 3j* +9j+8.

1
P2(s) =

(s + 2)(s+3)

s + 3 s + 3

s-2 -s-5

Using Q-parametrization (see [You.l]), with

Qix.s) =
*1 *2

x$ x* i.s + 6)

x5 x6

xj xs

(5.9a)

(5.9b)

(5.9c)

the two design problems were transcribed into the form (2.1a), with \\f(x) = maxme [0,2] $i(x,g>) and

y(x) = max^e [0t2] faix,®), respectively, where

M*,©) £ a [/ - Pxm Q(xM], (5.9d)

<j>2(;t.a>) £ a [/ - P2m Q(x,j<£>)], (5.9e)

a[ A ] denotes the largest singular value of the matrix A, and / is the 2x2 identity matrix.

For both designs, we required that the initial cost-error r0 be reduced by e = 0.0001. The initial

point for the first design problem was (30,-20,30,30,50,-20,30,40), while the initial point for the

second design problem was (10,-10,10,10,10-10,10,-10). All three algorithms tested used the same

iteration map A defined by the Pshenichnyi minimax algorithm (see [Psh.l]) and the same approximat

ing functions \|/g(-) defined by (5.1) with <Tj = 1. The initial cost-error r0, the required final cost value,

as well as the constant K, were all estimated in the first series of runs, using Algorithm 5.1, and then
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were used to define a stopping rule and minimum discretization level for the other two methods.

(a) We initialized Algorithm 5.1 with e = 0.0001, q0 = 3.0, 90 = 0.8, \|/0 = 0.0, and p0 = 2.0 for both

design problems. The required final number of discretization points was found to be 346 points for the

first problem and 256 for the second one.

(b) We carried out two runs using the Adaptive Precision Algorithm 52 for each problem. In the first

run we set q0 =3, 60 =0.1, Yi =0.5, Y2 = 1-5. while in the second run we kept the same values of $0»

50 and Yi. and set y2 - 125. The computation was stopped when the number of discretization points

used was at least 346 and 256, for the first and second design problems, respectively, and the cost value

was approximately equal to that obtained by Algorithm 5.1.

(c) For the fixed discretization design we used 346 points in the first design problem and 256 points in

the second one. The computation was stopped when the cost value was approximately equal to that

obtained by Algorithm 5.1.

The results, produced on a Sun 3/140 computer, are shown in Table 5.2 and 5.3, where the final

cost value is denoted by \|7, while the final number of discretization points used is denoted by p. Note

that of the 4577.34 cpu sees, used by Algorithm 5.1 for the first design problem, 4391.42 cpu sees, were

used in Step 3, computing the successive iterates x) while of the 6487.38 cpu sees, used by Algorithm

5.1 for the second design problem, 6370.44 cpu sees, were used in Step 3, which shows that the over

head in computing an approximation to an optimal diagonalization strategy is quite small relative to the

benefits which it yields.

Algorithm ¥ V cou time (sees.)

Algorithm 5.1 0.296241 346 4577.34

Algorithm 5.2, first run 0.296960 1232 146146.88

Algorithm 5.2, second run 0.296048 362 28877.18

Fixed discretization scheme 0.296397 346 79905.00

Table 5.2. Results for the First Design Problem
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Algorithm ¥ o cou time (sees.)

Algorithm 5.1 0.172502 256 6487.38

Algorithm 5.2, first run 0.172597 1849 171641.38

Algorithm 5.2, second run 0.172530 289 25572.06

Fixed discretization scheme 0.172588 256 88631.20

Table 5.3. Results for the Second Design Problem

6. CONCLUSION

We have shown that it is possible to obtain optimal diagonalization strategies for the discretiza

tion of semi-infinite minimax optimal design problems. We propose both exact and approximate

methods for the computation of these optimal diagonalization strategies. The algorithms for computing

approximate diagonalization strategies yield very good approximations in much less computing time

than needed to compute an optimal diagonalization strategy exacdy. Our optimal diagonalization stra

tegies can be implemented by using estimation schemes to obtain approximations to the various quanti

ties which determine an optimal strategy. Our experimental results, involving the solution of optimal

loop-shaping problems for multivariable linear feedback systems, show that the the use of these imple-

mentable strategies leads to considerable savings in computing time over alternative approaches.

7. APPENDIX: TECHNICAL RESULTS

We now present a number of technical results which were used in our proofs. All these results

depend on a parameter P > 0.

Lemma A.l. Let p > 0. Then, for any e e (0,1), the equation

e-z+pzlnz = 0, ze (0,e) , (A.1)

has a unique solution.

Proof: Let z e (0,e) and let

Se(z) £ e-z + Pzlnz. (A.2)

Then gc" (z) = p/z > 0 for all z e (O.e). Hence &(•) is stricdy convex on (0,e) . Since
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£e(0+-) = e >0 and ge(e) = Pe In e <0 , it follows that there exists a unique zero of gt(-) in (0,e) •

Definition A.l. Let p >0 be given. For every e e (0,1), we shall denote by zp (e) the unique solu

tion of the equation (A.1). •

Lemma A.2. Let P > 0 and e e (0,1). Then (i)

max In z/(e - zf =In zp (e)/[ -P zp (e) In zp (e) f , (A.3)
0<*<e

and zp (e) is the unique solution of the above maximization problem, (ii) If p 2: 1, then

(In z/(e - zf) is stricdy concave on (0,e).

Proof: (i) For z e (0,e), let

/e(z) £ In z/(e - zf . (A.4)

and let ge(z) be defined as in (A.2). Then

/e'(z)=Se(*)/2(e-*)p+l. (A.5)

It now follows from (A.5), Lemma A.1 and die fact that (i) ge(z) >0 for all z e (0,zp (e)) , and (ii)

gz(z) <0 for all z e (zp (e),e), that zp (e) is the unique solution of the maximization problem.

Since e - zp (e) = - p zp (e) In zp (e), we obtain (A.3).

(ii) We claim that/e is concave if p 2: 1. Now

/e(z) = In (z/e)/[ep (1 - z/zf] + In e/[ep (1 - z/zf]. (A.6)

Since 1/(1 - z/zf is stricdy convex in (0,e) and In e <0, it follows that the second term on the right

hand side of (A.6) is stricdy concave. Hence it suffices to show that In z/(l - zf is concave on (0,1).

Let/(z) = In z/(l - zf. Then

r^h{z)l^{\-zf^, (A.7a)

where

h(z) = (1 - z) ((2P + l)z - 1) + p (P + Dz2 In z . (A.7b)

Let z = arg max h(z). We will show that h(z) < 0 which ensures that/(•) is concave on (0,1). If
16 [0,1] J \ ' /

z = 0 or 1, then h(z) £ 0. If z e (0,1), then K (z) =0, i.e.,
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(2P + 2) - 2(2P + 1) z + P(P + 1) z + 2P(P + 1) z In z =0 . (A.8)

Multiplying (A.8) by z and rearranging , we obtain

P(p + 1) z2 In z =- (P + 1) z +(2P + 1) z2- [P(P + l)/2] z2 . (A.9)

Hence

A(z) = (1 - z)((2P + 1)z - 1) + P(P + 1) z2 In z

= (1 - z)((2p + 1) z - 1) - (p+ 1) z +(2p + 1) z2 - [p(p + l)/2] z2

=- [P(P + l)/2] (z - 1/P)2 - (p - 1)/2P £ 0 . (A.10)

Therefore h(z) £ 0 irrespective of whether z = 0, or z = 1,or z e (0,1). Hence/is concave on (0,1). •

The following result is obvious:

Lemma AJ. For all P e (1,<»),

1- (1/P) +In (1/p) <0. (A.1JJ

Lemma A.4. Let P>0 be given and let zp* be the smallest zero of the equation

l-z + Pzlnz = 0. ze (0,+<»). (A.12)

Then

(i) 1- z+p z In z is stricdy decreasing in (0,zp*);

,.. *J=1 if M (o.i] CA13a)
M zp \<l/p if Pe(l.oo) : (AJ3a)

f >0 if ze (0,zp*)
(iu) 1- z + p z In z 1 A .. , * 1N (A.13b)

^ [ <0 if z e (zp ,1) .

Proof: Let

gx(z) ^1-z + Pzlnz, ze (0,+~). (A.14)

Since gi"(z) = p/z > 0 for all z e (0,«), $,(•) is stricdy convex on (0,<»). If p e (0,1] , then the

results follow from the facts that gi(-) is stricdy convex on (0,°°) , that gi(+0) = 1 > 0 , that
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gi(l) = 0 and that giQ) =-1 + P£0 . If Pe (1,-H»), it follows from Lemma A.3 that

gi(l/P) = 1 - (1/p) + In (1/p) <0 . Making use of the facts that &(•) is stricdy convex on (0,<»),

that ^(+0) a 1>0 , that zp* is the smallest zero of gi(-) in (0,«>), that #i(l/p) <0 and that

gi(l) = 0, we again obtain (i)-(iii). •

Lemma A.5. Let p>0 be given and let zp* e (0,+») be the smallest zero of equation (A.12). Then

the function zp (•) defined by Definition A.1 is continuous, stricdy increasing, and it maps (0,1) onto

(0,zp*).

Proof: Let

p(z) § z - p z In z , V z e (0,z3*). (A.15)

*>Then it follows from Lemma A.4(i) that p(-) is stricdy increasing on (0,zp ). Making use of the fact

that p(0+-) =0 and p(zp*) = 1, we conclude that /?(•) is one-to-one from (0,zp*) to (0,1) . Now, for

e e (0,1) , it follows from the Definition A.1 that

1 - zp (e) + p zp (e) In zp (e) = 1 - e >0 , (A.16)

and that zp (e) e (0,e) . Making use of Lemma A.4 (iii), we conclude that zp (e) € (0,zp*) for all

e e (0,1). Since

P(zp (e)) = zp (e) - p zp (e) In zp (e) = e , (A.17)

and since /?(•) is continuous, stricdy increasing and one-to-one, we conclude that p(-) is the inverse

of zp (•). Hence, zp (•) is continuous and stricdy increasing, and it maps (0,1) onto (0,zp*) . •

Lemma A.6. Let p>0 be given, let zp* e (0,-k») be the smallest zero of equation (A.12), and let

yp* 4 - PIn zp* . Then

(0 exp (yp*/p) - yp* - 1=0 ; (A.18a)

••f-° tfM(Wl. (A.18b)(») JfKp-i ifpe(l.~)
*\I <0 ifye(0.y£)(iu) l-(y+l)exp(-yP)|>0 ifys(y»,oo). (A.180

Proof: (i) Since zp* =exp (-yp*/p) and zp* is the solution of the equation (A.12), we get

•26-



(A.18a).

(ii) Making use of Lemma A.4 (ii) and LemmaA.3, we obtain (A.18b).

(iii) Making use of Lemma A.4 (iii) and the fact that the one-to-one function y(z) & - p Inz maps

(0,zp*) and (zp*,l) into (yp*,«) and (0,yp*), respectively, we obtain (A.18c). •

Lemma A.7. Let p > 0 be given. Then the equation

l-(l+y)p +1exp(-y)=0, y e (0,~) , (A.19a)

has a unique solution which will be denoted by yp . Furthermore, the following hold, with yp* defined

as in Lemma A.6:

(i) l-d+^exrX-y)
<0 ifye(0,yp)

^ (A.19b)
> 0 if y e (yp.oo) ;

(ii) 9p>yp*. (A.19c)

Proof: Observe that (A.19a) is equivalent to

exp(y/(P+l))-y-l=0. y e (O.oo). (A.20)

Let h(y) & exp (y/(P + 1)) - y - 1 for all ye (-00,00). Since h(0) = 0 , A'(0) = -p/(P + 1) < 0

and since A(oo) = <», we conclude that there exists a yp e (0,«») such that /t(yp) = 0. Since

h"(y) = exp(y/(p + 1))/(P + l)2> 0, h(-) is stricdy convex on (-oo,+©o). Hence it has at most two

zeroes. But h(0) = 0 and A($p) = 0 , which leads to the conclusion that yp is the only zero of h(-)

in (0,oo). Furthermore, h(y) < 0 for all ye (0,yp) and h(y) > 0 for all y e (yp,00) . Hence,

(A.19b) is true.

Next we will establish (A.19c). If p e (0,1] , then, since yp* =0 by Lemma A.6 (ii), (A.19c) is

obvious. If p e (1 ,«>), then, since yp* >0 , we have

/t(yp*) = exp (yp*/(P + 1)) - yp* - 1< exp (yp*/p)- yp* - 1 . (A.21)

Since yp* satisfies (A.18a), /i(yp*) <0 . Thus, (A.19c) follows from the facts that h(y) <0 for all

y e (0,yp) and that h(y) > 0 for y e (yp,<«).
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Lemma A.8. Let p > 0 be given and letyp be die unique solution of (A.19a). Then yp is the unique

solution of the minimization problem

min <Hn ?ll& TTT ' *6 (**.-) >• (A-22)yp l [ 1 - (y + l)p exp (-y) ]

and the objective function in (A.22) is unimodal.

Proof: For y 6 (yp*,«), let

*» V'n-giSLpc-rt]- (A-23)
By Lemma A.6 (iii), the denominator of /(•) is positive in (yp*,«»). Hence ft) is differentiable in

(yp ,©o). After lengthy calculation we obtain

f^=li-<,+ lf^(-y)Uy-?+yy +if-\ (A.24)
yp [ 1 - (y + l)p exp ( -y) ]2

It follows from Lemma A.6 (ii) and (iii), that all the right hand side terms, except the first term of the

numerator, are positive for all y e (yp*,oo). Hence, by Lemma A.7, /' (*) has only one zero yp in

(yp*.oo) . Furthermore, /'(y) <0 for all ye (O.yp) and /'(y) >0 for all y e (yp,**) . Therefore

yp is the unique solution of the minimization problem (A.22) and/(-) is unimodal. •

8. REFERENCES

[Bha.1] M. A. Bhatti, E. Polak and K. S. Pister, "Optimization of Control Devices in Base isolation

Systems for Aseismic Design", Proc. International IUTAM Symposium on Structural Control,

University of Waterloo, Ontario, Canada, North Holland Pub. Co., Amsterdam, pp. 127-138,

1980.

[Ben.l] J. A. Bennett and M. E. Botkin (Eds.), The Optimum Shape: Automated Structural Design,

Plenum Press, New York, 1986.

•28-



[Dun.l] J. C. Dunn, "Diagonally Modified Conditional Gradient Methods for Input Constrained

OptimalControl Problems", SIAM J. Control, Vol. 24, No. 6, pp. 1177-1191, 1986.

[IMS.l] IMSL Library, Reference Manual, IMSL Inc., Houston, Tx., 1982.

[Kle.l] R. Klessig and E. Polak, "An Adaptive Precision Gradient Method for Optimal Control",

SIAM J. Control, Vol. 11, No. 1, pp. 80-93,1973.

[Nye.l] W. T. Nye, D. Riley, A. Sangiovanni-Vincentelli, and A. L. Tits, "DelightSpice: An

Optimization-Based System for the Design of Integrated Circuits", IEEE Trans, on Computer-

AidedDesign of Integrated Circuits andSystems, Vol. 7, No. 4, pp. 501-519, 1988.

[Pol.l] E. Polak, Computational Methods in Optimization: A Unified Approach, Academic Press, 329

pages, 1971.

[Pol.2] E. Polak, D. Q. Mayne and D. M. Stimler, "Control System Design via Semi-Infinite Optimi

zation", Proceedings of the IEEE, pp. 1777-1795, December 1984.

[Pol.3] E. Polak, "On the Mathematical Foundations of Nondifferentiable Optimization in Engineering

Design", SIAMReview, Vol. 29, No. 1, pp. 21-91, March 1987.

[Pol.4] E. Polak, "Basics of Minimax Algorithms", Proc. Summer School on Nonsmooth Optimization

and Related Topics, Erice, Italy, June 19 - July 8 1988.

[Pol.5] E. Polak and S. Wuu, "On the Design of Stabilizing Compensators via Semi-infinite Optimiza

tion", IEEE Trans, on Automatic Control, Vol. 34, No.2, pp 196-200, 1989.

[Pol.6] E. Polak and S. E. Salcudean, "On the Design of Linear Multivariable Feedback Systems via

Constrained Nondifferentiable Optimization in HT Spaces", IEEE Transon Automatic Control,

Vol. 34, No.3, pp 268-276, 1989.

[Psh.l] B. N. Pshenichnyi and Yu. M. Danilin, Numerical methods in extremal problems (Chislennye

metody v ekstremal'nykh zaaachakh), Nauka, Moscow, 1975.

[Sch.l] K. Schittkowski, "An Adaptive Precision Method for Nonlinear Optimization Problems", SIAM

J. Control, Vol. 17, pp. 82-98, 1979.

•29-



[Tap.l] R. A. Tapia, "Diagonalized Multiplier Methods and Quasi-Newton Methods for Constrained

Optimization", J. Optim. Theory Appl, Vol. 22, pp. 135-194, 1977.

[Wuu.l] T. L. Wuu, R. G. Becker and E. Polak, "A Diagonalization Technique for the Computation of

Sensitivity Functions of Linear Time Invariant Systems", IEEE Trans, on Automatic Control,

Vol. AC-31 No. 12, pp. 1141-1143,1986.

[You.l] D.C. Youla, H. Jabr and JJ. Bongiomo, Jr., "Modem Wiener-Hopf Design of Optimal Con

trollers - Part II", IEEE Transactions on Automatic Control, Vol. AC-21, pp. 319-338, 1977.

-30-



+J
d

u

C(x,s) P(s)
y

_( i

Fig.l : The feedback system
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