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ABSTRACT It is shown that it is possible to design a proportional-plus-integral stabilizing compensa-
tor for a class of feedback systems with exponentially stable infinite dimensional plants. This simple
compensator also enables the feedback system to track asymptotically polynomial inputs and to suppress
asymptotically polynomial disturbances.

L. INTRODUCTION

Exponential stability and asymptotic tracking are among the most fundamental requirement in
control system design. Not surprisingly, over the years these requirements have received a considerable
amount of attention in the literature (see, e.g. [Bal.2, Bha.l, Ben.l, Che.2, Des.1, Gib.1, Mor.1]).
Nevertheless, the existence of simple, ﬁirxité dimensional stabilizing compensators which ensure asymp-
totic tracking of polynomial inputs, for feedback systems with infinite dimensional plants is still a

largely unresolved question.

We will consider a class of systems which are described by a linear differential equation in a Hil-
bert space. Before proceeding further, we will define exponential stability for these systems in terms of
the properties of a semigroup function and we will establish the relation between exponential stability
of these systems and the spectrum of the semigroup generator. With these preliminaries out of the way,
we will proceed to exhibit the existence of proportional-plus-integral (P-I) stabilizing compensators for
a class of feedback systems with infinite dimensional plants. As is well known [Des.1], P-I compensa-
tors result in feedback systems which track asymptotically polynomial inputs and suppress asymptoti-
cally polynomial disturbances.

t The research reported herein was sponsored in part by the National Science Foundation under grant ECS-8121149, the
Air Force Office of Scientific Research grant AFOSR-83-0361, the Office of Naval Research under grant N00014-83-K-0602, the
State of California MICRO Program, and the General Electric Co.



2. PRELIMINARY RESULTS

Consider the multi-input mulli-output feedback system S(P,K), with infinite dimensional plant,
shown in Fig. 1. We assume that the plant has n; inputs and n, outputs, and is described by a

differential equation in a Hilbert space E:
JE,, = Apxp + Bpez. Y2 = C,x,, + D,ez. (2-1)

where x,cE, e,R", y,eR™. The operators B,:R" > E , C,E > R™ and D,:R" > R™ are
assumed to be bounded, while A, may be an unbounded operator from E to E, with its domain dense in
E.

For any a>0, we define a seability region Dyc €, in the complex plane, by
D, & {se €IRe(s) <—a). Let U = {se €IRe(s) = —a) denote the complement of D_, in C, let
o = {se CI Re(s) = —a} denote its boundary, and let U2, = (se € | Re(s) > —a}. Next, let o(A,)
be the spectrum of A, and let p(A,) be the resolvent set of A, which is defined to be the complement of
o(4,) in €. We will denote the domain and the range of A, by D(A,) and R(A,), respectively. The

notation used in this paper follows the notation in [Bal.1] and [Kat.1].

Assumption 2.1: (i) A, is a closed operator which generates an analytic semigroup. (ii) There

exists an o > O such that the spectrum of A, is a subset of Do n

Assumption 2.2:  The transfer function of the plant is given by G,(s) = Cy(sf — A,)"B,, + D, where I

is the the identity operator in E. We assume that lim,, _, «Gp(8) = D,
"Eu-ao |

We assume that we are required to design a minimal, finite dimensional, proportional-plus-integral
compensator, described by a differential equation of the form:

X = Ax.+B.e Nn=Cx.+De , 22)
where x.eR™, e;eR™, yi€R” and A, B,, C, and D, are matrices of appropriate dimension, with all
the eigenvalues of A, equal to zero, for integral action. Since o(A.) = {0}, the compensator transfer
function is G.(s) = C.(sf - A.)™'B. + D, = XY=, Fjls, where each F; e R™ and m depends on A,. To

ensure well-posedness of the closed loop system, we assume that dewl, + D.D,) = 0.



We define the Hilbert space H by H = E x R™ and its inner product by

{ [:p]’[ZP] = (xp zp)B"'(xc'zc) n, @3)

Since e; = u; — y, and e, = y; + up, we obtain the following state equations for the closed loop system

- )
) of]

where
(45-B,D.4,DDYC, B DDY'C,

A 3 -1 -1 » (2’6a)
~Blo+DDYC,  AB(,+D,DY D,C.

.

B D, +D D)™ By, +D.D,)

B = B({,+D,D)" -B(,+DD)'D,|" (2.65)

(. +D,D)C, U, +D,DY'D,C, -
C = o N 2.60)
D1, +D,DY'C, U +DD,Y'C, ,

[ @, DY U, 3D,D)'D,
D = . 41 | 2.60)
D.(I,+D,D)"  (I,+D.D,

~

The domain D(A) = D(A )x]R C H; the operators B, C and D are easily seen to be bounded.

We will now show that because the operator A, generates an analytic semigroup, the operator A
also generates an analytic semigroup.

Proposition 2.1:  The operator A generates an analytic semigroup, T().
Proof: We can decompose the matrix A in (2.6a) as follows:
A=F+Q (2.7a)

where, for A.eR arbitrary



p 0 _Bth:(Iuo + DpDc)-le Bp(lu‘ + Dch)-lCc

F=1g Ady |’ Q= -B.l,, + D,D)'C, A-B.(I, + DPD‘,)“D,,CG =Adn |’ (2.75)
It is easy to see that F generates the analytic semigroup
T, 0 )
Te®) = o & | 2.7c)

”c

where T,(-) is the semigroup generated by A, Since Q is a bounded operator, it follows from the per-

turbation theorem [Paz.1, p. 80] that A generates an analytic semigroup. =
From Proposition 2.1 and [Tri.1], we obtain

Proposition 2.2: The operator A satisfies the spectrum determined growth assumption, i.e.,

sup(Re(o(A))) = Lim MTthl . @.8)
=) oo [ ]

Next, from Proposition 2.2, we obtain the following result [Tri.1]:
Proposition 2.3:  Given any B > sup(Re(a(A))) , there exists an M > 0 such that

Tl < M-e®, v ¢20. : eX:)

Let x = [x, xJ". Then the formula
x() = T(O)xo + £T(t - T)Bu(t)dt (2.10)

defines a mild solution of (2.4) [Paz.1]. We can therefore define exponential stability of the feedback

system S(P,K) in terms of the semigroup T(f) as follows.

Definition 2.1: The feedback system S(P , K) is exponentially stable if and only if there exists o> 0

and M > 0 such that |T()lly <M-e™, ¥ 120.
]

Propositions 2.2 and 2.3 yield the following result.

Proposition 2.4: The system S(P , K) is exponentially stable if and only if there exists o > 0 such
that sup(Re(c(A))) < —a. |



We conclude this section by observing that it follows from Assumption 2.1 and Proposition 2.4,

that the .plant is exponentially stable,

3. EXISTENCE OF A STABILIZING PROPORTIONAL-PLUS-INTEGRATOR COMPENSA-
TOR.

We will establish the existence of a proportional-plus-integral stabilizing compensator in two
steps. First we will show that we can construct a proportional stabilizing compensator. Then we will

show that we can construct an integral, stabilizing compensator. Finally we will combine these two

results.

Definition 3.1: We say that a matrix transfer function G: € —» €" T analytic in a region Uc €
if each of its element is analytic in U. [ |

Assumption 2.1 is used in the Appendix to show that G,(s) is analytic in Uy,
We define the characteristic function %(s) of the system S(P,K), by

26) = det(sl, — A)detlly, + GU)G,(S)) = s"detll, + GLIG,(s)) = s™detll,, + Gp)GL) . (3.1)

To establish the next result, we will need the following Weinstein-Aronszajn formula.

Proposition 3.1 (The W-A Formula [Kat.1]): Let F be a closed operator in the Banach space X, let
Q be an F-degenerate operator in X, let R = R(Q), and let (s) = det(lg + (Q(F — sI)™)l;) be the associ-
ated W-A determinant, with I the identity operator in R and (Q(F — sI)™)l the restriction of
Q(F - sy to R. If A is a domain of the complex plane consisting of points of p(F) and of isolated

eigenvalues of F with finite multiplicities, then y(s) is meromorphic in A and, for A = F + Q,
V(s;A) = V(s;F) + v(s;y), seA, (3.2a)

where the multiplicity function v(s;¢) of ¢ in (3.2a) is defined by

—k if s is a pole of ¢ of order &k

k if s is a zero of ¢ of order k
v(s;9) = , (3.2b)
0 for other s €A

and the multiplicity function v (s, F) for a closed operator F is defined by



{ 0 if sep(F) }
V (s;F) =4dim(P) if s is an isolated point of o(F) ', (3.2c)
+ oo in all other cases

where P is the projection associated with an isolated point of 6(F) (see [Kat.1, p.180]). [ ]
Next, for any function £ € — C, we define Z(fs)) & {se C| f(s) = 0} to be its set of zeros.

Theorem 3.1  The system S(P,K) is exponentially stable if and only if there exists an o > 0 such
that Z(x(s)) < D_,.

Proof: (The notation and the definitions used in this proof follow [Kat.1].) We begin by decomposing

the matrix A as in (2.7a), (2.7b) with Re(A) <—0p. Therefore (s/— F) is invertible for

s€U, < p(A,), and Q is an F-degenerate operator because it is bounded. Consider se UL, Since
(sf - F)™! exists and is bounded, we can define V{(s) by
V(s) = Q(sI - F)™!
: -BpDc([ B, + DpDc)-lcp(Sl - Ap)_l Bp(I n + Dch)-lCc(s - Av.' ! (3.3)
" | =Bl + DD Cysl - Ay (ABlly, + DD DyC — Aoly )5 = A |-
Let BoAR@®B,)xR™ and let Vs, (5) denote the restriction of V(s) to Bo. Then
det(l + V(s)) 4 det(lgo + Vgo) is well defined. We will show that det(IBo + Vp,) = x(s) and then apply

the W-A formula.

Let b; 4 Bej, j = 1,2,...,n;, where (g;}7%; is the standard unit basis in R™. Suppose that 7 < n; is
the largest positive interger such that any r+1 elements of the set [b,-}}'_i, are linearly dependent in the
Hilbert space H. Without loss of generality, we can assume that {b,-]}‘;l is a basis for R(B,). Under this
basis, the linear operator B, assumes the form B, = (I5; | B, ) where the i~th column of B,, is obtained

by expressing by,; in terms of the basis (5;)%;. Let B 2 (b;,b,,....b;). Then it is easy to show that

8,00, + DD.YCHsl - 4B B(I, + DD, 'Cls - A" y
VBO(S) - L -B.(, n, * DPD c)-l CP(SI - Ap)-lB_ A - B n, +D PD c)-lD Pcc - Mn) (s- )"c)—l G2
(8,D.0,, + D,DJ'M Byln, + DD 'Culs — A
= | B, + DDYIM .~ B.l, + DDYD,C~ AL, Ys - 2| ° G40




where M A [ry,ry,...,r] € R with r; & Cy(sf — A)'b;, 1 <i <A Because each element in (3.4b) is

in matrix form, it is easy to show that

x(s) = detlp, + Vg (5)) = 5™detl, + G)Gs) . (3.5)
Let A = Uy, where 0 <a <0y is such that A « U < p(4,). Then from the W-A formula

(3.2a), we have that
(seU_ | seo(A)} = {seU | s€eZ(y(s)} . (3.6)

If the system S(P,K) is exponentially stable, then, from Proposition 2.4, we can find some 0 < o < @
such that sup(Re(c(A))) < —a, i.e., 6(A) € D_,. Therefore, from (3.6) {seU_o | s€Z(x(s))} is an empty
set, i.e., Z(X(s)) < D_o. On the other hand, if there exists § > 0 such that Z(x(s)) < D_g, then, setting
o = min{fB,0p}, we obtain from (3.6) that sup(Re(o(A))) < —a, which implies that the system S(P.K)
is exponentially stable. This completes the proof. - n

In the proofs to follow, we will make use of Rouche’s theorem, stated below [Chu.1].

Rouche’s theorem: Let f{) and g(-) be functions which are analytic inside and on a positively
oriented simple closed contour C in the complex plane. If I{s)l > lg(s)! at each point s on C, then the
functions fs) and f(s) + g(s) have the same number of zeros, counting multiplicities, inside C. [ |
Theorem 3.2: Consider the feedback system S(P.X) in Fig. 1 and suppose that A, =0, B, =0,
C. =0 and n=0. Then there exists a matrix D, # 0 such that the closed loop system is exponentially

stable.

Proof: By Theorem 3.1, the system S(P,K) is exponentially stable if and only if there exists an & > 0

such that Z[det(l,, + D.G(s))] < D_q. Suppose that G,(s) = [g;(s)] and D, = [d]. Then

"
detl, + D.G,(s)) = dew([A; + 3 dugi(s));]
k=1

n; Ry

=1+ XY dugu(s) +o(s) & 1+ H(s) , (3.7
=lk=1

where o(s) represents the second and higher order terms in dj; and gy(s), and A; = 1 when i = j, and

A; = 0 otherwise. Because G,(s) is analytic on UZ,, and because of Assumption 2.2, there exists an



positive & < op and M > 0 such that Ig;(s)l <M,V s€dU_,. It is clear that we can always choose a
matrix D, # 0, with sufficiently small components, dj, to ensure that IH(s)l <1,V sedU_,. Setting
C=0U,, fis)=1 and g(s)=H(s), we obtain from Rouche’s -theorem  that

det(I,,c + D.G,(s)) = 1 + H(s) has the same number of zeros in U_y as f{*), which is zero. Therefore

det(I,,c + DG (s)) has no zeros on U, ie., Z{,_+ D.Gy(s)) < D_q, which completes the proof. =
Assumption 3.1:  The matrix G,(0) has maximum rank, i.e., O is not a transmission zero of Gys). m

Theorem 3.3: Suppose that D, = 0 and A, = 0, so that G.(s) = %Cch' Then there exists an n; X n,

maximum-rank matrix F; such that for any B,, C. such that C.B, = Fj, the closed loop system is

exponentially stable.

Proof Case I: n;=n,, ie, the plant and the compensator transfer matrices are square. Let
n.=n; =n, B, = Fy eR™" Ce= I,.c. From Theorem 3.1, we know that the system is exponentially

stable if there exists an o > 0 such that
Fy
Z(det(sl,,) det(I,.c + Gp—s-)) = Z(deYsl, + GpFp)) < D4. - (3.8)

Suppose that G,(s) = [g;(s)] and F; = [f;]. Hence

B R _
det(sT, +GF) = 5™ + S"7F Sfuges) + S -+ Y+ -+ + detGdetF; . 3.9)
Bl k=l :
Re B
Let fis) =5 and let g(s) = Pl Y Sfuguls) + s"‘.z( **+ )+ --- +detGydetF. Suppose that
Pl

If <8,¥ ij. Let 0 < & < 0 and suppose that se U_,. Then

1) < 5" U S fugd + (- -+ ) # + -+ + detGdetF,
=l1k=1

<U"NMS + 15N 4 -+ + N, M
< Nisl'™ (IsS7'M8 + IsP2M28% + 1sT3M%8% + - - - + Il "M<8™), (3.10)

where N; is the number of product terms in the coefficients of Isi", N = max; N;, and M > 0 is such



that Ig;(s)l < M.V sedU_,. Hence, since lsl 2 o. for any s€dU_q , if § < ZI:;M .

I-;’(%I % < NQsTIMS + IST2M282 + - + 15 M<8")

NM5 _ NM5 _ 2NMS
STE S S o <1 (3.11)

Setting C = dU_, and applying Rouche’s theorem, we conclude that det(sl,,c + G,(5)F)) has n, zeros in
U

Now we let C =C, 2 (se Clls + el < &/2) where € >0. Clearly, there is an € > 0 such that
if & < &, then C; c U,,. Since by Assumption 3.1 detG,(0) # 0, it follows by continuity that there
exists an g;€ (0,€p) such that detG,(-¢) # 0 for all € < ¢,. Finally, there is an €, (0,€;) such that for all

ge(0,&y), if F; 8 G;'(-€)e, then If) < &/ 2MN, ¥ jj, is satisfied, and, in addition,
det(sl, + Gy(s)F)) = det((s+eM, + G,(s)F;—¢l,)

1
= det [(s + s)l,,‘ + lG,(—e) + (s+ e)J;G;( -€ + Hs+¢) )dz]c;;l(—e)s—al,.c]

1

= det [(s + &), + €5 +¢) L[G,,( -& + s +€) )d:]c;;l(_e)]

=+ + s+ el +e)0(s) + (5 +8) s + £)20,(s) +

C 4 €5 +8)Qu (), (B12)

where the Qy(s) are determined from the expansion of the determinant. It is easy to see that the Qs)

are analytic on U_, and therefore they are analytic on and inside C. Let W; = max,.c I04s)! and let

W=max; W, Let 2 +e™ and g(s) 2 (s +©)" 'els + £)Qi(s) + (s + €)™ eXs + £)205(s)

o+ E(s + e)"‘Q,.‘w. Then IRs) = €%/ 2", V seC, and, if € < 1/2W,
861 < S eW, + EYTEEW, + o+ SEYW,
suc +1 enc +2 2}:‘.
SWlmF—+ =+ - + =
2 (4 2 c - 2 (4



1o g (3.13)

Therefore we obtain that Ifs)l > lg(s)) ¥ seC. It now follow from Rouche’s theorem that

det(sI,.c + G,(s)F}) = fls) + g(s) has the same number of zeros, n,, inside C as f{s). Therefore we have
shown that Z(deW(sl, + G,(s)F7)) c D_g with € > 0.

Case II: n, <n;. Because of Assumption 3.1, we may assume the determinant of the first n,
columns of G,(0) is not equal to 0. Let n, = n,, B, = I, Cc=Fy eR™™_ It follows from Theorem
3.1, that the system is exponentially stable if there exists o > 0 such that Zldey(sl, + G,(5)Fp) < D_q.

The proof for Case II follows the same arguments as for Case I, except for the way in which we choose

FL. Let
20) 0 g | B 0 14O
82105) 0 22D | Bman() - 824(5)
. | .
|
Gpa(s) 4 o : (3.14)
81t 8w | B, ) 8aa()
- - - | - - -
Otn - 3an, | L yxtneny)

Then by the above assumption, detG,.(0)#0. Let €>0 be such that detG,.(-€) #0 and let

F,= G;,l.(—e)-e e R¥™ and let F; eR™¥™ consist of the first n, columns of F,. Then, since

Gy(—€)F; = el,, (3.12) becomes
dew(sd,_+ G()F)

1
= det [(s + &), + [G,(—e) + (s+¢9) l[c;;,(-:a + s + s))dt]F,—eI,.c]
1

= det [(s +8)l, + &(s +¢) [{G;,(-e +1(s + s))dz]F,] . (3.15)

The rest of the proof follows that for Case I.

10



CaseIl: n,>n; Letn.=n;, B, =Frand C, =1, It follows from Theorem 3.1 that the system

S(P,K) is exponentially stable if there exists o > O such that
Z(dey(sl, ) dewl, + G,%)) = Z(det(sl,) det(l,, + %Gp(s))) = Z(det(sl, + FiG,(5))) < D (3.16)

Because of Assumption 3.1, we can assume that the determinant of the first n; rows of G,(0) is not

equal to 0. Let

[ 8@ gia® | '
821 0 gaal) |
|

I Onn,m
. . I
gni.l(s) e gn‘.n‘(s) I
Gp,(S) é 3 _ B | _ (3.17)

8 +1,10) " ga+1.a(9) |
|

U X et n)
. |
'gn,,.l(s) e gno,n,-(s) |

Then by assumption, detG,,(0) #0. Let & > 0 be such that detG, (-¢) # 0, let F, = G,4(-€)-¢, and let
F, eR™™ consist of the first n; rows of F,. The rest of the proof proceeds as for Case I. This com-
pletes the proof. |

We are now ready to establish our main result.

Theorem 3.4: Suppose that Assumption 3.1 is satisfied. Then for any integer m 2 1, there exist m+1
n; X n, matrices Fj;, 0 < j < m, with F,, of maximum rank, such that, if [A;,B.,C.,D.] is a minimal real-

ization of the matrix transfer function Z}:o F; /s/, then the closed loop system is exponentially stable.

Proof: Casel: n;2>n, We will prove this theorem by induction. Since the only requirement on
D, in the proof of Theorem 3.2, is that its components be sufficiently small, it is clear that there exists a
matrix Fo( = D) with maximum rank such that /+G,(0)F, and G,(0)F, are both invertible. Hence the
Theorem is true for m = 0. Now suppose that m 2 1 and that we can construct a minimal stabilizing

compensator [A;,B;,C;,D.], with transfer function Y"7! F; /s, where F,, has maximum rank and

11



G,(O)F',,,.1 is invertible. Now, see Fig.2a, consider this closed loop system as a "new plant" with
transfer function Gy(s) & Wa, + Gpls) X5 Fi 1 &Y Gy(s) X5 Fi 1 5. Then
Gp(0) = [GyO)F pp 1] G (O)F ppy = I, for m>1 and G,(0) = U, + G,OFo)" G,(0)F, for m=1. In
either case, Assumption 3.1 is sal:isﬁed.. According to' Theorem 3.3, for this new plant, we can find a

stabilizing compensator K, whose transfer function is of the form F.,/ , with Fj,e R"7™ of maximum

rank. For this compensator, there exists a > 0 such that

Z[det(sl,,o + G;,(s)F’,.)]

= Z|det(sl, + (I, + G,(s) 50, s*')-lc;,,(s)("il F,1 s‘)F',,.)]
=0 =0

= Z|detlsl, + (5™, + G,s) "fﬁ’rl-‘)-lap(s)(mfpk"-‘-‘)p;]]
| =0 =0

= Z|(det[s™ I, + G,(s) "ill":-s""‘"])"‘det[s‘"],,o + G,(é)ﬁ(i’,._lﬁ,,, + F,).«""’]] c D, (3.18)

_ =0 =0
where F.ho, F;=F for - 0<i<m-1 and F,=0. Let
X 8 det(s™ I, + G,(s) TG Fis™ 1) = det(s™ 1, )detll,, + Gy(s) TooFis™) and let
Y 2 det(s™, + Gy(s) TR(FirFrn + F)S™) = det(s™], ydetl, + Go(s) XLoFiaFm + FIS). By

assumption, [A,.B,C;,D;] is a minimal realization for 37! F; /s’ = (XgFis™ " ™)-(s"", ). Since
F,, has maximum rank, it can be shown that ¥'7;'Fis™ '~ and s, are coprime. From [Che.l,
Chap. 6], it follows that A, is a square matrix of dimension n, = deg(det(s™ lI,.a))=(m—l)-n,,. Because
ZQIF:-/ ¢ is a stabilizing compensator for the plant G,(s), it follows from Theorem 3.1, that there
exists a B > 0 such that Z(X)eD_g. It now follows from (3.18) that Z(Y) D_y, where y = min(a., ).
We now set F; = Fi_yF,, + F;, for 0 < i < m. Then F,, = F,,"F,, has maximum rank because F/,_; has
maximum rank and F, is invertible. Also G,(0)Fp = (Go(0)Fn-1)F,, is invertible because G,(0)Fpy
anq F,, are invertible. Hence we conclude that any minimal realization for the transfer function

Ym, F;/ & is a stabilizing compensator for the plant P.

CaseIl: m;<n, We proceed again by induction, as for Case I, except now we reason in terms of

the configuration shown in Fig. 2b. Thus we now set

12



G(s) = TISFi I8 Gy, + TPGF IS Gy()! and FpeR™™ and we examine the set
Zldew(sl,, + FnG,(s)] instead of Z[det(sl, + Gj(s)F,)]. The rest of the proof continues as for Case I
and is therefore omitted. This completes the proof. |
4. CONCLUSION

Since it is possible to both stabilize and ensure asymptotic tracking of polynomial inputs and
asymptotic reejection of polynomial disturbances by means of very simple finite dimensional compensa-
tors, it is clear that fairly complex design specifications may be possible to be satisfied by fairly low
dimensional compensators. Such compensators are best designed using nonsmooth optimization tech-

niques, as outlined in [Pol.1].

APPENDIX: ANALYTICITY RESULTS

Theorem A.1: The matrix transfer function G,(s) = C,(s/ - A)™'B, + D, is a componentwise ana-

lytic function over U2, .

Proof: First, we will prove that each component of G,(s) = Cp(s/ -AP)'IB, + D, is an analytic
function over U"_qo. We denote the (i,j)}-th component of G,(s) by G;(s). Then

Gii(s) = CpilsI — A)'B,; + D;, A1)
where C,; is the i~th row of C, , B, ; is the j~th column of B, and Dj; is the (¢j)-th component of D.
We will prove that G;(s) is differentiable by showing that

fim Gi(s + As) - Gis)
As—0 As

=-C (d-A)?B . (A2)
i’ Pl
Consider As small enough such that both s and s+As belong to UZq, < p(Ap). Then we have

| Coslls + As) - A,Y'B,; + Dy)— (Cpi(sI — A)'B,; + Dy)

+ Coulsl - AY B, ¢

As
—AY! = (s] — AY?
-lc,, ((s + As)l AA,; OI=4)" - A p)_lep.-j'C
As - A - (sl - A
S ICpsll C » oF As G- 4 + (s = A2 1B,
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(s + AN —A)"' - (sI-A,)"!
As

+ (s = A2 1B,

(@ + A - A [T -4)- (s + A9~ 4]l - 4
- |

+ (1= A 1B

=HCH I = (s + AN - AT - A)" + (- A B,

ICRH s + A - Ay [—(sI —Ap) + (s + As) - Ap)](sf = AT = A1l 1B,

= 1S {IC,ll (s + AsM — Aol = Ay sl — A 1B, = O as 1Asl - 0. (A.3)
Therefore (A.2) is proved and Gy(s) is an analytic function on Ulay u
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Figure 2.b: Feedback compensator structure for the proof of Case II in Theorem 3.4

F.is — N



	Copyright notice1988
	ERL-88-34

