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High Performance Programmable DSP architectures

Mordechay TomaIlovich

ABSTRACT

The large increase in the complexity of computations and the processing speed

requirements of digital signal processing applications require us to implement high-

throughput processing elements (PEs) which can also be used to implement high perfor

mance multiprocessing systems.

In this thesis we propose and explore many of the design aspects of a new PE

architecture that is suitable for inclusion in multiprocessing systems. It incorporateson

the same chip a processing unit (PU) and an autonomous interprocessor communication

unit (AIO). Concurrently with the PU that executes the task's computations, the AIO

handles and controls the data transfer between the PEs. The AIO operates as 1) an inter

face between the PU and the network and 2) an intermediate network switch to transfer

data between PEs. To avoid network congestion and to achieve a high throughput, the

use of virtual-cut-through (VCT) switching and an acknowledgement handshaking pro

tocol is proposed. Four I/O links enables the PE to be embedded in any network with a

topology consistent with this number oflinks, and provides the capability to expand to

large multiprocessing configurations. The proposed PE might be build as catalog parts

for building multiprocessor signal processing systems. Alternatively, the basic AIO

unit might be designed as a macrocell to be incorporated into ASIC (Application

Specific IC) implementations. Each AIO can be coupled with a different PU design to

yield heterogeneous multiprocessor systems. Further, the communication configuration

of the AIO can be parameterized in the macrocell and configured to suit each potential

application.



Although DSPs that possess special signal processing features are fabricated in

small feature size technologies, their throughput is limited by clock skew problems,

limiting theirusefulness for somereal time applications. To overcome this clock skew

ing problem, an asynchronous processor architecture is proposed. In an asynchronous

processor, noclock is required since the functional blocks are built of asynchronous cir

cuits that communicate through asynchronous interconnection handshake blocks. In the

asynchronous processor, the execution time of each instruction is data and instruction

dependent, andtherefore the "average" throughput will also increase.

When clock skewing is insignificant but the throughput of a synchronous proces

sor is limited because of a large variation in instruction execution time due to data

dependency, we propose aGSLA (Globally Synchronous Locally Asynchronous) archi

tecture. This architecture incorporates a clock with a variable duty-cycle. The func

tional blocks signal the control unit upon the completion of their task and the control

unit varies the clock's duty cycle to start a new task. The design principles developed

in this thesis should be useful for the development of many general-purpose and

special-purpose multiprocessor architectures in the future.

St^^Z^^^^
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Chairman of committee
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CHAPTER 1

Introduction

1. Introduction

Digital signal processing algorithms are used in a large variety of applications,

including image processing, speech processing, sonar and radar systems, biomedical

and geophysical (seismic) systems, artificial intelligence, and weather prediction. These

applications involve a a large amount of dataandcomputations and require fastcompu

tation and high throughput (computation rate).

Most signal processing algorithms are repetitive and allow a high degree of paral

lelism. These algorithms include complex computations such as transform techniques,

convolution/correlation filtering and matrix operations. Transform type techniques

include DFT (discrete fourier transform), FFT (fast fourier transform), discrete cosine

transform, Karhunen-Loeve transform, Walsh-Hadamard transform, and so on. Filter

ing types include FIR, IIR, 1-D and 2-D convolution and correlation, 1-D and 2-D inter

polation and resampling, linear phase filters: low-pass high-pass andband-pass, Wiener

and Kalman filtering, adaptive filtering, window filtering (rectangular, Gaussian, Ham

ming), differential filtering (gradient, Laplacian), etc.. Matrix operations include matrix

multiplication, matrix triangularization (QR decomposition), matrix inversion, singular

value decomposition (SVD), eigenvalue computation, solution of Toeplitz linear sys

tems, etc..

The large increase in the complexity of computations, processing speed require

ments and the volume of data handled in these applications makes it important to
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implement architectures that will increase the computation rate of real-time digital sig

nal processing. The availability of low-cost, high-density, high-speed very large scale

integration (VLSI) devices and the emerging of computer-aided design (CAD) facilities

enable us to design fastprocessing elements andhigh performance multiprocessing sys

tems. This dissertation's main objective is to propose new architectures for processing

elements that increase the throughput of a single DSP (digital signal processor) and

allow highly concurrent processing systems. The dissertation contains two themes. The

first theme investigates and describes an architecture of a processing element which

increases the throughput of a multiprocessing systems. The second theme investigates

and describes various asynchronous processor architectures which overcome clock

skewing problems.

The large degree of parallelism inherent in digital signal processing algorithms

and the large amount of data and computations involved in them, suggests the partition

ing of computations onto a large number of processing elements. Such multiprocessing

architectures typically waste computation time on interprocessor communication, which

limits the speedup and the throughput obtained by N processors operating concurrently

and transferring data among themselves.

To overcome the communication latencies and the wasted computational time, a

processing element (PE) which incorporates on the same chip a processing unit (PU)

and an autonomous interprocessor communication unit (AIO) is proposed. Concurrently

with the PU that executes the task's computations, the AIO handles and controls the

data transfer between the PEs. The AIO operates as 1) an interface between the PU and

the network and 2) an intermediate network switch to transfer data between PEs.

Operating as an intermediate network switch enables the PE to be embedded in any

multiprocessing configuration.

Chapter two describes different existing multiprocessing systems, the proposed
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PE, and its operation. Chapter three describes the techniques and modes of PE-PE com

munication, the interconnection protocols and the different I/O configurations. Chapter

four has a detailed description of the hardware implementation, including a multipro

cessor performance analysis and a performance comparison between the proposed PE

and existing DSPs.

Current DSPs possess special features which make them very effective for digital

signal processing. Among them are:

• multiplier which can also multiply and accumulate in one cycle.

• ALU with pre- and post-shifting capabilities useful for scaling operands and

results.

• address computation unit which allow to pipelining of address calculations

with data path operations.

• A Harvard architecture, which means separate memories for data, program

and coefficients, and facilitates parallel prefetching of data and instructions.

• multiple buses to increase the bandwidth of data/instruction transfers.

Although the existing DSPs, fabricated in a small feature size technologies (0.8-2

micron), possess these special features, their throughput is limited by clock skewing

problems and they are not adequate to be embedded effectively in a multiprocessing

system implementation.

To overcome the clock skewing problem an asynchronous processor architecture

is proposed. In designing and implementing an asynchronous processor architecture, no

clockis required since the functional blocks are builtof asynchronous circuits that com

municate through interconnection handshaking blocks. The communication is done by

handshaking at the completion of each task. Such an synchronous design eliminates

limitations on the throughput imposed by use of a clock, the throughput should there

fore increase as the logic speedincreases. In the asynchronous processor, the execution
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time of the circuit implementation is data and instruction dependent, and therefore the

"average" throughput of an asynchronousprocessor will also increase.

Chapter five introduces the design of an asynchronous processor. A timing

analysis is performed to obtain the conditions on handshaking and clock skew delays

such that the asynchronous architecture yields a higher throughput. Chapter six pro

poses different asynchronous architectures and their implementation.

If and when the clock skewing problems due to IC design and fabrication are

solved, the major advantage of the asynchronous architecture diniinishes. However, the

large variation in the execution time due to data dependency still exists. To overcome

this problem in the synchronous processor implementation, a new architecture named

GSLA (Globally Synchronous Locally Asynchronous) is proposed in chapter seven.

This architecture incorporates a clock with a duty-cycle that can be varied by the con

trol unit. Functional blocks, which due to data dependency have a large execution time

variation, signal the control unit upon completion of their task. The completion signals

allow the control unit to vary the clock's duty cycle, thus allowing the initiation of a

new task.

The last chapter (chapter eight) has conclusions and suggestions for further work

and research.
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CHAPTER 2

Multiprocessing DSP

2.1. Introduction

Algorithms and programs for real-time signal processing (e.g., tracking radar,

sonar systems, image processing and multi-sensor navigation systems), artificial intelli

gence, weather prediction, biomedical andgeophysical applications [1] inherently have

a large degree of parallelism. They usually involve a large amount of data and compu

tations (e.g., matrix manipulations - multiplications, inverse, correlations and convolu

tions) and require fast computation and high throughput (high computation rate). One

way to implement this class of algorithms is with a multiprocessor architecture

[2,3,4,5,6,7,8]. But multiprocessor architectures have computation latencies which

limit the maximum speedup and throughput obtained by N processors operating con

currently with data transfer between them. The speedup and the throughput are limited

by:

1) Idle timedue to imperfect processor loadbalancing.

2) Communication latencies:

• Waiting time caused by long routes and contention for links - data has topass

along too many links from the source processor to the destination processor.

• Time required to handle and control the data transfer.

3) Processor's computation time wasted oninterprocessor communication.

Effective exploitation ofthe algorithmic parallelism, as well as short paths for data
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transfer are essential to achieve a large computational speed-up. Effective use of mul

tiprocessor system depends upon intelligent schedulers and compilers which either par

tition the algorithm according to the number ofPEs and their interconnection topology,

or partition the algorithm and determine the number of the PEs and their interconnec

tion topology [9,10]. Partitioning the algorithm into many tasks and assigning them to

different processors shouldattemptto:

• Minimize the numberof the interprocessor data transfercommunications.

• Keep the communications localized (shortroutes).

• Reduce the delays of data transfer between the PEs.

• Improve the processors load balance to reduce the idle times of the proces

sors.

In general, the scheduling problem is NP complete; the scheduling algorithms

therefore use heuristics which do not necessarily yield an optimal partitioning with

respect to localization and minimal interprocessor communication. Even more,

depending on the algorithm, sometimes optimal partitioning may not be good enough,

therefore, the interprocessor communication hardware and protocols are vital for

achieving a high computing throughput.

An independent interprocessor communication unit designed to handle andcontrol

the data transfer between processors, in parallel and concurrently with the computa

tions, relieves the processor from wasting time on interprocessor communication and

reduces the time required for data transfers.

Depending on the algorithm and the number of processors, there are two ways to

implement the data transfer interconnections between the processors of a multiproces

sor system. One implementation is the shared memory used in the CM*[11,12] and in

the BBN[13,14], and theotherimplementation is the packet switching usedin thecon

nection machine[15] and in the NCUBE[16]. The shared memory interconnections are
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composed of either a large common memory or a set of local memories of the proces

sors. Each sample of data is accessed by translating a virtual address to a physical

address. Data is transferred to and from the shared memory in one of the following

ways:

• Closely coupled through interface controllers.

• Multiple buses or networks (hierarchical clusters).

• Circuit switching for direct data transfer.

• Intermediate circuits for store and forward.

• DMA channels.

In the packet network interconnection, a single byte or data packet is transferred

among the processors in one of the following ways:

• Bidirectional buses.

• Shared interface routers.

• DMA channels.

• Hand-shaking.

Interconnection networks which reduce the communication delays and are well

suited for general purpose and parallel processing applications

[12,11,17,18,19,20,15,21,22,23,24,16,25,26,27] have been investigated by several

researchers. Studies have shown that for multiprocessor systems containing more than

50 processors, the shared memory interconnection has long delays due to bus conten

tion while the network interconnection which is simpler to implement, reduces com

munication delays compared to the shared memory and has a good tradeoff between

cost and performance of the system. Bus and ring interconnection topologies are

cheap to implement but have a limited bandwidth. Mesh and cross-bar interconnection

topologies have a high bandwidth but are expensive to implement. The packet network
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interconnection combines the advantages of both. It is a closely coupled store-and-

forward network that route messages in the form of packets with information about the

source, destination and the size of the message. Information (packets) passes through

intermediate switchesto the destination [28,29,30,31].

The following chapters describe a way to design a Digital Signal Processor (PE),

suitable for multiprocessor systems, which incorporates a Processing Unit (PU) and an

autonomous interprocessor communication unit (AIO) on the same chip. The process

ing unit performs the task's computations while the autonomous interprocessor com

munication unit (AIO) handles the switching circuit and the data transfer between two

PEs. Both units operate concurrently and thus eliminate the waste of processing time

for handling and controlling data transfer. Data transfer between the PEs is executed

through I/O links that have a high rate data transfer capability (= 10-20 Mbits/sec) at

the cost of some hardware and software overhead. Data transfer between the PU and

the AIO is through dual port memory which can be accessed concurrently by the PU

and the AIO, thus preventing any interference between the two units.

2.2. Multiprocessor interconnection • background

Many multiprocessor systems like the Cm*[12,11], The Connection Machine[15],

BBN[14], NCUBE[32,16], Intel iPSC[32] and the Transputer[33,34,35,36] have dif

ferent interprocessor communication methods for data transfer and protocols.

Here are a few examples of how interprocessor communication is handled in multipro

cessor systems:

2.2.1. Butterfly Parallel Processor

The Butterfly Parallel Processor is an MIMD machine composed of processors

with memory and a high performance switch interconnecting the processors. The

memory of all the Processor Nodes forms the shared memory which is tightly coupled
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and can be accessed by each Processor Node. The Processor Node consist of a

microprocessor for computations, a Processor Node Controller (PNC) for transmitting

and receiving messages, a memory, an I/O bus and an interface to the interconnection

switch.

The PNC initiates all messages transmitted over the switch and processes all mes

sages received from the switch. Using memory management, it translates the virtual

memory address used by the computing microprocessor into a physical memory

address. Thus, the memory of all Processor Nodes appears as a single large global

memory to the user. The PNC also provides efficient communication and synchroniza

tion between tasks by executing queuing operations in a way similar to the switch

operation of a packet switching network.

2.2.2. Cm* multi-microprocessor

The Cm* is a multiprocessor system with a shared memory. The shared memory is

not separated from the PEs. Each PE and its local memory are closely coupled; a net

work of buses give every PE an access to each non-local memory. The system uses

hierarchical packet switching structure. An address and/or a data from a PE is always

latched into a switching node of the hierarchical buses structure, and the buses are allo

cated only for the time interval it takes to transfer the address or the data. The architec

ture of the system combines several PEs into a "cluster" which provides a shared

address mapping and routing processor for handling the intercluster communication.

The routing ofa PE's reference to target memory is transparent to the user and is per

formed by special levels of addressing mapping mechanisms andbuses. The sender will

always receive back an acknowledgement or "Return" message containing the data.

Addressing within a cluster is translated by one level of mapping mechanism while

addressing between clusters is translated by two levels of mapping mechanism. An

intercluster message consist of one to eight words. The sender message consists of the
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following information: source ID, destination ID, control instruction, address of the

dataand the data (1-8 words). Thereturned message consists of destination ID, control

instruction and the data. Reading/writing data from/to the non-local target memory is

done through DMA by the routing processor. For concurrent operation, the routing pro

cessors have queues to store messages and to interface between their hierarchical levels.

2.2.3. The Connection Machine

The Connection Machine architecture provides a very large number of PEs

(processor/memory units) connected by a programmable switching packet communica

tion network, that can connect all PEs in any arbitrary pattern. The key component is a

VLSI chip which contains 16PEs and a router unit of the packet switch communication

network. The PEs onthe chip are connected inan array of4 x 4. The router is responsi

ble for routing messages between chips and delivering them to the destination specified

by the address. The router communicates with the routers of other chips through an

hypercube topology of bidirectional lines. The router can transmit new messages into

the network, forward messages between chips and receive and deliver messages to the

appropriate PE. The PEs on the chip communicate directly with their four neighbors

without the interference of the router. The communication with the router is done by

handshaking on the FCFS (first come first serve) basis. A PE initiates a message by

sending a packet to itsrouter consisting ofan address followed bya "1" followed by the

data followed by the parity check. The router accepts messages only if its buffers are

not full. This information is then transmitted back tothe PE via the router acknowledge

flag. The messages will be transferred from the router by FIFO policy, i.e., the message

which is at the node the longest time will have highest priority for transmission. When

the message reaches its final chip, the local router will deliver it to the appropriate PE

by writting it into its memory and notifying thePE that thereis a newvalid data.
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2.2.4. Transputer

The transputer is a 32 bit microcomputer with on-chip RAM memory and four

standard communication links. Communication between different transputers is point-

to-point synchronized and unbuffered. Data transfer is executed only if both transputers

are ready. Each linkcomprises two unidirectional signal lines that carry data andcon

trol information. A message is transmitted as a sequence of single bytes. Each link

controller has a data transfer overhead that consists of accepting a pointer to the

memory, number of bytes to be transferred and the link identity. Data fetch at the

sender and data store at the receiver is done by DMA. The data transfer on the link is

independent of the processor. The sending transputer initiates transfer by transmitting a

byte of data on the output line. The sender then waits for acknowledgement, which is

sent through the input line and which signifies that the receiver is able to receive

another byte. No other data will be sent before the arrival ofan acknowledgement. Each

data packet is 11 bits long including 2 bits of header, 8 bit of data, and one END bit.

Acknowledgement packets consist of two bits.

2.2.5. NCUBE

The NCUBE computer is a multiprocessor that incorporates 2N PEs intercon

nected as an N-dimensional binary hypercube. Each PE has itsown local memory, and

Ndirect communication links with its neighbors. Communication with other PEs is per

formed via asynchronous DMA operations over N pairs of bidirectional lines. Two

registers are associated with each link. One is the address register for the message

buffer location in the memory and the other is a count register indicating the number of

bytes left to send or receive. There is also a "ready" flag and an "interrupt enable" flag

for each link. A data transfer is initiated by the processor after checking its flags and

setting the appropriate registers. A message consists of a file of data with four associ

ated fields of control information: source, destination, length of data file (up to 64
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Kbytes) and type of data. Some hypercube systems transfer the whole message at once

while others (e.g. Intel's iPSC) partition it into smaller packets that are transmitted

sequentially. A new message or packet will be transferred only after the receipt of an

"acknowledgement" of previous packet from thereceiver. Afterinitiation the processor

continues with other operations while the link controller completes the transfer opera

tion via DMA. When the link controller is ready for a new operation (after finishing

execution of the previous operation) it will set the appropriate flags and will notify the

processor by an interrupt.

2.2.6. Summary

The aboved survey shows that there are lots of alternatives to transfer data

between the PEs. All the alternatives are dedicated for increasing the performance of

the particular multiprocessor system. Shared memory used for data transfer between the

PEs is not a single large memory but consists of the PE's local memories. Access to the

local memories require a network and switches as in Cm* and BBN. The Connection-

Machine uses a complicated programmable switching network for data transfer, while

the NCUBE andthe transputer use their I/O link as part of the interconnection network.

Even though these multiprocessor systems use packet switching, DMA channels and

complicated special purpose switches, data transfer in these systems require the proces

sorto lose some computation time and/or memory access time.

2.3. Proposed Processine Element (PE)

2.3.1. Design approach

In a multiprocessor system which incorporates a large number of processors (on

the order of fifty or more), transferring data through a network interconnection is

simpler and more economical to implement than through a shared memory interconnec

tion.
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As was mentioned before, the speedup obtained by N processors, depicted in

figure 2.1 which operate concurrently in a multiprocessing system and transfer data

between them through any network topology is limited by:

1) Idle time due to imperfect processor load balancing.

2) Waiting time caused by communication latencies in the links and in forward

ing data.

3) Processortime dedicated to process data messages and to forward them.

NS - Netwodc Switch

PU - Pronator Unit

Figure 2.1 - Multiprocessorsystem

Appropriate processor load balancing withminimal data transfers has to be solved

by the scheduler, which partitions the algorithm into tasks and assigns them to different

processors so that the transfers are localized and their number minimized. But since the

known methods of scheduling do not necessarily yield an optimal partitioning with

respect to localization and minimal interprocessor communication, the interprocessor

communication hardware and protocols are vital for reducing: 1) The waiting time

caused by communication latencies, 2) The processor's time wasted on data transfer
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and communication.

Therefore, the hardware of a multiprocessing system that achieves a computation

speedup anda higher throughput must have the following features:

• Minimum processor involvement in controlling and handling interprocessor

communication, and thus increasing the processor time dedicated to compu

tations.

• Fast and independent interprocessor data transfer which does not interfere

with the task computations and is transparent to the user (separation of pro

cessing and communication).

Figure 2.2 depicts a multiprocessing system designed with processing elements that

have the above features.

PE-PU+AIO

Figure 2.2 - Multiprocessor systemwith proposed PE

The Processing Element (PE) used in the multiprocessor system of figure 2.2 is

depicted in figure 2.3. It incorporates two separate units: the digital signal processing
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unit denoted PU (Processing Unit) and the interprocessor communication unit denoted

AIO (Autonomous I/O).

Processing

unit

Dual port
memory

Single port
memory

PU control

PU

Data
conversion

Packet

buffer

AIO control

AIO

1 VO
link

VO
link

VO
link

VO
link

Figure 2.3 - Proposed PE

The processing unit (PU) and the communication unit (AIO) operate indepen

dently and concurrendy in a way that the data transfer inside the PE between the PU

and the AIO and outside the PE between the PEs is transparent to the user. The PU

executes the computational part of the task, while the AIO operates either as an auto

nomous interface for data transfer between the PU and the network or as a network

switching node for data transfer between PEs. Handling all the data transfer from the

source to the destination by the AIO releases the PU to execute only the computational

part of the task. The PE incorporates four pairs of unidirectional I/O links controlled by

the AIO which can be used as input and output ports, thus enabling the PE to be embed

ded in different interconnect topologies of multiprocessor system. When two PEs
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require a higher communication BW it ispossible to connect them with up tofour inter

connection links. In such case the AIO will automatically transfer the packet through

any free link between the two. When two ofthe links are input links and two are output

links the PE through the AIO control can execute the switch functions inany intercon

nection network topology such as delta, banyan, cross-bar, mesh, torus, omega, multi

bus, 4-cube (N-cube) etc. [37,38,39,40,41]. When inaddition the processing power is

necessary, the PE could be part of a systolic array processor or of a N-Cube multipro

cessing configuration.

The interconnection between the PEs through the I/O linkscan be done in several

ways: half duplex, full duplex or hand-shake. Data transfer can be serial through one

line orparallel through many lines, and thus depending on the application, the data bus

can be parametrized during the chip fabrication.

Modularity, parametrizibility and expansibilty of the PU and the AIO, dedicated

PU implementation according to the application, simple interface between the PU and

the AIO and the use of similar protocols for different communication configuration, are

the major properties that makes the proposed PE suitable as a macro-cell for many

ASICs (Application Specific IC).

The proposed communication between the PEs is established by a bidirectional

handshake protocol illustrated in figure 2.4.

When a source PE must transfer data to another PE, its AIO unit will initiate by

handshaking a connection with the AIO of the adjacent PE (intermediate node's PE or

destination's PE). The initiation is done by formating a control message according to

the protocol and sending it through the communication link. When the AIO of the

receiving PE is ready to receive the data, it will signal backand the source will send the

data packet Upon completion of the transfer, the receiver's AIO returns another control

message signalling the success/failure of the data transfer. A control message which is
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Figure 2.4 - Handshake communication

much smaller than a data packet contains the following fields: synchronization bits,

control instruction, source ID, destination ID, length of data, error detection code and

end of message (END). Error detection code like parity words or CRC might not be

necessary when the data packets are relatively short ( about 2Kbits ), and the PEs are

close to one another in a free EMI (Electro-Magnetic-Interference) environment

Speeding up the data transfer can be achieved by using virtual-cut-through (VCT)

switching, which is a combination of circuit switching and store-and-forward packet

switching. The AIO ofeach intermediate switching network node checks by handshak

ing, according to the destination's ID, whether the next node in the path toward the des

tination is free to receive the data. If the next node (toward the destination) is free, the

data is forwarded before it has been received and stored completely in the buffers. This

switching scheme requires extra processing power from the AIO as will be described
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later.

Each packet of data from the source to the destination is routed in a minimal

number of hops through specific nodes predetermined and assigned by the scheduler

[The scheduler may have as an input a given network topology or may output a pre

ferred one].

Storing the data in the packet buffer is necessary for retransmission in case it

arrives at the next PE with errors or is lost (according to a fault tolerance policy

explained later).

When there are many packets to handle, the AIO will provide preferential service

according to priority tables based upon the algorithm's partition and the tasks assigned

to each PE by the scheduler.

Two types of buffers are incorporated in the processing element. One buffer is the

data buffer for interfacing data transfer between the PU and the network when the PE

is a source or destination of the data and the AIO operates as an interface between the

PU and the network. The other buffer is the packet buffer for data transfer between

PEs when the AIO operates as switching node of thenetwork. Thedatabuffer is imple

mented by a dual port memory, which may be accessed by the PU and the AIO con

currendy, thus enabling both units to operate independendy without any interference.

This dual port memory is in the addressing space of the PU and therefore it is accessed

by the PU like any other data in the memory. The other part of the memory which is

accessed only by the PU is a regularsingle portmemory. The packetbufferis accessed

only by the AIO. This buffer is a temporary storage for data transfer between the PEs.

An acknowledgement from the next PE enables the AIO to reuse the storage for new

data transfer. The buffer can be implemented by shift registers or single portmemories

(as will be described later).

Data received by the AIO of the destination PE is stored in predetermined loca-
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tions of the dual port memory buffers. Upon successful reception, the AIO will inter

rupt the PU to notify, through flags/semaphores, that valid data has arrived. When the

PE operates as a switching node of the network, received data is stored temporarily in

the packet buffers of the output link through which it must be forwarded to the next PE.

23.2. Data transfer between PEs

Communication latencies of data transfer aredue to: 1) longroutes,2) time to han

dle message transfers, and 3) waiting time because of the FCFS (firsts-come first-serve)

policy thathandles and transfers messages in the arrival order andnotaccording to their

priority defined by the scheduler.

To decrease these latencies thedata transfer procedure is based upon:

1) handshaking protocols.

2) priority of service.

3) routing inminimum number of hops through a virtual- cut-through switching

network.

Priority of service and the routes for transferring data ina minimal number of hops

are determined by the scheduler during the compilation and the partition of the pro

gram.

A handshaking procedure decreases the communication latencies because:

• Data is transferred only when it can be handled by the receiving PE, i.e.,

there is enough buffer space anddatahas thepriority to be handled, thus free

ing the link for transferring the necessary data.

• Saving time in forwarding data to the next PE when the receiving PE

operates as a network node by using virtual-cut-through (VCT) switching

technique. The receiving PE replies to the sender and at the same time checks

whether the next PE is ready to receive the data. If the next PE is ready the
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receiving PE operates in VCT mode.

Figure 2.5 depicts the underlying operations executed bya PEin transmitting data

according to a data transfer protocol based upon handshaking procedures.

TMBOUT

STOP PROCESS

CONnNUBBY

PROTOCOL

SEND REQUEST TO

TRANSFER DATA

WAIT FOR DATA

YES I -RDY*

FBTCHDATA

FROM BUFFER

WATT FOR REPLY

NEXT TRANSFER

Figure 2.5 - Transmitting PE's operations

The handshaking procedure for data transfer between PEs is always initiated by

the sender PE which requests a data transfer and waits for a reply from the receiving

PE. If the reply does not arrive during a predetermined time interval or the receiving
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PE is not ready to receive the data, the sender PE repeats the request or tries to transfer

another message according to the detailed protocol described later. If the receiving PE

is ready to receive data, the sender PE fetches data from the buffer, sends it and waits

for an acknowledgement When an acknowledgement is not returned during a time

interval or the receiving PE replies that errors were detected in the transferred data, the

sender PE retransmits the data or continues according to the protocol described later.

When a response from the receiving PE verifies that the data has been received without

errors, the sender PE can start a new data transfer.

Figure 2.6 depicts the underlying operations of a receiving PE during a data

transfer.

Upon receiving a request to transfer data, the receiving PE (next PE) checks

whether it has: 1) enough buffer space available to store the data, and 2) the priority to

handle data for a specific destination and whether to receive it if multiple messages

arrive from different I/O links. If the data to a specific destination has the priority to be

handled and there isenough buffer space available, the AIO ofthe receiving PE replies

back to the AIO ofthe sender PE that it is ready to receive the data. If the receiving PE

does not have the priority to handle the data and/or its buffers are full, its AIO will

notify the senderthat it is notreadyto receive thedata.

When the receiving PE notifies the sender PE that it is ready toreceive data it sets

a time-out watch-dog and waits for the data arrival.

In case the receiving PE is not the final destination ofthe message, i.e., operates as

a network switching node that forwards data to the next PE, the receiving PE initiates

the handshaking procedure with the next PE at the same time as it replies to the sender

PE that it is ready to receive the data.

The receiving PE operates in one of two modes. If the data can be forwarded to

the next PE, the receiving PE operates in a virtual-cut-through mode, i.e., it forwards
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Figure 2.6 - Receiving PE's operations

data before it has been received and stored entirely. If the data cannot be forwarded to

the next PE, the receiving PE operates in the usual store-and-forward mode. In both

modes, because of the fault tolerance policy, the received data is always stored in the

packet buffers. At the end of the data transfer the receiving PE replies to the senderPE

with an acknowledgement (ACK) if no errors have been detected in the data, or with an

ERR if errors have been detected. If the data has not arrived during the time interval of

the watch-dog it replies to the senderPE withan errormessage.
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As was mentioned before, data of higher priority will be handled first Failing to

establish an interprocessor connection between two adjacent PEs or to transfer data

between them results in later attempts (up to two more attempts) to try the transfer. Try

ing to overcome failures in the system, if an interconnection link malfunctions or a data

transfer fails, the sender PE will try an alternative route and if that also fails it will

return the message back to its sender. Any attempt that results in three failures will

result in notification to an operating system or to a human operator. A full detailed

description of the protocol is described laterin chapter 3.

Acknowledgements are used to avoid unnecessary repetitions of data transfers.

There are two types of acknowledgements: hop-by-hop and end-to-end. Hop by hop

acknowledgement is part of the handshaking procedure between PEs connected by an

I/O link. This acknowledgement is to notify the sender PE, connected through an I/O

link, that data has been received without errors. Upon receiving a hop-by-hop ack

nowledgement, the sender PE operates differendy ifit is a source PE ora switching net

work node PE. If the sender PE is an intermediate network switching node, it discards

the packet after forwarding it in order to use the buffers for another data transfer. If the

sender is the source PE ofthe data itcannot discard ituntil an end-to-end acknowledge

ment arrives. An end-to-end acknowledgement is a message from the destination PE to

the source PE notifying that the data have been received without errors. Upon receiving

this acknowledgement, the source PE discards the data and frees this buffer space for

other data. End-to-end acknowledgement is also timed out by another watch-dog dedi

cated to this purpose (detailed explanation and implementation appear in chapters 3and

4).

2.4. Summary of PE's properties

The proposed PEhas the following properties:
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1) Separate units for computation (PU) and for communication (AIO).

2) Independent andconcurrent computation and communication.

3) Fast data transfer by employing virtual-cut-through switching and minimum

number of hops.

4) Variable interconnection band-width between processing elements.

5) Macro-cell for "ASIC" implementation:

Modular and parametrizable.

PU is adjustable to the application.

Processor interconnection configuration is adjustable to theapplication.

6) Independent ofnetwork topology - PE can be embedded inany network topology.

7) Simple interface between the PU and the AIO.

8) Different buffers for data transfer between the PU and the AIO and for data

transfer between the PEs.
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CHAPTER 3

Communication and protocols

3.1. Introduction

Our interest is in multiprocessor systems containing a large number of PEs which

are connected through any arbitrary network. In such systems, the communication

methods and the protocol used for data transfer between the PEs are vital to achieve a

high throughput This chapter describes different design alternatives of PE-PE com

munication and the baseline design choices made for implementing a multiprocessor

network systems with theproposed PE. Depending on the application thePE can incor

porate different I/O link configurations and/or processing units. Therefore, a particular

data transfer mode or technique sometimes is chosen because it has a clear advantage

and sometimes ischosen arbitrarily depending on the application, scheduling etc..

Section 3.2 begins with a tutorial of data transfer modes (simplex, half-duplex,

full-duplex) and data transfer techniques (handshake, synchronous, asynchronous). A

multiprocessing systems containing a large number of PEs, where each PE is limited

with the number ofits I/O links implies that on the average a certain number ofhops is

required for data transfer between the PEs. For simple and reliable data transfer in any

arbitrary multiprocessor system configuration a synchronous data transfer technique is

chosen. To synchronize the clocks of the PEs involved in the data transfer three clock

synchronization methods are described. The choice of one of them is arbitrary and

depends upon the EMI environment. Fast data transfer with a minimum delay isneces

sary to obtain a high throughput. Store-and-forward switching and virtual-cut-through



Chapter 3 .30 -

(VCT) switching in which an intermediate node of the network forwards data to the

next one before it has been received entirely, are compared and analyzed. The com

parisonand the analysis showclearly that the VCTis fasterand therefore this method is

chosen. Broadcasting data in a multiprocessing system which transfers data by

handshaking is difficult to implement Three methods of data broadcasting are

described. Choosing any one of them is arbitrary and depends upon the network

configuration and the application.

The type and the formats of exchanging messages between the PEs are very

important for correct, complete and simple interaction among them. Section 3.3

describes the chosen protocol and its advantages. To decrease communication latencies

a VCT switching mode andan acknowledgement handshaking protocol is chosen. Flow

control in the network is obtained by executing the data transfer only if the nextPE in

the predetermined route can receive it To avoid network congestion and to detect

errors in data transfers an hop-by-hop and end-to-end acknowledgement policy is

chosen. Searching analysis is used to verify that the chosen protocol is free of

deadlocks, unspecified receptions, non executable interactions and ambiguities.

The message formats described in section 3.4 are based upon the basic format of

synchronous data transfer technique described insection 3.2 and upon the chosen proto

col described in section 3.3. To increase the message transfer rate some ways of

decreasing the message header's overhead are described. Short ID for identifying the

source and the destination PEs is one example and the error detection code is another

one.

Section 3.5 includes the reasons for choosing four I/O links and a description of

three different I/O configurations. The I/O configurations are parametrizable and adapt

able to different data transfer techniques, system applications and architecture imple

mentations. The protocols designed in section 3.3 are adjusted to the I/O configuration
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and implementation.

3.2. Data transfer techniques

Computer architecture and communication books[l, 2,3,4,5,6] describe the basic

common ways of communication and data transfer techniques between computers

themselves andbetween computers andI/Odevices. Thenext twoparagraphs introduce

and explain briefly these communication modes and data transfer techniques.

3.2.1. Communication modes

The communication between two processing elements connected through I/O links

can bedone inone of the following modes: simplex, half duplex, or full duplex.

A simplex link transfers information in one direction only. This mode is seldom

used in data communications because the receiver cannot communicate with the

transmitter to indicate the occurrence of errors.

Half-duplex transmission system is one that is capable of transmitting in both

directions but the datacan be transmitted in only onedirection at a time. In this mode a

pairof wires (signal and ground) is required for proper operation.

Full-duplex transmission can send and receive data in both directions simultane

ously. This can beachieved by a four-wire link, where a different pair of wires is dedi

cated to transmission in each direction. A common wire used by both processors

reduces the number of the required wires to three. Alternatively, a two-wire circuit can

support full-duplex communication if the frequency spectrum is subdivided into two

nonoverlapping frequency bands, one for transmit channel and the other for receive

channel.

3.2.2. Data transfer techniques

In each of the communication modes data transfer between the processing ele

ments can be done in one of the following methods: handshaking, synchronous or
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Link

Figure 3.1-I/O link

asynchronous.

Handshaking data transfer technique

The basic two-wire handshaking method depicted in figures 3.2 and 3.3, incor

porates two control wires andone data bus (contains any numberof lines). One control

line is in the same direction as the data flow in the bus from source PE to destination

PE. This line informs the destination PE whether there is valid data on the bus. The

other control line is in the direction from destination PE to source PE and informs the

source PE whether it can accept anew sample of data. The control sequence during the

transfer depends on the unit that initiates the transfer.

Figure 3.2 shows the data transfer procedure when it is initiated by the source PE.

The source initiates the transfer by placing a sample of data on the data busand activat

ing the "data valid" signal. "Data received" signal is activated by the destination after it

has received the data. This signal deactivates the "data valid" signal which deactivates

the "data received" signal and sets the data bus tobe idle and ready for anew sample of

data.

Figure 3.3 shows the data transfer procedure when it is initiated by the destination

PE. The destination initiates the transfer by activating the "ready for data" signal.

Detecting this signal the source places the data on the data bus and activates the "data

valid" signal. After the destination has received the data it deactivates its "ready for
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Figure3.2 - Handshaking initiated by the source

data" signal which deactivates the "valid data" signal and sets the data bus to be idle

and ready for a new sample of data.

Asynchronous data transfer technique

The serial asynchronous data transfer technique employs special bits inserted at

the beginning and the end ofthe data. In this technique, each character (word) depicted

in figure 3.4 consists ofthree parts: a start bit, the data bits, and the stop bits.

The receiver knows the transfer rate and the number of information bits to expect.

When there is no data transmitted the link is idle in the "1" state. The receiver detects

the "start" bitwhen the link goes from "1" to "0" and synchronizes the time intervals for

receiving the data. After they have been transferred one ortwo "stop" bits always in the
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Figure 3.4 - Asynchronous data transfer

1" state are added and the link goes to the idle state.

The asynchronous data transfer technique has the following properties:

• Largeroverheadin message protocols. Each transfer of an eight bit character

has an overhead of 3 bits (start and stop bits).

• Synchronization at the beginning of each character transfer.
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• More complicated hardware.

• No timing problems between the transmitter and the receiver.

Synchronous data transfer

The serial synchronous data transfer technique transmits blocks of data without

"start" and "stop" bits. To prevent timing drifts between the transmitter and the receiver,

their clocks are synchronized through synchronization information (control bits)

embedded in the message. Each block of data begins and ends with control information

as depicted in figure 3.5.

Figure 3.5 - Synchronous data transfer

The control information at the beginning of the message is thepreamble which contains

the following data:

• SYN - Establishes and maintains synchronization on the link.

• SOH - Startof header - beginning of message.

• Header - Information about the source, destination, block size, message's ID

etc..

• STD - Start of data text

The control information at the end of the message is the postamble which contains the

following data:

• EOD - End of data text.

• EDB - Error detection bits.

• EOT - End of message.
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The receiver detects the SYN bits and synchronizes its clock to read the message

properly. The preamble and the postamble control bits, which have a unique bit pattern,

provide the receiver with information about the data and enable the receiver to check its

correctoess. To distinguish between dataand control bits, bit stuffing is necessary in the

data information whenever it contains thesame bitpatterns as thecontrol bits.

Thesynchronous datatransfer technique has thefollowing properties:

• Less overhead in transfer of large data blocks.

• Simpler to implementand requiresless complicated hardware.

• Requires synchronization information.

3.2.3. Clock synchronization

In the asynchronous data transfer technique the clocks of the processors are very

close. In this mode the phase between the clocksis synchronized by the start bit. There

fore, the following question must be asked: What is the allowable drift between the

clocks of the transmitter and the receiver ? To answer this question it is required to

check how many bits is it possible to transfer until theclocks have a phase delay of 180

degrees.

Assume there is a drift of Af between theclockfrequency / xof PE1and the clockfre

quency f2 of PE2 which is measured by x in [ppm] (parts per million), i.e., A f =/1 -

/* or/2=/i(l+xl0-«).

The difference in the cycle time ATis given by:

AT= l - * = l 1 _ jcIO-6
77 77 77 Zia+jcio-6) (l+jcio-6)/!

And the numberof bits to be transferred without a clock synchronization error is:

T lf
n= "2" T71 _ 1+jc 10-6

"ST jcIO-6 ~ 2X10-6
(1+jcIO-6)/!
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Figure 3.6 - Clock synchronization

Examples

For x=100 [ppm] =0.0001 => n=^g^-=5000 [bits]

For x=500 [ppm] =0.0005 => n=^005 =1000 [bits]

Forx=1000 [ppm] =0.001 => n=^^-=500 [bits]

As might be expected, these examples illustrate that more bits can be transferred

without an error when the drift between the clocks is smaller.

In the synchronous data transfer technique, the clocks of the processor involved in

the data transfer have to be synchronized. The "SYN" control bitsenable thereceiver to

synchronize its clock to the transmitter clock, thus enabling the transfer ofa large block

of data. There are many ways to synchronize the two clocks: PLL (phased lock loop),
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bit synchronizer andhighfrequency shiftregister.

The PLL (phased lock loop) depicted in figure 3.7 is a feedback loop comprised of

three basic blocks: a phase comparator, low pass filter and voltage controlled oscillator

(VCO).

INPUT

SIGNAL

PHASE

LPF
COMPARATOR

» \

VCO

1

OPERATING CL

f

OCX

Figure 3.7 - PhasedLockLoop system

The phase comparator compares the phase and the frequency of the input signal

with the VCO frequency and generates an error voltage. The error voltage is fedback to

the VCO which synchronizes and locks its frequency to the input signal Once it is

locked, the VCO's frequency is the same as the input frequency except for a phase

difference.

The bit synchronizer is a free running oscillator which constandy detects transi

tions in the input signal and synchronizes its frequency to them. Synchronization takes

place after detecting a fixed number of transitions. This circuit also contains a PLL and

is very efficient for lowsignal-to-noise (S/N) ratio signals.

A high frequency shift register is a circuit that samples and latches the input signal

with a high frequency input clock (more than ten times the operating clock frequency)

into a shift register and checks the number of "l"'s and the number of "0"'sduring each

operating clock cycle. When a transition occurs in the input signal and there is a differ

ence in the numberof "1" and "0", it is a synchronization error. This error is fed back to

a VCO for correcting and synchronizing the receiver's clock.
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If the input clocks to the PEs are crystal oscillators with high frequency and their

operating frequencies are sufficientiy close, theuseof shiftregisters for synchronization

is adequate. If the input frequency is notmuch higher than the operating frequency, the

PLL system is required. The bit synchronizer is required only in very noisy environ

ments or in systems with low input data frequency.

3.2.4. Virtual - cut - through switching

In chapter 2 and in section 3.1 it was mentioned that it is possible to enhance the

data transfer between the source and the destination if the AIO forwards the message to

the next node in the path before it has been received completely. In principle this

switching system operates as a combination of circuit switching and store-and-forward

packet switching. When acontrol message arrives to anetwork switching node the AIO

decodes the address, looks up in tables for the next link to be used for forwarding the

message (preassigned path) and checks if buffer space is available and if the forwarding

link is free. If the forwarding link is free, while reponding to the sender PE that it is

ready to receive a packet, the AIO tries to establish a connection with the next PE by

forwarding the control message to it. If the connection is granted the AIO will begin to

forward the data message to next node before it has been received completely. If the

connection is not granted the message is not transferred. In both cases, due to fault

tolerance and acknowledgement policy the data is always buffered like in any packet

switching system.

Figures 3.8a and 3.8b depict the delay procured in transferring fixed size data

packets between two network nodes of a packet switching system and a virtual-cut-

through switching system. The packets arrival rates depicted in figure 3.8b is higher

than the rate depicted in figure 3.8a.

In both cases, whether the packet arrival rate is high or low, the network node of a

virtual-cut-through network transfers all the packets with a smaller delay equal to the
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Figure 3.8b- Transfer delay - high ratefixed sizepacket arrival

timerequired to transferthe data of one packet

Figure 3.9 depicts the delays in transferring different sized data packets with dif

ferent arrival rates in both switching systems.

As before, the virtual-cut-through switching system yields a smaller transfer delay

equal to the timerequired to transfer thedataof the largest sizepacket.
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Figure3.9 - Transfer delays - variable sizedpackets

If there are no transfer errors and the links are free to transfer data ("best case"),

the decrease in the delay to transfer packets between two nodes of of the virtual-cut-

through switching systemincreases linearly with the number of network nodes that the

packets of an information message have to pass from the source PE to the destination

PE. Figure 3.10 depicts the difference in the time that it takes for amessage, consisting

ofthree packets, to travel from the source PE, through two network nodes up to the des

tination PE.

It is possible to compare the "best case" throughput and the network delay of the

virtual-cut-through switching system and the store-and-forward packet switching sys

tem for packets of the same length.

Denoting

* T - time required to transferpacketof data.

* t - timerequiredto transfer the message header.
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Figure 3.10 - Transfer delays between source and destination

* n - number of packets in a message.

* m - number hops between source and destination.

* T+t - time required to transfer data packet and a header.

Packet switching

TThroughputs:-^^

Delay=(n+m-l)t+(n+m-l)t

Virtual cut through switching

Throughputs-^—

Delay=nT+(n+m-l)t

This comparison shows that in the "best case", when there are no errors in data

transfer and no queueing delays (each PE is always ready to receive and forward mes

sages), transferring a messageof n packets through a virtual-cut-through switchingsys

tem has a smaller delay (higher throughput) when routing the message from the source

PE to the destination PE requires more hops (m is large). The decrease in the average

delay of the "best case" is (m-l)T.

Using the proposed handshaking protocol described in section 3.3 enables the

receiving PE to establish a connection with the next PE while replying to the sender PE
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that it is ready to receive the data. Therefore, less data is stored before it is started to be

forwarded and the delay time is smaller. Figure 3.11 depicts this property.

TjQlB

12 3 4

STORE & FORWARD

TIME

Figure 3.11 - Handshaking data transfer

Kermani and Kleinrock in[7] and Hammond and O'Reilly in[6] analyzed the vir

tual cut through switching system by using M/M/1 queueing theory models and the fol

lowing assumptions:
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Poisson distribution of message arrival.

Exponentially distribution of message length.

Infinite buffer size.

Deterministic routing.

Balanced network utilization.

Negligible propagation delay.

No errors due to noise.

They showedthat the average delay to senda message through a balancednetwork is:

Averagedelay=i^2jgll(r+rMm-l)(l-p)r (3.1)
Where:

• n - number of packets of the message

• m - average number of hops

• T - time to transfer data of a packet

• t - time to transfer header of a packet

• p - utilization of each link (equal to all links)

The first term of the average delay is due to average packet switching delay while the

second term is the improvement of the average delay due to the virtual-cut-through

feature. This result agrees with the result shown before but it also takes into account

the probability (1-p) that theoutgoing linkis free. In a noisy environment, the probabil

ity that the outgoing linkis free has to be multiplied by (l-Pe), where Pe is the proba

bility that an error occurred.

The result above implies the following conclusions (relative to the packet switch

ing):

1) When the average number of hops increases, the average number of forwarding
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messages without buffering also increases, which means that the average delay

decreases.

2) More localized data transfer between adjacent PEs and less data transfer between

nonadjacent PEsyields more messages transfer without buffering.

3) VCT switching systems have smaller average network delay than store-and-

forward packet switching.

1 LINK LOAD

Figure 3.12 - Delay vs. link load

4) For the same network delay, the virtual cut through switching system can transfer

more packets than the packet switching system and the difference is greater when

the network is lightly loaded.
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Figure 3.13 - Throughputvs. link load

5) VCT switching systems require less buffer storage than packet switching store and

forward systems.

6) VCTdecreases the buffersizerequired in eachnode.

7) VCT implementation ismore complicated and requires more processing power.

As will be explained here the assumptions made earlier in the section for the

virtual-cut-through network analysis match the requirements ofa multiprocessor system

derived in chapter 2.

• Finite buffer size has small effect on the calculated average delay as was shown in

[7].

• Deterministic routing which is used for transferring messages in a minimum

number of hops is alsoone of the analysis assumptions.

• Balanced network utilization and PE load, as well as minimizing data transfer

imposed on the scheduler (which partitions the algorithm and assigns the tasks to

different PEs) are essential for obtaining a large reduction in the average data
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transfer delays.

• Low utilization of the links is equivalent to the demand of localized data transfer

between the PEs imposed on the scheduler. Minimizing the number of hops

reduces the advantage of the VCT (since the reduction in the averagedelay of the

data transfer is relative to the numberof hops) but localizes the data transfers.

The protocol's characteristics and properties required to implement the processing ele

ment (PE), described later in this chapter (3.4.1) and in chapter 4, also correspond to

these assumptions.

3.2.5. Data broadcast

In many applications of multiprocessor systems, it is necessary to broadcast data

to many processing elements (e.g. image processing, biomedical, etc.). A multiproces

sor system based upon point-to-point interconnection network is not the best way to

implement a broadcast feature because the data and the acknowledgement have to rip

ple through theprocessing elements. The acknowledgement is needed for the following

reasons: 1) to make sure that all the PEs received the data correcdy, and 2) to use the

same protocol A more efficientway to implement a broadcastcapability is to connect

the processing elements to a common bus through which messages and their ack

nowledgement are transferred. In such an implementation a message is broadcast in

parallel to all the receiving PEs but their acknowledgement response is returned to the

senderPE in serial. One way to implement it is depicted in figure3.14.

The sender PE and the receiving PEs are connected through a pair of unidirectional

interconnection links. Request to transfer data as well as data itself is transmitted on

one link in parallel to all the receiving PEs, while their response to the sender is

transmitted on the other link in serial. Every PE can be the sender PE. Response colli

sions on the busare avoided by using oneof the following schemes:

TDM - Time Division Multiplexer
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Figure 3.14 - Two bus broadcastimplementation

In this scheme each receiving PE responds to the sender PE during a predetermined

timeslot (A;) relative to the message. Receiving PE number 1 responds during time slot

Alf receiving PE number 2 responds during time slot A2 and so on. Since thereceiving

PEs synchronize their operation to the sender, a response collisionis avoided.

Sequential response

In this scheme, which is similar to TDM, each receiving PEresponds one after the other

in a predetermined sequence. A receiving PEs "listens" to the bus, checks the IDs of

the responding PEs andresponds after the onewith thepreceding ID number. To avoid

unlimited waiting time, if one of the receiving PEs is malfunctioning, each PE has a

"watch-dog" which times out at the maximum waiting time.

CSMA

In this scheme each receiving PE "listens" to the bus to check if it is free to transfer

data. If it is free, it sets its response on the bus; if not, it waits. If two receiving PEs

respond at exacdy the same time, a collision occurs and both responses are corrupted.

Since the receiving PEs can also "listen" to the bus they can detect the collision and

retransmit the response after some predetermined or random time (like in Ethernet).

Anotherway to implement broadcast messages is depicted in figure 3.15.

Data is transferred in parallel to all the receiving PEsbut their response is transferred in

serial from one receiving PE to the successive one through all the receiving PEs up to
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Figure 3.15 - Parallelbroadcast serial acknowledgement

the sender. Each receiving PE attaches its response (RDY/NRDY or ACK/ERR) to the

response of theothers by setting or resetting thecorresponding bitsin theresponse mes

sage. For example, PE^ sends its response to PE5 that attaches it to its own response

andsends it toPE4andso on up to sender PE. This responding scheme (propagation of

acknowledgement) doesnot take longer than theprevious one but it is simpler to imple

ment and fits the acknowledgement handshaking protocol better. Once the network con

nection is setonlyone specific PEcan be the sender PE. A "watch-dog" system is used

in the sender PE and in the receiving PEs to time out the arrival time of an ack

nowledgement from the next PE. If an acknowledgement does not arrive during the a

time interval, a receiving PE sends its own acknowledgement to the preceding one and

it propagates up to the sender PE.

Another way to implement broadcast messages is "tree" type, depicted in figure

3.16, in which request to transfer data and data are transferred successively with short

delays from one PE to the PE. When the last successive receiving PE is connected to

the sender PE, both ends of the bus are connected, and a connection similar to a "ring"

type is established. When the last successive receiving PE is not connected to the

sender PE, both ends of the bus are disconnected, and a "tree" type connection is esta

blished. In both configurations, at each time only one message canusethe bus.

This scheme uses the multiprocessor interconnection network described before. When a

PE detects a broadcast message it forwards it immediately to the next PE that belongs
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Figure 3.16 - Tree type transfer

to the same group ID. Every PE in this serial transfer receives the data after a delay

which corresponds to the sum of delays of its preceding PEs. These delays are due to

the time that it takes to detect the address ID and to establish a connection between

adjacent PEs. The response to the sender is in serial from one PE to the other as in the

"daisy chain" scheme described above. In both the "tree" and the "ring" configurations

every PE can operate as a sender PE.

This scheme can be modified by establishing a circuit switching connection

between the PEs during the request to transfer data. Circuit switching eliminates the

time delays characteristic of store-and-forward and VCT switching. The response to the

sender is in serial through the receiving PEs asbefore. Data to the receiving PEs is sent

only after the sender PE receives an acknowledgement that all the PEs are ready (i.e.

constantcircuit switching connections havebeenestablished).

3.2.6. Design choice

The multiprocessing systems under investigation contain a large number of PEs

connected in any arbitrary network. Transferring data packets of any size from onePE

to the other may require some hops. Therefore, it is simpler and faster to transfer pack

ets of data in a synchronous technique. Later in section 3.5 it will be shown that

depending on the application and the I/O configuration data may also be transferred in

an asynchronous technique butin an arbitrary multiprocessing network thesynchronous

technique is preferable.

The choice of clock synchronization is arbitrary anddepends on the EMI (Electro

Magnetiv Interference) environment.



Chapter 3 _51.

The analysis and the comparisonshowthat data transfer in the VCT mode is faster

than in the store-and-forward mode. Since we are interested in high performance real

timesystem implementations the VCTswitching mode is chosen.

Later in section 3.3 it will be shown that the handshaking protocol is chosen. Data

broadcasting in a handshaking protocol environment canbe done in anyof the methods

described in paragraph 3.3.5. But for a given network configuration or application one

method might be preferable over the others.

3.3. Interconnection protocols

3.3.1. Introduction

A multiprocessor system is a collection of processing elements (PE) connected

through a network which executes multiple tasks in parallel. Such a system helps to

exploit the parallelism inherent in digital signal processing algorithms by dividing a

task into multiple independent sub-tasks and executing them concurrently in different

processing elements. Interconnection network between the processing elements per

mits: 1) data transfer between them, and 2) sharing of resources by them. To coordinate

data transfer and interactions among the PEs, a communication protocol is needed. A

communication protocol is a set of rules established to: 1) control the operation per

formed by a PE when it transmits a message or when a message is received from

another PE, and 2) handle andcontrol data transfer andinteractions among the process

ing elements. Type and format of the exchanging messages between the PEs are very

important for correct, complete and simple interaction among the PEs. Some pertinent

functions are required from a protocol: synchronization of PEs for data transfer, PE's

addressing, different commands for control and handling data transfer, detection of

communication errors and control of data flow among the PEs.

Many methods such as finite automata, petri nets, flow charts, formal grammars
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and programming languages have been applied by researchers

[8,9,10,11,12,13,6,14,15] to model, analyze and synthesize communication proto

cols. Basically, these methods of modeling and verifying protocols belong to one of

two approaches: transition oriented models and language oriented models. Transition-

oriented models represent protocol status and events as states and changes of states,

respectively. Analyzing the state transition graphs validates the protocol's properties.

Language-oriented models represent the protocols as an algorithm. The analysis is

done by running the program (algorithm) and checking its output (performance) under

different inputs (parameters).

Each approach has its advantages and disadvantages but the language-oriented

approach is more suitable for complicated protocols and is more flexible to verify

changes ofnetwork parameters, type of exchange messages and their formats.

To insure simple implementation of the PE proposed in this thesis for the mul

tiprocessor system, a simple and well defined protocol will be described in the next

paragraph. This protocol which controls and handles data transfer , operation of a PE

and the interaction between them is based upon synchronous data transfer technique

and VCT switching chosen in section 3.2. To decrease communication latencies, avoid

network congestion and detect errors an acknowledgement handshaking protocol is

chosen. The protocol is described, explained in details and verified by flow charts and

finite state diagrams.

3.3.2. PE-PE communication

3.3.2.1. Data transfer principles

To decrease communication latencies in data transfer the data transfer procedures

are based upon:

1) handshaking protocols.
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2) priority of service.

3) routing in minimum number ofhops through avirtual-cut-through switching

network.

Priority of service and transferring data in a minimal number of hops, determined

by the scheduler during the compilation and the partition of the program, avoids link

congestion and controls the flow as will be explained in section 3.3.6.

Handshaking procedures and protocols decrease the communication latencies

because:

• Data is transferred onlywhen thereceiving PE has enough bufferspace for it

and the data has the priority to be handled, thus freeing the link for transfer

ring only the necessary data.

• Saving time in forwarding data to the next PE (when the receiving PE

operates as a network switching node) by usingvirtual-cut-through switching

connection whenever it's possible.

The acknowledgement of the handshaking protocol avoids unnecessary repetition

of data transfer and thus reduces the links congestions. Two types of acknowledge

ments: hop-by-hop and end-to-end have detailed explanation in section 3.3.5. Hop-by-

hop acknowledgement is to notify the sender of two adjacent PEs (connected through

an I/O link) that data has been received without errors. When the sender PE is a net

work switching node it can discard the data and use the buffers for another data

transfer. When the sender PE is the source of the data it cannot discard the data because

it has to wait for an end-to-end acknowledgement. End-to-end acknowledgement is a

message from the destination PE to the source PE notifying that the data have been

received without errors. Upon receiving this acknowledgement, the source PE discards

the data and frees its buffer space for new data.
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3.3.2.2. Data transfer protocol

Transmitting Data

Figures 3.17a and 3.17b depict the protocol of transmitting data by an AIO of a

processing element (PE).

Data transfer is executed through handshaking and is always initiated by the

sender PE. To avoid congestion on the I/O links data is transferredonly if the receiving

PE is ready to accept it. Therefore, the first step of the sender PE is to establish a con

nection with the next PE by requesting to transfer data (RDY). If the receiving PE is

ready to accept the data it responds back with RDY; if not, the response is NRDY.

When the response is not ready, or there is no response within a certain time and the

watch-dog system times out, the sender PE will try again twomore times to request for

data transfer. If the receiving PEis ready, the sender PE sends the data (DTR) to it and

waits for its response. When thereceiving PEresponds back with an acknowledgement

(ACK) the data transfer to the nextPE has been completed successfully and the sender

PE to its relation with thedata transferred. If thesender PEoperates as a switching net

work node which forwards the data it is free to start a new data transfer. If the sender

PE is the source PE of the data it starts an end-to-end watch-dog and can start a new

data transfer while waiting for an acknowledgement from the destination PE. Reception

of an acknowledgement frees the buffers for new data, otherwise the watch-dog times

out and if there were less than three attempts the source PE tries to transfer the data

again. After three failures the PE notifies the operating system or a human operator

about malfunction of the system and the system is stopped. When the receiving PE

detects an error in the data and responds back with an ERR and/or it fails to respond

and the watch-dog system times out the transfer, the sender PE will try two more times

to transfer the data.

Three failures in establishing a connection for data transfer (RTD) or in transfer-
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Figure3.17a- Transmitting data protocol

ring the data itself (DTR) result in choosing an alternative route by the sender PE for

transferring the data. The procedures of transferring the data through the alternative

route are the same as for the main route described before. When the data is transferred
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RTD BACK- Request to transferdataback
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Figure 3.17b - Transmitting data protocol

successfully the sender PE is free to start a new data transfer. When the data transfer

through the alternative link also fails three times the senderPE acts differently if it is a

network switching node which forwards the data or a source PE. If it is a source PE the

sender PE notifies the operating system or a human operator that the system malfunc

tions and the system will be stopped. If it is a switching network node it will try to

return the data back to the PE that had send it. The procedures of returning back the
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data are identical to forwarding it. Success in returning the data frees it to start a new

data transfer, while three failures result in notifying the operating system or a human

operator about the malfunctionof the systemand the system will be stopped.

Receiving Data

Figure 3.18 depicts the protocol and the procedures of receiving data by an AIO of

a processing element (PE).

Upon receiving a request to transfer data (RTD), the receiving PE checks whether

it has the priority to handle this transfer and whether enough buffer space is available.

If it is ready to accept data it responds with RDY; otherwise, it responds with NRDY.

When it is ready in parallel to the RDY response it starts a watch-dog which limits the

time of reservation time of the buffers. If data does not arrive within a certain time the

watch-dog times out and the buffers are free for new data allocation. When data arrives

within the timeout limits the receiving PE checks it for transmission errors. If there are

no errors it responds with hop-by-hop acknowledgement (ACK), if there are errors it

responds with error message (ERR). Since a virtual-cut-through network is used, when

the receiving PE is not the destination PE, while responding to the sender PE that it is

ready to receive the data, the receiving PE tries to establish a connection for forwarding

the data to the next PE. This virtual-cut-through data transfer protocol is identical to

the transmitting data protocol described before. If a VCT connection has been esta

blished and the receiving PE detects errors in the received data, it will report them to

the next PE.
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operate independendy, concurrendy and synchronously. Incorporation of the AIO in the

PE frees the PU from dealing with the data transfer when the PE operates as source,

destination or switching node. Data to be transmitted from a source PE to another PE

or received by the destination PE from anotherPE is buffered in predefinedlocations of

the dual port memory. The use of predefined locations in the dual port memory for

specific sources and destinations simplifies the communication between the AIO and

thePU.

Dual port memory has duplicate address and data latches as well as two R/W con

trol lines which enable concurrent reading from two different locations or reading from

one location while writting to another one. Such a configuration enables the AIO and

the PU to access the buffers simultaneously and synchronously without any interfer

ence.

Since implementation of the dual port memory is more complicated and requires a

larger area, only part of the PE's memory whichis used to buffer data between the AIO

and the PU should be implemented this way. The memory of the PE is built of two

memories: one is a regular one port memory which is the "private" memory of the PU

and contains programs and data and the other is a dual port memory which is the data

transfer buffers between the PU and the AIO.

Data transmitted to another PE

During the execution of a program, the PU transfers data into the buffers like any

other store instruction. Before storinga new set of data into the buffers of the same des

tination PE, the PU checks flags to verify whether the previous data has been

transferred completely (i.e. the buffers areempty for newdata). When all the data to be

transferred is stored in the buffer, the PUnotifies theAIO by an OUT instruction, that

data is ready to be transferred. The OUT instruction contains the address of the desti

nation PE and the sizeof data words (memory words) to be transferred.
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When the AIO has transferred the data successfully and an end-to-end ack

nowledgement has been received from the destination PE, it interrupts the PU and

reports by a flag/semaphore about the completion of the data transfer.

Data received from another PE

When the PE is the destination of a data transfer, the AIO of the PE checks

whether enough buffer space is available to allocate for the receiving data. If there is

enough buffer space the AIO receives the data, arranges it in the right format and and

stores it in predetermined locations in the dual port memory buffer. While receiving

the data the AIO checks it for errors.

If there were no errors, the AIO sends back to the sender (preceding node) an

"ACK" message, sets flags/semaphores in a status word in the memory, and interrupts

the PU to notify it that there is new valid data. [The PU will reset the flags/semaphores

after using the data].

If there is an error, the AIO sends back to the sender (preceding node) an "ERR"

message, frees the buffer spaceand doesnot interrupt the PU.

33.4. Protocol verification

An error-free protocol is essential to reliable communication. Many methods can

be applied to detect errors in protocols and to verify theircorrectness[9,16,10,17,12].

Simple protocols that involve a small number of states can beverified by state diagram

representation and reachability analysis. More complicated protocols may be verified

by petri nets or other high language methods. The type of errors handled are: state

deadlocks, unspecified receptions, nonexecutable interactions and state ambiguities. A

state deadlock occurs when there is no way to exit a state or when a set of states are in

an infinite loop without any exit (a process has noalternative but to remain indefinitely

in thesame state or in to loop in a setof states). An unspecified reception occurs when a

correct message can take place but it is not specified in the protocol (e.g. a missing arc
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in state diagram representation). Nonexecutable interaction means that a defined mes

sage can never occur and thus a state can never be reached.

The protocol of the multiprocessor system described in this dissertation is simple

and can be represented by state diagram. Figure 3.19 depicts the state diagram of a

sender PE.

Figure 3.19 - Sender's protocol state diagram

For better understanding and simpler analysis this state diagram is divided into

three parts: main route depicted in figure 3.20, alternative route depicted in figure 3.21

and backward route depicted in figure 3.22.
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Figure 3.22 - Backward route protocol's state diagram

To check the correctness of the protocol, reachability analysis can be used.

Reachability analysis is based upon exploring all the possible transitions due to arriving

messages and time-outs. In the above state transition diagrams, arcs which correspond

to illegal messages or undefined control commands are not described because they are

not causing any state transition and the AIO ignores them and anticipates the time-out

mechanism to exit from the current state.
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Applying reachability analysis to the state transition diagrams of the sender PE

shows that from every state it is possible to exit to another state and there are no sets of

states which make an infinite loop. Legal control commands transfer from one state to

another with no ambiguity. Any illegal control command does not cause any transition

until a time-out occurs. The only state which does not have any exit is state "S" which

indicates that the system is malfunctioning andrequires the interference of an operating

system or a human operator because a sender PE cannot forward a message to the next

PE or backward it to its predecessor PE. Any sequence of legal control commands

transfer the sender through a correct set of states starting and ending in the initial "1"

state.

The state transition diagram of the receiving PE depicted in figure 3.23 consistof

the receiving states (1 through 4) and the first transmitting states (5 though 8) used for

virtual-cut-through switching.

Applying the reachability analysis to the state transition diagram of the receiving

PE shows that there are no deadlocks and/or infinite state loop. As before, any illegal

control command does not cause any state transition. As required bythe protocol, since

data transfer is always initiated by the sender PE, a time-out in the receiving PE always

transfersit to its initial starting state.
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3.3.5. Fault tolerance

The fault tolerance policy depends very much on the 1) error rate in data transfer

due to environment conditions (electromagnetic interference, signal-to-noise ratio), and

2) failure probability of I/O links, AIO and PU.

The error probability in data transfer can be expressed as a function of SNR and

noise statistics. Different transmission media have different noise characteristics and

bandwidth limitations. In multiprocessing systems the distance between the PEs is
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short and therefore the probability of an error in data transfer is smaller. A rule of

thumb shows that implementing the network with correctly designed fiber-optic links

results in error rates around 10"9 to 10"12. Implementing the network with coaxial links

results in error rates around 10"5 to 10~7.

The failure rate of integrated circuits is measured by MTBF (mean time between

failures), and in today's technologies is a couple of thousand hours that corresponds to a

couple of years. Therefore, the failure rate ofintegrated circuits is very small and negli

gible for defining a fault tolerance policy.

To cover different media and environments the fault tolerance policy incorporates:

1) an error detection character in every message, 2) hop-by-hop and end-to-end ack

nowledgement, and 3) repetition of transmission in case of errors.

The error detection character can be a simple parity bit, a LRC parity character or

a cyclic redundancy code (CRC). Choosing any of them depends on the transfer media.

The errordetection canbe simpler forhigher SNR.

As was mentioned briefly in section 2.3 hop-by-hop acknowledgement is neces

sary to decide whether data has to beretransmitted again or can be discarded if the PE

operates as a switching network node, and end-to-end acknowledgement is necessary to

ensure that data has reached its destination and was not: 1) forwarded to another desti

nation due to an error indefining the route, 2) lost ina node which received the data but

did not forward it due to temporary malfunctioning, and 3) stuck in an endless loop.

In the event of an incorrect data transfer or a time-out the sender PE will try to

retransfer the data through the same predetermined route two more times. If the transfer

fails three successive times, the sender PE will try to send the data through apredeter

mined alternative route three times. If there are also three failures in data transfer

through the alternative route, there are two ways to continue depending on the sender. If

the sender PE operates as an intermediate node, it will transfer the data backward to the
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previous PE. If the sender PE is the source PE, it signals a system malfunction. Any

data transfer resulting in three successive failures will be reported by the sender PE to

theoperating system or to thehuman operator forfurther action.

3.3.6. Flow control

The handshaking protocol (send/acknowledge) adopted in this multiprocessor sys

tem provides a natural flow control mechanism. Data is transmitted over the link only if

the receiving PE has the enough buffer space available for the data and it has the prior

ity to handle the data. Retransmission of data occurs if 1) the receiving PE replied that

errors were detected in the receiveddata or 2) the time out systemindicated that some

thing is wrong with the data transfer (malfunction of the link orof the receiving PE).

Using the fault tolerance principles of predetermined main route or alternative

route for data transfer in a limited number of attempts contributes to the flow control.

The senderPE tries to transfer data to the nextPE through a predetermined main route.

If it fails three times it tries to transfer the data to the receiving PE through a predeter

mined alternative route. If again, it fails three times it notifies the operating system

and/orhuman operator. When a sender PE which operates as a network node also fails

to forward the data in the alternative route it tries to return it to the previous sender PE.

If it fails to return it the operating system halts theoperation of the system.

Send/acknowledge protocols, which control the flow and prevent congestion on

the links, also help to avoid deadlocks in the system by enabling data transfer only

when it can be accepted. Using different buffers dedicated to special links and

send/acknowledge protocolmight slowdownthe transfer but avoids deadlocks by regu

lating the available buffer space.

3.4. Protocol formats

The message formats designed in this section are based upon synchronous data
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transfer technique, VCT switching and acknowledgement handshaking protocol

designed in the previous sections of this chapter. Some ways to decrease the message

header's overhead (short ID) are described in paragraph 3.4.2. The implementation of

short ID are described chapter 4.

3.4.1. Message formats

Data transfer between adjacent PEs is executed by a handshaking procedure. The

AIO of the sender PE initiates the data transfer by sending a request message with the

following format:

SYN RTD/RTSD PACKET ID SOURCE DESTINATION LENGTH/DATA CKS END

SYN - Control character establishes and maintains synchronization between the

AIOof the sending and receiving PEs.

RTD - Commandcode for request to transfera block of data.

RTSD - Command code for request to transfer a sample of immediate data. The

LENGTH/DATA field contains the immediate data.

PACKET ID - Serial number of the packet to be transferred (necessary for fault

tolerance).

SOURCE - ID of the PE which is the source of the data information.

DESTINATION - ID of the PE where the data information is to be delivered.

LENGTH - If the command (instruction) code is RTD, defines the length of the

data block (number of bits,bytes, words etc.).

DATA - If the command code is RTSD, this field contains the immediate data.

CKS - A character for detecting errors in the transmission.
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• END- A characterwhichindicates the endof the message.

If the buffers of the receiving PE (network switching node or destination) are

empty and the receiver has the priority to handle this data, the receiver will send back a

control word "RDY" indicating that it is ready to receive the data. This control word

has the following format:

SYN RDY PACKET ID SOURCE DESTINATION CKS END

• RDY - Command code indicating that the receiver is ready to receive the data

related to the RTD controlcommand sent by the PE sender.

If the receiver's buffers are full and/or the receiver is busy and cannot handle the

data, it will respond with the control word "NRDY" indicating that it is not ready to

receive the data. This control wordhas thefollowing format:

SYN NRDY PACKET ID SOURCE DESTINATION CKS END

• NRDY - Command code indicating that the receiving PE is not ready to receive

the data.

Upon receiving a ready response ("RDY") from the receiving PE, the sender PE

will send the data information serially in a synchronous mode with the control word

"DTR" (Data Transfer). Thedatawill be sent in a packet of thefollowing format:

SYN DTR PACKET ID SOURCE DESTINATION LENGTH DATA CKS END

DTR - Command code indicating data transfer.
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• DATA - The actual block of data information.

Upon completion of the transfer the receiver will send back a control word which

will either be "ACK" to notify the sender that the transfer has been executed success

fully or "ERR" to notify the sender that the transfer failed and was not completed suc

cessfully. The format of this control word will be:

SYN ACK/ERR PACKET ID SOURCE DESTINATION CKS END

• ACK - Data received without errors. A response for immediate data transfer

(RTSD) or block data transfer (DTR).

• ERR - Errors in the received data.

When a failure occurs in transferring some data, the sender PE will attempt to

retransfer it up to two more times. If there is still a transfer failure, the sender PE will

try to transfer the data through an alternative route (which has also been predetermined

by the scheduler). Since the cause for failure could have been a hardware failure on the

link through which the receiving PE responds, it is important to distinguish between

transferring data through the prime route and transferring it through an alternative

route. [Such distinction is required for discarding repeated data which has already been

received correctly]. Therefore, the messages of request to transfer data and data

transfer for the alternative route will have different control commands codes in the

same formats as before:

SYN RTDA/RTSDA PACKET ID SOURCE DESTINATION LENGTH/DATA CKS END

• RTDA - Command code of request to transfer a block of data through an alterna

tive route.



Chapter 3 -72-

• RTSDA - Command code of request to transfer a sample of immediate data

through an alternative route.

SYN DTRA PACKET ID SOURCE DESTINATION LENGTH DATA CKS END

• DTRA - Commandcode indicatingdata transferthrough an alternative route.

If the sender PE also fails to transfer the data through the alternative route, there

are two cases to consider. If the sender is the source, the multiprocessor system cannot

operate properly and the interference of an operating system or a human operator is

required. If the sender PEis an intermediate network node, it will try to return the data

back to the PE which had forwarded it tohim. Inboth cases the sender PE has tonotify

an operating system or a human operator about the failure of the interconnection. The

formats of returned data are the same as before except for thecontrol commands codes

which are different as shown below:

SYN RTDR/RTSDR PACKET ID SOURCE DESTINATION LENGTH/DATA CKS END

• RTDR - Commandcode of request to transfer backward a returned block of data.

• RTSDA - Command code of request to transfer backward a sample of returned

immediate data.

SYN DTRR PACKET ID SOURCE DESTINATION LENGTH DATA CKS END

• DTRR - Command code indicating backwardreturned data transfer.

To decrease communication latencies, a virtual-cut-through switching system is
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used. In such a system a network switching node can forward data before it has been

received entirely; thus the data is forwarded before errors could have been detected.

Therefore, if while forwarding a message an error isdetected at the end ofreceiving it,

the forwarding PE notifies the next receiving PE by a control word with the following

format:

SYN PSE PACKET ID SOURCE DESTINATION LENGTH CKS END

• PSE - Command code which indicates that data described by this message was

sent with errors.

Data transfer requires an acknowledgment policy. The policy that have been

chosen for the multiprocessor system is a combination of hop-by-hop and end-to-end

acknowledgements. Hop byhop means that each data transfer between adjacent PEs has

to be acknowledged by the receiver. Once the receiver PE has acknowledged the data

transfer, the sender PE if it operates as an intermediate network node can discard the

data and free the buffer for another data transfer. The source PE cannot discard the data

until it receives an end-to-end acknowledgement from the destination PE. This end-to-

end acknowledgement is necessary to ensure that the data has been delivered to the

correct destination without being lost or routed in an endless loop. Data can be lost or

routed in an endless loop if an I/O link or a PE malfunctions. The format of end-to-end

acknowledgementis the following:

SYN EEACK PACKET ID SOURCE DESTINATION LENGTH CKS END

EEACK - Command code which indicates end toend acknowledgement.
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Many multiprocessor system application require broadcast data to many process

ing elements (e.g. image processing, biomedical, etc.). Several ways of implementing

data broadcast were introduced in section 3.2.5. Broadcasting in a multiprocessor sys

tem based upon an interconnection network requires the data and the acknowledgement

to propagate through the processing elements. In a common busmultiprocessor system,

data and acknowledgement are transferred through the buses and do not have to pro

pagate through the processing elements. But in both types of implementations it is still

possible to use an acknowledgement handshaking protocol similar to the one described

before except that the destination address refers to a group of PEs. Such a message

would have the format:

SYN COMMAND PACKETID SOURCE GROUP LENGTH CKS END

• COMMAND - Indicates any of the following control commands:

• RTDG - Request to transfer a block ofdatato multiple PEs.

• RTSDG - Request to transfer immediate data tomultiple PEs.

• DTRG - Data transfer to multiple PEs.

• GROUP - Address of the destination PEs.

It is important to notice that in all the broadcast implementations described in section

3.2.5, the response of the receiving PEs are returned to the sender PE serially, one after

the other, and cannot returned concurrently. Therefore, the receiving PEs must have the

capability of responding in the correct timing and checking that its response is not col

liding with other responses.
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3.4.2. Short header

To implement an effective multiprocessor system for real time applications it is

very important to reduce the message's overhead (i.e., percentage of the control bits

used ina message). Many fields in the message header can be reduced by using special

hardware or some restrictions.

If all the PEs of the multiprocessor system use a same global clock, the SYN field

which synchronizes between the PEs can be eliminated.

Instead of having a header with a source and destination IDs that require 21og2N

bits, where N is the number of PEs in the system (e.g., for 500 PEs each ID requires 9

bits), it is possible to use only a short ID of numbers like : 1 , 2 , 3 .... up to the max

imum paths passing through the link. Each short IDdefines for its output link a specific

path between the source PE and the destination PE that was predetermined by the

scheduler during the partition of the algorithm and the assignment of the tasks to dif

ferent PEs. Thus, the AIO at each node has a lookup table which according to the input

link translates the short ID into either a source PE ID and a destination PE ID, or to a

short ID for the output link that has to be used for forwarding the message. The use of

translation look-up tables shortens the header and reduces thedecoding time.

Another way to reduce the header is by defining the length of the data asmultiples

of somefigure, e.g. a multiple of 256 bits (characters or words) -> 512,768, 1024etc.

Bylimiting the maximum length to 1024 bits (characters or words) the length field will

require only 4 bits instead of 10bits that would have been required for any block size of

data up to 1024 bits (characters or words).

In a multiprocessor system the distance between the PEs is short and the EMI

(Electromagnetic interference) is low, which corresponds to a large signal to noise ratio.

Therefore, the probability of transmission errors is low , and instead of having compli

cated error detection/correction codes like CRC orLRC it is sufficient to have a simple
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parity check of only one bit. Simple parity check results in reducing the number of the

bitsin the CKS field of the header and in increasing the speed of detection and response

to the sender.

3.5. I/O configurations

3.5.1. Number of I/O links

The optimal number ofI/O links per switching node was evaluated through analyt

ical models and simulation by Fujimoto [18]. The number of interconnections pins to

chips periphery is limited. Given N pins for p I/O ports, there are — pins per port.

Thus, I/O bandwidth per port is proportional to — (i.e. more ports means less I/O

bandwidth per port). Average "end-to-end" delay and total network bandwidth were

used as performance measurements. Analytical models based upon queueing theory

[19,20,21,22,7] showed that for agiven total I/O bandwidth N, 3-5 I/O links yield the

least delay and the most I/O bandwidth per link. Simulation studies which included

Barnwell filter programs, block I/O filter programs, FFT programs and LU decomposi

tion have supported the analytic results. Therefore choosing four I/O links for each PE

yields ashort delay and enables the PE to be embedded in many different network topo
logies.

The number of lines in each I/O link is parametrizable and can be any number. In

the synchronous and the asynchronous techniques, the data is transferred serially and

therefore the data bus is one line. In the handshake technique, words of data are

transferred in parallel and therefore the data bus contains many lines according to the

word length. The number of lines per I/O link depends on the I/O configuration as will

be described in the next section.
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3.5.2. I/O Configurations

The proposed PE incorporates four I/O links through which data is transferred

between the PE and its neighbors. The AIO of the PE handles and controls the data

transfer without involving the PU. Data transfer is initiated byhandshaking and is exe

cuted through a "virtual-cut-through" switching system. A handshaking procedure

avoids data transfer when buffer space is not available in the receiving PE. It also

enables the receiving PE, if it operates as a network switching node, to establish, if it is

possible, a connection for data transfer with its next PE before the data has been

received completely (virtual- cut-through switching). Three different configurations of

the I/O communication links are depicted in figure 3.24.

Configuration I

CAD Info.
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Configuration II

a&Di

Co* Do
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Di

Co

Da

Figure 3.24 - I/O configurations

Using anyone of these configurations depends on the application and the network

topology of the multiprocessor system. The I/O link configurations and their

corresponding protocols were investigated and are described and explained in the fol

lowing paragraphs.

3.5.3. Configuration I

Configuration I of the interconnection linkdepicted in figure 3.24incorporates one

bidirectional data bus and two unidirectional control lines. The data bus can be

extended from one line which transfers the data in serial to any number of lines that

transfer thedata in parallel. Data transfer is half-duplex handshaking, eachtime thedata

bus is available to transfer data in one direction. The AIO which controls a data bus of
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one line is almost identical to the AIO which controls a data lines that contains many

lines. The only difference is that in the first case each bit of data is transferred in serial

while in the second case sets of bits are transferred in serial.

This configuration can operate in two different modes. In the first mode control

lines Ci andC0 carry only logical levels orpulses forcontrolling and synchronizing the

information transfer on the C&D data bus which carries either data information or con

trol words. Information on the C&D data bus canbe transferred either in a synchronous

mode or in an asynchronous mode.

In the synchronous data transfer mode the sender initiates the data transfer by set

ting clock pulses on its C0 control line (Q control line of the receiver). When the

sender PE detects that its C,- control line from the receiver PE is "high" it transfers data

on the C&D data bus which is synchronized with clock pulses send on the C0 control

line. Figure 3.25 depicts this mode.

Ci

Co

C&D- Data information

Figure 3.25 - Synchronous data transfer

In the asynchronous data transfer mode, handshake data transfer is initiated by the

sender asexplained in section 3.2and depicted below in figure 3.26.

This mode of operation (synchronous or asynchronous) is fast and efficient for

transfers of short, fixed sized data blocks between adjacent PEs like the "wave-front"

multiprocessor architecture. In the synchronous and asynchronous modes, the PE

which initiates the data transfer determines the direction ofthe data transfer by becom-
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Figure 3.26 - Asynchronous data transfer

ing the sender while the other becomes the receiver PE.

In the second mode, the C&D bus carries only data information while the C,- and

the C0 lines carry the control words information (not control pulses or levels). But

unlike the first mode, data transfer is not limited to short blocks of information. Data

information and control information is transferred in serial, either in a synchronous

mode orin an asynchronous mode as was explained before in chapter 2. This mode of

operation utilizes separation between control information and data information.

Depending on the data transfer protocol, data information might not use a preamble but

only data and a postamble. When data information doesn't have a preamble it must

immediately follow the control information to avoid confusions.
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The data transfer protocol of this configuration is explained by using the second

mode of operation which utilizes separatedata and control information lines. When the

data bus is notbusy the sender initiates the handshaking data transfer procedure byset

tingon its outputcontrol line (Ca) the control word "RTD" (Request to Transfer Data)

or "RTSD" (Request to Transfer ShortData) which has the following format:

SYC RTD/RTSD PACKET ID SOURCE DESTINATION LENGTH/WORD CKS END

The LENGTH/WORD field in the RTD instruction denotes the number of data words in

the message, while in the RTSD instruction it is the actual data which is transferred.

If the destination buffers are empty and available, and thereceiver's AIO is ready

and has the priority to handle the data it will respond with "RDY".If the buffers are full

or the receiver doesn't have the priority to handle the data, it will respond with

"NRDY". The response will be done by setting on the control line (Ci) the control

word "RDY" (Ready to receive) / "NRDY" (NotReady to receive) which has the fol

lowing format:

SYN RDY/NRDY PACKET ID SOURCE DESTINATION CKS END

Uponreceiving a "RDY" signalwhenthe bus is not busythe senderwill sendon its out

put control line (C0) a control word "DTR" (Data Transfer) which indicates that the bus

is occupied for its data transfer. The control word will have the following information

and format:



Chapter 3 -81-

SYN DTR PACKET ID SOURCE DESTINATION LENGTH CKS END

Following the "DTR" control word the sender will send the data serially in a synchro

nous mode on the data line (C&D bus). The data will be sent in a packet of the follow

ing format:

SYN START DATA CKS END

Upon proper completion of the transfer, the receiver will send back onits output control

line (Ci of the sender) an "ACK" (acknowledge) to indicate that the transfer has been

executed properly.

If the transfer has not been completed properly the receiver will send back on its output

control line an "ERR" (Not Complete Transfer) to notify the sender that the transfer has

not been executed properly.

The format of the response will be:

SYN ACK/ERR PACKET ID SOURCE DESTINATION CKS END

By default, if the sender doesn't receive any signal from the receiver, the transfer was

not completed successfully. The sender and the receiver will have "watch-dog" time-out

systems that will:

• Notify the receiver that the transfer iswrong ifdata doesn't follow the "RDY" sig

nal

• Notify the sender if "ACK" or "ERR" doesn't follow the completion of the data
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transfer.

Summary of properties

• Operates in either synchronous or asynchronous mode.

• Separate lines for data information and control information.

• Control is full duplex.

• Data is half duplex.

• Datacan also be sent in a shortprotocol which onlycontains the preamble and the

"SYN" of the preamble.

• In the short protocol data has immediately to follow the control words to match

data with the destination address.

• Control lines are not utilized 100%.

3.5.4. Configuration II

Configuration II of the interconnection link depicted in figure 3.24 incorporates

two unidirectional buses for transferring data and control information. The buses can

be extended from one line in which one bit ofinformation is transferred in serial to any

number of lines in which bytes or words of information is transferred in serial. The con

trol in both cases will be the same with adaptation to the number of lines in the bus.

Unlike the system in configuration I, this system does not have different lines (buses)

for control information and for data information, i.e., control and data information share

the same bus. Data transfer is similar to full-duplex, because there are two unidirec

tional lines for sending and receiving data in both directions simultaneously. When no

information is being transferred the buses are "idle". As in the second mode of

configuration I (section 3.5.3), data transfer is not limited to short blocks of information

and the data is transferred in either synchronous mode or asynchronous mode as was

explained before in chapter 2.
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Data transfer protocol between adjacent PEs is as follows. The AIO of the sender

PE initiates the data transfer by sending a control word requesting to transfer data. The

control word contains addresses of the source and destination, packet ID, number of

words - datalength and"RTD" / "RTSD" -control bits forrequest to send data.

The format of this control word is:

SYN RTD/RTSD PACKET ID SOURCE DESTINATION LENGTH/DATA CKS END

LENGTH in the RTD instruction denotes the number of data words in the message

while DATA is the actual data which is transferred in the RTSD instruction.

If the buffers of the receiving PE (network switching node or destination) are

empty and the receiver has the priority to handle this data the receiver will send back a

control word"RDY" (Ready To receive) which hasthe following format:

SYN RDY PACKET ID SOURCE DESTINATION CKS END

If the receiver's buffers are full and/or the receiver is busy and can not handle the data

it will respond with the control word "NRDY" (Not Ready to receive) which has the

following format:

SYN NRDY PACKET ID SOURCE DESTINATION CKS END

Upon receiving a ready response ("RDY") from the receiver, the sender will send the

data information serially in a synchronous mode with the control word "DTR" (Data
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Transfer). The data will be sent in a packet of the following format:

SYN DTR PACKET ID SOURCE DESTINATION LENGTH DATA CKS END

Upon completion of the transfer the receiver will send back a control word which will

either be "ACK" to notify the sender that the transfer has been executed successfully or

"ERR" to notify the sender that the transfer failed and was not completed successfully.

The format of this control word will be:

SYN ACK/ERR PACKET ID SOURCE DESTINATION CKS END

By default, if at the end of the transfer the sender doesn't receive any signal from the

receiver the sender assumes that the transfer was not completed successfully.

Both thesender and the receiver will have "watch-dog" timeout systems that will:

• Notify the receiver that the transfer is improper if data doesn't follow "RDY" sig

nal.

• Notify the sender if "ACK" or "ERR" doesn't follow the completion of data

transfer.

Summary of properties

• Operates in eithersynchronous or asynchronous datatransfer mode.

• Efficient for transfer of large blocksof data information.

• Handshaking is done through messages (not control pulses or levels).

• Adequate for systolic array hardware implementation when the same clockis used

for all PEs.
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• Higher utilization of the I/O links because data and control use the same link.

3.5.5. Configuration HI

Configuration HI of the interconnection link depicted in figure 3.24 incorporates

two unidirectional data bus and two unidirectional control lines. This configuration is a

combination of the previous twoconfigurations andhas separate data and control lines

with the property of full-duplex data and control transfer. Data bus can be extended

from one serial line to any number of lines that transfer sets of data bits in serial. The

control for one serial data line or a bus of many parallel data lines will be the same.

This configuration is the most flexible one. It can handle synchronous or asynchronous

data transfers by either control pulses or levels or by control messages. Thus,

configuration HI is suitable for short data blocks of information as well as large blocks

of data information in different control modes.

The protocol used for data transfer is similar to the protocols of configurations I

and n. The sender initiates a data transfer by setting on its output control line (Ca) a

control word "RTD" (Request to Transfer Data) or "RTSD" (Request to Transfer Short

Data) which has the following format:

SYN RTD /RTSD PACKET ID SOURCE DESTINATION LENGTH/DATA CKS END

LENGTH is the number of data words to be transferred later and DATA is the actual

data in the "RTSD".

If the buffer of the nextPE (network switching node or destination) is available and the

receiver's AIO has the priority to handle the data it will respond by setting the control

word "RDY" (Ready to receive) on its output control line which has the following for

mat:
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If the buffer is full and/or the receiver does not have the priority to handle the data it

will respond by setting the control word "NRDY" (Not Ready to receive) on the control

line which has the following format:

SYN NRDY PACKET ID SOURCE DESTINATION CKS END

Following the receiver's "RDY" signal, the sender will send on its control line a "DTR"

control word indicating that data is to be transferred on the data line. The control word

will have the following format:

SYN DTR PACKET ID SOURCE DESTINATION LENGTH CKS END

Following the "DTR" control word, data will be sent serially in a synchronous mode on

the dataline (D0). Thedata will be sent in a packet of the following format:

SYN START DATA CKS END

Upon completion of the transfer the receiver will send back on the control line a control

word which will either be "ACK" (acknowledge) to notify the sender that the transfer

has been completed properly, or "ERR" to notify the sender that the transfer has not

been completed successfully. The format of this control word will be:
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By default, if the sender doesn't receive any signal from the receiver the transfer was

incorrect. Both thesender and the receiver will have "watch-dog" time out systems that

will:

• notify thereceiver that thetransfer is wrong if data doesn't follow the "RDY" sig

nal.

• notify the sender if "ACK" or "ERR" doesn't follow the completion of the data

transfer.

Summary of properties

Configuration HI is a combination of configurations I and II.

Require four unidirectional lines (buses).

Efficient transferof shortdata blocks as well as largedata blocks.

Controls data transfer byeither control pulses andlevels or by control messages.

Data transfer can be synchronousor asynchronous.

Adequate for "wavefront" multiprocessor implementation and for "systolic array"

implementation.

3.5.6. Summary of I/O link configurations

The underline properties of the three configurations are summarized in the follow

ing table:
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Configuration I Configuration II Configuration m
3 links 2 links 4 links

1 bidirectional data link 1 pair of unidirec 2 unidirectional data

& 2 unidirectional con tional data and con links & 2 unidirec

trol links trol links tional control link

separate lines for data same line for data separate lines for data

and control and control and control

synchronous or asynchro synchronous or asyn synchronous or asyn

nous data transfer chronous data chronous data

transfer transfer

half duplex data full duplex data full duplex data
full duplex control full duplex control full duplex control

efficient for short blocks efficient for large efficient for any

of data information blocks of data infor block size of data

mation information

control by signals or control by messages control by signals or

messages only messages

"Wavefront" architecture systolic array anv architecture

Table 3.1 - Summaryof I/O link configurations

References

-88-

1. M. Mano, in Computer system architecture, Prentice-Hall Inc., Englewood Cliffs,

N.J., 1982.

2. V. Ahuja, in Design and Analysis of Computer Communication Networks,

McGraw-Hill, New York, 1982.

3. W. Stallings, in Data and computer communications, Macmillan publishing com

pany, New York, 1985.



Chapter 3 _go, _

4. A.S. Tanenbaum, in Computer networks, Prentice-Hall, Inc., Englewood Cliffs,

N.J., 1981.

5. M. Schwartz, in Telecommunication networks, Addison-Wesley publishing com

pany, Menlo Park, California, 1987 .

6. J.L. Hammond and P.J.P. O'Reilly, in Performance analysis of local computer

networks, Addison-Wesley publishing company, Reading, Massechusetts, 1986.

7. P. Kermani andL. Kleinrock, "Virtual Cut-Through: A new computer communi

cation switching technique," Computer Networks, vol. 3, pp. 267-286,1979.

8. S.T. Dong, in The modeling, analysis and synthesis of communication protocols,

Ph.D. dissertation in EECS, Berkeley, Berkeley, California, 1983.

9. G.V. Bochmann and C.A. Sunshine, "Formal methods in communication protocol

design," IEEE Transactions on Communications, vol. COM-28, no. 4, pp. 624-

642, April, 1980.

10. P. Zafiropulo, C.H. West, H. Rudin, D.D. Cowan, and D. Brand, "Towards

analyzing and synthesizing protocols," IEEE Transactions on Communications,

vol. COM-28,no. 4, pp. 651-660,April, 1980.

11. S. Joshi and V. Iyer, "Protocols and network-control chips: a symbiotic relation

ship," Electronics, pp. 169-175, January 12,1984.

12. P.M. Merlin, "A methodology for the design and implementation of communica

tion protocols," IEEE Transactions on Communications, vol. COM-24, no. 6, pp.

614-621, June 1976.

13. T.P. Blumer and D.P. Sidhu, "Mechanical verification and automatic implementa

tion of commun. protocols," IEEE transactions on software engineering, vol. SE-

12, no. 8, pp. 827-843, August, 1986.

14. G.V. Bochmann, "Finite state description of communication protocols," Com-



Chapter 3 - 90 -

puter networks, vol. 2, no. 4/5, pp. 361-372, September/October, 1978.

15. D. Brand and W.H. Joyner, "Verification of protocols using symbolic execution,''

Computer networks, vol. 2, no. 4/5, pp. 351-360, September/October, 1978.

16. A.A.S. Danthine, "Protocol representation with finite state models," IEEE tran

sactionon communications, vol. COM-28, no. 4, pp. 632-642, April, 1980.

17. G.V. Bochmann, "A general transition model for protocols and communication

services," IEEE Transactions on Communications, vol. COM-28, no. 4, pp. 643-

650, April, 1980.

18. R.M. Fujimoto, "VLSI communication components for multicomputer net

works," in PhD. thesis, Department ofEECS, University of California, Berkeley,

1983.

19. L. Kleinrock, in Queueing systems, JohnWiley & Sons, NewYork, 1975.

20. R.B. Cooper, in Introduction to queueing theory, The Macmillan company, New

York, 1972.

21. T.N. Mudge, J.P. Hayes, G.D. Buzzard, and D.C. Winsor, "Analysis of multiple-

bus interconnection networks," Journal of parallel and distributed computing,

vol. 3, pp. 328-343,1986.

22. D. Gross and CM. Harris, in Fundamentals of queueing theory, John Wiley &

Sons, New York, 1974.



-91

CHAPTER 4

Hardware implementation and performance

4.1. General description

The operation of the processing element (PE) that incorporates a processing unit

PU) and an autonomous I/O unit (AIO) that operate concurrently and independently

was shortly described in chapter 2.3. Implementation of a PU that executes thecompu

tational partof a task depends on thetarget applications. But, the implementation of the

AIO which 1) handles and controls data transfer between PEs and 2) operates as an

interface between thePUand the network is similar for different I/Oconfigurations and

their protocols.

The purpose of this chapter is to describe the hardware design andimplementation

of an AIO unit fitted to handle its tasks.

The AIO unit consist of data and packet buffers, buffer control and bookkeeping,

routing & priority tables, communication control between PU and AIO and communi

cation &data transfer control between PEs. Figure 4.1 depicts a detailed block diagram

of the AIO with one I/O link.
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Receiver operation

A message received on the input I/O link from another PE is transferred through a

demultiplexer to the decoder. Depending on the decoded command of the message the
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communication control evaluates what should be done next. If the instruction is a

request to transfer data, the communication control checks the routing and the priority

look-up tables for the destination of the message and its priority to be handled. This

information is transferred to the buffer control and bookkeeping unit of either the

appropriate I/O link if the AIO operates as an intermediate networknode, or to the data

buffer controller (dual port memory) if theAIOoperates as an interface between the PU

and the network. The buffer control and bookkeeping unit checks the availability of

buffer space according to the packet size and the number of packets already queued for

service, and responds back to the sender PE through the communication control unit.

Depending on the address of the destination PE, an arriving data packet is stored by the

communication control unit either in the packet bufferor in the data buffer. When the

PE is a network node thathas to forward the packet to another PE, thepacket is stored

as is in thepacket buffer. When thePEis the destination, thepacket is converted to the

appropriate word format and is stored in the data buffer (dual-port-memory). Whether a

virtual-cut-through connection has been established or not a packet to be forwarded is

always stored in the packet buffer (the buffer implementation is described inparagraph

4.2). Checking for errors in the data is executed by this unit before a response is

returned to the sender PE.

Transmitter operation

A message (packet) to be transferred to another PEis handled by the communica

tion control unit. This unit concatenates the control fields of the messages (command,

source ID, destination ID, packet ID, length of data, check sum, end of message), and

establishes the handshaking connection by theprotocols described before. Data transfer

is always initiated by the AIO depending on the priority and the availability of the I/O

link. The communication control unit, according to the protocol, controls the number

of attempts and the route (I/O link) to be used. When the PE is the source of the infor

mation, the AIO fetches the data from the dual-port-memory, converts it to the proper
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format and concatenates it with the control fields of the message. When the PE is a

switching node the AIO fetches the data from the packet buffer, concatenates it with the

control fields and transmits it to the next PE.

AIO-PU Communication

The AIO operates as an interface for data transfers between the PU and the net

work (figure 2.3). Data to be transmitted from the currentPE (source) to anotherone or

received by the current PE (destination) from another one is buffered in predefined

memory locations of a dual-port-memory. The use of predefined locations in the dual-

port-memory as data buffers for specific source or destination, simplifies the communi

cation between the AIO and the PU.

The PU executes a program and during its execution transfers data into the buffers

as in any other store instruction. When all the data to be transferred is stored in the

buffer the PU notifies the AIO by an OUT instruction and initiates the data transfer to

another PE as described below:

• PU issues an OUT instruction that notifies the AIO the destination PE's address

and the size of data (memory words) needed to be transferred.

• AIO executes the following operation:

- decodes the destination PE,

- sets a pointer with the address location of the first data word,

- sets a counter with the number of data words needed to be transferred.

- checks in the lookup tables which link to use and what's the priority of the

transfer.

- establishes theconnection with thenext PEaccording to thepredetermined route

to the destination.

- transfers the data to the next PE.

- interrupts the PUand notifies it by a flag/semaphore about thecompletion of the
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data transfer.

• Before storing a new set of data into the buffers of the same destination PE, the

PU checkswhether the previous data has beentransferred completely.

When the destination is the current PE, the AIO checks in the dual-port-memory

whether there is enough spacefor receiving the data. If the space is available the AIO

receives the data, arranges it in theright format and stores it in predefined locations of

the dual-port-memory buffer. While receiving the data, the AIO checks if the data

packet was transferred without errors.

- If there was no error in the receivedpacket, the AIO sends back to sender PE an

"ACK" message, sets flags/semaphores in a status word in the memory and inter

rupts the PU to notify it that there is new valid data. [The PU will reset the

flags/semaphores after using the data].

- If there is anerror the AIO sends back to sender PEan "ERR" message, thedata

is disregarded and theAIOdoes notinterrupts thePU.

Two types of buffers are included: one is the data buffer and the other is the packet

buffer.

• The data buffer is used to store data when the current PE is the destination and to

fetch data for transmission when the current PE is the source. This buffer is the

dual-port-memory accessed by the PU and the AIO which allows data to be

transferred between them without anyconflict.

• The packet buffers are the buffers used by the I/O links when the current PE

operates as an intermediate network node. These buffers, which are described in

section 4.2 in more detail, employ two type of buffers: private buffers and shared

buffers. The private buffer is a fixed size buffer accessed and used only by a

specific I/O link. The shared buffer is additional buffer space accessed and used

by all I/O links. Depending upon the frequency that a link is used and the buffer
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capacity that it needs, each I/O link has a different dedicated buffer space within

the shared buffer. The packet buffer can be implemented by a set of memories

organized in nxl (n words of 1bit), FIFO orany other implementation.

4.2. PE's buffers

4.2.1. Buffer implementation

The PE incorporates two type of buffers: data buffers and packet buffers. Data

buffers are used for data transfer between the PU and the AIO when the AIO operates

as an interface unit between the processing unit and the network. Packet buffers are

used for temporary storage for forwarding data between PEs when the PE operates as a

switching node of the network.

Data buffers are implemented by a dual-port-memory, depicted in figure 4.2,

which provides two independent ports with separate address, data and control lines that

permits the AIO and the PU independent, concurrent and asynchronous access to any

location.

DATAo DATA1

I £
R/WO j

DUAL-PORT

MEMORY

( R/Wl

CONTROLO OONTROL1

T I
ADDRESSO ADDRESS1

Figure 4.2 - Databuffer - Dual portmemory implementation

These buffers reside in the memory space of the PU. Since implementation of a

dual-port-memory is more complicated and requires more area, the memory of the PU
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is divided into two types. One type is a single port memory which is the "private"

memory containing instructions and data, and the other type is a dual port memory for

bidirectional data transfer between the PEand other PEs of the multiprocessor system.

Packet buffers can be implemented in several ways: dual-port-memory, a set of

shift registers, or a setof interleaved memories organized in nxl (nwords of onebit).

A dual-port-memory implementation incorporates two independent ports with

separate address, data and control lines. It allows concurrent data input to thePE (write

to thememory) and dataoutput from the PE(read from the memory). Thus, whenever it

ispossible a virtual-cut-through data transfer can beemployed.

Implementation by a set of shift registers incorporates two types of shift registers

as depicted in figure 4.3. One type is a FIFO which allows data to be written and/or

read from it at independent data rates by utilizing separate synchronous data clocks.

The other type is a regular serial shift register with one clock tocontrol the writting or

reading of data. The FIFO allows a virtual-cut-through (VCT) data transfer whenever it

is possible. When a VCT occurs, data from the FIFO's output which is transmitted

through the output link to the next PE, is also stored into a shift register until the receiv

ing PE acknowledges the acceptance of correct data. If a VCT data transfer cannot be

executed, the data in the FIFO is transferred to the regular shift register for later

transfer. To enable input of data concurrently from three adjacent PEs the input I/O

links can be connected to either the FIFO or the shift registers. Since there is only one

output link to the next PE, one FIFO per link is sufficient for virtual-cut-through data

transfer.
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Figure 4.3 - Packet buffers - Shift register implementation

Interleaved memories is another way to implement packet buffers for virtual-cut-

through switching. Since each buffer associated with an output link can receive data

from the other three I/O links and can transmit data to the next PE, at least four inter

leaved memories arerequired. Figure 4.4depicts a setof fourinterleaved memories.
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Figure 4.4 - Packet buffers - Interleaved memories implementation

Successive input data words are stored indifferent memories in a four way inter

leaved mode, i.e. word 4i is always stored in memory I (MEM1), word 4i+l is always

stored in memory II (MEM2), word 4i+2 is always stored in memory III (MEM3), and

word 4i+3 is always stored in memory IV (MEM4). Providing that no two I/O links

require the use of the same memory, this scheme allows each of the three I/O links to

store simultaneously a word into the buffer while the output link reads a word from it.

Since only one link can be granted access to a particular memory, additional registers

are required to temporarily buffer the receiving data until it can be stored. Therefore,

after the initial synchronization, as many as four concurrent memory accesses occur on
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each cycle, and each link isable to access adifferent memory on each cycle. Accessing

the appropriate memory is controlled simply by decoding the two least significant bits

Gsb) of the address.

4.2.2. Buffer size analysis

The size of the packet buffers allocated to an output link has a large influence on

flow control and the avoidance of deadlocks. Larger buffers reduce the congestion on

the I/O links, as well as the probability of deadlocks, by reducing the possibility of

buffer overflow. In our design the handshaking protocol precludes deadlocks but the

larger isthe buffer size the smaller isthe probability ofcommunication latency.

Input data to apacket buffer allocated to an output link arrive from the input links

corresponding tothe other three I/O links ofthe PE as depicted infigure 4.5.

1/01

1/04 4 I/O 2

1/03

Figure4.5 - Data input to a packet buffer

Let Xdenote the total arrival rate ofmessages to output link I/O 4. Afraction Pi
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of these arrivals are from link I/O 1, a fraction P2are from link I/O 2 and a fraction P3

are from link I/O 3 (P i+Pq+P3=1). Figure 4.6 depicts a queueing model of an output

link with a total combined arrival rate Xand service rate \i.

BUFFER

DATA IN

o
SERVER

Figure 4.6 - Queueing modelof an output link

DATA OUT

•

Assuming that the arrival of messages is a Poisson process andthe messages have

variable lengths that are exponentially distributed, a M/M/1 queueing model can be

used toestimate the buffer size k. The Poisson arrival time and the exponentially distri

buted message length assumptions allow the use of M/M/1 queues that can be easily

solved. As shown in [1], relaxing each of these assumptions results in G/M/l and

M/G/l queues respectively that are difficult to solve for large, complex multicomputer

networks discussed in this dissertation. Furthermore, simulation studies of filters, FFT

and LU decomposition programs [2] have shown that relaxation of these assumptions

yield different performance but the conclusionsdrawn from the models are the same.

From queueing theory analysis [1,3,4,5], the probability of having n (n<k) mes

sages in a buffer for the caseof a finite M/M/l/k queue with a link utilization factor of

Xp=-fy- is given by:

P»=l^rP" (4.1)
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Therefore, the probability of blocking new incoming messages (pg) equals to the pro

bability that the queue is full (p*, where k is the maximum number of messages in the

buffer).

—l^TP'PB=Pk= (4.2)

The blocking probability ps depicted in table 4.1 is an appropriate measurement

for defining the buffer length k. As expected a larger link utilization factor (p) implies

a larger buffer space.

p k=l k=2 k=3 k=4 k=5 k=10

0.9 0.47 0.30 0.21 0.16 0.12 0.05

0.8 0.44 0.26 0.14 0.12 0.09 0.02

0.7 0.41 0.22 0.13 0.09 0.06 0.01

0.6 0.38 0.18 0.10 0.06 0.03 2.4E-3

0.5 0.33 0.14 0.07 0.03 0.01 0.5E-3

0.4 0.29 0.10 0.04 0.02 6.0E-3 6.0E-5

0.3 0.23 0.06 0.02 5.6E-3 1.4E-3 3.4E-6

0.2 0.16 0.03 6.4E-3 1.3E-3 0.2E-3 2.0E-8

0.1 0.09 0.9E-3 9.0E-4 9.0E-5 9.0E-6 1.0E-11

Table 4.1 - Blocking probabilitiesfor different buffer size

The next table (table 4.2) shows the upper bound of the average buffer size,

obtained from analyzing a M/M/1 queuewithan infinite buffersize.
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p k=eo

0.9 9.0

0.8 4.0

0.7 2.3

0.6 1.5

0.5 1.0

0.4 0.66

0.3 0.43

0.2 0.25

0.1 0.11

Table 4.2 - Upper boundof the averagebuffer size
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Even though the upper bound on the average buffer size fordifferent p is small, to

avoid repetition ofdata transfer due to full buffers, the buffer size should only bedeter

mined from the blocking probability according to the link utilization and the required

throughput y=X(l-PB (where Xis the average number of message arrivals and XP5 is

the number of blocked messages).

Since a sender PE has to wait for an end-to-end acknowledgement before a packet

can be discarded, the buffer size analysis of the data buffer is different than the buffer

size analysis of the packet buffer. The analysis is based onM/M/1 queueing model with

the following assumptions:

• Poisson distribution of the arriving messages.

• D - average time to send a message and to get back an end-to-end ack

nowledgement from the destination PE when the processing time perhop and

the average numberof hopsis given by the scheduler.
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• Data is transferred immediately (VCT) - no delays in intermediate network

nodes.

Denoting:

1) ^^co^d -a™^ rate of messages from the PU.

2) \i - service rate of a node.

3) S - average service time of a node.

S=± (4.3)

4) W - averagewaiting time in a queue.

2.
W~g- (4.4)

5) D - average time to route message to destination PE and an acknowledge

ment back to the source PE.

6) T - average time in system (including the average waiting time, the average

service timeand the average routing time between twonetwork nodes).

T=D +W+S =D +Trir (4.5)
Jl—A.

7) Pn(T) - probability that exactly n messages arrived in a time intervalT:

Pm(F>MX£L (4.6)

To determine the buffer length of the source PE lets assume that the average time

interval between receiving a message to the buffer and discarding it after end-to-end

acknowledgement is T. During this time interval (while message is in the system) there

is a possibility that new messages arrive to the buffer. Lets assume that a is the proba

bility that n or more arrivals occurred in a time interval T:

Pn (T)+Pn+l(T)+Pn+2(T)+....=(X (4.7)
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Therefore, the probability that less then n messages have arrived during the average

time interval in the system (T) is givenby:

Po(T)+P i(7> +Prt_1(7>l-a (4.8)

If a equals to the blocking probability (Pb ), then for the case when only one mes

sage is in the buffer during the average time interval T, the rmnimum length of the

buffer (n) to achieve Pb can be obtained from equation 4.9 by substituting equation 4.6

into equation 4.8:

e_xr'giW=1_a=1_p5 (49)

This assumes the "best" case when the arriving message finds no other previous

messages waiting a head of it (i.e. only one message is waiting in the buffer). If on the

average there are no previous messages waiting, then the minimum buffer size must be

n found in (4.9) in additionto no the numberof previous messages.

Depending on the scheduling of a program, when the traffic is low (p=0.1-0.2 as in

table 4.1) it is possible to assume thaton theaverage onlyone message is waiting in the

queue.

Since the sender PE has to wait for an end-to-end acknowledgement the data

buffer size is larger than the packet buffer size.

4.3. Buffer control & bookkeeping

As stated before, to avoid delays in data transfer as well as deadlocks the buffer

for each link should be large. One major problem regarding thepacket buffer is how to

partition and allocate it optimally for the different I/O links. There are several ways to

solve this problem: 1) separate buffers for each link, 2) one common buffer "pool"

accessed by every link where the buffer allocation for each link changes dynamically

and 3) combination of the two, i.e. separate buffers for each link ("private" buffer)
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extended if necessary with part of the common buffer "pool" (if space is available).

The first option of separate buffer for each link is inefficient because most of the large

"private" buffer space is unused most of the time. The second option, one common

buffer, could end up to be large with the possibility that links with low traffic might be

left with no bufferspace because the links with high traffic have occupied all the space.

The third option, depicted in figure 4.7, each link has a "private" buffer which can be

extended by a restricted part of the common buffer. This option provides minimal

buffer space for low traffic links andlarger buffer space for high traffic links and aver

ages fluctuations in buffer space demand. [Equivalently, each link has a minimum allo

cation of buffers ("private" buffer) which, depending on the buffers allocation to the

otherlinks, can be extended bypart of thecommon buffer "pool"].

W)UNK

C-COMMON BUFFER P • "PRIVATB" BUFFER

I/O LINK 4. > I/O LINK

Figure 4.7 - "Private" and common buffer allocation

Wand in his paper [6] evaluated packets blocking probabilities using different

shared buffer management techniques. His conclusions were that using a shared buffer

of size ^=- where N is the total number of basic packet size and P is the number of
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links yields a throughput close to theoptimal sharing.

In our case, the total buffer size of each link ("private" buffer andpartof the com

mon buffer) was evaluated in table 4.1. To decrease the sizeof the common buffer, the

square-root rule mentioned above is one way to properly estimate the size of the com

mon buffer.

Since the buffer size of each link is limited, a buffer control and bookkeeping unit

is needed. This unit has two tasks: 1) locate free buffer to store each new arriving

packet, 2) locate next packet to beforwarded through theoutput link. '

Figure 4.8 depicts data and control paths of the packet buffer when the PE

operates as a network switching node.

Input data arriving from the other three I/O links is stored in either the "private"

buffer of the link, or in the common buffer "pool" depending upon the available

storage. Two counter registers are involved in inputing data (receiving mode) or output-

ting data (transmitting mode). One is an address counter which loads the first address

and increments it after each buffer access. The other is a block counter which loads the

size of the block to be transferred and is decremented after each buffer access. When

the block size buffer is zero the data transfer has been completed. One bit, denoted P/C

(figure 4.8), of the address register selects the buffer to be accessed and controls also

the data output multiplexer.



Chapter 4

R/W

CONTROL

LINK IN LINK IN LINK IN

1 L^L
DATA INPUT MUX

SI

S2

Dm

•PRIVATE"

BUFFER

R/W BP

P/C

CONTROL

Doat

S2

DATA

OUT

MUX

-> LINK OUT

CLOCK »

R/W dj,, gp

COMMON

BUFFER

Dent
SI

CONTROL
BLOCK

R/W

Figure 4.8 - Data& control paths in packet buffers

The control and the bookkeeping ofthe unit isdepicted infigure 4.9.
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Figure 4.9 - Control & bookkeeping unit

The buffer control unit contains two subunits dedicated for the I/O link and one

subunit, of the common buffer, used byall I/O links. Each subunit contains an adder, a

register and a comparator. One of the dedicated subunits is used to check whether there

is any available space in the link's buffer, and the other to check whether there is avail

able space in the "private" buffer of the link. When there is a request to transfer a data

packet, its block size is added concurrently in the two dedicated subunits to determine

whether it can be stored in the "private" buffer orin the common buffer. If the "private"

buffer has enough space the output of the corresponding adder is loaded to the address

counter of the buffer. If the "private" buffer is full, and more space is still available in

the common buffer, the block size of the incoming packet is added in the common

buffer subunit to determine whether there is any space available in thecommon buffer.

When there is available space in the common buffer the first address generated by this

subunit is loaded to the address counter of the buffer. This checking is necessary
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because the size of the common buffer is smaller than the sum of the buffer space

allowed for all the I/O links. To save bits in the message's header and to simplify the

buffer bookkeeping, packet lengths should be limited to multiples of a basic size like

256,512,768 etc..

Sincethe space of the common packet buffer is limited, a policy for fair utilization

of the commonspace is required. A policy that guarantees a minimum buffer allocation

n in the common buffer "pool" that may be extended, if space is available, up to n is

described below. Given that the common buffer can accommodate N packets of the

basic packet size (e.g. 256 bits) and mis the number ofI/O links, the buffer space boun

daries for each I/Olinkin thecommon space is given by:

n> I/O link's space in common buffer >n

where the lower boundaryn is given by:

- m

and the upper boundaryn is given by:

zr^N-n
m-1

For practical realization and implementation n and n should be integer multiples

of the basic data packet length.

4.4. Communication control

The communication control of the AIO, depicted in figure 4.10, establishes and

handles according to the protocols the handshaking interconnection and the data

transfer from and to the PE. Its basic major components are the following:

• Control and timing unit decodes the command field of the arriving messages and

controls the required operations with the correct timing. The clock of the AIO syn

chronizes its operation to the "syn" field of the arriving messages. A "watch dog"

system times out a transmitting operation when there is no response from the
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receiving PE or a receiving operation when thedata is not being transferred by the

sender PE.

• Three FIFOs corresponding to three priority levels store the control information

and the communication status of messages involved in handshaking interconnec

tion establishment and data transfer.

• Priority and routing tables used for translating, according to the incoming input

link, the arriving message's short ID into: 1) the priority of handling themessage,

2) which output link to use for forwarding the message, and 3) what is its new

short ID.

• Input packets under process is a temporary storage used fordistinguishing between

new arriving messages and messages under process whose control information and

status is already stored in the appropriate FIFO.
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4.4.1. Input packets under process

The command field of arriving messages separates them into two types: transmis

sion messages and response messages. RTD (request to transfer data) and DTR (data

transfer) are examples of the transmission type, while RDY (ready to receive data) and

ERR (error) are examples of the response type. An arriving message might be a

transmission message, a response message or a false message that does not belong to

either of them (e.g. response when there was no request, unidentified command code,

data transfer without initial request etc.). The "Input Packets Under Process" unit

(IPUP), depicted in figure 4.10, is used for checking, according to the ID, whether the

arriving message is a new one, an illegal one or one which is a part of a handshaking

data transfer which is in process. Packet ID and short ID fields of new requests to

transfer data messages (RTD/RTSD) either initiated and sent by the current PE or

received from another PE, are stored in the IPUP. The IDs of a received request mes

sage are stored only if there is enoughbuffer spaceavailable for the data. When a mes

sage arrives, its packet and short IDs are compared with the ones in the IPUP. If the

comparison is positive, the arriving message is a continuation of a handshaking data

transfer already initiated, the translation of the priority and routing lookup table is not

necessary and the control unit can immediately check for the message's status in the

FIFO. If the arriving message is a new one its short ID and the input link are first

translated into service priority and routing path which later with other status bits are

stored in the FIFO. When a data transfer has been completed (received or forwarded

successfully) its packet and short IDs are removed from the IPUP.

4.4.2. Priority & routing table

To decrease the number of header bits of a message, a short ID is used to define

the source and the destination IDs. For appropriate control and message processing the

short ID needs to bedecoded into message's service priority, source PEand destination
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PE IDs, output link to be used if the message has to be forwarded or transferred and a

new short ID for the next transfer. The priority and routing lookup table depicted

below in figure 4.11 executes this translation.

INPUT LINK SHORT ID

yt \[
PRIORITY * ROUTING

TABLB

'f i1 ' t i 1 t

OUTPUT

LINK

SOURCB

ID

DESTINATION

ID

SHORT

ID
PRIORITY

Figure 4.11 - Priority& routing table's output

Its content is determined and defined by the scheduler during the partition of the

algorithm and the task allocation to the different PEs. The message's short ID and the

input link number through which it arrived are the inputs tothe table, and itsoutputs are

the priority of handling themessage, the source and destination IDs, the output link for

transferring the message, and a new short ID.

Actually, two priority and routing tables are required, onewhen thePEoperates as

an intermediate network node that forwards messages and the other when the PE is the

source of a message. In both cases, theinput is transferred into theoutput datadepicted

in figure 4.11. When the PE operates as a network node a lookup table translates,

according to the input link, a short ID of an arriving message into the corresponding

output data. When the PE is a sourcePE a lookup table translates a PE's destination ID

fetched from the data bufferinto the corresponding output data.
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4.4.3. FIFOs

Handling and processing messages according to their priorities assigned by the

scheduler synchronizes the operation of the PEs, reduces the probability of deadlocks

and controls the data flow in the network. Fairness in handling messages might lead to

different priority policy: 1) FCFS - first come first serve, 2) Descending order ofprior

ity service - messages ofhigher priority are always served first, 3) Service according to

some predefined priority sequence - service is given according to some priority

sequencedefinedby the scheduler (e.g. I,I,n,I,I,in,I,n,in etc.).

Since the priorities of handling the messages are determined and defined by the

scheduler during the partition of the algorithm andthe taskallocation to different PEs, a

highest or a sequential priority service policy is an appropriate one to use.

To control and handle the message transfer between thePEs according to the pro

tocol developed before, the status of the messages which are in the process of intercon

nection establishment or information transfer has to stored. The three FIFOs, depicted

in figure 4.10, stores the status information of different data transfers which are being

under process. Each FIFO stores the status information of the messages with the

corresponding priority level, i.e. FIFO I stores the information about messages with

priority I, FIFO II stores the information about messages with priority II and soon. The

FIFOs can be implemented by circular shift registers or associative memories. An attri

bute in the FIFO is cleared upon success of data transfer or returning the data to the PE

from where it had arrived. Each status word contains 16 attributes of control informa

tion. Figure 4.12 below shows the information about the data necessary for handling its

transfer such as: IDs, buffers, location of the data and its length.
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Link number is the outputlink to be usedfor forwarding the data. The link fetched

from thepriority androuting table is defined by thescheduler.

Packet and short IDs are header fields of the messages transmitted to the next PE.

The packet ID defined by a counter is necessary to distinguish messages

transferred between the same source and destination PEs. The short ID fetched

from the priority androuting table saves header bits in themessage anddefines the

IDs of the source and destination PEs.

Source and destination IDs translated by the priority and routing table from the

short ID of an arriving message.

Buffer type, buffer address and data length define how words of data have to be

transferred and from where to fetch them.
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Figure 4.13 contains the status information for controlling the handshake interconnec

tionand the data transferaccording to theprotocol.

TRIAL CONTROL * FLAO UNIT TDONO UNIT

i > ' f " V '> ' f if i'

TRIAL

NUMBER
FORWARD ALTERN. BACKWARD us.

DATA

TRANSFER

KOP-BY-KOP

ACK

END-TO-END

ACK

Figure 4.13 - Control information for data transfers

Trial number indicates the number of attempts to establish an interconnection or to

transfer data. This data is fetched from a modulo 3 counter.

Forward, alternative and backward flags show the stage of the transaction. Atany

time only one of the flag is set The flag status and the trial number information

allow the control unit todetermine the next steps tobe taken, according tothe pro

tocol, if the transaction fails.

H.S. (hand-shake) and data transfer flags show whether the transaction is in the

interconnection establishment state or in the data transfer state.

Hop-by-hop acknowledgement is the time information latched from a free running

counter, that shows when the message was transferred to the next PE. Comparing

this count with the updated count of the free running counter is the "watch-dog"

operation that times out transactions if and when there was no response from the

next PE.

End-to-end acknowledgement is the time information latched from a free running

counter, that shows when the message started its route to the destination PE. Com

paring this count with the updated count of the free running counter is the "watch

dog" operation that times out transactions if and when there was no response from
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the destination PE.

As mentioned previously, the status data is important and necessary to define the

header of the message and to control the transaction's steps defined by the protocol.

Any response or lack of response from the receiving PE is followed by moving to the

next state of the protocol, updating of the appropriate flags, and retransmission of the

message again. A status wordis aborted from theFIFO in the following cases:

1) Data packet has been received successfully by the destination PE if the

current PE is the source.

2) Data packethas beenreceived successfully by the nextPE if the current PE is

a switching network node.

3) Due to failure in forwarding a data packet, it has been returned to the preced

ing PE which has forwarded it to the current one.

4.4.4. Control and timing unit

The control and timing unit depicted in figure 4.10 incorporates a command

decoder, a CKS (check sum) decoder, a sequencer, a clock, a "watch-dog" and a trial

controller.

Thecommand decoder decodes the command field of thearriving messages. If the

command is legal, its output is transferred to the sequencer for continuing the process.

When anillegal command code arrives the decoder aborts the whole message.

The CKS decoder checks for errors in the arriving messages. Its output is fed to

the sequencer for determining the nextoperations. Depending on the environment (S/N

ratio) and the implementation, the CKS decoder might execute a simple one bit parity

check, a LRC check sum (several column's parity check sum) or a CRC (cyclic redun

dancy code) check. The first two parity sums are simple to implement (T flip-flop and

random logic) and can be done while the messages arrive thus, saving time. The CRC
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check is more complicated to implement and its execution requires an additional time

after the message has arrived.

The sequencer implemented by a PLA or random logic receives at its input the

decoded command and the parity check's result It fetches the status word from the

FIFO and provides sequentially the appropriate controls lines required for the next

operations. Updating the flags and transition to the next stateaccording to the protocol

is executed during these operations.

Receiving sequence

In the receiving mode of a PE the sequence of operations executed by the AIO

depends upon the type of the arriving message. The operations for thedifferent types is

summarized in the following table:

sync clock

input message

decode command

check errors (CKS)

"RTD" "DTR" Control

check IPUP check IPUP check IPUP

P & R table check W.D. P & R table

fetch FIFO P & R table check FIFO

check buffer fetch FIFO

store IPUP store buffer

assign buffer store FIFO

store FIFO

setW.D.

Table 4.3 - Receiving mode- sequence of operations



Chapter 4 -120

Transmitting sequence

In the transmitting mode of a PE the sequence of operations executed by the AIO

depends upon the type of the transmitted message. The operations for the different

types is summarizedin the following table:

choose FIFO

fetch FIFO

reset "CKS"

Control message Data packet

output message output header

start W.D. fetch data & output

update flags output tail

store FIFO start W.D.

update flags

store FIFO

Table 4.4 - Transmitting mode - sequence of operations

The trial controller depicted in figure 4.14 updates the state of themessage transfer

according to theresponse from the receiving PE. Its operation is based upon a modulo

three counter. Initially the counter and the flags are reset. The first attempt to transfer a

message (handshaking interconnection establishment or data transfer) results in incre

menting the counter and setting the forward flag. If the message was not transferred

successfully after three attempts the operation mode is transferred from one state to the

next one, e.g. forward -> alternative -> backward. A successful message transfer results

in resetting the counter and the flags.
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A "Watch-dog" unit depicted in figure 4.15 is implemented with a counter trig

gered by the main clock (time stamp counter), an ALU and a comparator. The unit

determines whether to time out the transaction or not according to the current time

stamp and the time stamp of the message indicating when it was sent. Such an imple

mentation avoids multiple dedicated counters for eachmessage which is undertransac

tion, and allows the samesystem to beusedfor "watch-dog" timeout

Main clock is a quartz free running clock which can synchronize its phase andfre

quency to the "SYN" field of arriving messages. Chapter 3.2 describes the ways to

implement this feature.
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CONT.

Figure 4.15 - "Watch-dog" system

To enable concurrent message transfers through the separate unidirectional output

and input lines of an I/O link, the control register which latches the FIFO's output has

to be duplicated. One control register should be dedicated for the status of a receiving

message and the other for the status of a transmitted message. By doing so the control

unit saves frequent searches in the FIFOs and the implementation is simplified.

4.5. ASIC properties

Advance in pP VLSI design and fabrication makes it feasible toimplement onthe

same chip a processing element (PE) thatcontains a processing unit (PU) and an auto

nomous I/O unit (AIO). Independent andconcurrent operations of the PU and the AIO

without the involvement of the PU in the network message's transfer are very suitable

for ASIC (Application Specific IC) implementations. The simple and standardized

interface between the PU and the AIO and similar protocols for different communica

tion configurations yield the following advantages:

• Depending on the application, every PE can accommodate a different computing
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unit and a different communication configuration that are mostly suitable and

proper for the particular application.

• Simple implementation of "heterogenous" systems where different PEs incor

porate different processing units.

• Modularity - A multiprocessor system can have PEs which accommodate different

types of processing units and/or different communicationconfigurations.

• Parametrizable - The number of lines in an I/O link of each communication

configuration can be extended fromoneserialline to any number of parallel lines.

• Extensible - FourI/Olinksenables thePEto be employed in any network andpro

vide simpleexpansionto a large multiprocessor configuration.

• Higher B.W. (bandwidth) - Up to four I/O links can interconnect two adjacent

PEs.

4.6. I/O link's utilization

Chapter 3.9 describes three L/O link configurations. Configuration I incorporates

two unidirectional control lines and one bidirectional data line. Configuration II incor

porates two unidirectional control anddata lines. Finally, configuration m incorporates

two pairs of unidirectional lines, oneforcontrol and the other fordata. One major issue

toconsider is how toexecute message transfers with maximum I/O linkutilization. Fig

ure4.16 addresses this issue. Assume that two PEs connected through an I/O link want

to transfer a packetof data between them. Foreachconfiguration, two casesof control

ling data transfer are investigated. In the first case (the upper part of each configuration

in figure 4.16) both PEs simultaneously initiate a data transfer (RTD xand RTD2) from

one to theother, and in the second case (lower part of each configuration in figure 4.16)

the second PEinitiates itsdata transfer (RTD2) only after responding to the initiation of

the first PE(RDYi).
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Figure 4.16 - I/O configurations - Link utilization

It is clear from figure 4.16 thatconfiguration HI, the configuration with the largest

bandwidth, will yield in both cases the higher data transfer rate, while configuration I

which has only one line to transfer data will yieldin bothcases the lowestdata transfer

rate. But, if the control system of the AIO initiates first its own data transfers before

responding to initiations from other PEs (first case), the data transfer rate of
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configuration II will be as high as that of configuration UL For such cases the

bandwidth of configuration II is better utilized. Therefore, to achieve a higher data rate

transfer the scheduler and the sequencer implementation must first initiate its own data

transfer before responding to initiations from other PEs.

4.7. PE's performance

4.7.1. Multiprocessor performance

Comparing the running time of a program ona multiprocessor system with itsrun

ning time on a single processor is a good measurement of the performance improve

ment obtained by the multiprocessor system To do an appropriate comparison, a stan

dard task unit (a standard program unit) is defined. Assuming that the computation time

of the standard task on a single processoris P time units, and the communicationover

head time incurred bydata transfers with other PEs during the execution time is C, the

P •ratio •£- is a measure of how much communication overhead is incurred percomputa

tion of a standard task. The potential of obtaining a higher performance with a mul-

puprocessor system increases as the ratio jt is higher.

Performance analysis of multiprocessor systems based upon the analysis in[7]

shows that the execution time of a program consisting of Munits of standard task which

is partitionedinto two PEs is givenby:

Execution time=P-Max {M-k,k}+C(M-k)k (4.10)

The first term is the longest execution time between the two PEs when k units of

standard task is assigned to one processor and M-k to the other. The second term is a

pairwise communication overhead (not overlapped with the computation time) that

must take place asa function of how the tasks are partitioned to the processors.

Equation 4.10 can be extended to the case where the same program consisting of

Munits of standard tasks is partitioned and allocated to NPEs. Allocating kt standard
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task units to the corresponding ith processor yields the following execution time for a

fully connected multiprocessor system:

Execution time =P -Max {ki }+^~Xki(M-ki) (4-1*)
When the multiprocessor system is load balanced the tasks are equally divided

between the Nprocessors thus, the tasks are equal i.e. h=^ and the execution time of

the program is given by:

Execution time=P ^-^(M2-^) (4.12)
The speed up attributable to parallel execution of a multiprocessor system is

defined by the ratioof the execution time of the program on oneprocessor over the exe

cution timeof theprogram in a multiprocessor system with N processors operating con

currently. Evaluating theratiofor a loadbalanced PE multiprocessing system yields:

Speedup- /M (413)

In our proposed implementation, the multiprocessor system is not fully connected

and therefore it is necessary to add the number of hops in the second term of equation

4.11.

Execution time =P -Max (ki)+-^-i2fkij£fkjIij (4.14)

where Itj is the number ofhops from PEi to PEj.

When the multiprocessor system is load balanced, the tasks are equally divided

between the Nprocessors thus, the tasks are equal to h=^-, and when the communica

tion requires an average number of hops Itj =K , the execution time of the program is

given by:

Execution time=P ^-+^-(M2-Mi)K (4.15)
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The second term of the execution time (equation 4.15) is due to the additional

communication overhead. There are two important factors, C and K. When C and/orK

are small, the communication overhead is reduced abd therefore the system's

throughput is increased. C is small when the data transfer is independent and parallel to

the computations, andK is small when the average number of hops is small.

The speedup defined as before is givenby:

Speedup- PM ± _ (4.16)

Equations 4.15 and 4.16 clearly show the expected result that high throughput of a

multiprocessor system is achieved if:

• The algorithm contains high degree of parallelism (large N corresponds to

smaller processing time p4t0-

• Balanced load PE - The program is partitioned into same length tasks for the

different PEs (fc=^).

• Communication overhead time compared to the execution time of the task is

negligible (C is small).

• Minimum number of hops (K is small).

Since partitioning and scheduling is an NP complete problem, it isvery difficult to

partition a program and schedule it perfectly with load balanced PE's and minimum

communication among PEs. Therefore, partitioning a processing element (PE) into two

units operating concurrently and independently, one that executes the computational

tasks and the other that executes the interprocessor communication, reduces the com

munication overhead and improves the multiprocessor throughput.

To illustrate the reduction of the communication overload on the computational

task, an analysis of interprocessor data transfer will now be made between the PE
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developed in this dissertation and two commercial signal processing processors:

Motorola's DSP-56000 and INMOS's Transputer. The analysis compares the time, in

clock cycles, it takes to transfer datapackets between twoprocessors and the communi

cationoverloadimposed on the computational part

The data transfer comparison is based upon the handshaking protocol developed in

the previous chapters. Similar subroutines are used for comparing the different process

ing elements. A control message is assumed to be 32 bits and a data packet including

the header is assumed to be 1Kbit Data is transferred through a serial output link at a

rate of one bit per clock cycle.

4.7.2. Motorola 56000

4.7.2.1. Hand shake subroutines

The handshaking data transfer is initiated by the sender PE with the following sub

routine:

Operation clockcycles

Move M->A 2

Move A->SCI 2

Message transfer 24

Interrupt 1

Move M->A 2

Move A->SCI 2

RTI 4

Decode 8

Total 55

The receiving PE responds with "ready" or "not ready" after the message have
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been detected by him. Detection starts while the message is received but there is still a

non-overlapping detection time of 5 clock cycles - the last 3 instructions in the follow

ing subroutine:

Operation clock cycles

Data transfer 24

Interrupt 1

Move SCI->A 2

Move A->M 2

RT1 4

Decode 8

Interrupt 1

Move SQ->A 2

Move A->M 2

Tbtal 35

Since there is a non-overlap of 5 clock cycles between the sender and the receiv

ing PEs the hand-shake interconnection establishment is executed in 45+5+45+5=100

clock cycles.

4.7.2.2. Data transfer subroutines

DSP-56000 is a 24 bit processor which implies that a packet of 1Kbit data resides

in 42 memory locations. The following is the sender's PE subroutine:

Operation clock cycles comments

Do loop 6

Move M->A 2

Move A->SCI 2
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Jcc 4 jump if loop done

RTT 4

Interrupt 1

Jmp 4 jump to do loop

Data transfer 1000

Tbtal 172d

The total execution time of the subroutine is: 17 non-overlapping clock cycles for

receiving it).

Do 6

Loop 17x42=714

Data transfer 1000

Total 1720

The receiving PE's subroutine is similar but involves only the loop for inputing

the data:

Operation clock cycles

Do loop 6

Move SCI->A 2

Move A->M 2

Jcc 4

RTI 4

Interrupt 1

Jmp 4

Total 720
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The total count includes 714 clock cycles of the loop and 6 clock cycles of the

"DO" loop instruction.

These subroutines show that transferring 1 Kbits of data requires 1737 clock

cycles (1720 for data transmitted + 17 non-overlapping clock cycles for receiving it).

The total data transfer without decoding is executed in 1837 clockcycles as follows:

Handshaking 100

Transfer data 1720

Receive data 17

Acknowledgement 50

Total 1887

For an average of two clock cycles per instruction, both PEs, the sender and the

receiver, waste theequivalent of about 900 instructions fordecoding themessage's con

trolfields, checking the buffer space availability andtransferring the data.

4.7.2.3. Control fields

Prerjaring headers

Operation clock cycles comments

CLRA 2

ORISynllll 2

Move A->M 2

CLRA 2

ORI1111END 2

Move A->M 2

Move M->A 2 read destination

Rotate 2
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ANDM 2

Move A->M 2

Move M->A 2 read Packet ID

Rotate 2

ANDM 2

Move A->M 2

Move M->A 2 read length

Rotate 2

ANDM 2

Move A->M 2

Move M->A 2

ANDIO 2

Move M->A 2 read 24 msb of header

Do 6 24 repetitions

Rotate 2

JNC 4 jump if not carry

ORI1 2 (M)+l

NOP 2

Move M->A 2 read 8 lsb of header

Do 6 8 repetitions

Rotate 2

JNC 4 Jump if not carry

ORI1 2 (M)+l

NOP 2

Rotate 2 check sum

Move A->M 2

Move M->A 2 add check sum

-132



Chapter 4

ORM

Move A->M

Total

Checking buffer space

386

Operation clock cycles

Move M->A 2

ANDI 2

Move A->R 2

JMP 4

Move M->A 2

CMP 2

Header 386

Total 400

Checking CKS

Operation clock cycles comments

Do 6 42 times

XORM+ 4

Do 6 24 times

Rotate 2

JNC 4 jump if not carry

ORI1 2 1+(M)

NOP 2

Total 420

-133-
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4.7.2.4. Data transfer time

The above subroutines yield an approximate estimate of the time that it takes to

transfer a data on the Motorola 56000 DSP.

Operation Clockcycles

RTD 436

RDY/NRDY 450

DTR 2106

ACK 403

CKS 420

Total 3815

4.7.3. Transputer

4.7.3.1. Subroutine's execution time

The transputer is a 32 bit processor with a separate I/O which fetches data from

the memory through DMA and handles the data transfer between processors. Each byte

ofdata which is transferred with additional overhead bits must be acknowledged by the

receiving PE.

Using the instruction's execution time defined in the data-sheet the handshaking is

established in:

Operation clockcycles

RTD 13x4+4x5=72

RDY/NRDY 72

Total 144
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Data transfer is obtained by similar calculations. DTR - is executed in 72 clock

cycles , fetch 1 Kbits from memory and output them to the next is executed in:

125x13+125x5=2250 clock cycles, and data acknowledgement in 72clock cycles.

Using the same subroutines forpreparing thecontrol fields of a message yields the

following execution times:

Header preparation - 624 clock cycles.

Buffer space availabilitycheck - 24 clock cycles.

Check sum - 750 clock cycles.

4.7.3.2. Data transfer time

The total time thatit takes to execute the whole data transfer including thecontrol

fields preparation andcheck is summarized in thefollowing table:

Operation clock cycles

RTD 696

RDY/NRDY 720

DTR 2250

ACK 676

CKS 756

Total 5(M

4.7.4. Proposed PE

Partitioning the processor element (PE) into a processing unit (PU) and auto

nomous I/O (AIO) unit that operate independently and concurrentiy provides the

separation between the computation and the communication tasks. Such an implemen

tation eliminates wasted computation time on interprocessor communication and data

transfer. Hardware implementation for check sum, routing paths and buffer control

reduces the timerequired to transfer messages or databetween PEs.
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The operation executed in transferring a packet of data are as follows:

• PU notifies the AIO by an OUT instruction that data is ready and available

to be transferred.

• AIO accesses the dual-port-memory and fetches from two successive loca

tions the destination's address and the data block size.

• The destination address is translated by tables to outputlink number, shortID

and priority level.

• The output link number, short ID and priority level is transferred to the buffer

management and control unit for further evaluation.

The aboveoperations are executed in 5 clockcycles.

Buffer management and control unit issues a control message composed by the

following program (using the same timingas Motorola 56000):

Operation clock cycles

Move priority->A 2

Move A->Pointer 2

Jump relative to P 4

Move link's status to A 2

ANDI priority mask 2

Jump if priority 4

Jump if no priority 4

OR part of header 2

OR part of header 2

Transfer control message 32

Total 52

The parity check sum adds one clock delay because it is executed by a simple
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hardware (counter/counterswith random logic) on the fly while data is received.

Before the receiving PE responds with ready or not ready it must first check the

availability of buffer space. As before the header which is translated by tables is

transferred to the buffer management and control unit for further evaluation. Therefore

responding back "RDYTNRDY" is executed in 52+2+1=55 clock cycles.

Transferring a datapacketof 1 Kbits will take 1010clock cycles where 1000clock

cycles is for the actual data transfer and 10 clock cycles is for the control fields (IDs,

CKS, etc.).

The total time that it takes to execute a data transfer including the handshaking

interconnection is:

Operation clock cycles

Transmitter hand-shake 57

Receiver hand-shake 55

Data transfer 1010

Acknowledge data 55

Total 1167

Performance comparison

The results obtained above show that the proposed PE executes data transfer three

to four times faster than the commercial DSPs analyzed in the previous paragraphs. But

there isabigger advantage because there is no wasted computation time by the PU, e.g.

one wasted clock cycle in the proposed PE compared to thirty eight houndreds in the

commercial DSPs.Table 4.5 depictedbelowsummarizes these results:
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Processor

PE

Motorola 56000

Transputer

Communication

[clock cycles]

1166

3395

4342

CKS

[clock cycles]

1

420

756

Data transfer

[clock cycles]

1167

3815

5098
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PU wasted time

[clock cycles]

1

3815

3798

Table 4.5 - Performance comparison

Comparing the results of table 4.5 with equations 4.15 and 4.16, clearly show the

advantages of implementing a multiprocessor system with the proposed PE. Since the

communication overhead time (C in equations 4.15 and 4.16) of the proposed PE is

much smaller than that of the commercial DSPs, the throughput and the speedup

obtained by using the proposed PE is higher. But, since data transfer is executed

independently and in parallel to the computations, the communication overhead time

wasted by the processing unit is negligible (C -> 0 in equations 4.15 and 4.16) and

therefore the throughput and the speedup achieved by using the proposed PE is even

higher.

4.8. PE's properties - summary

The PEproposed in this dissertation has many properties that makes it appropriate

for a varietyof different multiprocessor systems:

1) Independent and concurrentcomputation and communication.

2) No involvement of computation unit in communication.

3) Macrocell for "ASIC" implementations:

Modular and parametrizable.
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Processing unit (PU) adjustable to the application.

Communication configuration adjustable to the application.

4) Similar and simple protocols for different communication configurations.

5) Extensible to large multiprocessor configuration.

6) Adaptable to wide variety of applications.

7) Fast communication between PEs - Virtual-cut-through (VCT) switching with

minimal number of hops.

8) Interconnection is established by handshaking.

9) Independent of network topology - four I/O links enable the PE to be embedded in

any network topology.

10) Increased communication BW - up to four interconnection I/O links can be con

nected between PEs.

11) Two types of buffers, one is dual port memory for simple uninterfered interface

and data transfer between PU and AIO and the other is for interprocessor com

munication.
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CHAPTER 5

Asynchronous Processor's Concepts & Analysis

5.1. Introduction

Down scaling of the feature sizes in integrated circuits increases the speed of the

switching circuits. In 3 micron technology the gate propagation delay is 2 nsec, while in

1.25 micron technology (General Electric) and 0.8 micron technology (Bell Labs) the

gate propagation delay decreases to 0.5 nsec and 0.16 nsec, respectively. Although

there is anincrease in the logic speeds ofthe switching circuits due tothe down scaling,

the achievable data processing throughput has not been increasing at the same rate.

Researchers observed that the major limitation is due to the global synchronization and

the clock skew in multi-phase clocked control[l], and to the basic problem ofdriving a

large capacitive load on the clock line which can vary due to fabrication gradients.

Architectures based on local properties like globally-asynchronous locally-synchronous

systems[2,3,4], as well as carefully designed distribution of the global clock [5] were

proposed to increase the computation speed, but the throughput rate has not increased to

the extentexpected from the scaling rules.

To overcome the clock skewing problem, which substantially reduces the

throughput of any synchronous processor, much research is being done on methods to

design reliable asynchronous circuits that communicate through handshaking at the

completion of each task[6,7,8]. In the past, the use of asynchronous processors was

less extensively used due to difficulties in designing simple circuits which overcome

hazard and race conditions embedded in asynchronous logic circuits design and due to
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substantial overhead in area size and propagation delay. A hazard is a transient state

where an output of a combinational network is temporarily in error. A race occurs in

sequential networks where more than one input signals changing at the same time

causes a steady-state incorrect output.

However, in the last few years much research work has been done in:

• Designing reliable asynchronous logic circuits such as: control units[9,10],

sequential machines[ll,12,13,14], FIFO[7], feedback networks[15] and

arbiters[16,17,18].

• Developing automatic design tools (CAD tools) which synthesize the asynchro

nous logic circuits from a high-level functional description [6,19,20], and elim

inate the unfavorablepropertiesof the such circuit design.

In designing and implementing an asynchronous processor architecture, no clock is

required since the functional blocks are built of asynchronous circuits and the intercon

nection among them is done by handshaking. Such asynchronous processors eliminate

the limitation on throughput imposed by the use of a clock and therefore the throughput

should theoretically increase at the same rate as the logic circuit speed. In the asyn

chronous processor, the execution time (propagation delay) of the circuit implementa

tion is data and instruction dependent and therefore the "average" throughput of the

asynchronous processor will increase.

5.2. Asynchronous design approach

The use of automatic synthesis CAD tools enables the separate design of the func

tional computing blocks and the interconnection data transfer blocks. The asynchro

nous implementation of the computing and the interconnection blocks is based upon

reliable asynchronous circuits with minimal area overhead and response time. Data

transfer between computation blocks is done by handshaking through interconnection

blocks. There are different types of interconnection blocks such as multiplexer (MUX),
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demultiplexer (DMUX), fork (FORK), merge (MERGE), full hand-shake (FHS) etc.

Figure 5.1 depicts a simple processor architecture which incorporates computation

blocks such as MUL, SHIFT, ALU etc. and interconnection blocks such as FORK,

MUX, DMUX and FHS.

ROM

/

Figure 5.1 - Asynchronous processor

The design of interconnection circuits whichperform the handshakingbetween the

computation blocks [6] is based upon self-timed circuits[21,22] which are delay-

insensitive, i.e., their behavior do not depend on the speed of the elements or on the

relative communication delays among them. Self-timed logic is a method for managing

the complexity of the asynchronous connections between the system elements. Its

correct operation is based on a request-acknowledgement protocol which guarantees

that a module remains inactive until its input is available, and that the input remains

available for as long as it is required. The request-acknowledgement cycle is similar to

a two phase clock of a synchronous implementation. The design of the interconnection
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blocks is decoupled from the design of the computation blocks and can be done by

specifying their functionality and using the algorithm developed in[6].

Since there are no clocks for timing each operation, a completion signal must be

generated once a computation block finishes its task. Implementation of the computa

tion blocks by circuits of the DCVSL logic family ( "Differential Cascode Voltage

Switch Logic" ) described in [23,24,25] allows simple generation of the completion

signal. The schematic diagram in figure 5.2 depicts the generation of the completion

signal.

"Request"

Data Inputs

^

COMPUTATION

BLOCK

Figure 5.2 - "Completion signal" generation

Completion

Signal

When the "Request" line is low, both complementary output data lines (out and

out) are precharged to high thus causing the completion signal to be low. When the

"Request" line goes high, the computing unit starts to evaluate the data on the input
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lines. The evaluation is completed when one of the complementary output lines

switches to low and the other remains high thus causing the completion signal to go

high. Switching of the completion signal to high indicates to the next computational

block that output data is valid, stableandready to be transferred.

The data transfer interconnection between the computational blocks utilizes the

four-phase hand-shake protocol described in [2,26]. In this four-phase hand-shake pro

tocol, the completion signal acts as an input request signalR^ from computation block

A to the interconnection block depicted in figure 5.3.

Data in Data out Detain

Handshake

Circuit

Figure 5.3 - Four phase hand-shake circuit

Data oat

The interconnection block checks the feedback acknowledge signal Am which

indicates whether the computation block B has completed its task and is ready for the

next sample of data. If signals Rm and A^ satisfy the conditions for data transfer

between the computation blocks, the interconnection block sets the output request Rout

which controls the transfer and the latching of the data into the input buffer of computa

tion block B. Signal Aout of the interconnection block notifies computation block A if
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block B is ready for a new sample of data and whether the data transfer was completed.

The completion signal generation and the four-phase hand-shake protocol assure the

proper operation of the asynchronous processor implementation.

In an asynchronous pipelined architecture each stage of the pipeline is a comput

ing block. Data transfer between computing blocks (pipeline stages) is initiated by the

preceding stage and "ripples" forward in the direction of the data flow from the first

stage to the last while the beginning of task execution within the stages starts from the

last stage and "ripples" backward against the direction of the flow to the first stage.

Since the handshaking protocol is fast compared to the execution time of the pipeline

stages the stages operate concurrentlyas in the synchronous architecture.

As mentioned previously, since the execution time of the computation blocks is

data-dependent and instruction-dependent, the "average" throughput of the asynchro

nous processor will increase, but there are still more underlying questions to be asked

and explored:

• In a pipeline architecture implemented asynchronously, will there also be a

throughput increase in the "worst-case" performance for real-time digital signal

processing applications ?

• How do we design an asynchronous processor and what are the additional delays

and circuitry overheads ?

• What features and properties should be incorporated to make the asynchronous

implementation more effective ?

• What are the characteristics, properties and limitations of other asynchronous pro

cessor architectures ?

• If there are noclock restrictions, is it possible toimplement a synchronous proces

sor with higher "average" throughput by exploiting data and instruction dependen

cies ?
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The answers to these questions will begiven in the following chapters.

5.3. Data path cycle time comparison

5.3.1. Introduction

As previously mentioned , due to clock skew the achievable data processing

throughput has not increased at the same rate as the logic speeds of the switching cir

cuits. Designing an asynchronous processor which does not require any clocks will

increase the data processing throughput But, it is still necessary to find out the timing

conditions under which the asynchronous processor implementation will yield a higher

throughput than the synchronous implementation. This can be studied through a cycle

time analysis of the sameprocessor architecture when it is implemented either by asyn

chronous circuits or by synchronous circuits. Serial and sequential nature of the data

transfer between computation blocks in a processor with an asynchronous architecture

and the assumption that data transfer through the interconnection blocks is much faster

than the execution time of a task in the computation blocks suggests that we perform

the timing analysison a pipelined processorarchitecture in which all the stages operate

concurrently.

5.3.2. Data path timing models

The data path of the pipeline architecture for comparing the throughput of the

asynchronousand the synchronous implementation is depicted in figure 5.4.

Data dependency and branch conflicts are "bad" properties of a pipeline architec

ture that reduce the throughput but do not depend on whether the implementation is

synchronous or asynchronous. Thus ignoring these conflicts does not affect the

throughput analysis.
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Figure 5.4- Asynchronous architecture - Data path

The propagation delays of the data between the various pipeline stages can be

modeled similarly to the models of data propagation delay between the nodes of the

synchronous and asynchronous multiprocessor network systems described in[l,5,27].

These multiprocessor network models assume that in the synchronous case, due to
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different path length of clock distribution, line capacitance and fabrication process, the

clock skew delay should be added to the propagation delay of the data between the

nodes of the network. In the asynchronous case, the delay of the hand-shake should be

added to the propagation delay of the data between the nodes of the network.

Using similar arguments, additive timing models based upon the data propagation

delays will be used for determining the cycle time in a pipeline architecture . In the

synchronous case, the clock skew delay will be added to the propagation delay of the

data through a pipeline stage (execution time of a task in the stage). In the asynchro

nous case the hand-shake delay will be added to the propagation delay of the data

through a pipeline stage (execution time of a task in the stage). For concurrent opera

tion of the pipeline stages, the synchronous andthe asynchronous implementations have

data buffers between the stages thus imposingan additional latchdelay.

5.3.3. Synchronous & Asynchronous cycle time models

The general assumption is that the execution time of each stage of the pipeline

architecture is data dependent Therefore, the execution time of each pipeline stage also

varies (not worst case all the time) and on average the asynchronous implementation

should have a higher throughput for the same application.

Asynchronous circuit implementation is different from the synchronous one in that

it involves hardware overhead and processing delays for completion signal generation

and interconnection circuitry within the pipeline stage (computing unit). Thus, the exe

cution time of an asynchronous pipeline stage could possibly be larger than the syn

chronous one. For simplifying the timing analysis, the delay of the completion signal

generation is neglected, thus assuming that execution time of the different pipeline

stages is identical in both asynchronous and synchronous implementations. Therefore,

the results of this analysis would be the theoretical upper bounds for achieving a

throughput improvement.
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Depending on the data, the execution time of each pipeline stage varies between a

minimum execution time denoted min.^ to a maximum execution time denoted

max./^. For the cycle time analysis of the synchronous and the asynchronous imple

mentations we can define the following times:

• t=max{max.r,d} - denotes the upper limit of the maximum execution time of all

the stages.

wheremax.*^ is the worstcasedatadependent execution timeof a stage.

• fi=max{min.ftt/} - denotes the upper limit of the minimum execution time of all

the stages.

• k=~f - denotes the ratio between the variation limits ofall stage's execution time.

• U - denotes the time (delay) to latch the data in the buffers between the pipeline

stages (input buffers of the following pipeline stage) - propagation delay of the

data from the buffer's input to its output.

• tcs - denotes the maximum clock skew delay between the stages of the pipeline

architecture in the synchronous implementation.

• *hs - denotes the maximum handshaking delay between the stages of the pipeline

architecture in the asynchronous implementation.

Theworst casecycletimeT for the two implementation are as follows:

• In the synchronous architecture, there is a global clock and no hand-shaking is

necessary. Figure 5.5 depicts the time delays for evaluating the worst-case cycle

time.
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Figure 5.5 - Synchronous architecture - clock cycle

The clock skew is the time difference between the triggering of the clock at block

B and at block A (d2-dl). Therefore, the worst case cycle time will be the sum of:

the longest propagation delay of the data through any of the pipeline stages (e.g.,

block B in figure 5.5), the longest time delay due to the clock skewing (d2-dl),

and the time to latch the data in the buffers of the pipeline.

Tsy^+tcs+tl (5.1)
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In the asynchronous architecture there is no global clock, and therefore there is no

clock skew delay, but it is necessary to add the delay due to handshaking circuits

and procedure. Figure 5.6 depicts the timing delays for evaluating the worst case

cycle time.
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Figure 5.6 - Asynchronous processor- cycle time

It is important to note that three handshake delays are involved in the cycle time

calculation. A computation block can receive a new input sample only after

transferring its output data to the next computation block. This transfer involves

one handshake delay. Latching data from the preceding computation block
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involves one handshake delay and the propagation delay in the latchfo). To make

sure thatinputdata and the corresponding control signal have been latched and are

valid, the latch must generate a completion signal, which by handshaking signals

the computation block to start its computation. Thus, the worst case will be the

sum of: the longest propagation delay of the data through any of the pipeline

stages (e.g., block B in figure 5.6), the time to latch the input data from the preced

ing stage intothe input buffer, and three times the time that it takes to perform the

hand-shake.

Tasy^+lths+tt (5.2)

• In the asynchronous architecture it is also possible to evaluate an average cycle

time. This average cycle time is due to the data dependent variations in the execu

tion time of the pipeline stages. Assuming that the execution time is symmetrically

distributed, then instead of using the largest execution time among all the blocks

t=max{max.r5d}, an average of the maximum largestexecution time and the max

imum shortestexecution time should be used: a l. When the handshake and the

latch delays have negligible variations, but the execution time does not, the aver

age cycle time will be the sum:

Tavg.asy= 3 +^ths+ty=—j—f+3f/„+f/ (5.3)

Remark

Digital signal processing algorithms are based upon a fixed input data sample rate.

When the sample rate is fixed and proportional to the inverse average cycle time

(-7* ), the architecture should incorporate input and output queue buffers to handle
1 avgMsy

variations of the execution time (cycle time). Input buffers are necessary for storing

input data samples when the execution time is larger than the average cycle time. Out

put buffers are necessary for storing output data samples when the execution time is
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smaller than the average cycle time.

It is impossible to determine the exact length of the queues and once it has been

determined the architecture will operate in the average cycle time Ta,gMSy only for a

specific set of applications and input sample rates.

5.3.4. Worst case cycle time analysis

To decide when to use an asynchronous implementation it is necessary to evaluate

the conditions under which this implementation yields a higher throughput compared to

the synchronous one. When T^ <T^, the asynchronous implementation has a shorter

cycle time which corresponds to a higher throughput than the synchronous implementa

tion. Thus the necessary condition that the asynchronous implementation will have a

higher throughput is:

'/*<%- (5.4)
Using equations (5.1) & (5.2) and defining the cycle time improvement factor to be

q= \ffl [q<l], where Pis the percentage cycle time improvement, the ratio between

the cycle times is:

%—TH^W~l-q (5'5)
Since the throughput is the inverse of the cycle time, the throughput improvement fac

tor can be derived from equation 5.5 as follows:

{Throughput)^ 7™ i 0 , ~ .

(ThroughpuOasy^ThroughpuOsy (l+q+q2+q3+...) (5.6b)

Equation 5.6b shows that for a given cycle time, the improvement factor q of the asyn

chronous cycle time yields an asynchronous throughput improvement which is greater
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thanq.

Fromequation (5.5) it is possible to derive the conditions for the different delays

which will yield a throughput improvement factor higher than q for the asynchronous

implementation. The handshake delay t^ as a function of the improvement factor and

the synchronous delays will be:

*/»= ^ (5.7)

This equation is the exact expression of ths • Equation5.4 that required ths < -?- is the

special case derived from 5.7 when the two implementations have the same cycle time.

Feasible realizations requires ths >0, therefore the expression in the numerator of equa

tion 5.7 must be positive and that yields the lower bound of the clock skew delay fC)S :

tcs>^-(ti+t) (5.8)
If the clock skew delay is less than (5.8), the asynchronous implementation will not

yield the required throughput improvement q - i.e., there is no minimal handshake delay

which will yield the required q.

Equation 5.5 also yields the bound on the improvement factor for the worst case

propagation delays of the synchronous and asynchronous implementations:

«-S^ (19)
The conclusion from equation 5.9 is that for larger clock skew delay relative to the

other delays, the asynchronous implementation has a higher throughput (by at least a

factor of q) compared to the synchronous implementation.

Results

• An asynchronous processor implementation which yields a higher throughput by

the improvement factor q is feasible (ths >0) only if the clock skew delay tt
cs
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satisfies equation 5.8.

The asynchronous implementation yields a higher throughput only if ths < -?-.

For handshake and clock skew delays that satisfy equation (4), the deeper the pipe

line architecture (i.e., more pipeline stages which corresponds to shorter execu

tion time and t smaller), the larger the relative importance of clock skew delay rc^

on the cycle time, and the more likely the asynchronous implementation will have

a higher improvement factor q.

For any given technology ( gate propagation delay ) and pipeline architecture

when tcs»3ths and f/ is negligible, there exists an approximate upper bound on

the throughput improvement factor:

q~. "cs
t+tcs

(5.10)

The upper bound of the throughput improvement depicted in the following table and

figure 5.7 show that as the clock skew increases relative to the stage execution time and

the handshake delay, the throughput of the asynchronous implementation will increase.

q[%] tcs

10% 0.1 It

20% 0.25t

30% 0.43t

40% 0.66t

50% l.OOt

Table 5.1 - Clock cycle improvement factor vs. clock skew delay.



Chapter 5 157

0.5

0.4.

03.

02.

0.1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T.itcs

Figure 5.7 - Clock cycle improvement factor

5.3.5. Average cycle time analysis

5.3.5.1. Average cycle time analysis

The bounds on the clock-skew and hand-shake delays of the average asynchronous

cycle time when the architecture has I/O queues and the propagation delay variations of

the pipeline stages (k) are given, can be derived from equation 5.3:

Tavg.asy =(& +1)y+3*Aj+tl

From the above cycle time equation and the cycle time equation of the synchro

nous case Tgy =t+tcs+ti, we can derive theratio:

which yields:

Tmoaxv (k+l)i-+3ths+ti•*• avg.asy __ Z -i _
t+tcs+tisy

ths=^[(^'Y)t+^q)tcs~qtl]

(5.11)

(5.12)

As before, a feasible asynchronous implementation which yields the throughput

improvement factor q, requires f/„>0. It follows that the expression in the brackets
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should be positive which yields the lower bound of the clock skew delay for the average

case analysis:

qti-dr-q-ht
tcs> T=q- (5-13)

As before, from equation (5.11) one can derive the upper bound of the improvement

factor as a function of the propagation delays:

This equation (5.14) shows thateven for small values of tcs, large variations in theexe

cution time of the pipeline stages, which correspond to k«l, yields a higher improve

ment factor of the asynchronous average throughput compared to the synchronous

throughput

5.3.5.2. Handshake delay variations

Equation 5.12 shows that the handshaking delay is a function of three variables:

the clock skew delay, the cycle time improvement factor and the execution time varia

tions. Rewriting equation 5.12of t^ as a function of the execution timevariations k we

get:

. ths^[(^ytHl-qyta-qti}-£k (5.15)
Figure 5.8 depicts the handshaking delay as a function of the execution time variations,

when the clock skew delay and the improvement factors are given.
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ql<q2«c..<qn

Figure 5.8 - Handshake delays vs. execution time variations

Thus, ths is linearly dependent onk. Larger variations in theexecution time of thepipe

line stages (corresponds to smaller k) imply that larger handshake delays can achieve

the same cycle time improvement.

For an architecture with a given variations of the stages execution time, smaller

handshaking delays mean a greater cycle time improvement.

If we rewrite ths as a function of tcs we get:

ths=\l{^-^)t-qtA+Skg±tcs (5.16)
Figure 5.9 depicts the handshaking delays as a function of of the clock skew when the

execution time variations and the improvementfactor are given.



Chapter 5

kl<k2<...<kn

q=constanl
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tcs

Figure5.9 - Handshake delayvs. clock skewdelay

ths is linearly dependent on rCJ. Larger clock skew delays allow larger hand-shaking

delays in order to achieve the same cycle time improvement Also, as before, larger

variations in the stages execution time allow larger handshaking delays in order to

obtain the samecycle timeimprovement (q).

Rewriting the equation of ths as a function of q the cycle time improvement factor

we get:

ths=U±-bt+<cs}-!^TLVT~T' (5.17)

Figure 5.10 depicts the handshaking delay as a function of the cycle time improvement

factor when the clock skew and the execution time variations are given.
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kl<k2<...<kn

Figure 5.10 - Handshake delay vs. cycle time improvement factor

ths is linearly dependent on q. For larger improvement of the cycle time , the hand

shaking propagation delay should be smaller.

5.3.5.3. Average cycle time analysis results

Analyzing the bound of the improvement factor q in equation (5.14) yields the

following conclusions:

• Larger the variations in the execution time of the pipeline stages (smaller k) imply

greater throughput improvement in the average asynchronous case.

• t»f/ and t»tcs, which implies that t»ths correspond to an architecture with a

small number of pipeline stages. In such an architecture the clock skew, handshake

and latch delays are negligible, thus yielding an upper bound of the improvement

factor to be q<-t^-. This result shows that when the additive delays are negligible

compared to the execution time, the maximum achievable average throughput

improvement could only be 50%.

• If tcs is not negligible compared to the execution time, the throughput improve

ment factor (q) of the average asynchronous case could be above 50%.
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k=l corresponds to the timing of the worst-case asynchronous case. In this case,

if the clock skew delay is very small (f^O) the asynchronous implementation will

not be advantageous.

Assuming as before that the hand-shake and latch delays are negligible compared

to the clock skew delay, i.e., tcs»3t/u and rC5»f/ , but the clock skew delay tcs is

not negligible compared to the stages execution time, the approximate throughput

improvement upper bound is:

\(\-k)t+tcs
q~-

t+tcs

(5.18)

Under these conditions, the throughput improvement factor q is depicted in the

following table and in figure 5.11:

tcs

q[%]

k=0 k-1 k-1 k-3 k=l

Max variations,

100% variations

in t

75% variations in

t

50% variations in

t

25% variations in

t

Worst case, no

variations in t

O.OOt 50% 37.5% 25% 12.5% 0%

0.1 It 55% 43.7% 32.5% 21% 10%

0.25t 60% 50% 40% 30% 20%

0.43t 65% 56.3% 47.5% 38.8% 30%

0.66t 70% 62.3% 55% 47.3% 40%

l.OOt 75% 68.7% 62.5% 56.2% 50%

Table 5.2 - Throughput improvement factor
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Figure 5.11 - Throughput improvement factor vs. clock skew

• Larger variations in the stages execution time (k«l) increase the average

throughput improvement factor.

• For the same variations in the stages execution time, when tcs is not negligible

(equation5.17), the average throughput improvement factor will be larger.

• The larger the clock skew delay compared to the stages execution time

(corresponds to "deeper" pipeline) the larger will be the throughput improvement

factor of the average asynchronous case compared to the synchronous one.

5.4. Conclusions

As before, for an architecture with a small number of pipeline stages (tcs is negli

gible, corresponds to the first row in table 5.2) the average improvement

throughput factor will be approximately q=i(l-&).
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• To achieve a higher throughput factor q in the asynchronous implementation, the

clock skew delay (tcs) and the hand-shake delay (ths) must fulfill the conditions of

equations 5.12 and 5.13.

• When the handshaking delay (^=0 and the latch delay (f/) are negligible com

pared to the execution time (t) but the clock skew delay (tcs) is not negligible, a

greater clock skew delay implies a greater improvement in throughput in the asyn

chronous implementation.

• In a deep pipeline architecture (an architecture with a large number of pipeline

stages) the clock skew delay t^ has a greater effect on the throughput improve

ment factor (q) of the asynchronous implementation.
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CHAPTER 6

Asynchronous Processor Architectures

6.1. Asynchronous pipeline architecture

6.1.1. Introduction

This chapter describes thefundamental concepts andtheprinciples involved in the

development and the design ofasynchronous pipeline processor architectures. An asyn

chronous processor design does not require global synchronization and thus the clock

skewing problems such as appropriate clock distribution and timing verifications are

eliminated. The design approach discussed here is based upon the use of asynchronous

interconnection library blocks already developed by [1] which are basically self-timed

handshake circuits, and upon additional interconnection blocks such as conditioned

handshake circuits, which are required for proper design and implementation of an

asynchronous architecture. The circuit design of the pipeline stages (computation

blocks) is based upon DCVSL logic ("Differential Cascode Voltage Switch

Logic")[2,3] and is being done in parallel by another group atBerkeley. Since the pro

cessing time in the computation blocks is instruction and data-dependent, the design

methodology should take it into consideration. The processor's architectural

configuration and the way that the instructions are utilized and executed will determine

the data dependency and the branch constraints imposed on the programmer. The

design of the computation blocks and the interconnection blocks is decoupled and can

be done independently. The inevitable hardware overhead and processing delays of the

various interconnection circuits, within the computation blocks and between them, will
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be explained later.

6.1.2. Design Approach & Principles

A general block diagram of the basic asynchronous pipeline architecture is dep

icted in figure 6.1. Each pipeline stage consist of a computation block (e.g. Multiplier,

ALU) plus latching and handshake circuits. Since there is no global clock, data

transfers between the computation blocks are controlled and executed by handshaking

interconnection blocks.

The maximum number of instructions that can be executed concurrently in the

pipeline architecture is limited by the number of the stages in the pipeline. In an asyn

chronous architecture, there is no global clock to synchronize theoperations and there

fore conflicts in sharing the same resources are possible. To avoid such problems, it is

essential to define anddetermine the appropriate timing and operations required to:

• Execute non-data path instructions such as: NOP, STORE accumulator to

memory, OUTPUT data to external I/O device, SET FLAGS, BRANCH, etc.

• Discard instructions from the pipe when a BRANCH instruction has to be exe

cuted.

• Minimize or avoid the addition of control handshaking delays to the existing data

path delays.

The handshaking interconnection blocks, control and execute the data transfer

between the computation blocks. As depicted in figure 5.3, request to transfer data

between computation blocks (pipeline stages) is initiated by the "end ofoperation" sig

nal of the preceding stage through R^ of the interconnection block. Data is transferred

to a successive stage only if the successive stage has transferred its own output data to

its next stage and is ready to receive and operate on a new sample of input data. Since

the pipeline stages (computation blocks) are connected in serial, each pipeline stage can

transfers its data to the next oneonly if all the successive stages have completed their
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Figure 6.1 - Asynchronous pipeline architecture

data transfer. Therefore, data transfer and the beginning of task execution in the pipe

line stages can be considered as if it starts in thelast stage and"ripples" backward to the

first one (opposite to the direction of the data flow). The following examples based on

the pipeline architecture configuration depicted in figure 6.1 will illustrate this back-
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ward "ripple"of start of execution in the pipeline stages.

Assume, as depicted in the figure 6.2 below, thatall the pipeline stages except the

lastone ("write" stage) have finished their execution and areready to transfer their out

put data.

fetch operand

multiplier

ALU

shifter

write

c
<
<=,
$

•* t

•* t

•* t

-> t

Figure 6.2- Operation of anasynchronous processor (example 1)

Since the "write" stage is still busy with its task, the shifter stage can't transfer its out

putdata to the "write" stage and therefore it cannot receive a new sample of input data

from the ALU stage. Thus, the ALU cannot transfer its output data to the shifter, the

multiplier cannot transfer itsoutput data to the ALU and soon. Therefore, these stages

cannot receive a new sample of input data to operate on and they are idle. Only when

the "write" stage finishes its task, the shifter stage can transfer its output data to it and

receive a new sample of input data from the ALU stage to operate on it. Once the

shifter receives the output dataof the ALU stage it frees the ALU to receive a new sam

ple of inputdata from the multiplier stage to operate on it and so on.

Assume, as depicted in the figure 6.3 below, that all the pipeline stages except the

"fetch operand" stages have finished their execution and are ready to transfer their out

put data to the next stage.
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fetch operand 1 'r n

multiplier m^

ALU nVn ^—i

shifter

write i J n ^ m 5 rv

* An arrow from the end of execution time indicates handshake initiation

* An arrow from the begining of the execution time indicates end of data transfer

Figure 6.3- Operation of an asynchronous processor (example 2)

In thiscase the ALU, shifter and"write" stages will transfer theiroutput data to thenext

stage, receive a new sample of input data from thepreceding stage and start to operate

on it The multiplier stage will transfer its output data to the ALU but it has to be idle

until the "fetch operand" stage finishes its task and is ready to transfer its output data to

the multiplier. When the "fetch operand" stage isready to transfer itsoutput data, it ini

tiates the handshaking procedure with the multiplier stage. The multiplier stage latchs

the new sample ofinput data, begins tooperate on it and frees the "fetch operand" stage

toexecute itsnext task. If while the multiplier stage executes its task onthe new sample

of inputdata,all the successive stages have finished theirexecution the ALU, the shifter

and the "write" stages will transfer their output data to their next stage but only the

"write" and the shifter stages can start a new operation, the ALU has to wait for the

multiplier to finish its current task.

These examples illustrate that each pipeline stage can start to execute a new task

only if:
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1) Its successive stages have transferred their output data and are ready to receive a

new sample of input data to operate on it

2) Its preceding stage finished its task and is ready to transfer itsoutput data to it.

Although thishandshaking protocol and the serial data transfer causes thepipeline

stages to begin theexecution of a new task sequentially one after theother, all the pipe

line stages operate concurrendy if the handshaking protocol and data transfer are fast

compared to the execution time of the stages.

The handshake interconnection between the computation blocks (depicted in

figure 6.1), is a four-phase full handshake (FHS). Internally within the computation

blocks there are more non-pipeline handshake interconnections which guarantee that

the operation of the block starts only after all the operands and the control data lines

have been latched and are valid. A non-pipeline interconnection block between two

computation blocks A and B, handles the data transfer between them and enables block

Ato accept a new sample ofinput data only after block B has completed its task on the

output data of block A. Therefore, all internal data transfers between computation

blocks incorporated in a pipeline stage are executed through non-pipeline interconnec

tion blocks. As previously explained (see paragraph 5.3.3), it is important to implement

a latch register which generates an "EOP" (End ofoperation) signal only after the data

at its output becomes valid.

Ageneral example of acomputing block isdepicted infigure 6.4.
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Figure 6.4 - Non-pipeline "merger"

The "merger" depicted in figure 6.4 is a non-pipeline handshake interconnection block

that enables the computation in block B to begin only after the data from the preceding

block (block A) and the control data from the controller are latched and valid. Compu

tation block B will latch a new sample of input data only after block B has completed

its task and has transferred its output data to the next stage. The non-pipeline "merger"

block is not necessarily the only additional internal handshaking interconnection.

Depending on the computation block's task and the architecture configuration, there

mightbe other internal non-pipeline interconnection blocks whichincrease the area and

the execution time overhead of the computation block. The pipeline architecture block

diagram depicted in figure 6.1 can be partitioned into two parts: 1) Control path which

includes the fetch instruction and the decoder stages of the pipeline that execute the

fetch cycle of an instruction. 2) Data path which includes the fetch operands, multi

plier, ALU, shifter and write data to memory stages that perform the execution cycle of

an instruction.

This partition enables us to describe the pipeline architecture as two parallel paths
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which are connected by control lines and status lines between the control path and the

data path stages.

What follows is a more detailed description of the design of various pipeline

stages of an asynchronous processor.

6.1.2.1. Fetch Instruction

The "fetch instruction" block depicted in figure 6.5 incorporates a program counter

(PC), an address arithmetic unit (AAU), and a read only instruction memory (ROM).

Only two of the handshake interconnections are pipeline interconnections between

stages: one is the FHS (full handshake) which handles the transfer of instructions from

the memory to the instruction register of the decoder, and the other is the multiplexer

(MUX) which selects the memory address according to the control lines from the

decoder. All other handshake interconnection blocks are internal and are therefore

non-pipeline. These non-pipeline interconnections allow the "fetch operand" block (PC

plus AAU) to be incremented and latched back to the PC while fetching an instruction

from the memory. "MAR" is a memory address register that latches the address of the

instruction to be fetched and allows the concurrency of fetching an instruction with

incrementing the PC. When a BRANCH instruction is executed a control line will

select the branching address from " BRANCH ADDRESS" register and the sequence

continues as before.
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6.1.2.2. Decoder (Control Unit)

Control problems

In a synchronous pipeline architecture, the control unit uses the global clock to

synchronize the operations and to avoid conflicts in demands for the same resources.

Unlike the synchronous architecture, the control unit of the asynchronous architecture

has to synchronize the operations and avoid resource contentions through handshaking

signals and status flags. Controlling data path instructions (e.g. ADD, MLT, LOAD

ACC, etc.) which propagate through the data path stages is simple to handle with the

handshake protocols and circuitry. But even for this type of instruction there is the

question of how toexecute instructions which for example do not require a multiplica

tion: should the controller transfer the operand through the multiplier by multiplying it

by one, or should there be another mechanism which bypasses the multiplier's opera

tion (e.g. bypass path) and still assures the proper handshake operation ? The same

question arises about instructions which do not have to execute any ALU operation:

should the databe transferred through the ALU by adding it with zero, or should there

be another mechanism which bypasses the ALU's operation and still assures the proper

handshake operation ? Bypassing the block's operation is faster but thecontrol is more

complicated because then there is no "EOP" signal from the computation block, and an

"EOP" signal must be generated from additional circuitry. Multiplying by one in the

multiplier and adding to zero in the ALU is simpler because an "EOP" signal is then

generated by the computation block, but unfortunately it consumes time to go through

the computation blocks. Since pipeline dominated by worst case may not be a problem,

controlling non-data path instructions such as: STORE ACC, BRANCH, SET FLAGS,

I/O instructions, etc., is made more complicated by the lack a clock. The controller has

to determine the correct timing toexecute the instruction and how toassure proper exe

cution and propagation of other instructions in the pipe. Another problem is how todis

card from the pipe instructions already being executed when a BRANCH instruction has
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to be executed.

PLA decoder

There are two mechanisms to control a synchronous pipeline architecture, one is

time-stationary and the otheris data-stationary. In both mechanisms the control source

outputs control signals divided into fields where each field is dedicated for a particular

stage. A time-stationary controlmechanism provides the route and control and function

select signals for the entire pipeline stages from one source. At each time interval, each

field of the control source contains the control signals of the different instructions that

are executed in the corresponding pipeline stages. In a data-stationary control mechan

ism the control signal "follow" the data through the pipeline providing the control sig

nals ateach stage as needed. The control source outputs all the control signals required

to control the execution of one instruction during its propagation through the pipeline

stages [4]. In a synchronous pipelined architecture, the use of time stationary control

unit allows concurrent execution ofdifferent instructions in different stages. One way

to control a pipeline architecture is to use a PLA (Programmable Logic Array - a ROM

which only contains cells that are used) decodes the instructions and outputs data sta

tionary control lines that are organized in separate fields. As explained above each field

ofthe control lines controls the operation ofa single stage ofthe pipeline. Delaying the

different control fields through an appropriate number of shift register stages to match

the pipeline stages, provides a mechanism in which the control signals of an instruction

"follow" the propagation of its data in the pipeline stages. This way data stationary

mechanism is converted into time stationary control [4].

Designing the control ofthe asynchronous pipelined architecture in a similar way,

i.e., using a PLA to decode an instruction and converting its data stationary output con

trol to time stationary control has the following advantages:

• Avoids adding any additional control delays to the existing delays ofthe data path.
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• Enables simple timing and control of instructions that do not involve all or some

of the data path stages.

• Enables instructions to be discarded simply during the execution of a conditional

branch.

The asynchronous pipeline architecture depicted in figure 6.1 has a data stationary

PLA control system which decodes an instruction and outputs the appropriate control

word. Each control word is fully decoded, i.e., each bit is a control line, in order to

avoid additional internal non-pipeline handshaking interconnection circuitry and time

overhead. The control lines are organized into separate control fields where each field

controls the operation of a single pipeline stage (computation block). Eachcontrol field

propagates to its corresponding computation block through an appropriate number of

pipeline stages of an asynchronous shift register as depicted in figure 6.6. The number

of the shift register stages is designed to synchronize between the propagation of the

data and the control field which controls the operation to be executed on it in the pipe

line stage. In other words, the asynchronous pipelined shift register converts a data sta

tionary control unit (PLA) into a time stationary control unit (PLA + shift registers) that

allows the concurrent execution ofdifferent instructions in the stages of the data path.

These asynchronous pipelined shift registers also assure that the number ofhandshaking

stages that an "acknowledge" signal has to propagate from each pipeline stage of the

data path (computation block) to the decoder stage (PLA) is the same whether it pro

pagates through it's own control shift register stages or through any of the preceding

data path stages and their control shift register stages. Therefore, each control field and

the data necessary for executing an instruction have to propagate through the same

number of handshaking delays until they reach the corresponding pipeline stage where

the task related to the control field data can start its execution on the data. For this rea

son there arenoadditional handshaking delays imposed bythe control unit.
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Figure6.6 - Asynchronous datastationary controlunit

As in any pipeline architecture, some instructions required that their related data

propagates through some stages of the data path without changing it's value, e.g.

LOAD ACC, STORE ACC etc. The LOAD ACC instruction causes an operand to be

fetched from the memory and stored in the accumulator. In this instruction, the operand
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has to propagate through theMULTIPLIER andtheALU without changing its value.

As was mentioned before, data can propagate in one of the two following ways:

Oneway is to transfer thedata through themultiplier bymultiplying it by 1 and through

the ALU by adding it with0. Another way is to bypass the multiplier and the ALU, i.e.,

the datais transferred direcdy byhandshaking from theinput buffer of the multiplier or

ALU block to the input buffer of the next computation block without passing through

the multiplier or the ALU.

The first implementation executes the instruction in a regular asynchronous mode.

Certain control fields of the decoded LOAD instruction control the multiplication of the

operand by one in the multiplier and the addition of the operand with zero in the ALU.

The appearance of the operand at the output of each computing block generates an

"EOP" signal that initiates the handshaking circuit andprotocol which transfers it to the

next computing stage. This implementation might affect the processor's throughput

because thecomputation delays in themultiplier and the ALU might be significant

The second implementation requires a "NOFT" (no operation & data feed through)

in the control fields of the multiplier and the ALU. "NOFT" instructs the computation

block to transfer the data direcdy from its input buffer to its output without executing

any manipulation on it. The data transfer is accomplished through a pass gate (uni

directional switch) path parallel to the combinational logic while the combinational

logic of the block is idle. Since no manipulation is executed on the data an "EOP" sig

nal is not generated by the combinational logic of the block and the data won't be

transferred to next computation block. To overcome this problem, a control line of the

"NOFT" control field will enable a special circuit in thecomputation block to generate

an "EOP" signal after the incoming data has been latched properly in the input buffer.

Meanwhile, this control line will cause the data to bypass the computation block

through the pass gates. A parallel control line will disable the writting of the data into
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the input buffer of the next computation stage while it is still operating on its previous

data. The processor's throughput is not affected by this implementation because the

datais fed through without anycomputation delays. But, there is a cost in overhead due

to the additional control lines, the feed-through pass gates and the special "EOP" signal

generation circuitry.

There are other instructions such as OUTPUT accumulator to an external I/O dev

ice, BRANCH, SET FLAG, RESET FLAG, PUSH STACK, POP STACK, ENABLE

INTERRUPT, CHECK STATUS, etc., which are control instructions that do not require

any data transfer or any operation in the pipeline stages. For suchinstructions the com

binational logic of the computation blocks (pipeline stages of the data path) are not

active during the execution phase of the instruction and therefore they do not generate

any "EOP" signals. Since there is no need to execute any operation in the data path

stages of the pipeline or to transfer data through them, the control fields of these stages

will have "NOP"s (no operation and no data transfer). A "NOP" causes the combina

tional logic to be idle, disables the feed-through pass gates (unidirectional switch) and

initiates a special circuit to generate the "EOP" signal. The use of "NOP"s insures the

correct timing of executing such instructions by keeping the sequence of executing the

instructions in the same order that they were fetched from the memory. (The sequential

order ofexecuting instructions is important for the correct flow of the program).

Another problem typical in the pipeline architecture is how to execute branch

instructions with a minimum number of "bubbles". In addition, the asynchronous pipe

line architecture must also discard instructions which are already in the pipe when a

branch is encountered and executed.

It is important to distinguish between unconditional branch instructions and condi

tional branch instructions. An unconditional branch instruction preferably executes

immediately after decoding (during the "fetch operand" stage), thus minimizing the
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instructions following the branch that have to be discarded from the pipe. In the archi

tecture depicted in figure 6.1, the execution of an unconditional branch involves dis

carding of two instructions from the pipe (one in the"fetch operand" stage and theother

in the "decoder" stage). A conditional branch instruction preferably executes only after

the condition was evaluated. Doing so avoids the restoration of the data and the status

prior to thebranch and thediscarding of the instructions following it

In both cases, it is possible to avoid the need to discard instructions from the pipe

byinserting an appropriate number of "NOP" (no operation) instructions inthe program

after the branch or the conditional branch instructions. However using this technique

wastes many instruction cycles in the conditional branch case. These wasted instruc

tion cycles due to the insertion of "NOP" instructions after a conditional branch can be

avoided by using some prediction policy and being able to discard instructions from the

pipe. Two basic prediction modes aredescribed below.

One mode predicts that the branch is not going to be executed and the processor

continues to fetch and execute the instructions which follow the conditional branch. At

the appropriate time, the condition is evaluated. If the prediction was correct, the pro

cessor continues it's operation without any interruption. If the prediction was wrong,

the processor has to discard all the instructions which are already in the pipe, restore its

status and data prior to the branch instruction, load the program counter with the

branching address and continue from there.

The other mode predicts that the branch is going to be executed. In this case, the

processor discards from the pipe the two instructions which have been already fetched,

updates the program counter and stores it for restoration (if it will be necessary), loads

the program counter with branching address and continues to fetch andexecute instruc

tions from there. At the appropriate time, the condition is evaluated. If the prediction

was correct, the processor continues it'soperation without any interruption. If the pred-
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iction was wrong, the processor has to discard all the instructions which are already in

the pipe, restore its status, data and the program counterprior to the branch instruction,

and continue from there.

It is obvious that the first prediction policy is simpler to implement and requires

less overhead.

In the case of an unconditional branch it is possible to avoid the "bubbles" due to

discarding the two following instructions only if a delayed branch technique is used,

i.e., the compiler inserts the branch instruction two instructions ahead so that its execu

tion is synchronized with the program flow.

Discarding instructions is done byinserting, in the appropriate stages of the pipe

lined shift registers, "NOP"s instead of the decoded control fields of these instructions.

Summary of control concepts

Li summary, it has been shown that the control unitof the asynchronous architec

ture is not more complicated than that of the synchronous architecture. Using the

appropriate handshaking technique and circuits makes it feasible to design. The major

concepts of the control unit are:

• No additional handshake delays due to theasynchronous controlunit.

• Simple decoder based upon a PLA provides fully decoded "wide" data stationary

control word, and saves additional handshaking circuit and delays overhead.

• The control word is divided into fields, each controlling a single computation

block (pipeline stage).

• Propagation of data through a computation block (pipeline stage) by bypassing it

is controlled and executed by "NOFT" (no operation &data feed through) in the

control field.

• "NOP" (no operation) in the control field causes a computation block tobe idle.
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• Control lines of "NOP" and "NOFT" initiates the generation of "EOP" signal even

though the computation block is idle.

• Pipelined shift registers convert data stationary control words into time stationary

control words.

• Pipelined shiftregisters enable instructions to be discarded from the pipe by insert

ing "NOP"s in the appropriate stages.

6.1.2.3. Multiplier

The multiplier depicted in figure 6.7 consists of the combinational logic of the

multiplier, pass gates for data feed through, a register for the control field andtwo data

input registers.

ACC MEMORY ACC MEMORY

o.i.-i | | | 0.1.-1
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REGISTER REGISTER
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Figure6.7 - Multiplier

Four of the handshake interconnections are pipelined: two input multiplexers and the

two FHS (full handshake interconnection). One FHS transfers the control field from the

shiftregister of the control unit and theother FHS transfers the output of the computa

tion block to the next block. The other handshake interconnection (MULTIPLIER
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MERGER) is non-pipeline. According to the instruction, the input multiplexers select

data from: data memory, accumulator (feedback data), constant 1, constant 0, constant

-1 and data from an I/O device. Thus, this configuration permits multiplication of two

operands from the memory. The merger is required to insure the validity of the input

dataandthecontrol field before thecombinational logic executes its task.

As mentioned before, the multiplier is also bypassed when no multiplication is

required.

6.1.2.4. ALU

The ALU depicted in figure 6.8 consist of the combinational logic of the arith

metic and logic unit, pass gates for data feed through, two data input registers, an accu

mulator and a register for the control field. As in the multiplier, only four handshake

interconnections are pipelined: two input multiplexers and two FHS (full handshake

interconnection). One FHS transfers the control field from the shift register of the con

trol unit and the other FHS transfers the accumulator to the next block. All other

handshake interconnections are non-pipeline. Data from the memory is selected to this

unit indirecdy through the multiplier. Therefore this configuration permits an ALU

operation to be executed on only one operand from the memory. The merger is

required to guarantee the validity of the input dataand thecontrol field before the com

binational logic executes its task.
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6.1.2.5. Data memory access

Anypipeline architecture containing separate stages that access the same resource

have the possibility of contention for accessing the resource. Li figure 6.1 "fetch

operand" and "write" stages require simultaneous access to the same data memory, thus

resulting in an access conflict between the two. In the synchronous implementation this

contention (resource conflict) canbe solved in a number of ways. One way is to divide

the basic clock cycle into subcycles (time slots). By assigning different non overlapping

subcycles to different stages the conflict is solved because the memory is accessed

twice in different time slots during the same basic cycle.

Another way is by eliminating the "write" stage and attaching the write operation
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to the "fetch operand" stage, creating a new stage which is "fetch/ write operand". The

new stage which follows the "decoder" either fetches operands from the memory or

stores results in the memory. Therefore, during one cycle the resource is accessed only

once, solving theproblem of contention (conflict in accessing the same resource). This

solution requires precaution bytheprogrammer or thecompiler since theexecution of a

store instruction is done before the result is ready and valid (pipelined data depen

dency). Placing such instructions in the right location in the program solves the prob

lem, but it puts constraints on the programmer.

In the asynchronous pipeline implementation, there is no basic clock that can be

divided into time slots and therefore it is not possible to use such solutions. The other

solution which provides a new stage of "fetch/write operand" is implemented as dep

icted in figure 6.9. The selection between the "fetch operand" (read from the memory)

and "write result" (write to the memory) is done by one bit in the control field. Again

as in the synchronous implementation, such a solution puts constraints on the program

mer because of the data dependencyproblemdescribed above.

Nevertheless, it is still possible to implement an asynchronous pipeline architec

ture with two separatestagesfor "fetch operand" and "write result".

One simple way is to use an asynchronous dual port memory. Such a memory

configuration has two separate address, data and control inputs, and also requires

separate completion signals: EOPwrite and EOPfetch. Two separate "EOP" signals allow

us to use the memory as an external device accessed by the "fetch operand" stage and

the "write" stage without any conflicts or restrictions. Conflicts in simultaneously

accessing the same location by both stages is solved as in the synchronous dual port

memory, andthere is nopreference foreither stage to access thememory first.

Another way is to impose a temporary dependency between the two stages by the

control of the handshaking. Temporary dependency means that the "fetch operand"
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stage will access the memory only afterit hasbeen accessed by the "write" stage. If no

write operation is required, the "write" stage executes a "NOP" thus keeping the order

of accessing the memory. Figure 6.9depicts away to implement such memory access.

NOP
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i t
No write

DATA, ADDRESS

& CONTROL REG.
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MEMORY
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izrr

WR
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Figure 6.9 - Memory access
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Memory's input multiplexer is controlled by lines from the control fields of the "write"

and the "fetch operand" stages. These lines will indicate to the handshake interconnec

tion whether accessing the memory is required byboth stages, oneof the stages or none

of them. If both stages require an access to the memory, the handshake interconnection

will first allocate the memory to the "write" stage and afterwards to the"fetch operand"

stage. When onlythe "write" requires access to thememory, it will get the service and

the "fetch operand" will execute a "NOP". When only the "fetch operand" requires

access to thememory, it willget theservice immediately andthe "write" stage willexe

cute a "NOP".

Since the PLA decoder is a data stationary controller and the instruction's execu

tion order is kept by "NOP"s, thememory during one execution "cycle" canbe accessed

onlyonce by "write" and "fetch operands" stages.

6.1.2.6. Feedback

Any processor requires feedback loops for adding or multiplying input data with

the content of the accumulator. The control of the feedback in a pipeline synchronous

processor is simple because all stages are synchronized by the same clock. In the asyn

chronous implementation it is also possible to implement a feedback loop but it is

necessary to add one more latch in the feedback loop. The added latch, depicted in

figure 6.10, operates as a temporary buffer and is accessed by full handshake intercon

nection. To prevent deadlocks it is very important to synthesize the feedback loop

components with the right initial conditions as described in [5]. As in any pipeline

architecture, more pipeline stages in the forward loop mean a longer delay for the loop

[i.e., data has to propagate through more stages before it can be used as a feedback,

larger latency]. Unlike the LOAD instruction, the execution of control instructions do

not require data propagation through the pipeline stages and therefore the control lines

that generate "EOP" signals are not needed. But, since the implementation is asynchro-
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nous andcontrol fields of thecontrol instructions are "NOP"s, all thepreceding instruc

tions in the pipe and all the succeeding ones will continue to be executed properly, in

the right sequence, and with the correct timing.
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Figure 6.10 - Feedback

6.1.2.7. ASIC - Application Specific Integrated Circuits

In designing an architecture for a specific application (ASIC), it is possible to

achieve a better performance. In the ASIC case, the program is compiled ahead and the

PLA decoder is not required. The control is time stationary and each computation block

(pipeline stage) has its own ROM controller which controls its operation. Synchroniz

ing the various computational blocks is realized by using conditioned handshaking

between them and between their ROM controllers, and thus avoiding the use of the

"NOP" technique. A simple example is the control instruction Clearflag. Inserting this

instruction only in the ROM controller of the pipeline's last stage causes the processor
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to execute it with the right timing without needing to propagate the instruction through

the preceding stages. In this implementation, the control ROMs of different stages will

have a different number of control words. Therefore, different computation blocks will

operate more times than others but the overall synchronization of the program is pro

vided by the conditioned handshaking technique between the interconnection blocks. If

the execution time ofa "NOP" is short relative to the execution times ofother computa

tion blocks, the throughput of the processor is not increased by eliminating the use of

"NOP".

6.2. Hybrid pipeline architecture

6.2.1. Introduction

Another configuration of an asynchronous pipeline architecture is the "hybrid"

pipeline architecture depicted in figure 6.11. Unlike the regular pipeline architecture

where the data path stages are connected in serial, in this architecture the data path

stage are connected in parallel between two buses. The architecture can be partitioned

into two parts: control path and data path. The control path executes the "fetch" cycle

of an instruction and consist of 3 serial pipeline stages: "fetch operand", "decode" and

"fetch operand". The data path performs the "execution" cycle of an instruction and is

the fourth pipeline stage. It consist of 4 parallel computation blocks : "MAC" (multi

plier and accumulate), "ALU", "shifter" and an execution block for control instructions.

Parallel data path stages allows the processor to be operated either as a "RISC"

(Reduced Instruction Set Computer) type processor oras a modified pipeline processor.

The advantages and disadvantages ofeach of these two types isdescribed in the follow

ing sections.
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6.2.2. Methods of operation

As mentioned above, the "hybrid" pipeline architecture can operate either as a

"RISC" type processor oras a modified pipeline processor.
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6.2.2.1. Hybrid - RISC type architecture

In the"RISC" type operation only one of the parallel data path computation blocks

operates in each time interval (e.g. multiplier or ALU or shifter). Therefore, this type of

architecture handles and executes only instructions with one data path operation.

Instructions which require multiple data path operations such as "multiply and shift"

can't be executed. Such multiple data path operations are performed by executing two

consecutive instructions: "multiply" and "shift". The operation and the control unit of

the "RISC" type configuration is simple because there is no resource conflict between

successive instructions. Non-data path instructions such as: BRANCH, SET FLAG,

STORE ACC, OUT etc., are executed during the forth time interval which is the time

interval in which a data path instruction is executed (fourth pipeline stage). To do so,

the control unit inserts "NOP"s during the "fetch operand" stage of the execution of

these instructions. This implementation ofexecuting all the instructions only during the

interval of the data path stage eliminates data and branch dependency problems and

doesn't impose any restrictions on the programmer. Data is always ready for the next

instruction, as inthe case of STORE ACC which isexecuted after the result of previous

computations is already ready in the accumulator. In the conditional branch case, the

condition flags are ready for evaluation before the following instructions have made any

new changes in the data path. The throughput of this "RISC" type "hybrid" architecture

is the same as the throughput of the regular sequential pipeline architecture. The reser

vation tables (table 6.1 and table 6.2) of the regular and the "hybrid" architectures illus

trate this fact. A reservation table is a two dimensional representation used to describe

and analyze concurrent activities within the different stages ofapipeline type architec

ture.

Assume that the following four instructions have to executed by the two architec

tures. The first instruction (1) is multioperation that requires three operations (e.g. mul

tiplication, ALU operation and shift) in the data path. The other three instructions
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(2,3,4) aresingle operations requiring only one operation (multiplication or ALU opera

tion or shift) in the data path. A reservation table of the regular pipeline architecture

shows that the execution of these four instructions requires nine time intervals (9A).

stage Ai A2 A3 A4 As A« A7 A8 A9

Fetch inst 1 2 3 4 - - - - -

Decode - 1 2 3 4 - - - -

Fetch ope. - - 1 2 3 4 - - -

MLT - - - 1 2 3 4 - -

ALU - - - - 1 2 3 4 -

Shifter - - - - - 1 2 3 4

Control exc.

Table 6.1 - Reservation table - Regular pipeline architecture

In the RISC type "hybrid" architecture instructions containing multiple operations

cannot be executed, therefore instruction (1) in table 6.1 which is a multioperation

instruction, is partitioned into 3 single operation instructions: la (multiplication), lb

(ALU operation), and lc (shift), depicted in table 6.2. Because of this partition the

"hybrid" architecture needs to execute seven single operation instructions. A reserva

tion table of "hybrid" pipeline architecture shows that the execution of these seven sin

gle operation instructions requires also onlynine time intervals (9A).

For a sequence containing many multi-operation instructions, the regular pipeline

architecture achieves ahigher throughput than the "hybrid" RISC type architecture. But,

it is very unlikely to have a program with a sequence of multi-operation instructions

which are data-independent. Hence, if the instructions are data dependent, the regular

pipeline architecture requires "NOP" instructions between them which is equivalent to
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the partition of the multi-operation instruction into a sequence of single operation

instructions. And therefore, even for such sequences the throughput is likely to be

almost the same.

Deleting instructions from the pipeline stages when a branch prediction is wrong is

executed as in the regular asynchronous pipeline architecture. But since there is no

branch or data dependency, there is noneed torestore status flag or registers of thedata

path.

stage Ai A2 A3 A4 As A6 A7 A8 A9

Fetch inst la lb 1c 2 3 4 - - -

Decode - la lb 1c 2 3 4 - -

Fetch ope. - - la lb lc 2 3 4 -

MLT - - - la - - 2 - -

ALU - - - - If. - - 3 -

Shifter - - - - - lc - - 4

Control exc.

Table 6.2- Reservation table - "Hybrid" RISC type architecture

6.2.2.2. Hybrid - modified pipeline architecture

General Description

This architecture is a modification (parallel data path stages) of the regular pipe

line architecture (serial data path stages). As later will be explained and illustrated with

examples, using conditional handshake interconnections allows the parallel data path

stages to operate concurrendy if necessary. Therefore it is also possible to execute

instructions which require multiple data path operations. Controlling this architecture is
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more complicated because it is necessary to solve resource conflicts and data and

branch dependency problems.

Since during the execution time different instructions might use a different number

of data path stages, resource conflicts could occur. Resource conflicts occur because

different instructions do not use the same number ofdata path stages during their exe

cution cycle. A resource conflict occurs when two successive instructions require the

same computation block during the same execution time interval. Forexample, when a

multiple operation instruction requires the use oftwo ormore consecutive computation

blocks in the data path during its execution time intervals, is followed by a single or

multi-operation instruction thatduring its execution time interval (which coincides with

that of the multi-operation instruction) requires the same computation block as required

by the first one, there will be a resource conflict (examples 1,2 and 3 described later

illustrate this fact).

Resource conflict problems can be solved by using a FFFS priority policy and

employing priority conditional handshake interconnection blocks. FFFS stands for "first

fetched first served", which means that an instruction which has been fetched first has

the priority of accessing andusing a data path stage overan instruction which has been

fetched later. This policy is utilized byemploying priority conditional handshake inter

connection. A stage of the data path can be accessed by handshake only if the previous

instruction does not require it If the previous instruction requires it, the control unit

delays the access by the new instruction and the resource conflict is prevented. By

doing so, the control unit imposes a delay of one stage's execution time to the instruc

tion thatwasdenied access andto all theinstructions following it.

But this architecture has the problems ofdata and branch dependency which exist

in the regular pipeline architecture. Data dependency means that some instructions

might require data for their execution from a previous instruction which is not com-



Chapter 6 .197.

pleted yet. Control dependency means that a conditional branch instruction cannot be

executed becausethe flags arenot ready yet forevaluation.

As in the regular pipeline architecture, data dependency and branch dependency

put constraints on the programmer. Inserting "NOP" instructions whenever necessary

solves the problem but reduces the throughput Careful programming may avoid some

of the dependency problems but requires the programs to be written in assembly

language.

For most programs the throughput of the modified pipelined asynchronous archi

tecture should be higher than that of the regular pipelined asynchronous architecture.

The throughput is the same only if the program consists of multi-operation instructions

because in the existence of resource conflicts, the "hybrid" modified pipeline architec

ture operates as a regular pipeline architecture. When there are no resource conflicts the

instructions are executed faster because the instructions pass only through the required

data path stages and they are executed concurrendy.

The following simple examples illustrates the throughput comparison.

Example 1

Assume that four instructions have to be executed in both architectures. Instruction

1 and 2 are multi-operation instructions and instructions 3 and 4 are single operation

instructions. Execution of instructions 1and 2 require only the multiplier and the ALU.

Instruction 3 is executed in the shifter while instruction 4 is executed in the ALU.

In the regular pipeline architecture, the execution of these instructions require eight

time-intervals (8A) as shown in table 6.3 below.
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stage Ai A2 A3 A4 As A6 A7 A8 A9

Fetch inst. 1 2 3 4 - - - - -

Decode - 1 2 3 4 - - -

Fetch ope. - - 1 2 3 4 - - -

MLT - - - 1 2 - - - -

ALU - - - - 1 2 - 4 -

Shifter 3 -

Control exc.
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Table6.3 - Reservation table - Regular pipeline architecture

In the "hybrid" modified pipeline architecture the execution ofthese instructions require

only seven time-intervals (7A) because there is no resource conflict, shown in table 6.4

below.

stage Ai A2 A3 A4 As As A7 A8 A,

Fetch inst. 1 2 3 4 - - - - -

Decode - 1 2 3 4 - - - -

Fetch ope. - - 1 2 3 4 - - -

MLT - - - 1 2 - - - -

ALU - - - - 1 2 4 - -

Shifter - - - - - 3 - - -

Control exc.

Table 6.4 - Reservation table - Modified pipeline architecture - No conflict

Example 2

Assume that four instructions has to be executed in both architectures. Instruction
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1 and 2 are multi-operation instructions and instructions 3 and 4 are single operation.

Execution of instruction 1 requires the multiplier, ALU and shifter, while execution of

instruction 2 requires only the multiplier and the ALU. Instruction 3 is executed in the

shifter while instruction 4 is executed in the ALU.

In the regular pipeline architecture the execution of these instructions require eight

time-intervals (8A) as previously shown in table 6.3.

Li the "hybrid" modified pipeline architecture the execution of these instructions also

require eight time-intervals (8A) because of a resource conflict During the sixth time

interval (A$), instruction 3 has a resource conflict and its execution is delayed by one

time interval These results are shown in table 6.5 below.

stage Ai A2 A3 A4 A5 A6 A7 A8 A9

Fetch inst. 1 2 3 4

Decode - 1 2 3 4 - - - -

Fetch ope. - - 1 2 3 - 4 -

-
MLT - - - 1 2 - - -

ALU - - - - 1 2 - 4 -

Shifter 1 3 - -

Control exc.

Table 6.5 - Reservation table- Modified pipeline architecture - With conflict

Example 3

Assume that four instructions has to be executed in both architectures. Instruction

1,3 and 4 are multi-operation instructions and instructions 2 is single operation. Execu

tion of instruction 1 requires the multiplier, ALU and shifter, while execution of

instructions 3 and 4 requires only the multiplier and the ALU. Instruction 2 isonly exe-
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cuted in the ALU.

In the regular pipeline architecture the execution of these instructions require eight

time-intervals (8A) as previously shownin table 6.3.

In the "hybrid" modified pipeline architecture the execution of these instruction requires

nine time-intervals (8A) because of a resource conflict During the fifth time interval

(A5), instruction 2 has a resource conflict and its execution, as well as the execution of

the following instructions, is delayed by one time interval. These results are shown in

table 6.6 below.

stage Ai A2 A3 A4 As A5 A7 A8 A9

Fetch inst 1 2 3 4 - - - - -

Decode - 1 2 3 - 4 - - -

Fetch ope. - - 1 2 - 3 4 - -

MLT - - - 1 - - - 3 4

ALU - - - - 1 2 - 3 4

Shifter - - - - - 1 - - -

Control exc.

Table 6.6 - Reservation table - Modified pipeline architecture - With conflict

Configuration's Constraint

This scheme of operation imposes a constrainton the execution of consecutive instruc

tions. When two instructions A and B require the sameresource C, preference is given

to A, the first instruction which was fetched from the memory. Instruction B will use

the same resource C only after A has finished its task and its result was transferred to

the next computation stage as required. Therefore, this configuration is limited in its

efficiency for single operation instructions or for special cases of multi-operation and
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single-operation instructions.

Control unit of the hybrid architecture

The control unit of the asynchronous "hybrid" modified pipeline architecture is

more complicated than that of the asynchronous regular pipeline architecture. The

sequenceof executing an instruction in the data path is still "fetch operand" -> "multi

plier" -> "ALU" -> "shifter". Butthis architecture has the capability to bypass computa

tion blocks which are not required for the execution of an instruction and to process

data only in the required computation blocks. This bypassing feature avoids the use of

"NOP"s in the control field and in some cases will speed up the execution of the instruc

tion. As in the asynchronous regular pipeline architecture, the PLA decoder of this

architecture outputs a fully decoded data stationary control word which is divided into

the following fields:

Fetch inst Decode Fetch ope. Exec. 1 Exec. 2 Exec. 3 Control exec.

The first 3 control fields control the fetch cycle of the instruction while the last4 control

fields control the execution cycle of the instruction. Data path instructions are executed

sequentially with the bypassing feature in the data path computation stages: multiplier,

ALU, shifter. Control instructions are executed in the control execution block. To exe

cute instructions concurrendy and to synchronize their execution, the control fields pro

pagate through an appropriate number of shift registers. Unlike the decoder of the regu

lar asynchronous pipeline architecture, the "Exec. "control fields of the data path in this

architecture are not dedicated for a specific computation block. Control field "Exec. 1"

is dedicated tocontrol the first operation on the data. According to the decoded instruc

tion it controls the operation in the multiplier or the ALU or the shifter. Control field

"Exec. 2" is dedicated to control the second operation on the data. According to the
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decoded instruction, it controls the operation in the ALU or the shifter. Control field

"Exec. 3" is dedicated to control the third operation on the data, and it controls the

operation in the shifter. Partitioning the control fields as explained above allows the

bypass of unnecessary computation blocks. The use of shift registers at the output of

the decoder converts the control fields to time stationary and maintains the sequence of

operations as originally defined. Each "Exec. " control field is divided into two

subfields: one controls the operation of the required computation block and the other

(P1-P3) controls the DMUX and the MUX interconnection blocks of the data path's

computation blocks. In each "Exec. " control field only one of the control lines P1-P3

may be active. If no operation is required none of thesecontrol lines will be active.

Figure 6.12 depicts the sub fields of "Exec. 1" - "Exec. 3", and the way that they

control the interconnection blocks:

Exec. 1 Exec. 2 Exec. 3

Operation 1 pi re re Operation2 pi re Operation3 pi

VA/A VA/A

Operation 2 pi PZ Operation 3 pi

VA/A

Operation 3 pi

V/J//& if/yV//l re

re

MULTIPLIER ALU SHIFTER

Figure 6.12 - Control fields and interconnections
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Principles of operation

The multiplexers (MUX) of the computation blocks are merged-conditioned-

multiplexers. The multiplexers are merged, because they start to operate only after

handshake has been established with all their priorities controls. The multiplexers are

conditioned, because they operate like arbiters with predetermined "daisy chain" prior

ity policy (a detailed explanation appears later in this section). Priority control inputs

P1-P3 determine the sequence of transferring the corresponding operation control field

and data to the computation block, where PI has the highest priority and P3 has the

lowest (PI > P2 > P3). When one of the priority control lines is inactive, the multi

plexer skips to the next one. "A0" signal (of the four phase handshaking depicted in

figure 5.3), which indicates that the multiplexer is ready to transfer a new set of data

and controls, is activated only after the current sequence of data and control has been

transferred andexecuted in thecorresponding computation block.

Conflicts between consecutive instructions requiring the same computation block

are solved by the conditioned multiplexers that operate as sequential arbiters which

transfer data and control to the computation block in a predetermined "daisy chain"

priority policy. A new set ofdata and control will be transferred only at the end of the

transferring andexecuting the current setin the computation block. Continued conflicts

between instructions can cause the "hybrid" modified pipeline configuration tohave the

same throughput as that ofa regular pipeline architecture. When conflicts are infrequent

the throughput will be better.

The operation of the priority conditioned data path multiplexers and the computa

tion blocksdepicted in figure 6.12 is as follows. Sub fields P1-P3 of "Exec. 1" are con

nected to the control inputs of the multiplexers of the computation blocks. Since data is

executed in the sequence of multiplier -> ALU -> shifter as mentioned before, PI is

connected to the first priority input of the multiplier's multiplexer. P2 is connected to
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the second priority input of the ALU's multiplexer and P3 is connected to the third

priority input of the shifter's multiplexer. When PI of "Exec. 1" is active (P2 and P3

are inactive) the data from "fetch operand" block will be transferred to the multiplier.

When P2 of "Exec.l" is active (PI and P3 are inactive) data from "fetch operand" block

will be transferred to the ALU and operation will be executed on itonly if the preceding

instruction does not require the ALU, i.e. PI in"Exec. 2" of the preceding instruction is

not active. If PI in "Exec. 2" of the preceding instruction is active the ALU will first

operate on the preceding instruction's data and afterwards on the current instruction's

data. This mechanism allows the operation to by-pass the multiplier and guarantees the

proper sequential operation of the ALU in case of access conflicts. When P3 of

"Exec.l" is active (PI and P2 are inactive) data from the "fetch operand" block will be

transferred and executed in the shifter only if it is not required by the two preceding

instructions. If the preceding instructions require theshifter, i.e., PI of "Exec. 3" and P2

of "Exec. 2" are active, the data from the "fetch operand" stage can be transferred to the

shifter and processed there only after the shifter executed the previous instructions.

Again, as before, this mechanism solves access conflicts and guarantees the proper

sequential execution of the instructions in the shifter. The same principle of operation

applies to other instructions waiting for execution in the computation blocks of the data

path.

Therefore when there is an access conflict to the computation blocks of the data

path the "hybrid" modified pipeline architecture operates as depicted in the following

table. 6.7
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stage Ai A2 A3 A4 As A« A7 A8 A9

Fetch inst 1 2 3 4 - - - - -

Decode - 1 2 3 4 - - - -

Fetch ope. - - 1 2 3 - 4 - -

MLT - - - 1 2 - - - -

ALU - - - - 1 2 - 4 -

Shifter - - - - - 1 3 - -

Control exc.

-205-

Table 6.7 - Reservation table - Modified pipeline architecture - Withconflict

When there is no access conflict to the computation blocks of the data path the

"hybrid" modified pipeline architecture operates as depicted in the following table. 6.8.

stage Ai A2 A3 A4 A5 A« A7 A8 A,

Fetch inst 1 2 3 4 - - - - -

Decode - 1 2 3 4 - - - -

Fetch ope. - - 1 2 3 4 - - -

MLT - - - 1 2 - - - -

ALU - - - - 1 2 4 - -

Shifter - - - - - 3 - - -

Control exc.

Table 6.8- Reservation table - Modified pipeline architecture - Noconflict

Conclusions

Two types ofthe "hybrid" architecture described in this chapter are based upon the

asynchronous concepts and design rules developed before. The control unit of the

"RISC" type is similar to the one employed in the standard asynchronous pipeline
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architecture. The control unit of the "hybrid" modified pipeline architecture is more

complicated. The property of by-passing unused computation blocks requires priority

arbiter conditioned interconnection blocks. These interconnection blocks by-pass com

putation blocks when there is noresource conflict as well asprovide proper synchron

ized sequential execution when there are resource conflicts. These interconnections

speed up theconcurrent execution of instructions by avoiding the use of "NOP"s in the

control field of the data path's computation blocks. Executing non data path instruc

tions during the time interval of the data path stage eliminates data dependency prob

lems aswell asconditional branch dependency problems. Deleting instructions from the

pipeline stages is executed simply as described before. Throughput of the RISC type

"hybrid" architecture is almost the same as that of the regular pipeline architecture, and

the control unit of the RISC type architecture is simpler. The throughput of the

"hybrid" modified pipeline architecture is better than that of the regular pipeline archi

tecture.

6.3. Common bus asynchronous architecture

6.3.1. Introduction

As was described before in chapter 5,proper operation of the asynchronous pipe

line architecture requires handshake interconnection blocks between the computation

blocks. These blocks initiate and control the data transfer between the stages of the

pipeline (computation blocks). The handshake initiation propagates forward, in the

data flow direction, from the first stage to the last, while the start of task execution pro

pagates successively from the last stage to the first If the handshake interconnection is

much shorter than the execution times of the different stages, all the stages operate con

currendy.

Since start of task execution in the pipeline stages "ripples" successively from the

last stage to the first one, some questions arise: Is it possible to avoid the
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interconnection blocks circuitry overhead and to perform the data transfer between the

stages only through one common interconnection block ? Whatwould be an appropri

ate processor architecture ?

The answer to these questions leads to an architecture, depicted in figure 6.13

where all the computation blocks are connected in parallel to a common bus. This

architecture is a pipelined architecture where data transfer between the parallel compu

tation blocks is done through the common bus, which is controlled by onlyone inter

connection block, thus savinginterconnection circuitryoverhead.

BUS

FETCH INS. DECODER FETCH OPH. MULTIPLIER ALU SHIFTER WRITE
EXBCUTE

CONTROL

INST.

Figure 6.13 - Common bus configuration

Thedesign of a common bussynchronous processor is simple due to theexistence

of a global clock. But in the asynchronous case, there is no clock and therefore the

design is more complicated. This section develops a way to design a common bus

asynchronous processor and gives answers to the following questions:

1) What are the properties and characteristics of an asynchronous common bus pro

cessor ?

2) How to control the common bus ?

3) How to avoid asynchronous arbiter problems ?

4) Will the common bus save circuitry overhead in the handshaking and the data

transfer between the processor blocks ?

5) What are the advantages, if any, of such a configuration ?



Chapter 6 .208 -

6.3.2. Asynchronous common-bus design approach

The global clock of a synchronous architecture makes it simple to implement a

synchronous common bus architecture. All blocks of the processor are connected to a

bus for data transfer between them. Data transfer between the different blocks is done

in a time division multiplexing mode. According to the decoded instructions, the con

trol unit determines and assigns the appropriate time slots for data transfer so that all

the unitsexecute their tasks concurrendy. Datatransfer between the blocks is serial, and

the throughput of such an architecture might be smaller than the throughput of a syn

chronous pipeline architecture.

Implementation of an asynchronous pipelined architecture with a common bus for

communication between the stages, is more complicated because there is no global

clock to synchronize the data transfer on the bus. Since the data transfer is through a

shared common bus and there is no direct interconnection between consecutive blocks,

the handshake initiation and the data transfer have to be performed differendy than in

the asynchronous pipeline architecture. Block (n-1) transfers data to block (n) only

after block (n) has transferred itsown data to block (n+1). Therefore, depending on the

decoded instructions, it is more appropriate to assign the bus for a complete handshake

interconnection process that includes the handshake initiation as well as the data

transfer between a pair of computation blocks. The complete handshake interconnec

tion process propagates backward, opposite to the direction of the data flow. Backward

propagation of a complete handshake initiation and data transfer process saves addi

tionalhandshaking circuitryin each computation block.

A design problemis how to resolve buscontention createdby simultaneous access

to the bus by different computation blocks. Such simultaneous accesses to a common

bus are equivalent to multiple access to an asynchronous arbiter, which can result in a

metastable state where the output of the bus is undefined for a random time period. A
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sequential order for bus access determined by the decoded instructions and controlled

by the control unit avoids this problem. Such sequential operation keeps the execution

of the instructions in theorderthat they were fetched from the memory and allows con

current operation of the processor blocks.

Sequential access to the bus requires a decision as to how to execute the instruc

tions in the data path. Should the data propagate in a fixed order through all the compu

tation blocks, including those that donot perform any operation onit (as in thepipeline

architecture) ? Or should the data propagate in a fixed order only through the computa

tion blocks which need to perform some operation onit (as in the "hybrid" architecture)

? Execution of the instructions by passing the data through all the computation stages

in a fixed order is simpler to implement but it operates as a pipeline architecture with

reduced throughput. Execution of the instructions in a fixed order but without passing

data through unnecessary computation blocks complicates the control unit but utilizes

the configuration more efficiendy.

The design concepts of the common bus asynchronous architecture requires the

control unit to contain a sequencer. The sequencer prevents the arbiter type of prob

lems of multiple access to the bus. According to the decoded instructions, it deter

mines, assigns and controls the sequence and the order of data transfer between the

various blocks of the processor. It also insures the execution of the instructions in the

exact orderthat they have been fetched from thememory.

6.3.3. Asynchronous common-bus implementation

Figure 6.14 depicts a block diagram of a processor with an asynchronous bus

configuration. All of the computation and control blocks of the architecture are con

nected in parallel to the bus. The common bus is implemented with a multiplexer

(MUX) and a demultiplexer (DEMUX) interconnection blocks. The operation of the

multiplexer corresponds to the tri-state output control of the computation blocks in the
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synchronous common-bus implementation. And, the operation of the demultiplexer

corresponds to the input control of the computation blocks in the synchronous

common-bus implementation. The control unit consists of a PLA decoder and a

sequencer thatcontrol thecorrect operation and time sharing of thebus, theproper exe

cution of tasks by the computation blocks, and the simultaneous execution of instruc

tions.

BUS Ai

f*-~

Data in Ri

DECODER

SEQUENCER

CONTROL

UNIT

FETCH INS.Data out Ro

INS. MEMORY

FETCH OPE.

DATA MEMORY

MULTIPLIER

ALU

SHIFTER

»
Ao

Figure 6.14 - Asynchronous common bus architecture

6.3.3.1. NOFT design approach

A design approach which utilizes "NOFT"s (No operation, data feed through) in

the control field when an instruction does not require any operation in the correspond

ing computation block is similar to the design of the asynchronous pipeline architec

ture. In this design, there is nocontention for resources and the data propagates through
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all the computation stages even if no operation is required on it. Propagation of data

through the computation stages is executed in the regular predetermined sequence, i.e.,

"fetch instruction" -> "decode" -> "fetch operand" -» "multiplier" -» "ALU" -»

"shifter". Handshaking procedures (including initiation, data transfer and start ofopera

tion in the computation blocks) propagate backward between successive computation

blocks. There is no bypass ofany computation block. The sequencer of this implemen

tation is a simple modulo 6 counter which counts backward for proper assignment of

the bus between two successive computation blocks. Because the sequencer is always

counting six handshaking operations, this implementation yields a throughput lower

than the asynchronous pipeline implementation but reduces the handshaking overhead

circuitry.

6.3.3.2. Bypass design approach

This approach is based upon the principles of the control unit developed for the

"hybrid"-modified pipeline architecture. The interconnection block controller of the bus

incorporates a sequencer and two interconnection blocks: multiplexer and demulti

plexer. Handshaking and data transfer can beperformed between any two blocks of the

configuration. Use of the bus is granted to the various blocks in a reverse order to the

data flow: "shifter" -> "ALU" -> "multiplier" -> "fetch operands" -> "decoder" -*

"fetch instruction". When a resource contention is encountered the bus controller sup

plies sequential service to the decoded instructions on the basis of first-fetched-first-

served (FFFS). As in the "hybrid" modified pipeline configuration, data conflicts might

be arise due to the sequential operation when a resource conflict exists. The sequencer

is a modulo 6 simple counter that counts backwards for proper assignment of the bus

between any two computation blocks. "NOP" is used to decrease the counter and to

enable the sequencer to grant the bus for the next block in the reverse order mentioned

before.
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The following example illustrates the operation of the asynchronous bus architec

ture. Assume that five instructions: x,y,z,t and v are to be executed. Table 6.9 shown

below is a resource allocation table which depicts the sequence of the computations

required to execute these instructions.

number stage Ai A2 A3 A4 As A6 A7 A8 A,

1 Fetch inst X y z t V - - - -

2 Decode - X y z t V - - -

3 Fetch ope. - - X y z t V - -

4 MLT - - - X y - - V -

5 ALU - - - - X y»z - - V

6 Shifter - - - - - X z,t - -

Table 6.9 - Resource allocation table - Bus architecture

Each column denoted by A; indicates the operations to be executed concurrendy on dif

ferent instructions. In this example, the resource allocation table shows that during

time slot A6 an ALU resource conflict exists between instructions y and z, and during A7

a shifter resource conflict exists between instructions z and t.

The first two blocks of the configuration: "fetch instruction" and "decode" make up

the fetch cycle of an instruction, and therefore are used all the time and cannot be

bypassed. The last four blocks of the configuration perform the execute cycle of an

instruction. Depending on the instruction, some instructions do not require all compu

tation blocks of theexecute cycle andthey arebypassed.

From the resource allocation table, it is possible to derivean execution table which

shows the sequence of data transfers and computation blocks required for the execution

of each instruction. Table 6.10 shown below is the execution table derived from the

allocation table for this example.
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instruction Exec. 1 Exec. 2 Exec. 3 Exec. 4

V 2-3 3-4 4-5

t 2-3 3-6

z 2-3 3-5 5-6

y 2-3 3-4 4-5

X 2-3 3-4 4-5 5-6

Table 6.10 - Execution table - Bus architecture
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Each row in the table corresponds to operations required to execute an instruction.

The row which corresponds to instruction z shows that its execution requires: (1) data

transfer between "decode" and "fetch operand"; (2) execution in the "fetch operand"

block; (3) data transfer between "fetch operand" and "ALU"; (4) execution in the

"ALU" block; (5) data transfer between "ALU" and "shifter"; (6) execution in the

"shifter". Execution of this instruction does notrequire themultiplier and therefore it is

bypassed.

The execution table is like a data-stationary reservation table. Each entry in the

table shows the computation blocks involved in the data transfer (source-destination)

and the computation block (destination) which has to perform a taskon the data. Con

verting this table into a time-stationary type reservation table provides the data and the

sequentiality required for controlling the bus and the proper execution of the instruc

tions. As in the regular pipeline architecture, the conversion is done by an appropriate

number of shift registers foreach execution operation. The output of this conversion is

shown in the timing execution table 6.11 shown below.
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Exec, stage A3 A4 As A6 A7 A8 A9

Exec. 1 (2-3)x (2-3), (2-3), (2-3), (2-3)v

Exec. 2 (3-4)* (3-4), (3-5), (3-6), (3-4)v

Exec. 3 (4-5)* (4-5), (5-6), (4-5)v

Exec. 4 (5-6)x

Table 6.11 - Timing execution table - Bus architecture

Each entry in this table is in the form (source-destinationyuutrucfon, when the

blocks participating in thedata transfer areshowed and the computation block (destina

tion) to operate on it Data transfer and start of task execution propagate backward,

therefore, the sequence of operations is from Exec. 4 to Exec. 1.

Two columns from this table will illustrate the sequence of operations to be exe

cuted when there is or is not a resource conflict.

During time interval A5, there is no resource conflict Data transfers are executed

in serial one after the other but the operations in the computation blocks are executed

concurrendy as follows:

1) Transfer datafrom themultiplier to the ALU; start to execute theoperation in

the ALU required by instruction x.

2) Transfer datafrom the "fetch operand" stage to the "multiplier" stage; start to

execute the operation in the multiplier required by instruction y.

3) Transfer data from the "decoder" stage to the "fetch-operand" stage; start to

execute the operation in the "fetch-operand" stage required by instruction z.

During the time interval A6 there is a resource conflict. Data transfer and opera

tions in the computation blocks are executed as before until there is a resource conflict.

When a resource conflict occurs, the continuation of the data transfer and the operations

in the other computation blocks are delayed until the block of the resource conflict
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finishes its task and is ready to receive a new set of data. This delay and the operations

involved are as follows:

1) Transfer data from the ALU to the shifter and execute the operation in the

shifter required by instruction x.

2) Transfer data from the multiplier to the ALU andexecute the operation in the

ALU required by instruction y.

3) Transfer datafrom the "fetch-operand" to the ALU andexecute the operation

in the ALU required by instruction z.

Because a resource conflict exists in the ALU, this operation is delayed

until the ALU finishes its operationon instruction y

4) Transfer data from thedecoder to the "fetch- operand" and execute theopera

tion in the fetch operandrequired by instruction t

6.3.33. Results

Decoding the instructions intocontrol fields of execution stages that are not dedi

cated to specific computation blocks of the data path and defining in these control fields

the source and the destination of the blocks involved in the data transfer and the block

which executes the operation on the data allows us to bypass unnecessary computation

blocks and provides a sequential control that solves resource conflicts.

The control unit in the asynchronous common bus architecture is more compli

cated and requires the capability of sequential operation undercertain circumstances of

resource conflict. Handshaking circuits between the computation blocks are avoided

anddata can be transferred between anypairof computation blocks.

Although the data transfer is executed in serial when there are no resource

conflicts, the computation blocks operate concurrendy and the throughput might be
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better than the regular asynchronous pipeline architecture. When there are resource

conflicts the throughput might be worse than the regular asynchronous pipeline archi

tecture because of the serial handshaking procedure.
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CHAPTER 7

GSLA - Globally Synchronous Locally

Asynchronous Processor

7. GSLA - Globally Synchronous Locally Asynchronous

7.1. Introduction

The timing analysis in chapter 5 (table 5.2) shows that the throughput improve

ment of the asynchronous pipeline architecture over the synchronous one is a function

of the clock skew delay and the execution time variations of the stages. Even if the

additional delays due to the internal handshaking interconnections within the stages are

neglected there are still limiting conditions on the clock skew and the handshaking

delays which yield the required improvement. Table 5.2 shows that larger clock skew

delays and larger execution time variations yield greater throughput improvements in

both the worst and the average cases of the asynchronous implementation. But since

most systems operate in a synchronous modethe following questions arise:

1) If the clock skew delay is negligible (r„=0) compared to the execution time of the

pipeline stages, is it still possible to obtain an average throughput improvement in

the synchronous implementation similar to the asynchronous implementation due

to execution time variations ?

2) How would weimplement such a pipelined processor ?

A timing analysis shows that it is possible to improve the average throughput of

the synchronous implementation. This improvement can be achieved by a processor
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that has a global clock with a variable duty cycle, where the clock synchronizes itsout

put to theendof theexecution of thestages thathave large execution time variations.

7.2. Clock skew delay's reduction methods

Digital signal processing algorithms and most of the existing systems operate on a

fixed clock rate. Therefore, inorder to increase the processing speed ofintegrated cir

cuits researchers have dedicated a substantial efforts to developing design and fabrica

tion methods that reduce the clock skew delay. Most of these methods are still in the

early stages of research andarenot yetutilized in production.

Some methods of reducing the clock skew problems are:

• Careful design and fabrication of clock distribution and local clock buffer.

• Development of special CAD tools forclock paths anddistribution design.

• Additional metal layer only for clock distribution and buffer interconnection.

• Clockdistribution through waveguide paths.

• Clock distribution through fiberoptic wires with the appropriate transmitters and

receivers.

• Reduction of the distance to the dielectric as much as possible by using new

materials that attack only where the contact is required in the layers and not the

walls themselves.

• New techniques for reducing the area dimension because there is a limit to the

reduction of the dielectric distance dimension d [C=E*AJea , where Cis the

capacitance, e is the dielectric constant, A is the area and d is the dielectric dis

tance].

• Wire fabrication with cuprum instead of aluminum to decrease the r© (resistance

per meter).
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• Clock transfer at lower frequency with accurate frequency multipliers near each

block.

• Combination of two technologies on the same chip. A TTL clock driver at each

stage when the clock up to the TTL driveris routed through regular CMOS gates.

The TTL requires larger area but it has a very good current drive, i.e., lower resis

tance than the CMOS; therefore, the RC (where C is the load) will be smaller.

It is still early to predict which of these methods will make a breakthrough, but

because the clock skew problem limits the throughput when the dimensions are scaled

down, it is important to find a solution to this problem. Once a solution is found, using

a global clock with variable duty cycle enables to achieve in the synchronous imple

mentation an average throughput similar to that of the asynchronous implementation.

Section 7.3 describes two ways to implement a synchronous processor architecture with

variable data transfer rates between the stages.

7.3. GSLA implementation

The Globally Synchronous Locally Asynchronous (GSLA) architecture is a pipe

lined processor architecture that operates synchronously with a fixed high frequency

clock (globally synchronous) but the data transfer rate between the stages varies and

depends on the variable execution time of the stages (locally asynchronous). Since the

execution times vary, this architecture requires input and output queues to synchronize

the processor with the data input sample rate. As in the asynchronous implementation,

due to variations in the execution time, the GSLA implementation can achieve a higher

throughput on average.

The implementation is based on enabling data transfer and initiating the operation

ofthe pipeline stages only after detecting the completion signal(s) of the stage(s) with

the large execution time variations ("critical" stage(s)). Detecting the completion sig

nals is synchronized with the high frequency clock. But, data transfer between the
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stages and enabling of the next operation is executed at a varying rate according to the

execution timeof tasks in the "critical" stage(s).

Here are two possible implementation:

1) A high frequency clock rate with fine resolution which detects the completion

signal(s) of the "critical" stage(s). The maximum delay of the detection is of one

clock cycle which relatively isvery small compared to stages propagation delays.

Each pipeline stage has a counter which reduces the clock rate to the basic one

required for the proper operation of the stages. As depicted in figure 7.1, the con

trol unit of the processor detects the completion signal of the "critical" stages and

enables the data transfer between the stages and the start of a new task under the

following conditions:

* The completion signals are detected after the worst case execution time of the

"non-critical" stages.

* At the endof the worst case execution time of the "non- critical" stages if the

completion signals were detected before.

Max. propagation delay
of "non-critical"stages

Propagation variations of "critical" stages

Completionsignalof"critical" stage

I

I

I

I

J.

I

I

I

r

i i

n

f Startnew operation of all stages

Completion signaldelay

•*-

Figure 7.1 - Detection of completion signal by high frequency clock

The relatively small additional delay for detecting thecompletion signal has small
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effect on the cycle time thus yielding approximately the same average clock rate as for

the asynchronous architecture.

2) Controlling the various pipeline stages with the appropriate clock rate frequency

and enabling the data transfer and a new task execution upon the detection of the

completion signal(s) of the "critical" stage(s). Since the clock frequency is ade

quate for proper operation, the stages do not have to reduce it with a counter.

Each pipeline stage has an input which enables data transfer to the next stage and

initiates execution of the next task. The control unit of the processor detects the

completion signal(s) of the "critical" stages and activates the enable line with the

right timing. Assuming that the stages start to execute their tasks during the high

levelof the clock, as depicted in figure 7.2 twocases have to be considered regard

ing the activation of the enable control line:

* If the detection of the completion signal occurs during the high level of the

clock, the control unit activates theenable control line and expands the high

level by an additional half clock cycle to provide an appropriate timing for

immediate operation.

* If the detection of the completion signal occurs during the low level of the

clock, the control unit activates the enable control line on the following high

level of the clock cycle thereby minimizing theidletime before executing the

next operation.

As before, the activation depends on the time the completion signal is detected relative

to the worst caseexecution time of the "non-critical" stages.
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Begin npw operation inallstages

(b) n Completionsignal

Delayed clock

Beginnewoperation in allstages

Figure 7.2 - Variable duty cycle of processor's clock

In both schemes, the completion signal circuitry of all stages except the "critical"

one is also avoided. The difficulties of asynchronous circuitry design and the hand

shaking circuitry and delays overhead are also avoided. Additional circuitry to detect

the completion signal(s) and to control the clock is required. Bypassing the "critical"

stage(s) when it is not necessary to pass through them can increase the throughput but

will require additional control for initiating the next cycle of thepipeline stages.

7.4. GSLA timing analysis

Analyzing and comparing the cycle time of the GSLA architecture is based on the

same additive timing models, definitions and notations of chapter 5. Assuming that the

latch delay is embedded in the execution time of the stage yields the following cycle

time results:

Synchronous pipeline architecture cycle time:

1sy—t't'tcs (7.1)

Asynchronous pipeline architecture averagecycle time:
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^.asy=-^+3rte+r/=i±^r+3r/tf+r/=:iiir (7.2)

GSLA pipeline architecture cycle time:

Tgsla =l^+tCs=ljLt+ti (7.3)

Writting the ratio between TmgMsy and T^ yields the average throughput improvement

factor q of theasynchronous architecture compared to the synchronous architecture,

T ^1 avg.asy _ 2 —1

—t+i.—^
avg.a

*sy *cs

\-q

Andtheapproximate upper bound to throughput improvement is:

_^-{l-k)t+tcs ^-(l-k)t t<
QavgMsy'

cs *cs

cs

t+tn ^t+tcs

(7.4)

(7.5)

The results of the average throughput improvement factor of the asynchronous imple

mentation are depictedin the following table:

tcs

q[%]
k=0 it-1 k-1 k-5 *=1

Max variations,
100% variations
in t

75% variations in
t

50% variations in
t

25% variations in
t

Worst case, no
variations in t

O.OOt 50% 37.5% 25% 12.5% 0%

0.1 It 55% 43.7% 32.5% 21% 10%

0.25t 60% 50% 40% 30% 20%

0.43t 65% 56.3% 47.5% 38.8% 30%

0.66t 70% 62.3% 55% 47.3% 40%

l.OOt 75% 68.7% 62.5% 56.2% 50%

Table 7.1 - Asynchronous architecture - average throughput improvement
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In the same way, writting the ratio between TGsla and Tgy yields the throughput

improvement factor q of the GSLA architecture compared to the synchronous archi

tecture,

(\+k)t
Tgsla _ ;L +ttcs

•=l-q
sy t+tcs

And theapproximate upper bound to throughput improvement is:

A(l-*)f
Qgsia--

t+tcs

(7.6)

(7.7)

The results of the throughput improvement factor of the the GSLA implementation are

depicted in the following table:

tcs

<7t%]
*=0 k-1 k-1 *-3 k=l

Max variations,
100% variations

in t

75% variations in

t

50% variations in

t

25% variations in

t

Worst case, no

variations in t

O.OOt 50% 37.5% 25% 12.5% 0%

0.1 It 45% 33.8% 22.5% 11.2% 0%

0.25t 40% 30% 20% 10% 0%

0.43t 35% 26.2% 17.5% 8.7% 0%

0.66t 30% 22.5% 15% 7.5% 0%

l.OOt 25% 18.7% 12.5% 6.2% 0%

Table 7.2 - GSLA -throughput improvement factor

Results

The following results are based upon the assumption that the handshake delay in the

asynchronous architecture is small and negligible compared to the execution time and
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the clock skew delay. When the pipeline architecture is deeper, the clock skew delay

has a larger effect on the analysis and is not negligible. The clock skew delay is more

likely to be negligible if the architecture incorporates a small number of pipeline stage

(corresponds to largerexecution time of the stages). It is obvious that the GSLA archi

tecture is effective only if the clock skew delay is negligible.

• The maximum bound on the throughput improvement factor qGsLA of the GSLA

architecture is 50% (for 100% execution time variations).

• As the clock skew delay (ta) increases the throughput improvement factor qGSLA

of the GSLA architecture decreases.

• The throughput improvement factor of the average asynchronous architecture

implementation is larger than the throughput improvement factor of the GSLA

architecture by a term of ——.
t+tcs

• As the clock skew delay (tcs) increases, the average throughput improvement fac

torQavg.asy of the asynchronous architecture increases.

• The throughput improvement factor of the GSLA architecture is the lower bound

of the average throughput improvement factor achieved by the asynchronous

architecture when the there is no clock skew.

• When the clock skew delay is negligible (r„=0) GSLA architecture yields the

same throughput improvement factor as the asynchronous architecture yields in

the average case (qGSLA Qavg.asy )•

• As the clock skew delay (tcs) becomes larger the average throughput improvement

factor of the asynchronous architecture becomes larger compared to the GSLA

architecture.
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7.5. Conclusions

• The GSLA architecture yields a throughput improvement factor as the average

throughput improvement factor of the asynchronous architecture only if the clock

skew delay is negligible.

• The maximum bound on the throughput improvement factor qGsiA of the GSLA

architecture is 50% (for 100% executiontime variations).

• As the clock skewdelay (tcs) increases, the throughput improvement factor qGsiA

of the GSLA architecture decreases. Larger clock skew delay mean smaller

throughput improvement

• Larger clock skew delay (tcs) means a larger average throughput improvement of

the asynchronous architecture compared to the GSLA architecture.

• Implementation of the GSLA architecture is feasible.
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CHAPTER 8

Conclusions

8. Conclusions

Implementation of processing elements and systems for real time signal processing

applications require 1) a fast processing elements with higher throughput and 2)

efficient schedulers to partition the algorithms into different tasks and allocate them

appropriately to the processors. To achieve fast processing elements with higher

throughput for real time signal processing applications, one has to utilize the advances

of uP VLSI design and fabrication with the special features and characteristics of the

signal processing algorithms. Development of improved CAD tools and fabrication

processes makes it feasible to implement the PEs proposed in this dissertation.

8.1. Multiprocessing PE

Exploitation of the parallelism inherent in digital signal processing implies the

building of computing systems which rely on relatively inexpensive processing ele

ments that operate in parallel. Parallel computing systems that are not restricted by the

PE's interconnection topologies and have low communication latencies achieve high

performance and throughput.

An advance in uP VLSI design and fabrication makes it feasible to implement the

proposed PE. This will reduce the communication latencies, allow any interconnection

topology consistent with the number of ports, and increase the multiprocessing system

throughput.
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Communication latencies are reduced because of:

1) Independent and concurrent computation and communication achieved by

separating the computation unit (PU) from the communication unit (AIO).

2) Fast data transfer through virtual-cut-through switching, minimum number of

hops, and the variable interconnection band-width between processing ele

ments.

3) Simple interface (through the AIO) between the processing unit (PU) and the

network.

The proposed PE is suitable for ASIC (Application Specific IC) implementations.

Similar and simple protocols for different communication configurations with the ASIC

property adapt and fit the proposedPE into a varietyof different multiprocessorsystems

and applications. Each PE can accommodate a different computing unit and a different

communication configuration suitable for a particular application. "Heterogenous" sys

tems are simple to implement because different PEs can accommodate different types

of processing units and/or different communication configurations.

Four I/O links enable the PE to be employed in many network topologies and pro

vide a simple expansion to large multiprocessorconfigurations.

Interconnection band-width (BW) is extensible because the number of lines in an

I/O link are parametrizable and up to four I/O links can interconnect two PEs.

8.2. Asynchronous PE

It is clear that an asynchronous PE is preferable to a synchronous PE only if the

clock skew delay is relatively large compared to the maximum execution time of the

functional units of the processor. Good circuits synthesis programs as well as appropri

ate CAD tools are required for such designs. In general since most of the systems are

synchronous, a synchronous processor is preferable. Development of new methods and
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CAD tools for clock path and distribution design along with careful and tighdy con

trolled fabrication of the clock distribution and the local clock buffers reduces the clock

skew delay effects and favors the synchronous implementation.

As previously seen from the timing analysis, an implementation of an asynchro

nous processing element yields a higher throughput than the synchronous implementa

tion only if several conditions on the clock skew delay (tcs) and the handshaking delay

(ths) are fulfilled (equations: 5.4,5.7,5.8,5.12,5.13).

The maximum throughput improvement of the asynchronous implementation

compared to the synchronous implementation is limited. To achieve in the worst case a

higher throughput compared to the synchronous implementation, a deep pipeline archi

tecture is required, i.e., an architecture with more pipeline stages which corresponds to

smaller maximum execution time (max.{r^} is smaller).

The larger the variations in the execution time of the pipeline stages, the larger is

the average throughput improvement of the asynchronous implementation. Achieving a

higher average throughput improvement requires input and output queue buffers. The

length of the queue buffers limits the type of applications that can be executed on such

architecture.

A time-stationary control unit for the asynchronous processor can be simply

implemented with a PLA and shift registers. Such a control unit does not add addi

tional handshaking delays, andit candiscard instructions from the datapath stages.

When the clock skew delay is negligible the average throughput of the asynchro

nous implementation is smaller than 50%.

When the throughput limitation is due to large propagation delaysvariations of the

pipeline stage(s) and not due to clock skew delay (clock skew delay is negligible), the

GSLA (globally synchronous locally asynchronous) implementation achieves the same

average throughput as the asynchronous implementation. When the clock skewdelay is
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not negligible the GSLAthroughput decreases as the clock skew delay increases.

The larger the clock skewdelay, the largeris the average throughput improvement

of the asynchronous implementationcompared to the synchronous pipeline architecture

and the GSLA architecture.

Asynchronous processing elementscan also be implemented in other architectures

such as "Hybrid" pipeline and common bus. Their throughput depend highly on

whetherresource conflicts exist or not. If there are no resource conflicts, an asynchro

nous common bus architecture achieves a higher throughput than the asynchronous

pipeline architecture. The control unit of the asynchronous "Hybrid" and the common

bus architectures is more complicated.

8.3. Further Research

Further research is necessary in developing new techniques, CAD tools and simu

lation programs for efficient design of high speed synchronous and asynchronous pro

cessing elements and processing systems for real time applications.

Utilization of the parallelism inherent in signal processing algorithms is very

important in implementing processing systemsfor real time applications. There are two

ways to do it. One is to develop new signal processing algorithms customized for paral

lel processing systems, the other is to develop schedulers that partition the algorithms

and effectively allocate the tasks to different PEs. The scheduler should have the capa

bility to optimize the allocations according to the following requirements: high

throughput, minimum number of PEs, load balanced PEs, minimal number of intercon

nection, and a given interconnection configuration.

Fabrication of the multiprocessor PE, containing a PU and an AIO, is necessary to

evaluate the IC*s area, speed of operation, complexity, and the difficulties involved in

the design and implementation of such large VLSI chips. The implementation of the

VCT switching and its efficiency is important and necessary to evaluate.
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Complete design and development of new interconnection handshaking cells are

mandatory for the implementation of an asynchronous PE for different signal process

ing applications.

Development of a simulation program to determine the exact length of I/O queue

buffers for obtaining a higher average throughput is needed.

An appropriate interface between an asynchronous processor and synchronous sys

tems is required. The design of such interface should efficiendy utilize the properties of

both systems.

The development of new techniques and CAD tools for designing high speed syn

chronous PEs is needed. Design and implementationof a GLSA processor with special

emphasis on the design of clock buffers and distribution could be used as a test case.
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