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ABSTRACT

A FORTRAN program associated with SAMPLE that simulates a two-
dimensional optical image from a projection printer has been upgraded to include the
effects of arbitrary lens aberrations. This program has been used to study general
issues in projection printing, including the optical proximity effect and defect interac
tions with features. Basic studies of projection printed images are presented to iden
tify the types of patterns which are most susceptible to residual lens aberrations and to
establish test structures which maybe used to monitor the presence of critical types of
residuals. These effects are explored by including arbitrary lens optical path
difference (OPD) aberration functions in the optical image simulation program. The
lens aberration function is expressed either in Zemike polynomials or a series expan
sion. The intensity is calculated from Hopkin's transmission cross-coefficient formula
tion with a self-checking algorithm. A catalog of results is presented here for the
dominant primary aberrations of coma and astigmatism for a fixed maximum OPD of
0.4 X. Contact holes are shown to be much more susceptible to astigmatism than
coma and the traditional checkerboard test pattern is verified as a sensitive diagnostic
pattern. An alternative structure consisting of thin lines with a short break is shown to
be even more sensitive to astigmatism and useful for distinguishing it from coma. A
further improvement in sensitivity is obtained through the use of small nonprintable
defect-like features in proximity to regular features which coherently interact with the
blurred image of the feature. A test target of this type is recommended for monitoring
coma.
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Chapter 1

Introduction

1. Overview of Optical Image Simulation

As device dimensions are pushed deeper and deeper into the submicron regime, the task of ensur

ing good yield and throughput with optical lithography becomes more and more difficult The optical

simulation tool is almost indispensable as a method of exploring the limits of diffraction-limited photol

ithography. Optical simulation has been used to examine the interaction of light between closely

spaced features, to design patterns optimized for best resolution, to study critical locations and sizes of

defects, as wellas to design patterns that can be used as visual or electrical test patterns for applications

such as focus targets. Optical simulation is definitely a very valid tool in IC processing, since simula

tion runs are not only less expensive than running experiments, but also much faster.

This document continues the work done by the SAMPLE1'8 simulation group at U.C. Berkeley,

and presents some new results dealing with defects and optical proximity effects. The main emphasis

of this document, however, is on projection lens aberrations, and the effect of these aberrations on

image quality.

2. Projection Lens Aberrations

It is known that as device dimensions continue to shrink and the demand for greater image field

information continues to grow, optical projection printing systems must hold tighter tolerances over

larger image fields. As the image field increases, the aberrations from a single lens element grow

rapidly, so minimizing the residual aberrations between many elements becomes increasingly difficult.

The images of Pol et al9 for a very early 248 nm lens in Figure 1 clearly show the effects of aberra

tions such as coma. While the lens manufacturers have sophisticated means of measuring residual aber

rations, the impact of the residual aberrations on the aspects of image quality important in projection

printing is still not well understood. It is also desirable to have a simple, independent means to verify

that when the lens is incorporated in a projection printer it is still performing within acceptable toler

ances.



The basic formulation of the aberration problem in terms of the circle polynomials of Zernike and

the nature of the primary aberrations can be found in Born and Wolf10 and Fincham and Freeman.11

Lens manufacturers typically have their own programs for calculating effects of residual aberrations.

One example of the effect of aberrations in projection printing is the work of Matsumoto et al.12 The

primary purpose of this document is to make an initial exploration of easily implemented diagnostic

patterns and their sensitivity to various amounts of primary aberrations. To address these issues, the

capability to include arbitrary lens aberrations has been added to a two-dimensional optical image simu

lation program associated with SAMPLE.5



Chapter 2

The Simulation Program

1. Review of the Simulation Program

SPLAT (Simulation of Projection Lens Aberrations via TCCs) is based on the Hopkins theory of

partially coherent imaging,13 which uses transmission cross-coefficients CTCCs) to calculate the image

intensity pattern from the Fourier transform of the object (mask) transmission. Essentially, a projection

printer can be characterized as having three basic components : an illumination system, a mask, and a

lens to focus onto the image or Gaussian plane. As light in the form of a plane wave strikes the mask,

it is diffracted, and as such, can be expressed as a simple sum of diffracted orders (assuming a periodic

pattern for the mask). Each diffracted wave is then modulated by the lens before arriving at the image

plane. Because of coherence effects, the mask-diffracted orders will also interact with each other. Thus,

if the Fourier transform of the mask transmittance is given by F(fg), where / and g are spatial fre

quencies, the image intensity, according to Hopkins, can be expressed as a 4-fold integral in spatial fre

quency space:

/(*,>) « JJJJ TCC(f\g':f'\g") Ftf'.g') FV"/') e^W,-*m*«*'-*™df,dg'df"dg" (2.1)

In the expression above, x and y are related to the geometrical coordinates of the mask/object,

while the frequency pairs (f^g*) and (/"',g") represent two sets of diffracted plane waves that are

interacting with some degree of coherence. rCC (/",#':/".£") is known as a transmission cross-

coefficient, and is the interaction between the light intensity (with a Fourier transform J(f,g)) and the

lens. Following Hopkins', this transmission cross-coefficient can be written as follows :

TCC(f\g':f",g") =jj J0(f,g) Ktf+f'.g+g') Km(f+f",g+g") dfdg (2.2)

Here, J(fjs) represents the illumination cone, and for critical or Kohler illumination, is a constant

within a radius proportional to a, the partial coherence parameter of the system. K(f >g) is the objec

tive pupil function, and is given by

K(f*) = e x f2+g2<l (2.3)



where Q>(f4>) is the wave aberration function which can be expressed as a simple power series in /

and;.

2. Evaluating the TCC

Given that the aberration function <D(f ,g) is known, it is possible to rewrite the expression for the

TCC:

TCC(f'r:f">g") =Jojje x *" e x ' dfdg (2.4)

Evaluating the transmission cross-coefficient requires integrating the exponentiated phase variations due

to the lens aberrations over the union of overlapping circles as shown in Figure 2. Here, the small cir

cle represents the illumination cone and the large circles represent the acceptance cone of the imaging

lens shifted by the wave vectors for the diffracted orders whose TCCs are being evaluated.

The evaluation of the TCC is carried out numerically using a two-dimensional adaptive quadra

ture method. First, the minimum (/min) and maximum (/*max) limits of integration in the horizontal

direction is found. The region between /„„, and f^^ is then divided into 16 vertical strips, according

to a 16-point Gaussian quadrature. Each strip is then divided into 5 equally spaced intervals, and for

each interval, the subinterval area 5/<5gy is multiplied by <t> evaluated at the midpoint of that particular

subinterval. The total for each vertical strip is summed using both a 5-point Simpson and a 3-point

Simpson, and compared.14 If the difference is greater than a specified error tolerance, then the vertical

strip is divided into smaller subintervals and reevaluated. The results for each vertical strip are added

to obtain the final integral.

In summary, the adaptive quadrature method outlined above requires evaluating the aberration

function <&(f ,g) at a minimum of 80 points within the region of integration, and has the redeeming

feature that it is "self-checking", i.e. the computer is programmed to produce the approximation with

optimal accuracy, thus relieving the user of the necessity of analyzing the accuracy of the result

Where the aberration function is "badly behaved", the program takes small step sizes, and where there

is smooth behavior, the calculation is sped up with large steps. However, as might be expected, the

minimum 80 function calls per TCC still does consume a considerable amount of computation time.



Because the number of TCCs that have to be evaluated is proportional to the mask area, even

average-sized mask patterns with sizes on the order of 6A/NA x 6 X/NA require as many as 6 million

function calls. Although the number of transmission cross-coefficients that have to be computed can be

reduced by as much as a factor of 16 due to symmetry, the computation time needed for this program is

still fairly large. Figure 3 shows a rough indication of the computing time on a Vax 11/780 versus

mask size. The presence of arbitrary lens aberrations requires the use of the 2-dimensional integrating

routines described earlier. In this case, the speed of computation depends on how many degrees of

symmetry exist in the TCCs. In general, if there is only one lens aberration (such as coma only), there

can be as many as 7 degrees of symmetryt in the TCCs, but combinations of aberrations (such as coma

and defocus) will reduce or eliminate this symmetry and therefore increase the computation time. In

comparison, the absence of aberrations will speed up thecomputation significantly. When only defocus

is allowed,8 the TCC integral still has to be evaluated numerically, but it can be reduced to a one-

dimensional integral as described by Subramanian.15 Simulations that do not require lens aberrations

run the fastest, because analytical formulas can be used to evaluate the TCC.

3. Program verification and capabilities

Although as yet the results of this program have not been verified experimentally, there are three

indications that this aberration program, SPLAT, is correct. First, for defocus only, the calculated

intensity images agree to within 3 decimal places with the results from both 2D8 (the original aerial

image program) and SAMPLE.5 The latter two programs use an entirely different one-dimensional qua-

t Symmetry here refers to the relationship between the TCCs for a given set of harmonics. The seven degrees of
symmetry are:

TCCif't':/".*") = TCC(rf'j':-/",*") g-axis reflection

TCCift'if"*") = TCC(f',-g':f",-g") f-axis reflection

TCCif'j'.f"*") =TCC(rf'.-g':-f"t-g") reflection around origin

TCCff'g'.f'j") =TCC(f"tg":f'#') commutative symmetry

TCCifW't") = TCC(-f"j":-f'j') g-axis reflection

TCCtf'jV'V) = TCC(f",-g":f',-g0 f-«xis reflection

TCC(f'4':f"j") = TCC(-f",-g":-f',-g') reflection around origin

Because the TCCs are complex variables, a check is also made to see if there is symmetry between the conjugates of
theTCCs, e.g. TCCifW'j") = TCC'i-f's'-.-f"*").



drature approach. Secondly, the TCC calculations for a = 1 and varying degrees of third order aberra

tions agree well with the theoretical values tabulated by Born and Wolf.10 And finally and perhaps most

conclusively, the physical behavior of the images with aberrations, as computed by SPLAT, agrees with

the description of Born & Wolf10 : distortion moves the image position but does not affect its quality,

coma moves and distorts the image and also leaves a small comet-like tail, astigmatism flattens the

image, and so on.

Currently, SPLAT will accept values of coherence 0 < a £ 1.0, and can compute the effects of

any combination of the third order aberrations (spherical aberration, coma, astigmatism,

curvature/defocus, and distortion). The mask patterns do have to be periodic, though, and execution is

reasonably fast for masks with dimensions less or equal to 4tyNA x 4X/NA. The simulated images pro

duced can be represented either 2-dimensionally or 3-dimensionally (contour patterns); the 2-

dimensional cuts can be taken along critical directions and then sent to SAMPLE for resist profile simu

lation. In this manner it is possible to see the impact of processing conditions and aberrations on the

developed patterns. For simulation of images from large mask patterns, SPLAT takes much too long to

execute, and so is impractical as a diagnostic tool for such masks. However, a solution has been imple

mented that saves all the non-zero TCCs calculated for a particular mask size. Since these transmission

cross-coefficients depend only on the size of the field being simulated, the illumination and the lens of

the imaging system, these coefficients can be reused for other patterns in the same field when the

parameters mentioned are kept constant Thus, additional pattern intensities can be calculated in less

than 10% of the initial computation time.



Chapter 3

General Applications of SPLAT

1. Introduction

This two-dimensional optical imaging program, and its predecessor, 2D8 , has, in the past, been

used to study several important issues in projection printing, including defect interactions with features,

and optical proximity effects. This section will discuss briefly someapplications of this optical imaging

program, and simulation results will be presented. For convenience and general applicability to

different stepper models, all pattern sizes (except where stated otherwise) are specified in terms of the

normalized parameter A/NA.

2. Defects

The study of mask defects is useful as a starting point for understanding the mechanics of the

interaction between defects and features. This is especially true for small defects which are normally

hard to detect or to repair using conventional mask repair techniques. Figure 4 shows contour plots of

the normalized intensity of the image caused by 0.4X/NA transparent and opaque square defects. The

important thing to note here is that the contours are circular in shape. This, of course, is due to

diffraction - the 0.4A/NA defect by itself is close to the resolution limit of the stepper, which is approx

imately 0.3A/NA for partially coherent imaging.t Thus, if a defect has dimensions smaller than the

resolution limit of the stepper, the intensity coming through the defect will be independent of the shape

of the defect and will be proportional to the area of the defect This is shown in Figure 5, where

defects of different shapes but equal areas are simulated and their corresponding intensity contours are

plotted. It can readily be seen that the contours look similar and are roughly circular for different

shapes. A closer examination also shows that both the bar-bell and the rectangle have elliptical con

tours. This shape-dependence comes about when any of the defects' dimensions exceeds the resolution

limit So, in general, if the dimensions of the defect remain close to the resolution of the stepper, the

t The resolution limitis defined as the point where the contrast of an imaged pattern is zero. The resolution limitis
OSK/NA for fully coherent imaging, 0.25X/NA for incoherent imaging, and between 0.25 and 0.5X/NA for partially
coherent imaging.



intensity of the defect will be roughly independent of shape.

2.1. Transparent Square Defects

The next step towards understanding defects is through the study of square transparent defects. It

can be shown that if the dimensions of a defect are less than the wavelength of the illumination, the

electric field transmitted through a transparent square defect will be proportional to the square of the

defect length, i.e. Et aD\ where Et is the electric field transmitted through the transparent defect, and

D is the length of a side of the square defect Since intensity / = \E I2, the peak intensity through a

small defect will be proportional to D4. Figure 6 is a logarithmic plot of the peak intensity / vs. the

defect size D, obtained from simulations of transparent defects in opaque masks. This plot shows that

as long as the defect size D <, 0.4A/NA, the log-slope is approximately constant and has a value of

approximately 4.0, which implies that It a D4. From this set of simulations, it is also possible to pin

down the exact relationship, and thus to obtain the following set of equations.

Et =2.9D2, D << 0.4A/NA (3.1)

/, = IE, I2 = 8.5D4' D <S 0.4A/NA (3.2)

This relationship is also independent of the partial coherence a, as shown in Figure 7, where /, vs D is

plotted logarithmically for a = 0.3 and a = 0.7. It can clearly be seen that the slopes of the two curves

are equal for defect sizes D < 0.4X/NA. The reason for this is that the defect size is small enough for

it to behave like a point source, so the light coming through the defect will be fully coherent

2.2. Opaque Square Defects

Using the equations above, it is possible to develop an analogous set of equations for the case of

opaque square defect in transparent masks. The electric field blocked by the square defect, Eot is

related to the electric field passing through the transparent square defect Et, by the simple relationship

Eo = l-Et (3.3)

Since Et = 2.9D1 from equation (3.1),

£«, = !- 2.9D2- D <> 0.4X/NA (3.4)



I0 =\E0 I2 =[l - 2.9D2] D<> 0.4X/NA (3.5)

Equations (3.2) and (3.5) are plotted linearly in Figure 8, together with the data from the simulations.

It is evident that the above equations break down for defect sizes D > 0.4A/NA. This is to be expected,

since for these large defect sizes, the defect dimensions will be of the same magnitude as the illumina

tion wavelength, so the light coming through or being blocked by the defect will no longer be fully

coherent

3. Defect Interaction with Features

From Figures 6-8, it can be seen that if a transparent defect in an opaque mask is small, with the

defect size D < 0.4AWA, then the peak intensity due to the defect alone will be less than 20% of the

clear field intensity. Photoresists exposed and developed at zero bias will normally print at the 30%

intensity level, so the small defect by itself will not print However, when the defect is placed close to

a feature, the light coming through the defect will interact coherently with the light from the feature.

This interaction is known as the optical proximity effect, and as can be seen in Figure 97 , results in a

significant linewidth variation. The linewidth change due to the interaction between the defect and the

feature has been studied extensively with simulations.2*3«6*7 Some of the key results are summarized

below, for the case of a transparent defect attached to an isolated transparent feature.

3.1. Transparent Defect Attached to an Isolated Feature

When a small transparent defect is close to an isolated transparent feature, the interaction between

the defect and the feature is nearly coherent and the defect slighdy increases the intensity at the edge of

the feature. At an intensity threshold of 30% (which corresponds roughly to the intensity at the line

edge), the linewidth change in X/NA can be found by dividing the intensity change by the intensity

slope at the line edge as 3

AL = ^r-rr = — ^r- = '" ' ' (3.6)dlldL " 2.9 - 1.3a 2.9- 1.3a

where Ie is the composite intensity, If is the feature intensity, Id is the intensity due to the defect

alone, and \ieff is a dimensionless parameter describing the degree of coherent interaction between the
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defect and the feature. For small defects the defect intensity Id = 8.5D4, (where D is the defect size in

X/NA) so AL ctZ>2, and the linewidth change is a parabolic function of the defect size D. Evaluating

Equation (3.6) with a =0.45, \Leff = 1 (purely coherent interaction for small attached defects),

// = 0.30 and ignoring the Id term (defect intensity term « defect-feature interaction term) yields

AL =0.47>/77= 0A7<&5L)*= IAD2 (3.7)

For larger defects however, the above perturbational approach must be replaced by more rigorous

image simulation. This is partly because the slope dlldL is no longer constant and the defect-feature

interaction is no longer fully coherent OV/ < 1). More importantly, for defect sizes D > 0.4 A/NA, the

defect peak intensity is greater that 30%, so the 30% intensity threshold of the composite pattern will

move away from the feature and be pinned on the 30% threshold of the defect In effect the linewidth

change is now determined by the defect size, as the defect itself is large enough to be classified as a

feature. This means that the linewidth change becomes proportional to defect size. The following com

posite algebraic model hasbeen found to apply for both large and small defects near a single feature.

_ f1.4L>2 D£0.4 A/NA
" \ 1.5D - 0.M- ~\ \.5D - 0.42 0.4A /NA <D<0.8 A/NA (3,8)

The equation above has been compared to intensity threshold (30%) simulations as well as to rigorous

resist simulations through SAMPLE, and the results are plotted in Figure 9. The image intensity simu

lation results agree with the more rigorous resist profile simulation results, which indicates that in this

case, the resist appears to be acting as a threshold detector at 30% of the clear field intensity. The sim

ple algebraic model from Equation (3.8) also shows an excellent fit to both the threshold and resist

simulations.

3.2. Different Defect-Feature Configurations

Modelling the interaction between defects and features in different configurations is more difficult

than modelling the interaction between a transparent defect attached to a transparent isolated feature,

primarily because the coherent interaction between the defect and its surrounding neighboror neighbors

becomes much more difficult to characterize. However, the basic principle remains the same, even if
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the defect is placed in between two features or if the mask polarity is reversed. Systematic simulations

can andhave been used 2>3»6>7 to characterize the defect-feature interaction, and thus, an understanding

can be gained as to what defect dimensions or locations might cause critical damage to the developed

pattern.

4. The Proximity Effect

The interaction of defects with features is but one aspect of the proximity effect The proximity

effect, as mentioned earlier, takes place when two features are close enough to each other that the light

through both features will interact with some degree of coherence. In general, if the spatial coherence

of the stepper is increased (lower a), the optical proximity effect will be more severe. A few of the

patterns in which the proximity effect occurs are discussed below.

4.1. Tapers in Elbows

The two-dimensional imaging program is especially well suited for examining two-dimensional

structures such as elbows. A contour plot of the image intensity from a pair of 0.8A/NA elbows is

shown in Figure 11. This image was computed at a = 0.3, and it can clearly be seen that the high par

tial coherence in the system causes quite severe ringing in the image, especially at the corners of the

elbows. The linewidth variation at the corners might also be too large to be tolerated by certain

processes. There are several methods of reducing the ringing or the linewidth variations in elbows.

The most obvious is to reduce the coherence of the system, i.e„ increase the a. The effect of this is

shown in Figure 12. However, a reduction in the coherence of the system will also result in a lower

image slope and thus cause a small loss in resolution. A more elegant solution is to "smooth" out the

sharp 90° bends in the elbows by introducing tapers at the corners of the elbows. Figure 13 uses 45°

triangular tapers and an improvement can clearly be observed in the contour smoothness. This illus

trates the ease with which simulation can be used to reduce or repair the optical proximity effect.

4.2. Equally Spaced Linesf

t Here, a line is denned to be a line in resist; thus, if positive photoresist is used, therewill not be any resist where
the resist is exposed with a transparent feature in anopaque mask. So, the transparent feature is defined as a space (be
cause of the opening in resist). Similarly, a opaque feature in a transparent line will produce a positive photoresist line,
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Equally spaced lines with a single protruding line/space is a pattern that is sometimes used in

visual tests for optical lithography. Figure 14 shows the results of the simulation of transparent

0.6A/NA spaces in an opaque mask, with a = 0.7. The width of the protruding space, judging by the

10% contours, is slightly greater than the width of the neighboring spaces. This, of course, is another

manifestation of the optical proximity effect The equally spaced features will interact to produce a

higher intensity minimum, which will in turn cause the low intensity contours to move closer together.

The proximity effect is more pronounced in Figure 15, which is the same mask used in Figure 14

but with the polarity reversed. The protruding line, if developed at the 40% intensity contour, will be

wider at the protruding end than at the center of the equal line-space array, because less light passes

through the line-space array.

5. Pattern Misalignment

Two-dimensional optical lithography simulation can also be applied to pattern misalignment prob

lems, specifically, the problems that occur when two stepped image fields are misaligned (e.g. in

electron-beam mask-making). As might be expected, when two features are "pinched" together (butting

error), the two features will be resolved as a single feature with a slight bulge where the features meet

This is illustrated in Figure 16, where the simulation was run with a = 0.5, and a 0.2A/NA overlap

between 0.8A/NA features. The situation however turns critical when the two features are separated

from one another. Simulations show that if the distance between the two features is less than 0.2A/NA

(Figure 17), then the problem is tolerable; however, when the separation increases to 0.4A/NA (Figure

18), a zero-bias process (30% intensity contour) would clearly result in a broken resist line.

so that feature is now a line.



Chapter 4

Identifying and Monitoring Effects of Projection Lens Aberrations

1. The wave aberration function <&(/ ,g)

From optics, it is known that if the aperture of an optical system is appreciable, the whole of the

light from a given object point does not reunite at a common focus after refraction by a single lens. In

practice, images suffer from aberrations or defects - however, by combining a number of lenses made

of different glasses and of differing thicknesses, it is possible to eliminate or reduce these aberrations.

For such "corrected" systems (which include projection printer lenses), the residual aberrations are typi

cally expressed in terms of wavefront aberrations, where the the optical path difference (OPD) between

the real wavefront and a perfect spherical wavefront is calculated. ll In general, it is possible to quan

tify any type of projection lens aberration (with the exception of chromatic aberration) by expanding its

wavefront aberration in a power series as:

*(f *)= £ Cuntf+y2)1 (xf+yg)m (f2+g2)n (4.1)

In the equation above, (x,y) refer to the object locations in the field, relative to the lens center, while

if g) are the normalized polar pupil coordinates, /,m and n are three integers that describe the order of

the aberrations (3rd order, 5th order, etc), and C^ is a constant that determines the magnitude of the

aberrations. In these studies the constant C^ and the object coordinates (x,y) were used as input

parameters, The third-order aberrations, also known as Siedel or primary aberrations, typically have the

greatest influence on images. There are five such aberrations: Spherical Aberration [/=0, m=0, n=2],

Coma [/=0, m=l, n=l], Astigmatism [/=0, m=2, n=0], Curvature [/=1,/n=0, n=l], and Distortion

[/=1, w=l, n=0]. Once <&(/",£) has been completely defined, it is inserted into the TCC equation,

(2.4), and the TCC computations can be carried out

2. Systematic Studies of Test Patterns

This document is primarily concerned with image quality and the extent to which the above pri

mary aberrations play a role. Fortunately, distortion and curvature can quickly be eliminated. Distor

tion and even coma produce a lateral shift of the image but this placement error does not affect the

13
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profile shape and will not be considered. Curvature basically describes a focus change as a function of

position in the field, which more properly belongs in a discussion of the focus budget Spherical aber

ration can have very pronounced effects but to first order, the effect can be mediated by a change in

focus. Thus, the two remaining primary aberrations which dominate image quality are coma and astig

matism. Both of these effects are zero in the center of the field for a centered lens and increase with

field height These effects are also radial in nature so that the direction of the influence will also

change with position in the field. It is interesting to note that astigmatism has a symmetrical OPD

function while coma has an asymmetrical OPD function.

A variety of device features and test patterns have been used to characterize the effects of aberra

tions. Figure 19 shows the set of patterns used in this systematic study. These patterns range from

contactholes and traditional checkerboards to alternative thin line and defect-like structures. A rigorous

determination of the resist profile from these patterns would require extensive simulation of the dissolu

tion process in three dimensions. Instead a simpler threshold interpretation of the intensity contour

plots for images of these structures will be used to get a reasonable indication of the effects of aberra

tions. The intensity level which approximately corresponds to the developed opening at the substrate is

from 30% to 10% depending on the amount of overexposure and overdevelopment used to gain

linewidth control. Throughout this study the discussion will refer to the 20% contour.

3. Traditional Patterns

The presence of aberrations is often recognized by the fact that contact holes are distorted from a

shape with 90 degree rotational symmetry. The contour plots of the image intensity for an isolated

square under the influence of astigmatism and coma are shown in Figure 20 and 21 respectively. The

contours are for 10% levels normalized to a clear field intensity of unity. The four positions correspond

to the center, right hand edge, top edge and 45 degree top-right edge of a circular lens field. For the

three edge positions the maximum value of the OPD is 0.4A.

Coma tends to produce an "ice cream cone" effect and movement along a radial line. The small

amount of coma in Figure 20 produces a build-up of the intensity on the side of the feature away from

the center of the field. For astigmatism, there is no movement and spreading is produced both inward
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and outward along a radial line. This results in a double ended symmetrical "football" shape pointing

in the radial direction which is the direction in which the maximum OPD occurs. For the same max

imum OPD of 0.4A astigmatism is much more pronounced than coma as can be seen by comparing the

20% (second outermost) contour in Figures 20 and21. Defocus would preserve the 90 degree rotational

symmetry and would tend to make the contour larger and more circular. Spherical aberration would

produce an effect with the same symmetries as defocus and is partially compensated by and difficult to

distinguish from defocus.

Small checkerboard patterns are known to be sensitive to aberrations and are frequently used in

diagnostics. Examples of the effects of coma and astigmatism on a checkerboard pattern are shown in

Figure 22 and 23 respectively. Here the amount of the aberration and the positions in the field are the

same as those for Figures 20 and 21. The distortion of the contours of the checkerboard pattern is more

pronounced than it is for a simple contact. The movement of the high intensity away from the center

of the field is very evident with coma. However, the distortion of the 20% contour is not particularly

large. Astigmatism, on the other hand, results in a very major stretching of the 20% contour along the

diagonal direction for the 45 degree field position. Therefore, the checkerboard pattern is mostsensitive

for astigmatism in the diagonal direction.

The checkerboard patterns have been used as visual test patterns for the detection of aberrations

on a GCA 6200 Wafer Stepper in the Electronics Research Laboratory MicroLab [Univ. of California,

Berkeley], and a SEM of a 1.6 urn checkerboard pattern in 1.1 Jim of Kodak 820 photoresist is shown

in Figure 24. An image simulation, run ata =0.7 and 0.2A of astigmatism along the (0.7,0.7) diagonal

is shown alongside. It is easy to see the similarity between the SEM and the simulation. Surprisingly

though, this SEM was taken at best focus and in the center of the field. This indicates that this particu

lar GCA Stepper has some degree of astigmatism, and since astigmatism will notbe present in a prop

erly centered lens, it can also be concluded that the lens in this stepper is not centered correctly.

Unfortunately, relating simulations and interpreted SEMs to the actual lens condition is difficult if

not impossible. This is because an actual projection lens might consist of as many as 15 separate ele

ments, all of which will contribute to the overall aberration of the lens. In addition, higher order aber-
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rations are often introduced deliberately to compensate for the dominant third order aberrations. Tradi

tional lens characterization data consists of up to 30 Zernike polynomial coefficients, i.e„ the power

series in Equation (4.1) might have up to 30 separate terms. However, it is still useful to develop tar

gets such as the checkerboards discussed above, which can identify the presence and effective degree of

third order aberrations. This, of course, is one of the more useful applications of an image simulation

program.

4. Alternative Patterns

Given the basic tendencies of coma and astigmatism to blur images in particular ways it is not

difficult to develop alternative test structures which are even more sensitive to their presence. Since

astigmatism extends the image both inward and outward along the radial direction, small gaps in radial

lines should be very sensitive to astigmatism. The equally spaced lines test structure shown in Figure

19 is a structure in this class. .In this case the gaps are formed by the implicit periodic extension in the

vertical direction. The effect of coma and astigmatism on this structure are shownin Figures 25 and 26

respectively. When the lines are radial (0,1) astigmatism fills in to form a continuous line at the 20%

contour. When the lines are tangential (1,0) a large line with width equal to the original line length is

formed. Coma tends to pile up the intensity at the top of the lines when they are radial and does not

fill in between lines when they are horizontal. Thus the twoeffects can be distinguished.

5. Defect-Like Patterns

For optical projection printing the variation in intensity due to a defect in proximity to a feature

is far greater than the image intensity produced by the same defect when it is isolated.7 For example, an

isolated pin hole which would only produce a 3% intensity by itself will produce a 17% intensity

increase when it is adjacent to a feature. This large impact is due to a nearly coherent interaction of

the electric fields of the defect with those of the feature. The existence of this highly coherent interac

tion effect can be used to develop test structures which are extremely sensitive to aberrations. The

basic idea for this application is to place small nonprinting features near a feature in the directions in

which the aberration tends to blur the feature.
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An example of a defect-like test structure for detecting coma is shown in Figure 19. The result

ing images with coma and astigmatism are shown in Figures 27 and 28 respectively. For the right edge

field position (1,0) where coma tends to blur the feature to the right the interaction with the defect on

the right hand side is much stronger than on the left hand side giving rise to a very asymmetrical

image. Astigmatism, however, always gives a symmetrical image even though defects are present

When coma is in the vertical direction (0,1) the pattern is again symmetrical. Insight as to how the

defect is interacting with the feature can be gained from Figure 29 which shows the effect of coma on

the aerial image for a set of parallel lines. Here the image position movement by coma has been

corrected by including distortion. The strong interaction with the defect on the right hand side is pro

duced by the rise in the aerial intensity just outside the maskedge.

6. The Role of Partial Coherence

The images considered thus far have been for a partial coherence a of 0.3. This relatively high

degree of coherence tends to emphasize the effects of aberrations and is thus recommended for lens

diagnostic work. A larger value of a reduces these effects as shown in Figure 30. Thus knowledge of

the partial coherence parameter is needed for quantitative determination of the amount of aberration. In

production, less coherent illumination is commonly used not only to reduce effects of aberrations but

also to increase the throughput and reduce optical proximity effects.

7. Defocus Amplification of Aberrations

The majority of the simulations thus far were run using a maximum OPD of 0.4A, and used only

one aberrationf at any one time. This optical path difference of 0.4A is actually fairly large, and lens

manufacturers claim that the projection len aberrations in a typical lens can be beat down to an OPD

less than 0.1A. At best focus, however, it is almost impossible to see much less measure aberrations

with such small OPDs. However, it is still possible to detect these aberrations by adding in a healthy

amount of defocus. Defocus can be considered a lens aberration, and is defined as the distance of the

t This condition, which assumes a single dominant aberration, makes it easier to analyze the effects of coma or as
tigmatism alone, but is sometimes not realistic, since a lens could have a combinationof aberrations none of which are
dominant.
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focal plane from the wafer plane. The presence of defocus adds a parabolic term to the OPD function,

distorts the image even more, and so "amplifies" the lens aberration.

To illustrate this, a set of simulations were run for a Siemens Star pattern at a = 0.5, maximum

aberration OPDs of 0.2A, and defocus of 0 R.U., 1 R.U. and 2 R.U..t These 3 sets of defocus simula

tions are displayed in Figure 31. It is evident from the 0 R.U. Defocus simulations that the aberrations

are virtually undetectable, as all 3 of the contour plots in the left column look similar. The picture

changes somewhat for a programmed defocus of 1 R.U., and now there is noticeable asymmetry in the

Coma simulation, as well as "footballing" for Astigmatism. The contrast between the three sets of

simulations is even greater at 2 R.U. of defocus. Thus, the simulations show that it might be possible

to quantitatively determine what dominant aberrations there might be in a stepper, simply by running a

focus matrix and comparing the SEMs with simulations such as these. Preliminary studies have been

made on a GCA Stepper which look promising, but there is still insufficient experimental data at this

point

t 1 Rayleigh Unit= 0.5 X/NA2



Conclusion

A FORTRAN program that simulates a two-dimensional optical image from a projection printer

has been upgraded to include the effects of arbitrary lens aberrations. This program, named SPLAT,

has been used to study general issues in projection printing such as the optical proximity effect and

defect interactions with features. A basic exploratory study of the effects of residual primary aberra

tions and test structures for monitoring their presence has also been made. This has been carried outby

including an adaptive quadrature algorithm to integrate the phase effects due to the optical path

difference (OPD) function.

The inclusion of a single primary aberration such as coma or astigmatism increases the computa

tion time by about a factor of 20 over the original program, which had an algorithm for defocus only.

Combinations of primary aberrations and general Zernike expansions of the OPD will increase the com

putation time by an additional factor of 8. Effects of the two dominant primary aberrations, coma and

astigmatism, were evaluated for a maximum OPD of 0.4A. At this level astigmatism gives contact

holes a "football" like shape. This degree of astigmatism can easily be found from diagonal effects in

checkerboard patterns or from even more sensitive narrow gaps in thin lines. Diagnostic structures

based on the coherence of interaction of nonprintable defect-like features appear to be the most sensi

tive for aberrations in general. This study is far from exhaustive but gives a good indication of the

kinds of structures and techniques which might be used to quantitatively assess the the amount of coma

and astigmatism present in an optical system.
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Figure 1. The effect of aberrations on image quality for 0.4 ^m elbows. The left column shows SEMs1

with varying amounts of defocus, while the right column shows simulations that were run with coma at
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Figure 2. Region of integration of the TCCif \g':/ ",g ") for circular apertures.
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Figure 3. Computation time versus number of harmonics for square masks. The relationship between

the number of harmonics and the mask size is given in the attached table, where 2LX is equal to the

total mask size.

LXin # Harmonics # Harmonics

XVNA (o = 0.3) (a = 0.7)
0.25 0 0

0.50 1 1

0.75 1 2

1.00 2 3

1.25 3 4

1.50 3 5

1.75 4 5

2.00 5 6

2.25 5 7

2.50 6 8

2.75 7 9

3.00 7 10

3.25 8 11

3.50 9 11

3.75 9 12

4.00 10 13

4.25 11 14

4.50 11 15

4.75 12 16

5.00 12 J 17
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Figure 10. Linewidth Change versus Defect Size for a transparent defect attached to a transparent iso

lated feature. The boxed points are from Equation (3.8). and compare well with 30% intensity thres

hold simulations (dashed lines) as well as to more rigorous resist simulations (solid lines).
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Figure 11. A pair of nested 0.8X/NA transparent elbows, simulated at a = 0.3. The ringing and

linewidth variation at the comets of the elbows might not be tolerable in some applications.

4.00

3.20

55 2A0

0.00
0.00

Image Intensity Contour Plot

£.: :^W^,p•. ^2 • V»\»\*\ . • I'll ,
. •*• •!• . . •|«|.

. \ •l*l.|.I. .|*l. .
*. II. *|* ' V. •!• *
• *]*>«i«tI *j • \'\'.\\
. .1.1.1.1./ x***!. :
• •/• •/• •/ \* ;l»iJ

0 = 0.3

X/NA = 1.0

\* ••!• • • ' • Hi*

iPi:': \\\ ,:-

: :''.#/: A ii
•If rffffff/ :,i

ii;

:|:

:l:

•i

h

H: :|i

:l

: \\mr\: • IWdli ? :iH:i:l:i:l 1j0jliii
0.80 1.60 2.40

X-Axis (X/NA)
3.20 4.00



Figure 12. A pair of nested 0.8A/NA transparent elbows, simulated at a = 0.7. The lower spatial

coherence results in smoother contours, but some resolution is lost
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Figure 13. A pair of nested 0.8A/NA transparent elbows, simulated at cr =0.3. 45° triangular tapers

have been used toround the elbows, and smooth intensity contours without ringing are obtained.

4.00

3.20

^2.40

*•£ 1.60

0.80

0.00

Image Intensity Contour Plot

wwmwwmmw

»».««.«

wlHft
~ •ii:• ii»«... i£j• ii»•T>v*. o\>

:.». rr.. rr. -rr. ...•«•... >»•. 0\•At,

. -^•r-«^.\. \ • :l'i»
••.^-V.V.VA-. :' ::

• « • I•••!•. • • 1.1*1.
. ' .1.1.1.1. ^ ••!. ;

: ;W;'w|:

0.00 0.80 1.60 2.40

X-Axis (X/NA)
3.20 4.00



4.00

Figure 14. Equally spaced 0.6X/NA features, with a protruding space, simulated at a = 0.7.
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Figure 15. Equally spaced 0.6X/NA features, with a protruding line, simulated ata =0.7.
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Figure 16. Butting Error - two 0.8X/NA features are "pinched" together, and overlap by 0.2A/NA. a =

0.5. This situation is not critical.
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Figure 17. Stitching Error - two 0.8X/NA features are separated by 0.2A/NA. cr =0.5. This situation

too is not critical, provided the resist is not underexposed.
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Figure 18. Stitching Error - two 0.8X/NA features are separated by0.4X/NA. a =03. This situation is

critical, and there will be a break between the two features unless the resist is severely overexposed.
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MASK PATTERNS
a - 0.3, X - 0.5, NA - 0.5

ALL MASKS USED ARE PERIODIC
AND SCALED IN DIMENSIONS OF X/NA
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Figure 19. Mask test patterns simulated.
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ISOLATED SQUARE
a m 0.3, X • 0.5, NA - 0.5

SQUARE DIMENSIONS -10 X10 X/NA
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Figure 20. Intensity contours for the image ofan isolated square with 0.4X coma.
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ISOLATED SQUARE
a - 0.3, X =» 0.5, NA = 0.5
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Figure 21. Intensity contours for the image of an isolated square with 0.4X astigmatism.
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CHECKERBOARD PATTERN
a « 0.3, X - 0.5, NA • 0.5

SQUARE LENGTH « 15 X/NA
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Figure 22. Image of a checkerboard pattern with 0.4X coma.



CHECKERBOARD PATTERN
a = 0.3, X - 0.5, NA - 0.5

SQUARE LENGTH - 15 X/NA

AST « 0.20 (0,1), OPD - 0.4X AST - 0.20 (0.7,0.7), OPD - 0.4X
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Figure 23. Image of a checkerboard pattern with 0AX astigmadsm.
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8.

EQUALLY SPACED LINES
u « 0.3, X = 0.5, NA = 0.5

UhE DIMENSIONS - 2.0 X OS X/NA

COMA » 0.20 (0,1), OPD - 0.4X COMA - O20 (0.7,0.7), OPD - 0.4X
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Figure 25. Image of a multi-line pattern with OAX coma.



EQUALLY SPACED LINES
a « 0.3, X - 0.5, NA = 0.5

UNE DIMENSIONS - 2.0 X 0.5 X/NA
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Figure 26. Image of a multi-line pattern with 0.4X astigmatism.



TRANSPARENT FEATURE AND DEFECTS
a - 0.3, X - 0.5, NA - 0.5

UNE WIDTH = 0.8 X/NA, DEFECT SIZE = 0.4 X 0.4 X/NA
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Figure 27. Image of a defect-like structure with 0.4X coma.
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TRANSPARENT FEATURE AND DEFECTS
a - 0.3, X - 0.5, NA - 0.5

UNE WIDTH « 0.8 X/NA, DEFECT SIZE = 0.4 X 0.4 X/NA
UNE-DEFECT SEPARATION « 0.1 X/NA
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Figure 28. Image of a defect-like structure with 0.4A. astigmatism.
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Figure 29. Effect of comacorrected for distortion on the intensity versus horizontal distance for parallel

lines.

3 PARALLEL UNES
a • 0.3, X = 0.5, NA = 0.5

CORRECTED COMA : MAXIMUM OPD = 0 - 1.0 X

— 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

DISTANCE (UM)



EFFECTS OF COHERENCE or
ON TEST PATTERNS

a - 0.3 - 0.7, X - 0.6, N.A. - 0.5

PARALLEL LINES
AST = 0.20 (0,1), cr = 0.3

-0.75 0.00

X-RXIS (UM)

AST - 0.20 (0,1), cr- 0.7

-0.75 0.00

X-RXIS (UM)

x
<E

I

FEATURES AND DEFECTS
COMA = 0.20 (1,0), <7 = 0.3

o I a! .,• \\ i ; / /
\\ilthi \'< \ : J F /

•1.0 -0.5 0.0 0.5

X-RXIS (UM)

COMA - 0.20 (1,0), <t - 0.7

} i
• t

! i

! ]'!«»'<? I°?teipip l
/ /id».:l:i l|i|!|i\^

) o »p • ? \ V»
| b { * i * » J

M \ ' I If Ji
51 I ! I ! ' f **''? .
• — • i S ' CDi *£ f t

-0.5 0.0

X-flXIS (UM)

\

O.S

Figure 30. Effect ofthe partial coherence parameter a on images with aberrations.

l.o

1.0



S.M.

No Defocus

••M

No Defocus

No Defocus

Star Pattern : NoAberrations

&» 0.5 um, NAaOi, a a 0.3

1 R.U. Defocus

Star Pattern : Coma • 02 X

Xa 05 urn, NA • 0.5, o = 0.3

2 R.U. Defocus

-•.*• «.*• I.M ».m» •!.«• -«.M t.M I.M 3.«

••«ts •>*XtS

1 R.U. Defocus 2 R.U. Defocus

Star Pattern : Astigmatism a 0.2 X

X a 05 urn, NAaO.5, <Ja03

1 FLU. Defocus 2 R.U. Defocus

Figure 3L Simulations of Siemens Star patterns, run at defocus values of 0, 1, and 2Rayleigh Units.
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Appendix A

Some Mathematical Details

1. Summary of the Hopkins formulation

The Hopkins formulation for imaging with partial coherence has been discussed in detail in Born

and Wolf [Chapter 10], and is summarized below.

1.1. Partial Coherence

A system illuminated with a real physical quasi-monochromatic source consists of many point

sources, all of which are mutually incoherent However, because the source has a finite spectral

linewidth, the wave fields due to a single point source at any two points Pi and P2 far from the source

will not be independent. In other words, there will be interference between the waves at the two points.

This, of course, is the basic definition of partial coherence, which states that for a wave field produced

by a finite polychromatic source, a measure of correlation exists between the vibrations at different

points Pi and P2 in the field, t The total intensity at any point P then is the summation of all the 2-

point correlations all over the field, integrated over the total area of the light source.

1.2. Propagation of Light Intensity through the System.

The next building block in the Hopkins formulation comes directly from signals, systems, and

Fourier Transforms, and uses the fact that in frequency space, the spectrum of a signal y(co) coming out

of a system is equal to the spectrum of the incoming signal X(co) multiplied by the frequency response

of the system, i.e. 7(0)) = //(©)) X(oo). So, if the incoming illumination has an intensity described by a

frequency spectrum Jdf,g), and the wave propagates through an object (mask) with a transmission

function F(f ,g), and through a medium with a transmission function Kif &), then both the object and

the medium will act as filters on the wave, and the resultant signal will be just the product of the

incoming signal and the filter functions in frequency space. Therefore, in frequency space,

t If light at the points Pt and P2 comes from a single monochromatic point source, the correlation between the
fields at the two points will be high. This condition is known as "coherent" illumination. Li contrast, if the two points
each receive light from a different physical source (low correlation) the illumination is described as "incoherent". Par
tially coherent illumination lies between these two extremes.

56
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13. An Understanding of the Hopkins Formula

The Hopkins formula can be more easily understood by first examining a simplified projection

system that only consists of a mask and a source. If the illumination is constant, and if the imaging is

perfect, the intensity at the image plane is equal to the electric field multipled by its conjugate,

/ = \E I2. The electric field, in turn, is proportional to the transmission of the mask, f{x,y), and so at

the image plane,

/(*j)=/o/(*oO/*(*,y) (A.1)

where /o is a constant In the frequency domain, the above can be written as a convolution,

as ao

Hf X) =/o J JF(f'+f,g'+g) F'if'j') df dg' iA2)

The above formula expresses Iif g) as the sum of contributions from each spatial frequency if',g*) of

the object structure. Now, the intensity of the illumination as well as the transmission function of the

medium (which contains several lenses) has to be factored in. Each Fif ,g) in (A.2) above has to be

multiplied by a corresponding Kif ,g) which represents the medium of propagation. The Kif ,g) func

tions in turn have to take into account the mutual intensity or the correlation between all the points in

the wave field. With this information, it is now possible to understand the basic Hopkins formula

below.

I(f>8) =JjTCCif'+f,g'+g:f',g') Fif'+fj'+g) F'if',g-) df dg' (A.3)

TCCif'£':f",g") =jjJifj) Kif+f'j+g-) K*if+f",g+g") dfdg (A.4)

rCC(/",£':/">#") is a function that describes the interaction between the light intensity (with a Fourier

transform J(fg)) and the lens. Comparing Equations (A.2) and (A.3), the reason for the TCC now

becomes clear - the TCC is a function that modulates the wave, and takes into account both the

diffraction of the wave, and the partial coherence of the system. For this reason, the TCC is known as

the Transmission Cross Coefficient. Equation (A.3) does look quite formidable, but luckily, it can be
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evaluated with numerical techniques provided that a periodic mask is used.

2. Simplifying the Hopkins formula

Let f(x,y) represent the transmittance of the mask at Cartesian coordinates (xy), with Tx and

Ty representing the periods in the x and y-directions respectively. Then, f(x,y) can be represented by

a complex summation as follows :

f(xj)= £ £C(m,«)e xe T> (A.5)

where C(mji) is a complex constant related to the patterns on the mask. Taking the Fourier transform

of the above yields

F(f£)= J jf(**y) ei2Kxf ei23»* dx dy (A.6)

= JJ Z ZC(m,n)e * > dfcdy (A.7)
-oo-oo m=»oo rt=-oo

=£ ic(w^)50r+^L)6(g+^-) (A.8)
m=-» »=-o» *x A>

Now, as mentioned earlier, the image that is formed at the wafer consists of several plane waves which

are diffracted into different orders at the mask and then modulated by the lens, which acts as a filter.

Each of these plane waves is characterized by 2 spatial frequencies, / and g, corresponding to the

degree of diffraction in the x and y directions. Each of these plane waves in turn interfere with each

other at the lens and at the image plane. Using the expression for F(f ,g) developed above in the Hop

kins formula (A.3),

oo oo

Hf,g)= j JTCCif'+fj>'+g:f\g') £ £c(m,n)8(f+/'+^)S(g+s'+^-) (A.9)
mo-oo ns-ao

This long equation reduces to a much simpler form due to the presence of the delta functions.

/(/",*)= £ £ £ £rCC(^,^:^,^)C(m,n)C* </>,?) (A.10)
m=-oo A9-°o p»-oo qs-m ** *•> *x Ly

*x *y
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To obtain the image intensity at the wafer, it is necessary to take the inverse Fourier Transform of this

latest equation. The image intensity thus has the form

ao oo

/(*00 = J jlift) e^2** e^'dfdg (A.11)

oooo-o. ____ -i2«£=£ -i2ay*p-
=S E Z ZrcC(^,-^:-^,-^)C(m^)C>,^)e T* e T> (A.12)

This final equation can be evaluated numerically once the TCCs are known. Rewriting Equation (A.4)

with/(/,^) = /0(/*^X

TCCif'j>':f",g") =JJ-W,*) Kif+f'j+g*) K*if+f"j+g") dfdg (A.13)

As mentioned before, Joif,g) represents the illumination cone, and for critical or Kohler illumination,

is a constant within a radius proportional to a, the partial coherence parameter of the system. Kif j>)

is the objective pupil function, and is given by

K(f,8) = e X /2+*2<l (A.14)

where ®(f,g) is the wave aberration function which can be expressed as a simple power series in /

and g. It is now possible to rewrite the expression for the TCC as follows.

TCC(T '̂://V'W<>JJe X ex dfdg (A.15)

For non-zero <bif ,g). Equation (A.15) can be evaluated using 2-dimensional numerical integration.

3. Some Important Fourier Transform Relationships

The 1-Dimensional Fourier Transform is most familiar in the following form :

fit) =± JF(cd) e-'o'dGi (A.16a)
oo

F((o)= lf(t)ela*dt (A.16b)

With a simple change in variables (<o = 2jt/, and t-x), the set of equations above can be rewritten as

oo

/(*)= JFif)e~i^xdf (A.17a)
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oo

Fif)^\f{x)ei^xdx (A.17b)

The 2-Dimensional Fourier Transform is simply an extension of this 1-Dimensional Transform pair, and

thus can be written out as follows.

DO OO

/(*00 =/ JFifg) e-*2**/ €-***»dfdg (A.18a)
oo oo

Fif£) = J J/(x,y) ei2xx' ei2™ dx dy (A.18b)

Another important relationship in the Fourier Transform states that the Fourier Transform of a complex

exponential is simply a delta function. The set of equations developed below is used in going from

Equation (A.7) to (A.8).

Kx) =±]e-ifxdf (A.19)
oo

5(2jc(x+*)) =-!-Je-<2*/C*-*> df (A.20)
oo

27r6(27c(x+^)) =80c+&) = Je^'2*/^ df (A.21)
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SPLAT

(Simulation of Projection Lens Aberrations via TCCs)

Kenny K. H. Toh
(Professor Andrew R. Neureuther)

Department of Electrical Engineering and Computer Sciences,
and Electronics Research Laboratory,

University of California, Berkeley, CA 94720
(415)642-8897

ABSTRACT

Basic studies of projection printed images have been made using a two-
dimensional optical image simulation program associated with SAMPLE. With the
original program, "2D", images of periodic masks could be simulated with varying
wavelength X, numerical aperture NA and spatial coherence a.

Now, the program has been rewritten to include the effects of arbitrary primary
lens aberrations (including defocus). In addition, the transmission cross-coefficients
(TCCs) associated with a particular mask size and illumination condition can be saved
and reused with different mask patterns.

For analysis of the resulting images, 2-D or 3-D image intensity data points can
be saved. The 3-D data points can be plotted on a contour plot using a graphics pack
age such as DISSPLA(ISSC). Alternatively, a contour plot routine included here as a
separate program can also be used to obtain plots on a HP2648 (or an equivalent HP
terminal), or on an Apple LaserWriter. The 2-D data points can be plotted using the
SAMPLE plotting package, or can be fed into SAMPLE for simulation of processing
steps based on that intensity profile.

This program has been compiled and run successfully on a Vax 11/780, an IBM
3090 mainframe, as well as on an IBM AT.

May 16,1988



SPLAT : AN OPTICAL IMAGING PROGRAM

"SPLAT" is a FORTRAN program, based on the Hopkins theory of partially coherent imaging,
that simulates two-dimensional projection-printing with partial coherence. Transmission cross-
coefficients are used to calculate the light intensity at the image plane relative to the [uniform] intensity
at the mask. This program uses the same algorithms as SAMPLE, but is extended to handle two-
dimensional objects as well as primary lens aberrations. The mask is specified as a set of rectangles and
triangles whose size, position and relative transmittance are specified by the user. This allows the user
to examine the effects of two-dimensional structures such as elbows and squares. Once the intensity has
been computed at the image plane, the image intensity along a line can then be extracted and fed into
SAMPLE for further processing. Alternatively, the image intensity in a specified rectangle can be
extracted and examined through the use of a contour plotting package.

At present, this program can handle any combination of the five primary lens aberrations : Spheri
cal Aberration, Coma, Astigmatism, Curvature/Defocus and Distortion (For descriptions of these aberra
tions, see Appendix II). To simplify and speed up the calculations, the program makes an even periodic
extension in both x and y directions of the user-specified mask. Even so, care must be taken to limit
the size of the mask used, because the computation time is proportional to the square of the area of the
mask. A practical maximum, where the user would wait approximately 5 minutes for results, would be
an unfolded(total) mask size of 4.0 X/NA x 4.0 X/NA.

This program uses a fairly primitive parser routine to read its input statements - this routine, in
essence, recognizes numbers and characters, but not keywords. Statements can be separated by semi
colons or placed on separate lines. A statement may be continued on more than one line by placing an
ampersand (&) as the first character of each continuation line. All characters on the input line are
ignored except numbers, quoted strings, semicolons, an ampersand in the first column, or pound signs.
The pound sign (#) indicates that the remainder of the line is a comment to be ignored by the parser.
Example:

All of the following inputs cause the same action (set light source wavelength X= 0.436 microns
and numerical aperture NA = 0.28) :

# Example 1
2 0.436; 3 0.28;

# Example 2
Statement 2 : wavelength = 0.436 microns
Statement 3 : na = 0.28;

# Example 3
Statement 2 : Set wavelength
& to 0.436 microns;
Statement 3 : 0.28 # Set numerical aperture to 0.28

Note :

D

For interactive use of the program, semicolons should be used as statement separators. Without
the semicolon, the program must read an extra line to see if it is a continuation line before acting
on that input statement.

May 16, 1988



INPUT STATEMENTS FOR SPLAT

A list of the input statements recognized by SPLAT is given below. Arguments shown in brack
ets are optional (the brackets are not necessary when using the program). Strings (such as filenames)
must be inside single or double quotes. Note that the word STATEMENT at the beginning of the input
statement is not necessary.

[STATEMENT] 1 printlevel

STATEMENT 1 sets the level of diagnostic output generated by the program. PRINTLEVEL=1
produces no diagnostic output, while PRINTLEVEL=2 causes the program to echo the input lines
to the output PRINTLEVEL=3, on the other hand, is primarily for interactive/diagnostic use, and
causes the program to report when statement execution is completed, by displaying the input
parameters. The default value of PRINTLEVEL is 1.

[STATEMENT] 2 wavelength

This statement sets the wavelength, in micrometers, of the light used to illuminate the mask.
Currently, the program is set up to accept only a single wavelength. The default is
WAVELENGTH = 0.436 urn.

[STATEMENT] 3 numerical.aperture

The imaging system is projection-type, with an imaging lens numerical aperture equal to
NUMERICAL.APERTURE. Default NUMERICAL.APERTURE is 0.28.

[STATEMENT] 4 defocus

The image can be calculated at a plane other than the plane of best focus. The distance from the
plane of best focus, DEFOCUS, is measured in micrometers, and defaults to 0.0 Jim. Positive
DEFOCUS is defined as being below the gaussian plane, while negative DEFOCUS is above it

[STATEMENT] 5 sigma

STATEMENT 5 sets the partial coherence factor, SIGMA, of the imaging system. Only values of
partial coherence that lie between 0.0 (full coherence) and 1.0 (partial coherence) are accepted by
the program. SIGMA defaults to 0.7, a value common to most projection printers.

[STATEMENT] 6 xlength ylength [transmiltance [scale]]

The working area is the size of the field which is to be imaged, and is specified by XLENGTH
and YLENGTH in micrometers. This specified area is actually only the first quadrant in Cartesian
coordinates. The total/unfolded area is bounded by the coordinates (-XLENGTH,-YLENGTH),
(-XLENGTH.YLENGTH), (XLENGTH.YLENGTH), (XLENGTH.-YLENGTH), and a periodic
extension in both the X and Y directions is assumed. The optional TRANSMTTTANCE is the
initial transmittance of the mask (usually either 1 for transparent or 0 for opaque). The image
calculation time is approximately proportional to the square of the imaged area, and to avoid long
computation times, field sizes with total areas greater than 16 micrometers squared should be
avoided. One way to do this is to take advantage of symmetry - see STATEMENT 7 for details.
The default for TRANSMITTANCE is 0, while XLENGTH and YLENGTH both default to 2.0
micrometers. SCALE is a positive real number that can be used to scale the mask. This scale
factor will also apply to STATEMENTS 7 and 8 that come after STATEMENT 6.
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[STATEMENT] 7 xcoord ycoord xlen ylen transmittance [phase]

This statement is used to add a rectangular feature to the mask. Rectangles may overlap other
rectangles - it is the user's responsibility to make sure no part of the mask has transmittance
greater than 1 or less than 0.

XCOORD = x coordinate of lower left corner of rectangle
YCOORD =8 y coordinate of lower left corner of rectangle
XLEN = length of rectangle in x direction
YLEN = length of rectangle in y direction
TRANSMnTANCE= transmittance of the rectangle relative to the current

transmittance of the mask where it is to be placed.
PHASE = phase angle (normally 0 degrees). This option is used for

phase shifted masks.

As an example, to specify a 2 urn x 2 urn transparent square in a 5 pm x 5 um opaque mask, the
following statements could be used :

STATEMENT 6 : 5 urn x 5 urn at 0 transmittance;
STATEMENT 7 : (2.0,2.0) 2.0 urn x 2.0 urn at 1 transmittance;

However, symmetry can and should be utilized to reduce the computation time, by locating the
center of the rectangle at the origin of the coordinate system in the following manner.

STATEMENT 6 : 2 urn x 2 urn at 0 transmittance;
STATEMENT 7 : (0.0,0.0) 1.0 urn x 1.0 urn at 1 transmittance;

In the last two input statements above, a 1 urn x 1 pm transparent square is defined in a 2 pm x
2 pm opaque mask. Because the program automatically makes even periodic extensions in the x
and y directions, the region specified by the user is actually only the first quadrant in the cartesian
coordinate system; the other three quadrants are the mirror images of the first reflected across the
x and y-axes respectively. Therefore, the 1 urn x 1 um square defined above is actually only part
of a 2 um x 2 pm square, with the center of symmetry of that larger square located at the origin.
In a similar manner, an opaque square on a transparent mask can be defined using the statements
below, where the transmittance is 1 for the background, and -1 for the square.

STATEMENT 6 : 2 um x 2 um at 1 transmittance;
STATEMENT 7 : (0.0,0.0) 1.0 um x 1.0 um at -1 transmittance;

[STATEMENT] 8 xcoord ycoord xlen ylen transmittance; or

[STATEMENT] 8 xl yl x2 y2 x3 y3 transmittance;

Adda triangular aperture to the mask. Triangles may overlap other triangles and rectangles - it is
the user's responsibility to make sure no part of the mask has transmittance greater than 1 or less
than 0. The triangle can be specified in two ways - as a right triangle defined by the corner (right
angle) point base and height; or as a general triangle defined by three points. Again, even
periodic extensions in the x and y directions areassumed.
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XCOORD = x coordinate of corner of right triangle
YCOORD = y coordinate of corner of right triangle
XLEN =base length of right triangle (may benegative to flip triangle)
YLEN = height of right triangle (may benegative to flip triangle)
XI = x coordinate of point defining general triangle
Yl = y coordinate of point defining general triangle
X2 =s x coordinate of point defining general triangle
Y2 = y coordinate of point defining general triangle
X3 a x coordinate of point defining general triangle
Y3 = y coordinate of point defining general triangle
TRANSMITTANCE=transmittance of the triangle relative to the current

transmittance of the mask where it is to be placed.
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Example : Mask Specification and Symmetry

Input Statements :
Statement 6 : 5M x W<§0;
Statement 7 : (0,0) (XL,YL) @1;

(OM,\M) (XM,\M) (3XM,WD
#####################################################

I..(XL,YL)...#
1111111111111 # 111111

1 I 1 # 1

(0,0) #
1 I 1 # 1
1111111111111 # 111111

#..(-XL,-YL) I
# I

# I

#

#

#

111111 #

1 #

#

1 #

111111 #

#

#

#

(-5M, -\M)#################(XM, -W)##################(3XM, -W)

1111111111111 # 111111

1 I 1 # 1
(0,-2\M) #

1 I 1 # 1
1111111111111 # 111111

I #

I #

I #

#

#

#

111111 #

1 #

#

1 #

111111 #

#

#

#

(-Xtf, -3\M)#################(3M, -3\M)################(3XM, -3W)

Opaque areas = ".
Transparent areas = "1
Axes as "-.

1"

[STATEMENT] 9 nx ny [mode [xllc yllc xlcn ylen [difflag]]] ['filename'];
STATEMENT 9 is used to calculate the transmittance profile of the mask. The transmittance at
any point is the sum of the working area(mask) transmittance (see STATEMENT 6) and the
transmittances of all rectangles or triangles defined by STATEMENTS 7 and 8 that cover that
point The output file consists of a list of transmittances at points on a grid defined by NX and
NY. The default is tocalculate for the entire working area, but the user can specify a smaller (or
larger) area. MODE defines the type ofoutput obtained from this statement. MODE =0 produces
output to a specified file, MODE = 1 sends a crude contour plot to the terminal, while MODE = 2
does both.
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NX a* number of divisions along x axis (default = 20)
NY = numberof divisions along y axis (default = 20)
MODE = type of output desired
XLLC = x coordinate of lower left comer of rectangle to be plotted
YLLC = y coordinate of lower left comer of rectangle to be plotted
XLEN = length of rectangle in x direction
YLEN = length of rectangle in y direction
DIFFLAG = 1 to limit spatial frequencies (normally not used)
FDUENAME= name of file into which to store the calculated intensities.

[STATEMENT] 10 [mode [force]] ['filename'];

STATEMENT 10 orders the program to calculate the transmission cross-coefficients (TCCs) as
well as the Fourier coefficients of the image intensity profile. This statement can take a long,
long time to execute. MODE = 1 stores the TCCs in binary form in the file FILENAME.
FORCE is an integer flag which forces the program to choose which of the 3 integration routines
should be used for TCC calculation. FORCE = 0 is the default FORCE = 1 uses a 1-dimensional
integration routine, while FORCE = 2 uses a 2-dimensional integration scheme. This last option,
FORCE, should be used only for diagnostics.

[STATEMENT] 11 [xllc yllc xlen ylcn] ['filename'];

Calculate the intensity at the image plane. The parameters are :

XLLC = x coordinate of lower left corner of rectangle to be plotted
YLLC = y coordinate of lower left corner of rectangle to be plotted
XLEN = length of rectangle in x direction
YLEN = length of rectangle in y direction
FILENAME= name of file into which to store the calculated intensities.

This statement calculates the image intensity within a rectangle specified by XLLC, YLLC,
XLEN, YLEN. The intensities are calculated at each point of a 50 by 50 equally spaced grid
within that rectangle. This output file may be used with a 3-dimensional plotting package to pro
vide either a 3-dimensional intensity profile or an intensity contour plot. (See Appendix I)

[STATEMENT] 12 'filename'

Save the Fourier coefficients that describe mask transmittance and image intensity. This input
line will produce a relatively large (approx. 30 kbytes) binary output file, which contains the
Fourier coefficients as well as the imaging system parameters - numerical aperture, wavelength,
coherence factor, mask size. The coefficients can be re-loaded with STATEMENT 13 to generate
more plot files of the same mask pattern.

[STATEMENT] 13 'filename'

STATEMENT 13 is used to load the Fourier mask and image coefficients previously saved with
STATEMENT 12. Therefore, for a given set of imaging system parameters (N.A., wavelength,
sigma, mask size + pattern), the intensity profile need only be calculated once with STATEMENT
10. STATEMENT 12 saves the data computed by STATEMENT 10 for later use, and STATE
MENT 13 reloads this data. Note that the TCCs saved via STATEMENT 10 can be used for any
mask pattern, as long as die field size remains constant On the other hand, STATEMENT 12-13
saves the Fourier coefficients only, so these can be used only for one particular mask pattern.

[STATEMENT] 14 xi yi xf yf [npts [mode]] ['filename'];

Calculate the image intensity profile along the line joining points (XI,YI) and (XF,YF). The
number of points along that profile and is optionally specified by NPTS, which defaults to 50.
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The intensity profile is output in the same format as a SAMPLE f77punch7 file. The 'x' values
in the file represent the distance along the line from the point (XI,YI), while the 'y' values
represent the light intensity normalized to 1.00. Again, MODE is an integer flag, normally 0,
used to specify the format of the intensity profile. MODE = 1 outputs the intensities with 5
decimal spaces (as compared to 3 with MODE = 0). This option is particularly useful for
analysis of small patterns such as defects, where the intensity is very low.

XI = x coordinate of initial plot point
YI ss y coordinate of initial plot point
XF = x coordinate of final plot point
YF ss y coordinate of final plot point
NPTS= number of points (default is 50)
MODE = accuracy flag (defaults to 0)

[STATEMENT] 15 xllc yllc xlen ylen [xsiz ysiz [maj [min [Ibis [mode]]]]] ['tide']

STATEMENT 15 produces a plot of the intensity contours using the DISSPLA(ISSC) graphics
package. Essentially, the data produced by this statement is similar to that produced by STATE
MENT 11, except that die output data here is formatted to conform with the input requirements
of DISSPLA. STATEMENT 15 was developed for use at UC Berkeley for use on an IBM 3090
mainframe.

XLLC = x coordinate of lower left cornerof area to be plotted
YLLC = y coordinate of lower left cornerof area to be plotted
XLEN =s length of area in x direction
YLEN ss length of area in y direction
XSIZ as horizontal length of actual plot in inches
YSIZ ss vertical length of actual plot in inches
MAJ ss major (thick line) contour increment (default 0.20)
MIN ss minor (dotted line) contour increment (default 0.05)
LABELS = request no contour labeling if 0
MODE = 0 for a plotfile, 1 forTEK4115, 2 for printer/non-graphics.
TITLE ss plot title to be printed on plot page

WARNING:

The FORTRAN code containing STATEMENT 15 can only be compiled on an environment that
runs DISSPLA. For this reason, STATEMENT 15 is not included as part of the compilable code,
and the instructions in Appendix 1.1 should be followed to include this statement as part of the
code. STATEMENT 15 will normally be a blank statement (i.e. no commands implemented).
For implementation of this subroutine on a DISSPLA environment consult your local DISSPLA
expert.

[STATEMENT] 16 empty

[STATEMENT] 17 empty

[STATEMENT] 18 empty

[STATEMENTl 19 'filename'

STATEMENT 19 loads the transmission cross-coefficients(TCC) saved from STATEMENT 10.
These TCCs can be reused for different mask patterns because the TCCs are only dependent on
the mask size and not upon the patterns contained within it Using these TCCs a new image can
be recomputed very speedily (in approx. 38 cpu seconds).
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[STATEMENT] 20 xpos ypos

This statement is used to specify the coordinates of the object relative to the lens axis. With
this, it is possible to examine features at different points of the field. This statement is used pri
marily to determine how the object is situated (perpendicular, parallel, etc) relative to the lens
axis. The object coordinates input through this statement will be normalized such that XPOS2 +
YPOS2 sb l. For example, (XPOS.YPOS) =(1,0) means that the portion of the mask currendy
being simulated is located on the X-axis of the field. If the mask consists of vertical lines, then it
is possible to say that the pattern is perpendicular to the lens axis. In contrast if (XPOS.YPOS)
= (0,1), the vertical pattern would be parallel to the lens axis. This distinction has been found to
be important for aberrations such as coma and astigmatism, which are orientation-dependent

[STATEMENTl 21 spherical_aberration

[STATEMENT! 22 coma

[STATEMENTl 23 astigmatism

[STATEMENT] 24 curvature

[STATEMENTl 25 distortion

Statements 21-25 can be used to specify any combination of primary lens aberrations. The
. numbers specified (COMA, ASTIGMATISM, etc) are used as multipliers to a predefined power

series (Zernike polynomials), and as such, can be either positive or negative real values. It is
easier to think of these multipliers as a measure of the deviations, measured in fractions of a
wavelength, from the ideal spherical wavefront In general, the deviation is related to the multi
plier as AX, s= multiplier / wavelength. For example, if X sb 0.5 um, and COMA sb 0.1, this would
mean that the wavefront has a maximum deviation of 0.2X from the ideal spherical wavefront.

May 16, 1988



SPLAT EXAMPLES

Recall that in these, and all other examples which follow, all characters on the input line are
ignored except for numbers, quoted strings, semicolons, the ampersand (&) in the first column, and the
pound(#) sign. Furthermore, the word "Statement" is optional. Here, on each page, the input file is
presented first and followed by the line-printer output that results from that input file.

Example 1 : Input File

ion Lithography using SPLAT testl# Project
#

# l.Oum x

#

Statement

Statement

Statement

Statement

Statement

Statement

&

Statement

&

Statement

Statement

&

Statement

l.Oum opaque diamond in a transparent mask.

1 : Printlevel 3

2 : lambda sb 0.436 um

3 : NA = 0.28

4 : Defocus= 0.0 um

5 : Sigma = 0.7
6 : mask ss 2um x 2um

at 1 transmittance

8 : cutout s= (0.0, 0.0)
0.5 x 0.5 at -1

10:

14: intensity (-2,0) ..
to 'testl.plot'

0 : end;

Example 1 : Line Printer Output

(2,0)

# set print level
# wavelength
# numerical aperture
# defocus

# coherence factor

;# define the working area
# triangular opaque pattern
;# define the mask openings
;# calculate the Fourier coeffs

;# 2-D intensity profiles

2-D optical imaging with aberrations-
5/10/87 ~ KT

V2.0

Trial 1: Print level= 3

Trial 2: Lambda = 0.4360 microns
Trial 3: N.A. = 0.2800

Trial 4: Defocus ss o. microns [ 0. Rayleigh Units ]
Trial 5: Sigma = 0.7000
Trial 6: Field size == 2.0000 x 2.0000 <3) 1.0000 scale ==1.00
# 8: Add triangle (0. ,0. )x( 0.500, 0.500) @-1.000
Trial 8: Triangle == ( 0. ,0. ) ( 0. , 0.500) ( 0.500, 0. )
Trial 10: Calculate image Fourier Transform
# 10: Symmetry: T( fl, gl, f2, g2) ==
# 10: T(-fl,-gl,-f2,-g2)
# 10: T( fl,-gl, f2,-g2)
# 10: T(-fl, gl,-f2, g2)
# 10: T(f2,g2,fl,gl)
# 10: TCC computation time sb 4.76667 sec.
# 10: Imaged with 4 by 4 harmonics
# 10: TCC calls: 361 zeros: 520
Trial 14: 3-decimal plot fine : ( -2.000, 0. )..( 2.000, 0. )

50 points saved in "testl .plot"
Trial 0 : End of session

User Time (CPU) == 10.00000 sec, System Time == 1.80000 sec.
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Example 2 : Input File

#

#

#

#

Tri

Tri

Tri

Tri

Tri

Tri

&

Tri

&

Tri

&

Tri

Tri

&

Tri

&

Tri

Projection Lithography using SPLAT -- test2

0.4um square in close proximity to a 0.8um line, with 1 um defocus

al 1 : Printlevel 3

al 2 : lambda sb 0.5 um

al 3 : NA =0.5

al 4 : Defocus= 1.0 um

al 5 : Sigma = 0.7
al 6 : mask = 2um x 2um

at 0 transmittance

al 7 : cutout = (0.0, 0.0)
0.4 x 2.0 at 1;

al 7 : cutout = (0.5, 0.0)
0.4 x 0.2 at 1

al 10:

al 14: intensity (0,2) .. (2,2)
to *f771ine';

al 14: intensity (0,0) .. (2,0)
to 'f77ccmbined*

al 0 : end;

Example 2 : Line Printer Output

2-D optical imaging with aberrations- V2.0
5/10/87 - KT

# set print level
# wavelength
# numerical aperture
# defocus

# coherence factor

;# define the working area

;# define the mask openings
;# calculate the Fourier coeffs

;# intensity profiles

Trial 1:

Trial 2:

Trial 3:

Trial 4:

Trial 5:

Trial 6:

Trial 7:

Trial 7:

Trial 10:

# 10:

# 10:

# 10:

# 10:

# 10:

# 10:

# 10:

# 10:

Trial 14:

Print level= 3

Lambda = 0.5000 microns

N.A. = 0.5000

Defocus = 1.0000 microns

Sigma = 0.7000
Field size = 2.0000 x 2.0000 @ 0. scale =1.00
Cutout =( 0. , 0. )x( 0.4000, 2.0000) @ 1.0000 < 0. >
Cutout =( 0.5000, 0. )x( 0.4000, 0.2000) @ 1.0000 < 0. >
Calculate image Fourier Transform
Symmetry : T( fl, gl, f2, g2) =

T(-fl,-gl,-f2,-g2)
T( fl,-gl, f2,-g2)
T(-fl, gl,-f2, g2)

conjg[T( f2, g2, fl, gl)]
TCC computation time = 34.58333 sec.
Imaged with 6 by 6 harmonics
TCC calls: 1874 zeros: 1906

3-decimal plot line : ( 0. , 2.000)..( 2.000, 2.000)
50 points saved in "f771ine "

14: 3-decimal plot line : ( 0. ,0. )..( 2.000, 0. )
50 points saved in "f77combine"

0 : End of session

Time (CPU) = 48.00000 sec, System Time = 2.61667 sec.

[ 1.0000 Rayleigh Units ]

Trial

Trial

User
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Example3 : Input File

# The following two examples consist of two separate SPLAT input files. The
# first (Example 3) calculates the image for a pair of opaque elbows and
# stores the calculated coefficients in the file named "test3.cof".

# The second (Example 4 on the following page) reads the coefficients back
# and calculates the intensity profiles along a diagonal through the elbow
# comers.

#

#

# 4 um. mask with 0.75 um. wide elbows separated by 0.5 um. - test3
#

stmt 1: print = 3
stmt 2: lambda = 0.436 um

stmt 3: na = 0.28

stmt 4: defoc = 0.0 um

stmt 5: s = 0.7

stmt 6: mask = 4x4 @0
stmt 7: cutout = (0.75,0.50) 0.75 x 2.75 @1
stmt 7: cutout = (1.50,2.50) 2.00 x 0.75 @1
stmt 7: cutout = (2.00,0.50) 0.75 x 1.50 @1
stmt 7: cutout = (2.75,1.25) 0.75 x 0.75 @1
stmt 10

stmt 12: save = 'test3.cof

end 0

Example 3 : Line Printer Output

2-D optical imaging with aberrations- V2.0
5/10/87 - KT

Trial 1: Print level= 3

Trial 2: Lambda = 0.4360 microns
Trial 3: N.A. = 0.2800

Trial 4: Defocus = 0. microns [ 0. Rayleigh Units ]
Trial 5: Sigma = 0.7000
Trial 6: Field size = 4.0000 x 4.0000 @ 0. scale =1.00
Trial 7: Cutout =( 0.7500, 0.5000)x( 0.7500, 2.7500) @ 1.0000 < 0. >
Trial 7: Cutout =( 1.5000, 2.5000)x( 2.0000, 0.7500) @ 1.0000< 0. >
Trial 7: Cutout =( 2.0000, 0.5000)x( 0.7500, 1.5000) @ 1.0000 < 0. >
Trial 7: Cutout =( 2.7500, 1.2500)x( 0.7500, 0.7500) @ 1.0000 < 0. >
Trial 10: Calculate image Fourier Transform
# 10: Symmetry: T( fl, gl, f2, g2) =
# 10: T(-fl,-gl,-f2,-g2)
# 10: T( fl,-gl, f2,-g2)
# 10: T(-fl, gl,-f2, g2)
# 10: T( f2, g2, fl, gl)
# 10: TCC computation time = 58.56667 sec.
# 10: Imaged with 8 by 8 harmonics
# 10: TCC calls: 5152 zeros: 5505
Trial 12: Fourier Coefficients saved in "tesG-cof "
Program execution terminated.
User Time (CPU) = 69.41666 sec, System Time = 1.78333 sec.
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Example 4 : Input File

# Read the coefficient file produced by example 3 and get
# a SAMPLE style intensity plotfile along a diagonal through
# the two elbows.

#

# Plot intensity - test4
#

Trial 1: 2;
Trial 13: load file 'test3.cof;
Trial 14: intensity (0,4).. (4,0) to 'test4.plot';
Trial 0:

Example 4 : Line Printer Output

2-D optical imaging with aberrations- V2.0
5/10/87 - KT

Trial 1: Print level= 2

Trial 13: load file 'test3.cof;
Trial 13: Fourier Coeffs loaded from "test3.cof"

Trial 14: intensity (0,4).. (4,0) to 'test4.plot';
Trial 14: 3-decimal plot line : ( 0. , 4.000)..( 4.000, 0. )

50 points saved in "test4.plot"
Trial 0:

Program execution terminated.
User Time (CPU) = 8.11667 sec, System Time = 0.90000 sec.
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Example 5 : Input File

# The next two examples again consist of two separate SPLAT input files.
# The first (Example 5) calculates the image for a checker-board pattern,
# and stores the calculated transmission cross-coefficients in the file

# named "test5.tcc".

# The second (Example 6 on the following page) reads the coefficients back,
# and calculates the intensity profiles for a different pattern, this time
# an isolated square.
# To make things a litde more interesting, a slight amount of coma is
# introduced.

#

# 1.50 um. mask with 1.50 um. squares. - test5
#

stmt 1: print = 3
stmt 2: lambda = 0.5 um

stmt 3: na = 0.5

stmt 4: defoc = 0.0 um

stmt 5: s = 0.7

stmt 6: mask = 1.5 x 1.5 @0
stmt 7: cutout = (0.00,0.00) 0.75 x 0.75 @1
stmt 7: cutout = (0.75,0.75) 0.75 x 0.75 @1
stmt 20: xpos = 1 ypos = 0
stmt 22: coma = 0.1

stmt 10: mode = 1 save in 'test5.tcc'
stmt 14: cudine from (-0.75,0.4) to (0.75,0.4)
& with 100 points in 'test5.plot'
end 0

Example 5 : Line Printer Output

2-D optical imaging with aberrations- V2.0
5/10/87 - KT

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Trial 6

Trial 7

Trial 7

Trial 20

Trial 20

Trial 22

Trial 22

Trial 22:

Trial 10

Trial 10

# 10:

# 10

# 10

# 10

Print level= 3

Lambda = 0.5000 microns

N.A. = 0.5000

Defocus = 0. microns [ 0. Rayleigh Units ]
Sigma a 0.7000
Field size = 1.5000 x 1.5000 <3> 0. scale =1.00
Cutout =( 0. , 0. )x( 0.7500, 0.7500) @ 1.0000 < 0. >
Cutout =( 0.7500, 0.7500)x( 0.7500, 0.7500) @ 1.0000 < 0. >
Relative x-coord (object) = 1.0000
Relative y-coord (object) = 0.
a031(coma) = 0.1000
b031(dist)= 0.
Maximum Coma OPD = 0.2000 Wavelengths
Calculate image Fourier Transform
Imaging System Parameters saved

Lambda = 0.5000

N.A. sb 0.5000

Defocus = 0.

Sigma = 0.7000
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Trial 10:

# 10:

# 10:

# 10:

# 10:

Trial 10:

# 10:

# 10:

# 10:

# 10:

# 10:

# 10:

# 10:

# 10:

# 10:

# 10:

14-

Mask Characteristics saved

xlength sb 1.5000
ylength = 1.5000
Transmittance = 0.

Object Coordinates : ( 1.0000 0. )
1 Primary Lens Aberrations saved
Com = 0.1000 Dis = 0.

Symmetry: T( fl, gl, f2, g2) =
conjg[T(-fl,-gl,-f2,-g2)]

T( fl,-gl, f2,-g2)
conjgfT(-n, gl,-f2, g2)]
conjg[T( f2, g2, fl, gl)]

4905 / 14641 TCCs saved in "test5.tcc "
TCC computation time = 97.16666 sec.
Imaged with 5 by 5 harmonics
TCC calls: 662 zeros: 1259

Trial 14: 3-decimal plot line : ( -0.750, 0.400)..( 0.750, 0.400)
100 points saved in "test5.plot"

Program execution terminated.
User Time (CPU) = 108.95000 sec, System Time = 24.75000 sec.
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Example 6 : Input File

# This example uses previously computed TCCs to recalculate the image
# intensity profile for a different mask pattern. Note that the image
# parameters (lambda, na, sigma) should not be changed. Also, the mask size
# must remain constant If any of these parameters are changed, the
# results obtained with STATEMENT 19 will not be valid.
#

# The new pattern is an isolated 0.5 lambda/NA square. - test6
#

stmt 1: print = 3
stmt 6: mask = 1.5 x 1.5 @0
stmt 7: cutout = (0.00,0.00) 0.25 x 0.25 <3>1
stmt 19: read from 'test5.tcc'

stmt 14: outline from (-0.75,0.0) to (0.75,0.0)
& with 100 points in 'test6.plot'
end 0

Example 6 : Line Printer Output

2-D optical imaging with aberrations- V2.0
5/10/87 - KT

Trial 1: Print level= 3

Trial 6: Field size = 1.5000 x 1.5000 @ 0. scale =1.00
Trial 7: Cutout =( 0. , 0. )x( 0.2500, 0.2500) @ 1.0000 < 0. >
Trial 19: Imaging System Parameters Loaded
# 19: Lambda = 0.5000

# 19: N.A. = 0.5000

# 19: Defocus = 0.

# 19: Sigma = 0.7000
Trial 19: Mask Characteristics Loaded
# 19: xlength = 1.5000
# 19: ylength = 1.5000
# 19: Transmittance = 0.

# 19: Object Coordinates : ( 1.0000 0. )
Trial 19: 1 Primary Lens Aberrations Loaded
# 19: Com = 0.1000 Dis = 0.
Trial 19: 4905 TCCs read in from "test5.tcc ".
# 19: Imaged widi 5 by 5 harmonics
Trial 19: Calculate image Fourier Transform
Trial 14: 3-decimal plot line : (-0.750, 0. )..( 0.750, 0. )

100 points saved in "test6.plot"
Program execution terminated.
User Time (CPU) = 14.33333 sec, System Time = 1.46667 sec.
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Example 7 : Input File

# And finally, a demostration of Statements 9 and 11.
# Statement 9 shows what the mask looks like after a discrete Fourier
# transform, followed by an inverse Fourier transform, has been
# performed on the mask.
#

# Triangular pattern - test7
#

stmt 1: print = 3
stmt 2: lambda = 0.5 um
stmt 3: na = 0.5

stmt 4: defoc = 0.0 um

stmt 5:s =0.3

stmt 6: mask = 1.5 x 1.5 @0
stmt 8: cutout = (1.00,1.00) -1.00 x -1.00 @1
stmt 9: 20 20 mode = 1 box : (-1.5,-1.5) 3x3;
stmt 10:

stmt 11: -1.5 -1.5 3.0 3.0 'test7.ctr'

stmt 14: cudine from (-1.5,-1.5) to (1.5,1.5)
& with 100 points in 'test7.plot'
end 0

Example 7 : Line Printer Output

2-D optical imaging with aberrations-- V2.0
5/10/87 -- KT

Print level=

Lambda =

N.A.

Defocus =

Sigma =
Field size =

Add triangle (

Trial

Trial

Trial

Trial

Trial

Trial

#

Trial

Trial

0.5000 microns

0.5000

0. microns

0.3000

1.5000 x 1.5000 @0.
1.000, 1.000)x( -1.000,

[ 0. Rayleigh Units ]

Left bottom corner

Right top corner
x-interval

y-interval
00000000000000000000

00000000000000000000

00000000000000000000

0000 00 0000

000 11111 11111 000

ooo mi oo mi ooo

000 111 0000 111 000

000 11 000000 11 000

000 1 00000000 1 000

0000 0000000000 0000

0000 0000000000 0000

( -1.500 -1.500)
( 1.500 1.500)
0.158 microns

0.158 microns
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scale =1.00

-1.000) @ 1.000
Triangle = ( 0. , 1.000) ( 1.000, 1.000) ( 1.000, 0. )
Transmittance : 20x20 pts ( -1.500, -1.500)x( 1.500, 1.500)
Contour map of the mask transmittance



Trial 10

# 10

# 10

# 10

# 10

# 10

# 10

# 10

# 10

Trial 11

Trial 14

D
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000

000

000

000

000

0000

I 00000000 1

II 000000 11

III 0000 111

mi oo mi

inn inn

oo

000

000

000

000

000

0000

00000000000000000000

00000000000000000000

00000000000000000000

Calculate image Fourier Transform
Syirmetry T( fl,

T(-fl,
T( fl,
T(-fl,
T( f2,

gl. f2,
gl,-f2,
•gl. f2,
gl.-f2,
g2, fl,

g2) =
•g2)
g2)

g2)
gl)

TOC computation time = 1.93333
Imaged with 3 by 3 harmonics
TOC calls: 263 zeros: 74

Image intensity contour data stored in "test7.ctr "
3-decimal plot line : ( -1.500, -1.500)..( 1.500,
100 points saved in "test7.plot"

Program execution terminated.
User Time (CPU) = 247.81667 sec, System Time = 13.56667 sec
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APPENDIX I: PLOTTING CONTOUR PLOTS

The easiest way of analyzing SPLAT output is undoubtedly by looking at contour plots, and by
noting the differences between the plots when certain parameters are changed. Of course, the program
can be set up to spew out reams upon reams of data, but no self-respecting graduate student cum pro
grammer would willingly spend hours analyzing endless data points. Therefore, a good plotting package
is absolutely necessary here. Unfortunately, there exist very few good 3-D plotting packages, and to
compound the problem, each package comes with a significant amount of documentation. Therefore, a
relatively primitive contour plotting program has been written, intended for use with HP239X and
HP2647/8 terminals. The output of this program can also be piped to an Apple LaserWriter for nice-
looking plots. This program is included free, for the first time (isn't that a bargain!) as part of the
SPLAT imaging package.

The plot program consists of the following modules :

contouri - main program, searches out location of contours
axesi - subroutine to draw the axes
plotf - plot out each contour

Once compiled, the program will accept an intensity file such as that produced by STATEMENT
11 (SPLAT). This intensity file consists of 2500 intensity points in a 50 by 50 rectangular grid, and the
file has to be named "imagcctr". The program will read in the 2500 data points, and search by vertical
and horizontal scan, with linear interpolation, for the location of points which fall on a 0.1*N contour,
where N is an integer ranging from 1 to approximately 12 (the maximum N depends on the intensity
maxima). Foreach contour, a line is drawn connecting all the points found. The order of connection is
determined by nearest neighbor : a search is made of all the existing points for the point closest to an
initial point - once that point is found, a line is drawn connecting the two points, the first point is
deleted from the storage array, a search is made for the point closest to the second point, andso on.

This program, named "contour", can be run as follows (% denotes the UNIX prompt):
% contour

The program will then read in the 2500 intensity points, and will next prompt the user for the following
options :

[1] Enter Contour Step Size [0.05 - 0.20]:

The program assumes that the intensity values are normalized to a clear-field intensity of 1.0,and
can be asked to produce contours at different step sizes. For example, a step size of 0.1 will pro
duce contours at 0.1,0.2, 0.3, and so on.

[2] Enter scale factor [0.1 - 1.0]:

The contour plot can be scaled down linearly using this option.

[3] Do you want a HP2648 contourmap? [y,n]

This option is used on a HP2648 or equivalent (e.g. HP2397) terminal.

[4] Do you want a POSTSCRIPT contour map? [y,n]

This option, if answered affirmatively, will produce a contour plot in POSTSCRIPT format The
program will produce a file named "image.ps", which can be sent to an Apple LaserWriter using
the UNIX command "lpr -P[printer] image.ps".

[5] Do you want labels on odd contours? [y,n]

This is used only for the POSTSCRIPT contour plot; it will be ignored in HP2648 mode. A
negative answer will result in only every other contour line being labeled. For example, if the
contour step size is 0.1, then only the 0.2, 0.4, 0.6,.., contour lines will be labeled.

There are, of course, discretization problems, as well as point connection problems, but on the
whole, this program does do a reasonable job of producing a contour plot. The output looks nice, and
has goodresolution, but is not quite up to the standards of the professional plot packages.
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APPENDIX 1.1: CONTOUR PLOTS WITH DISSPLA

The DISSPLA (Integrated Software Systems Corporation) graphics package can be used to pro
duce very good quality contour plots. However, as most users will most likely not have access to
DISSPLA, the module containing the DISSPLA subroutine is not included as part of the normal SPLAT
package. If DISSPLA is available, though, this is what has to be done.

(a) Replace the SPLAT module "trl5.f' with the module "trl5ds.f" included with the source code.

(b) Somehow define the DISSPLA environment so that DISSPLA variables are included during com
pilation. This is similar to including external functions, and varys from site to site.

(c) Compile the program. The modules to be included are :
amaslef atrian.f bdatf crosg&f cross.f crosscf files.unix.f funccf main.f opl.f specf specsym.f
trialLf trial2.f trial3.f trl5ds.f trial4.f

The DISSPLA subroutine included here has been used successfully on an IBM 3090 mainframe.
However, because the use of DISSPLA is dependent upon site, help widi installing this subroutine is
best sought from your local DISSPLA expert
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APPENDIX H : A FEW GOOD ABERRATIONS.-

At present this program can handle any combination of the five primary lens aberrations, which
are as follows:

1. Spherical Aberration

This aberration is normally present on all uncorrected lenses, and is due mainly to the failure of
the paraxial approximation in the ideal lens law. Rays that pass though the outer zones of a lens
are deflected more than those that pass through the inner zones, and as a result these rays do not
pass through a common focus. Spherical aberration is the only aberration that is independent of
the object position relative to the lens axis : all points on the image plane are affected similarly.

2. Coma

Coma comes about from the unequal bending of parallel rays from an off-axis object Rays
parallel to the lens axis will come to a common focal point but if these rays are shifted slightly
(approx. 5 degrees) off axis, they will not focus, primarily because each ray "sees" a different
amount of glass. In effect coma is caused by unequal magnification in different zones of the
lens, due to failure of the paraxial lens law.

3. Astigmatism

Off-axis objects cause different focus points for different ray planes. The object sees a thicker
lens width along the sagittal plane than the tangential plane, which results in different focal points
for each of these planes. All spherical lenses have astigmatism for off-axis objects.

4. Curvature

Strictly speaking, curvature is not an aberration at all, but comes about because flat images are
desired instead of the natural spherical images. Curvature is similar to defocus.

5. Distortion

Distortion only occurs when the other lens aberrations are present and when the aperture is
placed some distance away from the lens. This aberration is due mainly to different
magnification at the outer zones of the lens.

These five primary aberrations, a.k.a. Seidel Aberrations, aJca. 3rd Gowest) order ray aberrations,
can be expressed as functions of the object location (relative to the lens axis) and the image location or
spatial frequency (and harmonics). For a more detailed treatment, please refer to the paper "Identifying
and Monitoring Effects of Lens Aberrations in Projection Printing", SPIE Vol 772 : Optical Microl-
ithography VI, Santa Clara, CA, March 1987, by Toh and Neureuther.

D
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APPENDIX m: HELP?

This program is still decently young, and the aberrations capability is hardly a year old. There
fore, it should not surprise the user too much if this program crashes while simulating a complex pat
tern. This has been noticed in certain cases for images with defocus for large masks, and I am still try
ing to find the bug...

However, on the positive side, I have been running numerous test cases during the past few months, and
my crash ratio is approximately 0.1%. If a program glitch does occur, feel free to call me up and ask
for help. Debuggingand mask specification help is available from

Kenny KM. Toh,
550-C10 Cory Hall,
Dept of Electrical Engineering,
Cory Hall,
Univ of California at Berkeley,
Berkeley, CA 94720.
(415)-642-8897

•
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