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Effects of Ion Reflection on the Collector and

and Source Sheaths of a Finite Ion Temperature Plasma

The region between a MaxweUian plasma source and an absorbing surface which

reflects a fraction of the incident ions is modeled numerically with dynamic, elec

trostatic particle simulation and theoretically with a static, kinetic plasma-sheath

model The fraction f of ions reflected is varied from 0 to 0.6 which generally in

creases both the potential drop from the source to the collector and the energy

transported to the collector surface. Results from both models agree well when

the fraction reflected is less than 0.4 ibr fall energy transfer to reEected ions. With

larger fractions and with sHghtly less than full reEected energy, simulations show

an ion-ion two-streaming interaction which slightly reduces the collector potential

drop and decreases the ion energy deposited on the collector surface relative to

predictions from the static theory. According to theory, for a deuterium-tritium

plasma, a collector material causing the reEected ion fraction to be f=0.2 with full

reEected energy increases the magnitude of collector potential by 12% and the ion

energy deposited by 6% over iiiose predicted when f = 0.



I. INTRODUCTION

A. Problem description

Near an electrically floating collector, an electrostatic sheath forms which im

pedes the flow of plasma electrons in order to balance ion and electron currents at

the collector surface. Ions are accelerated by the potential drop through the sheath

and strike the collector surface. Typically some ions backscatter directly from the

surface and the remainder penetrate the collector solid and collide with collector

atoms. Some fraction of these scatter back to the surface. For hydrogen plasma

ions, the reflected particles can emerge as positive ions, negative ions, or neutrals.1

Of these total reflected particles, the positive ions account for 15% with incident ion

energies below 10 keV, for approximately 50% with40 keV ions, and for nearly 80%

with 100 keV ions.2 The ratio of the flux of all emerging particles to the incident

ion flux is nearly 0.9 for 100 eV hydrogen ions impinging on a metal surface.2 Thus

for a hydrogen plasma with a temperature of less than 1 keV, a maximum ratio of

reflected ion flux to incident ion flux is would be less than 0.14. Since the dominant

charge state of the emerging flux is neutral, extensive research has been conducted

on the interaction of the reflectedneutrals with the background plasma.3'4 However,

emphasis in the present study is on plasma sheath effects, so that only reflected

ions and not reflected neutrals will be modeled here.

Ion reflection substantially increases the potential drop across the collector

sheath which then increases the incident ion energy and so enhances the sputtering

of collector surface material. The flux of these reflected ions increases the ion density

at the source and so raises the total flux of ions striking the collector and the total

energy transported from the plasma source to the surface. A strong two-stream

interaction may occur between the primary ion and reflected ion streams which

enhances potential fluctuations. With a small fraction of energy absorption by the



collector for each reflection event, the potential drop across the source sheath goes

to zero.

This sheath region near the reflective surface is rich in kinetic behavior, hav

ing non-Maxwellian velocity distributions of the electrons and primary ions and

reflected ions. Time-dependent computer simulations using particles are a prime

tool for examining these non-neutral plasma regions and following the dynamics

of the two-stream interaction. These simulations provide insight for verifying and

improving the kinetic model for the steady state conditions. Consequently, both

time-independent, kinetic theory and dynamic simulation to analyze this region.

The conceptual evolution from the fully bounded plasma to the present theo

retical and simulation model of the sheath region is shown in Fig. 1. In many de

vices, a plasma source of Maxwellian ions and electrons may be distributed across

a region several orders of magnitude larger than a plasma Debye length \q. This

source may be generated over this distance by some mechanism (e.g. electron beam

or photoionization). Emmert et al.5 describe such a plasma source region which

produces the first potential profile shown at the top of Fig. 1. The electrostatic po

tential falls to <j)p over the source region and then falls again to <j>c through the

collector sheath. In the model of the present analysis, shown in the middle pro

file, the plasma source is the plane at x = 0. Hence the potential drop through the

distributed source region occurs fully within a few Ajp from the planar source; this

"source sheath" is observed via simulation and described in the previous paper.6

We find that ion reflection at the collector affects the source sheath as well as the

collector sheath.

The planar plasma source emits steady and equal fluxes of ions and electrons,

each with half-Maxwellian velocity distributions. The temperature and mass ratios

of the ions and electrons are specified. These particles flow to a surface, which is
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FIG. 1. Model and form of the electrostatic potential profile for the non-Maxwell-
ian sheath region between a Maxwellian plasma source and an electrically floating
collectorthat reflects primary ions. The top figure indicates the form of the potential
profile for a distributed source. The source region is many orders of magnitude
longer than the collector sheath region. The middle shows the potential profile
expected for a planar source. The bottom diagrams the flow of particles between
the source plane and collector.



electrically floating at potential <j>c and becomes charged by the incident particles.

This collector plate returns and is discharged by a flux of reflected ions, Fr, which is

a specified fraction of the incident primary ion flux Fi according to the ion reflection

coefficient, £=—JFV/jFj, where £>0.

The effect of a collector material, containing finite mass atoms, is modeled

through the variation of a = —Vr/Vi, the ratio of reflected velocity Vr to incident

velocity V{ for each reflection event. For an elastic backscattering event, then a —

(A —1)/(A + 1) where A is the ratio of collector atom mass to incident ion mass.7

For a hydrogen plasma and most collector materials, a is minimally 0.9; for an

infinitely massive target, a = l. In my simulations, a=0.9 and a = l are studied.

Particles returned to the source plane at x=0 are added to the steady injected

flux and are re-injected at the source temperature, as indicated in the bottom sketch

of Fig. 1. These particles are mostly electrons which have been repelled by the

source and collector sheath fields or are reflected ions which have been decelerated

by the field yet have sufficient energy to reach s=0. This "refluxing" at the source

plane prevents any charge accumulation there and thus enforces a zero electric field

at x = 0. Therefore the reflected ions reaching the source plane are assumed to

interact in the plasma source region in such a way that they are heated to the

ion source temperature. For the primary ions, the effective source density emitted

into the region is increased beyond the source density injected because of refluxed,

reflected ions (as will be demonstrated in Sec. IIC 2). In addition, the source

density of emitted electrons depends on if>c (a variable parameter) as caused by the

refluxing of repelled electrons at x = 0, as demonstrated previously6 in Sec. II C 2.

These boundary conditions model the source and collector sheath regions of

a symmetric, bounded plasma with a central, full-Maxwellian source region. The

region between the plasma source and collector is treated as collisionless; the plasma



region is implied coUisional. These assumptions and boundary conditions, with

the exception of the ion reflection at the collector, are identical to those given in a

previous paper which analyzes the sheath region near a purely absorbing collector.6

The source and collector sheaths, sketched in the middle of Fig. 1, serve, re

spectively, to neutralize the injected source plasma and to maintain a zero net

current at the floating collector. The potential drop across the source sheath, <f>p,

becomes more negative as the ion/electron source temperature ratio, T= Tsi/Tse,

is decreased. (Throughout this paper, temperatures are measured in energy units.)

The potential drop across the collector sheath, </>c—<t>Pi becomes more negative as

the inverse mass ratio, p=m/M, is increased.

For a deuterium-tritium (D-T) plasma (with a mean value of p. = 1/4590) and

r = 1, varying the ion reflection coefficient f from 0 to 0.2 increases the density of

ions in the system. Overall this increasecreates a more negative potential curvature,

V2<£, which causes e<j>c to drop from -3.32Tse to —3.72 Ts*. (The unsigned charge

e is equal for all three species.) The potential drop across the source sheath, e^p =

—0.34Xse> is unchanged by £ at a=l. (For f=0, a detailed discussion of the source

and collector sheath evolution including the derivation of the dependence of both

<j>P and <f>c on \i and r is provided elsewhere.6)

If even a small fraction of impact energy is absorbed by the collector, the

reflected ions have insufficient energy to return to the plasma source. The net result

of setting a < 1 is that the potential drop across the source sheath goes to zero. Thus

the values of <j>c and </>p depend on the value of a. A monotonically decreasing

potential profile exists only for 1 < a < amin, where amtn depends on mass and

temperature ratios. For a D-T plasma with r = 1 and £ = 0.2, then amin = 0.993,

as obtained from the kinetic theory. The assumption of finite mass collector atoms

(a < 1) changes the potential profile but only slightly affects the overall potential



drop to the collector. For example, again for a D-T plasma with r = 1 and £ = 0.2

but with a = 0.993, then etfrc = —3.70 T^e- This collector potential is slightly less

than the result using a.= 1 as above.

Our bounded, electrostatic simulation utilizes the particle-in-cell method for

one dimension in space x and velocity v. The time-evolution of the initially empty

region is monitored until a steady-state configuration is achieved. The transient

response and oscillations of the collective plasma behavior are measured. Because

the simulationgenerates the velocity distribution of the ions and electrons in space

and time, spatial profiles and time histories of various energy and particle fluxes are

calculated.

The kinetic theory models the steady state configuration of the region and

satisfies Poisson's equation and the Vlasov equation for each species applied to a

potential profile which monotonically decreases from the source to the collector. The

full kinetic description of both types of ions and of electrons determines the exact

dependence of all three densities on the potential profile. With this description,

various energy and particle fluxes are then derived as a function of potential at any

spatial location.

The boundary conditions of zero electric field at the source and zero total cur

rent at the collector, with fixed coefficients of flux reflection £ and velocity reflection

or, are applied in the above kinetic analysis. The electric field is also assumed to be

zero at the inflection point in potential, defined as <j>p, which occurs in the central

region separating source and collector sheaths by many Debye lengths. Recall also

that the magnitude of the velocity distribution, dependent on Nse, of the emitted

primary electrons is not fixed but dependent on <j>c because the electrons with v < 0

at x=0 are refluxed. Using Poisson's equation and the above assumptions and con

ditions, the values of potential at the neutral region, <j>p (also defined as the source
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sheath drop), and at the collector, <f>c, are calculated as a function of inverse mass

and temperature ratios, p and r, and flux and velocity reflection coefficients, £ and

a.

The effect of ion reflection on the collector sheath region of a plasma source

with Tsi/Tse *< 1 is also considered. Differing from those above, the boundary

conditions are now assumed to be charge neutrality and a zero electric field at the

plasma source at infinity. A Bohm condition8 on minimum ion energy entering the

collector sheath region is derived. (This minimum energy usually results from the

acceleration caused by a source sheath.) A Boltzmann factor describes the potential

dependence of electron density. A simple expression is derived for the dependence of

potential drop across the collector sheath on mass ratio and ion reflection coefficient.

Surprizingly, this expression agrees well with the more complete kinetic results for

i/>c but only for the case of Tsi=Tse-

Details of both analyses are provided later in Sec. II. The numerical simulation

model and results are presented and compared to kinetic analysis in Sec. III. In

Sec. IV is detailed description of how this kinetic model differs from a previous

study. Conclusions are given in Sec. V.

B. Historical review

Unlike other thoroughly studied collector effects, such as secondary electron

emission or sputtering of surface material, the effect of the reflection of plasma

ions on the sheath region has been investigated primarilyby Brooks.9 Data become

available only within the last ten years on the charged fraction of backscattered

particles caused by medium energy, light ions striking a surface.1 As mentioned in

Sec. I A, the predominant reflection event generates backscattered neutrals. The

coUisional interaction of these neutrals with the plasma far beyond the collector

sheath has also been extensively analyzed and is beyond the scope of this paper.
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Brooks9 numerically solves time-independent Vlasov-Poisson equations in the

collector sheath region. He combines the effect of secondary electron emission with

ion reflection in the prediction of potential drop across the collector sheath and

energy transported to the collector surface. An exact expression for these is not

derived so that our results can only be compared for the set of parameters which

Brooks has analyzed. In particular, he varies the coefficients of ion reflection and

secondary electron emission at the boundary for a D-T plasma with Tsi = 0.25Tse.

II. THEORY

A. Model and assumptions

The source and collector sheaths charaterizing a bounded, symmetric plasma,

as shown in the middle sketch of Fig. 1, is modeled over the region 0 < x < L. A

plasma source at the reference potential, at ar=0, emits temporally constant, equal

fluxes of ions and electrons, each with a half-Maxwellian distribution of velocity.

The ratio of electron to ion mass, fi=m/M, is a fixed parameter as well as the ratio

of ion to electron source temperature, r = Tsi/Tse- At x = 0, the electric field is

zero because of refluxing which permits no surface charge to accumulate there.

At x = X, the collector electrically floats to <t>c, is charged by all incident

particles and is discharged by the reflected ions. The collector reflects incident ions

with a velocity of —a V{ where V{ is incident ionvelocity. The reflected flux Frequals

—£Fi which for this steady state analysis is temporally constant. The velocity and

flux reflection coefficients, a and £, are fixed parameters. Net electrical current at

the collector is zero as the collector is electrically isolated from the external world.

The value of potential at the neutral or inflection point, where V2</>=0, between

the source and collector sheaths is designated <j>p. The electric field —V</> at <f>p,
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which by definition is a constant, is chosen to be zero when the source and collector

sheaths are many Debye lengths apart.

B. Derivation of velocity distributions

The velocity distribution functions for the time-independent model are gov

erned by conservation of energy, as described in Sec. II A of the previous paper.6

The electrostatic potential is assumed to be monotonically decreasing with position.

Consequently, the velocity distribution of the primary ions is an accelerated half-

Maxwellian; all ions reach the collector. The source and collector potential drops

repel most of the electrons; only the fastest electrons reach the collector. Hence,

the electron velocity distribution is a truncated, decelerated Maxwellian.

The reflected ions are decelerated as they leave the collector. Their velocity

depends on that of the incident ions which cause a reflection event at the collector.

All reflected ions are assumed to reach the source at x = 0. (In the simulations

with a = 0.9, some reflected ions will return to the collector.) As a result, using

conservation of energy for primary and reflected ions and the definition of a, the

minimum (slowest reflected ion) velocity, —Vmt, can be expressed as

-Vmt{x) =
2 11/2

~(e<£c - a2e(/>c - e<j>(x))
M

Thus the velocity distribution of the reflected ions, /r, depends on potential as

«*•>=Ns{^kf^("c~:!tc-" -¥><w) -.) (2)
where v is particle velocity; Nsi is the primary ion density of the full-Maxwell-

ian source (at x = 0); tp is normalized potential e<t>/TSe\ fir is M/(2rTse); and

0 is the Heaviside step function. The derivations for ion and primary electron

values of minimum velocity and velocity distributions, are presented in the previous

(1)
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paper6 and are valid here. Hence for any value of potential, the time-independent

distribution function for each species (reflected and primary ions and electrons) in

the collisionless sheath region is known.

C. Derivation of moments

1. Definitions

Determining the various moments for each species of particles using the distri

bution functions in Eq. (2) above and in Eqs. (1) and (2) of the previous paper6

provides the potential dependence of each moment. The general definitions, which

use the velocity moments to evaluate density N, particle flux F, drift velocity (V),

temperature T, kinetic energy flux Q, and heat flux H, are presented in Sec. II C 1,

from the previous paper. The examples shown are for the ions but the same expres

sions within each integral apply for reflected ions and electrons. For the reflected

ions, the lower limit of integration is v= —oo and the upper is Vjifr(V0 (also neg

ative). Terms for reflected ions, primary ions, and electrons will be denoted with

subscripts r, i, and e, respectively.

2. Reflected ion density and ion fluxes

An evaluation of the first velocity moments for all three species shows that Fr,

F{, andFe, arespatially constant. Withnocreation orannihilation ofparticles along

0< x < L and when the loss rate ofparticles equals the injection rate then, dN/dt=0

so that V •F=0, by conservation of particles. Thus in my one-dimensional system

at steady state, F is spatially constant for each species.

The net particle fluxes emitted from the source are assumed to be temporally

constant. The condition of zero collector current and the definitionof £ determines

the flux balance at the collector. Both ion fluxes are normalized to the electron flux
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Fe(il>), hereafter called F, and are expressed as

Fi = F/{1 - 0 (3)

and

Fr = -CJF/(1 - C). (4)

Integrating vfr{y) over all velocities for the reflected ions gives the reflected flux as

The ion source density Ns% is proportional to Fi from Eq. (9) of the previous

paper6, hence, greater ion reflection increases Ns% according to (1—^)_1 from Eq. (3)

above. Indirectly through t/tc, greater ion reflection increases the electron source

density Nse according to exp(—i/>c) from the previous Eq. (10). Consequently, the

above Eq. (3) and previous Eqs. (9) and (10) provide the neutralization parameter

(i.e. the ratio of ion/electron densities emitted by the source) as equal to

Nsi/Nse = (^)"1/2(1 - Cr1 exp(^c).

Substituting Eqs. (4) and (5) into the integral of Eq. (2), expressed in terms of

F, yields the reflected ion density:

^«-=(rrolsi5:J «n—S?—)

The density expressions in Eqs. (11) and (12) for Ni(t/>) and Nc(i/>) of the previous

paper6 are the same here if the F factor in Eq. (12) for the primary ions is replaced

with 27(1 - C).
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3. Reflected ion temperature and energy fluxes

With the collisionless sheath model, temperature is defined as the mean square

deviation of the velocity about the mean. With this definition, the dependence of

reflected ion temperature on potential becomes

21W =l-(2Ml'2M3/2(a*TTSe)-3'2G(f}r,VMrW)
T-Lse erfc[r~1a~2(^c —<x2i>c —VO]

2exp [- 2r"1a~2(V'c - <*2V>c - VO]

where

tt\ erfcfi—105~2(^>c —&2i>c —VO] f

ry

G(P,y)= / v2 exp ( - j3v2) dv.
Jo

(7)

This normalized temperature is independent of source temperature Ts*. Note that

the reflected ion temperature at the source plane is Tr(0)=rTse(l —2/ir), for ion

reflection from infinite mass collector atoms (a = l).

The temperature expression in Eq. (7) is written so that the first term equals

M{V*)/rTs€ and the second term equals M(V*r)2/rT5e. Primary and reflected ion

temperatures are sensitive indicators of time-dependent beam heating not accounted

for by this analysis using energy conservation. This analytic evaluation of Tr{ip)

and results from simulation will be compared in Sec. IV.

Next, kinetic energy flux Q is determined in evaluating the third velocity mo

ment. Often, Q is normalized with FTse and referred to as the energy transmission

factor or power transmission coefficient 6. Integrating vzfr(tl>,v) overall velocities

and dividing by FT$e determines Sr as

(The reflected ion energytransmission factor 8r is negative because energy is carried

to the left, away from the collector.) Also includingthe full-Maxwellian distributions
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in the two transverse directions then gives

W) = -C(l - C)"1(2a2r - a2il>c + rpc- *).

From derivations in the previous work and, again, contributions from the transverse

directions in velocity, then 6 for the primary ions can be expressed as

W)=a-cr1(2T-^), (8)

and for the electrons as

*.(#) = 2+ tf-0c. (9)

Combining these three equations gives the total energy transmission factor St as

—C It$rW =fzr(2a2r - <*Vc +tfc) +YZ7 +2^^c (10)

which is independent of position. When a = 1 (infinite mass collector atoms) or

when C= 0 (purely absorbing collector), Eq. (10) provides identical expressions.

With the mean kinetic energy defined as Qa/Fa, Eqs. (8) and (9) show that ions

arrive at the collector with a mean kinetic energy of Tsc(2r —i>c) and electrons

arrive with a mean kinetic energy of 2Tse.

A contribution to the kinetic ortotalenergy flux is the heat flux, which indicates

the thermal flow of thermal energy. The heat flux H is evaluated exactly in terms

of the previously derived profiles using the definition given in Eq. (8) of the earlier

paper. The form of Hr for reflected ions is the same as that for the other species

except with F replaced by —(F/(l - £); hence,
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D. Derivation of rl>c(f*, t, f, a) and ippd*, r, £,a)

With reference to Fig. 1, the potential is characterized by V2^p = 0 some

where between the source and collector sheaths. Hence, setting the net charge

density to zero in Poisson's equation at this inflection point t/>p gives Ne(ipp) =

Ni(il>p) + Nr(i/>p). Substituting Nityp) and Ne(j>p) (with F adjusted), from

Eqs. (11) and (12) of the earlier paper,6 into Poisson's equation provides the rela

tion between ipc and ifrp as

expW-P -V-c) [l +erf(Vp - tc)1'2] =(1 _*—, exp(=^-) edc(ZT')

+a(l-C)^eXPl ^ J^V ^ J • (U)
Recall that the assumption of zero net electric current (floating collector) has been

included in the solution for these densities.

A second equation relating ipc and tjjp results from imposing the zero electric

field condition at the inflection point ijjp. Integrating Poisson's equation, V2ij) =

47re2Ts*(Ne —Ni —Nr), once from ip = 0 to \j) = ipp and utilizing the zero field

condition at these two points is equivalent to integrating Eq. (11) over the same

limits. The resulting expression can be written as the sum of separate terms for the

normalized integral densities Z for electrons and primary and reflected ions which

respectively are

Zt =exp(^P - tfc) [l +erf^p - tf>c)1/2] +-^(-t/-c)1/2
- -£=Wp _V.c)i/2 - expHMfl +erft-^c)1/2],

and
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*=i^h (*c~a:tr*p) erfc(^-^r^)1/2
V^r\ to:2 J J

Thus the zero field condition at ipp is that the normalized integral densities sum to

zero,

Ze + Zi + Zr = 0. (12)

TogetherEqs. (11) and (12) define the source sheath drop tjjp and collector potential

i/>c in terms of the ratios of electron/ion mass fi, ion/electron temperature r, and

ion reflection coefficients for flux and velocity, f and a.

E. Evaluation of collector potential drop for r < 1

With the approach described in Sec. II D, the terms of Eqs. (11) and (12)

cannot be evaluated for r = 0, because then the ion densities are infinitely large

at x = 0. (This limit is discussed in detail in Sec. Ill E of the previous paper.6)

Therefore, a different (more traditional) approach is described below. The accel

eration provided by the source sheath is replaced by determining some minmnrm

ion energy required to enter to the collector sheath which assures that the potential

profile is monotonically decreasing (a Bohm condition8).

Consider a collector surface with floating potential <j>p (relative to potential

just beyond the collector sheath), at spatial position x = 0, and in contact with a

plasma at x>0. (This model differs from that shown in Fig. 1.) Poisson's equation

describes the normalized electrostatic potential with

V2<£(x) = 47re (ne(x) - n{(x) - nr(x)) (13)
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where ne, n,-, and nr are the densities of electrons, primary ions and reflected ions.

The reference potential far from the collector is ^(oo)=0. Chargeneutrality occurs

as x—»-oo, thus with ne(oo)=nOQ then

rioo = n,(oo) + nr(oo). (14)

The densities which are substituted into Poisson's equation are derived for

warm electrons and cold primary and reflected ions. Electrons are assumed to

have a Maxwellian velocity distribution with temperature T. Thus their density,

expressed with a Boltzmann factor, is

ne(x) = rioo exp (e<£(x)/T). (15)

With a temperature much less than T, primary ions arrive at the sheath edge with

kinetic energy S (to be found later). All of these ions entering the sheath region

reach the collector at x = 0. Hence, with a temporally constant flux of incoming

primary ions, Fi, continuity of particles and conservation of energy determines their

density at any position x as

m{x) = ni(oo)E^2 (£ - e^(x))"1/2 . (16)

At the collector, all reflected ions leave with velocity vqt equal to the incident

primary ion velocity voi (for infinitely massive atoms in the collector). All reflected

ions are assumed to reach the plasma source at infinity so that the reflected ion flux

Fr is also spatially constant. By utilizing the condition of zero net collector current

and the definition of £ (as before), the reflected ion density becomes

nr(x) = -fC(l - C)-V(s)-1 (17)

where F is the net electron flux at the collector. Since collector atoms are assumed

to have infinite mass, the reflected ions must also have total energy S, independent
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of x. With this energy conservation, the expression for reflected ion density from

Eq. (17) yields

-lnr(x) = -FC(1 - C) £<*-««*))
1-1/2

(18)

The average velocity (ve) of the half-Maxwellian velocity distribution of electrons

reaching the collector is (2T)1/2(irm)""1/2. Because the electron density reaching

the collector is half that of the fnll-Maxwellian distribution (Eq. (15)), then the

electron flux, F=n6(ve), is expressed in terms of the collector sheath drop </>p as

F = n00T1/2(27rm)-1/2 exp(e^F/T). (19)

Substitution of this expressioninto Eq. (18) determines the firia.1 form of the reflected

ion density as

nr(x) =nM (£ -*,))-*^g^f' exp («£). (20)
Expressed in terms of ra»(oo) in Eq. (16), the primary ion density must be found

also in terms of n,*,. The charge neutrality condition in Eq. (14) and the value for

nr(oo) in Eq. (19) for ^(oo) —»-0 yields the final form for the primary ion density as

1/2

rii(x) = noo {S - e<f>(x))~1/2 «•»-£(£)-*(¥) <«
The minimum value of S, the ion energyat the collectorsheath edge, is specified

with the assumption of zero electric field, i.e. chargeneutrality, at the plasma source.

(Note that charge neutrality only assures a constant electric field; the zero field

condition is an added requirement.) With the three densities, in Eqs. (15), (16),

and (20), Poisson's equation in Eq. (13) takes the form of

(47ren00)-1V2^(x) = exp(e<£(x)/T) - S^2(€ - e^(x))-1/2. (22)
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As x —* oo approaching the plasma source, then ^(oo) -* 0 and —V<£(oo) —» 0 with

this zero field condition. The behavior of Poisson's equation for x —*0 is investigated

next. Multiplying Eq. (22) by V<j> and then integrating from oo to x yields

fe™-—m-#[o-^r-

^ =ln (rr7](^r) I- (28)f / \27rmy

Expanding e<j>/T and e<f>/£ in a Taylor series and retaining the first three terms

determines that

1 rap .. 1(*V (e*)a n~
•Ef^y*) ~2VtJ -Its" (24)

As x —* oo then the electric field, —V^, is required to be always positive, while

approaching zero and to ensure a real (non-oscillating) solution to potential; hence,

(V0)2 >0. When applied to Eq. (24), this limit implies that as x—»oo

E > T/2. (25)

This is also the Bohm condition8 for the minimum ion energy entering the sheath

region near a purely absorbing collector.

This limit of minimum ion energy determines the exact dependence of potential

on f. With the zero net collector current, then F = (1 —C)-F»» Substituting this

expression in Eq. (18) for electron flux provides

(l-Ofl — -P^)^)1"- (26)
Leaving the plasma source, the ion current Fi equals n,-(oo)(2£/M)1/2 by energy

conservation. With this expression and rii(oo) (for </> —• 0) from Eq. (21), then

Eq. (26) is re-arranged to obtain

If the minimum ion energy is T/2, then



20

F. Theoretical results

1. Potential drops across tke collector and source sheaths

The full kinetic description in Sec. IID provides the two equations necessary to

solve for V>c and tj>p for a unique parameter set. The form of the dependence of ipc

on tpp from Eqs. (11) and (12) is the same for most values of mass and temperature

ratios and ion reflection coefficients for full reflected velocity (a = 1). In Fig. 2 is

shown the curves of neutrality (Eq. (11)) and zero field (Eq. (12)) for a D-T plasma

with r = 1 and ion reflection of £ = 0.2. The simultaneous solution of these two

curves occurs at two points. The common point where dijjcl^p = 0 on the zero

field curve is the chosen value for ific and ifrp. The second common point occurs

where i/>p = 0, which is the trivial solution. (A detailed analysis of the behavior of

these two curves is described in Sec. II D of the previous paper.6)

As less energy is transferred to the reflected ion during a reflection event, i.e.

a drops below 1, the common (non-trivial) solution of the two curves in Fig. 2

moves toward tpp = 0 for slightly smaller values of —^c» Prior to reaching the

common solution of tpp = 0, at some minimum value of a, the neutrality curve

bends away from the zero field curve and only the trivial, common solution exists.

For example, for fi = 1/40 at r = 1 with f = 0.2, this minimum value of a —0.986

generates the common solution of (V>c> *l>p) = (—1-38, —0.18); whereas with a = 1

for the same plasma parameters, then (^c»^p)=(—IAQ, —0.30). These values will

be compared in Sec. Ill with those generated via simulation. For a D-T plasma at

r = l with £ = 0.2, the minimum value of a = 0.993 generates the common solution

of (^c, i>p)= (-3.70, -0.20); whereas with a = l, then (V,c,V'p)= (-4.24, -0.86).

The curves in Fig. 3 indicate ij>c(v) and ^p(fi) for a range of £ = 0 (lower

curves) to £ == 0.2 (upper curves) for three temperature ratios, r = 0.1, 1, and

10 for infinite mass atoms in the collector (a = 1). Each curve comprises a family
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FIG. 2. Solutions ofrj>c vs. ^p with the neutral charge density pexpression at ipP
in Eq. (11) and the zero field Econdition at ^=^p and i/> =0 in Eq. (12) for aD-T
plasma with TSi/TSe = 1 at the source and an ion reflection coefficient of 0.2. The
potentials are normalized as i> = e<j>/Tst.



22

of points determined from the common solution of Eqs. (11) and (12) at specific

values of fi and r; the generation of one such data point appears in Fig. 2. For

a surface that absorbs a small fraction of the incident ion energy, these curves

represent the maximum magnitudes of r/>c and ipp for each f. For each set of fi and

r with a=l, the presence of ion reflection does not affect xpp. (As discussed earlier

with a = 1, then ion reflection causes ^p —»0.) Over most of the range of fi and r

shown in Fig. 3, ion reflection raises the value of —i/>c consistently by 0.4 (for a = 1

and £=0.2). The overall trends of the dependence of i/>p and V>c on the mass and

temperature ratios are discussed in the previous paper.6

The effect of £ on tfic and ipp at a particular mass ratio for three temperature

ratios is displayed in Fig. 4. Equations (11) and (12) are solved for i/>c and ^p for

fi = 1/40 and 1/4590 with r=0.1,1, and 10 for a widerange of reflection coefficients.

The solid and dashed curves indicate ij)c{Mlm, r) and t/>p(M/m, r), respectively.

The low mass ratio of 40 is chosen to compare with simulation results in the next

section; the large mass ratio of 4590 represents a D-T plasma. Increasing the ion

reflection coefficient significantly increases the collector potential but, even over this

exaggerated range, has little effect on the source sheath drop tpp (for a = 1).

The dot-dashed curve in Fig. 4 indicates the simple theory for the potential drop

across the collector sheath V>F for cold ions, r < 1, from Eq. (28). An interesting

coincidence is how this simple theory nearly matches the exact theory for warm ions,

where Tsi^Tse- These two theories agree for this wide range of both mass ratios

and coefficients of ion reflection. Hence Eq. (28) provides a simple approximation

for collector potential x/>c (not potential drop across the collector sheath, ifrc—ipPi

which the simple analysis determines), only for equal source temperatures.
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FIG. 3. Potentials at two locations for ion reflection coefficient of f = 0 to f = 0.2
for three source temperature ratios r = Tsi/Tse as a function of mass ratio, 1/fi.
Collector potential ifrc (solid curves) and source sheath potential drop ipp (dashed
curves) are from kinetic theory. For each pair ofcurves (bounding the shaded region
or in close proximity), the lower curve is the solutionwith f=0 and the upper curve
is with C= 0.2.
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FIG. 4. Potentials at various locations for M/m = 40 and 4590 as a function
of ion reflection coefficient C- Collector potential ^c (solid curves) and source
sheath potential drop ipP (dashed curves) are from kinetic theory for three source
temperature ratios r=TSi/TSe with avelocity reflection coefficient of -Vr/V{ =a=
1. Collector sheath potential drop tJ>f (dot-dashed curves) is from kinetic theory
for cold ions r<l in Eq.(28). Data points indicate simulation values witha=l for
i/>c (open circles) and j>P (closed circles) and with a=0.9 for tpc (open squares)
and tl)P (closed squares), all at r = 1; bars indicate oscillation amplitudes at each
i/>c and ipp. The potentials are normalized as ip=e<t>/Tse.
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2. Energy transport to the collector

The effect of ion reflection on the total energy transport coefficient St at the

collector is displayed in Fig. 5. The value of V'cO-'j r> C)» which is calculated from

Eqs. (11) and (12) and plotted in Fig. 3, determines St(^c) from Eq. (10) with

a = 1. The shaded areas indicate (for r = 0.1, 1, and 10) the range of £t(C>t)

generated by varying £ from 0 to 0.2 at each mass ratio. Figure 5 shows the small

increase in energy transported from the plasma to the collector as the ion reflection

coefficient f is increased. The expressions for S(ip) for each species in Sec. II C 3

show that St(i/>c) = 2 and Si(i/>c) + ^e(V'c) = 2r —ipc- Hence, energy transported

by electrons is unaffected by ion reflection but the net energy transported by both

ion species depends on £ only indirectly via i/>c(0'

The effect of ion reflection on the total energy transport coefficient at a partic

ular mass ratio for three temperature ratios is displayed in Fig. 6. Equation (10) is

solved for St{$c) for a wide range of reflection coefficients for /z = 1/40 with r = 0.1,

1, and 10 and a = l. The collector potentials used in this equation are determined

from Eqs. (11) and (12) and plotted in Fig. 4. (These values will be compared with

simulation in the next section.) Energy transport coefficients St are normalized to

St with no ion reflection, f = 0, to show directly that increasing £ increases the total

energy transported to the collector. This dependence is strongest for cooler ions.

When r=10, increasing £ has little effect on St because the dominant contribution

to St then is from the large ion thermal energy.

Ion reflection slightly increases the mean kinetic energy of ions reaching the

collector which will increase the sputtering rate of surface material back into the

plasma, as demonstrated in Fig. 7. Mean kinetic energy W is denned as the kinetic

energy flux Qi divided by the particle flux JFJ. Thus from Eq. (8), W=Tse(2r-i/>c).

Values are normalized to W at f = 0 and plotted for /z = l/40 with r = 0.1, 1, and
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FIG. 5. Total energy transport coefficient St at ion reflection coefficients of f = 0 and

£= 0.2 for three source temperature ratios r=Tsi/Tse as a function of mass ratio,
1/jjl with complete velocity reflection, a = 1. The region containing the solution of
St, with f varied from 0 to 0.2, is shaded for each r. Analysis assumes Maxwellian

velocities in the two directions transverse to x.



FIG. 6. Total energy transport coefficient ST as a function of the ion reflection
coefficient Cat M/m =40 with three source temperature ratios T=TSi/TSti. Solid
curves indicate the kinetic theory results with -Vr/V-=<*=1. Data points indicate
simulation values with a=l (circles) and with a=0.9 (squares), each at r=l; bars
indicate oscillation amplitudes of 6T. Values of ST are normalized to ST at C=0.
Analysis assumes Maxwellian velocities in the two directions transverse to x.
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C

FIG. 7. Mean ion kinetic energy W at the collectoras a function of the ion reflection
coefficient f at M/m = 40 with three source temperature ratios r = Tsi/Tse- Solid
curves indicate the kinetic theory results. Data points indicate simulation values
with a = 1 (circles) and with a = 0.9 (squares), each at r = 1; bars indicate oscillation
amplitudes of W. Values of W are normalized to W at C= 0.



29

10. Note that these curves represent changes in mean ion energy and not the ion

energy transport coefficient whichdiffers by a factor of (1 —C)""1.

Compared with a purely absorbing surface, a reflecting collector surface com

posed of infinite mass atoms creates an additional particle flux of ions, which in

creases \i/>c\ to maintain the current balance. Because the reflected ion flux (with

v < 0) away from the collector remove the energy that the returning (refluxed) ion

flux (with v > 0) carries to the collector, the total energy transported to the collec

tor only increases with | ^c(C)l an<* is not directly affected by £.

HI. SIMULATION

A. Simulation description and fixed parameters

A particle-in-cell computer simulation for ions and electrons is used to study

the plasma-sheathregion bounded by a Maxwellian plasmasource and an absorbing

collector which reflects a fraction of incident primary ions. Lorentz forces move the

particles via electric fields derived self-consistently on a fixed mesh with Poisson's

equationsolved for eachtime step. Particlesare linearly weighted to eachgrid where

the velocity distributions are evaluated. (Methods used are described in Birdsall

and Langdon's book.10 The code used here is fundamentally PDWl developed by

Lawson,11 with surface effects and transport evaluation added.)

The simulation region, 0 < x < L shown in Fig. 1, is initially empty. Particle

electrons and ions with a mass ratio M/m of40 areinjected with equal and tempo

rally constant fluxes. Both species enter the region at x=0 with a half-Maxwellian

velocity distribution with a primary ion/electron temperature ratio of r = 1. Max

imum velocity values injected at the source or collector are 6 times the thermal

velocity. As shown in the bottom sketch in Fig. 1, the particles that return to

the source at x = 0 are re-inserted as injected particles with a velocity characteristic
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of the source temperature. No charge accumulation is allowed at the source plane;

hence, the electric field at x=0 remains zero. At x—L, incident and reflected par

ticles charge and discharge the electrically floating collector.

Reflected ions which originate at x=L have a velocity distribution dependent

on the incident ion velocity distribution. The reflected velocity ratio, a = —Vr/Vi

is chosen to be 1 or 0.9. For a = 1, the algorithm used to determine the reflected

ion velocity must conserve energy as accurately as the particle mover algorithm.

The derivation of the reflection algorithm used is presented in the appendix. The

parameter value a=0.9 represents energy lost to collector atoms during a reflection

event, as defined in Sec. I A. The incident ions which cause a reflection are chosen

such that the time-averaged ratio of reflected ion flux Fr to incident primary ion

flux Fi equals the fixed parameter —£.

B. Variable parameters

Time histories and spatial profiles are presented for electrostatic potential and

field, velocity scatter, temperature, and energy transport. Results are concentrated

primarily on the ion reflection effects. Because generally the potential profile de

creases monotonically, as before with no reflection, the theory for and profiles of

density, drift velocity, temperature, kinetic energy flux, and heat flux for ions and

primary electrons (which are presented in Figs. 5(a)-5(h) in the previous paper6),

have the same potential dependence as do the profiles when ion reflection is included.

Except for potential and velocity scatter plots, all profiles are time-averaged

over one plasma period from the last simulation time step after steady state is

attained. Potential and scatter plots are not time-averaged but are snapshots at

the last time step. Steady state occurs when the average number of particles in

the system becomes approximately constant with time. Time steps are typically

0.05/u;p, where up is the spatially averaged plasma frequency.
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Systems studied are 27-46 Debye lengths (Xd) long and are resolved with from

3-5 grid cellsper \rj. This plasma Debyelength is based on the steady state, length-

averaged value of electron density Nt which increases with —̂ c for a constant

injected flux. A density of at least 400 particle electrons in IXp is required for

reduction of noise to a level below ±10%.

C. Results for Af/m=40 and r = l

1. Time-dependent behavior

a. Electrostatic potential. The temporal behavior of the collector potential ipc

and source sheath drop tpp for £=0.2 with /*=l/40 and r = l is displayed with the

history plots shown in Fig. 8. (These plots show only the first half of the potential

histories.) The potentials measured at x/L=0.5 and1 are those plottedrespectively

as ifip and tpc

The effect of varying the energy absorbed by the collector is seen in comparing

Fig. 8(a) for a = 1 with Fig. 8(b) for a = 0.9. Potentials are normalized with

e/Tse- Typically ipc and rj)p fluctuate with frequency up which depends on We.

For reference, the calculated value of twenty plasma periods is indicated next to the

potential curves by the double arrow. The unit of time t in these and subsequent

plots is L/Vte where where the electron thermal velocity, Vte = (Tse/rn)1/2. The

amplitude of the oscillations in ip depends on the number of simulation particles

ND in a Debye length. For JVD«400, the amplitude is ±10% of r/>.

In Figs. 8(a) and 8(b), the early transient responses of t/>c and ^P for both

simulations are identical. The collector potential begins at zero and thendips to 3.2

times the final, averaged value of xfrc = -1.4. The most negative value of t/>c occurs

when the faster electrons (with a velocity of 1.7 Vte) reach the collector. At this

time, ions experience their strongest acceleration toward x = L. The source sheath
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FIG. 8. Early time histories of collector potential and source sheath potential drop
from simulation with (a) —Vr/Vi —a = \ and (b) a = 0.9 for an ion reflection coef
ficient of C= 0.2, M/m = 40, and TSi/TSe = l. The system lengths L are (a) 27\D
and (b) 30A£>. Arrows indicate the calculated value of 20 plasma periods deter
mined from the length-averaged electron density. The potentials are normalized as

tl> = e<t>/Tse and are measured respectively at x = L and 0.5L.
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potential drop also begins at zero and then dips to 11 times the averaged value of

^P = -0.3.

A difference between the two simulations occurs at times beyond 15L/Vte- For

a=l in Fig. 8(a), the ^p =-0.3 is the final value; however, for a=0.9 in Fig. 8(b),

for time beyond 15L/Vte, ifrp begins to approach zero and eventually becomes

positive. (When typ >0, the potential profile does not decrease monotonically away

from the source plane which is contrary to theoretical assumptions.) At a later time

(not shown), ij)p returns to and equilibrates at ^>p = —0.02. The interaction of the

primary ion and reflected ion streams (shown next) uses this change in potential

profile with time.

b. Ion velocity space. The transition from early to final stages of the simulation

with a = 1 is shown in the snapshots of velocity scatter plots of primary and reflected

ions in Figs. 9(a)-9(d) at times of 15.6, 23.4, 31.2, and 62.5 (in units of L/Vte). In

these scatter plots, primary ions, with positive velocities, are indicated by dots and

reflected ions, mostly with negative velocities, are indicated with plusses.

As seen with the potential history in Fig. 8(a), although ipc has equilibrated

by t = 15.6, it is still too early in the simulation for energy conservation to apply to all

the ions in Fig. 9(a). At this time, the minimum reflected ion speed is not quite zero

at x=0. (If the system is static, then zero velocity ions are expected.) The transit

time of slower reflected ions with an averagevelocity of an ion thermal velocity V*,- =

(tTsc/M)1/2 is L/Vteifir)-1/2. For ^ =1/40 and r =l, this transit time is roughly

GL/Vte* The reflected ions near the source plane in Fig. 9(a) have experienced an

earlier slightly more negative potential profile from their creation at the collector

when t = 9. In addition, the primary ions which caused their reflection have been

created when t=3 and have experienced an even greater negative potential profile.
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FIG. 9. Ion velocity scatter vs. distance at various times during the simulation run
with —Vr/Vi = l for an ion reflection coefficient of 0.2, M/m = 40, and Tsi/Tse = l.
Simulation snapshots are at times of 15.6, 23.4, 31.2, and 62.5 L/Vte from the top
to bottom figures. The system length L is 27Ap. Primary ions (dots) have positive
velocities and reflected ions (plusses) have mostly negative velocities.
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Hence, these slow reflected ions arrive at the source plane with extra energy instead

of zero energy.

After two transit times for slower ions («12 L/Vte) beyond the equilibration

time for i/>c in Fig. 8(a), the primary and reflected ion streams interact as seen in

Figs. 9(b)-9(d). At t=23.4 in Fig. 9(b), the reflected ion stream indicates increased

fluctuations. At £=31.2 in Fig. 9(c), some reflected ions havebeen repelled by waves

in the potential profile prior to reaching the source plane. Thus some reflected ions

have a positive velocity. At t=62.5 (the final simulation time) in Fig.9(d), an even

greater number of reflected ions have positive velocities; however, the two-stream

interaction has either insufficient strength or too great a wavelength relative to L

to cause both streams to merge toward a zero velocity.

To better understand the two-stream interaction for a=1, the simulation pa

rameters of length L and reflection coefficient £ arevaried. The simulation described

in theabove paragraph has length L=27XD at the final time step; 128 grid cells are

used to discretize the region. To simulate a region which has the same grid spac

ingand XD resolution but twice the length, then the injected flux F is doubled and

256 grid cells are used. Then twice the number of time steps are required to reach

dN/dt=Q. Even with this long simulation region, the two ion streams remain sep
arate with a few trapped reflected ions near zero velocity. However, for £=0.4 or

0.6, the streams interact strongly. Vortices are seen in the ion scatter plots and the

streams separate periodically in time and space. Unlike the earlier case for £=0.2,

a final configuration of ions in velocity space is not attained during the time of

particle equilibration. This strong interaction enhances fluctuations at the collector

ofpotential and kinetic energy flux (discussed in the next section). Consequently,
the reflected ion density increases with ( which creates a stronger two-stream inter

action which has a characteristic wavelength less than the system length of about
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AQXp. Details of the simulations with £ = 0.4 and 0.6 are not shown here because

f < 0.2 is more realistic from a materials consideration.

Allowing a fraction of reflection energy to be absorbed by collector atoms causes

the primary and reflected ion streams to merge as seen in Figs. 10(a)-10(d). The

times of the snapshots of ion scatter plots for a = 0.9 are the same as those of the

snapshots in Figs. 9(a)-9(d). At t = 15.6 in Fig. 10(a), both streams appear the

same as those in Fig. 9(a) because the earlier potential values for a = l and oj=0.9

in Figs. 8(a) and 8(b) are the same. At t = 23.4 in Fig. 10(b) and at t = 31.2 in

Fig. 10(c), the two streams begin to lose energy and merge. At these times, the

value of ipp is almost zero as seen in the potential history in Fig. 8(b). At t=62.5

in Fig. 10(d), both streams have lost sufficient energy such that the minimum ion

speed in the center of the region is zero. This same sequence of events is observed

for C= 0.4 and 0.6 with a = 0.9. The final configuration of the ions in velocity

space for both cases is the same as in Fig. 10(b) except for the difference caused by

differing values of ipc-

2. Spatial profiles at steady state

a. Steady state defined. The actual ratio of reflected/incident ion fluxes at the

collector reaches f within a few tens of time steps from t = 0 because only a few

particles are injected into the system during one time step. Generally, the collector

potential equihbrates in 3.2 transit times of an ion traveling with the velocity of

Vte[2^r(7r-1 - i/>cM]1/2 as observed in Fig. 8 for C= 0.2 with a = 1 and 0.9.

(This expression for equilibration time is the same observed in the previous paper6

for £= 0.) By this time of potential equilibration, the ion and electron fluxes are

spatially equal and the net collector current is zero. However, the individual fluxes

axe not constant in space; i.e. the injected electron flux F is greater than the electron

flux reaching the collector. The fluxes become spatially constant in approximately
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FIG. 10. Ion velocity scatter vs. distance at various times during the simulation run
with -Vr/Vi =0.9 for an ion reflection coefficient of 0.2, Af/m=40, and TSi/TSe =1.
Simulation times are 15.6, 23.4, 31.2, and 62.5 L/Vte from the top to bottom figures.
The system length L is 27 XD. Primary ions (dots) have positive velocities and
reflected ions (plusses) have mostly negative velocities.



38

twenty times ^(-^c)"1/2^1. At this same time, by conservation ofparticles, the
total number of system particles becomes temporally constant. All steady state

plots shown hereafter are calculated at a time after particle equihbration with the

exception of the case for f = 0.6 for a = 1 and 0.9. (For such a large value of £,

the value of ific requires an inordinate amount (several hours) of Cray computation

time to reach the time for particle equilibration.)

b. Electrostatic potential For simulation with a = 1 and reflection coefficients

of 0.2, 0.4, and 0.6 the final values of ^c and ifip show good aggreement with theory.

These simulation results for a = 1, represented by circles, are plotted in Fig. 4 to

compare with the full kinetic theory for il)C(M/m, r, £) and ^p{M/m, r, £). The

bars around each data point indicate the oscillation amplitude foreachmeasurement

of ific and ijjp. Fluctuations in potential increase substantially with f. For C=0.4,

the number of particle electrons per Ajd is Nrj «300 whichcauses the magnitude of

the oscillation amplitudes shown in Fig. 4. For £=0.6, these large fluctuations are

caused in part because N& « 400 but also are enhanced by the strong interaction

between the primary and reflected ion streams discussed in Sec. Ill C 1 b.

For simulation with a = 0.9 and reflection coefficients of 0.2, 0.4, and 0.6 the

final values of —rj>c and —tpp fall below theory for a = l. These simulation results

for a=0.9, represented by squares, are plotted in Fig. 4. For each run with a = 0.9,

the source sheath potential drop is almost zero. Oscillations in potential increase

substantially with £ and are comparable to those for a=l.

In particular for fi = 1/40, r = 1, and C, = 0.2, the value of a —0.986, derived

in Sec. II F 1, is the minimum a which allows Eqs. (11) and (12) to be solved and

provides the solution of ipc= -1.38 and ipp = -0.18. From simulation with C= 0.2

and a = 0.9, then V>c = -1.41 ± 0.07 and ^P = -0.02 ± 0.05. Hence, the solution of

minimum a does not provide the same answers for i/?c and xj)p when the velocity
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reflection coefiient a is less than that value, i.e. then the monotonically decreasing

solution for potential is not valid.

The electrostatic potential profiles shown in Fig. 11 are generated via particle

simulation for o: = 1 and a = 0.9 using fi = 1/40, r = 1, and £ = 0.2 Each case has

system length of 27 and 30 A^ respectively. With the same injected flux F, the

case of a = 0.9 results in a greater overall plasma density. Generally with a = 0.9,

because more reflected ions have insufficient energy to traverse the system, their

mean velocity is reduced and so their density increases by flux conversation. Hence,

as these ions stop to converse and exchange energy, they attract attention and cause

an increase in density. This increased ion density reduces the overall potential

curvature, V2^, according to Poisson's equation, which reduces —V>c« At this last

simulation time of t = 62.5, these potential profiles do not decrease monotonically

even though the time-averaged potential profiles do.

c. Velocity distributions. The velocity distributions of primary and reflected

ions and electrons for the simulation parameters of fi = 1/40, r = 1, £ = 0.2, and

a=0.9 are shown in Fig. 12. These distributions correspond to the potential profile

in Fig. 11 for a = 0.9 and have been evaluated over central region from the scatter

plot (shown in Fig. 10(d) for the ions) spatially averaged from x/L = 0.25 to 0.75.

The number of particles at each discrete value of velocity, i.e. f(v), is evaluated

from the velocity scatter at each gridpoint and then spatially averaged over the

grids corresponding to 0.25 < x/L < 0.75. The distribution f(v) at each discrete

value of x is weighted and summed overall velocities for each species to provide the

various profiles such as temperature and energy flux.

The velocity distributions shown in Fig. 12 are predictable for primary ions,

fi, and electrons, /e, with the potential profile in Fig. 10 for a = 0.9. However, the

velocity distribution of reflected ions, fr, spilling into positive velocity space, is not
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FIG. 11. Potential profiles from simulation for 2 values of reflected velocity, a =
-Vr/Vi, with an ion reflection coefficient of£=0.2, M/m =40, and TSi/TSe = 1.
The system lengths L axe 27AD for a=l and 30A£> for a=0.9. Both are snapshots
at the last time of62.5 L/Vte. The potentials are normalized as ^ =e^/T5e.
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Wv)

(b)

Ve/Vte

FIG. 12. Velocity distributions for (a) primary, /,-, and reflected, fr, ions and
(b) electrons, /e. Distributions are averaged spatially over the simulation from
x/L=0.25 to 0.75 at a time of62.5 L/Vte. Simulation parameters are -Vr/V; =0.9,
ion reflection coefficient of 0.2, M/m = 40, and TSi/TSe = 1. Ion and electron
velocities are normalized respectively to the ion and electron thermal velocities Vu
and Vte at the source.
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predictable with this same potential profile. Most of the potential in the central

region of 0.25 < x/L < 0.75 is nearly zero. Thus according to energy conservation,

the absolute value of minimtim velocity for primary ions is zero; the minimum

observed in Fig. 12(a) is very near zero as predicted. Contrarily for reflected ions,

the equation for minimum velocityVmt hi Eq. (1) provides no real solution for Vmr

when a=l and ^=0. Observed in Fig. 11, the waves in the potential profile which

cause ij) > 0 givesomeof the reflected ions sufficient energy to attain positivevelocity,

as is seen in fr of Fig. 12(a). For the electron distribution in Fig. 12(b), fe(v)

exhibits the cut-off Maxwellian shape with the most number of electrons near zero.

By energy conservation, the minimum electron velocity, Vmc = Vte(2il> - 2ipc)1^2-

Hence for ^=0 in this simulation, VMe = l^Vte which is observed in Fig. 12(b).

d. Ion temperatures. A comparison of theoretical and simulation results for the

effective temperature profiles of primary and reflected ions, Ti(x) and Tr(x), normal

ized to the ion source temperature, rTse, axe shown in Fig. 13. The temperature

profiles generated via simulation are found in evaluating the mean square deviation

of the velocity about the mean which has been time-averaged over a plasma period

priorto the last time step. The ion scatter plot in Fig. 10(d) is the last used for the

averaging period to determine Tj(x) and Tr(x) in the solid curves of Fig. 13. The

dashed lines indicating theory results are generated using the potential profile in

Fig. 11 for oj=0.9 and the expressions for Ti(t/?) in Eq. (14) of the previous paper6

and Tr(tl>) in Eq. (7) of the present paper.

The theoretical and simulation results in Fig. 13 show good agreement for

Ti(x) and Tr(x) which indicates no additional thermal spreading of the two ion

streams not accounted for by energy conservation (which assumes d/dt=Q). When

V>(x) > 0 (in Fig. 11), the expression for Tj(^) cannot be evaluated; then, r/> = 0

is assumed. Hence near x/L = 0.25, Tt- (dashed line in Fig. 13(a)) is a constant
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(a)

(b)

FIG. 13. Primary ion temperature T,- and reflected ion temperature Tr spatial
profiles generated with -Vr/Vi = 0.9, ion reflection coefficient of 0.2, M/m = 40,
and Tsi/Tse — 1. Solid Hne indicates simulation results. Dashed Hne indicates
theory determined using tp(x) as obtained from simulation in Fig. 11.
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which equals 1 - 27T"1. Similarly, when r/> > r/>c(l - a2), the expression for Tr(ip)

cannot be evaluated; then, ^ =^c(l -a2), i.e. Vjifr =0 (from Eq. (1)), is assumed.

Hence for x/L<0.9, Tr (dashed Hne in Fig. 13(b)) is also the constant 0.36. Despite

these approximations for T,(x) and Tr(x), the theory closely predicts the simulation

profiles.

The largest difference between the theory and simulation for Tr(i/>), shown in

Fig. 13(b), occurs in the coUector sheath. A closer view of the velocity scatter in

Fig. 10(d) reveals that some reflected ions are repeUed by the potential and return

to x= L. These repelled reflected ions have insufficient energy to move beyond the

collector sheath because of the energy lost to the coUector with a=0.9. The reflected

ions actuaUy have a decelerated distribution for negative velocities along with an

accelerated distribution for positive velocities. Because the positive velocities cause

an increased deviation about the mean velocity, Tr(^>) from simulation Hes above

that from theory (which considers only the decelerated, negative velocities).

e. Kinetic energy fluxes for ions. The theoretical and simulation results in

Fig. 14 show good agreement for Qi(x) and Qr(x) which indicates no change in

total energy of the two ion streams not accounted for by energy conservation. These

plots for Qi(x) and Qr(x) divided by FTse, are also that for energy transmission

factor Si{tjj) and Sr(rl>). The kinetic energy flux profiles generated via simulation

are found in evaluating the third velocity moment which has been time-averaged

over a plasma period prior to the last time step. The ion scatter plot in Fig. 10(d)

is the last used for the averaging period to determine Qi(x) and Qr(x) in the soHd

curves of Fig. 14. The dashed lines indicating theory results are generated using the

potential profile in Fig. 11 for a=0.9 and the expressions for Si(i/>) and Sr(rj>) derived

in Sec. II B 3. Because these derivations use the assumption of a monotonically

decreasing potential profile, whenever tp > 0 then i/> = 0 is used in both expressions.
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FIG. 14. Kinetic energy flux profiles for primary ions, Q,, and reflected ions, Qr,
generated with -Vr/Vi = 0.9, ion reflection coefficient of 0.2, M/m = 40, and
Tsi/Tse = 1. Solid Hne indicates simulation results with one-dimension in veloc
ity. Dashed Hne indicates theory determined with ij)(x) from simulation in Fig. 11.
Profiles are divided by electron flux F and electron source temperature Tse-
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Again, the largest difference between the theory and simulation in Fig. 14occurs in

the collector sheath for Qr for the same reasons described above for Tr.

3. Energies at the collector at steady state

a. Kinetic energy flux. The history of kinetic energy flux at the coUector,

Q(i>c), is evaluated with the velocity distribution of the number of particles pass

ing x= L in each time step. This velocity distribution of current, vf(v), times v2

determines vzf(v) which is integrated over all incident velocities to find Q(^c)- For

C= 0.2, 0.4, and 0.6 with a = 1 and 0.9, the simulation results in one-dimension

(1-d) are adjusted to three-dimensions (3-d) to compare with theory. The two

transverse direction in velocity space are assumed to have frdl-Maxwellian veloc

ity distributions. The contribution by each dimension to Qa is TsaFa where a

represents each species. Thus, the normalized contribution from the transverse di

rections, (r—Ca2r+1—f)/(l -f), is added to the total energy transport coefficient,

St = QT/(FTse), from the 1-d simulation results. Corrected to 3-d, these simula

tion results with o; = l, indicated with circles, and a = 0.9, indicated with squares,

are shownin Fig. 6 with the theory from Eq. (10) at /* = l/40 for r = l with a = l.

The bars on each data point indicate the oscillation ampHtude in St even after the

history values are time-averaged overa plasma period. The persistence of these av

eraged osciUations indicate fluctuations occuring with longer periods.

Fluctuations in coUector potential cause half of the ampHtude of the large

fluctuations in St seen in Fig. 6. For example, with £=0.4 and a= 1 from Fig. 4,

^c = —1.8 ± 0.12. Substituting these parameters into Eq. (10) provides St(0 =

4 —ipc. With St(0) = 5.04 from simulation with f = 0, then the normalized St

fluctuates ±0.024; whereas, the fluctuation level measured via simulation is ±0.06

as shown in Fig. 6. Consequently, increasing with f, the remaining fluctuation

level appears to be caused somewhat by the two-stream interaction. This claim is
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guarded because the fluctuations in St is the same at each £ when a = 1 or a = 0.9.

One would expect the strong two-stream interaction observed with a = 1 to have

larger fluctuations than the relatively quiet equiHbrated state of the ion velocity

distribution with a = 0.9. Thus the additional ampHtude of osciUations appear to

be caused by something as yet to be explained.

For £ < 0.4 and a = 1, the comparison of theoretical and simulation results

indicate good agreement in Fig. 6. Although as f is raised, the simulation data

occur increasingly below theory. As described in Sec. Ill C 1 b for £ = 0.4 and

0.6, the two ion streams fluctuate considerably in velocity space. Because some of

the ions in these streams often reach zero velocity, these fluctuations tend to reduce

the mean energy carried by the ions reaching the coUector. However, the reflected

ions generated at the coUector also have a reduced departure energy which should

balance the effect of reduced incident energy. Thus the two-stream interaction also

does not seem to explain the increased discrepancy between theory and simulation.

The foUowing are a few more possible causes of the increased discrepancy be

tween the theory and simulation in Fig. 6 for a = 1. In the simulation for £ < 0.4,

the contribution to St by the electrons, Se, is the value predicted theoretically so

that electron behavior also does not cause the increased discrepancy. FinaUy, the

simulation results for St are time-averaged over a plasma period. Within this time

of about 100 time steps the actual reflected ion flux lags behind the value of —f jFJ

by at most ten time steps. Hence, the reflection technique also does not seem to

cause the discrepancy for plasma effects with a characteristic time greater than a

plasma period.

The existence of self-induced fluctuations is not precluded. For example with

a=0.9, the low energy reflected ions are repeUed by the coUector sheath, as shown

in Fig. 10(d). These ions return to the coUector with their initial low energy and
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generate more reflected ions with even lower energy. (Somehow this mechanism

reaches a steady state.) In this way, reflected ions may arrive in bunches rather

than continuously which would cause increased osculations ofkinetic energy flux at
the coUector.

For the particular case of C=0.6, the total number of particles in the system

continues to grow, as mentioned in Sec. Ill C 2 a. Thus a greater electron density

would increase the electron flux up to F which raises the kinetic energy flux at the

coUector. Recall that the kinetic energy flux is the mean kinetic energy per particle
times the particle flux.

Simulation results, using £ < 0.4 and a = 0.9, occur above theoretical results

using r = 1 with a = 1, as seen in Fig. 6. Again, the case of £ = 0.6 shows the

largest discrepancy because the total number of particles in the system did not

equiHbrate. Initially one might predict that St results for a = 0.9 would occur

below theory because of the decreased ipc (seen in Fig. 4at each Q. The foUowing

effect overcompensates for the decreased x/>c and causes a net increase in St as a is

varied from 1 to 0.9. The net (total) energy flux carried to the coUector is greater

when the coUector absorbs a fraction (1 —a2) of the reflection energy because the

energy removed by the reflected ion flux is less. When a = 1, the energy removed

by the reflected ion flux balances the energy added by the additional incident flux

of primary ions; where "additional" refers to reflected ions which are refluxed and

become primary ions. (With r =1 and a=l appHed to Eq. (10), then ST-4-xl?c
i.e. no £ dependence exists.)

6. Mean kinetic energy of primary ions. The technique described above for

evaluating kinetic energy flux at x = L in the simulation is also used to evaluate

mean kinetic energy. Defined in Sec. II F 2, mean kinetic energy, W= FiQi(il)C)-
Thus in the simulation, Qi(tpc) is evaluated and then multipHed by (1 - Q/F to
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find W. Adding rTse to these 1-d simulation results for W adjusts the data to

compare with the 3-d theory which is W = Tsc(2t —ipc) from Eq. 8. Data using

£= 0.2, 0.4, and 0.6 for a = 1 are indicated by circles and for a = 0.9 by squares is

compared with theory in Fig. 7. The bars on each data point indicate the osculation

ampHtude in St even after the history values are time-averaged over a plasma period.

Theoretical results for r = 1 and a = 1 consistently overpredict W measured

from simulation for both a = 1 and a = 0.9 as seen in Fig. 7. For mean ion

kinetic energy at the coUector, the fluctuations and deviations from theory can be

explained with the two-stream interaction. As discussed in the above subsection for

a = 1, the interaction between the primary and reflected ion streams is enhanced

as C increases. Mean incident energy is reduced because the streams fluctuate and

often reach zero velocity. Contrarily, time-independent kinetic theory predicts the

streams should remain separate (as seen for f = 0.2 in Fig. 10(d)) which generates

a higher W. As expected and observed in Fig. 7, this deviation from theory and

fluctuations increase with £.

Fluctuations in W are less for a = 0.9 than for a = 1 at each f shown in

Fig. 7 (unlike fluctuations in St). For each £, the final configuration of the ions

is that shown in Fig. 10(d) so that only potential oscillations cause those observed

in W. For example, with £ = 0.4 and a = 0.9 from Fig. 4, ipc = -1.69 ± 0.09.

Using W = Tse(2 —ipc) and the normalization constant W(0,1) of 3.04Tse, then

the normalized W fluctuates ±0.03. Similarly for £ = 0.2 and 0.6, fluctuations

are several times smaller than those predicted using ipc fluctuations. Hence, this

quiet configuration of the ion streams seems to reduce osciUations in W. A similar

calculation for each £ with with a = 1 predicts fluctuations in W from ipc osciUations

that are comparable to those observed via simulation for W shown in Fig. 7.

The increased difference in W with f is caused partially by the reduction in xpc
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not fuUy predicted by theory, as seen in Fig. 4. If the value of t/)C from simulation

is substituted into the aboveexpression for W and normalized then the simulation

results in Fig. 7 stiU overpredict W. For example with £= 0.4 and a = 0.9 (as
above), then W/W(0,1) = 1.21, which Hes considerably above the data point at

1.13. Again, the ion scatter plot in Fig. 10(d) reveals that slower reflected ions

are repeUed by the coUector sheath, return to the coUector, and a fraction of which

generate even slower reflected ions. Not accounted for in the kinetic theory, this

additional contribution of low energy reflected ions reduces the mean kinetic energy
measured for all incident ions.

IV. COMPARISON WITH A PREVIOUS RESULT

Brooks9 numerically solves time-independent Vlasov-Poisson equations tomod
el boundary effects on the coUector sheath region. Secondary electron emission

combined with ion reflection at the boundary is studied for a D-T plasma with

Tsi = 0.25 Tse- He studies the effect of ion reflection on the potential drop across

the coUector sheath, <f>F, by varying f from 0 to 0.15. Brooks does not derive an

analytical expression so that our results can only be compared for a variable ion

reflection coefficient with no electron emission at the above plasma parameters.

In detail, Brooks specifies boundary conditions at the entrance of the coUector

sheath region rather than at the plasma source. At the entrance to the coUec

tor sheath region, the ion kinetic energy equals the electron kinetic energy. At

the plasma boundary, ion and electron densities and fluxes are equal. Here also

each plasma species leaving the source and traveHng toward the coUector have a

half-MaxweUian distribution. The Vlasov-Poisson equations for the distribution

functions of primary and reflected ions and ofprimary and secondary electrons are

solved numerically and iterated until the plasma boundary conditions are satisfied.
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Brooks uses an ion reflection coefficient which is independent of incident ion energy

as is £ in my model. The velocity of reflected ions equals that of the incoming ions.

In contrast, my results showa somewhat larger increase in potential drop across

the coUector sheath than do the results of Brooks as the ion reflection coefficient

is increased. From Fig. 3, coUector sheath drop, tpc—^Pi is independent of r for

r < 1, and equals —2.98 for M/m = 4590 (the mean value of mass ratio for a D-T

plasma). For £=0.15, then ^c-V>P =-3.29. In Brooks's Fig. 3, e^F/TSc is shown

as a function of the electron emission coefficient for ion reflection coefficients of £=0

and £= 0.15. With no electron emission, e^p/Tse equals approximately —3.05 for

£= 0 and —3.10 for £= 0.15. Consequently, although, for £= 0, both studies provide

sHghtly different solutions, for £ = 0.2, my model predicts an increase in coUector

sheath potential drop that is six times larger than the increase predicted with the

model of Brooks.

V. CONCLUSIONS

The effects of ion reflection on the plasma source and coUector sheaths are

analyzed for ion/electronmass ratios from 10 to 104 with ion/electron temperature

ratios r of 0.1, 1, and 10. Reflection with coefficients £ up to 0.6 at the electrically

floating collector is simulated for a mass ratio of 40 with r = 1 for reflected ions

having a reflected/incident velocity ratio a of 1 and 0.9. Density, drift velocity,

temperature, kinetic energy flux, and heat flux for all three species are derived at

values of potential at the coUector and across the source sheath.

For all of the above values, good agreement exists between our electrostatic

particle simulation and the fuUy kinetic model for £ < 0.2. At larger £ with a = 1,

the increased interaction between the primary and reflected ion streams causes

greater fluctuations in potential but without affecting the time-averaged value of
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xl>c- However, these fluctuations reduce the mean kinetic energy of ions reaching
the coUector to below that predicted theoreticaUy. For a = 0.9, potential does not

decrease monotonically so that the present kinetic theory cannot exactly model

the resultant potential profile but can provide an increased understanding on the

effect of reflection energy lost to the coUector on the sheath region. Observed via

simulation, this effect of slightly reducing the energy of reflected ions generates a

strong two-stream interaction which then causes the two ion streams to overlap

in velocity space and the potential drop across the source sheath to fall to zero.

Compaxed to a=l at the same values of £, this merging of streams causes a sHght

decrease in ipc, an increase in energy transported to the coUector, and a substantial

reduction in the mean kinetic energy of ions reaching the coUector.

For a D-T plasma with Tsi = T$e and a = 1, increasing the ion reflection

coefficient from 0 to 0.2 causes the coUector potential to change from —3.3 to —3.7,

and both the totalenergy flux to thecoUector surface and themean kinetic energy of

incident ions to increase only by factors of 1.06 and 1.08, respectively. AUowing the

coUector surface to absorb a fraction of the incident ion energy during a reflection

event may cause smaU changes to these macroscopic trends. Although with a < 1,

the shape and behavior of the potential profile is observed via simulation for M/m=

40 to change substantially, relative to a = 1. The above trends in tpc for a = 1

can also be accurately predicted with the simple analysis given in Eq. (28) only for

r=1. In summary, the simulationmodel provides substantial insight into the effect

of the two-stream interaction on the potential profile and energy transport in the

sheath region, the details of whichare difficult to model near a boundary.
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APPENDIX: ENERGY CONSERVING REFLECTION

The simulation of ion reflection off a boundary having a large electric field re

quires an accurate formulation of the algorithm which governs the motion of the

reflected particle after the reflection event. For the particular case of the boundary

material composed of atoms with an infinite mass relative to the incident particles,

energy must be conserved during the reflection event. Energy conservation at re

flection is crucial in a steady state system, when particles are injected at a source,

traverse a potential path, perfectly reflect at a boundary, and must return to the

origination point. In this scenario, these particles should have no gain or loss in

energy. In a real model, some of the energy of the reflected particle is imparted to

the atoms in the boundary material. Hence, this exercise is provided as a reference

for these cases.

During one time step of the simulation, a particle reaching the boundary also

passes beyond it. The penetration depth depends on the previous location and

present velocity of the particle. This velocity isdetermined with a leap-frog mover10

at one-half time step eariier. On reflection, the position of the particle is mirrored

back through the boundary. As a first guess, the new velocity is assigned the same

magnitude but opposite sign of the old velocity. This method does not conserve

energy because the particle has been reflected across a potential difference. The

foUowing derivation provides a correction in this simply reflected velocity which

includes the effect of the potential change and a one-half time step correction.

A particle of mass m, charge q, and velocity v moving along x in a time-

independent electric field E has constant energy E,

mv2 _ , , v
E=—-qEx. (Al)
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The acceleration a on the particle is

(A2)«'(«•
This acceleration is assumed to be constant within one grid ceU width Ax from the

boundary and over one time step At prior to reflection.

The simulation provides xp and vp_i, where the subscript p denotes the time

step prior to boundary penetration. At the next time step when the particle is

moved, the new velocity and position become

vp+± = vp_i + aAt (A3)

and

xp+i =xp +Vp+^At. (A.4)

If Xp+i exceeds the system length L and the particle is reflected (as opposed to

added to the boundary surface charge), then the new position and velocity are

Xp+i and vp+t. The particle is repositioned from the boundary at the distance it

would have penetrated the boundary. (This technique is discussed in BirdsaU and

Langdon.10) As iUustrated in Fig. 15, this new position becomes

'p+i = 2X-xp+i. (A.5)

The simple velocity is then corrected to conserve energy. (Note that this simple

velocity could have been used and then the particle position in Eq. (A.5) would

have to be adjusted to conserve energy.) The particle, first accelerated by E at the

boundary to xp+i, is now decelerated by the same E to Xp+i. The simple velocity

is corrected with S, where
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FIG. 15. Position and velocity of an ion before, during, and after reflection using
the energy conserving reflection algorithm.
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Equating Ev with Ep+i determines the value for up+i. This energy balance gives

2 —2

y - axP =-y1- «5p+i• (A.7)

Second-order approximations for v2 at the fuU time step are

vl =uP+ljvP-l7 (A-8)
and

t£+i =»,+!»,+*• (A9)

The next velocity depends on the reflected velocity by

vp+*=vp+i+aAt. (A10)

Finally, Eqs. (A.3)-(A.6) and Eqs. (A.8)-(A.10) are substituted into the energy

balance of Eq. (A.7). The solution for S from this energybalance is in the quadratic

equation:

0= S2 +S(aAt - 2vp+±) +^(xp+x - L) - 2avp_r^At. (A.ll)

The ordering of terms in Eq. (A.ll) determines the expression for S. Because

the leap-frog mover estimates position and velocity through a first-order central

difference, these approximations (Eqs. (A.3), (A.4), and (A.10)) are of 0((Ai)3).

(Details of the ordering of the central difference equations are discussed in Botha

and Pinder.12) Simple reflected velocity is 0(1) because as At —*• 0, then xp+i —• L
and up+x -> —vp+±. FinaUy, the v2 approximation in Eqs. (8) and (9) introduces

an error with 0((A*)2), which then is the lowest-order error of Eq. (A.ll); hence,
Sis O(At). If terms are neglected with 0((At)2) or greater, then the second-order

approximation for S becomes

9/7

S = ——(s»+i - L) - aAt. (A12)
vp+\
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Observe that for zero electric field at the surface, then a=0, and so v . i = —v . t..

The maximum boundary penetration, x^ —L=vpJr±.At, specifies Sat +aAi.
Minimum penetration, Xp+i = Ir, generates the smallest correction with S= —aAi.

Because the value of Xp+i is equaUy probable across the range from I to i +

vp+i. At, the average value of S after many reflections is zero. On the other hand,

the correction Sgenerates a spread in velocities of the reflected ions. Consequently,

if a substantial electric field develops at the boundary and use only simplereflection

is used, the reflected ion flux would be erroneously cooled.

For a low temperature plasma, the boundary may absorb at most 20% of the

incident particle energy. The specific fraction depends on the mass ratio of the

incident particle and boundary target as discussed in Sec. I A of this paper. For

this example then the ratio of reflected/incident ion velocity is 0.9, so that, with

the above algorithm, the new reflected velocity is
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Variable List

Symbol Name

<j>P Source sheath potential drop

</>c Collector potential

Fa Particle flux

f Reflected/primary ion flux ratio

a Reflected/primary ion velocity ratio ....

Tsa Source temperature

r Primary ion/electron source temperature ratio

M Ion mass

m Electron mass

fi Electron/ion mass ratio

x Spatial position

L System length

Vmol Cut-off velocity

fa Velocity distribution function

v Velocity

Nsa Source density

V> Normalized potential

Na Particle density

(VQ) Drift velocity

61



62

Tot Temperature

Qa Kinetic energy flux

Ha Heat flux

F Reference particle flux

Sa Energy transmission factor

St Total energy transmission factor

rioo Electron plasma density (used for r<l)

na Particle density (used for r<l)

T Electron plasma temperature (used for r<l)

E Cold ion kinetic energy at the sheath edge

<I>f Potential drop across the collector sheath

W Primary ion mean kinetic energy

Vt0t Source thermal velocity

The subscript a refers to primary ions i, reflected ions r, or electrons e.

The above is a Hst of only frequently referenced variables.
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