

Copyright © 1988, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

POSTGRES REFERENCE MANUAL

VERSION 2.1

Edited by

Claire M. Mosher

Memorandum No. UCB/ERL M88/20

25 March 1988

(Revised April 15,1991)

POSTGRES REFERENCE MANUAL

VERSION 2.1

Edited by

Claire M. Mosher

Memorandum No. UCB/ERL M88/20

25 March 1988

(Revised April 15, 1991)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

POSTGRES REFERENCE MANUAL

VERSION 2.1

Edited by

Claire M. Mosher

Memorandum No. UCB/ERL M88/20

25 March 1988

(Revised April 15,1991)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Table of Contents

Section 1 — Introduction 1

Section 2 — UNIX Commands (UNIX)

General Information 3

Initdb 4

Createdb 5

Destroydb 6

The Postgres Postmaster 7
Terminal Monitor 8

The Postgres Backend 11

Createdb 13

ipcclean 15

Section 3 — DataTypes, Functions, and Operators (Types)
Introduction 16

Type Management for Built-in Types 20
Type Management for System Types (System Types) 28

Section 4 — POSTQUEL Commands (POSTQUEL)

General Information 30

Abort 37

Addattr 38

Append 39

Attachas 40

Begin 41

Close 42

Cluster 43

Copy 44

Create 46

Create Version 48

Define C Function 49

Define POSTQUEL FUNCTION 51

Define Aggregate 54
Define Index 55

Define Operator 56
Define Rule 59

Define Type 62

Define View 64

Delete 65

Destroy 66

End 67

Fetch 68

Load 69

Merge 70

Move 71

Purge 72

Remove Aggregate 73
Remove Function 74

Remove Index 75

Remove Operator 76

Remove Rule 77

Remove Type 78

Rename 79

Replace 80

Retrieve 81

Section 5 — Libpq 83

Section 5 — Fast Path 90

Section 6 — Files

General Information (Information) 91

Backend Interface (BKI) 92

Dayfile 95

Page Structure 96

Template 98

References 99

INTRODUCTION 5/02/90 INTRODUCTION

OVERVIEW

This document is the reference manual for the POSTGRES database system under
development at the University of California, Berkeley. This project, led by Professors
Michael Stonebraker is sponsored by the Defense Advanced Research Projects Agency
(DARPA), the Army Research Office (ARO), the National Science Foundation (NSF), 3M
Corp, and ESL, Inc.

POSTGRES is distributed in source code format and is the property of the Regents of the
University of California. However, the University will grant unlimited commercializa
tion rights for any derived work on the condition that it obtain an educational license to
the derived work. For further information, consult the Berkeley Campus Software Office,
295 Evans Hall, University of California, Berkeley, CA 94720. Moreover, there is no
organization who can help you with any bugs you may encounter or with any other prob
lems. In other words, this is unsupported software.

POSTGRES DISTRIBUTION

This manual describes Version 2.1 of POSTGRES. The POSTGRES software is about

170,000 lines of C code, and is available for SUN 3 and SUN 4 class machines, for
DECstation 3100 machines and for the SEQUENT Symetry machine. Information on
obtaining the source code for these computers is available from:

Claire Mosher

Computer Science Division
521 Evans Hall

University of Califiomia
Berkeley, Ca. 94720
(415) 642-4662

No attempt has been made to optimize Version 2.1; consequently, one should expect per
formance comparable to the public domain, University of CaliforniaVersion of INGRES,
a relational prototype from the late 1970s.

This manual contains the description of a few capabilities which are not implemented in
Version 2.1. We expect to support additional functionality in Version 3, currently
scheduled for third quarter 1991. Moreover, Version 3 will be tuned to run as fast as pos
sible.

POSTGRES DOCUMENTATION

This reference manual describes the functionality of Versions 2.1, and 3 and contains
notations where appropriate to indicate which features are not implemented in Version
2.1. Application developers should note that this reference manual contains only the
specification for the low-level call-oriented application program interface, LIBPQ. In
addition, a companion project directed by Professor Rowe is building a collection of
powerful development tools called Picasso, which will be the subject of a separate refer
ence manual.

The remainder of this manual is structured as follows. In Section 2, we discuss the
POSTGRES capabilities that are available directly from the operating system. Section 3
then describes POSTQUEL, the language by which a user interacts with a POSTGRES
database. Then, Section 4 describes a library of low level routines through which a user

INTRODUCTION 5/02/90 INTRODUCTION

can formulate POSTQUEL queries from a C program and get appropriate return informa
tion back to his program. Next, Section 5 continues with a description of a method by
which applications may execute functions in POSTGRES with very high performance.
The manual concludes with Section 6, a collection of file format descriptions for files
used by POSTGRES.

ACKNOWLEDGEMENTS

POSTGRES has been constructed by a team of undergraduate, graduate, and staff pro
grammers. The Version 2.1 contributors (in alphabetical order) consisted of James Bell,
Ron Choi, Jeffrey Goh, Wei Hong, Anant Jhingran, Greg Kemnitz, Michael Olson, Lay-
Peng Ong, Spyros Potamianos, and CimarronTaylor.

Greg Kemnitz served as chief programmer and was responsible for overall coordination
of the project and for individually implementing the "everything else" portion of the
system.

This manual was collectively written by the above implementation team, assisted by
Michael Stonebraker and Claire Mosher.

FOOTNOTES

UNIX is a trademark of AT&T.

INFORMATION (UNIX) 6/14/90 INFORMATION (UNIX)

OVERVIEW

This section contains information on the interaction between POSTGRES and the operat
ing system. In particular, the pages of this section describe the POSTGRES support pro
grams which are executable as UNIX commands.

TERMINOLOGY

In the following documentation, the term site may be interpreted as the host machine on
which POSTGRES is installed. But since it is possible to install more than one set of
POSTGRES databases on a single host, this term more precisely denotes any particular set
of installed POSTGRES binaries and databases.

The POSTGRES super user is the user named postgres (usually), who is the owner of the
POSTGRES binaries and database files. As the super user, all protection mechanisms may
be bypassed and any data accessed arbitrarily. In addition, the POSTGRES super user is
allowed to execute some support programs which are generally not available to all users.
Note that the postgres super user is not the same as root, and should have a non-zero
userid.

The database base administrator or DBA is the person who is responsible for installing
POSTGRES to enforce a security policy for a site. The DBA will add new users by the
method described below, change the status of user-defined functions from untrusted to
trusted as explained in define C function (commands), and maintain a set of template
databases for use by createdb (unix).

The postmaster is a process which acts as a clearing house for requests to the
POSTGRES system. Basically, frontend applications connect with the postmaster which
keeps tracks of any system errors and communication between the backend processes.
The postmaster takes from zero to seven arguments to tune its behavior. Supplying argu
ments is necessary only if you intend to run multiple sites or a non-default site.

The POSTGRES backend (.../bin/postgres) may be executed directly from the shell by the
postgres super user (with the database name as an argument). However, doing this
bypasses the shared buffer pool and lock table associated with a postmaster/site, so this is
not recommended in a multiuser site.

NOTATION

".../" at the front of file names is used to represent the path to the postgres user's home
directory. Anything in brackets ([and]) is optional. Anything in braces ({ and }) can be
repeated 0 or more times. Parentheses are used to group boolean expressions. I is die
boolean operator OR.

USING POSTGRES FROM UNIX

All POSTGRES commands which are executed directly from a UNIX shell are found in
the directory ".../bin." Including this directory in your search path will make executing
the commands easier.

There is a collection of system catalogs that exist at each site. These include a USER
class which contains an instance for each valid POSTGRES user. In the instance is a col
lection of POSTGRES privileges, the most relevant of which is whether or not creation of
POSTGRES databases is allowed. A UNIX user can do nothing at all with POSTGRES
until an appropriate record is installed in this system catalog class. Further information
on the systemcatalogs is available by running queries on the appropraiate classes.

INFORMATION (UNIX) 6/14/90 INFORMATION (UNIX)

NAME

initdb — initdb a database

SYNOPSIS

initdb [-v]

DESCRIPTION

initdb sets up the initial template databases. It is normally executed as part of the instal
lation process, -v specifies that initdb should be run in "verbose mode", meaning that it
will print messages stating where the directories are being created, etc.

SEE ALSO

createdb(unix).

CREATEDB (UNIX) 6/14/90 CREATEDB (UNIX)

NAME

createdb — create a database

SYNOPSIS

createdb [-p port -h host] dbname

DESCRIPTION

Createdb creates a new database. The person who executes this command becomes the
database administrator (DBA) for this database. The DBA has special powers not granted
to ordinary users.

Dbname is the name of the database to be created. The name must be unique among all
POSTGRES databases.

The argument port and hostname are the same as in the terminal monitor - they are used
to connect to the postmaster using the TCP/IP port port running on the database server
hostname. The defaults are to the local machine (localhost) and to the default port
(4321).

SEE ALSO

destroydb(unix), initdb(unix).

DIAGNOSTICS

You are not a valid POSTGRES user

You do not have a users file entry, and can not do anything with POSTGRES at all.

<dbname> already exists

The database already exists.

DESTROYDB (UNIX) 6/14/90 DESTROYDB (UNIX)

NAME

destroydb — destroy an existing database

SYNOPSIS

destroydb [-p port] [-h hostname] dbname

DESCRIPTION

Destroydb removes all referenceto anexisting database named dbnameand turns off the
vacuum demon if running on this database. Normally, the directory containing this data
base and all associated files are removed. But when the database is placed elsewhere via
the use of a "reference file," only the files contained in the referenced directory will be
removed.

To execute this command, the user must be the DBA for this database. After the database
is destroyed, a UNIX shell prompt will reappear, no confirmation message will be
displayed.

destroydb needs to connect to a running postmaster to accomplish its tasks. If no post
master is running then one must be started before destroydb is run.

COMMAND OPTIONS

-p port indicates that destroydb should attempt to connect to a postmaster listening to the
specified port

-h hostname indicates that destroydb should attempt to connect to a postmaster running
on the specified host machine.

EXAMPLE

/* destroy the demo database */
destroydb demo

/* destroy the demo databaseusing the postmasteron host eden, port 1234 */
destroydb -p 1234 -h eden demo

DIAGNOSTICS

Error: Failed to connect to backend (host=xxt, port=xxx)

destroydb could not attach to the postmaster on the specified host and port. If you
see this message, check that the postmaster is running on the proper host and that the
proper port is specified.

FILES

.../data/base/*

SEE ALSO

createdb(unix), postmaster(unix).

POSTMASTER (UNIX) 6/14/90 POSTMASTER (UNIX)

NAME

postmaster — run the Postgres postmaster

SYNOPSIS

postmaster [-p port] [-b backend_pathname] &

DESCRIPTION

The postmaster manages the communication between frontends and backends, as well as
allocating the shared buffer pool and semaphores. The postmaster does not itself interact
with the user so it should be started as a background process. Only one postmaster
should be run on a machine.

COMMAND OPTIONS

port is the well known TCP/IP port used for network communication between the termi
nal monitor and the backend. If you specify this then you must also specify them when
starting the terminal monitor.

backendjpathname is the full pathname of the Postgres backend you wish to use.

EXAMPLES

postmaster &

This command will start up a postmaster on the default ports (4321 and 4322)
which will expect to use the default path to the postgres backend
($POSTGRESHOME/bin/postgres) or /usr/postgres/bin/postgres. This is the simplest
way to start the postmaster.

postmaster -p 1234 -b /a/postgres/bin/postgres &

This command will start up a postmaster communicating through ports 1234 and
1235, which will expect to use the backend located at /a/postgres/bin/postgres. Note: to
connect to this postmaster using the terminal monitor, you would need to specify -p 1234
on the command line invoking the terminal monitor.

DIAGNOSTICS

semget: No space left on device

If you see this message, you should run the ipcclean command. After doing this,
try starting the postmaster again. If this still doesn't work, you will need to configure
your kernel for sharedmemory and semaphores as described in the installation notes.

SEE ALSO

postgres (unix), monitor (unix), ipcclean (unix)

MONITOR (UNIX) 6/14/90 MONITOR (UNIX)

NAME

monitor— run the interactive terminal monitor

SYNOPSIS

monitor [-h hostname] [-p port] [-t path] [-d path] [-q] [-0 options] dbname

DESCRIPTION

The interactive terminal monitor is a simple frontend to POSTGRES. It enables one to
formulate, edit and review queries before issuing them to POSTGRES. If changes must be
made, a UNIX editor may be called called to edit the query buffer, which the terminal
monitor manages. The editor used is determined by the value of the EDITOR environ
ment variable. If EDITOR is not set, then vi is used by default.

The terminal monitor requires that the postmaster be running, and the ports (specified
with the "-p" option or by the PGPORT environment variable) must be identical to those
specified to the postmaster.

COMMAND OPTIONS

-h host specifies host machine on which the POSTGRES backend is running; default is
your local machine Qocalhost).

-p port specifies the well known TCP/IP port used for network communication between
the terminal monitor and the postmaster.

-t path specifies the path name of the file or tty which you want the backend debugging
messages to be sent to; default is /dev/null.

-dpath specifies the path name of the file or tty which you want the frontend debugging
messages to be written to; the default is not to generate any debugging messages.

-q specifies that the monitor should do its work quiedy. By default, it prints welcome
and exit messages and the queries it sends to the backend. If the -q fiag is used, none of
this happens.

-o options specifies additonal options for the postgres backend. This is only intended for
use by postgres developers.

You may set environment variables to avoid typing the above options. See the
ENVIRONMENT VARIABLES section below.

MESSAGES AND PROMPTS

The terminal monitor gives a variety of messages to keep the user informed of the
status of the monitor and the query buffer.

When the terminal monitor is executed, it gives the current date and time, usually fol
lowed by the information in the dayfile (files).

The terminal monitor displays three kinds of messages:

go The query buffer is empty and the terminal monitor is ready

8

MONITOR (UNIX) 6/14/90 MONITOR (UNIX)

for input. Anything typed will be added to the buffer.

continue The terminal monitor is ready for input and the query buffer
is not empty. Typing input will cause the query buffer
to be silendy cleared. Typing a terminal monitor command
will cause the contents of any query buffer to be preserved.
Further input will then be appended to the buffer.

* This prompt is typed at the beginning of each line when the
terminal monitor is waiting for input.

TERMINAL MONITOR COMMANDS

^ Enter the editor to edit the query buffer

Ng Submit query buffer to POSTGRES for execution

^ Get on-line help

^filename Include the file filename into the query buffer

\p Print contents of the query buffer

\j Exit from the terminal monitor

\r Reset (clear) the query buffer

\s Escape to a UNIX subshell. To return to the
terminal monitor, type "exit" at the shell prompt.

Nt Print current time

\w filename Store the query buffer to an external file

^ Produce a singlebackslash at the current location in query buffer

ENVIRONMENT VARIABLES

You may set environment variables to avoid specifying command line options. These are
as follows:

hostname: PGHOST

port: PGPORT

tty: PGTTY

options: PGOPTION

MONITOR (UNIX) 6/14/90 MONITOR (UNIX)

SEE ALSO

backend(unix), postmaster(unix)

10

POSTGRES (UNIX) 6/14/90 POSTGRES (UNIX)

NAME

postgres — run the Postgres backend directly

SYNOPSIS

postgres [-Q] [databasename]

DESCRIPTION

This command executes the Postgres backend directly. This should be done only while
debugging by the DBA, and should not be done while other Postgres backends are being
managed by a postmaster on this set of databases.

COMMAND OPTIONS

-Q indicates "Quiet" mode. By default, the postgres backend prints the parse tree gen
erated by the parser, the plan generated by the planner and many debugging message.
Specifying this flag eliminates much of this.

databasename is the name of the database to be used. If this is not specified, data
basename defaults to the value of the environment varuable USER.

UNDOCUMENTED COMMAND OPTIONS

There are several other options that may be specified, used mainly for debugging
purposes. These arelisted here only for the use of postgres system developers.

-O indicates that the backend should not use the transaction system. All commands run
in the same transaction and all commands can see the results of prior commands.

-M nnnindicates that the backend should fork nnn slave backend processes and then exe
cute queries in parallel. This is only useful on multiprocessor systems (e.g. sequent).
Presendy the slave processes arenot used, so don't do this. Full support for heavyweight
query parallism is not expected until version 3.

-D nnn indicates the degree of disk striping the backend should use. Again this func
tionality is only experimental at this stage.

-S indicates that the transaction system can run with the assumption of stable main
memory thus avoiding the necessary flushing of data and log pages to disk at the end of
each transaction system. This is only used for performance comparisons for stable vs.
non-stable storage. Do not use this in other cases, as recovery after a system crash may
be impossible when -S is specified in the absence of stable main memory.

DIAGNOSTICS

semget: No space left on device

If you see this message, you should run the ipcclean command. After doing this,
try running postgres again. If this still doesn't work, you will need to configure your

11

POSTGRES (UNIX) 6/14/90 POSTGRES (UNIX)

kernel for shared memory and semaphores as described in the installation notes.

SEE ALSO

monitor (unix), postmaster (unix), ipcclean (unix)

12

VCONTROL (UNIX) 6/14/90 VCONTROL (UNIX)

NAME

vcontrol — control the vacuum daemon on a database

SYNOPSIS

vcontrol [-h host] [-p port] [-el] dbname

DESCRIPTION

Vcontrol controls the status of the vacuum daemon on a database.

COMMAND OPTIONS

-e

-k

Specifying the -e or -k off option enables the vacuum daemon for a database or
kills it respectively. We suggest that you run a vacuum daemon on each active database.
That way expired instances will be purged according to the criteria set in the purge com
mand for each class. Also, this will ensure that the statistics kept in the CLASS class are
updated periodically.

-s

Specifying the -s option shows whether a vacuum daemon is running or not on the
specified database.

-p port
-hhost

The vacuumdaemon is associated with somepostmaster process. (Note that a post
master MUST be running to execute this command.) Specifying the port and host using
-p port and -h host will cause the vacuum daemon to use the postmaster associated with
the specified host and port.

ENVIRONMENT VARIABLES

PGPORT

The port on which the postmaster is running. This value is used if the -p option is
not specified. If -p is not specified and PGPORT is not set, then the port defaults to
4321.

PGHOST

The host on which the postmaster is running. This value is used if the -h option is
not specified. If -h is not specified and PGHOST is not set, then the host defaults to
"localhost".

SEE ALSO

createdb(unix).

DIAGNOSTICS

You are not a valid POSTGRES user

13

VCONTROL (UNIX) 6/14/90 VCONTROL (UNIX)

You do not have a users file entry, and can not do anything with POSTGRES at all.

<dbname> already exists

The database already exists.

14

IPCCLEAN (UNIX) 6/14/90 IPCCLEAN (UNIX)

NAME

ipcclean — clean up shared memory and semaphores from aborted backends

SYNOPSIS

ipcclean

DESCRIPTION

Ipcclean cleans up shared memory and semaphore space from aborted backends. Only
the DBA should execute this program, as it can cause bizarre behavior if run during
multi-user execution. This program should be ran if errors such as semget: No space left
on device are encountered in starting up programs like the Postmaster or Postgres back-
end.

BUGS

If this command is run while a Postmaster or backend is running, the shared memory and
semaphores allocated by the postmaster will be deleted. This will result in a general
failure of the backends which are currently running.

15

INTRODUCTION (COMMANDS) 1/16/90 INTRODUCTION (COMMANDS)

OVERVIEW

In this portion of the manual, we describe the components of the query language POST
QUEL which is available either from the terminal monitor or from an application program
via LIBPQ. The main concepts in POSTQUEL are types, functions and rules. In this
introduction we describe each of these constructs. Immediately following this introduc
tion, we discuss the components of the POSTQUEL language, built-in types, and system
types. In the next portion of the manual the individual POSTQUEL commands appear in
alphabetical order.

KINDS OF TYPES

POSTGRES supports three kinds of types, namely base types,array types, and composite
types. The query language capabilities for each are different, and we discuss them in
turn.

Base types hold atomicdata elements that appear to POSTGRES internals as uninterpreted
byte strings. Example base types are integers and floating point numbers. Indexescan be
constructed for attributes of classes containing base types and such attributes can be
referenced using the conventional class-name.attribute addressing format Moreover,
functions and operators can be definedwhoseoperands are base types. Lasdy, base types
can be added and dropped dynamically.

There are three kinds of base types available in POSTGRES.

(1) Built-in types
These are data types that are used in the system catalogs. Hence, they must exist
as POSTGRES data types or the POSTGRES system will not run. Most of these
types are "hard wired" into POSTGRES so the system can boot.

(2) System types
These are data types that are defined by the POSTGRES system administrator.
They are automatically available for each data base that is created on a
POSTGRES system. The built-in and system data types can be changedby a sys
tem administrator by making appropriatemodifications to the file

.../files/locall_templatel .bki

Each new data base automatically receives the collection of built-in and system
types specified in the above file at the time the data base is created. Systemtypes
which are defined subsequentiy must be inserted into pre-existing data bases
one-by-one as user defined types.
Other template files may be constructed in files named

.../files/local l_template-name.bki

and then used by createdb (unix) with the -t flag. See bki (files) and createdb
(unix) for more information.

(3) User types
Thesedata typesare defined dynamically by a userof a data base. Their scope is
limited to the data base in which they are defined. See define type (commands)
for details on creating and using these types. C functions, POSTQUEL functions,
aggregate functions, and operators can be defined for user types using respec
tively the commands define C (commands), define POSTQUEL function (com
mands), define aggregate (commands), and define operator (commands).

16

INTRODUCTION (COMMANDS) 1/16/90 INTRODUCTION (COMMANDS)

In addition POSTGRES supports fixed and variable length arrays of base types. When
ever a new built-in, system or user type is constructed, POSTGRES automatically defines
fixed and variable length arrays of this type as additional types. If B is a base type, then
B[N] is an array of N instances of B, while B[] is a variable length array of instances of
B, for example:

create emp (name = charl6, age = int4, budget = int4[12], salaryjiistory = float8[])

Here budget is an array of 12 integers while salaryjiistory is a variable length array of
floating point numbers. No sparse matrix techniques are applied to the storage of arrays;
rather elements are stored contiguously in an instance.

All operations available for base types are also available for arrays of base types. More
over, conventional array addressing is automatically provided in POSTQUEL. Hence, the
i-th element of an array can be addressed as

class-name.instance[i]

For example the following query updates the April budget ofjoe.

replace emp (budget[4] = 95) where emp.name = "joe"

There are also two kinds of composite types in POSTQUEL.

(1) One or more instances in a specific class
Whenever a class is created, a type is automatically constructed of the same name
whose value is one or more instances in the indicated class. For example, if
"emp" is created as a class, then the type emp is automatically constructed.
This new type can be used in other classes, for example:

create dept (name = charl6, budget = int4, mgr = emp)

Here the field mgr is of type "emp" and refers to one or more instances from the
"emp" class. The value of the mgr attribute for each instance is a function
which returns the type, emp. For example, if f is a POSTQUEL function which
accepts a character string argument and returns the type, emp, then the following
is a valid insert to dept:

append dept (name = "toy", budget = 100000, mgr = f ("toy"))

In Version 2.1, only POSTQUEL functions have the power to return composite
types. In the future C functions will be extended to have this capability.

(2) Any set as a data type
The type set is automatically available and allows the value of an attribute in a
class to be an arbitrary collection of instances from arbitrary classes. For exam
ple, consider the following emp class:

create emp (name = charl6, hobbies = set)

Here, the value of hobbies for any employee is any collection of instances from
one or more classes. In fact, the actual value is a function which returns this type,
Assuming that f has been defined to return the set type, the following insert works
correcdy.

append to emp (name = "joe", hobbies = f("joe"))

For composite data types POSTQUEL supports "nested dot" addressing. Hence, the fol
lowing query will find the name of the manager of the shoe department:

retrieve (dept.mgr.name) where deptname = "shoe"

17

INTRODUCTION (COMMANDS) 1/16/90 INTRODUCTION (COMMANDS)

Nested dot notation is explained in the postquel (postquel) section.

KINDS OF FUNCTIONS

In POSTGRES there are four kinds of functions that can be defined.

(1) Normal functions
Normal functions can be written either in C or in POSTQUEL and then defined to
POSTGRES using the define C function (commands) and define POSTQUEL
function (commands) respectively. Normal functions take base or array types as
arguments and return base, array or composite types.
Queries can include normal functions using the standard notation, e.g.:

retrieve (emp.name) where overpaid (emp.salary, emp.age)

Here, overpaid is a normal function accepting a floating point number and an
integer as arguments and returning a boolean. Causes in a qualification contain
ing normal functions cannot be optimized by POSTGRES, and a sequential scan of
the associated class will typically result.

(2) operators
Consider a normal function which takes two operands of the same type and
returns a boolean, e.g:

retrieve (emp.name) where greater (emp.age, 25)

An operatorcan be associated with this function, say >, using the define opera
tor (commands) command. In this command, the information is specified that is
needed by the optimizer to efficiendy process queries including the operator
token. Hence, the query:

retrieve (emp.name) where emp.age > 25

can be optimized to use an age index, whereas the one with the function notation
cannot.

(3) aggregate functions
Aggregate functions allow a POSTGRES user to compute aggregates such as
count, sum and average. Unfortunately, they do not work in Version 2.1.

(4) Inheritable functions (methods)
If a function has a first argument which is of type instance in some class, then
this function is inheritable. Consider the following query:

retrieve (emp.name) where overpaid(emp)

Here overpaid takes an argument of type instance in emp and returns a boolean.
Such functions can be written in C or POSTQUEL. If written in C, they must
access fields in the argument tuple using special accessor functions as described
in the define C function (commands) section. Inheritable functions can be refer
enced either using the functional notation above or using one of the attribute style
notations as follows:

retrieve (emp.name) where emp.overpaid
retrieve (emp.name) where emp.overpaidO

These latter notations emphasise the fact that overpaid effectively defines a new
attribute for the class emp containing the field, overpaid. Moreover, if any class
inherits from the emp class, e.g: the pensionemp class, then any inheritable func
tions defined for emp are automatically defined for pensionemp. Hence, the fol
lowing query automatically works:

18

INTRODUCTION (COMMANDS) 1/16/90 INTRODUCTION (COMMANDS)

retrieve (pensionemp.name) where overpaid (pensionemp)

Inheritable functions follow the conventions of the Common Lisp Object System
(CLOS) when a function can be inherited from multiple parents.

RULES

The third major concept in POSTGRES is the notion of rules. They have the form:

on condition

then do action

Rules can be used to trigger DBMS actions e.g:

on update to emp.salary where emp.name = "mike"
then do replace emp (salary = new.salary) where emp.name = "joe"

When mike receives a salary adjustment, then this rule propagates the new salary on to
Joe. An alternate rule which accomplishes the same thing is:

on retrieve to emp.salary where emp.name = "joe"
then do instead retrieve (emp.salary) where emp.name = "mike"

This rule will retrieve the salary of mike in place of whatever is stored in joe's record.
Rules can be used to assist with the definition and maintenance of data in a class. Moro-
ever, rules can sometimes be used in place of functions if the user wishes. Hence the fol
lowing two commands have the effect of defining anattribute, overpaid.

add to emp (overpaid = boolean)

on retrieve to emp.overpaid
then do instead retrieve (overpaid = overpaid(currentsalary, currentage))

This attribute will be inherited in the standard way, and the effect is the same as an inher
itable function. The above solution allows the user to add additional rules to further
define the column, e.g:

on update to emp.overpaid
then do....

Such additional rules cannot be specified using the solution containing a function
definition.

19

BUILT-INTYPES (POSTQUEL) 6/14/90 BUILT-INTYPES (POSTQUEL)

DESCRIPTION

Thissection describes thebuilt-in datatypes and theirassociated functions and operators.
A POSTGRES system cannot run withoutthese types, so the POSTGRES system adminis
trator is cautioned not to remove them.

bool boolean
char character

int2 two-byte signed integer
int4 four-byte signed integer
Moat4 single-precision floating-point number
float8 double-precision floating-point number
uint2 two-byte unsigned integer
uint4 four-byte unsigned integer
cid command identifier type
oid object identifier type
tid tuple identifier type
xid transaction identifier type

The following types are also required built-in types, but are expected to change or disap
pear between versions.

abstime absolute date and time

bytea variable length array of bytes
charl 6 array of 16 characters
datetime timestamp
int28 arrayof8int2
oid8 array of 8 oid
regproc registered procedure
reltime relative date and time

text variable length array ofcharacters
tinterval time interval

These types all have obvious formats except for the three time types, explained below:

ABSOLUTE TIME

Absolute time is specified using the following syntax:

Month Day [Hour: Minute : Second] Year

where Month is Jan, Feb,..., Dec
Day is 1,2 31
Hour is 01,02, ...,24
Minute is 00,01, ...,59
Second is 00,01, ...,59
Year is 1902,1903, ...,2038

Valid dates are, therefore, Jan 1 00:00:00 1902 to Jan 1 00:00:00 2038. In Version 2,
times are read and written using Greenwich Mean Time. The special absolute time
"now" is also provided as a convenience. Similarly, the special absolute time "epoch"
means Jan 1 00:00:00 1902.

20

BUILT-IN TYPES (POSTQUEL) 6/14/90 BUILT-IN TYPES (POSTQUEL)

RELATIVE TIME

Relative time is specified with the following syntax:

@ Quantity Unit [Direction]

where Quantity is '1', 42\ ...
Unit is 'second', 'minute*, 'hour', 'day', 'week',
'month' (30-days), or 'year' (365-days),
or PLURAL of these units.

Direction is 'ago'

(Note: Valid relativetimes are less than or equal to 68 years)

In addition, the special relative time "UndefinedRelTime" is provided.

TIME RANGES

Time ranges are specified as:

[abstime, abstime]
[, abstime]
[abstime,""]
rim << »»i

where abstime is a time in the absolute time format. "" will cause the time interval to
either start or end at the least or greatest time allowable, that is, either Jan 1 00:00:00
1902 or Jan 1 00:00:00 2038, respectively.

FUNCTIONS

The following functions are defined on built-in types and areessential to the operation of
POSTGRES.

return function name
type and argument types
bool boolin(extemal)
char charin(extemal)
int2 int2in(external)
int4 int4in(extemal)
fioat4 float4in(external)
float8 float8in(external)
cid cidin(external)
oid oidin(extemal)
tid tidin(external)
xid xidin(extemal)
abstime abstimein(external)
reltime reltimein(extemal)
tinterval tintervalin(external)
bytea byteain(extemal)
charl 6 charl6in(extemal)
int28 int28in(extemal)

meaning

converts argument from external to internal form

21

BUILT-IN TYPES (POSTQUEL) 6/14/90 BUILT-IN TYPES (POSTQUEL)

oid8 oid8in(external) n

text textin(extemal) •i

datetime datetimein(extemal) it

regproc regprocin(external) •t

external boolout(bool) converts argumei
external charout(char) n

external int2out(int2) it

external int4out(int4) tt

external float4out(float4) it

external float8out(float8) tt

extemal cidout(cid) tt

external oidout(oid) tt

external tidout(tid) tt

external xidout(xid) it

external abstimein(abstime) tt

external reltimein(reltime)
ti

external tintervalin(tinterval) ii

extemal byteaout(bytea) M

external charl6out(char16) it

external int28out(int28) •t

external oid8out(oid8) it

external textout(text) tt

external datetimeout(datetime) tt

external regprocout(regproc) ti

bool booleq(bool,bool) tests for equality
bool chareq(char.char) ti

bool int2eq(int2,int2) it

bool int4eq(int4,int4) •t

bool float4eq(float4,float4) •t

bool float8eq(float8,float8) •I

bool cideq(cid.cid) it

bool oideq(oid,oid) tt

bool tideq(tid,tid) ti

bool xideq(xid.xid) ti

bool abstimeeq(abstime,abstime) M

bool reltimeeq(reltime,reltime) it

bool tintervaleq(tinterval,tinterval) it

bool char16eq(charl6,charl6) n

bool texteq(text,text) •t

bool datetimeeq(datetime,datetime) ti

bool regproceq(regprocregproc) ti

bool int2ge(int2,int2) tests for greater t
bool int4ge(int4,int4) •I

bool float4ge(float4,float4) it

bool float8ge(float8,float8) tt

bool int2gt(int2,int2) tests for greater t
bool int4gt(int4,int4) tt

22

BUILT-IN TYPES (POSTQUEL) 6/14/90

bool Aoat4gt(float4,float4)
bool Aoat8gt(float8,float8)

bool int21e(int2,int2)
bool int41e(int4,int4)
bool float41e(float4,float4)
bool float81e(float8,float8)

bool int21t(int2,int2)
bool int41t(int4,int4)
bool float41t(float4,float4)
bool float81t(float8,float8)

bool ininterval(abstime, tinterval)
bool intervalct(tinterval, tinterval)
bool intervalov(tinterval, tinterval)
abstime intervalend(tinterval)
abstime intervalstart(tinterval)
datetime timenowQ

23

BUILT-IN TYPES (POSTQUEL)

tests for less than or equal to, <=

tests for less than, <

tests if time is in interval

tests for contained-in

tests for overlaps
returns ending time of time interval
returns starting time for time interval
returns current time

BUILT-IN TYPES (POSTQUEL) 6/14/90 BUILT-IN TYPES (POSTQUEL)

OPERATORS

The following operators are automatically defined on the built-in types. In practice,
many of the functions named below can be the same function called with different argu
ment types (depending on your compiler); thus, not all of the functions are actually dis
tinct.

binary result supporting
operator type function
= bool booleq(bool,bool)
equality chareq(char,char)

int2eq(int2,int2)
int4eq(int4,int4)
int24eq(int2,int4)
int42eq(int4,int2)
Aoat4eq(float4,float4)
Aoat8eq(Aoat8,Aoat8)
Aoat48eq(float4,float8)
Aoat84eq(Aoat8,Aoat4)
oideq(oid.oid)
abstimeeq(abstime,abstime)
reltimeeq(reltime,reltime)
charl6eq(bool,bool)
texteq(text,text)

t= bool int2ne(int2,int2)
inequality int4ne(int4,int4)

int24ne(int2,int4)
int42ne(int4,int2)
Aoat4ne(Aoat4,Aoat4)
Aoat8ne(Aoat8,Aoat8)
float48ne(float4,float8)
Aoat84ne(Aoat8,Aoat4)
oidne(oid.oid)
abstimene(abstime,abstime)
reltimene(reltime,reltime)

>= bool int2ge(int2,int2)
greater/equal int4ge(int4,int4)

int24ge(int2,int4)
int42ge(int4,int2)
float4ge(float4,Aoat4)
Aoat8ge(Aoat8,Aoat8)
Aoat48ge(Aoat4,Aoat8)
Aoat84ge(Aoat8,Aoat4)
abstimege(abstime, abstime)
reltimege(reltime, reltime)

> bool int2gt(int2,int2)

24

BUILT-IN TYPES (POSTQUEL) 6/14/90 BUILT-IN TYPES (POSTQUEL)

greater int4gt(int4,int4)
int24gt(int2,int4)
int42gt(int4,int2)
Aoat4gt(Aoat4,Aoat4)
Aoat8gt(Aoat8,Aoat8)
Aoat48gt(Aoat4,Aoat8)
Aoat84gt(Aoat8,Aoat4)
abstimegt(abstime, abstime)
reltimegt(reltime, reltime)

<= bool int21e(int2,int2)
less/equal int41e(int4,int4)

int241e(int2,int4)
int421e(int4,int2)
Aoat41e(Aoat4,Aoat4)
Aoat81e(Aoat8,Aoat8)
Aoat481e(Aoat4,Aoat8)
Aoat841e(Aoat8,Aoat4)
abstimele(abstime, abstime)
reltimele(reltime, reltime)

< bool int21t(int2,int2)
less int41t(int4,int4)

int241t(int2,int4)
int421t(int4,int2)
Aoat41t(Aoat4,Aoat4)
Aoat81t(Aoat8,Aoat8)
Aoat481t(Aoat4,Aoat8)
Aoat841t(Aoat8,Aoat4)
abstimelt(abstime, abstime)
reltimelt(reltime, reltime)

+ int2 int2pl(int2,int2)
addition int4 int4pl(int4,int4)

int4 int24pl(int2,int4)
int4 int42pl(int4,int2)
Aoat4 Aoat4pl(Aoat4,Aoat4)
Aoat8 Aoat8pl(float8,float8)
Aoat8 float48pl(float4,float8)
Aoat8 Aoat84pl(Aoat8,Aoat4)
abstime timepl(abstime,abstime)

— int2 int2mi(int2,int2)
subtraction int4 int4mi(int4,int4)

int4 int24mi(int2,int4)
int4 int42mi(int4,int2)
Aoat4 Aoat4mi(Aoat4,Aoat4)
Aoat8 Aoat8mi(Aoat8,Aoat8)
Aoat8 Aoat48mi(float4,Aoat8)
Aoat8 Aoat84mi(Aoat8,Aoat4)
abstime timemi(abstime,abstime)

25

BUILT-IN TYPES (POSTQUEL) 6/14/90 BUILT-IN TYPES (POSTQUEL)

/ int2 int2div(int2,int2)
division int4 int4div(int4,int4)

int4 int24div(int2,int4)
int4 int42div(int4,int2)
Aoat4 Aoat4div(Aoat4,Aoat4)
Aoat8 Aoat8div(Aoat8,Aoat8)
Aoat8 Aoat48div(Aoat4,Aoat8)
Aoat8 Aoat84div(Aoat8,Aoat4)

* int2 int2mul(int2,int2)
multiplication int4 int4mul(int4,int4)

int4 int24mul(int2,int4)
int4 int42mul(int4,int2)
Aoat4 Aoat4mul(Aoat4,Aoat4)
Aoat8 Aoat8mul(Aoat8,Aoat8)
Aoat8 Aoat48mul(Aoat4,Aoat8)
Aoat8 Aoat84mul(Aoat8,Aoat4)

% int4 int4mod(int4,int4)
modulo int2 int2mod(int2,int2)

int4

int4

A

Aoat8 dpow(Aoat8,Aoat8)
power

« bool intervalct(tinterval, tinterval)
contained in

&& bool intervalov(tinterval, tinterval)
overlaps

#= bool intervalleneq(tinterval, reltime)
#!= bool intervallenne(tinterval, reltime)
#< bool intervallenlt(tinterval, reltime)
#> bool intervallengt(tinterval, reltime)
#<= bool intervallenle(tinterval, reltime)
#>= bool intervallenge(tinterval, reltime)
<?> bool ininterval(abstime, tinterval)

time comparison

unary left result supporting
operators type procedure
— Aoat4 Aoat4um(Aoat4)
unary minus Aoat8 float8um(float8)

@ Aoat4 Aoat4abs(Aoat4)
absolute value Aoat8 Aoat8abs(Aoat8)

1/ Aoat8 dsqrt(Aoat8)

26

BUILT-IN TYPES (POSTQUEL) 6/14/90 BUILT-IN TYPES (POSTQUEL)

BUGS

square root

11/
cube root

round

exponent

log

float8 dcbrt(float8)

Aoat8 dround(float8)

float8 dexp(float8)

float8 dlogl(float8)

abstime intervalstart(tinterval)

typecast
int2

int4

float4

float8

int4toint2(int4)
int2toint4(int2)
dtof(float8)
ftod(Aoat4)

unary right
operators

result

type

supporting
procedure

j

factorial

%

truncate

int4

int2

float8

int4fac(int4)
int2fac(int2)

dtrunc(Aoat8)

abstime intervalend(tinterval)

The lists of types, functions, and operators are accurate only for Version 2.1. The lists
will be incomplete and contain extraneous entries in future versions ofPOSTGRES.

27

SYSTEM TYPES (POSTQUEL) 6/14/90 SYSTEM TYPES (POSTQUEL)

DESCRIPTION

This section describes the available system data types and their associated functions and
operators available in Version 2. These types are installed in every POSTGRES data base
automatically. The POSTGRES system administrator can change them by editing

.../files/locall_templatel .ami

as explained in local template (files).

The default system types are:

point data pointtype
lseg line segmenttype
path variable length array of lseg
box 2d rectangle type

The intent of including these particular types and their associated functions and operators
is to provide an example of a suite of user data types. No claim is made that they areuse
ful or efficient.

FUNCTIONS

The following functions aredefined on system types.

return function name
type andargument types meaning

tests for overlapping boxes
tests for area greater than or equal, >=
tests for area greater than, >
tests for area equality, =
tests for area less than, <
tests for area less than or equal, <=
tests if point is above point
tests if point is left of point
tests if point is right of point
tests if point is below point
tests for equality
tests if point is in box
tests if point lies on path

converts argument from internal to external form

bool box_overlap(box,box)
bool box_ge(box,box)
bool box_gt(ix)x, box)
bool box_eq(box,box)
bool box_lt(box,box)
bool box_le(box,box)
bool point_above(point,point)
bool point_left(point,point)
bool point_right(point,point)
bool point_below(point,point)
bool point_eq(point,point)
bool inside(point,box)
bool on_ppath(point,path)

external point_out(point)
external lseg_out(lseg)
extemal path_out(path)
external box_out(box)

point point_in(extemal)
lseg lseg_in(external)
path path_in(external)
box box_in(extemal)

converts argument from external to internal form

int4 pointdist(point,point) determines distance between two points

28

SYSTEM TYPES (POSTQUEL) 6/14/90 SYSTEM TYPES (POSTQUEL)

point box_center(box) locates center of box

OPERATORS

binary result supporting
operator type procedure
= bool box_eq(box,box),
&& bool box_overlap(box,box)
=1= bool point_eq(point,point)
r bool point_above(point,point)
!< bool point_left(point,point)
!> bool point_right(point,point)
!l bool point_below(point,point)

> bool inside(point,box)
«

bool on_ppath(point,path)
spatial comparison

< bool box_lt(box,box)
>= bool box_ge(box,box)
> bool box_gt(box,box)
<= bool box_le(box,box)
area comparison

< > int4 point_dist(point,point)
distance

unary left result supporting
operators type procedure
@@ point box_center(box)
center ofbox

29

POSTQUEL (POSTQUEL) 6/14/90 POSTQUEL (POSTQUEL)

DESCRIPTION

The following is a description of the general syntax of POSTQUEL. Individual POST
QUEL statements and commands are treated separately in the document; this section
describes the syntactic classes from which the constituent parts of POSTQUEL statements
are drawn.

Comments

A comment is an arbitrary sequence of characters bounded on the left by "/*" and on the
right by "*/", e.g:

/* This is a comment */

Names

Names in POSTQUEL are sequences of not more than 16 alphanumeric characters, start
ing with an alphabetic. Underscore (_) is considered an alphabetic.

Keywords

The following identifiers are reserved for use as keywords and may not be used other
wise:

abort

all

append
ascending
before

by
close

create

delete

destroy
end

forward

heavy
indexable

instead

is

light
never

nonulls

on

or

portal
purge

remove

retrieve
rightouter
to

type
using
where

addattr

always
archive

attachas

begin
c

cluster

current

demand

do

execute

from

in

inherits

intersect

key
merge

new

not

once

output_proc
postquel
quel
rename

returns

rule

transaction

union

version

with

30

after

and

arg

backward

binary
cfunction

copy

define

descending
empty
fetch

function

index

input_proc
into

leftouter

move

none

null

operator
pfunction
priority
relation

replace
rewrite

sort

tuple
unique
view

POSTQUEL (POSTQUEL) 6/14/90 POSTQUEL (POSTQUEL)

In addition, POSTGRES all classes have several predefined attributes used by the system.
For a list of these, see the section Fields, below.

Constants

There are five types of constants for use in POSTQUEL. They are described below.

Character Constants

Single character constants may be used in POSTQUEL by surrounding them by single
quotes, e.g., 4n\

String Constants

Strings in POSTQUEL are arbitrary sequences of ASCII characters bounded by double
quotes (" ") Upper case alphabetics within strings are accepted literally. Non-printing
characters may be embedded within strings by prepending them with a backslash, e.g.,
•Nn'. Also, in order to embed quotes within strings, it is necessary to prefix them with V .
The same convention applies to V itself. Because of the current limitations on tuple
sizes, string constants are currently limited to a length of a litde less than 8K bytes.
These size constraints will be removed when large-object support becomes stable (this is
one of the goals of POSTGRES version 3).

Integer Constants

Integer constants in POSTQUEL are collection of ASCII digits with no decimal point
Legal values range from -2147483647 to +2147483647. This will vary depending on the
operating system and host machine.

Floating Point Constants

Floatingpoint constants consist of an integer part, a decimal point, and a fraction partor
scientific notation of the following format:

{<dig>} .{<dig>} [e[+-] {<dig>}]

Where <dig>is a digit. You must include at least one <dig> after the period and after the
[+-] if you use those options. An exponent with a missing mantissa has a mantissa of 1
inserted. There may be no extra characters embedded in the string. Floating constants

38 38
are taken to be double-precision quantities with a range of approximately -10 to 10
and a precisionof 17 decimal digits. This will vary depending on the operating system
and host machine.

Constants of Other Types

A constant of an arbitrary type can be enteredusing the notation:

"string" :: type-name

In this case the value inside the string is passed to the input conversion routine for the

Fields

type called type-name. The result is a constant of the indicated type.

Afield is one of the following:

attribute name in a given class
all

oid

31

POSTQUEL (POSTQUEL) 6/14/90 POSTQUEL(POSTQUEL)

tmin

tmax

xmin

xmax

cmin

cmax

vtype

As in INGRES, all is a shorthand for all normal attributes in a class, and may be used
profitably in the target list of a retrieve statement Oid stands for the unique identifier of
an instance which is added by POSTGRES to all instances automatically. Oids are not
reused and are 32 bit quantities.

Tmin, tmax, xmin, cmin, xmax and cmax stand respectively for the time that the instance
was inserted, the time the instance was deleted, the identity of the inserting transaction,
the command identifierwithin the transaction, the identity of the deleting transaction and
its associated deleting command. For further information on these fields consult
[STON87]. Times are represented internally as instances of the "abstime'* data type.
Transaction identifiers are 40 bit quantities which are assigned sequentially starting at 1.
Command identifiers are 8 bit objects; hence, it is an error to have more than 256 POST
QUEL commands within one transaction.

Attributes

An attribute is a construct of the form:

Instance-variable{.composite_field} .field ' ['number*]'

Instance-variable identifies a particular class and can be thought of as standing for the
instances of that class. An instance variable is eitheraclass name, a surrogate for a class
defined by means of afrom clause, or the keyword new or current. New and currentcan
only appear in the action portion of a rule, while other instance variables can be used in
any POSTQUEL command. CompositeJield is a field of of one of the POSTGRES com
posite types indicated in the information (POSTQUEL) section, while successive com
posite fields address attributes in the class(s) to which the composite field evaluates.
Lastly,field is a normal (base type) field in the class(s) last addressed. Iffield is of type
array, then the optional number designator indicates a specific element in the array. If no
number is indicated, then all array elements arereturned.

Operators

Any built-in system, or user defined operator may be used in POSTQUEL. For the list of
built-in and system operators consult built-intypes (postquel) and b. system types (post
quel). For a list of user defined operators consult your system administrator or run a
query on the OPERATOR class. Parentheses may be used for arbitrary grouping of
operators.

Expressions (aexpr)

An expression is one of the following:

(a_expr)
constant

attribute

a_expr binary_operator a_expr
left_unary_operator a_expr

32

POSTQUEL (POSTQUEL) 6/14/90 POSTQUEL (POSTQUEL)

parameter
functional expressions
aggregate expression (not in Version 2.1)
class expression (not in Version 2.1)

We have already discussed constants and attributes. The two kinds of operator expres
sions indicate respectively binary and left_unary expressions. The following sections
discuss the remaining options.

Parameters

A parameter is used to indicate a parameter in a POSTQUEL command. Typically this is
used in POSTQUEL function definition statement The form of a parameter is:

'$' number

For example, consider the definition of a function, DEPT, as

define POSTQUEL function DEPT (charl 6) returning (dept) as
retrieve (deptall) where deptdname = $1

Functional Expressions

Afunctional expression is the name of a legal POSTQUEL function, followed by its argu
ment list enclosed in parentheses, e.g.:

fh-name (a_expr{, a_expr})

Forexample, the following computes the square root of an employee salary.

sqrt(emp.salary)

Aggregate Expression

Aggregate expressions are not supported in Version 2.1.

An aggregate expression represents a simple aggregate (i.e one which computes a single
value) or an aggregate function (i.e. one which computes a set of values). The syntax is
the following:

aggregate_name*{' [unique [using] opr] a_expr [from fromjist]
[where qualification]4}'

Here, aggregatejiame must be a previously defined aggregate. The fromjist indicates
the class to be aggregated over while qualification gives restrictions which must be
satisfied by the instances to be aggregated. Next, the a_expr gives the expression to be
aggregated while the unique tag indicates whetherall values should be aggregated or just
the unique values of a_expr. Two expressions, a_exprl and a_expr2 are the same if
a_exprl opr a_expr2 evaluates to true.

In the case that all instance variables used in the aggregate expression aredefined in the
from list, a simple aggregate has been defined. Forexample, to sum employee salaries
whose age is greater than 30, one would write:

sum {e.salary from e in emp wheree.age> 30}

or

sum [emp.salary where emp.age > 30}

In eithercase, POSTGRES is instructed to find the instances in the fromjist which satisfy
the qualification andthen compute the aggregate of the a_exprindicated.

33

POSTQUEL (POSTQUEL) 6/14/90 POSTQUEL (POSTQUEL)

On the other hand, if there are variables used in the aggregate expression that are not
defined in the from list, e.g:

avg {emp.salary where emp.age = e.age}

then this aggregate has a value for each possible value taken on by e.age. For example,
the following complete query finds the average salaryofeach possible employee age over
18:

retrieve (e.age, avg [emp.salary where emp.age = e.age})
from e in emp
where e.age > 18

Set Expressions

Set expressions are not supported in Version 2.1.

A set expression defines a collection of instances from some class and uses the following
syntax:

{targetJist from fromjist where qualification}

For example, the set of all employee names over 40 is:

[emp.name where emp.age > 40}

In addition, it is legal to construct set expressions which have an instance variable which
is defined outside the scope of the expression. For example, the following expression is
the set of employees in each department:

[emp.name where emp.dept = deptdname}

Set expressions can be used in class expressions which aredefined below.

Class Expression

Class expressions are not supported in Version 2.1.

A class expression is an expression of the form:

class_constructor binary_class_operator class_constructor
unary_class_operatorclass_constructor

where binary_class_operator is one of the following:

union union of two classes

intersect intersection of two classes

- difference of two classes

» left class contains right class
« right class contains left class
= right class equals left class

and unary_class_operator can be:

empty right class is empty

A classconstructor is either an instance variable, a class name, the value of a composite
field or a set expression.

An example of a query with a class expression is one to find all the departments with no
employees:

retrieve (deptdname)
where empty [emp.name where emp.dept = deptdname}

34

POSTQUEL (POSTQUEL) 6/14/90 POSTQUEL (POSTQUEL)

TargetJist

A target list is a parenthesized, comma-separated list of one or more elements, each of
which must be of the form:

[result_attname =] a_expr

Here, result_attname is the name of the attribute to be created (or an already existing
attribute name in the case of update statements.) If result_attname is not present, then
a_expr must contain only one attribute name which is assumed to be the name of the
result field. In Version 2.1 default naming is only used if the a_expr is an attribute.

Qualification

A qualification consists of any number of clauses connected by the logical operators:

and

and not

or

or not

A clause is an a_expr that evaluates to a Boolean over a set of instances. Not followed by
a qualification is a legal qualification.

From List

The from list is a comma-separated list offrom expressions.

Each/rom expression is of the form:

instance_variable-l {,instance_variable-2} in class_reference

where classpreference is of the form

class_name [time_expression] [*]

The from expression defines one or more instance variables to range over the class indi
cated in class_reference. Adding a time_expression will indicate that a historical class is
desired. Additionally, one can request the instance variable to range over all classes that
are beneath the indicated class in the inheritance hierarchy by postpending the designator
'*'.

Time Expressions

A time expression is in one of two forms:

[date]
[date-1, date-2]

The first case requires instances that are valid at the indicated time. The second case
requires instances that are valid at some time within the date range specified. If no time
expression is indicated, the default is "now".

In each case, the date is a character string of the form

"MMM DD [HH:MM:SS] YYYY"

where MMM is the month (Jan - Dec), DD is a legal day number in the specified month,
HH:MM:SS is an optional time in that day (24-hour clock), and YYYY is the year. If the
time of day HH:MM:SS is not specified, it defaults to midnight at the start of the
specified day. In addition, all times areinterpretedas GMT.

35

POSTQUEL (POSTQUEL) 6/14/90 POSTQUEL (POSTQUEL)

For example,

["Janl 1990"]
["Mar 3 00:00:00 1940", "Mar 3 23:59:59 1941"]

are valid time specifications.

SEE ALSO

append(commands), delete(commands), execute(commands), replace(commands),
retrieve(commands), monitor(unix).

BUGS

The following constructs are not available in Version 2.1:

aggregates and aggregate expressions
class expressions
set expressions

36

ABORT (COMMANDS) 6/14/90 ABORT (COMMANDS)

NAME

abort—abort the current transaction

SYNOPSIS

abort

DESCRIPTION

This command aborts the current transaction and causes all the updates made by the tran
saction to be discarded.

SEE ALSO

begin(commands), end(commands).

37

ADDATTR (COMMANDS) 6/14/90 ADDATTR (COMMANDS)

NAME

addattr—add attributes to a class

SYNOPSIS

addattr (attnamel = typel {, attnamei = type*}) TO classname{*}

DESCRIPTION

The addattr command causes new attributes to be added to an existing class, classname.
The new attributes and their types are specified in the same style and with the the same
restrictions as in create (commands).

The new attributes will not be added to any classes which inherit attributes from
classname, unless the "*" is present.

The initial value of each added attribute for all instances is "null."

For efficiency reasons, default values for added attributes are not placed in existing
instances of a class. If default values are desired, a subsequent replace (commands)
query should be run.

EXAMPLE

/* add the date of hire to the emp class */
addattr (hiredate = abstime) to emp

SEE ALSO

create(commands).

38

APPEND (COMMANDS) 6/14/90 APPEND (COMMANDS)

NAME

append — append tuples to a relation

SYNOPSIS

append[*] classname (att_namel = expression1 { , att_namei = expression/ }) [from
fromjist] [where qual]

DESCRIPTION

Append adds instances which satisfy the qualification, qual, to classname. Classname
must be the name of an existing class. The target list specifies the values of the fields to
be appended to classname. The fields may be listed in any order. Fields of the result
class which do not appear in the target list (either explicidy or by default) are assigned
default values. The expression for each field must be of the correct data type. There is no
automatic coercion of expressions.

The keyword all can be used when it is desired to append all domains of a class to
another class.

The "*" indicates a transitive closure and POSTGRES will run the command until it pro
duces no further effect.

EXAMPLE

/* Make a new employee Jones work for Smith */

append emp (newemp.name, newemp.salary, mgr= "Smith", bdate = 1990 - newemp.age)
where newemp.name = "Jones"

/* same command using the from list clause */

append emp (n.name, n.salary, mgr = "Smith", bdate = 1990 - n.age)
from n in newemp
where n.name = "Jones"

/* Append the newempl class to newemp */

append newemp (newempl.all)

SEE ALSO

postquel(postquel), retrieve(commands), definetype(commands).

BUGS

The code to support " *" is very buggy.

39

ATTACHAS (COMMANDS) 6/14/90 ATTACHAS (COMMANDS)

NAME

attachas — reestablish communication using an exising portal

SYNOPSIS

attachas name

DESCRIPTION

This command allows application programs to use a logical name, name, in interactions
with POSTGRES. Suppose the user of an application program specifies a collection of
rules that retrieve data and that the program fails for some reason. Then, under ordinary
circumstances, all the rules would need to be reentered when the program is restored.
Alternatively, the attachas command may be used before defining the rules the first time.
Then, upon restoring the program, the attachas command will reattach the user to the
active rules.

BUGS

This command is not implemented in Version 2.1.

40

BEGIN (COMMANDS) 6/14/90 BEGIN (COMMANDS)

NAME

begin — begins a transaction

SYNOPSIS

begin

DESCRIPTION

This command begins a user transaction which POSTGRES will guarantee is serializable
with respect to all concurrentiy executing transactions. Postgres uses two-phase locking
to perform this task. If the transaction is committed, POSTGRES will ensure that all
updates are done or none of them are done. Transactions have the standard ACID pro
perty.

Transactions are supported by page level locks which are escalated to the relation level if
excessive page level locks are set

SEE ALSO

end(commands), abort(commands).

41

CLOSE (COMMANDS) 6/14/90 CLOSE (COMMANDS)

NAME

close — close a portal

SYNOPSIS

close [portal_name]

DESCRIPTION

Close frees the resources associated with a portal, portaljiame. After this portal is
closed, no subsequent operations are allowed on it. A portal should be closed when it is
no longer needed. If portalname is not specified, then the blank portal is closed.

EXAMPLE

/* close the portal FOO */
close FOO

SEE ALSO

retrieve(commands), fetch(commands), move(commands).

42

CLUSTER (COMMANDS) 6/14/90 CLUSTER (COMMANDS)

NAME

cluster—give storage clustering advice to POSTGRES

SYNOPSIS

cluster classname on domname [using operator]

DESCRIPTION

This command instructs POSTGRES to keep the class specified by classname approxi
mately sorted on domname using the specified operator to determine the sort order. The
operator must be a binary operator and both operands must be of type domname and the
operator must produce a result of type boolean. If no operator is specified, then "<" is
used by default.

A class can be reclustered at any time on a different domname and/or with a different
operator.

POSTGRES will try to keep the heap data structure which stores the instances of this class
approximately in sorted order. If the user specifies an operator which does not define a
linear ordering, this command will produce unpredictable orderings.

Also, if there is no index for the clustering attribute, then this command will have no
effect

EXAMPLE

/* cluster employees in salary order */

cluster emp on salary

BUGS

Cluster has no effect in Version 2.1.

43

COPY (COMMANDS) 6/14/90 COPY (COMMANDS)

NAME

copy — copy data to or from a class from or to aUNIX file.

SYNOPSIS

copy [binary] classname () direction "filename" Istdin I stdout

DESCRIPTION

Copy moves data between POSTGRES classes and standard UNIX files. The keyword
binary change the behavior of field formatting, as described below. Classname is the
name of an existing class. Direction is either to or from. Filename is the UNIX path
name of the file. In place of a filename, stdin and stdout can be used so that input to copy
can be written by a LIBPQ application and output from the copy command can be read
by a LIBPQ application. The binary keyword will force all data to be stored/read as
binary objects rather than as ASCII text. It is somewhat faster than the normal copy
command, but is not generally portable, and the files generated are somewhat larger,
although this factor is highly dependent on the data itself.

FORMAT

When copy is used without the binary keyword, the file generated will have each
instance on a line, with each attribute separated by tabs 0- Embedded tabs will be pro
ceeded by a backslash character 0- The attribute values themselves are strings generated
by the output function associated with each attribute type. The output function for a type
should not try to generate the backslash character- this will be handled by copy itself.

Note that on input to copy backslashes are considered to be special control characters,
and should be doubled if you want to embed a backslash, ie, the string "12M9S88" will be
converted by copy to "121988". The actual format for each instance is

<attrl><tab><attr2><tab>...<tabxattm><newline>

If copy is sending its output to standard output instead of a file, it will send a period (.)
followed immediately by a newline.(0, on a line by themselves, when it is done. Simi
larly, if copy is reading from standard input, it will expect a period (.) followed by a new-
line (0, as the first two characters on a line, to denote end-of-file. However, copy will ter
minate (followed by the backend itself) if a true EOF is encountered.

NULL attributes are handled simply as null strings, that is, consecutive tabs in the input
file denote a NULL attribute.

In the case of copybinary, the first four bytes in the file will be the number of instances in
the file. If this number is zero, the copybinary command will read until end of file is
encountered. Otherwise, it will stop reading when this number of instances has been
read. Remaining data in the file will be ignored.

The format for each instance in the file is as follows. Note that this format must be
followed EXACTLY. Unsigned four byte integer quantities arecalled uint32 in the below
description.

uint32 totallength (not including itself). uint32 number of null attributes [uint32 attribute
number of first null attribute uint32 attribute number of nth null attribute], <data>

Alignmentof On Sun 3's, 2 byte attributes arc aligned on two-byte boundaries, and all
larger attributes are aligned on four-byte boundaries. Character attributes are aligned on
single-byte boundaries. On other machines, all attributes larger than 1 byte are aligned

44

COPY (COMMANDS) 6/14/90 COPY (COMMANDS)

on four-byte boundaries. Note that variable length attributes are proceeded by the
attribute's length; arrays are simply contiguous streams of the array element type.

SEE ALSO

append(postquel), create(postquel), libpq(commands).

BUGS

Filesused as arguments to the copy command must reside on the database server.

Copy stops operation at the first error. This should not lead to problems in the event of a
copy from, but the target relation will, of course, be partially modified in a copyto.

Because POSTGRES operates out of a different directory than the user's working direc
tory at the time POSTGRES is invoked, the result of copying to a file "foo" (without
additional path information) may yield unexpected results for the naive user. The full
pathname should be used when specifying files to be copied.

b Copy has virtually no error checking, and a malformed input file will likely cause the
backend to crash.

45

CREATE (COMMANDS) 6/14/90 CREATE (COMMANDS)

NAME

create — create a new class

SYNOPSIS

create classname (attributename = type [, attributename = type}) [key (attributename
[[using] operator] { , attributename [[using] operator])] [inherits (classname { ,
classname}] [archive_mode]

DESCRIPTION

Create will enter a new class into the current data base. The class will be "owned" by
the user issueing the command. The name of the class is classname and the attributes are
as specified in the list of attributenames: attributename, attributename, etc. The attri
butes are created with the type specified by type.

The key clause is used to specify that a field or a collection of fields is unique. If no key
clause is specified, POSTGRES will still give every instance a unique object-id (OID).
This clause allows other fields to be additional keys. Moreover, the "using operator"
part of the clause allows the user to specify what operator should be used for the unique
ness test For example, integers are all unique if = is used for the check, but not if < is
used instead. If no operator is specified, = is used by default Any specified operator
must be a binary operator returning a boolean. If there is no compatible index to allow
the key clause to be rapidly checked, POSTGRES defaults to not checking rather than per
forming an exhaustive search on each key update.

The inherits clause specifies a collection of class names from which this class automati
cally inherits all fields. If any inherited field name appears more than once, POSTGRES
reports an error. Moreover, POSTGRES automatically allows the created class to inherit
functions on classes above it in the inheritance hierarchy. Inheritance of functions is
done according to the conventions of the Common Lisp Object System (CLOS).

In addition, classname is automatically created as a type. Therefore, one or more
instances from the class are automatically a type and can be used in other create state
ments. See introduction (commands) for a furtherdiscussion of this point.

The class is created as a heap with no initial data. A class can have no more than 1600
domains, but this limit may be configured lower at some sites. A class cannot have the
same name as a system catalog class.

The archive specification for each class can be one of:

none: no historical access is supported
light: historical access is allowed and optimized for light update activity
heavy: historical access is allowed and optimized for heavy update activity

For details of the optimization, see [STON87]. Once the archive status is set, there is no
way to change it. See the purge (commands) command for details on specifying how
much history is kept.

EXAMPLE

/* Create class emp with attributes name, sal and bdate */

create emp (name = charl 6, salary = float4, bdate = abstime)

46

CREATE (COMMANDS) d/14/90 CREATE (COMMANDS)

/* Create class permemp with pension information inheriting
all fields of emp*/

create permemp (plan = charl6)
inherits emp

SEE ALSO

destroy(commands)

BUGS

Key and archive_mode arenot implemented in Version 2.1.

47

CREATE VERSION (COMMANDS) 6/14/90 CREATE VERSION (COMMANDS)

NAME

create version — construct a version class

SYNOPSIS

create version classnamel from classname2[[abstime]]

DESCRIPTION

This command creates a version class classnamel which is related to its parent class,
classnamel. Initially, classnamel has the same contents as classnamel. As updates to
classnamel occur, however, the contents of classnamel diverges from classnamel. On
the other hand, any updates to classnamel show transparently through to classnamel,
unless the instance in question has already been updated in classnamel.

If the optional abstime clause is specified, then the version is constructed relative to a
snapshot of classnamel as of the time specified.

POSTGRES uses the rules system to ensure that classnamel is differentially encoded
relative to classnamel. Moreover, classnamel is automatically constructed to have the
same indexes as classnamel. It is legal to cascade versions arbitrarily, so a tree of ver
sions can ultimately result. The algorithms that control versions are explained in
[ONG90].

EXAMPLE

/* create a version foobar from a snapshot of barfoo as of January 17,1990 */

create version foobar from barfoof"January 17,1990"]

SEE ALSO

merge(commands).

48

DEFINE C FUNCTION (COMMANDS) d/14/90 DEFINE C FUNCTION (COMMANDS)

NAME

define c function — define a new C function

SYNOPSIS

define c function function_name (file = "filename" , retumtype = <typename> [,
iscachable]) arg (type-1 {, type-n })

DESCRIPTION

Via this command, the implementor of a C function can register it to POSTGRES. Sub
sequently, this user is treated as the owner of the function.

When defining the function, the input data types, type-1, type-1,..., type-n, and the return
data type, type-r must be specified, along with a filename which indicates the FULL
PATH to the object code in .0 format for the function. (POSTGRES will not compile a
function automatically - it must be compiled before it is used in a define c function com
mand.) This code will be dynamically loaded when necessary for execution. Repeated
execution of a function will cause negligible additional overhead, as the function will
remain in a main memory cache.

The presense of the iscachable flag indicates that the function can be precomputed.
Under a variety of circumstances, POSTGRES caches the result of a function for
improved performance. Most functions can be evaluated earlier than requested; however,
some functions (such as "time-of-day") cannot. Thus, the iscachable flag is used to
indicate which option is appropriate for the function being defined. If the flag is not
specified,POSTGRES defaults to never precomputing the function.

Functions can be either called in the POSTGRES address space or a process will be
forked for the function and a remote procedure call executed. The choice of trusted or
untrusted operation is controlled by the DBA of the data base in question who can set
the "trusted" flag in the appropriate system catalog.

When a function is executed, POSTGRES automatically performs type-checking of the
parameters and signals an errorif there is a type mismatch.

C functions are currently available in two variations. If a function is defined whose argu
ments and return types are all base types, then this is a normal function. Normal func
tions can be used in the query language POSTQUEL to perform computations and also
can be associated with POSTQUEL operators using define operator (commands).

Forexample, The following command defines a function, overpaid.

define c function overpaid
(file = "/usr/postgres/src/adt/overpaid.o", retumtype = bool, iscachable)
arg (float8, int4)

The overpaid function canbe used in a query, e.g:

retrieve (EMP.name) where overpaid(EMP.salary, EMP.age)

On the other hand, the first argument to a function can also be of type set or of type
classname, representing one or more instances of a particular class. In this case an
inheritable function is defined. An inheritable function essentially specifies a new attri
bute for the associated class, whose data type is the return type of the function and whose
attribute name is the name of the function. Inheritable functions canbe referenced using
either the attribute notation or the function notation in POSTQUEL as explained in the

49

DEFINE C FUNCTION (COMMANDS) d/14/90 DEFINE C FUNCTION (COMMANDS)

following example.

Consider an inheritable function overpaid-2, defined as follows:

define c function overpaid_2
(file = ,7usr/postgres/src/adt/overpaid_2.o", retumtype = bool, iscachable)
arg (EMP)

The following queries are now accepted:

retrieve (EMP.name) where overpaid_2(EMP)

retrieve (EMP.name) where EMP.overpaid_2

retrieve (EMP.name) where EMP.overpaid_20

In this case, in the body of the overpaid_2 function, the fields in the EMP record must be
extracted using a function call getattr(name) as explained in the companion POSTGRES
tutorial.

Alternately, the following two commands do essentially the same thing,

addattr (overpaid = bool) to EMP

define rule example
on retrieve to EMP.overpaid
then do instead retrieve (overpaid = overpaid_2(current.salary, currentage))

SEE ALSO

information(unix), remove function(commands). Tutorial: Creating and Using a C func
tion.

RESTRICTIONS The name of the C function must be a legal C function name, and the name of
the function in C code must be exactly the same as the name used in define c function.

BUGS

Untrusted operation is not implemented in Version 2.1.

C functions cannot return composite types.

The notation X.f is not supported for an inheritable function, f.

Inheritable C functions are restricted to have a single tuple argument in Version 2.1.

There arenumerous bugs in the 2.1 dynamic loader. If you have problems with loading a
C function, please consult the release notes. Also, the dynamic loader for Ultrix has
exceedingly bad performance.

50

DEFINE POSTQUEL FUNCTION (6/14/90) DEFINE POSTQUEL FUNCTION (6/14/90)

NAME

define postquel function — define a new POSTQUEL function

SYNOPSIS

define postquel function function_name (type-1 {, type-n }) returns class-name is
postquel-query I{list-of-postquel-queries }

DESCRIPTION

The user can define a POSTQUEL function which consists of a single postquel query or a
brace-enclosed list of postquel queries. Via this command, the implementor of a POST
QUEL function can register it to POSTGRES. Subsequently, this user is treated as the
owner of the function.

When defining a POSTQUEL function, the input data types, type-1, type-1, ..., type-n
must be specified, along with the queries that constitute the function. The return type of
a POSTQUEL function is one of the composite types indicated in the introduction (com
mands) section of the manual. If not specified, then set is the default return type.

POSTQUEL functions are automatically cachable as long as no POSTQUEL command
in the function in turn contains an uncachable function. Lastly, functions coded in
POSTQUEL are automatically trusted, since a POSTQUEL function cannot escape from
the POSTGRES run-time system.

POSTQUEL functions are currently available in the same two variations allowed for C
functions. If a POSTQUEL function is defined whose arguments are all base types, then
this is a normal function. Normal functions can be used in the query language POST
QUEL to perform computations. The parameters to a normal function are specified in the
body of the function using the markers, $1,..., $n, as noted in the example function, TP1,
defined as follows:

define postquel function TPl(int4, float8) is
replace BANK (balance = balance - $2)
where BANK.accountno = $1

A user could execute this function to debit account 17 by $100.00 as follows:

retrieve (x = TP1(17,100.0))

On the other hand, the first argument to a POSTQUEL function can also be a class name,
in which case an inheritable function is defined. Inheritable functions can be referenced
using eitherthe column notation or the function notation in POSTQUEL as explained in
the example below. Moreover, the "cascaded dot" notation available to reference compo
site columns is available for inheritable functions. Lastly, an inheritable function takes a
value for each instance in the class, classname, which is the first argument to the func
tion. Hence, in the body of the function, any references to classname.attribute are
automatically references to the corresponding data element in the current instance of
classname. Other parameters are denoted positionally as in normal functions.

To illustrate inheritable functions we use the GROUPS class as follows:

create GROUPS(name = charl6, age = int4)

An example inheritable function would be:

define postquel function composition (GROUPS),

51

COMMANDS COMMANDS

retrieve (EMP.all)
where EMP.age> GROUPS.age

Composition has a value foreach instance of GROUPS which is the query:

retrieve (EMP.all)
where EMP.age > currentage

Hence, the following command would define a new group "elders" whose members were
over 50.

append to groups (name = "elders", age = 50)

Both of the following commands obtain the names of all employees who are "elders".

retrieve (GROUPS.composition.name)
where GROUPS.name = "elders"

retrieve (composition(GROUPS).name)
where GROUPS.name = "elders"

Alternately, the user can manually achieve the same definition of the composition func
tion by the following two commands:

addattr (composition = EMP) to GROUPS

define rule example
on retrieve to GROUPS.composition
then do instead retrieve (EMP.all) where EMP.age > current.age

BUGS

POSTQUEL functions currently can neither accept arguments nor return results of a base
type.

Inheritable functions are currently restricted to a single argument of type classname.

Inheritable POSTQUEL functions are not currently propagated thru the inheritance
hierarchy.

Inheritable functions cannot currently use functional notation and must instead use the
column notation. For example, if a function foo takes the class EMP as an argument

retrieve (EMP.foo.all)

works, but

retrieve (foo(EMP).all)

does not.

POSTQUEL functions cannot currently take a list ofqueries as the function body.

In Version 2.1, POSTQUEL functions are not cachable, no matter what their composition
maybe.

In Version 2.1, POSTQUEL functions exhibit relational-cross-product rather than outer-
join semantics. This means, for instance, that given this schema:

create emp (name = char16, salary = int4, dept = char16)

define postquel function hobbies (emp) returns hobbies is
retrieve (hobbies.all) where hobbies.empname = emp.name

52

COMMANDS COMMANDS

append emp (name = "goh", salary = 1000, dept = "toy")
append emp (name = "hong", salary= 1000, dept = "not-toy")
append emp (name = "cimarron", salary= 1500, dept = "toy")
append emp (name = "ron", salary = 29000, dept = "sys-admin")

create hobbies (activity = char16, empname = char16)

append hobbies (activity = "kayaking", empname = "goh")
append hobbies (activity = "basketball", empname = "hong")
append hobbies (activity = "basketball", empname = "ron")

the query

retrieve (emp.hobbies.activity , emp.name)

returns

rather than

activity

kayakinggoh
basketball

basketball

activity

kayakinggoh
basketball

basketball

NULL cimarron

53

name

hong
ron

name

hong
ron

DEFINE AGGREGATE (COMMANDS) 6/14/90 DEFINE AGGREGATE (COMMANDS)

NAME

define aggregate — define a new aggregate

SYNOPSIS

define aggregate agg-name [as](state-transition-function, final-calculation-function)

DESCRIPTION

An aggregate consists of two functions, a state transition function, T:

T(internal-state, next-data_item) —> next-internal-state

and a final calculation function, C:

C(internal-state) —> aggregate-value

These functions are required to have the following three properties:

(1) The output of state-transition-function and the input of final-calculation-function
must be the same type, S.

(2) The output of final-calculation-function can be of arbitrary type.

(3) The input to state-transition-function must include as its first argument a value of
type S. The other arguments must match the data types of the object being aggre
gated.

EXAMPLE

The average aggregate could consist of a state transition function which uses as its state
the sum computed so far and the number of values seen so far. It might accept a new
employee salary, increment the count, and add the new salary to produce the next state.
The state transition function must also be able to initialize correctly when passed a null
current state. The final calculation function divides the sum by the count to produce the
final answer.

/* Define an aggregate for average */

define aggregate avg as (add-new-value-function, divide-by-total-function)

BUGS

Define aggregate is not implemented in Version 2.1.

54

DEFINE INDEX (COMMANDS) #14/90 DEFINE INDEX (COMMANDS)

NAME

define index — construct a secondary index

SYNOPSIS

define [archive] index index-name on classname using am-name (attname-1
type_class-l {, attname-i type_class-i}) [with (parameter-list)]

DESCRIPTION

This command constructs an index called index-name. If the archive keyword is absent,
the classname class is indexed. In contrast, when archive is present, an index is created
on the archive class associated with the classname class.

Am-name is the name of the access method which is used for the index. The key fields
for the index are specified as a collection of attribute names and associated classes. A
class is used to indicate the collection of functions and operators which the access
method should use to manipulate the index.

Predefined type classes are:

int2_ops float4_ops
int4_ops float8_ops
area_ops oid_ops

All are defined for the normal comparison operators(<, <=, =, >, >=).

New classes can be added dynamically by making an insertion in the pg_opclass class in
the system catalogs. Operators can be associated with a class by making insertions in the
pg_amop class in the system catalogs.

The parameter-list specifies access method specific performance parameters such as the
fill-factor to be used when loading the pages of the index or the minimum and maximum
number of pages to allocate.

Version 2.1 of POSTGRES comes with a standard B-treeaccess method, a linearhashing
access method and a R-tree access method. In addition, users are encouraged to write
their own. To define a new accessmethod, the functions indicated in the pg_am relation
must be written. Unfortunately there is no documentation to support an access method
writer; hence he should look carefully at the source code for the B-tree access method
included with POSTGRES.

EXAMPLE

Create a btree index on the emp class using the ageattribute.

define index emp-index on emp using btree (age int4_ops)

BUGS

Archives are not supported in Version 2.1.

There should be an access method designers guide.

The parameter-list is not supported in Version 2.1.

55

DEFINE OPERATOR (COMMANDS) d/14/90 DEFINE OPERATOR (COMMANDS)

NAME

define operator—define a new user operator

SYNOPSIS

define operator operatorjiame (argl = type-1 [, arg2 = type-2] procedure =
func_name [, precedence = number] [, associativity = (left I right I none I any)] [,
commutator = com_op] [, negator = neg_op] [, restrict = res_proc] [, hashes] [,
join =join_proc] [, sort = sor_opl {, sor_op2 }])

DESCRIPTION

This command defines a new user operator, operator_name. The user who defines an
operator becomes its owner.

The name of the operator, operator name, can be composed of symbols only. Also, the
funcjiame procedure must have been previously defined using define C function and
must have one or two arguments. The types of the arguments for the operator and the
type of the answer are as defined by the function. Precedence refers to the order that
multiple instances of the same operator are evaluated. The next several fields are pri
marily for the use of the query optimizer.

The associativity value is used to indicate how an expression containing this operator
should be evaluated when precedence and explicit grouping are insufficient to produce a
complete order of evaluation. Left and right indicate that expressions containing the
operator are to be evaluated from left to right or from right to left, respectively. None
means that it is an error for this operator to be used without explicit grouping when there
is ambiguity. And any, the default, indicates that the optimizer may choose to evaluate
an expression which contains this operator arbitrarily.

The commutator operator is present so that POSTGRES can reverse the order of the
operands if it wishes. For example, the operatorarea-less-than, >», would have a com
mutator operator, area-greater-than, <«. Suppose that an operator, area-equal, ==,
exists, as well as an areanot equal, !==. Hence, the query optimizer could freely convert:

"0,0,1,l"::box >» MYBOXES.description

to

MYBOXES.description<« "0,0,l,l"::box

This allows the execution code to always use the latter representation and simplifies the
query optimizer somewhat.

The negator operator allows the query optimizer to convert

not MYBOXES.description == "0,0,1,1 "::box

to

MYBOXES.description != "0,0,1,1 "::box

If a commutatoroperator name is supplied, POSTGRES searches for it in the catalog. If
it is found and it does not yet have a commutator itself, then the commutator's entry is
updated to have the current (new) operator as its commutator. This applies to the nega
tor, as well.

This is to allow the definition of two operators that are the commutators or the negators

56

DEFINE OPERATOR (COMMANDS) 6/14/90 DEFINE OPERATOR (COMMANDS)

of each other. The first operator should be defined without a commutator or negator (as
appropriate). When the second operator is defined, name the first as the commutator or
negator. The first will be updated as a side effect

The next two specifications are present to support the query optimizer in performing
joins. POSTGRES can always evaluate a join (i.e., processing a clause with two tuple
variables separated by an operator that returns a boolean) by iterative substitution
[WONG76]. In addition, POSTGRES is planning on implementing a hash-join algorithm
along the lines of [SHAP86]; however, it must know whether this strategy is applicable.
For example, a hash-join algorithm is usable for a clause of the form:

MYBOXES.description === MYBOXES2.description

but not for a clause of the form:

MYBOXES.description «< MYBOXES2.description.

The hashes flag gives the needed information to the query optimizer concerning whether
a hash join strategy is usable for the operatorin question.

Similarly, the two sort operators indicate to the query optimizer whether merge-sort is a
usable join strategy and what operators should be used to sort the two operand classes.
For the === clause above, the optimizer must sort both relations using the operator, <«.
On the other hand, merge-sort is not usable with the clause:

MYBOXES.description <« MYBOXES2.description

If other join strategies are found to be practical, POSTGRES will change the optimizer and
run-time system to use them and will require additional specification when an operatoris
defined. Fortunately, the research community invents new join strategies infrequently,
and the added generality of user-definedjoin strategies was not felt to be worth the com
plexity involved.

The last two pieces of the specification are present so the query optimizer can estimate
result sizes. If a clause of the form:

MYBOXES.description<« "0,0,1,l"::box

is present in the qualification, then POSTGRES may have to estimate the fraction of the
instances in MYBOXES that satisfy the clause. The function res_proc must be a
registered function (meaning it is already defined using define C function) which
accepts one argument of the correct data type and returns a floating point number. The
query optimizer simply calls this function, passing the parameter "0,0,1,1" and multi
plies the resultby the relation size to get the desired expectednumberof instances.

Similarly, when the operands of the operator both contain instance variables, the query
optimizermust estimate the size of the resulting join. The function join_proc will return
another floating point number which will be multiplied by the cardinalities of the two
classes involved to compute the desired expected result size.

The difference between the function

my_procedure_l (MYBOXES.description, "0,0,1,l"::box)

and the operator

MYBOXES.description = "0,0,l,l'*::box

is that POSTGRES attempts to optimize operators and can decide to use an index to res
trict the search space when operators are involved. However, there is no attempt to

57

DEFINE OPERATOR (COMMANDS) d/14/90 DEFINE OPERATOR (COMMANDS)

optimize functions, and they are performedby brute force. Moreover, functions can have
any number of arguments while operators arerestricted to one or two.

EXAMPLE

/* The following command defines a new operator, area-equality,
for the BOX data type. */

define operator = (
argl = box,
arg2 = box,
procedure = area_equal_procedure,
precedence = 30,
associativity = left,
commutator = ===,

negator = !==,
restrict = areajrestriction_procedure,
hashes,
join = area-join-procedure,
sort = <«, <«)

SEE ALSO

remove operator(commands) define C function(commands)

BUGS

Operator names cannot be composed of alphabetic characters in Version 2.1. Operator
precedence and associativity are not implemented in Version 2.1.

58

DEFINE RULE (COMMANDS) 6/14/90 DEFINE RULE (COMMANDS)

NAME

define rule — Define a new rule

SYNOPSIS

define [instance | rewrite] rule rule_name [as exception to rule_name_2] is
on event to object [[from clause] where clause]
do [instead]
action

DESCRIPTION

Define rule is used to define a new rule. There are two implementations of the rules sys
tem, one based on query rewrite and the other based on instance-level processing. In
general, the instance-level system is more efficient if there are many rules on a single
class, each covering a small subset of the instances. The rewrite system is more efficient
if large scope rules are being defined. In version 2.1, the user can optionally choose
which rule system to use by specifying rewrite or instance in the command. If the user
does not specify which system to use, POSTGRES defaults to using the instance-level
system. In the long run POSTGRES will automatically decide which rules system to use
and the possibility of user selection will be removed.

Here, event is one of:

retrieve

replace
delete

append

Moreover, object is either:

a class name

or

class.column

The FROM clause, the WHERE clause, and the action are respectively normal POST
QUEL FROM clauses, WHERE clauses and collections of POSTQUEL commands with
the following change:

new or current can appear instead of an instance variable
whenever an instance variable is permissible in POST
QUEL.

The semantics of a rule is that at the time an individual instance is accessed, updated,
inserted or deleted, there is a current instance (for retrieves, replaces and deletes) and a
new instance (for replaces and appends). If the event specified in the ON clause and the
condition specified in the WHERE clause are true for the current instance, then the action
part of the rule is executed. First, however, values from fields in the current instance
and/or the new instance are substituted for:

currentattribute-name

new.attribute-name

The action part of the rule executes with same command and transaction identifier as the
user command that caused activation.

A note of caution about POSTQUEL rules is in order. If the same class name or instance
variable appears in the event, where clause and the action parts of a rule, they are all

59

DEFINE RULE (COMMANDS) 6/14/90 DEFINE RULE (COMMANDS)

considered different tuple variables. More accurately, new and current are the only tuple
variables that are shared between these clauses. For example the following two rules
have the same semantics:

on replace to EMP.salary where EMRname = "Joe"
do replace EMP (...) where...

on replace to EMP-1.salary where EMP-2.name = "Joe"
do replace EMP-3 (...) where...

Each rule can have the optional tag "instead". Without this tag the action will be per
formed in addition to the user command when the event in the condition part of the rule
occurs. Alternately, the action part will be done instead of the user command. In this
later case, the action can be the keyword nothing.

EXAMPLES

/* Make Sam get the same salary adjustment as Joe */

define rule example_l is
on replace to EMP.salary where currentname = "Joe"
replace EMP (salary = new.salary)where EMP.name = "Sam"

At the time Joe receives a salary adjustment, the event will become true and Joe's current
instance and proposed new instance are available to the execution routines. Hence, his
new salary is substituted into the action part of the rule which is subsequently executed.
This propagates Joe's salary on to Sam.

/* Make Bill get Joe's salary when it is accessed */

define rule example_2 is
on retrieve to EMP.salary where currentname = "Joe"
replace EMP (salary = currentsalary) where EMRname = "Bill"

/* Deny Joe access to the salary of employeesin the shoe department */

define rule example_3 is
on retrieve to EMP.salary where currentdept = "shoe" and user() = "Joe"
do instead nothing

/* create a view of the employees working in the toy department */

create TOYEMP(name = char16, salary = int4)

define rule example_4 is
on retrieve to TOYEMP
do instead retrieve (EMP.name,EMP.salary)where EMP.dname = "toy"

/* all new employees must make 5,000 or less */

define rule example_5 is
on append to EMP where new.salary> 5000
do replace new(salary = 5000)

SEE ALSO

postquel(postquel).

60

DEFINE RULE (COMMANDS) 6/14/90 DEFINE RULE (COMMANDS)

BUGS

Exceptions are not implemented in Version 2.1.

The object in a POSTQUEL rule cannot be an array reference and cannot have parame
ters.

The WHERE clause can not have a FROM clause.

Only one POSTQUEL command can be specified in the action part, and it can only be a
replace, append, retrieve or delete command.

The rewrite system currently processes only a subset of the rule set. Specifically, it can
only accept rules of the form:

on retrieve...

then do [instead] retrieve...

or

on retrieve....

then do replace current...

61

DEFINE TYPE (COMMANDS) 6/14/90 DEFINE TYPE (COMMANDS)

NAME

define type — define a new base data type

SYNOPSIS

define type typename (internallength = (number Ivariable),
extemallength = (number Ivariable),]

input = function, output = function
, element = typename]
, default = "string"]
, send = procedure] [, receive = procedure]
, passedbyvalue])

DESCRIPTION

Define type allows the user to register a new user data type with POSTGRES for use in
the current data base. The user who defines a type becomes its owner. Typename is the
name of the new type and must be unique within the types defined forthis database.

Define type requires the registration of two functions (using define C function) before
defining the type. The representation of a new base type is determined by the function
input, which converts the type's external representation to an internal representation
usable by the operators and functions defined for the type. Naturally, output performs the
reverse transformation.

New base data types can be fixed length, in which case internal length is a positive
integer, or variable length, in which case POSTGRES assumes that the new type has the
same format as the POSTGRES-supplied data type, text. To indicate that a type is vari
able length, set internal length to -1 Moreover, the external representation is similarly
specified using external length.

To indicate that a type is an array and to indicate that a type has array elements, indicate
the type of the array element using the element attribute. For example, to define an array
of 4 byte integers (int4), set the element attribute equal to int4.

A default value is optionally available in case a user wants some specific bit pattern to
mean "data not present."

The optional functions send and receive are used when the application program request
ing POSTGRES services resides on a different machine. In this case, the machine on
which POSTGRES runs may use a different format for the data type than used on the
remote machine. In this case it is appropriate to convert data items to a standard form on
output send and convert from the standard format to the machine specific formaton input
receive. If these functions are not specified, then it is assumed that the internal format of
the type is acceptable on all relevant machine architectures (for example, single charac
ters do not have to be converted if passed from a Sun 3 to a DECstation).

The optional passedbyvalue flag indicates that operators and functions which use this
data type should be passed an argument by value rather thanby reference. Note thatonly
types whose internal representation is smaller than sIzeof(c/iar *), which is typically four
bytes, may be passed by value.

For new base types, a user can define operators, functions and aggregates using the
appropriate facilities described in this section.

62

DEFINE TYPE (COMMANDS) 6/14/90 DEFINE TYPE (COMMANDS)

EXAMPLE

/* This command creates the box data type and then uses the type in a
relation definition */

define type box (intemallength = 8,
input = my_procedure_l, output = my_procedure_2)

create MYBOXES (id = integer, description = box)

SEE ALSO

define C function(commands), define opcrator(commands), remove type(commands).

63

DEFINE VIEW (COMMANDS) 6/14/90 DEFINE VIEW (COMMANDS)

NAME

define view — construct a virtual class

SYNTAX

define view view_name [dom_name_l =] expression^ { , [dom_name_i =]
expression^ })

[from fromjist] [where qual]

DESCRIPTION

Define view will define a view to POSTGRES. This view is not physically materialized;
instead the rule system is used to support view processing as in [STON90]. Specifically,
a retrieve rule is automatically generated to support retrieve operations on views. Then,
the user can add as many update rules as he wishes to specify the processing of update
operations to views. See [STON90] fora detailed discussionof this point.

EXAMPLE

/* define a view consisting of toy department employees */

define view toyemp (e.name)
from e in emp
where e.dept = "toy"

/* Specify deletion semantics for toyemp */

define rule example1
on delete to toyemp
then do instead delete emp where emp.OID = currentOID

SEE ALSO

postquel(commands), create(commands).

64

DELETE (COMMANDS) 6/14/90 DELETE(COMMANDS)

NAME

delete — delete instances from a class

SYNOPSIS

delete[*] instance_variable [from fromjist] [where qual]

DESCRIPTION

Delete removes instances which satisfy the qualification, qual, from the class specified by
instance_variable. Instance_yariable is either a class name or a variable assigned by
fromjist. If the qualification is absent, the effect is to delete all instances in the class.
The result is a valid, but empty class.

The "*" indicates a transitive closure and POSTGRES will run the command until it pro
duces no further effect.

EXAMPLE

/* Remove all employees who make over $30,000 */

delete emp where emp.sal > 30000

/* Clear the hobbies class */

delete hobbies

SEE ALSO

Destroy(commands).

BUGS

The code to support "*" is very buggy.

65

DESTROY (COMMANDS) 6/14/90 DESTROY (COMMANDS)

NAME

destroy — destroy existing classes

SYNOPSIS

destroy classnamel { .classname/}

DESCRIPTION

Destroy removes classes from the data base. Only itsowner may destroy a class. Aclass
may be emptied of instances, but not destroyed, by using the delete statement.

If a class being destroyed has secondary indices on it, then they will be removed first
The removal ofjust a secondary index will not affect the indexed class.

This commandmay be used to destroy a version class which is not a parent of some other
version. Destroying a class which is a parent of a version class is disallowed. Instead,
the merge command should be used. Moreover, destroying a qclass whose fields are
inherited by other classes is similarly disallowed. An inheritance hierarchy must be des
troyed from leaf level to root level.

The destruction of classes is not reversable. Thus, a destroyed class will not be recovered
if a transaction which destroys this class fails to commit In addition, historical access to
instances in a destroyed class is not possible.

EXAMPLE

/* Destroy the emp class */

destroy emp

/* Destroy the emp and parts classes */

destroy emp, parts

SEE ALSO

delete(commands), remove index(commands), merge(commands).

66

END (COMMANDS) 6/14/90 END(COMMANDS)

NAME

end — commit the current transaction

SYNOPSIS

end

DESCRIPTION

This commands commits the current transaction. All changes made by the transaction
become visible to others and are guaranteed to be durable if a crash occurs.

SEE ALSO

begin(commands), abort(commands).

67

FETCH (COMMANDS) 6/14/90 FETCH (COMMANDS)

NAME

fetch — fetch instance(s) from a portal

SYNOPSIS

fetch [(forward Ibackward)] [(number Iall)] [in portal_name]

DESCRIPTION

Fetch allows a userto retrieve instances from a portal named portaljiame. The number
of instances retrieved is specified by number. If the numberof instances remaining in the
portal is less than number, then only those available are fetched. Substituting the key
word all in place of a number will cause all remaining instances in the portal to be
retrieved. Instances may be fetched in both forward and backward directions. The
default direction is forward.

Updating data in a portal is not supported by POSTGRES, because mapping portal updates
back to base classes is impossible in general as with view updates. Consequently, users
must issue explicit replace commands to update data.

EXAMPLE

/* Fetch all the instances available in the portal FOO */
fetch all in FOO

/* Fetch 5 instances backward in the portal FOO */
fetch backward 5 in FOO

SEE ALSO

retrieve(commands), close(commands), move(commands).

BUGS

Currcntiy, the smallest transaction in POSTGRES is a single POSTQUEL command. It
should be possible for a single fetch to be a transaction.

68

LOAD(COMMANDS) 6/14/90 LOAD (COMMANDS)

NAME

load — dynamically load an object file

SYNOPSIS

load "filename"

DESCRIPTION

Load loads an object (or ".o") file into Postgres'saddress space. Once a file is loaded, all
functions in that file can be accessed. This function is used in support of ADT's.

If a file is not loaded using the load command, the file will be loaded automatically the
first time the function is called by Postgres. Load can also be used to reload an object
file if it has been edited and recompiled. Only objects created from C language files are
supported at this time.

EXAMPLE

/* Load the file /usr/postgres/demo/circle.o */

load"/usr/postgres/demo/circle.o"

CAVEATS

Functions in loaded object files should not call functions in other object files loaded
through the load command, meaning, for example, that all functions in file A should call
each other, functions in the standard or math libraries, or in Postgres itself. They should
not call functions defined in a different loaded file B. This is because if B is reloaded, the
Postgres loader is not "smart" enough to relocate the calls from the functions in A into
the newaddress space of B. If B is not reloaded, however, there willnotbe a problem.

On diskless platforms or when running across NFS, load can take two or threeminutesor
more, depending on network traffic. Ondiskful platforms, load takes about oneminute.

On DECstations, you must use the "-G 0" option when compiling object files to be
loaded.

69

MERGE (COMMANDS) 6/14/90 MERGE (COMMANDS)

NAME

merge — merge two classes

SYNOPSIS

merge classnamel into classname2

DESCRIPTION

Merge will combine a version class, classnamel, with its parent, classnamel. If
classnamel is a base class, then this operation merges a differently encoded offset,
classnamel, into its parent On the other hand, if classnamel is also a version, then this
operation combines two differentially encoded offsets together into a single one. In
either case any children of classnamel becomes children of classnamel.

It is disallowed for a versionclass to be merged into its parent class when the parent class
is also the parent of another version class.

Moreover, merging in the reverse direction is also allowed. Specifically, merging the
parent, classnamel, with a version, classnamel, causes classnamel to become disassoci
ated from its parent As a side effect, classnamel will be destroyed if is not the parent of
some other version class.

EXAMPLE

/* Combine office class and employee class */

merge office into employee

SEE ALSO

destroy(commands), create version(commands).

BUGS

Merge will not work until Version 3.

70

MOVE (COMMANDS) 6/14/90 MOVE (COMMANDS)

NAME

move — move the pointer in a portal

SYNOPSIS

move [(forward I backward] [(number I all I to (number I record_qual)] [in
portal_name]

DESCRIPTION

Move allows a user to move the instance pointer within the portal named portaljiame.
Each portal has an instance pointer, which points to the previous instance to be fetched.
It always points to before the first instance when the portal is first created. The pointer
can be moved forward or backward. It can be moved to an absolute position or over a
certain distance. An absolute position may be specified by using to; distance is specified
by a number. Record_qual is a qualification with no instance variables, aggregates, or set
expressions which can be evaluated completely on a single instance in the portal.

EXAMPLE

/* Move backwards 5 instances in the portal FOO */
move backward 5 in FOO

/* Move to the 6th instance in the portal FOO */
move to 6 in FOO

SEE ALSO

retrieve(commands), fetch(commands), closc(commands).

BUGS

This command is unavailable in Version 2.1.

71

PURGE (COMMANDS) 6/14/90 PURGE (COMMANDS)

NAME

purge — discard historical data

SYNOPSIS

purge classname [before abstime]

DESCRIPTION

Purge allows a user to specify the historical retention properties of a class. The date
specified is an absolute time such as Jan 1 1987, and POSTGRES will discard tuples
whose validity expired before the indicated time. Purge with no after clause is
equivalent to "purge before now." Until specified with a purge command, instance
preservation defaults to "forever."

The user may purge a class at any time as long as the purge date never decreases.
POSTGRES will enforce this restriction, silently.

EXAMPLE

Always discard data in the EMP class prior to January 1,1989

purge EMP before "January 1,1989"

Retain only the current data in EMP

purge EMP

72

REMOVE AGGREGATE (COMMANDS) 6/14/90 REMOVE AGGREGATE (COMMANDS)

NAME

remove aggregate — remove the definition of an aggregate

SYNOPSIS

remove aggregate aggname

DESCRIPTION

Remove aggregate will remove all reference to an existing aggregatedefinition. To exe
cute this command the current user must be the the owner of the aggregate.

EXAMPLE

/* Remove the average aggregate */

remove aggregate avg

SEE ALSO

define aggregate(commands).

BUGS

Remove aggregate is not implemented in Version 2.1.

73

REMOVE FUNCTION (COMMANDS) 6/14/90 REMOVE FUNCTION (COMMANDS)

NAME

remove function — remove a user defined function

SYNOPSIS

remove function functionname

DESCRIPTION

Remove function will remove all references to an existing function. To execute this
command the user must be the owner of the function.

EXAMPLE

/* The following command will remove the square root function */

remove function sqrt

SEE ALSO

define C function(commands).

74

REMOVE INDEX (COMMANDS) 6/14/90 REMOVE INDEX (COMMANDS)

NAME

remove index — removes an index from POSTGRES

SYNOPSIS

remove index index.name

DESCRIPTION

This command drops an existing index from the POSTGRES system. To execute this
command you must be the owner of the index.

EXAMPLE

/* The following command will remove the EMP-INDEX index */

remove index emp_index

75

REMOVE OPERATOR (COMMANDS) 6/14/90 REMOVE OPERATOR (COMMANDS)

NAME

remove operator—remove an operator from the system

SYNOPSIS

remove operator opr_desc

DESCRIPTION

This command drops an existing operator from the database. To execute this command
you must be the owner of the operator.

Opr_desc is the name of the operator to be removed followed by a parenthesized list of
the operand types for the operator.

EXAMPLE

/* Remove the power operator, a~n, for 4 byte integers*/

remove operator A(int4, int4)

SEE ALSO

define operator(commands).

76

REMOVE RULE (COMMANDS) 6/14/90 REMOVE RULE (COMMANDS)

NAME

remove rule - removes a current rule from POSTGRES

SYNOPSIS

remove rule rule_name

DESCRIPTION

This command drops the rule named rule.name from the POSTGRES system.
POSTGRES will immediately cease enforcing it and will purge its definition from the
system catalogs.

EXAMPLE

/* This example drops the rule example.1 */

remove rule example.1

SEE ALSO

define rule (commands).

BUGS

Once a rule is dropped, access to historical information the rule has written may disap
pear.

77

REMOVE TYPE (COMMANDS) 6/14/90 REMOVE TYPE (COMMANDS)

NAME

remove type — remove a user-defined type from the system catalogs

SYNOPSIS

remove type typename

DESCRIPTION

This command removes a user type from the system catalogs. Anyone is allowed to
remove a type, and removal of types in use by a class will not be refused. Be careful not
to remove a built-in type.

It is the user's responsibility to remove any operators and functions that use a deleted
type.

EXAMPLE

/* remove the box type */

remove type box

SEE ALSO

introduction(commands), definetypc(commands), removeoperator(commands).

BUGS

This command should only be available to the definer of the type.

78

RENAME (COMMANDS) 6/14/90 RENAME (COMMANDS)

NAME

rename — rename a class or an attribute in a class

SYNOPSIS

rename classnamel to classname2

rename attnamel in classname to atinamc2

DESCRIPTION

The rename command causesthe name of a class or attribute to change without changing
any of the data contained in the affected class. Thus, the class or attribute will remain of
the same type and size after this command is executed.

EXAMPLE

/* change the emp class to personnel */

rename emp to personnel

/* change the sports attribute to hobbies */

rename sports in emp to hobbies

BUGS

Execution of historical queries using classes and attributes whose names have changed
will produce incorrect results in many situations.

Renamingof types, operators, rules, etc. should be supported also.

79

REPLACE (COMMANDS) 6/14/90 REPLACE (COMMANDS)

NAME

replace — replace values of attributes in a class

SYNOPSIS

replace[*] instance_variable (att_namel = expressionl { , att_name/ = expression/}) [
from fromjist] [where qual]

DESCRIPTION

Replace changes the values of the attributes specified in the targetjist for all instances
which satisfy the qualification, qual. Only attributes which are to be modified need
appear in the targetjist.

The * indicates a transitive closure and POSTGRES will run the command until it pro
duces no further effect.

EXAMPLE

/* Give all employees who work for Smith a 10% raise */

replace emp(sal = 1.1 * emp.sal) where emp.mgr = "Smith"

BUGS

The code to support "*" is very buggy.

80

RETRIEVE (COMMANDS) 6/14/90 RETRIEVE (COMMANDS)

NAME

retrieve — retrieve instances from a class

SYNTAX

retrievef *] [(into classname [archive_mode] Iportal portal_name)]
[unique] ([attr_namel =] expression1 {, [attr_name/ =] expression/})
[from fromjist]
[where qual]
[sort by attr_name-l [using operator] {, attr_name-y[using operator] }]

DESCRIPTION

Retrieve will get all instances which satisfy the qualification, qual,compute the value of
each element in the target list, and either return them to an application program through a
portal or store them in a new class.

If classname is specified, the result of the query will be stored in a new class with the
indicated name. If an archive specification, archivejnode of light, heavy, or none is not
specifed, then it defaults to light archiving. (This default may be changed at a site by the
DBA.) The current user will be the owner of the new class. The class will have attribute
names as specified in the res_targetJist. A class with this name owned by the user must
not already exist The keyword all can be used when it is desired to retrieve all fields of a
class.

If no result classname is specified, then the result of the query will be available on the
specified portal and will not be saved. If no portal name is specified, the blank portal is
used by default. For named portals, retrieve passes data to an applicationwithoutconver
sion to external format For the blank portal, all data is converted to external format
Duplicate instances are not removed when the result is displayed through a portal unless
the optional unique tag is appended, in which case the instances in the resjargetjist are
sorted according to the sort clause and duplicates are removed before being returned.

The sort clause allows a user to specify that he wishes the instances sorted according to
the corresponding operator. This operator must be a binary one returning a boolean.
Multiplesort fields are allowed and are applied from left to right.

The "*" indicatesa transitiveclosure, andPOSTGRES will run the command until it pro
duces no effect

EXAMPLE

/* Find all employees who make more than theirmanager */

retrieve (e.name)
from e, m in emp
where e.mgr = m.name
and e.sal > m.sal

/* Retrieve all fields for those employees who make more than
the average salary */

retrieve into temp (e.all)
from e in emp
where e.sal > avg {emp.salary}

81

RETRIEVE (COMMANDS) 6/14/90 RETRIEVE (COMMANDS)

/* retrieve employees's names sorted */

retrieve unique (emp.name)
sort by name using <

/* retrieve all employees's names that were valid on 1/7/85
in sorted order */

retrieve (e.name)
from e in emp["January 7 1985"]
sort by name using <

/* construct a new class, raise, containing 1.1 times allemployee's salaries */

retrieve into raise (salary = 1.1 * emp.salary)

SEE ALSO

postquel(postquel), create(commands).

BUGS

"Retrieve into" does not delete duplicates in Version 2.1.

"Archive_mode" is not implemented in Version 2.1.

The code to support "*" is very buggy.

82

LIBPQ 6/14/90 LIBPQ

NAME

libpq — programmer's interface to POSTGRES

DESCRIPTION

LIBPQ is the programmer's interface to Postgres. LIBPQ is a set of library routines
which allow queries to pass to the Postgres back-end and instances returned through an
IPC channel.

This version of the documentation is based on the C library. A similar package exists for
Common Lisp.

CONTROL

VARIABLES

The following five environment variables can be used to set up default values for an
environment and to avoid hard-coding database names into an application program:

• PGHOST sets the default server name.

• PGDATABASE sets the default Postgres database name.
• PGPORT sets the default communication port with the POSTGRES back-

end.

• PGTTY sets the tty on the PQhost back-end on which debugging messages
are displayed.

• PGOPTION contains optional arguements to the POSTGRES back-end.

The following internal variables of libpq can be accessedby the programmer:

/* the server on which POSTGRES back-end

is running. */
char *PQhost;

char *PQport = NULL ;

char *PQtty;

char *PQoption;

char *PQdatabase;

int PQportset = 0;

int PQxactid = 0;

char *PQinitstr = NULL;

int PQtracep= 0;

QUERY

/* The communication port with the
POSTGRES back-end. */

/* The tty on the PQhost back-end on
back-end messages are displayed. */

/* Optional arguements to the back-end */

/* Back-end database to access */

/* 1 if communication with back-end is established */

/* Transaction ID of the current transaction */

/* Initialization string passed to back-end */

/* 1 to print out front-end debugging messages */

The following routines control theexecution of queries from aC program.
PQsetdb — Make the specified database the current database.

83

LIBPQ 6/14/90 LIBPQ

PQsetdb (dbname)
char *dbname;

PQdb— Return the currentdatabase being accessed.

char* PQdb 0

Returns the name of the POSTGRES database being accessed, or NIL if no database is
open. Only one database can be accessed at a time. The database name is a string lim
ited to 16 characters. PQreset — Reset the communication portwith the back-end.

PQreset ()

Resets communication in case of errors.

PQfinish — Close communication ports with the back-end.

PQfinish 0

Terminates communications and frees up the memory taken up by the libpq buffer.
PQexec — Submit a query to POSTGRES.

PQexec (query) char * query;

This function returns a status indicator or an error message.

PORTAL

A portal is a POSTGRES buffer from which instances can be fetched. Each portal has a
string name (currently limited to 16 bytes). A portal is initialized by submitting a
retrieve statement using the PQexec function, for example:

retrieve portal foo (EMP.all)

The programmer can then move data from the portal into LIBPQ by executing a fetch
statement, e.g:

fetch 10 mfoo

fetch all in foo

If no portal name is specified in a query, the default portal name is the empty string,
known as the "blank 001131." All qualifying instances in a blank portal are fetched
immediately, without the need for the programmerto issue a seperate fetch command.

Data fetched from a portal into LIBPQ is moved into a portal buffer. Portal names are
mapped to portal buffers through an internal table. Each instance in a portal buffer has an
index number locating its position in the buffer. In addition, each field in an instance has
a name and a field number.

A single retrieve command can return multiple types of instances. This can happen if a
POSTGRES function is executed in the evaluation of a query or if the query returns multi
ple instance types from an inheritance hierarchy. Consequently, the instances in a portal
are set up in groups. Instances in the same group are guaranteed to have the same
instance format.

84

LIBPQ 6/14/90 LIBPQ

Portals that are associated with normal user commands are called synchronous. In this
case, the application program is expected to issue a retrievel followed by one or more
fetch commands. The functions that follow can now be used to manipulate data in the
portal.

PQnportals — Return the numberof open portals.

int PQnportals (rule_p)
int rule_p;

If rule_p is not O, then only return the numberof asynchronous portals.

PQnames — Return all portal names.

void PQnames (pnames, rule_p)
char *pnames [MAXPORTALS];
int rule_p;

If rule_pis not 0, then only return the names of asynchronous
portals.

PQparray — Returnthe portal buffer given a portal name.

PortalBuffer * PQparray (pname)
char *pname;

PQrulep — Return 1 if anasynchronous portal.

int PQrulep (portal)
PortalBuffer *portal;

PQntuples — Return thenumber of instances in a portal buffer.

int PQntuples (portal)
PortalBuffer *portal;

PQngroups — Return the number of instance groups in a portal buffer.

int PQngroups (portal)
PortalBuffer *portal

PQntuplesGroup — Return the number of instances in an instance group,
int PQntuplesGroup (portal, group_index)

PortalBuffer *portal;
int group_index;

PQnfieldsGroup—Return the number of fields in an instance group.

int PQnfieldsGroup (portal, group_index)
PortalBuffer *portal;
int group_index;

85

LIBPQ 6/14/90 LIBPQ

PQfhameGroup — Return the field name given the groupand field index.

char* PQfhameGroup (portal, group.index, field.number)
PortalBuffer *portal;
int group_index;
int field_number;

PQfnumberGroup— Return the field number (index) given the group index and field name.

int PQfhumberGroup(portal, group.index, field_name)
PortalBuffer *portal;
int groupjndex;
char *field_name;

PQgetgroup — Returns the index of the group that a particular instance is in.

int PQgetgroup (portal, tuple_index)
PortalBuffer *portal;
int tuple_index;

PQnfields — Return the number of fields in an instance.

int PQnfields (portal, tuple_index)
PortalBuffer *portal;
int tuple_index;

PQfhumber — Return the field index of a given field name within an instance.

int PQfhumber (portal, tuple_index, field_name)
PortalBuffer *portal;
int tuple_index;
char *field_name;

PQfname — Return the name of a field.

char * PQfname (portal, tuple_index, field_number)
PortalBuffer *portal;
int tuple_index;
int field_number;

PQftype — Return the type of a field.

int PQftype (portal, tuple_indcx, field_number)
PortalBuffer *portal;
int tuple_index;
int field_number;

The type returned is an internal coding of a type.

PQsametype — Return 1 if two instances have the same attributes.

86

LIBPQ 6/14/90 LIBPQ

int PQsametype (portal, tuple_indexl, tuple_index2)
PortalBuffer *portal;
int tuple_index 1, tuple_index2;

PQgetvalue — Return an attribute (field) value.
char * PQgetvalue (portal, tuple_index, field_number)

PortalBuffer *portal;
int tuple_index;
int field_number;

All values are returned as string. It is the programmer's responsibility to con
vert them to the correct type.

FUNCTIONS

The copy command in P has options to read from or write to the network con
nection used by LIBPQ. Therefore, functions are necessary to access this net
work connection directly so applications may take full advantage of this capabil
ity.

Formore information about the copy command, see copy(postquel).

PQgetline(string, length)— Readsa null-terminated line into string.

char *string; int length

PQputline(string) — Sends a null-terminated string.

char *string;

int PQendcopyO — Syncs with the backend.

This function waits until the backend has finished processing the copy. It
should either be issued when the last string has been sent to the backend using
PQputiineO or when the last string has been received from the backend using
PGgetline(). It must be issued or the backend may get "out of sync" with the
frontend. Upon return from this function, the backend is ready to receive the
next query.

The return value is 0 on successfulcompletion, nonzero otherwise.

TRACING

PQtrace — Enable tracing.

void PQtrace 0

PQuntrace — Disable tracing.

void PQuntrace 0

87

LIBPQ 6/14/90 LIBPQ

BUGS

Only 3 portals can be open at a time.

IPC glitches between the front-end and the back-end may cause a query to hang.
When this happens try killing the query with a keyboard interrupt CQ. If this
does not work, you may have to kill the process.

The query buffer is only 8192 bytes long, and queries over that length will be
silently truncated.

SAMPLE

/*
/*
* testlibpq.c —
* Test the C version of Libpq, the POSTGRES frontend library.
*/

#include <stdio.h>

#include "libpq.h"

mainO
{

intij.k, g,n,m, t;
PortalBuffer *p;
char pnames[MAXPORTALS] [portal_name_length];

/* Specify the database to access. */
PQsetdb ("Pic-Demo");

/* Fetch instances from the EMP class. */
PQexec ("retrieve portal eportal (EMP.all)");
PQexec ("fetch all in eportal");

/* Examine all the instances fetched. */
p = PQparray ("eportal");
g = PQngroups (p);
t = 0;

for(k = 0;k<g;k++) {
printf ("0 new instance group:\n");
n = PQntuplesGroup (p, k);
m = PQnfieldsGroup (p, k);

/* Print out the attribute names. */
for (i = 0; i < m; i++)

printf ("%-15s", PQfhameGroup (p, k, i));
printf On");

/* Print out the instances. */
for (i = 0; i < n; i++) {

for (j = 0; j < m; j++)
printf ("%-15s", PQgetvalue (p, t+i, j));

88

LIBPQ 6/14/90 LIBPQ

printf On");
}
t+=n;

}

/* Close the portal. */
PQexec ("close eportal");

/* Try out some other functions. */

/* Print out the number of portals. */
printf ("Oumber of portals open: %d.\n", PQnportals 0);

/* If any tuples are retumed by rules, print out the portal name. */
if (PQnportals (1)) {

printf ("Tuples are returned by rules. \n");
PQpnames (pnames, 1);
for (i = 0; i < MAXPORTALS; i++)

if(pnames[i] !=NULL)
printf ("portal used by rules: %s\n", pnamesfi]);

}

/* finish execution. */
PQfinish 0;

}

89

FAST PATH 6/14/90 FAST PATH

NAME

fast path— trapdoor into system internals

SYNOPSIS

"retrieve (retval = function([arg {, arg }])"

DESCRIPTION

POSTGRES allows any valid POSTGRES function to be called in this way. Prior
implementations of fast path allowed user functions to be called directly; this
feature will reappear in Version 2.02 in an improved way. For now, the above
syntax should be used, with arguments cast into the appropriate types. By exe
cutingthe above type of query, control transfers completely to the user function;
any user function can access any POSTGRES function or any global variable in
the POSTGRES address space.

There are six levels at which callscan be performed:

1) Traffic cop level
If a function wants to execute a POSTGRES command and pass a string
representation, this level is appropriate.

2) Parser
A function can access the POSTGRES parser, passinga string and
getting a parse tree in return.

3) Query optimizer
A function cancall the queryoptimizer, passing it a parse tree
and obtaining a query plan in return.

4) Executor

A function cancall the executorand pass it a query plan to be executed.

5) Access methods
A function can directly call the access methods if it wishes.

6) Function manager
A function can call other functions using this level.

Documentation of layers 1-6 will appear at some future time. Meanwhile, fast
path users must consult the source code for function names and arguments at
each level.

It should be noted that users who are concerned with ultimate performance can
bypass the query language completely and directly call functions that in turn in
teract with the access methods. On the other hand, a user can implement a new
query language by coding a function with an internal parser that then calls the
POSTGRES optimizer and executor. Complete flexibility to use the pieces of
POSTGRES as a tool kit is thereby provided.

90

INFORMATION (FILES) 6/14/90 INFORMATION (FILES)

OVERVIEW

This section describes some of the important files used by POSTGRES.

NOTATION

*'.../" at the front of file names represents the path to the postgres user's home
directory. Anything in square brackets ([and]) is optional. Anything in braces
({ and }) can be repeated 0 or more times. Parentheses ((and)) are used to
groupboolean expressions. | is the boolean operator OR.

BUGS

The descriptions of .J.postgresrc, .Jdata/PG_VERSION,
.Jdata/*/PG_VERSION, the temporary sort files, and the database debugging
trace files are absent.

91

BKI (FILES) 6/14/90 BKI (FILES)

NAME

.../src/support/{dbdb4ocal}.bki — template script

DESCRIPTION

Backend Interface (BKI) template script files are used to describe the construc
tion of databases. The backend interface is a stripped-down version of postgres
intended for setting up the first database, and other administrative tasks. It is not
intended for use by humans.

This stripped-down backend reads special ".bki" files. "XXX.bki" represents
any arbitrary file name. Createdb uses this typeof file to direct the construction
of the system catalogs. (In addition, the POSTGRES super-user may run scripts
directly by running backend with commands that follow in the next sectioa)
Backend interprets the sequence of commands and macro definitions found in
template files in the manner similar to what is described below. In particular,
this description will be easier to understand if the example in
.../files/global l.bki.

Commands are composed of a command name followed by space separated ar
guments. Arguments to a command which begin witha"$" are treated special
ly. If "$$" are the first two characters, then the first 4T* is ignored and the ar
gument is then processed normally. If the 4*$" is followed by space, then it is
treated asa NULL value. Otherwise, the characters following the "$" are inter
preted as the name of a macro causing the argument to be replaced with the
macro's value. It is an error for this macro to be undefined.

Macros are defined using "define macro macro_name = macro_value" and are
undefined using "undeflne macro macro_name" and redefined using the same
syntax as define.

Lists of general commands and macro commands follow.

GENERAL COMMANDS

open classname

Open the class called classname for further manipulation,

close [classname]

Qose the open class called classname. It is an error if classname is not already
opened. If no classname is given, thenthecurrently open class is closed.

print

Print the currently open class.

insert [oid=oid_value] *(' valuel value2 ...')*

Insert anewinstance to theopen class using valuel, valuel, etc. for its attribute
values and oid_value for it's OID. If oid is not "0", then this value will be used
as the instance's object identifier. Otherwise, it is an error. To let the system
generate a unique object identifier (as opposed to the "well-known" object

92

BKI (FILES) 6/14/90 BKI (FILES)

identifiers which we specify) use insert'(' valuel, value2,... valuen *)'.

create classname '(' namel = typel, name2 = type2,...name n = type n ')'

Create a class named classname with the attributes given in parentheses.

open '('namel = typel, name2 = type2,...name n = type n ')' as classname

Open a class named classname for writing but do not record its existence in the
system catalogs. (This is primarily to aid in bootstrapping.)

destroy classname

Destroy the class named classname.

define index <index-name> on <class-name> using <amname>
with (name_l collection_l {, name_2 collection_2 , ...})

Create an index named indexjiame on the class named classnameusing the am-
name access method. The fields to index are called namel, namel, etc. and the
operator collections to use are collectionj, collectionJ., etc., respectively.

MACRO COMMANDS

define function macro_name as rettype function_name (args)

Define a function prototype for a function named macrojiame which has its
value of type rettype computed from the execution functionjuvne with the ar
guments args declared in a C-like manner etc.

define macro macro_name from file filename

Define a macro named macname which has its value read from the file called
filename.

EXAMPLE

The following set of commands will create the OPCLASS class containing the
intjops collection as object 411, print out the class, and then close it.

create pg_opclass (opcname=charl6)
open pg_opclass
insert oid=421 (int_ops)
print
close pg_opclass

93

BKI (FILES) 6/14/90 BKI (FILES)

SEE ALSO

createdb(unix), template(files), .../src/support/backend.c

94

DAYFILE (FILES) 6/14/90 DAYFILE (FILES)

NAME

..yfiles/dayfilel — POSTGRES login message

DESCRIPTION

The contents of the dayfile reflea user information of general system interest,
and is more or less analogous to /etc/motd in UNIX. The file has no set format;
its contents are simply retumed as a string when the function dayfileO is called.
Moreover the dayfile is not mandatory, and its absence will not generate errors
of anysort; the sameis true whenthe dayfile is present but not readable.

95

PAGE (FILES) 6/14/90 PAGE (FILES)

NAME

.../data/... — database file default page format

DESCRIPTION

This section provides an overview of the page format used by POSTGRES
classes. Diagram 1 shows how pages in both normal POSTGRES classes and
POSTGRESindex classes (eg., a B-tree index) are structured. User-defined ac
cess methods need not use this page format.

In the following explanation, a"byte" is assumed tocontain 8bits. In addition,
the term "item" refers to data which is stored in POSTGRES classes. Diagram
1 shows a sample page layout. Running ".../bin/dumpbpages" or
".../src/support/dumpbpages" as the postgres superuser with the file paths asso
ciated with (heap or B-tree index) classes, ".../data/base/<database-
name>/<class-name>," will display the page structure used by the classes.
Specifying the "-r" flag will cause the classes to betreated as heap classes and
for more information to be displayed.

PageHeaderData IteraldData

£,

1

lower

1 i

upper ' special
i

1 opaque itemldDatal itemldData 2

UnallocatedSpace

ItemContfnuationData
*

^

itemPointerData 1 filler itemData...

"ItemData2"

"ItemLtotal"

SpecialSpace

Diagram 1: Sample Page Layout

The first 8 bytes of each page consists of a page header (PageHeaderData). Within the
header, the first three 2-byte integer fields, lower, upper, and special, represent byte
offsets to the start of unallocated space, tothe end of unallocated space, and tothe start of
"special space." Special space is a region at the end of the page which is allocated at
page initialization time and which contains information specific to an access method.
The last 2 bytes of the page header, opaque, encode the page size and information onthe
internal fragmentation of thepage. Page size is stored ineach page because frames in the
buffer pool may be subdivided into equal sized pages ona frame by frame basis within a

96

PAGE (FILES) 6/14/90 PAGE (FILES)

BUGS

class. The internal fragmentation information is used to aid in determining when page
reorganization should occur.

Following the page header are item identifiers (ItemldData). New item identifiers are
allocated from the first four bytes of unallocated space. Because an item identifier is nev
er moved until it is freed, its index may be used to indicate the location of an item on a
page. In fact, every pointer to an item (ItemPointer) createdby POSTGRES consists of
a frame number and an index of an item identifier. An item identifier contains a byte-
offset to the start of an item, its length in bytes, and a set of attribute bits which affect its
interpretation.

The items, themselves, are stored in space allocated backwards from the end ofunallocat
ed space. Usually, the items are not interpreted. However when the item is too long to
be placed on a single page or when fragmentation of the item is desired, the item is divid
ed and each piece is handled as distinct items in the following manner. The first through
the next to last piece are placed in an item continuation structure (ItemContinuationDa-
ta). This structure contains itemPointerData which points to the next piece and the piece
itself. The last piece is handled normally.

The page format may change in the future to provide more efficient access to large ob
jects. This section contains insufficient detail to be of any assistance in writing a new ac
cess method.

97

TEMPLATE (FILES) 6/14/90 TEMPLATE (FILES)

NAME

.../files/globall.bki — global database template

.../files/locall_XXX.bki — local database template

DESCRIPTION

These files contain scripts which direct the construction of databases. Note that the
globall.bki and templatel_local.bki files are installed automatically when the postgres
superuser runs "createdb postgres" for the first time. These files are copied from
4*.../src/support/{dbdb4ocal} .bki.''

The databases which are generated by the template scripts are normal databases. Conse
quently, you can use the terminal monitor or some other frontend on a template database
to simplify the customization task. That is, there is no need to express everything about
your desired initial database state using an AMI template script, but the database state
can be tuned interactively.

The system catalogs consist of classes of two types: global and local. There is one copy
of each global class that is shared among all databases at a site. Local classes, on the oth
er hand, are not accessible except from their own database.

.../files/globall.bki specifies the processused in the creationof global (shared) classes by
createdb. Similarly, the .../files/locall_XXX.bki files specify the process used in the
creation of local (unshared) catalog classes for the "XXX" template database. "XXX"
may be any string of 16 or fewer printable characters. If no template is specified in a
createdbcommand, then the template in .../files/locall_templatel.bki is used.

The .bki files are generated from C source code in Version 2.1.

SEE ALSO

bki(files), createdb(unix)

98

REFERENCES 6/18/90 REFERENCES

The following technical reports are referred to in this document. For information on ordering
technical reports, see the installation notes that accompany the POSTGRES distribution.

[ONG90]
Ong, L. and Goh, J., "A Unified Framework for Version Modeling Using Production Rules
in a Database System," Electronics Research Laboratory, University of California, Berke
ley, ERL Memo M90/33, April 1990.

[ROWE87]
Rowe, L. and Stonebraker, M., "The POSTGRES Data Model," Proc. 1987 VLDB Confer
ence, Brighton, England, Sept. 1987.

[SHAP86]
Shapiro, L., "Join Processing in Database Systems with Large" Main Memories," ACM-
TODS, Sept. 1986.

[STON87]
Stonebraker, M., "The POSTGRES Storage System," Proc. 1987 VLDB Conference,
Brighton, England, Sept. 1987.

[STON90]
Stonebraker, M. et. al., "On Rules, Procedures, Caching and Views in Database Systems,"
Proc. 1990 ACM-SIGMOD Conference on Management of Data, Adantic City, N.J., June
1990.

[WONG76]
Wong, E., "Decomposition: A Strategy for Query Processing," ACM-TODS, Sept. 1976.

99

	Copyright notice1988
	ERL-88-20 (1 of 2)
	ERL-88-20 (2 of 2)

