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THE DESIGN OF XPRS

Michael Stonebraker, Randy Katz, David Pattersony and John Ousterhout
EECS Dept.

University of California, Berkeley

Abstract

This paper presents an overview of the techniques we are using to build a DBMS at Berkeley
that will simultaneously provide high performance and high availability in transaction processing
environments, in applications with complex ad-hoc queries and in applications with large objects
such as images or CAD layouts. We plan to achieve these goals using a general purpose DBMS
and operating system and a shared memory multiprocessor. The hardware and software tactics
which we are using to accomplish these goals are described in this paper and include a novel "fast
path" feature, a special purpose concurrency control scheme, a two-dimensional file system,
exploitation of parallelism and a novel method to efficiently mirror disks.

1. INTRODUCTION

At Berkeley we are constructing a high performance data base system with novel software
and hardware assists. The basic goals of XPRS (eXtended Postgres on Raid and Sprite) are very
high performance from a general purpose DBMS running on a conventional operating system and
very high availability. Moreover, we plan to optimize for either a single CPU in a computer sys
tem (e.g. a Sun 4) or a shared memory multiprocessor (e.g a SEQUENT Symmetry system). We
discuss each goal in turn in the remainder of this introduction and then discuss why we have
chosen to exploit shared memory over shared nothing or shared disk.

1.1. High Performance
We strive for high performance in three different application areas:

1) transaction processing
2) complex ad-hoc queries
3) management of large objects

Previous high transaction rate systems have been built on top of low-level, hard-to-program,
underlying data managers such as TPF [BAMB87j and IMS/Fast Path (DATE184|. Recent sys
tems which are optimized for complex ad-hoc queries have been built on top of high-function data
managers (e.g. GAMMA [DEWISG] and DBC/1012 |TERA85|); however such systems have used
custom low-level operating systems. Lastly, applications requiring support for large objects (such
as images or CAD geometries) have tended not to use a general purpose data manager because of
performance problems.

This rese&rch was sponsored by the Defense Advanced Research Projects Agency (DoD) under contract N00030-84-
C-0080, the Aiw Research Office under contract DAAL03-87-GI-0041, and the National Science Foundation under con
tract MlP-8715235.



The first goal of XPRS is to prove that high performaoce in each of these areas can be pro
vided by a next gen6ration DBMS running on a general purpose operating system without unduely
compromising performance objectives. Clearly, this will be a major advantage as it will bring the
benefits of ease of application construction, ease of application migration, data independence and
low personnel costs to each of these areas. Specifically, we are using a slightly modified version of
POSTGRES [STON86] as the underlying data manager and the Sprite network operating system
[OUSTS?]. Our concrete performance goals for XPRS in each of the three application areas are
now described.

We feel that general purpose CPUs will obey Joy's law of:

MIPS = 2 ♦♦ (year - 1984)

at least for the next several years. As such, we are confident that single processor systems of 50-
100 MIPS will appear by 1991 and that shared memory multiprocessors of several hundred MIPS
will also occur in the same time frame. Consequently, we expect that CPU limitations of current
transaction processing engines will become less severe in the future, and our performance goal for
XPRS in transaction processing (measured in TPl [ANON85| transaction per second) is:

XACTS/sec= 5 * MIPS

For example, a 200 MIPS system should be capable of 1000 TPIs per second. Although this
corresponds to "common" performance in |ANON85|, we believe that an "academic strength"
prototype cannot realistically hope to do any better. Also, considerable commercial attention has
been focused recently on the TPl benchmark in Sun and VAX environments. The current perfor
mance leader in the Sun environment is INGRES [RTI88] which does about 14 TPls per second
on a Sun 3/260 and 30 TPls per second on a Sun 4, i.e. about 4 * MIPS. Hence, highly tuned
high-function commercial relational systems are somewhat short of the goal that we have set.

We expect to achieve our performance goal by a novel use of fast path to achieve a vari
able speed interface. We discuss this tactic later in this paper.

To achieve high performance on benchmarks like TPl, it is necessary to have more than
just raw DBMS power. Most transaction processing applications have so-called hot spots, i.e.
records or blocks with high traffic. Lock contention for hot spot objects is a limiting factor in
many environments. To alleviate this problem, it is necessary for the DBMS to hold locks for
shorter periods of time, and we are planning to use two tactics to help in this regard. First, we
plan to run the various DBMS commands in a transaction in parallel where possible to shorten the
amount of time they hold locks. In addition, we are using a special purpose concurrency control
algorithm which avoids locking altogether in many situations. These tactics are also described
later in this paper.

Although transaction processing systems typically perform short tasks such as TPl, there
are occasional longer running transactions. Such transactions will be a clear locking bottleneck,
unless they can be parallelized. Parallel execution of single commands has been addressed in
|DEWI85, DEWI86, RICH87j. Unfortunately, these papers indicate how to solve two-way joins in
a single-user environment. On the other hand, in this paper we present a general multi-user n-
variable algorithm appropriate for a high speed uniprocessor or a shared-memory multi-processor
with a large amount of main memory. Our performance goal is to outperform recent systems such
as GAMMA and the DBC/1012 on ad-hoc queries using comparable amounts of hardware.

Lastly, high performance is necessary in engineering environments where large objects are
stored and retrieved with great regularity. A typical image might be several megabytes and an
application program that processes images requires retrieval and storage of such objects at high
bandwidth. Current commercial systems tend not to store such objects at all, while prototype
extendible systems (e.g. POSTGRES [STON86j and EXODUS [CARE86|) have been designed with
object management needs in mind. The current design of both systems will limit the speed at
which large objects can be retrieved to the sequential reading speed of a single disk (about 1.5
mbytes/sec). Hence, a 64 mbyte object will require about 43 seconds of access time. Especially if



a supercomputer is the one making the request, it is unreasonable to require such delays. Our last
goal of XPRS is an order of magnitude, improvement in access times to large objects. We plan to
achieve this goal with a variable-speed two-dimensional file system which is described below.

1.2. High Availability
A second goal of XPRS is to make data base objects unavailable as infrequently as possible.

There are two common causes of data unavailability, errors and locking problems, and we discuss
each in turn. Errors have been classified by [GRAY87] into:

hardware errors (e.g. dish crashes)
software errors (e.g. OS or DBMS crashes)
operator errors (e.g. accidental disk erasure)
environment errors (e.g. power failure)

Because we are designing an I/O system, our goal is to make a contribution to improved availabil
ity in this area in the presence of hardware errors. Our initial ideas have resulted in an efficient
way to mirror disks at much reduced storage costs (PATT88). On the other hand, in the case of
CPU failures, we assume that XPRS would be part of a distributed data base system such as
Non-stop SQL |GRAY87Al, INGRES/STAR |RTI87| or ORACLE/STAR. Availability in the
presence of CPU or memory failures is provided in such systems by traditional distributed DBMS
multi-copy techniques. Hence, this area is not discussed further in this paper.

Software errors are soon likely to be the dominant cause of system failures because hardware
and operator errors are declining in frequency and software errors are more common than environ
ment ones [GRAY87|. It should be noted that current techniques such as process-pairs for non
stop operation and mirrored disks are vulnerable to software errors. Obviously, an errant DBMS
will write bad data on each disk in a mirrored pair, and the backup process will write the same
bad data that caused its mate to fail. Hence, our goal in XPRS is to recognize that software
errors will happen and to limit their ability to do damage. Moreover, after a software error we
consider it unacceptable for software recovery times to be measured in minutes. Hence, a goal of
XPRS is to recover from a crash in seconds. The tactics which we have in mind are described
later in the paper and depend on the characteristics of the storage system built into POSTGRES
jsTON87l.

Operator errors are best avoided by having no operator. Hence, another goal of XPRS is to
perform all utility functions automatically, so that an operator-free environment is feasible.
Among other things an operator-free environment requires that the system self-adapt to adding
and deleting disks, automatically balance the load on disks arms, and create and drop indexes
automatically.

Lastly, the most common cause of environment errors are power failures, and we view an
uninterruptable power supply as a viable solution to this problem, which coincidentally provides
stable main memory. Hence we have no specific additional goal in this area.

In summary our goals for XPRS are improved I/O system availability in the event of
hardware errors, ensuring that data is not lost as a result of software errors, instantaneous
recovery from software errors, and a system capable of running with no operator.

A second availability goal in XPRS is never to make a data base object unavailable because
of locking problems. These result from running large (usually retrieval) commands which set read
locks on large numbers of data objects, and from housekeeping chores performed by the data
manager. For example, in current systems it is often advisable to reorganize a B-tree index to
achieve physical contiguity of index pages after a long period of splits and recombinations of
pages. Such a reorganization usually makes the index unavailable for the duration of the reorgan
ization and perhaps the underlying relation as well. In XPRS this and all other housekeeping
chores must be done incrementally without locking a relation or taking it off line.



tat"l!!TrTeceot high performance systems such as NONSTOP SQL [GRAYSTl,
r-iMViA IDEWI861 and the DEC 10i2 ITERASS) which have all used a shared-nothing
KTON86A1 architecture, we are orienting XPRS to ashared memory environment. The reason for

• <.!.• I. • ie th'rppfnlH First the memory, bus bandwidth and controller technology are

Im «hfevable with shared meLry. Moreover, a2000 TPl/sec. system wjU require »«>•»<•JOM
I/Os per second, i.e. about 250 drives. The aggregate bandwidth of the I/Os, ^ P®'
is about 32 mbytes/sec. Current large mainframes routinely attach this number of
sufficient channels to deal with the "
shared memory system lack required I/O bandwidth jDEWIOO).

Second the reason to favor shared memory is that it is 25 to 50 percent faster on TPl style
benchmarks than shared nothing 1BH1D881 and hM the^d^ m^rofTlTw^^^^
CPUs are automatically shared and thereby load balanced. Hence, we avoid most of the softwar
headaches which are entailed in shared nothing proposals.

Lastly some people criticize shared memory systems on availability grounds. Specifically,
they allege that shared nothing is fundamentally more highly avaUable thM shared
because failures are contained in a single node in shared nothing system while they corrupt
entire shared memory system. Certainly this is true for hardware errors.

On the other hand, consider software errors. With conventional log-based recove^ ashared
nnihinv svstem will recover the failed node in a matter of minutes by processing the log. A
shared memory system will take at least as long to recover the entire system because it wiU have
alarger log, resulting in lower avafiability. However, suppose the operatmg system and 'he data
manager can recover instantaneously from asoftware or operator error (i.e. mafew swonds). to
this case, both ashared memory and shared nothing system recover mstantly, resultmg mthe
same availability. -is.

In summary, we view ashared memory system as nearly equally available as an equivalent
shared notZg system, to addition, we view XPRS as having higher availabihty than any log-
hased system because it recovers instantly from software errors. Mo'"*"- »"hared memory is
inherently higher performance than shared nothing and easier to load balance.

In the rest of this paper we discuss the solutions that we are adopting in XPRS to achieve
these goals, to Section 2we present our tactics to provide high performance on transaction pr^
cessing applications. Specifically, we discuss our fast path mechanism that is bemg '
POSTGRES to cut overhead on simple transactions. Moreover, we discuss inter-que^ par e
which can cut down on the length of time transactions hold locks. FinaUy, we
ized concurrency control system which avoids locks entirely in some situations. Section 3 then
turns to performance techniques appUcahle to complex commands. We
ing algorithm in this section which attempts to achieve mtra-query paralletem
response time as well as make excellent use of large amounts of mam ^
we indicate how to achieve high performance when materializing '"8®
that traditional file systems are inadequate solutions mour environment and suggest a novel two-
dimensional file system that can provide a variable speed I/O interface.

Section 5continues with our ideas for achieving high availabiUty in the P«sence of fmlures.
We briefiy discuss hardware reliability and suggest anovel way to achieve ultra-high disk rd'ab'!*
itv Then we turn to software techniques which can improve availabihty and mdicate how weexpecl t^ ;cWeve tostantaneous recovery. Section 6then cioses with our algorithms to avoid data
unavailability because of locking problems.



2. TRANSACTION PROCESSING PERFORMANCE

2.1. Introduction

A high-function data base system has an inherent problem when asked to perform transac
tion processing. High function usually entails substantial overhead per command. Intuitively, a
high-function system provides a "sledgehammer" rather than a pair of nutcrackers. However, the
overhead of swinging the sledgehammer substantially exceeds the cost of lifting the nutu-acker. In
a transaction processing environment, this overhead is a dominant source of CPU overhead. To
simultaneously provide high function and low overhead we explore two tactics that we are build
ing into POSTGRES.

2.2. Fast Path

It is common knowledge that TPl consists of 5 commands in a query language such as SQL
[DATE841 or POSTQUEL [ROWE87] together with a begin XACT and an end XACT statement.
If an application program gives these commands to the data manager one at a time, then the
boundary between the data manager and the application must be crossed in both directions 7
times. This overhead contributes 20-30 percent of all CPU cycles consumed by a TPl transac
tion. To alleviate this difficulty, severalcurrent commercial systems (including INGRES, the IDM
500, and Sybase) support procedures in the data base and POSTGRES does likewise. Hence, TPl
can be defined as a procedure and stored in a relation, say

COMMANDS (id, code)

and then later executed as follows:

execute (COMMANDS.code with check-amount, teller#) where COMMANDS.id == "TPl"
In this way the TPl procedure is executed with the user supplied parameters of the check amount
and the teller number, and the boundary between POSTGRES and an application will be crossed
just once.

To go even faster POSTGRES makes use of user-defined functions. For example, a user can
write a function OVERPAID which takes an integer argument and returns a boolean. After regis
tration with the data manager, any user can write a query such as:

retrieve (EMP.name) where OVERPAID (EMP.salary)

Of course it is also legal to execute a simpler query such as:

retrieve (result = OVERPAID (7))

which will simply evaluate OVERPAID for a constant parameter.

PsMt Path is a means of executing such user defined functions with very high performance.
Specifically, we have extended the POSTQUELquery language to include:

function-name(parameter-list)

as a legal query. For example,

0VERPAID(7)

could be submitted as a valid POSTGRES query. The run-time system will accept such a com
mand from an application and simply pass the arguments to the code which evaluates the func
tion which is linked into the POSTGRES address space without consuming overhead in type
checking, parsing or query optimization. Hence, there will be 200 or fewer instructions of over
head between accepting this command and executing it. Using this facility (essentially a remote
procedure call capability) TPl can be defined as a POSTGRES function and a user would simply
type:

TPl(check-amount, teller-name)



The implementation of the TPl function can be coded in one of four ways. The easiest but
slowest way is for the function to simply execute the stored procedure TPl noted above. Of
course, this provides no performance advantage relative to the application doing the same thing.
The second option is for the function to have the query plans for all TPl commands as a data
structure inside the function. It can substitute the parameters into the plan and then pass each
plan to the POSTGRES executor. The only requirement for this approach to work is that the
parser and optimizer be functions that the designer of the TPl function can use, e.g:

parse (string)
optimize (parse-tree)

Compiling a plan in advance of execution has been used by conventional preprocessors for many
years. Again, little if any advantage is gained relative to executing a stored procedure because
stored procedures are also compiled in advance of execution.

The third, higher performance implementation takes advantage of the fact that POSTGRES
has user defined access methods. Hence, the abstraction for the access methods is a collection of
13 functions described in |WENS88|. These functions can be directly called by a user written pro
cedure. As a result, high performance can be achieved by coding TPl directly against the access
method level of POSTGRES. Although this provides no data independence, no type checking and
no integrity control, it does result in excellent performance.

The fastest implementation of TPl directly calls the routines which manage the buffer pool.
If the user is willing to give up essentially sdl data base services, he can obtain ultimate perfor
mance.

In this way, user transactions can be coded against several different interfaces of
POSTGRES. Ones with critical performance objectives can be coded against the bottom level
while less critical ones can take full advantage of POSTGRES services at higher levels. Using this
technique POSTGRES provides a vstrlable speed interfaee. Hence, a transaction cam make use
of the maximum amount of data base services consistent with its performance requirements. This
approach should be contrasted with "toolkit" systems (e.g. EXODUS [CARE86]) which provide a
variable speed interface by requiring a data base implementor to build a custom system out of
tool-kit modules.

We plan to use fast path on TPl only to the extent necessary to achieve our performance
goals. Hence, if procedures are workable we will stop there; otherwise we will implement TPl
directly against the access methods.

2.3. Inter-query Parallelism
There is no reason why all commands in TPl cannot be run in parallel. If any of the result

ing parallel commands fails, then the transaction can be aborted. In the usual case where all com
mands succeed, then the net effect will be that locks are held for shorter periods of time and lock
contention will be reduced. Since an application program can open multiple portals to
POSTGRES, each can be executing a parallel command. However, we expect high performance
systems to store procedures in the system which are subsequently executed. A mechanism is
needed to expedite inter-query parallelism in this situation. Although it is possible to build a
semantic analyzer to detect possible parallelism [SELL86|, we are following a much simpler path.
Specifically, we are extending POSTGRES with a single keyword parallel that can be placed
between any two POSTGRES commands. This will be a marker to the run-time system that it is
acceptable to execute the two commands in parallel. Hence, TPl can be constructed as five
POSTQUEL commands each separated from its neighbor by parallel.

The reason for this approach is that it takes, in effect, a theorem prover to determine possi
ble semantic parallelism, and we do not view this as a cost-effective solution.
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2.4. Special Purpose Concurrency Control
We make use of adefinition of commutative transactions in this S-'PP®" ®sactJis considered as acollection of atomic actions al am; e«h «ns.der asj^re^-

wpitP of a sinele Dage. Two such transactions T1 and T2, witn actions ai, ....am a
M br wUl be said to commute if any interleaving of the actions of the two transactions for
which both transactions commit yields the same final data base state. In the prewnce oj trMSM-tionfaanres " require asomewhat stronger definition of commutativity which » tk
one in IBADRST). Two transactions will be said to tlth'Tl'̂ "T2 succeed
any initial data base state Sand any interleaving of actions for which ^th T1 and T2 succeed.
then the decision by either transaction to voluntarUy abort cannot cause the other to abor .

For consider two TPl withdrawals. These transactions commute because toth wm

required to abort. Hence, they do not failure commute.
Suppose adata base administrator divides aU transactions in XPRS fj."

C2 Members of C1 all failure commute, while members of C2 consist of a o er -More^e"t pmviL an UNDO function to be presenUy descriW. r"''Jc2 wUl
will be run by XPRS without locking interference from other members of .

run with standard locking to ensure serialisabiUty agamst other members of C2 and also
members of Cl. ... ...u *

To accomplish this POSTGRES must expand the normal read and write

Moreover, Cl-read and Cl-write locks function as ordmary locks with regard to C2 transactm
Because multiple Cl transactions wUl be processed in parcel, the

take care to ensure the correct ultimate value of aU data items when one or ®taxe care TO ensur ti T2 and T3 which withdraw respectively $100, $50 and

l^rftem » account with $175 M. Because the POSTGRK "
no-overwrite storage manager, the first two transactions will write new records as follows.

R W Cl-R Cl-W

R ok no ok no

W no no no no

Cl-R ok no ok ok

Cl-W no no ok ok

Compatibility modes for locks.
Figure 1.



initial value: $175
next value: $75 written by T1 which is in progress
next-value: $25 written by T2 which is in progress

The transaction T3 will fail due to insufficient funds and not write a data record.

POSTGRES must be slightly altered to achieve this effect. It currently maintains the
"state" of each transaction in a separate data structure as:

committed

aborted

in progress

To these options a fourth state must be added:

Cl-in-progress

Moreover, POSTGRES must return data records that are written by either Cl-in-progress or
committed transactions to higher level software instead of just the latter. The locking system will
ensure that these Cl-in-progress records are not visible to C2 transactions. Using this technique
01 updates are now immediately visible to other concurrent 01 transactions as desired.

When an ordinary transaction aborts, POSTGRES simply ignores its updates and they are
ultimately garbage-collected by an asynchronous vacuum cleaner. However, if a 01 transaction
aborts, there may be subsequent 01 transactions that have updated records that the aborted tran
saction also updated. For example, if T1 aborts, the state of the account will be:

initial value: $175
next value: $75 written by T1 which aborted
next-value: $25 written by T2 which is in progress

Since all the versions of an individual record are compressed and chained together on a linked list
by the storage manager, this situation will occur if the storage manager discovers a record written
by an aborted transaction followed by one or more records written by a transaction with status
"Cl-in-progress" or "commit".

In this case, the storage manager must present the correct data value to the next requesting
transaction. Consider the record prior to the aborted transaction as "old-data" and the record
written by the aborted transaction as "new data." The run time system simply remembers these
values. Then, when it discovers the end of the chain, it finds a third record which we term
"current data." The run time system now calls a specific UNDO function:

UNDO (old-data, new-data, current-data)

which returns a modified current record. The run time system writes this revised record with the
same transaction and command identifier as the aborted record. In this case, the UNDO function
would return $125 and the account state would be changed to:

initial value: $175
next value: $75 written by T1 which aborted
next-value: $25 written by T2 which is in progress
next-value: $125 written on behalf of T1 as a correction

Hence, later in the chain of records there will be a specific "undo" record. Of course, if the run
time system sees the undo record, it knows not to reapply the UNDO function.

It is possible to generalize this technique to support several classes of 01 transactions each
with their own UNDO function. However, we view the result as not worth the effort that would
be entailed.
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3. INTRA-QUERY PARALLELISM
Intra-qiiery parallelism is desirable for two reasons. First, less lock conflicts are generated if

a query finishes quickly, and thereby increased throughput can be achieved. For example, a
recent study [BHID88| has shown that substantial gains in throughput are possible using parallel
plans if a command accesses more than about 10 pages. Second, one can achieve dramatically
reduced response time for individual commands. Thissection presents a sketch of the POSTGRES
optimization algorithm and the parallelism that it achieves.

3.1. Assumptions
We begin our discussion of query optimization with three fundamental assumptions which

will radically differentiate our proposal from others that have been made.

Assumption 1: Main memory is available to hold any two data objects a user wishes to join.
The basic reasoning is that main memory in a 1991 computer system will approach or

exceed 1 gigabyte. Obviously with 900 megabytes or more of buffer pool space, a DBMS can join
two 450 megabyte objects. It is our experience that most users restrict data base objects to
smaller sizes than these before joins are performed. Put differently, the join of two 450 Megabyte
objects is another 450 megabyte object, and few users are going to be interested in looking at that
much line printer output.

Assumption 2: It takes about 1000 instructions to process a record.

This include a fraction of the CPU tax to get the page containing the record off the disk,
find the page in the buffer pool, extract the desired record and then pull apart the required fields.

Therefore, a stream of accessed records can be sorted in main memory for marginal addi
tional cost. Consider, for example, a 100 megabyte object consisting of 500,000 records each 200
bytes wide. Consider a main memory insertion sort that sorts these records without moving them
(i.e. by sorting a list of (key, pointer) pairs). Each record can be inserted in log (500,000) com
parisons. These 19 comparisons require perhaps 20 instructions each |DEWI84). Hence, the incre
mental overhead to sort a record stream is 380 instructions per record, i.e. 38 percent of the 1000
instruction processing overhead.

Assumption 3: Current Optimizers are too complex

Traditional optimizers (e.g. [SELI79]) have the following bad properties. They are slow, typ
ically requiring more than 200,000 instructions of running time. By itself this is not a severe
problem; however current optimizers will be called on to participate in heterogeneous, open archi
tecture distributed data base systems, such as INGRES/STAR [RTI87) and ORACLE/STAR.
Obviously, this will require a local optimizer to be the inner loop of a distributed optimizer. If
such a distributed optimizer is to have finite running time, it is necessary for the local optimizer
to be fast.

Moreover, current optimizers are complex modules of code that are not amenable to large
expansions in complexity, such as adding query plan parallelism. Others have suggested rule-
driven optimizers as a solution [LOHM87, GRAF87j. We are skeptical of this approach as it will
tend to make the performance problem worse and looks like it will make optimizers more com
plex, albeit easier to change.

There are several startling conclusions that result from Assumptions 1-3. First hash join
(DEWI86J algorithms are not worthwhile. The reasoning is that they will consume the same
number of I/Os as a merge sort algorithm and marginally less CPU instructions (perhaps 10 per
cent). Since some results must be sorted anyway (e.g. those specified by an SQL ORDER BY
clause), it is not worthwhile for an optimizer to consider an alternate, inessential join tactic with
marginally better performance. A similar argument suggests that join indexes {VALD87J are not

0



worthwhile either.

Another conclusion is that main memory wUl be the major resource to worry about. It will
clearly be possible to break a query into many parallel plans. However, performing two joins in
parallel will consume twice as much main memory as doing the joins sequentially. If the prere
quisite memory is available, then paraUelism should be exploited; otherwise, it should be avoided.
As a result, the desired amount of parallelism will be determined by the amount of available main
memory.

In the remainder of this section we indicate our algorithm to plan queries and construct the
desired amount of parallelism. Our query planning algorithm proceeds in two steps. First we con
struct a coUection of plan fragments using a simple heuristic algorithm and construct a query
plan which maximizes parallelism assuming suflScient main memory is available. Then, we
schedule the desired number of parallel fragments based on available main memory.

3.2. Infinite Memory Query Planning
We are required to process a query which we assume is represented as a directed query

graph. Each relation is considered as a node in this graph and each join clause is represented by
two arcs, one in each direction between the pairs of nodes. Restriction clauses and statistics are
used togenerate the following information for each node, Ni, using traditional techniques.

COST(i): The expected cost of reading qualifying tuples from the ith relation
into main memory using the best access path

NUMB(i): The expected number of qualifying records from the ith relation,
i.e. the size of the main memory temporary

For each arc pointing from node i to node j in the graph, we require the following:
TSUB(i,j): The cost ofaccessing the jth relation to find qualifying records

that match a single tuple in the ith relation. Hence, this is
the cost of the inner loop of a tuple substitution join.

SEL(i,j): The join selectivity of the clause represented by the arc. Any one
of the standard definitions can be used. We do not require that
SEL(i,j) = SEL(j.i).

Each node and each arc will have a status field, N-STATUS and A-STATUS, with possible values
{available, used}. Initially all nodes and arcs are unused. Moreover, each node will have a field
CAME-FROM which will be used to detect loops. The initial value of CAMB-FROM is the node
itself. Last, a list of nodes, LIST, is required. The algorithm uses this data as follows:

(1) Choose the available node N(l) with minimum cost and add to LIST.

(2) Delete I from LIST and for each outgoing arc, A(l,m), compare COST(m) to
NUMB(l) * TSUB(l,m). If COST(m) is smaller then do nothing else

if N-STATUSpl = available then:

set CAMEJ-FROM = 1
set N-STATUSllJ = used
set A-STATUS[l,m| = used
set COST(m) = COST(l) * TSUB(l,m)
set NUMB(m) = SEL(l,m) * NUMB(l)
add m to LIST

if N-STATUSfl) = used and CAME-FROM != 1then:
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set CAME-FROM = 1

set A-STATUS[l,mJ = used
set COST(m) = COST(l) * TSUB(l,m)
set NUMB(m) = SEL(l,mO * NUMB(l)
find the other incoming arc with STATUS of used and change it to available
add m to LIST

if N-STATUS|1] = used and CAME-FROM = 1then:

do nothing

(3) Repeat step 2 on each member of LIST. Continue until LIST is empty

(4) Repeat steps (1) • (3) until there are no available nodes.

At the end of this process, partition all nodes into groups with common values of CAME-
FROM. Add to each group the connecting arcs with an N-STATUS of used. The resulting data
structure for each value of CAME-FROM, m, is guaranteed to be a tree, and will constitute a
plan fragment, P(m). In realistic queries, we expect between one and four such plan fragments,
and each plan fragment will be executed in parallel. A single plan, P(m), will be executed by read
ing the relation corresponding to node m into main memory using the best access path previously
determined. For each outgoing arc, A (m,j) tuple substitution will be used to fetch records from
relation j into main memory. This process continues until the plan fragment is exhausted. The
last step will be to do a main memory insertion sort on one of the fields in the resulting temporary
as presently discussed.

The optimizer should break P(m) into one physical plan per physical index for the relation
being accessed. As will be seen in Section 6.2, several such indexes may be used to access a single
relation. If there are multiple nodes in the plan fragment, then there should be an additional plan
for each arc. This has been called pipelining in |DEWI86|. For each plan fragment, the required
main memory MEM(m) is calculated by the optimizer in a straight forward way along with the
size S(m) of the resulting temporary.

Now collapse the pairs of arcs in the query graph that correspond to the same join clause
into a single bi-directional arc and delete any arcs with STATUS of used. The remaining arcs
must be used to join plan fragments together. Pick a random plan fragment and join it to the
smallest plan that it is connected to by performing an insertion sort of each temporary in main
memory on the field in the join clause with smallest selectivity. The merge process can be done in
a separate plan. Continue choosing plans and performing a parallel merge-sort until the plan frag
ments are exhausted.

The result is a collection of main memory temporary relations, one for each pair of plan
fragments. Now repeat the above step on pairs of temporaries to connect more of the plans and
continue until the final answer is produced.

3.3. Dealing with Finite Memory
The above procedure will yield a query plan which requires approximately twice the sum of

MEM(m) over all plan fragments. By assumption there is available main memory for any two
plans. Hence, we require a procedure for dealing with the situation where there are three or more
plan fragments and not enough memory is available for all of them. In this case one or more par
tial results will have to written out to disk.

A simplistic algorithm for this situation is to start with a random plan fragment and join it
to the smallest plan fragment to which it is connected. Continue joining pairs of plan fragments
until they are exhausted or until available memory is exhausted. If memory is exhausted, write
the temporaries to disk. Redo the algorithm on the remainder of the query graph. We expect to
improve on this simplistic algorithm in the future.
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4. PERFORMANCE ON MATERIALIZING LARGE OBJECTS

4.1. Introduction

We expect XPRS to run on a system with a large number of disks. As noted in [PATT88|,
we believe that only 3 1/2" and 5 1/4" drives will be attractive in a couple of years. Hence, we
expect large capacity storage systems to made up of substantial numbers (say 100 or more) of
such drives. Additionally, these drives do not have removable platters, so the concept of a
mounted file system is not required, and we can think of the collection of drives as a two-
dimensional array.

In keeping with our objective of using a conventional file system, the problem becomes one
of designing a Sprite file system for this disk array which simultaneously yields good performance
in transaction processing, complex commands, and materializing large objects. To simplify the
discussion, we will assume that a storage system has D drives, numbered 1,...,D, the allocation
unit is a disk track and the ith disk has Ti tracks. Hence, the storage system is a two dimensional
array of tracks, and we will assume that the horizontal dimension is the drive number and the
vertical dimension is the track number on a drive.

In many traditional file systems a user can add a new extent to a file which is allocated
sequentially on a single drive. If necessary, it would be broken into multiple smaller contiguous
extents. In our storage system an extent of size E would correspond to a vertical rectangle of
width 1 and height E.

Recently, researchers have suggested striping files across a collection of disks [SALE86,
LIVN85|. Striping L <= D disks entails allocating the Ith track to the Jth disk determined by:

J = remainder (I/L) + 1

In this way, a large sequential I/O can be processed by reading all disks in parallel, and very high
bandwidth on sequential I/O is possible. In our model this corresponds to a rectangle of width L
and height of 1 or more.

In the next subsections we argue that both horizontal (striped over all D drives) and vertical
(i.e. traditional) allocation schemes are unworkable in our environment and that a two-
dimenBlonal file system which allocates extents as general M by W rectangles is the only viable
alternative. Then, we close this section with a few comments on the design of FTD (Files —Two
Dimensions).

4.2. Horizontal Allocation

Define the width W of a rectangle of storage as the number of drives it is striped over. The
choice:

W=:D

will result in tricky problems in the area of high availability and space management. Moreover,
although hot spots are unlikely in this organization, there is nothing that can be done about them
if they happen. Lastly, it will be seen that a DBMS has little liklihood of taking advantage of the
resulting bandwidth. We now discuss each point in turn.

In all real environments the number of disks changes over time. Hence, infrequently, the
value of D will change, usually to a bigger value. When a disk is added or dropped, one must res-
tripe all remaining disks. This is f bulk reorganization that will result in the file that is restriped
being unavailable during the reorganization. Since the goal of XPRS is to avoid such software-
induced unavailability, the choice of W = D is unacceptable.

In our disk system, RAID, a double disk failure is required to make data unavailable as
noted in Section 5.1, and the mean time to such an event is measured in tens of years. However,
a cautious system administrator might still be concerned about data loss in this situation. If W
=3 D, then each disk will have some data from all files. In environments where large objects are
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Lastly, it should be noted that both the DBMS and OS copies of a page are never simultane
ously unguarded. Hence, if the DBMS page is discarded, it will be refreshed from the OS page. If
the OS page is discarded, it will be rewritten from the DBMS page. Moreover, since the number
of unguarded pages at any one time is small, the two copies can be brought into synchronization
quickly during recovery time.

There are additional details that concern how to preserve the data structure which holds the
mapping of disk pages to buflfer pages. However, space precludes an explanation here. Also,
assuming that the 1/0 system does not write blocks to the wrong place along with Assumptions 1
and 2 above, our scheme does not lose data and recovers essentially instantly.

6. AVOIDING DATA UNAVAILABILrrY DUE TO LOCKING
In this section we indicnte the nppronch tnken by to nvoid dntn unnvnilnbility on

large user reads and on storage reorganizations.

6.1. User Reads

POSTGRES automatically supports access to a relation as of some time in the past. For
example, a user can obtain the names of employees as of January 15th as follows:

retrieve (EMP.name)
using Eh^®"January 15, 1988"

All retrieve commands can be run as of some time in the past. Because no locks are set for such
commands, they cause no data unavailability. In addition, our technique does not require a user
to predeclare his transaction to be read-only as required by some other techniques, e.g (CHAN82].

6.2. Storage Reorganization Without Locking
In supporting parallel query plans, it is essential to allocate a single relation to multiple files.

We choose to do this utilizing a distribution criteria, e.g:

EMP where age < 20 TO file 1
EMP where age > 40 TO file 2
EMP where age >= 20 and age <= 40 TO file 3

When creating indexes on the EMP relation, say on the salary field, it is equally natural to con
struct three physical indexes, one for each fragment. This will ensure that parallel plans do not
often collide for access to the same disk arm or collection of arms. These indexes would have the
form:

index on EMP(salary) where age <20
index on EMP(salary)where age > 40
index on EMP(salary) where age >=20 and age <=40

Such data structures are partial indexes and offer a collection of desirable features as discussed
in |STON88]. Notice that such indexes are smaller than a current conventional index and should
be contrasted with other proposals (e.g join indexes {VALD87], links (ASTR76J and the indexes in
IMS (DATE84]) which are larger than a conventional index. We now illustrate how partial
indexes can be used by an automatic demon to achieve incremental index reorganization.

To convert from a B-tree index on a key to either a rebuilt B-tree index or a hash index on
the same key, one can proceed as follows. Divide the key range of the index into N intervals of
either fixed or varying size. Begin with the first interval. Lock the interval and construct a new
index entry for each tuple in the interval. When the process is complete, unlock the interval. The
new index is now valid for the interval

key < VALUE-1

where VALUE-l is the low key on the next index page to be examined. The old index can be
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considered valid for the whole key range or it can be restricted to:

key >= VALUE-1

In this latter case, the space occupied by the index records of the first interval can be reclaimed.
If the intervals are chosen to be the key ranges present in the root level of the old B-tree, then
this space reclaimation can occur without destroying the B-tree property for the old index.

The query optimizer need only be extended to realize that the two indexes together cover
the key range. Hence, if a query must be processed with a qualification of the form:

where VALUEJ-3 < key < VALUE-4

it is necessary to construct two query plans, one for each index. There is little complexity to this
optimizer extension. At one's leisure, the remaining N-1 intervals can be processed to generate the
complete index.

All storage reorganizations to achieve alternate access paths or arm balance can be similarly
coded as incremental operations using distribution criteria and partial indexes. We expect to
embed these techniques into a collection of asynchronous demons that will run in background,
thereby relieving the operator of manual (and error prone) operations.

7c CONCLUSIONS

We have described the design of a hardware and software system to support high perfor
mance applications. This entails modifying POSTGRES to support fast-path and partiad indexes,
writing a collection of demons to provide housekeeping services without the presence of a human,
building a controller for RAID, and providing parallel query plans.

The hardware platform utilized will either be a large Sun machine or a SEQUENT Sym
metry system. The construction of RAID is in progress and we expect an initial prototype by late
1988. The fast-path feature of POSTGRES is operational and we are tuning up the system to
achieve our performance goal of 5 * MIPS. During 1988 we will concentrate on partial indexes
and parallel plans.
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being stored, this will mean that the loss of a single drive will make all large DBMS objects una
vailable until recovery actions can be completed. Although this is an extremely unlikely scenario,
it might be a concern for a cautious system administrator.

Moreover, if the various disks have different capacities, then space management will be prob
lematic because there will be no way to use extra space on larger drives.

Lastly, although the DBMS can take advantage of high bandwidth when accessing large
objects, this will generally be the exceptional case. Consider a normal environment hi which a
query is executed which sequentially re^s a single relation. Such queries are generated by users,
for example producing a large batch report, or by the data base sort program, which might be
executing a merge-sort to perform a join with no indexes present.

A striped file system can, in theory have each drive read data a track at a time sequentially.
In main memory, the resulting tracks can be correctly interleaved. Consequently, the bandwidth
that is achievable on a sequential query is about:

D * 1.5 mbtes/sec

However, much less than this maximum bandwidth can be effectively used by a DBMS. Since we
have assumed 1000 CPU instructions arc required to process a typical record, of (say) 100 bytes,
10 CPU instructions per byte of data are required. Therefore a 16 MIPS CPU can keep up with
only one disk. Hence, the benefit of striping more than a few disks will be lost on sequential com
mands because of CPU saturation.

To achieve better performance on sequential transactions, one must resort to breaking a
sequential query into multiple query plans as noted in Section 3. The easiest way to manage the
bookkeeping and synchronization of multiple plans is to allocate individual relations to multiple
files and construct one query plan per file. This technique is discussed in Section 6.2.

Lastly, it is unlikely that hot spots will develop in a striped file system. However, in the
unlikely event that they do occur, there is absolutely nothing that can be done about them,
because the allocation algorithm is fixed.

4.3. Vertical Allocation

One might be led to consider vertical allocations, i.e. W = 1. Unfortunately this solution
fails to achieve our performance goal on large objects.

A large object will occur in a single tuple of a single data base object. For example, the fol
lowing relation might store an image library:

IMAGE (name, description)

Here, the description field would be several megabytes in size. In a system with W = 1, a
description would be stored on a single drive, and therefore the bandwidth available to return it to
an application program would be limited to the sequential read speed of the drive (about 1.5
mbyes/sec depending on the drive selected). Clearly, XPRS would fail to achieve its performance
goal on these applications with vertical allocation.

4.4. The Design of FTD
The clear conclusion is that neither horizontal nor vertical allocation is a workable solution,

and the file system, FTD, of XPRS must be able to support extents which are arbitrary rectan
gles. Consequently each extent, Ei, of a file is a data structure:

DRi: the drive number on which the extent starts

TRi: the track number of which the extent starts

Si: the size of the extent in tracks

Wi: the width of the extent in disks

Hence, each extent is a physically contiguous collection of tracks beginning at TRi and continuing
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to to TRi + Si -1 on each of disks DRi through DRi + Wi -1. Moreover, addressing in the rectan
gle is striped. Hence, track 1is allocated, to drive DRi, track 2to DRi+1, etc.

In the remainder of this section we discuss the choice of Wi for particular applications and
suggest that there are several dramatically different cases to consider. Consider first large object
retrieval where high availability is not a consideration. This might be the case, for exam^e, in
supercomputer access to aDBMS. Clearly, in this situation one should usually choose W Dand
provide maximum bandwidth to the application. On the other hand if availability is an Ksue,
then the system administrator must know the required bandwidth of the applications^using these
objects. He should then set Wi to be the minimum value which meets this bandwidth require
ment. Any choice of a larger Wi will result in lower availability if a catastrophic drive failure
occurs or restriping must be done when the number ofdrives changes.

On the other hand, in a transaction processing environment where only small commands are
run, one should choose Was large as possible to minimize problems with hot spots. The only rea
son not to choose W= Dis because space management will be difficult and drive unavailability
will result when disks are added and dropped.

Lastly, in an ad-hoc query environment where query parallelism is desired, the DBMS should
partition each relation into acoUection of files. There is no advantage to spreading such files over
more than a few disks due to plan saturation. Hence, small values of Wwill work just fine.

In conclusion we expect to design a file system where files can be extended an extent at a
time and application software can optionally suggest the value of Wthat would be appropriate for
the extent.

5. HIGH AVAILABILITY IN THE PRESENCE OF ERRORS

5.1. RAID

The I/O system in XPRS will be based on RAIDs (Redundant Arrays of Inexpensive Disks)
[PATT88]. The underlying premise is that small numbers of large expensive disks can be replaced
by very large numbers of inexpensive disks to achieve substantially increased transfer bandwidth

. ata comparable system cost. The major problem with disk arrays is the drastically reduced mean
time to failure (MTTF) because ofthe large numbers of additional system components.

RAIDs are only of interest if they can be made fault tolerant. At one extreme, each data
disk can have an associated "mirror" disk, which is comparable to Tandem's mirrored disk
approach. However, 50% of the available disk capacity is dedicated to redundant data storage, a
rather high price to pay.

We take an alternative approach and assume that each FTD "logical drive" is, in fact, made
up of a group of Nphysical disks. On N-1 of these disks normal data blocks are stored, while on
the Nth disk, we store the parity bit for the remaining drives. Blocks on different drives can be
read independently; however, writes require (up to) four physical I/Os:

(1) read original data block
(2) read its associated parity block
(3) write the updated data block
(4) write the updated parity block

InteUigent buffer management and/or read-modify-write transactions can eliminate one or two of
these I/Os in many cases.

To avoid the hot spot on the Nth drive during write operations, parity blocks are actually
interleaved across all Ndisks. Consequently, up to N/2 writes can be serviced simultaneously.

Note that the parity blocks represent much reduced overhead compared to the fully mir
rored approach. For N= 8, one in every eight blocks is a parity block. This represents only a
12.5% capacity overhead.
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When the controller discovers that a disk has a hard failure, processing continues in a
degraded fashion as follows. A hot spare is allocated to the group, replacing the failed disk. A
read to the failed disk is mapped into parallel readsof the data and parity blocks of the remaining
disks, and the lost data is reconstructed on the fly. Writes are processed as above, and are writ
ten through to the spare.

Just as in the case of fully mirrored disks, a second failure renders the group unavailable.
Thus it is also important to reconstruct the contents of the failed disk onto the spare drive exped-
itiously. Two strategies are possible: stop and reconstruct, or reconstruct in the background. In
the former, access to the group is suspended while the reconstruction software runs flat out to
rebuild the lost disk. Sequential access can be used to advantage to keep the reconstruction time
to a minimum, but assuming a group of 8 100 Mbyte 3 1/4" disks, this is a computationally
intensive task which will take at least flve minutes. This strategy does not meet the high availap
bility requirements of XPRS.

The alternative is to spread the reconstruction over a longer period, interleaving reconstruc
tion and conventional I/O. We assume the actual elapsed time to reconstruct the disk thereby
increases by a factor of fourty-eight to four hours.

The drawback of this approach is that a longer recovery period will adversely affect the
MTTF because a second physical failure will cause data loss during the longer reconstruction
period. To be specific, assume the average time to a physical disk failure is 30000 hours, and
therefore the failure rate, X, is 1/30000. Assume that the average repair time is 4 hours, and
therefore the repair rate, n, is 1/4. The mean time to failure ofa group ofN disks is:

MTTF =

N{N - 1) x'
Thus, MTTF decreases linearly with increasing repair time (decreasing repair rate). For N = 8
and a 4 hour repair interval, the MTTF exceeds 3.5 million hours. Put differently, one can have a
disk array of 20 of these groups containing 160 drives, and be assured that the MTTF of the
entire system is 175,781 hours, a little over 20 years.

In XPRS we will consequently assume that the disk system is perfectly reliable.

5.2. Software Errors

The POSTGRES storage manager is discussed in |STON87l and has the novel characteristic
that it has no log in the conventional sense. Instead ofoverwriting a data record, it simply adds a
new one and relies on an asynchronous vacuum cleaner to move "dead" records to an archive and
reclaim space. The POSTGRES log therefore consists of two bits of data per transaction giving
its status as

committed

aborted

in progress
Cl-in-progress

To commit a transaction in POSTGRES one must:

move data blocks written by the transaction to "stable" memory
set the commit bit

To abort a transaction one need only set the abort bit. To recover from a crash where the disk is
intact, one need only abort all transactions alive at the time of the failure, an instantaneous
operation. Since RAID has an infinite MTTF for disk errors, there are no crashes which leave disk
data unreadable.

To achieve higher reliability one must be able to recover from software errors caused by the
DBMS or the OS writing corrupted disk blocks. In this section we sketch our design which has
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the side benefit of making the buffer pool into "stable" storage. This will make committing
POSTGRES transactions extremely fast. We base our design on two assumptions:

Assumption 1: The OS ensures that each main memory page is either GUARDED orFREE. Any
guarded page is assumed to be physically unwritable and its contents obtainable after any crash.

We expect to implement GUARDED and FREE by setting the bit in the memory map that
controls page writability. With a battery back-up scheme for main memory and the assumption
that memory hardware is highly reliable, Assumption 1 seems plausible.

Assumption 2: The DBMS and the OS consider the operation of GUARDING a page as
equivalent to "I am well." Hence, issuing a GUARD command is equivalent to the assertion by
the appropriate software that it has not written bad data.

Although there is no way to ascertain the validity of Assumption 2, we expect to attempt to code
routines near GUARD points as "fail fast."

Our buffering scheme makes use of the fact that the OS has one copy of each block read and
the DBMS has a second in its buffer pool. Moreover there are 6 system calls available to the
DBMS:

:Read disk block X into main memory page A leaving A GUARDED
:Read disk block X into main memory page A leaving A FREE
:Write main memory page A to disk block X leaving A GUARDED
:Write main memory page A to disk block X leaving A FREE
:GUARD main memory page A

FREE (A) JS'REE main memory page A

The OS implements a G-READ command by allocating a buffer page, B, in its buffer pool and
performing the following operations:

FREE (B)
physical read of X into B
GUARD (B)
FREE (A)
copy B into A
GUARD (A)

The READ command is nearly the same, omitting only the last GUARD (A). The OS implements
G-WRITE (X,A) by using its version of the page, B, as follows:

GUARD (A)
FREE (B)
copy A into B
GUARD (B)

The WRITE command is the same except it adds a FREE (A) at the end. The OS can write
pages from its buffer pool to disk at any time to achieve its space management objectives.

Each time the DBMS modifies a data page, it must perform a WRITE or a G-WRITE com
mand to move the OS copy into synchronization. Moreover, it must assert that it has not written
invalid data. According to Assumption 2, it would perform a GUARD command preceding the
WRITE or G-WRITE command. For efficiency purposes, we have combined the two calls
together; therefore a WRITE or G-WRITE command is equivalent to a "wellness" assertion by
the DBMS.

If a crash occurs, then the OS takes the initiative to discard all unguarded pages in its buffer
pool as well as in the DBMS buffer pool. All other buffer pool pages are preserved. Moreover, the
code segments of the OS and DBMS are automatically guarded, so they are intact.

G-READ (X,A)
READ (X,A)
G-WRITE (A,X)
WRITE (A,X)
GUARD (A)
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